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Petrópolis, RJ, Brazil

ISBN 978-1-4614-6335-1 ISBN 978-1-4614-6336-8 (eBook)
DOI 10.1007/978-1-4614-6336-8
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013930230

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.it-ebooks.info

www.springer.com
http://www.it-ebooks.info/


Preface

This is a textbook about quantum walks and quantum search algorithms. The reader
will take advantage of the pedagogical aspects of this book and learn the topics
faster and make less effort than reading the original research papers, often written in
jargon. The exercises and references allow the readers to deepen their knowledge on
specific issues. Guidelines to use or to develop computer programs for simulating
the evolution of quantum walks are also available.

There is a gentle introduction to quantum walks in Chap. 2, which analyzes both
the discrete- and continuous-time models on a discrete line state space. Chapter 4
is devoted to Grover’s algorithm, describing its geometrical interpretation, often
presented in textbooks. It describes the evolution by means of the spectral decom-
position of the evolution operator. The technique called amplitude amplification is
also presented. Chapters 5 and 6 deal with analytical solutions of quantum walks on
important graphs: line, cycles, two-dimensional lattices, and hypercubes using the
Fourier transform. Chapter 7 presents an introduction of quantum walks on generic
graphs and describes methods to calculate the limiting distribution and the mixing
time. Chapter 8 describes spatial search algorithms, in special a technique called
abstract search algorithm. The two-dimensional lattice is used as example. This
chapter also shows how Grover’s algorithm can be described using a quantum walk
on the complete graph. Chapter 9 introduces Szegedy’s quantum-walk model and
the definition of the quantum hitting time. The complete graph is used as example.
An introduction to quantum mechanics in Chap. 2 and an appendix on linear algebra
are efforts to make the book self-contained.

Almost nothing can be extracted from this book if the reader does not have a full
understanding of the postulates of quantum mechanics, described in Chap. 2, and the
material on linear algebra described in the appendix. Some extra bases are required:
It is desirable that the reader has (1) notions of quantum computing, including the
circuit model, references are provided at the end of Chap. 2, and (2) notions of
classical algorithms and computational complexity. Any undergraduate or graduate
student with this background can read this book. The first five chapters are more
amenable to reading than the remaining chapters and provide a good basis for the
area of quantum walks and Grover’s algorithm. For those who have strict interest
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vi Preface

in the area of quantum walks, Chap. 4 can be skipped and the focus should be
on Chaps. 2, 5–7. Grover’s algorithm plays an essential role in Chaps. 8 and 9.
Chapter 6 is very technical and repetitive. In a first reading, it is possible to skip
the analysis of quantum walks on finite lattices and hypercubes in Chap. 6 and
in the subsequent chapters. In many passages, the reader must go slow, perform
the calculations and fill out the details before proceeding. Some of those topics
are currently active research areas with strong impact on the development of new
quantum algorithms.

Corrections, suggestions, and comments are welcome, which can be sent through
webpage (qubit.lncc.br) or directly to the author by email (portugal@lncc.br).

Petrópolis, RJ, Brazil Renato Portugal
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Chapter 1
Introduction

Quantum mechanics has changed the way we understand the physical world and has
introduced new ideas that are difficult to accept, not because they are complex, but
because they are different from what we are used to in our everyday lives. Those
new ideas can be collected in four postulates or laws. It is hard to believe that
Nature works according to those laws, and the difficulty starts with the notion of the
superposition of contradictory possibilities. Do you accept the idea that a billiard
ball could rotate around its axis in both directions at the same time?

Quantum computation was born from this kind of idea. We know that digital
classical computers work with zeroes and ones and that the value of the bit cannot
be zero and one at the same time. The classical algorithms must obey Boolean
logic. So, if the coexistence of bit-0 and bit-1 is possible, which logic should the
algorithms obey?

Quantum computation was born from a paradigm change. Information storage,
processing and transmission obeying quantum mechanical laws allowed the de-
velopment of new algorithms, faster than the classical analogues, which can be
implemented in physics laboratories. Nowadays, quantum computation is a well-
established area with important theoretical results within the context of the theory
of computing, as well as in terms of physics, and has raised huge engineering
challenges to the construction of the quantum hardware.

The majority of people, who are not familiar with the area and talk about
quantum computers, expect that the hardware development would obey the famous
Moore’s law, valid for classical computer development for fifty years. Many of those
people are disappointed to learn about the enormous theoretical and technological
difficulties to be overcome to harness and control memory size of a few atoms,
where quantum laws hold in their fullness. The construction of the quantum
computer requires a technology beyond the semiclassical barrier, which guides
the construction of semiconductors used in classical computers, and something
equivalent, completely quantum, should be developed to implement elementary
logical operations in some sub-nano scale.

R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, DOI 10.1007/978-1-4614-6336-8 1,
© Springer Science+Business Media New York 2013
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2 1 Introduction

The processing of classical computers is very stable. Depending on the calcula-
tion, an inversion of a single bit could invalidate the entire process. But we know
that long computations, which require inversion of billions of bits, are performed
without problems. Classical computers are error prone because its basic components
are stable. Consider, for example, a mechanical computer. It would be very unusual
for a mechanical device to change its position, especially if we put a spring to keep it
stable in the desired position. The same is true for electronic devices, which remain
in their states until an electrical pulse of sufficient power changes this. Electronic
devices are built to operate at a power level well above the noise and this noise is
kept low by dissipating heat into the environment.

The laws of quantum mechanics require that the physical device must be isolated
from the environment, otherwise the superposition vanishes, at least partially.
It is a very difficult task to isolate physical systems from their environment.
Ultra-relativistic particles and gravitational waves pass through any blockade,
penetrate into the most guarded places, obtain information, and convey it out of
the system. This process is equivalent to a measurement of a quantum observable,
which often collapses the superposition and slows down the quantum computer,
making it almost, or entirely, equivalent to the classical one. Techniques for signal
amplification and noise dissipation cannot be applied to quantum devices in the
same way they are used in conventional devices. This fact raises questions about
the feasibility of quantum computers. On the other hand, theoretical results show
that there are no fundamental issues against the possibility of building quantum
hardware. Researchers say that it is only a matter of technological difficulty.

There is no point in building quantum computers if we are going to use them in
the same way we use classical computers. Algorithms must be rewritten and new
techniques for simulating physical systems must be developed. The task is more
difficult than for classical computer. So far, we do not have a quantum programming
language. Also, quantum algorithms must be developed using concepts of linear
algebra. Quantum computers with a large enough number of qubits are not available,
as yet, to be used in simulations. This is slowing down the development in the area.

The concept of quantum walks provides a powerful technique for building
quantum algorithms. This area was developed in the beginning as the quantum
version of the concept of classical random walk, which requires the tossing of a
coin to determine the direction of the next step. The laws of quantum mechanics
state that the evolution of an isolated quantum system is deterministic. Randomness
shows up only when the system is measured and classical information is obtained.
This explains why the name “quantum random walks” is seldom used. The coin is
introduced in quantum walks by enlarging the space of the physical system. Time
proceeds in discrete units. There are at least two such models. They are called
discrete-time quantum walks. Surprisingly, there is another model that does not
require an extra space dimension, in addition to where the walker moves, and time
is continuous. This model is called continuous-time quantum walk. Those models
cannot be obtained one from the other, via time limit or discretization and they have
some fundamental differences.
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Chapter 2
The Postulates of Quantum Mechanics

It is impossible to present quantum mechanics in a few pages. Since the goal of
this book is to describe quantum algorithms, we limit ourselves to the principles of
quantum mechanics and describe them as “game rules.” Suppose you have played
checkers for many years and know several strategies, but you really do not know
chess. Suppose now that someone describes the chess rules. Soon you will be
playing a new game. Certainly, you will not master many chess strategies, but you
will be able to play. This chapter has a similar goal. The postulates of a theory are
its game rules. If you break the rules, you will be out of the game.

At best, we can focus on four postulates. The first describes the arena where
the game goes on. The second describes the dynamics of the process. The third
describes how we adjoin various systems. The fourth describes the process of
physical measurement. All these postulates are described in terms of linear algebra.
It is essential to have a solid understanding of the basic results in this area. Moreover,
the postulate of composite systems uses the concept of tensor product, which is a
method of combining two vector spaces to build a larger vector space. It is also
important to be familiar with this concept.

2.1 State Space

The state of a physical system describes its physical characteristics at a given time.
Usually we describe some of the possible features that the system can have, because
otherwise, the physical problems would be too complex. For example, the spin state
of a billiard ball can be characterized by a vector in R

3. In this example, we disregard
the linear velocity of the billiard ball, its color or any other characteristics that are
not directly related to its rotation. The spin state is completely characterized by
the axis direction, the rotation direction and rotation intensity. The spin state can be
described by three real numbers that are the components of a vector, whose direction
characterizes the rotation axis, whose sign describes to which side of the billiard
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4 2 The Postulates of Quantum Mechanics

Z

A

B

O

Fig. 2.1 Scheme of an
experimental device to
measure the spin state of an
electron. The electron passes
through a magnetic field
having vertical direction. It
hits A or B depending on the
rotation direction. The
distance of the points A and
B from point O depends on
the rotation speed. The results
of this experiment are quite
different from what we expect
classically

ball is spinning and whose length characterizes the speed of rotation. In classical
physics, the direction of the rotation axis can vary continuously, as well as the
rotation intensity.

Does an electron, which is considered an elementary particle, i.e. not composed
of other smaller particles, rotates like a billiard ball? The best way to answer this
is by experimenting in real settings to check whether the electron in fact rotates
and whether it obeys the laws of classical physics. Since the electron has charge, its
rotation would produce magnetic fields that could be measured. Experiments of this
kind were performed at the beginning of quantum mechanics, with beams of silver
atoms, later on with beams of hydrogen atoms, and today they are performed with
individual particles (instead of beams), such as electrons or photons. The results are
different from what is expected by the laws of the classical physics.

We can send the electron through a magnetic field in the vertical direction
(direction z), according to the scheme of Fig. 2.1. The possible results are shown.
Either the electron hits the screen at the point A or point B . One never finds the
electron at point O , which means no rotation. This experiment shows that the spin
of the electron only admits two values: spin up and spin down both with the same
intensity of “rotation.” This result is quite different from classical, since the direction
of the rotation axis is quantized, admitting only two values. The rotation intensity is
also quantized.

Quantum mechanics describes the electron spin as a unit vector in the Hilbert
space C2. The spin up is described by the vector

j0i D
�
1

0

�

and spin down by the vector

j1i D
�
0

1

�
:
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2.1 State Space 5

This seems a paradox, because vectors j0i and j1i are orthogonal. Why use
orthogonal vectors to describe spin up and spin down? In R

3, if we add spin up and
spin down, we obtain a rotationless particle, because the sum of two opposite vectors
of equal length gives the zero vector, which describes the absence of rotation.
In the classical world, you cannot rotate a billiard ball to both sides at the same
time. We have two mutually excluded situations. It is the law of excluded middle.
The notions of spin up and spin down refer to R

3, whereas quantum mechanics
describes the behavior of the electron before the observation, that is, before entering
the magnetic field, which aims to determine its state of rotation.

If the electron has not entered the magnetic field and if it is somehow isolated
from the macroscopic environment, its spin state is described by a linear combina-
tion of vectors j0i and j1i

j i D a0j0i C a1j1i; (2.1)

where the coefficients a0 and a1 are complex numbers that satisfy the constraint

ja0j2 C ja1j2 D 1: (2.2)

Since vectors j0i and j1i are orthogonal, the sum does not result in the zero vector.
Excluded situations in classical physics can coexist in quantum mechanics. This
coexistence is destroyed when we try to observe it using the device shown in
Fig. 2.1. In the classical case, the spin state of an object is independent of the
choice of the measuring apparatus and, in principle, has not changed after the
measurement. In the quantum case, the spin state of the particle is a mathematical
idealization which depends on the choice of the measuring apparatus to have
a physical interpretation and, in principle, suffers irreversible changes after the
measurement. The quantities ja0j2 and ja1j2 are interpreted as the probability of
detection of spin up or down, respectively.

2.1.1 State–Space Postulate

An isolated physical system has an associated Hilbert space, called the state space.
The state of the system is fully described by a unit vector, called the state vector in
that Hilbert space.

Notes

1. The postulate does not tell us the Hilbert space we should use for a given
physical system. In general, it is not easy to determine the dimension of the
Hilbert space of the system. In the case of electron spin, we use the Hilbert space
of dimension 2, because there are only two possible results when we perform
an experiment to determine the vertical electron spin. More complex physical
systems admit more possibilities, which can be an infinite number.
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6 2 The Postulates of Quantum Mechanics

2. A system is isolated or closed if it does not influence and is not influenced by the
outside. In principle, the system need not be small, but it is easier to isolate small
systems with few atoms. In practice, we can only deal with approximate isolated
systems, so the state–space postulate is an idealization.

The state–space postulate is impressive, on the one hand, but deceiving, on the
other hand. The postulate admits that classically incompatible states coexist in
superposition, such as rotating to both sides simultaneously, but this occurs only
in isolated systems, i.e. we cannot see this phenomenon, as we are on the outside of
the insulation (let us assume that we are not Schrödinger’s cat). A second restriction
demanded by the postulate is that quantum states must have unit norm. The postulate
constraints show that the quantum superposition is not absolute, i.e. is not the
way we understand the classical superposition. If quantum systems admit a kind
of superposition that could be followed classically, the quantum computer would
have available an exponential amount of parallel processors with enough computing
power to solve the problems in class NP-complete.1 It is believed that the quantum
computer is exponentially faster than the classical computer only in a restricted class
of problems.

2.2 Unitary Evolution

The goal of physics is not simply to describe the state of a physical system at a given
time, rather the main objective is to determine the state of this system in future.
A theory makes predictions that can be verified or falsified by physical experiments.
This is equivalent to determining the dynamical laws the system obeys. Usually,
these laws are described by differential equations, which govern the time evolution
of the system.

2.2.1 Evolution Postulate

The time evolution of an isolated quantum system is described by a unitary trans-
formation. If the state of the quantum system at time t1 is described by vector j 1i,
the system state j 2i at time t2 is obtained from j 1i by a unitary transformationU ,
which depends only on t1 and t2, as follows:

j 2i D U j 1i: (2.3)

1The class NP-complete consists of the most difficult problems in the class NP (Non-deterministic
Polynomial). The class NP is defined as the class of computational problems that have solutions
whose correctness can be “quickly” verified.
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2.2 Unitary Evolution 7

A

B

2

1
100%

0%Fig. 2.2 Schematic drawing
of an experimental device,
which consists of a light
source, two half-silvered
mirrors A and B, fully
reflective mirrors, detectors 1
and 2. The interference
produced by the last
half-silvered mirror makes all
light to go to the detector 2

Notes

1. The action of a unitary operator on a vector preserves its norm. Thus, if j i is a
unit vector, U j i is also a unit vector.

2. A quantum algorithm is a prescription of a sequence of unitary operators applied
to an initial state takes the form

j ni D Un � � �U1j 1i:

The qubits in state j ni are measured, returning the result of the algorithm.
Before measurement, we can obtain the initial state from the final state because
unitary operators are invertible.

3. The evolution postulate is to be written in the form of a differential equation,
called Schrödinger equation. This equation provides a method to obtain operator
U once given the physical context. Since the goal of physics is to describe the
dynamics of physical systems, the Schrödinger equation plays a fundamental
role. The goal of computer science is to analyze and implement algorithms, so
the computer scientist wants to know if it is possible to implement some form
of a unitary operator previously chosen. Equation (2.3) is useful for the area of
quantum algorithms.

Let us analyze a second experimental device. It will help to clarify the role of
unitary operators in quantum systems. This device uses half-silvered mirrors with
45ı incident light, which transmit 50% of incident light and reflect 50%. If a single
photon hits the mirror at 45ı, with probability 1/2, it keeps the direction unchanged
and with probability 1/2, it is reflected. These half-silvered mirrors have a layer of
glass that can change the phase of the wave by 1/2 wavelength. The complete device
consists of a source that can emit one photon at a time, two half-silvered mirrors, two
fully reflective mirrors and two photon detectors, as shown in Fig. 2.2. By tuning the
device, the result of the experiment shows that 100% of the light reaches detector 2.

There is no problem explaining the result using the interference of electro-
magnetic waves in the context of the classical physics, because there is a phase
change in the light beam that goes through one of the paths producing a destructive
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8 2 The Postulates of Quantum Mechanics

interference with the beam going to the detector 1 and constructive interference
with the beam going to the detector 2. However, if the light intensity emitted by the
source is decreased such that one photon is emitted at a time, this explanation fails.
If we insist on using classical physics in this situation, we predict that 50% of the
photons would be detected by detector 1 and 50% by detector 2, because the photon
either goes through the mirror A or goes through B, and it is not possible to interfere
since it is a single photon.

In quantum mechanics, if the set of mirrors is isolated from the environment,
the two possible paths are represented by two orthonormal vectors j0i and j1i,
which generate the state space that describes the possible paths to reach the photon
detector. Therefore, a photon can be in superposition of “path A,” described by j0i,
together with “path B,” described by j1i. This is the application of the first postulate.
The next step is to describe the dynamics of the process. How is this done and
what are the unitary operators in the process? In this experiment, the dynamics is
produced by the half-silvered mirrors, since they generate the paths. The action of
the half-silvered mirrors on the photon must be described by a unitary operator U .
This operator must be chosen so that the two possible paths are created in a balanced
way, i.e.

U j0i D j0i C ei� j1ip
2

: (2.4)

This is the most general case where paths A and B have the same probability
to be followed, because the coefficients have the same modulus. To complete the
definition of operator U , we need to know its action on state j1i. There are many
possibilities, but the most natural choice that reflects the experimental device is
� D �=2 and

U D 1p
2

�
1 i

i 1

�
: (2.5)

The state of the photon after passing through the second half-silvered mirror is

U.U j0i/ D .j0i C i j1i/C i.i j0i C j1i/
2

D i j1i: (2.6)

The intermediate step of the calculation was displayed on purpose. We can see
that the paths described by j0i algebraically cancel, which can be interpreted as a
destructive interference, while the j1i-paths interfere constructively. The final result
shows that the photon that took path B remains, going directly to the detector 2.
Therefore, quantum mechanics predicts that 100% of the photons will be detected
by detector 2.
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2.3 Composite Systems 9

2.3 Composite Systems

The postulate of composite systems states that the state space of a composite system
is the tensor product of the state space of the components. If j 1i; : : :, j ni describe
the states of n isolated quantum systems, the state of the composite system is
j 1i ˝ � � � ˝ j ni.

An example of a composite system is the memory of a n-qubit quantum
computer. Usually, the memory is divided into sets of qubits, called registers.
The state space of the computer memory is the tensor product of the state space
of the registers, which is obtained by repeated tensor product of the Hilbert space
C
2 of each qubit.
The state space of the memory of a 2-qubit quantum computer is C4 D C

2 ˝C
2.

Therefore, any unit vector in C
4 represents the quantum state of two qubits. For

example, the vector

j0; 0i D

2
664
1

0

0

0

3
775; (2.7)

which can be written as j0i ˝ j0i, represents the state of two electrons both with
spin up. Analogous interpretation applies to j0; 1i, j1; 0i, and j1; 1i. Consider now
the unit vector in C

4 given by

j i D j0; 0i C j1; 1ip
2

: (2.8)

What is the spin state of each electron in this case? To answer this question, we have
to factor j i as follows:

j0; 0i C j1; 1ip
2

D �
aj0i C bj1i�˝ �

cj0i C d j1i�: (2.9)

We can expand the right-hand side and match the coefficients setting up a system of
equations to find a, b, c, and d . The state of the first qubit will be aj0i C bj1i and
second will be cj0i C d j1i. But there is a big problem: the system of equations has
no solution, i.e. there are no coefficients a, b, c, and d satisfying (2.9). Every state of
a composite system that cannot be factored is called entangled. The quantum state
is well defined when we look at the composite system as a whole, but we cannot
attribute the states to the parts.

A single qubit can be in a superposed state, but it cannot be entangled, because
its state is not composed of subsystems. The qubit should not be taken as a synonym
of a particle, because it is confusing. The state of a single particle can be entangled
when we are analyzing more than a physical quantity related to it. For example,
we may describe both the position and the rotation state. The position state may be
entangled with the rotation state.
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10 2 The Postulates of Quantum Mechanics

Exercise 2.1. Consider the states

j 1i D 1

2

�j0; 0i � j0; 1i C j1; 0i � j1; 1i�;

j 2i D 1

2

�j0; 0i C j0; 1i C j1; 0i � j1; 1i�:
Show that j 1i is not entangled and j 2i is entangled.

Exercise 2.2. Show that if j i is an entangled state of two qubits, then the
application of a unitary operator of the form U1 ˝ U2 necessarily generates an
entangled state.

2.4 Measurement Process

In general, measuring a quantum system that is in the state j i seeks to obtain
classical information about this state. In practice, measurements are performed
in laboratories using devices such as lasers, magnets, scales, and chronometers.
In theory, we describe the process mathematically in a way that is consistent with
what occurs in practice. Measuring a physical system that is in an unknown state,
in general, disturbs this state irreversibly. In those cases, there is no way to know
or recover the state before the measurement. If the state was not disturbed, no new
information about it is obtained. Mathematically, the disturbance is described by a
orthogonal projector. If the projector is over an one-dimensional space, it is said
that the quantum state collapsed and is now described by the unit vector belonging
to the one-dimensional space. In the general case, the projection is over a vector
space of dimension greater than 1, and it is said that the collapse is partial or, in
extreme cases, there is no change at all in the quantum state of the system.

The measurement requires the interaction between the quantum system with a
macroscopic device, which violates the state–space postulate, because the quantum
system is not isolated at this moment. We do not expect the evolution of the quantum
state during the measurement process to be described by a unitary operator.

2.4.1 Measurement Postulate

A projective measurement is described by a Hermitian operator O , called observ-
able in the state space of the system being measured. The observable O has a
diagonal representation

O D
X
�

�P�; (2.10)

where P� is the projector on the eigenspace of O associated with the eigenvalue
�. The possible results of measurement of the observable O are the eigenvalues �.
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2.4 Measurement Process 11

If the system state at the time of measurement is j i, the probability of obtaining
the result � will be kP�j ik2 or, equivalently,

p� D h jP�j i: (2.11)

If the result of the measurement is �, the state of the quantum system immediately
after the measurement will be

1p
p�
P�j i: (2.12)

Notes

1. There is a correspondence between the physical layout of the devices in a physics
lab and the observable O . When an experimental physicist measures a quantum
system, she or he gets real numbers as result. Those numbers correspond to the
eigenvalues � of the Hermitean operatorO .

2. The states j i and ei� j i have the same probability distribution p� when one
measures the same observable O . The states after measurement differ by
the same factor ei� . The term ei� multiplying a quantum state is called global
phase factor whereas a term ei� multiplying a vector of a sum of vectors, such as
j0i C ei� j1i, is called relative phase factor. The real number � is called phase.

Since the possible outcomes of a measurement of observableO obey a probabil-
ity distribution, we can define the expected value of a measurement as

hOi D
X
�

p� �; (2.13)

and the standard deviation as

�O D
p

hO2i � hOi2: (2.14)

It is important to remember that the mean and standard deviation of an observable
depends on the state that the physical system was in just before the measurement.

Exercise 2.3. Show that hOi D h jOj i:
Exercise 2.4. Show that if the physical system is in a state j i that is an eigenvector
of O , then �O D 0, that is, there is no uncertainty about the result of the
measurement of the observableO . What is the result of the measurement?

Exercise 2.5. Show that
P

� p� D 1 for any observableO and any state j i.

Exercise 2.6. Suppose that the physical system is in generic state j i. Show thatP
� p

2
� D 1 to an observableO , if and only if �O D 0.
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12 2 The Postulates of Quantum Mechanics

2.4.2 Measurement in Computational Basis

The computational basis of space C
2 is the set

˚j0i; j1i�. For one qubit, the
observable of the measurement in the computational basis is Pauli matrix Z, whose
spectral decomposition is

Z D .C1/PC1 C .�1/P�1; (2.15)

where PC1 D j0ih0j and P�1 D j1ih1j. The possible results of the measurement
are ˙1. If the state of the qubit is given by (2.1), the probabilities associated with
possible outcomes are

pC1 D ja0j2; (2.16)

p�1 D ja1j2; (2.17)

whereas the states immediately after the measurement are j0i and j1i, respectively.
In fact, each of these states has a global phase that can be discarded. Note that

pC1 C p�1 D 1;

because state j i have unit norm.
Before generalizing to n qubits, it is interesting to reexamine the process of

measurement of a qubit with another observable given by

O D
1X

kD0
kjkihkj: (2.18)

Since the eigenvalues of O are 0 and 1, the above analysis holds if we replace C1
by 0 and �1 by 1. With this new observable, there is a one-to-one correspondence in
the nomenclature of the measurement result and the final state. If the result is 0, the
state after the measurement is j0i. If the result is 1, the state after the measurement
is j1i.

The computational basis of the Hilbert space of n qubits in decimal notation
is the set

˚j0i; : : : ; j2n � 1i�. The measurement in the computational basis is
associated with observable

O D
2n�1X
kD0

k Pk; (2.19)

where Pk D jkihkj. A generic state of n qubits is given by

j i D
2n�1X
kD0

ak jki; (2.20)
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2.4 Measurement Process 13

where amplitudes ak satisfying the constraint

X
k

jakj2 D 1: (2.21)

The measurement result is an integer value k in the range 0 � k � 2n � 1 with a
probability distribution given by

pk D ˝
 
ˇ̌
Pk
ˇ̌
 
˛

D ˇ̌ ˝
k
ˇ̌
 
˛ ˇ̌2

D jakj2: (2.22)

Equation (2.21) ensures that the sum of the probabilities is 1. The n-qubit state
immediately after the measurement is

Pkj ip
pk

' jki: (2.23)

For example, suppose that the state of two qubits is given by

j i D 1p
3
.j0; 0i � i j0; 1i C j1; 1i/ : (2.24)

The probability that the result is 00, 01 or 11 in binary notation is 1=3. Result
10 is never obtained, because the associated probability is 0. If the measurement
result is 00, the system state immediately after will be j0; 0i. Similarly for 01 and
11. For the measurement in the computational basis, it makes sense that the result
is state j0; 0i, because there is a correspondence between eigenvalue 00 and state
j0; 0i.

The result of the measurement specifies to which vector of the computational
basis state j i is projected. The result does not provide the value of coefficient ak ,
that is, none of the 2n amplitudes ak describing state j i are revealed. Suppose we
want to find number k as a result of an algorithm. This result should be encoded as
one of the vectors of the computational basis, which spans the vector space to which
state j i belongs. It is undesirable, in principle, that the result itself is associated
with one of the amplitudes. If the desired result is a non-integer real number, then
the k most significant digits should be coded as a vector of the computational basis.
After a measurement, we have a chance to get closer to k. A technique used in
quantum algorithms is to amplify the value of ak making it as close to 1 as possible.
A measurement at this point will return the value k with high probability. Therefore,
the number that specifies a ket, for example number k of jki is a possible outcome
of the algorithm, while the amplitudes of the quantum state are associated with
the probability of obtaining a result.
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14 2 The Postulates of Quantum Mechanics

The description of the measurement process of observable (2.19) is equivalent to
simultaneous measurements or in a cascade of observables Z, i.e. one observable
Z for each qubit. The possible results of measuring Z are ˙1. Simultaneous
measurements, or in a cascade of n qubits, result in a sequence of values ˙1.
The relationship between a result of this kind and the one described before is
obtained by replacing C1 by 0 and �1 by 1. We will have a binary number that
can be converted into a decimal number which is one of the values k of (2.19).

For example, for 3 qubits the result may be .�1;C1;C1/, which is equivalent to
.1; 0; 0/. Converting to base ten, we get number 4. The state after the measurement
will be obtained using the projector

P�1;C1;C1 D j1ih1j ˝ j0ih0j ˝ j0ih0j
D j1; 0; 0ih1; 0; 0j (2.25)

over the state system of the three qubits followed by renormalization. The renormal-
ization in this case replaces the coefficient by 1. The state after measurement will be
j1; 0; 0i. So far using the computational basis, for both observables (2.19) and Z’s,
we can simply say that the result is j1; 0; 0i, because we automatically know that the
eigenvalues of Z in question are .�1;C1;C1/ and the number k is 4.

A simultaneous measurement of n observables Z is not equivalent to measure
observableZ˝� � �˝Z. The latter observable returns a single value, which can be C1
or �1, whereas with n observablesZ, simultaneously or not, we obtain n values ˙1.
Measurements on a cascade are performed with observable Z ˝ I ˝ � � � ˝ I , I ˝
Z˝� � �˝I , and so on. They can also be performed simultaneously. Usually, we use
a more compact notation, Z1, Z2, successively, where Z1 means that observable
Z was used for the first qubit and the identity operator for the remaining qubits.
Since these observables commute, the order is irrelevant and the limits imposed by
the uncertainty principle do not apply. Measurement of observables of this kind is
called partial measurement in the computational basis.

Exercise 2.7. Suppose that the state of a qubit is j1i.
1. What is the mean value and standard deviation of the measurement of observ-

able X?
2. What is the mean value and standard deviation of the measurement of observable
Z? Compare with Exercise 2.4.

2.4.3 Partial Measurement in Computational Basis

The term measurement in the computational basis of n qubits implies a
measurement of all n qubits. However, it is possible to perform a partial measure-
ment, i.e. to measure some qubits. The result in this case is not necessarily a state
of the computational basis. For example, we can measure the first qubit of system
described by the state j i of (2.24). It is convenient to rewrite that state as follows:
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2.4 Measurement Process 15

j i D
r
2

3
j0i ˝ j0i � i j1ip

2
C 1p

3
j1i ˝ j1i: (2.26)

We can see that the measurement result is either 0 or 1. The probability of obtaining
1 is 1=3, because the only way to get 1 for a measurement of the first qubit is to
obtain 1 as well, for the second qubit. Therefore, the probability of obtaining 0 is
2=3, and the state immediately after the measurement in this case is

j0i ˝ j0i � i j1ip
2

:

Only the qubits involved in the measurement are projected on the computational
basis. The states that have 0 in the first qubit survive and the final state must be
renormalized. The remaining qubits may be in superposition. In this example, when
the result is 0, the state of the second qubit is a superposition, when the result is 1,
the state of the second qubit is j1i.

If we have a system composed of subsystems A and B , a partial measurement is
a measurement of an observable of the typeOA ˝ IB , whereOA is an observable of
system A and IB is the identity operator of systemB . Physically, this means that the
measuring apparatus interacted only with the subsystem A. Equivalently, a partial
measurement interacting only with subsystem B is a measurement of an observable
of the type IA ˝OB .

If we have a register of m qubits together with a register of n qubits, we can
represent the computational basis in a compact form

˚ji; j i W 0 � i � 2m � 1,
0 � j � 2n � 1

�
, where i and j are both represented in base ten. A generic state

will be represented by

j i D
2m�1X
iD0

2n�1X
jD0

aij ji; j i: (2.27)

Suppose we measure all qubits of the first register in the computational basis, i.e.
we measure observableOA ˝ IB , where

OA D
2m�1X
kD0

kPk: (2.28)

The probability of obtaining value 0 � k � 2m � 1 is

pk D h j .Pk ˝ I / j i

D
2n�1X
jD0

ˇ̌
akj
ˇ̌2
: (2.29)

www.it-ebooks.info

http://www.it-ebooks.info/


16 2 The Postulates of Quantum Mechanics

The set
˚
p0; : : : ; p2m�1

�
is a probability distribution and therefore satisfies

2m�1X
kD0

pk D 1: (2.30)

If the measurement result is k, the state immediately after the measurement will be

1p
pk
.Pk ˝ I / j i D 1p

pk
jki

0
@2

n�1X
jD0

akj jj i
1
A : (2.31)

Note that the state after the measurement is a superposition of the second reg-
ister. A measurement of observable (2.28) is equivalent to measure observables
Z1, : : :, Zm.

Exercise 2.8. Suppose that the state of two qubits is given by

j i D 3

5
p
2

j0; 0i � 3 i

5
p
2

j0; 1i C 2
p
2

5
j1; 0i � 2

p
2 i

5
j1; 1i: (2.32)

1. Describe completely the measurement process of observable Z1, that is, obtain
the probability of each outcome and the corresponding states after the measure-
ment. Suppose that, after measuring Z1, we measure Z2. Describe all resulting
cases.

2. Now invert the order of the observable and describe the whole process.
3. If the intermediate quantum states are disregarded, is there a difference when

we invert the order of the observable? Note that the measurement of Z1 and Z2
may be performed simultaneously. One can move the qubits without changing
the quantum state, which may be entangled or not, and put each of them into a
measuring device, both adjusted to measure observableZ, as in Fig. 2.1.

4. For two qubits, the state after the measurement of the first qubit in the
computational basis can be either j0ij˛i or j1ijˇi, where j˛i and jˇi are states
of the second qubit. In general, we have j˛i ¤ jˇi. Why is this not the case in
previous items?

Further Reading

The amount of good books about quantum mechanics is very large. For the first
contact, we suggest [31, 66, 69]. For a more complete approach, we suggest [23].
For a more conceptual approach, we suggest [25, 65]. For those who are only
interested in the application of quantum mechanics to quantum computing, we
suggest [41, 57, 64, 67, 68].
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Chapter 3
Introduction to Quantum Walks

Quantum walks play an important role in the development of quantum algorithms.
Algorithms based on quantum walks generally use a technique called amplitude
amplification, which was introduced in Grover’s algorithm. This technique differs
from the ones used in algebraic algorithms, in which the Fourier transform plays
the main role. However, it is possible to go beyond Grover’s algorithm in terms of
efficiency. The best algorithm to solve the element distinctness problem is based on
quantum walks. This problem consists in determining whether there are repeated
elements in a set of elements. When Grover’s algorithm is used, the solution is less
efficient.

Before describing the area of quantum walks, we will briefly review the area
of classical random walks with a focus on the expected distance from the origin
induced by the probability distribution. We will compare the results to the quantum
expected distance. We will see that the probability of finding the walker away from
the origin is greater in the quantum case. This fact is the main reason why algorithms
based on quantum walks can be faster than those based on classical random walks.

3.1 Classical Random Walks

3.1.1 Random Walk on the Line

The simplest example of random walk is the classical motion of a particle on a line,
the direction of which is determined by a non-biased coin. Toss the coin, if it is
tails, the particle will jump one unit rightward, if it is heads, the particle will jump
one unit leftward. This process is repeated every time unit. Because this process is
probabilistic, we cannot know for sure where the particle will be at a later time, but
we can calculate the probability p of it being at a given point n at time t . Suppose
the particle is at the origin at time t D 0. Then p.t D 0; n D 0/ D 1, as shown in
the table in Fig. 3.1. For t D 1, the particle can be either in the position n D �1

R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, DOI 10.1007/978-1-4614-6336-8 3,
© Springer Science+Business Media New York 2013
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t
n

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 1

1 1
2

1
2

2 1
4

1
2

1
4

3 1
8

3
8

3
8

1
8

4 1
16

1
4

3
8

1
4

1
16

5 1
32

5
32

5
16

5
16

5
32

1
32

Fig. 3.1 Probability of the particle being in the position n at time t , assuming it starts the random
walk at the origin. The probability is zero in empty cells

Fig. 3.2 Probability distribution of the random walk in a classical one-dimensional lattice for
t D 72, t D 180 and t D 450

with probability 1=2 or in n D 1 with probability 1=2. The probability of it being
in the position n D 0 becomes zero. Following this reasoning, we can confirm all
probabilities described in the table in Fig. 3.1.

A generic term in this table is given by

p.t; n/ D 1

2t

 
t
tCn
2

!
; (3.1)

where
�
a
b

� D aŠ
.a�b/ŠbŠ . This equation is valid only if it t C n is even and n � t .

If t C n is odd or n > t , the probability will be zero. For a fixed value of t , p.t; n/
is a binomial distribution. For relatively large values of fixed t , the probability as
a function of n has a characteristic curve. In Fig. 3.2, three of these curves are
shown for t D 72, t D 180, and t D 450. Strictly, the curves are envelopes of the
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3.1 Classical Random Walks 19

distribution of points, because the probability is zero for odd values of n when t is
even. Another way to interpret the curves of the figure is as the sum p.t; n/Cp.t C
1; n/, i.e. we have two overlapping distributions.

We can see in Fig. 3.2 that the height of the midpoint of the curve decreases as a
function of time, whereas the width increases. It is natural to ask what the expected
distance from the origin induced by the probability distribution is. It is important to
determine how far away from the origin we can find the particle as time goes on.
The expected distance is a statistical quantity that captures this idea and is equal
to the position standard deviation when the probability distribution is symmetrical.
The average position (or expected position) is

hni D
1X

nD�1
np.t; n/

D 0; (3.2)

it follows that the standard deviation of the probability distribution is

q
hn2i � hni2 D

vuut 1X
nD�1

n2 p.t; n/

D p
t : (3.3)

Another way to calculate the standard deviation is by converting the binomial
distribution into an expression that is easier to handle analytically. By expanding the
binomial factor of (3.1) in terms of factorials, and using Stirling’s approximation
for large values of t , the probability distribution of the random walk can be
approximated by the expression

p .t; n/ ' 2p
2� t

e� n2

2t : (3.4)

For a fixed value of t and without the factor 2 in the numerator, this function is called
Gaussian or normal distribution. The width of the normal distribution is defined as
half the distance between the inflection points. By equating the second derivative
@2p=@n2 to zero, we eventually obtain the width

p
t . The standard deviation is the

width of the normal distribution.

Exercise 3.1. The goal of this exercise is to help to obtain (3.1). First show that at
time t , the total number of possible paths of the particle is 2t . At time t , the particle
is in position n. Suppose that the particle has moved a steps rightward and b steps
leftward. Find a and b as functions of t and n. Now focus on the steps rightward.
In how many ways can the particle move a steps rightward in t units of time? Or,
equivalently, we have t objects, in how many ways can we select a objects? Show
that the probability of the particle being in the position n is given by (3.1).
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20 3 Introduction to Quantum Walks

Exercise 3.2. The goal of this exercise is to help the calculation of the sum in (3.3).
Change the dummy index to obtain a finite sum starting at n D 0 and running over
even values of n when t is even and running over odd values of n when t is odd.
After that you can use (3.1). Rename the dummy index in order to use the identities

tX
nD0

 
2t

n

!
D 22t�1 C 1

2

 
2t

t

!
;

tX
nD0

n

 
2t

n

!
D t22t�1;

tX
nD0

n2

 
2t

n

!
D t222t�1 C t22t�2 � t2

2

 
2t

t

!

and simplify the result to show that

1X
nD�1

n2 p.t; n/ D t:

Exercise 3.3. Show that (3.4) can be obtained from (3.1) through Stirling’s approx-
imation, which is given by

t Š � p
2�t t t e�t ;

when t � 1:
�
Hint: Use Stirling’s approximation and simplify the result trying to

factor out the fraction n=t . Take the natural logarithm of the expression, expand the
logarithm, and use the asymptotic expansion of the logarithm. Note that terms of
the type n2=t2 are much smaller than n2=t . At the end, take the exponential of the
result.

�

3.1.2 Classical Discrete Markov Chains

A classical Markov chain is a stochastic process that assumes values in a discrete
set and obeys the following property: the next state of the chain only depends on
the current state, i.e. it is not influenced by the past states. The Markov chain
can be viewed as a directed graph where the states are represented by vertices
and directed edges indicate what the possible next states are. The next state is
randomly determined. Note that the set of states is discrete, whereas the evolution
can be discrete or continuous. Therefore, the term discrete or continuous in this area
only refers to time.

Let us start by describing the classical discrete Markov chains, i.e. chains with
discrete time variable. At each step, the Markov chain has an associated probability
distribution, which is the set of probabilities of the walker being in the states or
vertices. We can describe the probability distribution with a vector, after choosing
an order for the states. Let �.X;E/ be a graph with set of verticesX D fx1; : : : ; xng
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3.1 Classical Random Walks 21

(jX j D n) and set of edges E . The probability distribution is described by a vector
of the form 2

64
p1.t/
:::

pn.t/

3
75 ;

where p1.t/ is the probability of the walker being at vertex x1 at time t . Similarly
for the other entries. If the process begins with the walker in the first vertex, we
have p1.0/ D 1 and pi.0/ D 0 for i D 2; : : : ; n. In a Markov chain, we cannot
precisely tell where the walker will be in the future. However, we can determine the
probability distribution, if we know the transition matrix M , also called probability
matrix or stochastic matrix.

If the probability distribution is known at the time t , we obtain the distribution at
time t C 1 by employing the formula

pi .t C 1/ D
nX

jD1
Mi j pj .t/: (3.5)

To ensure that pi .t C 1/ is a probability distribution, i.e. pi � 0, 8i and
P

i pi D 1,
matrixM must satisfy the following properties: the entries must be nonnegative real
numbers and the sum of the entries of any column must be equal to 1. In vector form,
we have

Ep.t C 1/ D M p.t/: (3.6)

Because the matrix is in the left position, this version is called left stochastic matrix.
There is a corresponding description that uses a transposed vector of probabilities
(row vector) and the matrix is on the right position. In this case, the sum of the
entries of each line of M should result in one.

The entry Mij of the stochastic matrix is the probability of the walker, who is in
vertex xj , to go to vertex xi . The simplest case is when the graph is undirected and

Mij D 1

dj
;

where dj is the degree or valence of vertex xj . If there is no edge from xj to
xi , then Mij D 0. In this case, the walker goes to one of the adjacent vertices
and transition probability is the same for all of them. The stochastic matrix is related
to the adjacency matrix .A/ of the graph by formulaMij D Aij =dj . The adjacency
matrix of an undirected graph is a symmetric Boolean matrix specifying whether
two vertices xi and xj are connected (entry Aij is 1) or not (entry Aij is 0).

Let us take the complete graph with n vertices as an example. All vertices
are connected by undirected edges. Therefore, the degree of each vertex is n � 1.
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The vertices do not have loops, so Mi i D 0, 8i . The stochastic matrix is

M D 1

n � 1

2
666664

0 1 1 � � � 1
1 0 1 � � � 1
1 1 0 � � � 1
:::
:::
:::
: : :

:::

1 1 1 � � � 0

3
777775
: (3.7)

If the initial condition is a walker located on the first vertex, the probability
distributions in the first steps will be

Ep.0/ D

2
6664
1

0
:::

0

3
7775 ; Ep.1/ D 1

n � 1

2
6664
0

1
:::

1

3
7775 ; Ep.2/ D 1

.n � 1/2

2
6664
n � 1

n � 2
:::

n � 2

3
7775 :

The probability distribution at a generic step t is

Ep.t/ D

2
6664
fn.t � 1/
fn.t/
:::

fn.t/

3
7775 ; (3.8)

where function fn.t/ is

fn.t/ D 1

n

	
1 � 1

.1 � n/t



: (3.9)

Note that when t ! 1, the probability distribution goes to the uniform distribution,
which is the limiting distribution of this graph.

As motivation for the next section, we make some observations about the
dynamical structure of discrete Markov chains. Equation (3.6) is a recursive
equation that can be solved and written as

Ep.t/ D Mt Ep.0/; (3.10)

where Ep.0/ is the initial condition. Matrix M can be used one step at a time.
The successive applications generate the probability distribution at any time. This
description is more general than the deterministic description. In a deterministic
process, only one possibility evolves over time. Therefore, we do not have a position
vector or an evolution matrix. The position is a scalar, the dynamics of which is
described by a function of time. In the stochastic case, we must consider all possible
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evolutions and describe them in a matrix structure, despite the fact that we know
only one possibility actually occurs in a specific situation. The matrix structure of
the stochastic evolution will be used in the next section to describe the quantum
evolution. However, the physical interpretation of what happens at the physical level
is clearly different from the actual stochastic process, since in the quantum case it
is not correct to say that only one of the possibilities occurs. From the mathematical
point of view, there is a radical change, because the evolution matrix is not applied
directly to the probability distribution and the matrix entries need not be positive
real numbers. In the quantum case, the matrix entries can be negative or complex
numbers and the evolution matrix is applied to the vector of probability amplitudes.

Exercise 3.4. The purpose of this exercise is to obtain the expression (3.8). By
inspecting the stochastic matrix of the complete graph, show that p2.t/ D p3.t/ D
� � � D pn.t/ and p1.tC1/ D p2.t/. Considering that the sum of entries of the vector
of probabilities is 1, show that p2.t/ satisfies the following recursive equation:

p2.t/ D 1 � p2.t � 1/

n � 1
:

Using that p2.0/ D 0, solve the recursive equation and show that p2.t/ is given by
fn.t/, as in (3.9).

Exercise 3.5. Obtain an expression for Mt in terms of function fn.t/, where M
is the stochastic matrix of the complete graph. From the Mt expression, show that
Ep.t/ obeys (3.8).

Exercise 3.6. Consider a cycle with n vertices and take as initial condition a walker
located in one of the vertices. Obtain the stochastic matrix of this graph. Describe
the probability distribution for the first steps and compare to the values in Fig. 3.1.
Obtain the distribution at a generic time and find the limiting distribution for the odd
cycle.

�
Hint: To find the distribution for the cycle, use the probability distribution of

the line.
�

Exercise 3.7. Let M be a generic stochastic matrix. Show that Mt is a stochastic
matrix for any positive integer t .

3.2 Discrete-Time Quantum Walks

The construction of quantum models and their equations is usually performed by a
process called quantization. Momentum and energy are replaced by operators acting
on a Hilbert space, whose size depends on the physical system freedom degrees.
The state of the quantum system is described by a vector in the Hilbert space and
the evolution of the system is governed by a unitary operation, if the system is
totally isolated from interactions with the macroscopic world around. If the system
has more than one component, the Hilbert space is the tensor product of the Hilbert
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spaces of the components. As the evolution of isolated quantum systems is unitary,
there is no room for randomness. Therefore, in principle, the name quantum random
walk is contradictory. In literature, the term quantum walk has been used instead,
but quantum systems that are not totally isolated from the environment may have
randomness. In addition, at some point we measure the quantum system to obtain
information about it. This process generates a probability distribution.

The first model of quantization of classical random walks that we will discuss is
the discrete-time model or simply discrete model. In the quantum case, the walker’s
position n should be a vector in a Hilbert space HP of infinite dimension, the
computational basis of which is

˚jni W n 2 Z
�
. The evolution of the walk should

depend on a quantum “coin.” If one obtains “heads” after tossing the “coin” and
the walker is described by vector jni, then in the next step it will be described by
jnC 1i. If it is “tails,” it will be described by jn � 1i. How do we include the “coin”
in this scheme? We can think in physical terms. Suppose an electron is the “random”
walker on a one-dimensional lattice. The state of the electron is described not only
by its position in the lattice but also by the value of its spin, which may be spin up or
spin down. Thus, the spin value can determine the direction of motion. If the electron
is in position jni and its spin is up, it should go to jnC 1i keeping the same spin
value. Similarly, when its spin is down, it should go jn � 1i. The Hilbert space of the
system should be H D HC ˝ HP , where HC is the two-dimensional Hilbert space
associated with the “coin,” the computational basis of which is

˚j0i; j1i�. We can
now define the “coin” as any unitary matrix C with dimension 2, which acts on
vectors in Hilbert space HC . It is called coin operator.

The shift from jni to jnC 1i or jn � 1i must be described by a unitary operator,
called the shift operator S . It should operate as follows:

S j0ijni D j0ijnC 1i; (3.11)

S j1ijni D j1ijn � 1i: (3.12)

If we know the action of S on the computational basis of H, we have a complete
description of this linear operator. Therefore, we can deduce that

S D j0ih0j ˝
1X

nD�1
jnC 1ihnj C j1ih1j ˝

1X
nD�1

jn � 1ihnj: (3.13)

We can re-obtain (3.11) and (3.12) by applying S to the computational basis.
At the beginning of the quantum walk, we must apply the coin operator C to the

initial state. This is analogous to tossing a coin in the classical case. C produces
a rotation of the coin state. If the coin is initially described by one of the states of
the computational basis, the result may be a superposition of states. Each term in
this superposition will generate a shift in one direction. We would like to choose a
fair coin in order to generate a symmetrical walk around the origin. Let us take the
initial state with the particle located at the origin jn D 0i and the coin state with
spin up j0i. So
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j .0/i D j0ijn D 0i; (3.14)

where j .0/i denotes the state at the initial time and j .t/i denotes the state of the
quantum walk at time t .

The coin used for most one-dimensional quantum walks is the Hadamard
operator

H D 1p
2

�
1 1

1 �1
�
: (3.15)

One step consists of applyingH in the state of the coin, i.e. applyingH ˝ I , where
I is the identity operator of the Hilbert space HP , followed by the application of the
shift operator S :

j0i ˝ j0i H˝I�! j0i C j1ip
2

˝ j0i

S�! 1p
2

�j0i ˝ j1i C j1i ˝ j�1i�: (3.16)

The result is a superposition of the particle both in position n D 1 and in position
n D �1. The superposition of positions is a result of the superposition generated
by the coin operator. We can see that the coin H is non-biased when applied to j0i,
since the amplitude of the right part is equal to the amplitude of the left part. If we
apply H to j1i, there is a sign difference between the amplitudes of the right and
left parts. When we calculate the probability of finding the particle at position n, the
sign plays no role. So we can call H a non-biased coin.

What is the next step? In the quantum case, we need to measure the quantum
system in the state (3.16) to know what the position of the particle is. If we
measure it using the computational basis of HP , we will have a 50% chance
of finding the particle at position n D 1 and a 50% chance of finding it at
the position n D �1. This result is the same, compared to the first step of the
classical random walk. If we repeat the same procedure successively, i.e. (1) we
apply the coin operator, (2) we apply the shift operator, and (3) we measure using
the computational basis, we will re-obtain the classical random walk. Our goal is
to use quantum features to obtain new results, which cannot be obtained in the
classical context. When we measure the particle position after the first step, we
destroy the correlations between different positions, which are typical of quantum
systems. If we do not measure and apply the coin operator followed by the shift
operator successively, the quantum correlations between different positions can have
constructive or destructive interference, effectively generating a behavior different
from the classical context, which is a characteristic of quantum walks. We will
see that the probability distribution does not go to the normal distribution and the
standard deviation is not

p
t .

The quantum walk consists in applying the unitary operator

U D S .H ˝ I /; (3.17)
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t
n − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5

0 1
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1
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1
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1
8

5
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1
8

4 1
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1
8

1
8

5
8

1
16

5 1
32

5
32

1
8

1
8

17
32

1
32

Fig. 3.3 Probability of finding the quantum particle in position n at time t , assuming that the walk
starts at the origin with the quantum coin in “heads” state

a number of times without intermediate measurements. One step consists in
applying U one time, which is equivalent to applying the coin operator followed
by the shift operator. In the next step, we apply U again without intermediate
measurements. A time t , the state of the quantum walk is given by

j .t/i D U t j .0/i: (3.18)

Let us calculate the initial steps explicitly to compare with the classical random
walk. We will take (3.14) as initial condition. The first step will be equal to (3.16).
The second step can be calculated using the formula j .2/i D U j .1/i and so on.

j .1/i D 1p
2

�j1ij�1i C j0ij1i�

j .2/i D 1

2

�
� j1ij�2i C .j0i C j1i/j0i C j0ij2i

�

j .3/i D 1

2
p
2

�
j1ij�3i � j0ij�1i C .2j0i C j1i/j1i C j0ij3i

�
(3.19)

These few initial steps have already revealed that the quantum walk differs from
the classical random walk in several aspects. We use a non-biased coin, but the
state j .3/i is not symmetric with respect to the origin. The table in Fig. 3.3 shows
the probability distribution up to the fifth step, without intermediate measurements.
Besides being asymmetric, the probability distribution is not concentrated in the
central points. A comparison with the table in Fig. 3.1 clearly illustrates this fact.

We would like to find the probability distribution for a number of steps much
larger than 5. However, the calculation method we are using is not suitable to
be manually done. Suppose our goal is to calculate p.100; n/, i.e. the probability
distribution of the hundredth step. Firstly, we have to calculate j .100/i. There are
at least three methods to perform a computational implementation.
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The first method uses a recursive formula obtained as follows: the generic state
of the quantum walk can be written as a linear combination of the computational
basis as

j .t/i D
1X

nD�1

�
An.t/j0i C Bn.t/j1i

�jni; (3.20)

where the coefficients satisfy the constraint

1X
nD�1

jAn.t/j2 C jBn.t/j2 D 1; (3.21)

ensuring that j .t/i has norm equal to 1 in all steps. When applying H ˝ I

followed by the shift operator in expression (3.20), we can obtain recursive formulas
involving the coefficients A and B , which are given by

An.t C 1/ D An�1.t/C Bn�1.t/p
2

;

Bn.t C 1/ D AnC1.t/ � BnC1.t/p
2

:

Using the initial condition

An.0/ D

1; if n D 0;
0; otherwise,

and Bn.0/ D 0, we can calculate the probability distribution using the formula

p.t; n/ D jAn.t/j2 C jBn.t/j2 : (3.22)

This approach is suitable to be implemented in the mainstream programming
languages, such as C, Fortran, Java, or Python.

The second method is to calculate matrix U explicitly. We have to calculate
the tensor product H ˝ I according to the formula described in Appendix A.
The tensor product is also required to obtain a matrix representation of the shift
operator as defined in (3.13). These operators act on vectors in an infinite vector
space. However, the number of nonzero entries is finite. Therefore, these arrays must
have dimensions slightly larger than 200 � 200. After calculating U , we calculate
U 100, and the product of U 100 with the initial condition j .0/i, written as a column
vector with a compatible number of entries. The result is j .100/i. Finally, we can
calculate the probability distribution. This method is suitable to be implemented
in computer algebra systems, such as Mathematica, Maple, or Sage, and is
inefficient in general.
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Fig. 3.4 Probability distribution after 100 steps of a quantum walk with the Hadamard coin
starting from the initial condition j .0/i D j0ijn D 0i. The points where the probability is zero
were excluded (n odd)

The third method is to download program QWalk1 and follow the instructions on
how to choose the initial condition and the coin operator. A short description of this
program can be found in Sect. 5.2.5. This is the simplest method by far.

By employing any of the aforementioned methods the graph in Fig. 3.4 for the
probability distribution after 100 steps will be obtained. Analogous to the classical
random walk, we will ignore the null values of the probability. At t D 100,
the probability is zero for all odd values of n. The asymmetry of the probability
distribution is evident. The probability of finding the particle on the right side of the
origin is larger than on the left. In particular, for n around 100=

p
2, the probability

is much higher than at the origin. This fact is not exclusive to the value t D 100.
It is valid for any value of t . This suggests a ballistic behavior of the quantum walk.
The particle can be found away from the origin as if it were in a uniform motion
rightward. It is natural to ask whether this pattern would be held if the distribution
were symmetric around the origin.

In order to obtain a symmetrical distribution, one must understand why the
previous example has a tendency to go rightward. The Hadamard coin introduces
a negative sign when applied to state j1i. This means there are more cancelations
of terms with coin state equals j1i than of terms with coin state equals j0i. Since
the coin state j0i induces movement rightward and j1i leftward, the final effect is
the asymmetry with large probabilities on the right. We can confirm this analysis by
calculating the resulting probability distribution when the initial condition is

j .0/i D �j1ijn D 0i:

1http://qubit.lncc.br/qwalk
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Fig. 3.5 Probability distribution after 100 steps of a quantum walk with the Hadamard coin
starting from the initial condition (3.23)

In this case, the number of negative terms will be greater than positive terms and
there will be more cancelations of terms with the coin state in j0i. The final result
will be the mirror distribution in Fig. 3.4 around the vertical axis. To obtain a
symmetrical distribution, one must superpose the quantum walks resulting from
these two initial conditions. This superposition should not cancel terms before the
calculation of the probability distribution. The trick is to multiply the imaginary
complex number i to the second initial condition and add to the first initial condition,
as follows:

j .0/i D j0i � i j1ip
2

jn D 0i: (3.23)

The entries of the Hadamard coin are real numbers. When we apply the evolution
operator, terms with the imaginary unit are not converted into terms without the
imaginary unit and vice versa. There will be no cancelations of terms of the walk
that goes rightward with the terms of the walk that goes leftward. At the end, the
probability distributions are added. In fact, the result is the graph in Fig. 3.5.

If the probability distribution of the quantum walk is symmetric, the expected
value of the position will be zero, i.e. hni D 0: The question now is how the standard
deviation �.t/ behaves as a function of time. The formula for the standard deviation
of the probability distribution is

�.t/ D
vuut 1X

nD�1
n2 p.t; n/; (3.24)

where p.t; n/ is the probability distribution of the quantum walk with initial
condition given by (3.23). The analytical calculation is quite elaborate and will be
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Fig. 3.6 Standard deviation of the quantum walk (crosses) and the classical random walk (circles)
against the number of steps

performed in another chapter. For now, we will numerically calculate the sum of
(3.24) by employing some computational implementation. The graphs in Fig. 3.6
show the standard deviation as a function of time for both the quantum walk (cross-
shaped points) and classical random walk (circle-shaped points). In the classical
case, we have �.t/ D p

t . In the quantum case, we obtain a line, the slope being
around 0.54, i.e. �.t/ D 0:54 t

The linear dependence of the position standard deviation against time is an
impressive result. Consider the following extreme situation: Suppose the particle
has a probability of exactly one to go rightward. After t steps, it will certainly be
found in the position n D t . This movement is called ballistic. It is the motion of
a free particle with unit velocity. The standard deviation in this case is obtained by
replacing p.t; n/ by ıt n in (3.24). The result is �.t/ D t . The quantum walk is
ballistic, but the scape velocity is almost half of the free particle velocity. However,
the quantum particle can be randomly found on the right or on the left side of the
origin after measurement, which is a characteristic of random walks. The quantum
probability distribution is spread in the interval

�� t=p2; t=p2�, while the classical
distribution is a Gaussian centered at the origin.

Exercise 3.8. Obtain states j .4/i and j .5/i by continuing the sequence of the
states of (3.19) and check that the probability distribution coincides with the one
described in the table in Fig. 3.3.
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3.3 Classical Markov Chains

The discrete-time quantum walk model is not the only way to quantize classical
random walks. We will describe a new quantum walk model that does not use a coin
to determine the direction to move. The continuous-time Markov chains served as
the inspiration for the quantization that generated this new model.

When time is a continuous variable, the walker can go from vertex xj to an
adjacent vertex xi at any time. One way to visualize the problem is to think of
probability as if it were a liquid seeping from xj to xi . In the beginning, the
walker is likely to be found in xj . As time goes by, the probability of being found
in one of the neighboring vertices increases and the probability of staying in xj
decreases. We have a transition rate which we denote by � , assumably constant for
all vertices (homogeneity and isotropy) and for all times. Therefore, the transition
between neighboring vertices occurs with a probability � per unit time. To address
problems with continuous variables, we generally use an infinitesimal time interval,
set up the differential equation of the problem, and solve the equation. If we take an
infinitesimal time interval 	, the probability of the walker going from vertex xj to
xi will be �	. Let dj be the degree of the vertex xj . Vertex xj has dj neighboring
vertices. It follows that the probability of the walker being in one of the neighboring
vertices after time 	 is dj �	. Therefore, the probability of staying in xj is 1�dj�	.
In the continuous case, the entry Mij .t/ of the transition matrix at time t is defined
as the probability of the particle, which is in vertex xj , going to the vertex xi in the
time interval t . So

Mij .	/ D

1 � dj �	 CO.	2/; if i D j ;
�	 CO.	2/; if i ¤ j .

(3.25)

Let us define an auxiliary matrix, called generating matrix given by

Hij D
8<
:
dj �; if i D j ;
��; if i ¤ j and adjacent;
0; if i ¤ j and non-adjacent.

(3.26)

If we play a dice twice, the probability of getting six both times is the product of
the probability of each move, as the moves are independent events. The same occurs
in a Markov chain, because the next state of a Markov chain only depends on the
current configuration of the chain. We can multiply the transition matrix at different
times, so

Mij .t C 	/ D
X
k

Mik.t/Mkj .	/: (3.27)

The index k runs over all vertices; however, this is equivalent to running only over
the vertices adjacent to xj . In fact, if the particle is at vertex xj , the probability of it
going to xk in the time interval 	 is Mkj .	/ whatever the value of k is. If there is no
edge joining xj and xk for a specific k, Mkj .	/ D 0.
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By isolating the term k D j and using the (3.25) and (3.26), we obtain

Mij .t C 	/ D Mij .t/Mjj .	/C
X
k¤j

Mik.t/Mkj .	/

D Mij .t/.1 � 	Hjj / � 	
X
k¤j

Mik.t/Hkj :

By moving the first term on the right-hand side to the left-hand side and dividing it
by 	, we obtain

dMij .t/

dt
D �

X
k

HkjMik.t/: (3.28)

The solution of this differential equation with initial conditionMij .0/ D ıij is

M.t/ D e�Ht : (3.29)

The verification is simple, if we expand the exponential function in Taylor series.
With the transition matrix in hand, we can obtain the probability distribution at
time t . If the initial distribution is Ep.0/, we have

Ep.t/ D M.t/ Ep.0/: (3.30)

It is interesting to compare this form of evolution of the continuous-time Markov
chain with discrete-time chain, given by (3.10).

Exercise 3.9. Show that the uniform vector is an eigenvector of H with eigen-
value 0. Use this fact to show that the uniform vector is the eigenvector of M.t/
with eigenvalue 1. Show that M.t/ is a stochastic matrix for all t 2 R.

Exercise 3.10. What is the relationship betweenH and the Laplacian matrix of the
graph?

Exercise 3.11. Show that the probability distribution satisfies the following differ-
ential equation:

dpi.t/

dt
D �

X
k

Hkipk.t/:

3.4 Continuous-Time Quantum Walks

In the passage from the classical random walk model to the quantum walk model,
we used the standard process of quantization which consists in replacing the vector
of probabilies to a state vector or vector of probability amplitudes and the transition
matrix by a unitary matrix. It was also necessary to join the Hilbert space associated
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with the coin and the Hilbert space associated with the shift operator, which was
accomplished with the tensor product, according to the postulates of Quantum
Mechanics.

In the passage from the continuous-time Markov chains model to the continuous-
time quantum walk model, again we use a quantization process in this new context.
Note that the continuous-time Markov chain has no coin associated. Therefore, we
simply convert the vector that describes the probability distribution to a state vector
and the transition matrix to an equivalent unitary operator. We must pay attention
to the following detail: matrix H , given by (3.26) is Hermitian, so matrix M given
by (3.29) is not unitary. There is a very simple way to make M unitary within the
context of Hilbert spaces, which is to replace H by iH , i.e. to multiply H by the
imaginary unit. Let us define the evolution operator of the continuous-time quantum
walk as

U.t/ D e�iHt : (3.31)

If the initial condition is j .0/i, the quantum state at time t is

j .t/i D U.t/j .0/i (3.32)

and the probability distribution is

pk D ˇ̌ ˝
k
ˇ̌
 .t/

˛ ˇ̌2
; (3.33)

where k runs over all vertices of the graph or states of the Markov chain and jki is
the state of the computational basis corresponding to the vertex xk .

As a first application, let us consider the continuous-time quantum walk on the
line. The vertices are integer points (discrete space). Equation (3.26) is reduced to

Hij D
8<
:
2�; if i D j ;
��; if i ¤ j and adjacent;
0; if i ¤ j and non-adjacent.

(3.34)

So

H jni D �� jn � 1i C 2� jni � � jnC 1i: (3.35)

The analytical calculation of operator U.t/ will be guided in Exercise 3.12.
The numerical calculation of this operator is relatively simple. Figure 3.7 shows
the probability distribution of the continuous-time quantum walk at t D 100 for

� D
�
2
p
2
��1

with the initial condition j .0/i D j0i. This graph can be generated

by the program in Fig. 3.8 or 3.9.
The comparison of the graph in Fig. 3.7 with the graph in Fig. 3.5 is revealing.

There are many common points in the overall comparison between the evolution of
discrete-time and continuous-time quantum walks; however, they differ in several
details. From the global point of view, the probability distribution of the continuous-
time walk has two major external peaks and low probability near the origin.
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Fig. 3.7 Probability distribution at t D 100 for � D
�
2
p
2
�

�1

of a continuous-time quantum

walk with initial condition j .0/i D j0i

Fig. 3.8 Script in Mathematica that generates the graph of the probability distribution of the
continuous-time quantum walk of Fig. 3.7

Fig. 3.9 Script in Maple that
generates the graph of the
probability distribution of the
continuous-time quantum
walk of Fig. 3.7

The same with the discrete-time walk. In the discrete-time walk, these features
can be amplified or reduced by choosing an appropriate coin or, equivalently,
changing the walker’s initial condition. In the continuous-time walk, the dispersion
is controlled by the constant � . If one decreases � , the distribution shrinks around
the origin, maintaining the same pattern.

The most relevant comparison in this context refers to the standard deviation.
How does the standard deviation of the continuous-time walk compare to discrete-
time walk? The probability distribution of the continuous-time walk is symmetric
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Fig. 3.10 Standard deviation
against time for the
continuous-time quantum

walk with � D
�
2
p
2
�

�1

(solid line) and the
discrete-time quantum walk
analyzed in Sect. 3.2
(cross-shaped points)

in relation to the origin in this case. Then, the expected position is zero, i.e.
hni D 0: The standard deviation �.t/ is given by (3.24), as in the discrete-time
case. The probability distribution is p.t; n/

p.t; n/ D ˇ̌hnjU.t/j .0/iˇ̌2: (3.36)

As before, we can numerically calculate the sum of (3.24). The graphs in Fig. 3.10
show the standard deviation as a function of time for both the continuous-time
quantum walk (solid line) and the discrete-time quantum walk (cross-shaped
points). In the continuous-time case, we obtain a line, the slope being about 0.5,
or �.t/ D 0:5 t . In the discrete-time case, we had already obtained a line, with
the slope of approximately 0.54. Again, these values are not critical, since in the
continuous-time case, this value depends on the choice of � , while in the discrete-
time case, it depends on the coin. What really matters is that the standard deviation
is linear, i.e. �.t/ is proportional to t , contrasting with the classical case where �.t/
is proportional to

p
t .

After analyzing two quantization models of classical random walks, the follow-
ing question naturally arises: are discrete and continuous-time models equivalent?
In several applications, these models have very similar behaviors. Both have
quantum characteristics that are distinctly different from classical characteristics.
In particular, both models have a standard deviation that depend linearly on the time
and, with respect to algorithmic applications, they improve the time complexity
for many problems when compared to classical algorithms. Nevertheless, when
the smallest details are analyzed, it is possible to prove that these models are
not equivalent. The optimal algorithms for spatial search problems in lattices
have different time complexities for each model. Considering these models are
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not equivalent in terms of solving specific problems, another question naturally
arises: which one is better or more efficient to solve computational problems? This
question is still subject to current research. It seems that the discrete-time model is
winning the race, since it has approximately a quadratic speedup when searching
for a marked vertex in a two-dimensional lattice with periodic boundary conditions
compared to the equivalent classical algorithm. The continuous-time model has no
gain in this context.

Exercise 3.12. Show that for any time t , matrixH of the continuous-time quantum
walk on the line obeys

Ht j0i D �t
tX

nD�t
.�1/n

 
2t

t � n

!
jni:

From this expression, computeU.t/j0i in terms of two nested sums. Invert the sums,
use the identity

e�2 i � tJjnj .2 � t/ D e
�i
2 jnj

1X
kDjnj

.�i� t/k

kŠ

 
2 k

k � n

!
;

where J is the Bessel function of first kind with integer n, to show that the wave
function of the continuous-time walk on the line at time t is

j .t/i D
1X

nD�1
e
�i
2 jnj�2 i � tJjnj .2 � t/ jni:

Show that the probability distribution is

p.t; n/ D ˇ̌
Jjnj .2 � t/

ˇ̌2
:

Use this result to depict the graphs of the probability distributions with the same
parameters in Fig. 3.7, both for continuous and discrete values of n.

Further Reading

Classical random walks are addressed in many books. Extensive materials can be
found in [27, 38, 39]. Identities with binomial expressions used in Exercise 3.2 can
be found in [29] and on Henry Gould’s webpages,2 or be deduced from the methods
presented in [30]. Stirling’s approximation can be found in [27]. The main results
about classical discrete Markov chains can be found in [24]. Reference [60] is very
useful in this context.

2http://www.math.wvu.edu/�gould
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The quantum algorithm for the element distinctness problem, mentioned in the
beginning of this chapter, was proposed in [9] by Andris Ambainis. A good reference
for an initial contact with the area of quantum walks is the review article of
Julia Kempe [42], which has been highly influential. Reference [5] was the first
one to introduce the quantum walk notion in detail with the aim at presenting
new quantum phenomena strikingly different from the classical ones. A detailed
analysis of quantum walks on the line is presented in [7, 63]. Reference [3] is a key
paper addressing quantum walks on generic graphs. Program QWalk is described
in [56] and is available in the Computer Physics Communications library.3 Further
information at http://qubit.lncc.br/qwalk.

Reference [26] introduced the concept of continuous-time quantum walk. The
application of quantum walks to develop quantum algorithms was strongly influ-
enced by this reference. The continuous-time quantum walk on the line was studied
in [22]. Attempts to connect discrete and continuous-time are described in [20, 73].
The link between universal quantum computation and quantum walks is addressed
in [21] (continuous-time) and in [48] (discrete-time).

3http://cpc.cs.qub.ac.uk/summaries/AEAX v1 0.html

www.it-ebooks.info

http://qubit.lncc.br/qwalk
http://cpc.cs.qub.ac.uk/summaries/AEAX_v1_0.html
http://www.it-ebooks.info/


Chapter 4
Grover’s Algorithm and Its Generalization

Grover’s algorithm is a search algorithm originally designed to look for an element
in an unsorted database with no repeated elements. If the database elements are
stored in a random order, the only available method to find a specific element is an
exhaustive search. Usually, this is not the best way to use databases, especially if
it is queried several times. It is better to sort the elements, which is an expensive
task, but performed only once. In the context of quantum computing, storing data in
superposition or in an entangled state for a long period of time is not an easy task.
Because of that, Grover’s algorithm is introduced following an alternative route,
which shows its wide applicability.

Grover’s algorithm can be straightforwardly generalized to search databases with
repeated elements, if we know beforehand the number of repetitions. The details of
this generalization are worked out in this chapter, because it is important in the
context of quantum search algorithms. The counting problem and searching without
knowing the number of repetitions are not addressed here.

In this chapter, we show that Grover’s algorithm is optimal up to a multiplicative
constant, that is, it is not possible to improve its computational complexity. If N is
the number of database entries, it takes O.

p
N/ steps to find the marked element

with high probability using O.logN/ storage space.
At the heart of Grover’s algorithm lies a method called amplitude amplification,

which can be used in many quantum algorithms once its structure is extracted.
The details of this method are presented at the end of this chapter.

4.1 Grover’s Algorithm

Suppose that f is a function with domain
˚
0; : : : ; N � 1

�
, where N D 2n and n is

some positive integer, and image

f .x/ D

1; if x D x0;
0; otherwise.

(4.1)

R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, DOI 10.1007/978-1-4614-6336-8 4,
© Springer Science+Business Media New York 2013
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Algorithm 4.1: Classical search algorithm
Input: N and f as described in Eq (4.1).
Output: x0.

for x D 0 to N � 1 do
if f .x/ D 1 then

print x
stop

The function image is 1 only for a single point x0 and 0 for all other points.
Suppose we have function f at our disposal, that is, we can evaluate f for any
point in the domain; however, we do not know point x0. The problem is to find
which point in the domain has image 1, i.e. to find x0. This is a search problem
whose relation to database searching is clear.

What is the computational complexity of the best classical algorithm that solves
this problem? In this particular problem, the metric employed to measure the
complexity is the number of times function f was used. We know no equation for
function f and no details of its implementation. It leaves us with the only option:
To perform an exhaustive search for point x0 by querying function f . Consequently,
the time complexity of the classical algorithm is 
.N/. Function f is called an
oracle or black box. To evaluate the function at a point is also referred to as querying
the oracle. Point x0 is also called a marked element.

A concrete way to describe this problem is to ask a programmer to randomly
select point x0 and implement function f using a programming language in a
classical computer with a single processor. The programmer must compile the
program to hide the value of x0—it is not allowed to read the code. The function
domain is known by us and there is the following promise: only one image point
is 1, all other image points are 0. A program that solves this problem is described in
Algorithm 4.1.

What is the computational complexity of the best quantum algorithm that solves

the same problem? Grover’s algorithm finds x0 by querying function f
j
�
4

p
N
k

times. This is the optimal algorithm. There is a quadratic gain in computational
complexity in the transition from the quantum to the classical context. How can we
put this problem in a concrete way in the quantum context? Can we write a quantum
program equivalent to Algorithm 4.1?

In the quantum context, we must use a unitary operator that plays the role
of function f . There is a standard method to construct a unitary operator that
implements a generic function. The quantum computer must have two registers.
The first register stores the domain points and the second stores the image points of
function f . A complete description of this operator, which we will call Rf , in the
computational basis is

Rf jxijii D jxiji ˚ f .x/i; (4.2)
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|1 |1

|0 |0

|1 |1

|0 |1

Fig. 4.1 Circuit of operator Rf when x0 D 5. The value of x0 determines which control bits
should be white and which should be black. Only the programmer knows which quantum controls
are black and white

where operation ˚ is the binary sum or bitwise xor. The standard method is: repeat
the value of x to guarantee reversibility, and perform the binary sum of the image
of x with the value of the second register. For any function f , the resulting operator
will be unitary. For the function of (4.1), the first register must have n qubits and
second must have one qubit. If the state of the second register is j0i, we can see that
the action of Rf is similar to evaluating function f :

Rf jxij0i D
 jx0ij1i; if x D x0;

jxij0i; otherwise.
(4.3)

Now we ask a quantum programmer to implement Rf . He uses a generalized
Toffoli gate. For example, if x0 D 5, the circuit of Fig. 4.1 implements Rf for
n D 3. Note that the state of the second register will change from j0i to j1i only if
the entry of the first register is 5, otherwise it remains in state j0i.

We cannot learn any implementation details about Rf , but we can employ this
operator as many times as we wish. What is the algorithm that determines x0 using
Rf the least number of times?

Grover’s algorithm uses a second unitary operator defined by

RD D �
2 jDihDj � IN

�˝ I2; (4.4)

where jDi is the diagonal state of the first register (see Appendix). The evolution
operator that performs one step of the algorithm is

U D RD Rf : (4.5)

The initial condition is

j 0i D jDij�i: (4.6)

The algorithm tells us to apply U recursively
j
�
4

p
N
k

times. We measure the first

register in the computational basis and the result is x0 with probability greater than
or equal to 1 � 1

N
.
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Algorithm 4.2: Grover’s algorithm
Input: N and f as described in Eq (4.1).
Output: x0 with probability greater than or equal to 1� 1

N
.

1. Use a 2-register quantum computer with nC 1 qubits;
2. Prepare the initial state jDij�i;

3. Apply U t , where t D
j
�
4

p
N
k

and U is given by (4.5);

4. Measure the first register in the computational basis.

Exercise 4.1. After discarding the second register of RD, show that

RD D H˝n�2 j0ih0j � I �H˝n:

Sketch a circuit that implementsRD using Hadamard gates and a generalized Toffoli
gate.

4.1.1 Analysis of the Algorithm Using Reflection Operators

The evolution operator and the initial condition of Grover’s algorithm have real
entries. This means that the entire evolution takes place in a real vector subspace
of the Hilbert space H2N . We can give a geometric interpretation to the algorithm
and, in fact, visualize the evolution. The key to understanding the operations of the
algorithm is to note that operator U is the product of two reflection operators. First
we check that Rf is a reflection around the vector space orthogonal to the vector
space spanned by jx0ij�i. Vector jx0i is in the computational basis of H2N and
the orthogonal space is spanned by the other elements in the computational basis.
Consider the action of Rf on vector jx0ij�i. Using (4.3), we obtain

Rf jx0ij�i D Rf jx0ij0i � Rf jx0ij1ip
2

D jx0ij1i � jx0ij0ip
2

D �jx0ij�i: (4.7)

Then, Rf reflects jx0ij�i around the vector space orthogonal to jx0ij�i. Now,
consider the action of Rf on a vector orthogonal to jx0ij�i. Take jxij�i, where
x ¤ x0. Performing a calculation similar to (4.7), we conclude that

Rf jxij�i D jxij�i; x ¤ x0: (4.8)
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Fig. 4.2 The initial condition
of Grover’s algorithm is state
jDi. After applying operator
Rf , state jDi is reflected
around the plane orthogonal
to vector jx0i. After applying
operator RD, vector Rf jDi is
reflected around jDi. That is,
one application of U rotates
the initial vector by � degrees
toward vector jx0i

Consider a linear combination with real coefficients of jx0ij�i with a vector
orthogonal to jx0ij�i. The application of Rf on this linear combination inverts
the sign of component jx0ij�i and preserves the sign of the component orthogonal
to jx0ij�i. The geometric interpretation is a reflection.

RD is also a reflection, but around the vector space spanned by jDi. Using (4.4),
we conclude that

RD jDij�i D jDij�i: (4.9)

Take a vector orthogonal to jDij�i. Using again (4.4), we conclude that the result
of applying RD inverts the sign of this vector. Consider a linear combination with
real coefficients of jDij�i with a vector orthogonal to jDij�i. After the action of
RD, the component orthogonal to jDij�i inverts the sign while the other remains
unchanged. The geometric interpretation is a reflection around jDij�i.

It is possible to simplify the analysis of Grover’s algorithm as follows: Discard
the second register, because its state remains unchanged throughout the algorithm.
From Fig. 4.2, we can see that the action of U on the initial state returns a vector
that is in the vector space spanned by jx0i and jDi. The same argument holds
for future applications of U . Therefore, the entire evolution takes place in a real
(two-dimensional) plane. In this case, Rf can be interpreted as a reflection on
the vector space spanned by the vector orthogonal to jx0i, which is in the plane
of the algorithm. Let us call

ˇ̌
x?
0

˛
the unit vector orthogonal to jx0i, which is in the

plane spanned by jx0i and jDi and has the smallest angle with jDi. The expression
for

ˇ̌
x?
0

˛
in the computational basis is

ˇ̌
x?
0

˛ D 1p
N � 1

X
x¤x0

jxi: (4.10)

When we analyze the evolution of the algorithm in the plane spanned by vectors
jx0i and jDi, operator Rf can be replaced by

Rx?

0
D 2

ˇ̌
x?
0

˛˝
x?
0

ˇ̌� IN ; (4.11)
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which keeps
ˇ̌
x?
0

˛
unchanged and inverts the sign of a vector orthogonal to

ˇ̌
x?
0

˛
.

Since we have discarded the second register, we redefine operator RD by

RD D 2 jDihDj � IN : (4.12)

In summary, Rx?

0
is a reflection around the vector space spanned by

ˇ̌
x?
0

˛
and RD

is a reflection around the vector space spanned by jDi. One step in the evolution is
given by operator

U D RDRx?

0
; (4.13)

replacing the operator defined by (4.5). The initial condition is jDi.
In real vector spaces, the action of two successive reflections on a real vector

j i rotates j i by an angle that is twice the angle between the invariant spaces.
The direction of rotation depends on the application order of the reflections. In
the case of Rx?

0
and RD, the action of U rotates j i by an angle that is twice

the angle between
ˇ̌
x?
0

˛
and jDi. Because Rx?

0
is applied first, the rotation angle is

positive when coming from
ˇ̌
x?
0

˛
to jDi, that is, counterclockwise.

Let �=2 be the angle between vectors
ˇ̌
x?
0

˛
and jDi, which is the complement of

the angle between jx0i and jDi. So,

sin
�

2
D cos

	
�

2
� �

2




D ˝
x0
ˇ̌
D
˛

D 1p
N
: (4.14)

Angle � is very small when N � 1, that is, when function f has a large domain.
Solving (4.14) for � and taking the asymptotic expansion, we obtain

� D 2p
N

C 1

3N
p
N

CO

	
1

N 2



: (4.15)

Starting from initial condition jDi, one application of U rotates jDi approximately
by 2p

N
degrees toward jx0i. This is small progress, but definitely a good one, mainly

because it can be repeated. In the time instant

tf D
j�
4

p
N
k
; (4.16)

jDi will have rotated approximately by �
2

radians. In fact, it will have rotated a little
less, because the next term in the expansion (4.15) is positive. The angle between
the final state and jx0i is about 2p

N
and is at most �

2
. The probability of finding

value x0 when we measure the first register is
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px0 D
ˇ̌̌
hx0jU tf jDi

ˇ̌̌2

� cos2
�

2

D 1 � 1

N
: (4.17)

The lower bound for the success probability shows that Grover’s algorithm has a
very high success probability when N is large.

Exercise 4.2. Show algebraically that the product of reflections RDRx?

0
rotates a

generic vector in the real plane spanned by jx0i and
ˇ̌
x?
0

˛
by angle � D 2 arccos˝

D
ˇ̌
x?
0

˛
.

Exercise 4.3. Using basis
˚jx0i; ˇ̌x?

0

˛�
, show that U is the rotation matrix

U D
�

cos � sin �
� sin � cos �

�
:

What are the expressions of cos � and sin � as functions of N ?

Exercise 4.4. Show that

U t jDi D sin

	
t � C �

2



jx0i C cos

	
t � C �

2


 ˇ̌
x?
0

˛
:

Exercise 4.5. Show that the success probability in Grover’s algorithm is exactly
121/128 when N D 8.

Exercise 4.6. Calculate the probability of Grover’s algorithm returning a value x,
obeying x ¤ x0, when N � 1. Check out that the sum of the probabilities, when
we consider all cases x ¤ x0 and x D x0, is asymptotically equal to 1.

Exercise 4.7. After discarding the second register, show that operator Rf given by
(4.2) can be written as

Rf D I � 2 jx0ihx0j; (4.18)

or equivalently as

Rf D 2
X
x¤x0

jxihxj � I: (4.19)

What is the spectral decomposition of Rf ?

Exercise 4.8. Show that Rf and RD are Hermitian and unitary operators. Can we
conclude that the product RDRf is Hermitian? Show that if U is a non-Hermitian
real unitary operator, then it has at least two non-real eigenvalues. If U has only two
non-real eigenvalues, what is the relationship between them?
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4.1.2 Analysis Using the Spectral Decomposition

Another way to analyze the evolution of Grover’s algorithm is through the spectral
decomposition of U . The characteristic polynomial of U is

j�I � U j D .�C 1/N�2
	
�2 � 2.N � 2/

N
�C 1



; (4.20)

Therefore, the eigenvalues are �1 and e˙i! , where

cos! D 1 � 2

N
: (4.21)

The eigenvalue �1 has multiplicityN�2 and a non-orthogonal set of eigenvectors is

ˇ̌
˛j
˛ D j1i � jj � 1ip

2
; 3 � j � N; (4.22)

assuming that the marked element is x0 D 0. The remaining two eigenvectors
associated with eigenvalues ei! and e�i! are, respectively,

j˛1i D 1p
2

�ˇ̌
x?
0

˛ � i jx0i
�
; (4.23)

j˛2i D 1p
2

�ˇ̌
x?
0

˛C i jx0i
�
; (4.24)

where
ˇ̌
x?
0

˛
is given by (4.10). The calculation of these eigenvectors is oriented in

the exercises.
Eigenvectors of unitary operators associated with distinct eigenvalues are orthog-

onal to each other. Therefore, j˛1i and j˛2i are orthogonal to each other and are
orthogonal to

ˇ̌
˛j
˛
, 3 � j � N . To analyze the evolution of Grover’s algorithm, we

must find the expression of the initial condition jDi in the eigenbasis of U . Using
(4.22), we check that jDi is orthogonal to

ˇ̌
˛j
˛
, for 3 � j � N . Therefore, the initial

condition is in the vector space spanned by j˛1i and j˛2i. So

jDi D a j˛1i C a� j˛2i; (4.25)

where

a D ˝
˛1
ˇ̌
D
˛

D
p
N � 1C ip
2N

: (4.26)
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The entire evolution of the algorithm takes place in the vector space spanned by
j˛1i and j˛2i. The application of U t on state jDi given by (4.25) can be calculated
explicitly, because j˛1i and j˛2i are eigenvectors of U with eigenvalues e˙i! .
Therefore, at time t , the state of the quantum computer is

U t jDi D a ei!t j˛1i C a�e�i!t j˛2i: (4.27)

By design, the iterative applications of operator U rotate the state of the quantum
computer toward state jx0i, which is almost orthogonal to the initial state jDi when
N is large. For tf D �=2!, we have ei!tt D i and e�i!tf D �i, that is,

U tf jDi D i
�
a j˛1i � a� j˛2i

�
(4.28)

which is orthogonal to jDi. This is the first value of t such that U t jDi is orthogonal
to jDi.

Using the above equation for U tf jDi, and (4.23), (4.24), and (4.26), the mea-
surement of the first register in the computational basis returns x0 with probability

px0.tf / D ˇ̌hx0jU tf jDiˇ̌2
D 1 � 1

N
: (4.29)

Because the number of applications of U must be an integer, we must take�
�=2!

˘
as the stopping time. Using (4.21) and taking the asymptotic expansion

in N , we obtain

btf c D
$

�

2 arccos
�
1 � 2

N

�
%

D
j�
4

p
N
k

CO

	
1p
N



: (4.30)

Expression (4.29) is a lower bound for px0.btf c/.
Exercise 4.9. Show that the entries of matrix Rf given in (4.18) are .Rf /ij D
.�1/ıix0 ıij and for matrix RD given by (4.12) are .RD/ij D 2

N
� ıij . Show that the

entries of U are

Uij D .�1/ıjx0
	
2

N
� ıij



:

Exercise 4.10. Using Exercise 4.9, show that the characteristic polynomial of U
is given by (4.20). Show that the eigenvalues are �1 and e˙i! , where ! D
arccos

�
1 � 2

N

�
.

www.it-ebooks.info

http://www.it-ebooks.info/


48 4 Grover’s Algorithm and Its Generalization

Exercise 4.11. Use matrix U given in Exercise 4.9 to show that if the marked
element is x0 D 0, then matrix U C I is given by

U C I D

2
66666666664

2.N�1/
N

2
N
: : : 2

N

� 2
N

2
N
: : : 2

N

:::
:::
: : :

:::

� 2
N

2
N

� � � 2
N

3
77777777775
:

By inspecting the entries of U C I , obtain a basis for the eigenspace associated
with eigenvalue �1. Show that vectors

ˇ̌
˛j
˛

described in (4.22) is a basis for this
eigenspace. Generalize this description to a generic marked element x0, and show
that the subspace spanned by these vectors does not play any role in the dynamics
of the algorithm.

Exercise 4.12. The complex eigenvectors of U can be obtained by noting that the
x0-th column of U has a role different from the other columns, which follow the
systematic pattern of Grover’s operator RD. An Ansatz to find these eigenvectors is
a vector that has the same entries, except at position x0, that is, to take j˛i such that˝
j
ˇ̌
˛
˛ D b, for j ¤ x0 and

˝
x0
ˇ̌
˛
˛ D a. Find a and b such that .U � e˙i!I /j˛i D 0

and each j˛i is a unit vector.

Exercise 4.13. Find an expression for px0.t/ for a generic (non-integer) t and show
that the first maximum point is

tmax D arctan
p
N � 1

!
:

Verify that the stopping time with the best chance of success is the integer closest
to tmax. Taking the asymptotic expansion in N , show that a lower bound for this
probability is 1� 1

N
. Show that the state of the quantum computer is jx0i at time tmax.

4.1.3 Comparison Analysis

We have described two ways to analyze the evolution of Grover’s algorithm. In first
one, we use the fact that U is a real operator and the product of two reflections.
U can be seen as a rotation matrix in a two-dimensional vector space, the rotation
angle of which is twice the angle between the vectors that are invariant under the
action of the reflection operators. The marked state jx0i and initial condition jDi
are almost orthogonal when N is large. The strategy of the algorithm is to rotate
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Fig. 4.3 Eigenvalues of the
evolution operator of
Grover’s algorithm for n D 9

the initial condition by �=2 radians and to measure in the computational basis at
this point. Since the angle between the final state and the marked state is small,
the probability of obtaining x0 as a result of the measurement is close to 1. The
analysis of the algorithm evolution employs a real subspace of the Hilbert space.
This analysis is quite attractive for its simplicity but does not have the same degree
of generality as the second analysis.

In the second analysis, we use the spectral decomposition of U . The entire
evolution is happening in eigenspace spanned by two eigenvectors, which are
the only non-real eigenvectors. By definition, the eigenvectors do not rotate under
the action of U . However, the initial condition is a linear combination of the two
eigenvectors and the coefficients change under the action of U . The strategy is equal
to the first case, that is, rotating the initial condition by �=2 radians. While the first
case has an appealing geometric interpretation, the second case allows one to extend
the idea behind Grover’s algorithm to other search algorithms, in particular, to the
abstract search algorithm, which aims to find a specially marked vertex in a graph.

To help understand the abstract search algorithm, which will be addressed in
Chap. 8, let us look at some details of the spectral decomposition of U used in
Grover’s algorithm. Figure 4.3 shows the geometric configuration of the eigenvalues
of U for N D 512. The non-real eigenvalues are in symmetrical locations
and approach to 1 when N increases. Although they are close, the associated
eigenvectors are orthogonal. Note that U does not have eigenvalue 1. If the initial
state would have had a large overlap with eigenspace associated with eigenvalue
1, the algorithm would not have worked as desired, because we would not have
rotated the initial state by �=2 radians. Therefore, it is necessary that the initial state
has no overlap with eigenspace associated with an eigenvalue 1 of U . In Grover’s
algorithm, this is true, let us say, by default. This does not happen necessarily in
abstract search algorithms. An important detail is that the initial state jDi is an
eigenvector with eigenvalue 1 of operator RD. This fact plays a key role in the
characterization of an abstract search algorithm.
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4.2 Optimality of Grover’s Algorithm

Grover’s algorithm finds the marked element by querying the oracleO
�p
N
�

times.
Is it possible to develop an algorithm faster than Grover’s algorithm? In this section,
we show that Grover’s algorithm is optimal, that is, no quantum algorithm can find
the marked element with less than


�p
N
�

queries of f using spaceO.n/ and with
success probability greater than or equal to 1=2.

This type of proof should be as generic as possible. We use the standard quantum
computing model in which a generic algorithm is a sequence of unitary operators
acting iteratively, starting with some initial condition, followed by a measurement
at the end. We want to show that: if the oracle is queried less than 


�p
N
�

times,
the marked element is not found. Let us assume that the oracle form is Rf D
I � 2jx0ihx0j as given in (4.18), where x0 is the marked element. This is not a
restriction, because the oracle must somehow distinguish the marked element, and
in order to allow other forms of oracles, let us allow the use of any unitary operators
Ua and Ub that transform Rf to UaRf Ub during the execution of the algorithm.
More than that, Ua and Ub may change at each step.

Let j 0i be the initial state. The state of the quantum computer after t steps is
given by

j t i D UtRf � � � U1Rf U0j 0i; (4.31)

where U1; : : : ; Ut are generic unitary operators, which are applied to each step after
the oracle. There is no restriction on the efficiency of these operators.

The strategy of the proof is to compare state j t i with state

j�t i D Ut � � � U0j 0i; (4.32)

that is, the equivalent state without the application of the oracles. To make this
comparison, we define the quantity

Dt D 1

N

N�1X
x0D0

��j t i � j�t i
��2; (4.33)

which measures the deviation between j t i and j�t i after t steps. The sum in x0 is
to average over all possible values of x0 in order to avoid favoring any particular
value. Note that j t i depends on x0 and, in principle, j�t i does not so depend. IfDt

is too small after t steps, we cannot distinguish the marked element.
We will show that the following inequalities are valid:

c � Dt � 4 t2

N
; (4.34)

where c is a strictly positive constant. From this result we can conclude that if we
take the number of steps t with a functional dependence inN smaller than


�p
N
�
,

for example, N
1
4 , the first inequality is violated. This means that Dt is not big
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enough to allow us to distinguish the marked element. In the asymptotic limit, the
violation of this inequality is more dramatic showing that, for this number of steps,
a sequence of operators that distinguishes the marked element is equivalent to a
sequence that does not so distinguish.

Let us start with inequality Dt � 4 t2=N: This inequality is valid for t D 0.
Using the method of proof by induction, we assume that the inequality is valid for t
and show that it will be valid for t C 1. Note that

DtC1 D 1

N

N�1X
x0D0

��UtC1Rf j t i � UtC1j�ti
��2

D 1

N

N�1X
x0D0

��Rf j t i � j�t i
��2

D 1

N

N�1X
x0D0

��Rf .j t i � j�t i/C .Rf � I /j�t i
��2: (4.35)

Using the square of the triangle inequality

��j˛i C jˇi��2 � ��j˛i��2 C 2 kj˛ik kjˇik C ��jˇi��2; (4.36)

where

j˛i D Rf .j t i � j�t i/
and

jˇi D .Rf � I /j�t i
D �2 ˝x0ˇ̌�t ˛ jx0i;

we obtain

DtC1 � 1

N

N�1X
x0D0

���j t i � j�ti
��2 C 4

��j t i � j�ti
�� ˇ̌˝x0 ˇ̌�t ˛ˇ̌

C 4
ˇ̌˝
x0
ˇ̌
�t
˛ˇ̌2�

: (4.37)

Using the Cauchy–Schwarz inequality
ˇ̌˝
˛
ˇ̌
ˇ
˛ˇ̌ � kj˛ik kjˇik (4.38)

in the second term of inequality (4.37), where

j˛i D
N�1X
x0D0

��j t i � j�t i
�� jx0i
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and

jˇi D
N�1X
x0D0

ˇ̌˝
x0
ˇ̌
�t
˛ˇ̌ jx0i

and also using the fact that

N�1X
x0D0

ˇ̌˝
x0
ˇ̌
�t
˛ˇ̌2 D ˝

�t
ˇ̌
�t
˛ D 1;

we obtain

DtC1 � Dt C 4

N

0
@N�1X
x0D0

��j t i � j�t i
��2
1
A

1
2
0
@N�1X
x0

0D0

ˇ̌˝
x0
0

ˇ̌
�t
˛ˇ̌2
1
A

1
2

C 4

N

� Dt C 4

r
Dt

N
C 4

N
: (4.39)

Since we are assuming that Dt � 4 t2=N from the inductive hypothesis, we obtain
DtC1 � 4 .t C 1/2=N:

We will now show the harder inequality c � Dt . Let us define two new quantities
given by

Et D 1

N

N�1X
x0D0

��j t i � jx0i
��2; (4.40)

Ft D 1

N

N�1X
x0D0

��j�ti � jx0i
��2: (4.41)

We obtain an inequality involvingDt , Et , and Ft as follows:

Dt D 1

N

N�1X
x0D0

��� .j t i � jx0i/C .jx0i � j�t i/
���2

� Et C Ft � 2

N

N�1X
x0D0

��j t i � jx0i
�� ��j�ti � jx0i

��

� Et C Ft � 2
p
Et Ft

D
�p

Ft �
p
Et

�2
; (4.42)
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where, in the first inequality, we use the square of the reverse triangle inequality

��j˛i C jˇi��2 � ��j˛i��2 � 2 kj˛ik kjˇik C ��jˇi��2 (4.43)

and, in the second inequality, we use the Cauchy–Schwarz inequality with vectors

j˛i D
N�1X
x0D0

��j t i � jx0i
�� jx0i;

jˇi D
N�1X
x0D0

��j�t i � jx0i
�� jx0i:

We now show that

Ft � 2 � 2
1p
N
:

Define �x0 as the phase of
˝
x0
ˇ̌
�t
˛
, that is,

˝
x0
ˇ̌
�t
˛ D ei�x0

ˇ̌˝
x0
ˇ̌
�t
˛ˇ̌
:

Define the state

j�i D 1p
N

N�1X
x0D0

ei�x0 jx0i: (4.44)

So,

˝
�
ˇ̌
�t
˛ D 1p

N

N�1X
x0D0

e�i�x0
˝
x0
ˇ̌
�t
˛

D 1p
N

N�1X
x0D0

ˇ̌˝
x0
ˇ̌
�t
˛ˇ̌
: (4.45)

Using the Cauchy–Schwarz inequality, we obtain
ˇ̌˝
�
ˇ̌
�t
˛ˇ̌ � 1, and

N�1X
x0D0

ˇ̌˝
x0
ˇ̌
�t
˛ˇ̌ � p

N: (4.46)

To reach the desired result, we use the above inequality and the fact that the real part
of
˝
x0
ˇ̌
�t
˛

is smaller than or equal to
ˇ̌˝
x0
ˇ̌
�t
˛ˇ̌

:
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Ft D 1

N

N�1X
x0D0

��j�t i � jx0i
��2

D 2 � 2

N

N�1X
x0D0

Re
˚˝
x0
ˇ̌
�t
˛�

� 2 � 2

N

N�1X
x0D0

ˇ̌˝
x0
ˇ̌
�t
˛ˇ̌

� 2 � 2p
N
: (4.47)

Now we show that Et � .2 � p
2/. After t steps, the state of the quantum

computer after the application of the oracles is j t i. Similar to the calculation used
for Ft , we have

Et D 1

N

N�1X
x0D0

��j t i � jx0i
��2

D 2 � 2

N

N�1X
x0D0

Re
˚˝
x0
ˇ̌
 t
˛�
:

Let us assume that the probability of a measurement to return value x0 is greater
than or equal to 1=2, that is,

ˇ̌˝
x0
ˇ̌
 t
˛ˇ̌2 � 1=2 for all x0. Value 1=2 is arbitrary.

In fact, we can choose any fixed value between 0 and 1, see Exercise 4.14. Instead
of using the computational basis, we use basis fei˛0 j0i; : : : ; ei˛N�1 jN � 1ig; where
˛x0 for 0 � x0 < N is defined as the phase of

˝
x0
ˇ̌
 t
˛
. This basis transformation

does not change the inequalities that we have obtained so far and it does not change
measurement results either. In this new basis (tilde basis),

˝ Qx0ˇ̌ t ˛ is a real number,
that is, Re

˚˝ Qx0 ˇ̌ t ˛� D j ˝ Qx0 ˇ̌ t ˛ j. Therefore,

Et D 2 � 2

N

N�1X
x0D0

ˇ̌˝ Qx0ˇ̌ t ˛ˇ̌

� 2 � 2

N

N�1X
x0D0

1p
2

D 2 � p
2: (4.48)

Using inequalities Et � .2 � p
2/ and Ft � 2 � 2=

p
N , we obtain
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Dt �
�p

Ft �
p
Et

�2

�
 s

2 � 2p
N

�
q
2 � p

2

!2

D
	p

2 �
q
2 � p

2


2
CO

	
1p
N



: (4.49)

This completes the proof of inequality c � Dt forN large enough. Constant c must
obey

0 < c <

	p
2 �

q
2 � p

2


2
:

We conclude that an algorithm that is able to find the marked element must obey
the inequalities (4.34). Therefore, cN � 4t2 or equivalently t D 


�p
N
�
. This

result implies that the computational complexity of Grover’s algorithm is ‚
�p

N
�

in terms of the number of queries.

Exercise 4.14. Show that if the probability of measurement to return value x0 is
greater than or equal to p, then the value of constant c must obey

0 < c <

	p
2 �

q
2 � 2pp


2
:

To achieve a success probability close to 1, the algorithm must be run 1=p times.
Since p is constant, this does not change the total cost of 


�p
N
�
.

Exercise 4.15. Instead of assuming that
ˇ̌˝
x0
ˇ̌
 t
˛ˇ̌2 � 1

2
for all x0, suppose that the

uniform average probability is greater than or equal to 1=2. Show that one still needs
to query the oracle 


�p
N
�

times.

Exercise 4.16. In (4.31) and (4.32), unitary operators U0; : : :, Ut can also distin-
guish the marked element. Is the proof valid if Ui D U 0

iRf for all i?

Exercise 4.17. What is the value of
��j˛i � jˇi��2 for orthogonal states j˛i and

jˇi? Can you give an interpretation for Ft and explain why it is so close to 2? Is it
important that Et be smaller than 2?

4.3 Search with Repeated Elements

In Sect. 4.1, we have described Grover’s algorithm which solves the following
problem: Given a Boolean function f , the domain of which is

˚
0; : : : ; N � 1

�
,

whereN D 2n for some positive integer n, find the element x0 such that f .x0/ D 1
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|1 • |1
|0 • |0
|1 |1
|0 |1

Fig. 4.4 Circuit that implements the case f .5/ D 1 and f .6/ D 1. Only the quantum programmer
knows where the black and white controls are. However, we know how many Toffoli gates were
used: it is m

assuming that x0 is the only domain point with image equal to 1. In this section,
we address a more general problem. Suppose that function f is a Boolean function
as before, but m domain points have image equal to 1. The case m D 1 is equal to
the previous case. Suppose M is the set of points whose images are equal to 1. The
problem is to find an element in M with the least number of queries to function f .
If we compare this problem with database searching, we have a database with
repeated elements. We can put this problem into a concrete form, as we did in
the beginning of Sect. 4.1. We ask a quantum programmer to choose m points in
the domain of f without telling us which are the points. We know m, but we do
not know the points. For example, if he chooses points 5 and 6, he will use two
generalized Toffoli gates, as shown in the circuit of Fig. 4.4. Note that the state of
the second register will change from j0i to j1i only if the input of the first register
is 5 or 6, otherwise the state remains unchanged.

The optimal quantum algorithm that solves this problem is a straightforward
extension of Grover’s algorithm. As before, we use two registers with nC 1 qubits
together. The form of operatorRf is equal to the one described in (4.2), but it returns
m values equal to 1 in the second register, while the previous operator returned a
single value. Operator RD is exactly the same as in (4.4). Each step is driven by
U D RD Rf and the initial condition is given by (4.6), as in Grover’s algorithm.

The number of times operator U is applied changes to
j
�
4

q
N
m

k
. The algorithm

finishes when we measure the first register in the computational basis and the result
is an element in M with probability greater than or equal to 1 � m

N
.

4.3.1 Analysis Using Reflection Operators

The analysis of the algorithm can be performed as follows: Consider a subspace of
dimensionm spanned by vectors jxi, x 2 M . State

jM i D 1p
m

X
x2M

jxi (4.50)
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is in this space. It replaces vector jx0i when the number of marked elements is
greater than 1. Define vector

ˇ̌
M?˛ orthogonal to jM i as

ˇ̌
M?˛ D 1p

n �m

X
x 62M

jxi: (4.51)

The entire algorithm takes place in the two-dimensional vector space spanned
by jM i and

ˇ̌
M?˛. In the first-register Hilbert space HN , operator Rf has an

expression similar to the expression given in (4.11), that is,

RM?
D 2

ˇ̌
M?˛˝M?ˇ̌ � IN : (4.52)

The same geometric interpretation used in Grover’s algorithm applies here, but the
angle between

ˇ̌
M?˛ and jDi is

�

2
D arcsin

�˝
M
ˇ̌
D
˛�

D
r
m

N
CO

	
1

N



; (4.53)

when N � m. This result explains why the number of steps of the algorithm is

tf D
j
�
4

q
N
m

k
. The success probability can be calculated in the same way as before

pM � cos2
	
�

2




D 1 � m

N
: (4.54)

Exercise 4.18. Show that the generalization of Exercise 4.4 when f hasM marked
elements is

U t jDi D sin

	
t � C �

2



jM i C cos

	
t � C �

2


 ˇ̌
M?˛;

where � is given by (4.53). From this expression, find the best stopping point tf for
the algorithm and show that the success probability pM obeys (4.54).

Exercise 4.19. What is the computational complexity in terms of the number of
queries of function f of the best classical algorithm that finds an element in set M
with probability p � 1

2
.

Exercise 4.20. Show that if m D N
2

, a marked element is found with probability 1
in a single iteration. Find the best value of the success probability when m D N

4
.
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Exercise 4.21. Suppose that someone measures the first register after r steps. Show
that the probability of finding a marked element is

sin2
	
.2r C 1/ arcsin

r
m

N



:

4.3.2 Analysis Using the Spectral Decomposition

The spectral decomposition of U when there is more than one marked element is a
straightforward generalization. The characteristic polynomial becomes

j�I � U j D .�C 1/N�m�1 .� � 1/m�1
	
�2 � 2

	
1 � 2m

N



�C 1



; (4.55)

Therefore, the eigenvalues are ˙1 and e˙i! , where

cos! D 1 � 2m

N
: (4.56)

The general structure of the analysis is the same whenm is greater than 1. The initial
condition is in the vector space spanned by eigenvectors associated with eigenvalues
e˙i! . The number of iterations of the algorithm is

�
�=2!

˘
. Since the expression of

! is now given by (4.56), the number of iterations becomes

tf D
$

�

2 arccos
�
1 � 2m

N

�
%

D
$
�

4

r
N

m

%
CO

	
1p
N



(4.57)

when N � m.
The details of the analysis and the calculation of a lower bound for the success

probability are oriented in the following exercises.

Exercise 4.22. Obtain (4.55).

Exercise 4.23. Show that the eigenvectors of U associated with the eigenvalues
e˙i! are ˇ̌

M?˛	 ijM ip
2

;

where jM i and
ˇ̌
M?˛ are defined in (4.50) and (4.51), respectively. Show that the

initial condition jDi is in the space spanned by these eigenvectors.

Exercise 4.24. Show that U t jDi is orthogonal to jDi for t D �
2!

.
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Exercise 4.25. Show that

pM.t/ D
 r

M

N
cos .! t/C

r
1 � M

N
sin .! t/

!2

for a generic (non-integer) t and show that the first maximum point is given by

tmax D
arctan

q
N
M

� 1

!
:

Show that in the time instant tmax the state of the quantum computer is in
the subspace spanned by the marked elements. Show that this state is jM i D
1p
m

P
x2M jxi: Considering the integer nearest to the maximum point as the

stopping time, show that the probability of finding a marked element is bounded
below by 1 � m

N
, asymptotically.

Exercise 4.26. Analyze the algorithm when m � N
2

. What happens to the number
of steps and the success probability? Can we efficiently solve this problem with a
classical algorithm?

4.4 Amplitude Amplification

The technique called amplitude amplification used in quantum algorithms is
contrasted with the technique called probability amplification used in classical
randomized algorithms. An algorithm is said to be randomized if, during its exe-
cution, it chooses a path randomly, usually employing a random number generator.
The algorithm can output different values in two separate rounds, using the same
input on each round. For example, a randomized algorithm that outputs a factor of
number N may return 3 when N D 15 and, in a second round with the same input,
may return 5. This never happens in a deterministic algorithm. One of the reasons
we need randomized algorithms is that in some problems in which we are faced
with several options, it is best to take a random decision instead of spending time
analyzing what is the best option.

The two most common classes of randomized algorithms are Monte Carlo and
Las Vegas algorithms. A brief description of these classes is as follows: Monte Carlo
algorithms always return an output in a finite pre-determined time, but it may be
wrong. The probability of correct response may be small. Las Vegas algorithms
return a correct output or an error message, but the running time may be long or
infinite. It is usually required that the expected running time is finite. Monte Carlo
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algorithms can be converted into Las Vegas algorithms, if a procedure is known
that checks whether outputs are correct. Las Vegas algorithms can be converted into
Monte Carlo algorithms using the Markov inequality.1

We will deal with the class of Monte Carlo algorithms. Let p be the probability of
returning the correct value. If a procedure that checks the correctness of the output
is known, then we can amplify the success probability by running the algorithm
many times with the same input each time. We have a collection of outputs and
we want to be sure that the correct result is in there. If the algorithm runs n times,
the probability of returning a wrong result every time is .1 � p/n. Therefore, the
probability of returning at least one correct result is 1� .1�p/n. This probability is
approximately np, if p 
 1. In order to achieve a success probability close to 1, we
must take n D 1=p as a first approximation. To analyze the complexity of a Monte
Carlo algorithm that returns the correct output with probability p, we must multiply
the runtime by a factor 1=p. If p does not depend on the parameters that measure
the input size, then the factor 1=p does not change the time complexity. Otherwise,
this factor must be considered.

In the quantum case, we amplify amplitudes and consequently the number
of rounds is 1=

p
p, that is, quadratically smaller compared with the method of

probability amplification. In general terms, the method of amplitude amplification
can be described as follows: Suppose we have a function f W f0; 1gn ! f0; 1g and
know a unitary operator A such that, if we measure the qubits in the computational
basis when they are in state Aj ini, we obtain a marked element with probability
p, where j ini is the initial state of algorithm A. A marked element x is a point in
the domain of f such that f .x/ D 1. Using f , we can build operator Uf possibly
using some extra register, the action of which is

Uf jxi D .�1/f .x/jxi: (4.58)

There is a quantum procedure that allows us to find a marked element using
O.1=

p
p/ applications of Uf , with probability approaching 1 when n ! 1.

The amplitude–amplification algorithm is: Apply U tf to state j i and measure in
the computational basis, where tf D �

�=4
p
p
˘

, j i D Aj ini, and

U D .2 j ih j � I / Uf :

Grover’s algorithm and its generalization are the simplest examples that employ
the method of amplitude amplification. In this case, operator A is H˝n, j ini is
j0i˝n, and Aj0i˝n is jDi. If we measure the qubits in state jDi in the computational
basis, we obtain a marked element with probabilitym=N . Therefore, the number of
applications of Uf to find a marked element is O.

p
m=N/.

1Markov’s inequality provides an upper bound for the probability that a nonnegative function of a
random variable is greater than or equal to some positive constant.
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We can provide other examples and at the same time deepen our understanding
about the choice A D H˝n in Grover’s algorithm. Note that

RD D H˝n R0 H˝n; (4.59)

where R0 D 2 j0ih0j � I , see Exercise 4.1. Can we generalize Grover’s algorithm
by using a generic operator A in place of H˝n? The answer is positive if the
new version of Grover’s algorithm has an evolution operator that is the product
of two reflection operators. Operator RD is a reflection around vector jDi, which is
obtained by applyingH˝n to j0i. If we replaceH˝n by A, the new operator, which
we will call R , is defined as

R D AR0 A
� (4.60)

and state j i is defined as

j i D Aj0i: (4.61)

R is a reflection operator around vector j i. The proof is left as Exercise 4.27.
Note that operator A need not be real, as we have been considering so far. The
analysis of the algorithm by means of reflections around a real plane is preserved.
The choiceA D H˝n is the simplest one and means that all solutions will be equally
considered, that is, with the same real amplitude. This choice is not the most general
one, and in any case, it is a straightforward application of the method of amplitude
amplification.

The analysis of the amplitude–amplification algorithm is very similar to the
analysis of the generalized version of Grover’s algorithm. Let us disregard the extra
register, which is necessary to implement operator Uf , but plays a minor role in the
analysis of the algorithm. Suppose that

j i D
X

x2f0;1gn
˛x jxi (4.62)

and define

p0 D
X

f .x/D0

ˇ̌
˛x
ˇ̌2
; (4.63)

p1 D
X

f .x/D1

ˇ̌
˛x
ˇ̌2
: (4.64)

We have p0 C p1 D 1. If p1 D 0, the method of amplitude amplification does not
work because there is no marked element. If p1 D 1, we do not need to amplify the
amplitude of the marked elements. So let us assume that 0 < p1 < 1. Define states
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j 0i D 1p
p0

X
f .x/D0

˛x jxi; (4.65)

j 1i D 1p
p1

X
f .x/D1

˛x jxi: (4.66)

We have

j i D sin

	
�

2



j 1i C cos

	
�

2



j 0i; (4.67)

where

sin

	
�

2



D p

p1 (4.68)

and � 2 .0; �/.
One evolution step is obtained by applying operator

U D R Uf ; (4.69)

where R D 2 j ih j�I . The initial condition is j i D Aj ini, where j ini is the
initial state of the original algorithm. For now, what matters is how many times we
have to apply Uf to find a marked element with certainty when n ! 1. The overall
efficiency of the amplitude–amplification algorithm depends on operatorA and must
be eventually considered.

The evolution of the amplitude–amplification algorithm takes place in the real
plane spanned by vectors j 0i and j 1i, which plays a role similar to vectors jM i
and

ˇ̌
M?˛ of Sect. 4.3.1. As in Exercise 4.18 on Page 57, the state of the quantum

computer after t steps is given by

U t j i D sin

	
t � C �

2



j 1i C cos

	
t � C �

2



j 0i; (4.70)

where � is given by (4.68). As before, we choose t such that

t � C �

2
� �

2
;

which results in t � �=2� , if � 
 1. Therefore,

t D O

	
1p
p1



:

The number of applications of Uf is asymptotically the square root of the number
of times it would take on a classical algorithm.
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The stopping time of the amplitude–amplification algorithm depends on �

or, equivalently, p1. If A D H˝n, the value of � is obtained from the number of
marked elements. In the general case, this information depends on the modulus of
amplitudes ˛x of the marked elements.

Exercise 4.27. Show that operator R given by (4.60) is a reflection around vector
j i given by (4.61), that is, show that R j i D j i and R j i? D �j i?.

Further Reading

The original version of Grover’s algorithm is described in [33]. References [32, 34]
are also influential. The generalization of the algorithm for searching databases with
repeated elements and a first version of the counting algorithm are described in [17].
The version of the counting algorithm using phase estimation is described in [61].
The geometric interpretation of Grover’s algorithm is described in [4]. The analysis
using spectral decomposition is discussed in [61] and its connection with the
abstract search algorithm is briefly described in [10]. The proof of optimality of
Grover’s algorithm is in [16]. A more readable version is in [17] and we have
closely followed the proof presented in [64]. Reference [83] presents a more detailed
proof. References [18,41] describe the method of amplitude amplification in detail.
Reference [41] describes Markov’s inequality.
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Chapter 5
Quantum Walks on Infinite Graphs

Quantum walks on the line were introduced in Sect. 3.2 in order to highlight some
features, which are strikingly different from the classical random walks. In this
Chapter, we present in detail the analytical calculation of the state of quantum walks
on the line. This calculation is a model for the study of quantum walks on many
types of graphs. The Fourier transform is the key to the success of this calculation.

We also analyze quantum walks on the two-dimensional infinite lattice. Since
the evolution equations are very complex in this case, the analysis is performed
numerically. Among new features that show up in the two-dimensional case, we
highlight the fact that there are non-equivalent coins, which generate a wide class of
probability distributions.

On infinite graphs, the quantum walk spreads indefinitely. One of the most
interesting physical properties is the expected distance from the origin, which is
measured by the standard deviation of the probability distribution. Both the line and
the two-dimensional lattice have a standard deviation that is directly proportional to
the evolution time in contrast to the standard deviation of the classical random walk,
which is proportional to the square root of the evolution time.

Quantum walks can also be defined in higher dimensions, such as, the three-
dimensional infinite lattice. The results regarding the dependence of the standard
deviation against time are similar, the quadratic speedup over the behavior of
classical random walk is maintained.

5.1 Line

Suppose that the spatial part for the movement of the quantum walk consists of
the integer points in a line. The spatial part has an associated Hilbert space HP of
infinite dimension, the computational basis of which is

˚jni W n 2 Z
�
. The coin

space HM has dimension 2 and its computational basis is
˚j0i; j1i� corresponding

to two possible directions of movement, rightward or leftward. Thus, the Hilbert

R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, DOI 10.1007/978-1-4614-6336-8 5,
© Springer Science+Business Media New York 2013
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space associated with the quantum walk is HM ˝ HP , the computational basis of
which is

˚js; ni, s 2 f0; 1g, �1 � n � 1�
, where we set s D 0 as being rightward

and s D 1 as being leftward. Using these conventions, the shift operator is

S D
1X
sD0

1X
nD�1

js; nC .�1/sihs; nj: (5.1)

If s D 0, the value of n will be incremented by one unit after one application of S ,
whereas if s D 1, n is decremented by one unit. This expression for S is equal to
the expression of (3.13) of Sect. 3.2. To verify this fact one has to expand the sum
over index s.

The generic state of the walker at time t is described by

j‰.t/i D
1X
sD0

1X
nD�1

 s;n.t/js; ni; (5.2)

where the coefficients  s;n.t/ are complex functions, called probability amplitudes,
which obey the normalization condition

1X
nD�1

j 0;n.t/j2 C j 1;n.t/j2 D 1; (5.3)

for all time t. The probability distribution is given by

pn.t/ D j 0;n.t/j2 C j 1;n.t/j2 : (5.4)

5.1.1 Hadamard Coin

Let us use the Hadamard operator

H D 1p
2

�
1 1

1 �1
�

(5.5)

as coin. Applying the standard evolution operator

U D S .H ˝ I / (5.6)

to the generic state, we obtain

j‰.t C 1/i D
1X

nD�1
S . 0;n.t/H j0ijni C  1;n.t/H j1ijni/
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D
1X

nD�1

 0;n.t/C  1;n.t/p
2

S j0ijni C  0;n.t/ �  1;n.t/p
2

S j1ijni

D
1X

nD�1

 0;n.t/C  1;n.t/p
2

j0ijnC 1i

C 0;n.t/ �  1;n.t/p
2

j1ijn � 1i:

Using (5.2) on the left side of the above equation, i.e. expanding the left hand side
in the computational basis, and matching to the corresponding coefficients on the
right hand side, we obtain the walker’s evolution equations

 0;n.t C 1/ D  0;n�1.t/C  1;n�1.t/p
2

; (5.7)

 1;n.t C 1/ D  0;nC1.t/ �  1;nC1.t/p
2

: (5.8)

These equations were used in Sect. 3.2 to generate the graphs of probability
distributions through numerical simulation.

Our goal is to calculate the probability distribution analytically. However, (5.7)
and (5.8) cannot be solved easily at least in the way they are presently described.
Fortunately, in this case, there is an alternative way to address the problem. There
is a special basis called Fourier basis that diagonalizes the shift operator. This will
help in the diagonalization of the evolution operator.

Exercise 5.1. Instead of using operatorH as coin, take the Pauli matrix X . Obtain
the evolution equations of the walker on the line and solve analytically taking as
initial condition a walker at the origin with an arbitrary state for the coin state.
Calculate the standard deviation.

5.1.2 Fourier Transform

The Fourier transform of a discrete function f W Z ! C is a continuous function
Qf W Œ��; � ! C defined by

Qf .k/ D
1X

nD�1
e�iknf .n/; (5.9)
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where i D p�1. The inverse transform is given by

f .n/ D
Z �

��
dk

2�
eikn Qf .k/: (5.10)

This is a special case of a more general class of Fourier transforms, which is useful
in our context. Note that if n had units (e.g. meters), k should have the inverse unit
(1/meters), since the product kn is the argument of the exponential function and
therefore must be dimensionless. The physical interpretation of the variable k is the
wave number.

In (5.2), the coefficients  s;n.t/ are discrete functions in variable n. We can
calculate the Fourier transform of  s;n.t/ with respect to the index n as follows:

Q s.k; t/ D
1X

nD�1
e�ikn s;n.t/; (5.11)

where k is a continuous variable defined in the interval Œ��; �. The goal now is to
obtain the evolution equations for Q s.k; t/. If we solve these new equations, we will
obtain  s;n.t/ through the inverse transform.

There is another way to use the Fourier transform. Instead of transforming
function f W Z ! C, we transform the computational basis of HP . We use the
formula

j�ki D
1X

nD�1
eiknjni (5.12)

to define vectors j�ki, where k is a continuous variable defined in the interval
Œ��; �, as before. Note that we are using the positive sign in the exponential.
The problem with this method is that j�ki has infinity norm. This can be solved
by redefining j�ki as follows

j�ki D lim
L!1

1p
2LC 1

LX
nD�L

eiknjni: (5.13)

The same change should be applied to (5.11) for the sake of consistency. Since
the normalization constant is not relevant, we will continue to use (5.12) as the
definition of j�ki and (5.11) as the definition of Q s.k; t/ to simplify the calculation.
This transform defines a new orthonormal basis

˚j�ki W �� � k � �
�

called Fourier
basis. In this basis, we can express the state of the quantum walk as

j‰.t/i D
Z �

��
dk

2�

1X
sD0

Q s.k; t/ jsij�ki: (5.14)

Note that the above equation decomposes j .t/i in the Fourier basis, the coefficients
of which are Q s.k; t/. Equation (5.2) decomposes j .t/i in the computational basis,
the coefficients of which are  s;n.t/.
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Exercise 5.2. Show that (5.2) and (5.14) are equivalent, if the Fourier basis is
defined by formula (5.12).

Let us calculate the action of the shift operator on the new basis, i.e. its action on
jsij�ki. Using (5.12) and the definition of S , we have

S jsij�ki D
1X

nD�1
eiknS js; ni

D
1X

nD�1
eiknjsijnC .�1/si:

Renaming index n in such way that n0 D nC .�1/s , we obtain

S jsij�ki D
1X

n0D�1
ei .n0�.�1/s / kjsiˇ̌n0˛

D e�.�1/s i kjsij�ki: (5.15)

The result shows that the action of the shift operator S over a state of the Fourier
basis only changes its phase, i.e. jsij�ki is an eigenvector associated with the
eigenvalue e�.�1/s i k. The next task is to find the eigenvectors of the evolution
operatorU . If we diagonalizeU , we will be able to find an analytical expression for
the state of the quantum walk as a function of time.

Applying U to vector js0ij�ki and using (5.15), we obtain

U
ˇ̌
s0˛j�ki D S

 
1X
sD0

Hs;s0 jsij�ki
!

D
1X
sD0

e�.�1/s i kHs;s0 jsij�ki: (5.16)

The components of U in the Fourier basis are

hs; �kjU
ˇ̌
s0; �k0

˛ D e�.�1/s i kHs;s0 ık;k0 : (5.17)

For each k, we define operator QHk , the components of which are

QHs;s0 D e�.�1/s i kHs;s0 : (5.18)

www.it-ebooks.info

http://www.it-ebooks.info/


70 5 Quantum Walks on Infinite Graphs

In matrix form we have

QHk D
�

e�i k 0

0 ei k

�
�H

D 1p
2

�
e�i k e�i k

ei k �ei k

�
(5.19)

Equation (5.17) shows that the non-diagonal part of operator U is associated with
the coin space. The goal now is to diagonalize operator QHk . The tensor product of
an eigenvector of QHk with vector j�ki is an eigenvector of U . To check this, note
that (5.16) can be written as

U jsij�ki D � QHk jsi
�j�ki: (5.20)

The action of the shift operator S has been absorbed in QHk when U acts in j�ki.
If j˛ki is an eigenvector of QHk with eigenvalue ˛k , we have

U j˛kij�ki D � QHkj˛ki
�j�ki

D ˛k j˛kij�ki: (5.21)

Therefore, j˛kij�ki is the eigenvector of U associated with the eigenvalue ˛k .
This result shows that the diagonalization of the evolution operator reduces to the
diagonalization of QHk . U is defined in an infinite dimensional Hilbert space, while
QHk is defined in a two-dimensional space.

The characteristic polynomial of QHk is

�2 C i
p
2 � sin k � 1: (5.22)

The eigenvalues are

˛k D e�i!k ; (5.23)

ˇk D ei .�C!k/; (5.24)

where !k is an angle in the interval Œ��=2; �=2 that satisfies the equation

sin!k D 1p
2

sin k: (5.25)

The normalized eigenvectors are

j˛ki D 1p
c�

�
e�i kp

2 e�i!k � e�i k

�
; (5.26)

jˇki D 1p
cC

�
e�i k

�p
2 ei!k � e�i k

�
; (5.27)
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where

c˙ D 2
�
1C cos2 k

�˙ 2 cosk
p
1C cos2 k: (5.28)

The spectral decomposition of U is

U D
Z �

��
dk

2�

�
e�i!k j˛k; �kih˛k; �kj C ei .�C!k/ jˇk; �kihˇk; �kj

�
: (5.29)

The t-th power of U is

U t D
Z �

��
dk

2�

�
e�i!k t j˛k; �kih˛k; �kj C ei .�C!k/ t jˇk; �kihˇk; �kj

�
: (5.30)

5.1.3 Analytical Solution

Let us take the initial state with the particle located at the origin n D 0 and the coin
state with spin up j0i. Thus, the initial condition in the computational basis is

j .0/i D j0ijn D 0i: (5.31)

Using (5.30) we obtain

j .t/i D U t j .0/i

D
Z �

��
dk

2�

�
e�i!k t j˛k; �ki

˝
˛k; �k

ˇ̌
0; 0

˛

C ei .�C!k/ t jˇk; �ki
˝
ˇk; �k

ˇ̌
0; 0

˛�
: (5.32)

Using (5.26), (5.27), and (5.12), we obtain

˝
˛k; �k

ˇ̌
0; 0

˛ D ei k

p
c� ; (5.33)

˝
ˇk; �k

ˇ̌
0; 0

˛ D ei k

p
cC : (5.34)

Therefore,

j .t/i D
Z �

��
dk

2�

	
e�i .!k t�k/

p
c� j˛ki C ei .�C!k/ tCik

p
cC jˇki



j�ki: (5.35)

The state of the walk is written on the basis of eigenvectors of U . It is convenient
to express the result in the computational basis. As an intermediate step, we will
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express the eigenvectors j˛ki and jˇki in the computational basis through (5.26)
and (5.27) keeping intact vectors j�ki:

j .t/i D
Z �

��
dk

2�

	
e�i .!k t�k/

c�

�
e�i kp

2 e�i!k � e�i k

�

Cei .�C!k/ tCi k

cC

�
e�i k

�p
2 ei!k � e�i k

�

j�ki: (5.36)

We can determine coefficients Q s.k; t/ of (5.14), which are given by

Q 0.k; t/ D e�i!kt

c� C ei.�C!k/t

cC ; (5.37)

Q 1.k; t/ D
e�i!ktCik

�p
2 e�i!k � e�i k

�
c�

�
ei.�C!k/tCik

�p
2 ei!k C e�i k

�
cC : (5.38)

To simplify these expressions, it is convenient to use the identities

1

c˙ D 1

2

	
1	 coskp

1C cos2 k



(5.39)

and
p
2 e˙i!k ˙ e�i k D c˙

2
p
1C cos2 k

: (5.40)

We finally obtain

Q 0.k; t/ D 1

2

	
1C cos kp

1C cos2 k



e�i!kt

C .�1/t
2

	
1 � cos kp

1C cos2 k



ei!kt ; (5.41)

Q 1.k; t/ D eik

2
p
1C cos2 k

�
e�i!kt � .�1/tei!kt

�
: (5.42)

Coefficients  0;n and  1;n of the wave function in the computational basis are
given by

 s;n.t/ D
Z �

��
dk

2�
eikn Q s.k; t/: (5.43)
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Fig. 5.1 Probability distribution of the quantum walk on the line after 100 steps from the analytical
expression. The cross-shaped points correspond to integer values of n

When we substitute the expressions for Q 0.k; t/ and Q 1.k; t/ within the integral, we
obtain two terms that are equal in modulus after the integration. Depending on the
value of t , these terms either cancel or add up, so that at the end we have

 0;n.t/ D
Z �

��
dk

2�

	
1C cos kp

1C cos2 k



e�i .!k t�kn/; (5.44)

 1;n.t/ D
Z �

��
dk

2�

eik

p
1C cos2 k

e�i .!k t�kn/ (5.45)

when nC t is even. When nC t is odd, the coefficients are zero.
Using (5.4) we can calculate the probability distribution. The graph in Fig. 5.1

shows the distribution after 100 steps. Only the even points were displayed, since
the probability is zero in odd points. This graph coincides with the graph generated
numerically with the same initial condition in Sect. 3.2.

Exercise 5.3. Show that the integrals

.˙1/t
Z �

��
dk

2�

	
1˙ coskp

1C cos2 k



e�i.˙!kt�kn/

are real numbers and equal to each other when nC t is even and have opposite signs
when nC t is odd. Show the same for the integrals

.˙1/tC1
Z �

��
dk

2�

eik

p
1C cos2 k

e�i.˙!kt�kn/:

Use these facts to obtain (5.44) and (5.45) from (5.41) and (5.42).
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Exercise 5.4. Calculate analytically the probability amplitudes of the Hadamard
quantum walk with initial condition

j .0/i D j0i C ij1ip
2

jn D 0i:

Depict the graph of the probability distribution and verify that it is symmetrical
about the origin. Let fn.t/ be the following function:

fn.t/ D

8̂
<
:̂

2

�t
�
1� n2

t2

�r
1� 2n2

t2

; jnj � tp
2
;

0; tp
2
< jnj.

Plot the graph of fn.t/ together with the probability distribution for some values of
t and check that fn.t/ is a good approximation, disregarding the rapid oscillation of
the probability distribution.

5.1.4 Other Coins

A question that naturally arises is how general the results of the last section are. The
standard quantum walk has an evolution operator in the formU D S.C˝I /, where
the shift operator S is given by (5.1). The only degrees of freedom are (1) the choice
of coin operator C and (2) the choice of the initial condition. For the quantum walk
on the line, these choices are not independent. A generic coin operator, disregarding
a global phase, has the form

C D
� p

�
p
1� � ei�

p
1 � � ei� �p

� ei.�C�/
�
; (5.46)

where 0 � � � 1 and 0 � �; � � � .
The coin state j0i induces a movement to the right, while j1i, to the left. Note

that
C j0i D p

�j0i Cp
1 � � ei� j1i: (5.47)

Therefore, depending on the value of �, the coin can increase the probability
associated with “go to right” or “go to left” . The non-biased coin is obtained by
taking � D 1=2. Angles � and � play no role in this case. The Hadamard coin is an
example of a non-biased coin, and it is the simplest one. A non-biased coin does not
guarantee a symmetric probability distribution, because there is still freedom in the
initial condition. The generic initial condition starting from the origin has the form

j‰.0/i D �
cos˛ j0i C eiˇ sin ˛ j1i� j0i; (5.48)

so we have two control parameters: ˛ and ˇ.
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Considering non-biased coins and repeating the calculation of the quantum state
for a generic time using the generic initial condition, we conclude that the change
produced by parameters � and � can be fully achieved through appropriate choices
of parameters ˛ and ˇ. So, if we fix the coin as the Hadamard operator, we can
obtain all possible quantum walks through an appropriate choice of the initial
condition. For some of these choices, the probability distribution is symmetric,
assuming that the walker starts from the origin, generating a non-biased walk.

Exercise 5.5. Find a coin that generates a symmetrical probability distribution
using the initial condition

j .0/i D j0i C j1ip
2

jn D 0i:

Exercise 5.6. In the classical random walk, we can have a walker on the line that
can move to the left, to the right, or stay in the same position. What is the quantum
version of this classical walk? Find the shift operator and use the Grover coin to
calculate the first steps using the initial condition j‰.0/i D jDij0i. Obtain the
answer in the computational basis.

Exercise 5.7. Using the generic operator of (5.46) as coin, show that the coin
operator QCk associated with the Fourier space is given by

QCk D
� p

� e�ik p
1 � � ei.�kC�/

p
1 � � ei.kC�/ �p

� ei.kC�C�/
�
:

Verify that operator (5.19) can be obtained by a suitable choice of parameters �, � ,
and �. Find the eigenvalues and eigenvectors of QCk . Show that in the Fourier space,
we can write ˇ̌ Q‰k.t/

˛ D QCk
ˇ̌ Q‰k.0/

˛
;

where
ˇ̌ Q‰k.0/

˛
can be obtained by calculating the Fourier transform of j‰.0/i),

given by (5.48). Show that parameters � and ˇ only appear in the ˇ only appear
in the expression of

ˇ̌ Q‰k.t/
˛

in the form � C ˇ. Therefore, any choice of � can
be choice of ˇ. Show that parameter � plays the role of a global phase, and it is
eliminated when we take the inverse Fourier transform.

5.2 Two-Dimensional Lattices

Suppose that the spatial part for the movement of the quantum walk consists of
the points of an infinite two-dimensional lattice. The spatial part has an associated
Hilbert space HP of infinite dimension, the computational basis of which is

˚jx; yi W
x; y 2 Z

�
. If the walker is at a lattice point, it has four options to move. The coin

decides which direction it takes. In a practical implementation, the particle may
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have spin 3/2, because it has four possible spin states. Another option is to use two
states with two levels each, i.e. two qubits. In this case, the state of the coin is the
tensor product of the state of each qubit. For example, suppose that the walker is
a Hydrogen atom. If we control the energy level so that the electron lives in the
first two orbital layers, we have a two-level state (qubit). The other qubit is the spin
of the electron. The state of the whole system spin-orbital layers has four states.
The coin space HM has dimension 4 and its computational basis can be denoted by
fˇ̌ix; iy˛ W 0 � ix; iy � 1g. The Hilbert space associated with the quantum walk is
the coin-position space, which is given by HM ˝ HP .

The generic state of the walker at time t is described by

j‰.t/i D
1X

ix ;iyD0

1X
x;yD�1

 ix;iy I x;y.t/
ˇ̌
ix; iy

˛jx; yi; (5.49)

where the coefficients  ix;iy I x;y.t/ are complex functions that obey the normaliza-
tion condition

1X
ix ;iyD0

1X
x;yD�1

ˇ̌
 ix;iy I x;y.t/

ˇ̌2 D 1; (5.50)

for all time t . The probability distribution is given by

px;y.t/ D
1X

ix ;iyD0
j ix;iy I x;y.t/j2: (5.51)

The action of the shift operator S is

S
ˇ̌
ix; iy

˛jx; yi D ˇ̌
ix; iy

˛ˇ̌
x C .�1/ix ; y C .�1/iy ˛: (5.52)

If ix D 0 and iy D 0, the values of x and y are incremented by one unit, which
means that if the walker leaves position .0; 0/, it will go to .1; 1/, that is, it goes
through the main diagonal of the lattice. If ix D 0 and iy D 1, x is incremented
by one unit, while y is decremented by one unit, indicating that the walker goes
through the secondary diagonal to the right. Similarly, for cases ix D iy D 1 and
ix D 1, iy D 0. If the values ix and iy are equal, the walker goes through the main
diagonal. Otherwise, it goes through the secondary diagonal.

Applying the standard evolution operator

U D S .C ˝ I / (5.53)

www.it-ebooks.info

http://www.it-ebooks.info/


5.2 Two-Dimensional Lattices 77

to the generic state, we obtain

j‰.t C 1/i D
1X

jx;jyD0

1X
x;yD�1

 jx;jy I x;y.t/ S
�
C
ˇ̌
jx; jy

˛jx; yi
�

D
1X

jx;jyD0

1X
x;yD�1

 jx;jy I x;y.t/ S

0
@ 1X
ix ;iyD0

Cix;iy I jx;jy
ˇ̌
ix; iy

˛jx; yi
1
A

D
1X

ix ;iy ;jx;jyD0

1X
x;yD�1

 jx;jy I x;y.t/ Cix;iy I jx;jy

ˇ̌
ix; iy

˛ˇ̌
x C .�1/ix ; y C .�1/iy ˛:

We can rename x C .�1/ix , y C .�1/iy to x, y, so that

j‰.t C 1/i D
1X

ix ;iy ;jx;jyD0

1X
x;yD�1

Cix;iy I jx;jy

� jx;jy I x�.�1/ix ; y�.�1/iy .t/
ˇ̌
ix; iy

˛jx; yi: (5.54)

Expanding the left hand side of the above equation in the computational basis and
matching the coefficients, we obtain the walker’s evolution equation

 ix;iy Ix;y.t C 1/ D
1X

jx;jyD0
Cix;iy I jx;jy  jx ;jy I xC.�1/ix ; yC.�1/iy .t/: (5.55)

This equation is too complex to be solved analytically for a generic coin. In
next Chapter, exact solutions are obtained using Fourier transform for the flip-flop
quantum walk with Grover coin on finite two-dimensional lattices, which can be
used to obtain information about the behavior on infinite lattice. The flip-flop shift
operator inverts the coin direction. However, (5.55) can be analyzed numerically,
providing quick results. We have to choose a coin operator. In the following sections,
we describe the quantum walk evolution numerically for three important non-
equivalent coins: Hadamard, Fourier and Grover.

Exercise 5.8. Show that if the coin operator is the tensor product of two operators
C D C1 ˝ C2, then the evolution operator (5.53) can be factorized as the tensor
product of two operators.
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Fig. 5.2 Probability distribution of the quantum walk in the two-dimensional lattice with the
Hadamard coin after 100 steps

5.2.1 The Hadamard Coin

The Hadamard coin is C D H ˝H and its matrix representation is

C D 1

2

2
664
1 1 1 1

1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3
775 : (5.56)

Let us take the following state as initial condition:

j‰.0/i D j0i C ij1ip
2

˝ j0i C ij1ip
2

˝ jx D 0; y D 0i; (5.57)

which is based on the initial condition used in Sect. 3.2 to obtain a symmetrical
probability distribution for the Hadamard coin. The graph of the probability
distribution after 100 steps is shown in Fig. 5.2.

The dynamics in this example is equivalent to two diagonal uncoupled quantum
walks. The analytical results obtained for the one-dimensional Hadamard walk do
apply in this case. A detailed analysis of Fig. 5.2 shows the characteristics of the
one-dimensional walk analyzed before.
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Fig. 5.3 Probability distribution of a quantum walk in the two-dimensional lattice with the Fourier
coin

5.2.2 The Fourier Coin

The Fourier coin is C D F4 and its matrix representation is

F4 D 1

2

2
664
1 1 1 1

1 i �1 �i
1 �1 1 �1
1 �i �1 i

3
775 : (5.58)

Let us take the following state as initial condition:

j‰.0/i D 1

2

	
j00i C 1 � ip

2
j01i C j10i � 1 � ip

2
j11i



jx D 0; y D 0i: (5.59)

The graph of the probability distribution after 100 steps is shown in Fig. 5.3.
The graph is invariant under rotation of 180ı, but it is not invariant under rotation

of 90ı. The walk is symmetrical in each direction, but the evolution in the direction
x is different from the evolution in y.

5.2.3 The Grover Coin

Finally, we will use the Grover coin which is given by

G D 2jDihDj � I ; (5.60)
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Fig. 5.4 Probability distribution of the quantum walk in the two-dimensional lattice with the
Grover coin

where jDi D 1
2

P1
ix ;iyD0

ˇ̌
ix; iy

˛
is the diagonal state of HM . The matrix

representation is

G D 1

2

2
664

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

3
775 : (5.61)

The initial condition which has the largest standard deviation for the Grover coin is
the state

j‰.0/i D 1

2

�j00i � j01i � j10i C j11i�jx D 0; y D 0i: (5.62)

The graph of the probability distribution after 100 steps is shown in Fig. 5.4.
The graph is invariant under rotation of 90ı, showing that the directions x and y

are equivalent.

5.2.4 Standard Deviation

If we fix the evolution operator in the one-dimensional quantum walk, we can
obtain all possible walks by changing the initial condition. This is not true for
the two-dimensional case. The three coins that we analyzed are independent. They
fall into three distinct classes, regardless of the initial conditions. The choice of
initial condition can change the position standard deviation. Different from what
was displayed in the examples, we can generate probability distributions strongly
centered around the origin by a suitable choice of initial conditions.
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Fig. 5.5 Standard deviation
of the quantum walk on the
two-dimensional lattice for
Hadamard, Fourier, and
Grover coins

The best way to compare the coins analyzed so far is by calculating the standard
deviation of the probability distribution generated by each one. The formula for the
standard deviation of the position for the one-dimensional case was described in
Sect. 3.2. In the two-dimensional case, the natural extension is

�.t/ D
vuut 1X

x;yD�1
.x2 C y2/ px;y.t/; (5.63)

which is valid when the expected value of the position is zero. The graphs in
Fig. 5.5 show the standard deviation for the Hadamard (dashed line), Fourier (dotted
line), and Grover (continuous line) coins. Note that the Grover coin has the largest
standard deviation among the three coins.

The Grover coin has several advantages over Fourier and Hadamard coins,
besides the gain in the standard deviation, which can be useful in algorithmic
applications. The Grover coin can be applied in any dimension and is non-trivial
for dimension greater than one. The Hadamard coin can only be used in dimensions
that are power of two. The Fourier coin has a simple expression when the dimension
is power of two. It is interesting to use a coin that is somehow “distant” from the
identity operator. The coin of Grover has this property.

Exercise 5.9. Are Hadamard, Fourier, and Grover coins biased?

Exercise 5.10. Show that the standard deviation of the two-dimensional Hadamard
walk and standard deviation of the one-dimensional Hadamard walk are equal.

5.2.5 Program QWalk

The graphics in this section were made from the data generated by program QWalk,
which can be obtained from the Computer Physics Communications library.1 Also

1http://cpc.cs.qub.ac.uk/summaries/AEAX v1 0.html
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see http://qubit.lncc.br/qwalk. The program has already implemented the evolution
equation (5.55). The user must launch command qw2d using some input file,
which must have extension in, e.g. hadamard.in. Windows users should use the
command cmd to open the appropriate window. To generate the graph in Fig. 5.2,
the input file must contain the command

BEGIN
COIN HADAMARD
STATE HADAMARD
LATTYPE DIAGONAL
STEPS 100

END

that implements the operator H ˝ H and the initial condition given by (5.57).
To implement other initial conditions, the option STATE HADAMARD should be
replaced by STATE CUSTOM and one must add the command

BEGINSTATE
jx jy x y a b

ENDSTATE

outside the BEGIN � � � END environment in order to implement an initial condition
of type j‰.0/i D .a C b i/

ˇ̌
jx; jy

˛jx; yi. Variables jx,jy,x,y are integer
numbers and variables a,b are floating-point numbers. If the initial condition is
a superposition of states, new lines with the same format should be added in the
command BEGINSTATE. Any input outside the environments BEGIN � � � END is
ignored.

To implement other coins, the option COIN HADAMARD should be replaced by
COIN CUSTOM. For example, to implement the coin

1p
2

�
1 i

i 1

�
;

the command

BEGINCOIN
0.70710678 0.0 0.0 0.70710678
0.0 0.70710678 0.70710678 0.0

ENDCOIN

should be added outside the environment BEGIN � � � END.
The output files have extensions dat and sta. The files with extension plt are

gnuplot scripts, and can be used to generate the graph of the probability distribution
in the encapsulated postscript format. The correct version of gnuplot must be
used. Files with extension sta contain data about the expected value and standard
deviation of the probability distribution.
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Exercise 5.11. Use the program QWalk to plot the probability distribution of the
two-dimensional quantum walk with the Grover coin after 100 steps with the initial
condition

j‰.0/i D jDijx D 0; y D 0i:
Check that the distribution is strongly centered around the origin. Plot the graph
of standard deviation and show that growth is linear with time. Why is this not a
contradiction?

Further Reading

The quantum walk on the line is analyzed in many papers. The seminal article
is [63], which obtained (5.44) and (5.45). A thorough analysis was presented in
[7, 19, 44, 45]. Reference [77] analyzes generic coins and generic initial conditions.
A review of the main results of the walk on the line and additional references can be
found in the review book [80].

Reference [49] was among the first to analyze walks in dimensions greater than
one. Reference [77] performed thorough examination of possible coins for walks on
two-dimensional lattices. Reference [56] describes program QWalk, which provides
tools to generate numerical data to plot graphs of the probability distribution
and standard deviation. The PhD thesis [82] analyzes quantum walks on two-
dimensional lattices with focus on recurrence problems and contains additional
references. More references on quantum walks on infinite graphs can be found in
review book [80] or in [79].
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Chapter 6
Quantum Walks on Finite Graphs

In this chapter, we calculate the state of quantum walks on cycles, finite two-
dimensional lattices, and hypercubes. The cycle is the finite version of the line.
The finite lattice is the two-dimensional version of the cycle with the form of a
torus. Finally, the hypercube is a generalization of the cube to dimensions greater
than three. These graphs are basic ones but have interesting properties. They can
be analyzed by means of the Fourier transform, allowing analytical calculations,
which have many useful by-products in other contexts. In particular, the spectral
decomposition of the quantum-walk evolution operator can be used in spatial search
algorithms on these graphs. The spectral decomposition is described in details in this
chapter.

There are some interesting physical quantities of quantum walks on finite
graphs that have different properties compared to walks on infinite graphs,
such as the limiting distribution, the mixing time, and the hitting time. The
position standard deviation, on the other hand, is less important in the finite case.
The number of vertices is used as a parameter to describe bounds on the mixing
time and hitting time. These topics will be addressed in subsequent chapters. The
number of vertices is also used as a metric to measure the efficiency of algorithms.

6.1 Cycle

Suppose that the space on which the walker moves is the set of vertices of a N -
cycle. If the walker moves N steps clockwise, it reaches the departure point. The
same is true for the counterclockwise direction. The spatial part has associated an
N -dimensional Hilbert space HN with computational basis

˚jj i, 0 � j � N � 1�,
where the values of j correspond to the labels of the vertices. The vertex with label j
is a neighbor of vertices with labels j�1 and jC1 and only of them. The coin space
has dimension 2, because the walker can move clockwise or counterclockwise.
Thus, the Hilbert space associated with the quantum walk is H2 ˝ HN, with

R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, DOI 10.1007/978-1-4614-6336-8 6,
© Springer Science+Business Media New York 2013
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computational basis
˚js; j i, 0 � s � 1, 0 � j � N � 1

�
, where we set s D 0

as clockwise and s D 1 as counterclockwise. Under these conventions, the shift
operator is

S js; j i D js; j C .�1/si: (6.1)

If s D 0, the value of j will be incremented by one after one application of S , and
if s D 1, j is decremented by one unit. Arithmetic operations with variable j are
performed modulo N .

The generic state at time t is described by

j‰.t/i D
N�1X
jD0

 0;j .t/j0; j i C  1;j .t/j1; j i; (6.2)

where coefficients  0;j .t/ and  1;j .t/ are complex functions that obey the normal-
ization condition ˇ̌

 0;j .t/
ˇ̌2 C ˇ̌

 1;j .t/
ˇ̌2 D 1; (6.3)

for all time t .
Let us use the Hadamard coin operator

H D 1p
2

�
1 1

1 �1
�
: (6.4)

Applying the standard evolution operator

U D S .H ˝ I / (6.5)

on the generic state, we obtain

j‰.t C 1/i D
N�1X
jD0

S
�
 0;j .t/H j0ijj i C  1;j .t/H j1ijj i�

D
N�1X
jD0

 0;j .t/C  1;j .t/p
2

S j0ijj i C  0;j .t/ �  1;j .t/p
2

S j1ijj i

D
N�1X
jD0

 0;j .t/C  1;j .t/p
2

j0; j C 1i C  0;j .t/ �  1;j .t/p
2

j1; j � 1i:

Using (6.2) on the left-hand side of the above equation, that is, expanding the
left-hand side in the computational basis, and equating with the corresponding
coefficients on the right-hand side of the equation, we obtain the walker evolution
equations
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 0;j .t C 1/ D  0;j�1.t/C  1;j�1.t/p
2

;

 1;j .t C 1/ D  0;jC1.t/ �  1;jC1.t/p
2

:

These equations are very difficult to be solved in the way they stand. However, they
have a form that is suitable for computational simulation, which helps us to obtain
quick results and to have a general idea about the behavior of the quantum walk.
What we usually do is to plot the probability distribution, which is given by

pj .t/ D ˇ̌
 0;j .t/

ˇ̌2 C ˇ̌
 1;j .t/

ˇ̌2
: (6.6)

6.1.1 Fourier Transform

The analytical expression for the evolution of the walk on the cycle can be obtained
more easily, if we use the Fourier transform on the spatial part. The Fourier
transform acts on the spatial part of the computational basis as follows:

j�ki D 1p
N

N�1X
jD0

!
jk
N jj i; (6.7)

where !N D e
2�i
N . The range of k is the same of j . The Fourier transform defines

a new orthonormal basis
˚j�ki W 0 � k � N � 1

�
called Fourier basis. In this new

basis, the generic state of the walker is

j‰.t/i D
1X
sD0

N�1X
kD0

Q s;k.t/ jsij�ki; (6.8)

where the coefficients are given by

Q s;k D 1p
N

N�1X
jD0

!
�jk
N  s;j : (6.9)

The interpretation of this last equation is that the amplitude of a state on the Fourier
basis is the Fourier transform of the amplitudes in the computational basis.

Exercise 6.1. Show the following properties of the Fourier transform:

1. j�0i is the diagonal state of Hilbert space HN .
2. fj�ki W 0 � k � N � 1g is an orthonormal basis for Hilbert space HN .
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3. j0i D 1p
N

PN�1
kD0 j�ki.

4. jj i D 1p
N

PN�1
kD0 !

�jk
N j�ki.

Let us calculate the action of the shift operator on the spatial Fourier basis, that
is, its action on jsij�ki. Using (6.7), we have

S jsij�ki D 1p
N

N�1X
jD0

!
jk
N S js; j i

D 1p
N

N�1X
jD0

!
jk
N jsijj C .�1/si:

Renaming dummy index j such that j 0 D j C .�1/s , we obtain

S jsij�ki D 1p
N

N�1X
j 0D0

!
.j 0�.�1/s /k
N jsiˇ̌j 0˛

D !
�.�1/sk
N jsij�ki: (6.10)

This result shows that the shift operator only changes the state phase. However,
this is not enough for our purposes, because we wish to diagonalize U , which
also depends on the coin operator. The diagonalization of U allows us to find an
analytical expression for the state of the quantum walk at any time.

Applying U on vector js0ij�ki and using (6.10), we obtain

U
ˇ̌
s0˛j�ki D S

 
1X
sD0

Hs;s0 jsij�ki
!

D
1X
sD0

!
�.�1/s k
N Hs;s0 jsij�ki:

The entries U in the spatial Fourier basis is

hs; �kjU
ˇ̌
s0; �k0

˛ D !
�.�1/s k
N Hs;s0 ık;k0 : (6.11)

For each k, we define operator QH.k/ with entries

QH.k/

s;s0 D !
�.�1/s k
N Hs;s0 : (6.12)

In matrix form, we have
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QH.k/ D
�
!�k
N 0

0 !kN

�
�H

D 1p
2

�
!�k
N !�k

N

!kN �!kN

�
(6.13)

Equation (6.11) shows that the non-diagonal part of operator U is associated with
the coin space. For each k, we have a reduced evolution operator QH.k/. The goal
now is to diagonalize QH.k/. The tensor products of the eigenvectors of QH.k/ by
vectors j�ki are eigenvectors of U associated with the same eigenvalues of QH.k/.

Exercise 6.2. Show that if j˛ki is an eigenvector of QH.k/ with eigenvalue ˛k , then
j˛kij�ki is the eigenvector of U associated with the same eigenvalue ˛k .

The characteristic polynomial of matrix QH.k/ is

�2 C i
p
2 sin

	
2�k

N



� � 1: (6.14)

Therefore, the eigenvalues are e�i�k and ei.�C�k/, where �k is a solution of equation

sin �k D 1p
2

sin
2�k

N
: (6.15)

The normalized eigenvectors are

j˛ki D 1p
c�
k

"
1�p

1C cos2 Qk � cos Qk
�

ei Qk

#
; (6.16)

jˇki D 1q
cC
k

"
1

�
�p

1C cos2 Qk C cos Qk
�

ei Qk

#
; (6.17)

where

ck̇ D 2

q
1C cos2 Qk

	q
1C cos2 Qk ˙ cos Qk



; (6.18)

and
Qk D 2 � k

N
: (6.19)

The spectral decomposition of U is

U D
N�1X
kD0

�
e�i �k j˛k; �kih˛k; �kj C ei .�C�k/ jˇk; �kihˇk; �kj

�
: (6.20)
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The t-th power of U is

U t D
N�1X
kD0

�
e�i �k t j˛k; �kih˛k; �kj C ei .�C�k/t jˇk; �kihˇk; �kj

�
; (6.21)

because a function f applied to U is by definition applied directly to the eigenval-
ues, when U is written in the basis of their eigenvectors.

Exercise 6.3. Show that
˚j˛k; �ki; jˇk; �ki W 0 � k < N

�
is an orthonormal basis

of Hilbert space H2 ˝ HN .

6.1.2 Analytical Solutions

Let us take the initial state with the particle located at the vertex of label 0 and
with coin value pointing clockwise. Thus, the initial condition in the computational
basis is

j .0/i D j0ij0i: (6.22)

Using (6.21), we obtain

j .t/i D U t j .0/i

D
N�1X
kD0

�
e�i �k t j˛k; �ki

˝
˛k; �k

ˇ̌
0; 0

˛

C ei .�C�k/t jˇk; �ki
˝
ˇk; �k

ˇ̌
0; 0

˛�
: (6.23)

Using (6.16), (6.17), and (6.7), we obtain

˝
˛k; �k

ˇ̌
0; 0

˛ D 1p
N c�

k

; (6.24)

˝
ˇk; �k

ˇ̌
0; 0

˛ D 1q
N cC

k

: (6.25)

Therefore,

j .t/i D 1p
N

N�1X
kD0

0
B@e�i �k tp

c�
k

j˛ki C .�1/tei �k tq
cC
k

jˇki

1
CA j�ki: (6.26)

To calculate the probability of finding the walker at any vertex of the cycle, we
have to express the quantum state in the computational basis. Using identity
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1

ck̇
D 1

2

 
1	 cos Qkp

1C cos2 Qk

!
(6.27)

and (6.16) and (6.17), we obtain

j .t/i D 1p
N

N�1X
kD0

�
Ak.t/

Bk.t/

�
j�ki; (6.28)

where

Ak.t/ D cos �kt � i cos Qk sin �ktp
1C cos2 Qk

; (6.29)

Bk.t/ D � i ei Qk sin �ktp
1C cos2 Qk

; (6.30)

which is valid when t is even. Using (6.7), we obtain

j .t/i D 1

N

N�1X
jD0

"PN�1
kD0 Ak.t/ ei j QkPN�1
kD0 Bk.t/ ei j Qk

#
jj i: (6.31)

Using (6.6), we obtain the probability distribution

pj .t/ D 1

N 2

ˇ̌̌
ˇ̌
N�1X
kD0

Ak.t/ ei j Qk
ˇ̌̌
ˇ̌
2

C 1

N 2

ˇ̌̌
ˇ̌
N�1X
kD0

Bk.t/ ei j Qk
ˇ̌̌
ˇ̌
2

: (6.32)

This equation is valid for any value of N , but only for even values of t . Obtaining
expressions for Ak.t/ and Bk.t/ when t is odd is oriented in Exercise 6.4. When
N is even, the probability distribution is zero in vertices j such that j C t is odd.
When N is odd, the probability distribution is nonzero for all vertices eventually.
Exercise 6.6 gives some hints to proof those facts.

If we make a shift of .�N/ on the values of j in the interval ŒN=2;N � 1, the
probability distribution of the cycle is equal to the probability distribution of the
walk on the line for t � N . This can be seen from the graph of the probability
distribution in Fig. 6.1 for a cycle with N D 200. Note that for j in the interval
Œ0; N=2, the graph in Fig. 6.1 is equal to the one in Fig. 5.1 of Sect. 5.1.3. If the rest
of the graph is shifted leftward, the graph becomes equal to the graph of the line.

In the line, the wave fronts go in opposite directions and they move away. In
the cycle, the wave fronts move toward each other, they are close at t ' N=

p
2,

and right after that there is a collision of the front peaks if N is even, as can be
seen in Fig. 6.1. It is interesting to compare to what happens in cycles with an
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Fig. 6.1 Probability distribution of the quantum walk on cycle with N D 200 after 100 steps
starting from initial condition j .0/i D j0ij0i. The points corresponding to odd values j were
excluded because they have zero probability

odd number of vertices. The wave fronts do not collide at t ' N=
p
2, but they

intertwine because there is an inverse relationship between the parity of j and the
nonzero values of the probability. This fact shows that quantum walks on odd and
even cycles have different behavior. A confirming evidence comes from the form of
the limiting distribution, which is uniform for odd cycles for all initial conditions,
while non-uniform and initial-condition dependent for even cycles. In terms of graph
structure, even cycles are bipartite graphs.1 The asymptotic behavior of classical
random walks on bipartite graphs is different from the behavior on non-bipartite
graphs. Part of this difference is inherited in the quantum context.

On the line, all possible quantum walks can be obtained from the Hadamard coin
through a suitable choice of initial condition. In the cycle, this is true for a period
of time while there is no interference of the front waves. When the wave fronts
collide or reach its tail in the even and odd cycles, relative phase factors can produce
constructive or destructive interference. These phase factors are introduced through
evolution operators and cannot be reproduced by choosing initial conditions.

Exercise 6.4. Show that, to obtain valid expressions for Ak.t/ and Bk.t/ for odd t ,
we have to interchange cos �kt by �i sin �kt in (6.29) and (6.30).

Exercise 6.5. Show that

1

N

N�1X
jD0

ei j . Qk� Qk0/ D ık k0 :

1A graph is bipartite if the set of vertices can be divided into two subsets A and B such that every
edge connects a vertex in A with a vertex in B .
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Using the above identity and (6.32), show that

N�1X
jD0

pj .t/ D 1

for any even number of steps t . Using Exercise 6.4, show also for odd t .

Exercise 6.6. Consider N even. If t is even, show that

j .t/i D 1

N

N�1X
jD0

�
1C .�1/j �

"PN=2�1
kD0 Ak.t/ ei j QkPN=2�1
kD0 Bk.t/ ei j Qk

#
jj i:

From this result, show that pj .t/ D 0 for odd j . Using Exercise 6.4, show that
when t is odd, pj .t/ D 0 for even j . How can this result be interpreted in terms of
the parity of N and the properties of the shift operator?

6.1.3 Periodic Solutions

In some cases, the evolution of a quantum walk can be periodic, that is, there is an
integer T such that j .t C T /i D j .t/i for any number of steps t . To obtain a
periodic solution, we can use (6.21), which completely determines the state of the
quantum walk at time t once given the initial condition. We must find T such that
UT D I . This implies that

e�i�kT D ei.�C�k/T D 1; (6.33)

for all k. Therefore, T must be even and

cos �kT D 1;

sin �kT D 0;

that is, �kT D 2�jk , where each jk must be an integer. Using (6.15), we obtain

sin
2�jk

T
D 1p

2
sin

2�k

N
; (6.34)

which must be valid for 0 � k � N � 1. This equation can be solved by exhaustive
search and we quickly find solutions for N D 2 and T D 2; N D 4 and T D 8;
N D 8 and T D 24.
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Fig. 6.2 Graph of the probability at vertex v D 0 as a function of time for a cycle with N D 8.
The graph has period T D 24. The plot shows only the probability at even values of t

Figure 6.2 shows the plot of the probability at vertex v D 0 as a function of time
for a cycle with eight vertices. Note that the graph is periodic. The same holds for
any other vertex.

6.2 Finite Two-Dimensional Lattice

Suppose that N is a perfect square and consider a
p
N � p

N lattice with periodic
boundary conditions, that is, a lattice with the shape of torus. If the walker movesp
N steps toward x-direction, it returns to original position. The same holds for the

y-direction. The vectors of the computational basis of the spatial part have the form
of jx; yi, where x; y 2 f0; : : : ;pN � 1g. The coin space has dimension 4. The
vectors of the computational basis of the coin space have the form of jd; si, with
0 � d; s � 1, where d determines the direction of movement: d D 0 stands for
x-direction and d D 1 stands for y-direction, and s determines the direction sign:
s D 0 stands for positive direction and s D 1 stands for negative direction.

Under these conventions, we write the shift operator as

S jd; sijx; yi D jd; s ˚ 1ijx C .�1/sıd0; y C .�1/sıd1i: (6.35)

If d D 0 and s D 0, x will be incremented by one unit, and y remain unchanged.
When x changes, y remains unchanged, and vice versa. Note that the coin state
changes from jd; si to jd; s ˚ 1i, that is, the direction is inverted after the shift.
This inversion in the coin value is important for speeding up search algorithms in
the two-dimensional lattice. This issue will be addressed in Sect. 8.3. Shift operators
that invert the coin are called flip–flop. Arithmetic operations with variables x and
y are performed modulo

p
N .
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We use the Grover coin, which is given by

G D 2jDihDj � I; (6.36)

where jDi D 1
2

P1
d;sD0 jd; si is the diagonal state of H2 ˝ H2. The matrix

representation of G is

G D 1

2

2
666664

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

3
777775
: (6.37)

The generic state of the walker at time t is described by

j‰.t/i D
1X

d;sD0

p
N�1X

x;yD0
 d;sI x;y.t/jd; sijx; yi; (6.38)

where coefficients  d;sI x;y.t/ are complex functions that obey the normalization
condition

1X
d;sD0

p
N�1X

x;yD0

ˇ̌
 d;sI x;y.t/

ˇ̌2 D 1; (6.39)

for all time t .
Applying the standard evolution operator

U D S .G ˝ I / (6.40)

on the generic state, we obtain

j‰.t C 1/i D
1X

d 0 ;s0D0

p
N�1X

x;yD0
 d 0 ;s0I x;y.t/ S

�
G
ˇ̌
d 0; s0˛jx; yi

�

D
1X

d 0 ;s0D0

p
N�1X

x;yD0
 d 0 ;s0I x;y.t/ S

0
@ 1X
d;sD0

Gd;sI d 0;s0 jd; sijx; yi
1
A

D
1X

d;s;d 0 ;s0D0

p
N�1X

x;yD0
 d 0 ;s0I x;y.t/ Gd;sI d 0;s0

jd; s ˚ 1ijx C .�1/sıd0; y C .�1/sıd1i:

We can rename the dummy indices of the sum from x C .�1/sıd0, y C .�1/sıd1,
s ˚ 1 to x, y, s. Then,
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j‰.t C 1/i D
1X

d;s;d 0;s0D0

p
N�1X

x;yD0
Gd;s˚1I d 0;s0

�  d 0 ;s0I x�.�1/s˚1ıd0; y�.�1/s˚1ıd1
.t/jd; sijx; yi: (6.41)

Expanding the left-hand side of the above equation in the computational basis and
equating coefficients alike, we obtain the evolution equation of walker

 d;sI x;y.t C 1/ D
1X

d 0;s0D0
Gd;s˚1I d 0;s0  d 0 ;s0I xC.�1/sıd0; yC.�1/sıd1.t/: (6.42)

This equation is too complex to be solved the way it is written. In one-dimensional
case, we have learned that by taking the Fourier transform on the spatial part, we
can diagonalize the shift operator. This allowed us to find analytically the state of
the quantum walk at any time instant. The same technique works here.

6.2.1 Fourier Transform

The Fourier transform acts on the spatial part of the computational basis in the
following form:

ˇ̌
�kx;ky

˛ D 1p
N

p
N�1X

x;yD0
!
xkxCykyp
N

jx; yi; (6.43)

where !p
N D e

2�i
p

N . The Fourier transform is the tensor product of the Fourier
transform at each coordinate. The range of variables kx and ky is the same of x and
y. For each value of kx and ky ,

ˇ̌
�kx;ky

˛
is a vector written in the computational basis.

The Fourier transform defines a new orthonormal basis
nˇ̌
�kx;ky

˛ W 0 � kx; ky �
p
N � 1

o
called Fourier basis. In this new basis, the generic state of the walker is

j‰.t/i D
1X

d;sD0

p
N�1X

kx ;kyD0
Q d;sI kx;ky .t/ jd; siˇ̌�kx;ky ˛; (6.44)

where the coefficients are given by

Q d;sI kx;ky D 1p
N

p
N�1X

x;yD0
!

�.xkxCyky/p
N

 d;sI x;y : (6.45)
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The interpretation of this last equation is that the amplitudes of a state on the Fourier
basis is the Fourier transform of the amplitudes in the computational basis.

Exercise 6.7. Show the following properties of the Fourier transform:

1. j�0;0i is the diagonal state of Hilbert space H
p
N ˝ H

p
N .

2.
nˇ̌
�kx;ky

˛ W 0 � kx; ky � p
N � 1

o
is an orthonormal basis for Hilbert space

H
p
N ˝ H

p
N .

3. j0; 0i D 1p
N

Pp
N�1

kx;kyD0
ˇ̌
�kx;ky

˛
.

Let us calculate the action of the shift operator on the spatial Fourier basis, that
is, its action on jd; siˇ̌�kx;ky ˛. Using (6.43), we have

S jd; siˇ̌�kx;ky ˛ D 1p
N

p
N�1X

x;yD0
!
xkxCykyp
N

S jd; sijx; yi

D 1p
N

p
N�1X

x;yD0
!
xkxCykyp
N

jd; s ˚ 1i ˝

jx C .�1/sıd0; y C .�1/sıd1i:

To simplify the last equation, we rename the dummy indices such that x0 D x C
.�1/sıd0 and y0 D y C .�1/sıd1. Then,

S jd; siˇ̌�kx;ky ˛ D 1p
N

p
N�1X

x0;y0D0
!
.x0�.�1/sıd0/kxC.y0�.�1/sıd1/kyp
N

� jd; s ˚ 1iˇ̌x0; y0˛
D !

�.�1/s.ıd0kxCıd1ky/p
N

jd; s ˚ 1iˇ̌�kx ;ky ˛: (6.46)

This result is useful to diagonalize the evolution operator.
Applying U on vector jd 0; s0iˇ̌�kx ;ky ˛ and using (6.46), we obtain

U
ˇ̌
d 0; s0˛ˇ̌�kx;ky ˛ D S

0
@ 1X
d;sD0

Gd;sI d 0;s0 jd; si
ˇ̌
�kx;ky

˛1A

D
1X

d;sD0
!

�.�1/s.ıd0kxCıd1ky /p
N

Gd;sId 0 ;s0 jd; s ˚ 1iˇ̌�kx;ky ˛

D
1X

d;sD0
!
.�1/s.ıd0kxCıd1ky/p
N

Gd;s˚1I d 0;s0 jd; si
ˇ̌
�kx;ky

˛
:
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The entries of U on the spatial Fourier basis are

D
d; s; �k0

x;k
0

y

ˇ̌
ˇU ˇ̌d 0; s0; �kx;ky

˛ D !
.�1/s.ıd0kxCıd1ky /p
N

Gd;s˚1I d 0;s0 ıkx;k0

x
ıky;k0

y
: (6.47)

For each kx and ky , we define operator QG with entries

QGd;sI d 0;s0 D !
.�1/s.ıd0kxCıd1ky/p
N

Gd;s˚1Id 0 ;s0 : (6.48)

The matrix representation is

QG D

2
666664

0 !
kxp
N

0 0

!
�kxp
N

0 0 0

0 0 0 !
kyp
N

0 0 !
�kyp
N

0

3
777775

�G: (6.49)

Equation (6.47) shows that the non-diagonal part of operator U is associated with
the coin space. The goal now is to diagonalize operator QG. The tensor products of
eigenvectors of QG with vector

ˇ̌
�kx;ky

˛
are eigenvectors of U associated with the

same eigenvalues of QG.
If kx D 0 and ky D 0, matrix QG reduces to

QG
.kxD0;kyD0/

D 1

2

2
664
1 �1 1 1

�1 1 1 1

1 1 1 �1
1 1 �1 1

3
775 : (6.50)

The determinant
ˇ̌ QG

.kxD0;kyD0/
� �I

ˇ̌
is .� � 1/3 .�C 1/. Therefore, the eigenvalues

are C1 with multiplicity 3 and �1 with multiplicity 1. The eigenvectors associated
with eigenvalue C1 are

ˇ̌
�1a0;0

˛ D 1

2

2
664
1

1

1

1

3
775 ;
ˇ̌
�1b0;0

˛ D 1p
2

2
664
1

�1
0

0

3
775 ;
ˇ̌
�1c0;0

˛ D 1p
2

2
664
0

0

1

�1

3
775 : (6.51)

The eigenvector associated with eigenvalue �1 is

ˇ̌
��1
0;0

˛ D 1

2

2
664
1

1

�1
�1

3
775 : (6.52)
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Note that
ˇ̌
�1a0;0

˛ D jDi. The set of these eigenvectors is an orthonormal basis.

If kx ¤ 0 or ky ¤ 0, the determinant of QG � �I is

ˇ̌̌
QG � �I

ˇ̌̌
D �

�2 � 1
� 	
�2 �

	
cos

2�kxp
N

C cos
2�kyp
N



�C 1



: (6.53)

Therefore, the eigenvalues of QG are

� D
 ˙1;

e˙i�.kx;ky /;
(6.54)

where

cos �.kx; ky/ D 1

2

	
cos

2�kxp
N

C cos
2�kyp
N



: (6.55)

Eigenvectors j�i D .a; b; c; d / are found as follows: We calculate vector . QG �
�I/j�i and equate each entry to zero. We have a system of four equations in
variables a; b; c; d . We eliminate one of the equations, for example, the last one,
and solve the system of equations in the three variables a; b; c. After that, choose
the value d that normalizes the vector. This procedure for eigenvalue C1 results in
eigenvector

ˇ̌
ˇ�C1
kx;ky

E
D 1

n.C1/

2
664
!kx

�
!ky � 1�

1 � !ky
!ky

�
1 � !kx

�
!kx � 1

3
775 : (6.56)

For eigenvalue �1, we have

ˇ̌
ˇ��1
kx ;ky

E
D 1

n.�1/

2
664

�!kx �1C !ky
�

� �1C !ky
�

!ky
�
1C !kx

�
1C !kx

3
775 : (6.57)

In these expressions we are taking ! D !p
N . Variables n.˙1/ are normalization

constants. For eigenvalues ˙�.kx; ky/, we denote the eigenvectors by
ˇ̌̌
�˙�
kx;ky

E
. Let

us show the expression for the positive case:

ˇ̌
ˇ�C�
kx;ky

E
D i

2
p
2 sin �

2
664

e�i� � !kx

e�i� � !�kx
e�i� � !ky

e�i� � !�ky

3
775 : (6.58)
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To obtain the fourth eigenvector, we replace � by �� . Remember that � depends on
kx and ky . The expression for sin � can be obtained from (6.55).

If kx D ky or kx D p
N � ky , the eigenvectors simplify to the following

expressions:

ˇ̌
ˇ�C�
kx;kx

E
D 1p

2

2
664
1

0

1

0

3
775 ;

ˇ̌
���
kx;kx

˛ D 1p
2

2
664
0

1

0

1

3
775 ; (6.59)

ˇ̌̌
�C�
kx;

p
N�kx

E
D 1p

2

2
664
1

0

0

1

3
775 ;

ˇ̌̌
���
kx;

p
N�kx

E
D 1p

2

2
664
0

1

1

0

3
775 : (6.60)

Note that if
p
N is even and kx D ky D

p
N
2

, (6.55) implies that � D � . In this
case, the eigenvectors of (6.59) have eigenvalue �1. The basis is complete when we
take the eigenvectors of (6.56) and (6.57). The eigenvalue �1 has multiplicity 3 and
eigenvalue 1 has multiplicity 1. Matrix QG is the negative of the matrix described in
(6.50).

The union of sets
nˇ̌
�1a0;0

˛j�0;0i,
ˇ̌
�1b0;0

˛j�0;0i,
ˇ̌
�1c0;0

˛j�0;0i,
ˇ̌
��1
0;0

˛j�0;0i
o

andnˇ̌̌
�C1
kx;ky

Eˇ̌
�kx;ky

˛
,
ˇ̌̌
��1
kx;ky

Eˇ̌
�kx;ky

˛
,
ˇ̌̌
�˙�
kx ;ky

Eˇ̌
�kx;ky

˛ W 0 � kx; ky <
p
N; .kx; ky/ ¤

.0; 0/
o

is an orthonormal basis of eigenvectors of U for Hilbert space H2˝ H2˝
H

p
N˝ H

p
N . The associated eigenvalues are ˙1 and e˙i�.kx;ky/.

Exercise 6.8. Show that the norm of
ˇ̌
ˇ�˙1
kx ;ky

E
is

n.˙1/ D 2
p
2
�
1	 cos �

� 1
2 :

Obtain expressions n.C1/ D 4 sin �
2

and n.�1/ D 4 cos �
2
.

Exercise 6.9. Show that
ˇ̌
�1a0;0

˛
is orthogonal to

ˇ̌̌
�˙1
kx;ky

E
.

Exercise 6.10. Verify that
ˇ̌
ˇ�C�
kx;ky

E
given by (6.58) is a unit vector. Show that

ˇ̌
ˇ�C�
kx;ky

E
is an eigenvector of QG associated with eigenvalue ei� :

Exercise 6.11. Vector
ˇ̌
ˇ���
kx;ky

E
is the complex conjugate of

ˇ̌
ˇ��kx;ky

E
?

Exercise 6.12. Show that

1. jDi D
ˇ̌
ˇ��kx ;ky

E
C
ˇ̌
ˇ���
kx ;ky

E
p
2

,

2.
D
�˙�
kx;ky

ˇ̌
D
E

D 1p
2
,

3. hDj QGjDi D cos �:
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6.2.2 Analytical Solutions

Let us calculate the state of the quantum walk at a generic time instant. Let us take
as initial condition state

j‰.0/i D jDij0; 0i; (6.61)

that is, a walker located at the vertex .0; 0/ with the diagonal state of the coin space.
Let us use the following notation for the eigenvalues and eigenvectors of U :ˇ̌

ˇ�jkx;ky
Eˇ̌
�kx ;ky

˛
, where the eigenvalues have the form �

j

kx ;ky
and 1 � j � 4. Then,

U D
4X

jD1

p
N�1X

kx;kyD0
�
j

kx;ky

ˇ̌̌
�
j

kx;ky
; �kx;ky

ED
�
j

kx ;ky
; �kx ;ky

ˇ̌̌
: (6.62)

At time t , the state of the quantum walk will be given by

j‰.t/i D U t j‰.0/i

D
4X

jD1

p
N�1X

kx;kyD0
.�
j

kx;ky
/t
D
�
j

kx;ky
; �kx;ky

ˇ̌
‰.0/

E

�
ˇ̌
ˇ�jkx;ky

Eˇ̌
�kx;ky

˛
; (6.63)

The state of the quantum walk at time t can be calculated explicitly. The task is
reduced to calculate the entries of the initial condition in the basis of eigenvectors
of U and, after that, to calculate the t-th power of the eigenvalues. We have already
obtained explicit expressions for the eigenvalues and eigenvectors of U .

Using (6.63), we obtain

j‰.t/i D
4X

jD1

p
N�1X

kx ;kyD0
.�
j

kx;ky
/t
D
�
j

kx;ky

ˇ̌
D
E ˝
�kx;ky

ˇ̌
0; 0

˛ ˇ̌ˇ�jkx;ky
Eˇ̌
�kx;ky

˛
: (6.64)

Using (6.43), we have
˝
�kx ;ky

ˇ̌
0; 0

˛ D 1=
p
N . Among all eigenvectors of QG, onlyˇ̌

�1a0;0
˛
and

ˇ̌̌
�˙�
kx;ky

E
are not orthogonal to jDi. Therefore, the above equation reduces to

j‰.t/i D .C1/tp
N

ˇ̌
�1a0;0

˛j�0;0i

C 1p
N

p
N�1X

kx;kyD0
.kx;ky /¤.0;0/

.ei� /t
D
��kx;ky

ˇ̌
D
E ˇ̌̌
��kx;ky

Eˇ̌
�kx;ky

˛

C.e�i� /t
D
���
kx;ky

ˇ̌
D
E ˇ̌ˇ���

kx;ky

Eˇ̌
�kx ;ky

˛
: (6.65)
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Since
D
�˙�
kx;ky

ˇ̌
D
E

D 1=
p
2, it follows that the state of the quantum walk at time t is

j‰.t/i D 1p
N

jDijDi

C 1p
2N

p
N�1X

kx ;kyD0
.kx;ky /¤.0;0/

�
ei� t

ˇ̌
ˇ��kx ;ky

E
C e�i� t

ˇ̌
ˇ���
kx;ky

E� ˇ̌
�kx ;ky

˛
; (6.66)

where
ˇ̌
�kx ;ky

˛
, � , and

ˇ̌̌
�˙�
kx;ky

E
are given by (6.43), (6.55), and (6.58), respectively.

Exercise 6.13. Show that (6.66) reduces to (6.61) when t D 0.

Exercise 6.14. The purpose of this exercise is to analyze the quantum walk on a
finite-dimensional lattice with a shift operator that does not invert the coin.

1. Obtain the shift operator analogous to (6.46) without inverting the direction of
the coin.

2. Show that the matrix QG, analogous to (6.48), is

QG D

2
666664

!
kxp
N

0 0 0

0 !
�kxp
N

0 0

0 0 !
kyp
N

0

0 0 0 !
�kyp
N

3
777775

�G: (6.67)

3. Obtain the eigenvalues and eigenvectors of this new matrix QG.
4. Use (6.61) as initial condition. Find the state of the quantum walk j‰.t/i at time
t , analogous to (6.66).

6.3 Hypercube

The hypercube is an n-dimensional regular graph of degree nwithN D 2n vertices.
The labels of the vertices are binary n-tuples. Two vertices are adjacent if and only
if their correspondingn-tuples differ only by one bit, that is, their Hamming distance
is equal to 1. The edges also have labels, which specify the entry of the tuples that
has different bits, that is, if two vertices differ in the a-th entry, the label of the edge
connecting these vertices is a. The Hilbert space associated with a quantum walk on
the hypercube is H D Hn ˝ H2n . Vectors of the form jaiˇ̌Ev˛, where 1 � a � n and
Ev are binary n-tuples, form the computational basis of H. Vector jai is a coin state
associated with the edge of label a, specifying the direction of movement. In this
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section, we use vector j1i as the first vector of the computational basis of the coin
space. Vector

ˇ̌Ev˛ is in the computational basis of H2n and specifies in which vertex
the walker is.

Exercise 6.15. Make a sketch of a 3-dimensional hypercube and label all vertices
and all edges.

The shift operator should move the walker from state jaiˇ̌Ev˛ to jaiˇ̌Ev ˚ Eea
˛
, where

Eea is the binary n-tuple with all entries zero except the a-th entry, the value of
which is 1. Operation ˚ is the binary sum (bitwise xor). This shift has the following
meaning: if the coin value is a and the walker position is Ev, the walker will move
through edge a to the adjacent vertex

ˇ̌Ev ˚ Eea
˛
. The coin is unchanged after the shift,

characterizing a flip–flop shift, because in binary arithmetic the inverse of a is a
(a˚ a D 0). So,

S jaiˇ̌Ev˛ D jaiˇ̌Ev ˚ Eea
˛
: (6.68)

An equivalent way of writing the shift operator is

S D
nX

aD1

2n�1X
EvD0

ˇ̌
a; Ev ˚ Eea

˛˝
a; Evˇ̌: (6.69)

The range of variable Ev (in the sum) is written in decimal base. For example, the
notation Ev D 2n � 1 means Ev D .1; : : : ; 1/. We will use this notation if its meaning
is clear from the context.

We will use the Grover coin, which is

G D 2jDihDj � I ; (6.70)

where jDi is the diagonal state of the coin space. The matrix representation is

G D

2
666666664

2
n

� 1 2
n

� � � 2
n

2
n

2
n

� 1 � � � 2
n

:::
:::

: : :
:::

2
n

2
n

� � � 2
n

� 1

3
777777775
: (6.71)

The entries of G are Gij D 2
n

� ıij . The Grover coin is invariant under permutation
of directions. That is, if the labels of edges were interchanged (keeping the labels
of the vertices), the Grover coin would drive the walker to follow the same path.
This is equivalent to keep the labels and to swap the rows and columns of G
corresponding to the permutation of labels. The Grover matrix is unchanged by
simultaneous permutation of rows and columns.

A generic state of the walker at time t is described by
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j‰.t/i D
nX
aD1

2n�1X
EvD0

 a;Ev.t/
ˇ̌
a; Ev˛; (6.72)

where coefficients  a;Ev.t/ are complex functions that obey the normalization
condition

nX
aD1

2n�1X
EvD0

ˇ̌
 a;Ev.t/

ˇ̌2 D 1: (6.73)

Applying the standard evolution operator

U D S .G ˝ I / (6.74)

to the generic state, we obtain

j‰.t C 1/i D
nX

bD1

2n�1X
EvD0

 b;Ev.t/ S
�
Gjbiˇ̌Ev˛�

D
nX

bD1

2n�1X
EvD0

 b;Ev.t/ S
� nX
aD1

Gabjaiˇ̌Ev˛�

D
nX

a;bD1

2n�1X
EvD0

 b;Ev.t/ Gab jaiˇ̌Ev ˚ Eea
˛
:

We can rename the dummy index Ev to Ev ˚ Eea. So,

j‰.t C 1/i D
nX

a;bD1

2n�1X
EvD0

Gab  b;Ev˚Eea .t/ jaiˇ̌Ev˛: (6.75)

Expanding the left-hand side of the above equation on computational basis and
equating coefficients alike, we obtain the evolution equation

 a;Ev.t C 1/ D
nX

bD1
Gab  b;Ev˚Eea .t/: (6.76)

This equation is too complex to be solved the way it is written. For the cycle and
the finite two-dimensional lattice, we have learned that we can diagonalize the shift
operator by taking the Fourier transform on the spatial part. This technique has
allowed us to analytically solve the evolution equation. The same technique works
here.
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6.3.1 Fourier Transform

The Fourier transform acts on the computational basis as follows:

ˇ̌
ˇEk
˛ � 1p

2n

2n�1X
EvD0

.�1/Ek�Ev ˇ̌Ev˛; (6.77)

where Ek � Ev is the inner product between binary vectors Ek and Ev. The range of
variable Ek is the same of variable Ev. As before, the Fourier transform defines a new

orthonormal basis
nˇ̌
ˇEk
˛ W 0 � Ek � 2n � 1

o
called Fourier basis. In this new basis,

the generic state of the walker is

j‰.t/i D
nX

aD1

2n�1X
EkD0

Q 
a;Ek.t/ jaiˇ̌ˇEk

˛
; (6.78)

where coefficients Q 
a;Ek.t/ are given by

Q 
a;Ek D 1p

2n

2n�1X
EvD0

.�1/Ek�Ev a;Ev: (6.79)

The interpretation of this last equation is that the amplitudes of a state on the Fourier
basis is the Fourier transform of the amplitudes in the computational basis.

Exercise 6.16. Show the following properties of the Fourier transform:

1.
ˇ̌
ˇE0
˛

is the diagonal state of Hilbert space H2n .

2.
nˇ̌
ˇEk
˛ W 0 � Ek � 2n � 1

o
is an orthonormal basis for the Hilbert space H2n .

3.
ˇ̌̌
E0
E

D 1p
2n

P2n�1
EkD0

ˇ̌
ˇEk
˛
:

We will show that the shift operator is diagonal in basis
n
jaiˇ̌ˇEk

˛ W 1 � a � n,

0 � Ek � 2n � 1
o
, that is, we show that jaiˇ̌ˇEk

˛
is an eigenvector of S . In fact, using

(6.77), we have

S jaiˇ̌ˇEk
˛ D 1p

2n

2n�1X
EvD0

.�1/Ek�Ev S
ˇ̌
a; Ev˛

D 1p
2n

2n�1X
EvD0

.�1/Ek�Ev ˇ̌a; Ev ˚ Eea
˛
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D 1p
2n

2n�1X
EvD0

.�1/Ek�.Ev˚Eea/ ˇ̌a; Ev˛

D .�1/Ek�Eea jaiˇ̌ˇEk
˛
: (6.80)

The inner product Ek � Eea is the a-th entry of Ek, which we denote by ka. Therefore,
.�1/ka is the eigenvalue associated with eigenvector jaiˇ̌ˇEk

˛
.

We have showed that S is a diagonal operator in the new basis, but this does not
imply that the evolution operator is diagonal. If the coin operator is not diagonal,
the evolution operator is not diagonal too. However, we want to diagonalize the
evolution operator to explicitly calculate the state of the quantum walk at generic
time t . Despite being a hard-working task, we explicitly calculate expressions for
the eigenvalues and eigenvectors of U .

Applying U on vector jbiˇ̌ˇEk
˛

and using (6.80), we obtain

U jbiˇ̌ˇEk
˛ D S

 
nX
aD1

Gab jaiˇ̌ˇEk
˛!

D
nX

aD1
.�1/kaGab jaiˇ̌ˇEk

˛
: (6.81)

The entries of U on the spatial Fourier basis is

˝
a; ˇEk0

ˇ̌
U
ˇ̌
b; ˇEk

˛ D .�1/kaGab ıEk;Ek0

: (6.82)

Let us define operator QG with entries QGab D .�1/kaGab for generic vectors Ek and
Ek0.

The goal now is to diagonalize operator QG. Let us start with the simplest case,
which is Ek D E0 D .0; � � � ; 0/. In this case, operator QG is reduced to the Grover
operator G. First, note that G2 D I . So, the eigenvalues are ˙1. We know that
jDi is an eigenvector of G associated with eigenvalue 1. Let us focus now on the
eigenvectors associated with eigenvalue �1. We must look for vectors j˛i such that
.G C I /j˛i D 0. Using (6.70), we conclude that G C I is a matrix with all entries
equal to 2=n. It follows that any vector of the form

ˇ̌
ˇ˛E0
a

E
D 1p

2
.j1i � jai/ ; (6.83)

where 1 < a � n, is an eigenvector of G associated with eigenvalue �1. Counting

the number of vectors, it follows that set
nˇ̌ˇ˛E0

a

E
W 1 � a � n

o
, where

ˇ̌
ˇ˛E0
1

E
D jDi, is

a non-orthogonal basis of eigenvectors of G of Hilbert space Hn.
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Let us calculate the spectral decomposition when Ek D .1; : : : ; 1/. In this case,
we have QG D �G and the eigenvectors of G associated with eigenvalue �1 are
eigenvectors of QG associated with eigenvalue C1 and vice versa. In summary,
eigenvectors ˇ̌

ˇ˛E1
a

E
D 1p

2
.jai � jni/ ; (6.84)

where 1 � a � n � 1, are associated with eigenvalue C1 and
ˇ̌
ˇ˛E1
n

E
D jDi is

associated with eigenvalue �1.
Now let us consider a vector Ek with Hamming weight 0 < k < n, that is, with k

entries equal to 1 and n � k equal to 0. Matrix QG is obtained from G by inverting
the signs of the rows corresponding to the entries of Ek that are equal to 1. Therefore,
k rows of QG invert signs compared to G. To find the eigenvectors associated with
eigenvalues ˙1, we see the Hilbert space as a sum of two vector spaces, the first
associated with the rows that have not inverted the sign and the second associated
with the rows that have inverted the signs. By permutating rows and columns, matrix
QG assumes the following form:

QG D

2
6666666666666664

2
n

� 1 2
n

� � �
2
n

2
n

� 1 2
n

:::
: : :

� 2
n

C 1 � 2
n

� � �

� 2
n

� 2
n

� 2
n

C 1
:::

: : :

3
7777777777777775

; (6.85)

where the first diagonal block is a .n � k/-square matrix and the second block is a
k-square matrix. To find the eigenvalues associated with eigenvalue 1, we look for
vectors j˛i such that . QG � I /j˛i D 0. Note that

QG � I D

2
66666666664

2
n

� 2 2
n

� � �
2
n

2
n

� 2 2
n

:::
: : :

� 2
n

� 2
n

3
77777777775
: (6.86)
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Therefore, a vector of the form2 j˛i D .0; : : : ; 0 j 1;�1; 0; : : : ; 0/=p2 is an
eigenvector of eigenvalue 1. Vector j˛i has zero entries except at two positions
corresponding to the rows that inverted the sign, the first position with value C1
and the second with value �1. We can build k � 1 vectors in this way. Following
the same method, we conclude that we can find n � k � 1 eigenvectors with zero
entries except for two positions corresponding to the rows that have not inverted
sign, with values C1 and �1 too. The total number of eigenvectors found so far is
.k � 1/C .n� k � 1/ D n� 2. Therefore, it is missing two eigenvectors associated
with the complex non-real eigenvalues.

The remaining two eigenvectors can be found as follows: If a matrix has the
property that the sum of the entries of a row is invariant for all rows, the vector with
entries equal to 1 is an eigenvector with eigenvalue 1. In the case of matrix QG, this
property is valid in two blocks. The first block consists of the first n � k rows and
second of k remaining rows. Therefore, the form of the eigenvector should be j˛i D
.a; : : : ; a j b; : : : ; b/, that is, the first n � k entries must have some value a, and the
k remaining entries must have some value b. Without loss of generality, we take
b D 1. Let ei!k be the corresponding eigenvalue. Note that the eigenvalue depends
on k (the Hamming weight of Ek), but it does not depend explicitly on Ek. We solve
the matrix equation

2
6666666666666664

2
n

� 1� ei!k 2
n

� � �
2
n

2
n

� 1 � ei!k 2
n

:::
: : :

� 2
n

C 1 � ei!k � 2
n

� � �

� 2
n

� 2
n

C 1 � ei!k � 2
n

:::
: : :

3
7777777777777775

2
6666666666666664

a

:::

a

1
:::

1

3
7777777777777775

D 0;

which reduces to 8<
:
�
1� 2k

n
� ei!k

�
a C 2k

n
D 0;

�2 �1 � k
n

�
aC 1 � 2k

n
� ei!k D 0:

(6.87)

Solving this system of equations, we obtain

2The vertical bar separates the first n� k entries from the last k entries.
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8̂
ˆ̂<
ˆ̂̂:

a D ˙i
p

k
np

1� k
n

;

ei!k D 1� 2k
n

	 2i
q

k
n

�
1 � k

n

�
:

(6.88)

Then, 8̂
<
:̂

cos!k D 1� 2k
n
;

sin!k D 	2
q

k
n

�
1 � k

n

�
:

(6.89)

We have found the two remaining eigenvectors. Normalizing, the eigenvector
associated with eigenvalue ei!k is written as

ˇ̌̌
˛

Ek
1

E
D 1p

2

2
6666666666666664

�ip
n�k
:::

�ip
n�k

1p
k
:::
1p
k

3
7777777777777775

; (6.90)

and eigenvector
ˇ̌
ˇ˛ Ek
n

E
associated with eigenvalue e�i!k is the complex conjugate of

vector
ˇ̌
ˇ˛ Ek
1

E
.

These eigenvectors were described by separating the rows that inverted sign
from the rows that have remained unchanged. We must permute the entries of the
eigenvectors to match the rows in their original positions. The variable that points
out which rows have inverted sign is Ek. If entry ka is zero, it means that there was
no sign inversion in the a-th row, and if ka D 1, then there was an inversion.

The eigenvectors
ˇ̌̌
˛

Ek
1

E
and

ˇ̌̌
˛

Ek
n

E
associated with eigenvalues e˙i!k are written in

the original basis as

ˇ̌
ˇ˛ Ek
1

E
D 1p

2

nX
aD1

	
kap
k

� i
1 � kap
n � k



jai; (6.91)

ˇ̌̌
˛

Ek
n

E
D 1p

2

nX
aD1

	
kap
k

C i
1 � kap
n � k



jai; (6.92)

for 0 < k < n.
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We conclude that set
nˇ̌ˇ�

a;Ek
E

WD
ˇ̌
ˇ˛ Ek
a

Eˇ̌
ˇEk
˛ W 1 � a � n, 0 � Ek � 2n � 1

o
is

a non-orthogonal basis of eigenvectors of U for the Hilbert space Hn ˝ H2n . The

eigenvalues are ˙1 and e˙i!k . Expressions
ˇ̌
ˇ˛ Ek
a

E
in the computational basis are given

by (6.83), (6.84) for k D 0 and k D n; and
ˇ̌̌
˛

E0
1

E
D
ˇ̌̌
˛

E1
n

E
D jDi are particular cases.

For 0 < k < n, a D 1 or a D n,
ˇ̌
ˇ˛ Ek
a

E
are given by (6.91) and (6.92). Vectors

ˇ̌
ˇEk
˛
)

are given by (6.77).

Exercise 6.17. Obtain explicit expressions for eigenvectors
ˇ̌
ˇ˛ Ek
a

E
when 0 < k < n

and 0 < a < n associated with eigenvalues e˙i!k .

Exercise 6.18. Show explicitly that the eigenvectors associated with eigenvalues
e˙i!k are mutually orthogonal and orthogonal to the other eigenvectors.

Exercise 6.19. Show that the eigenvectors of (6.91) and (6.92) are unit vectors.

Exercise 6.20. Let �
a;Ek be the eigenvalue associated with eigenvector

ˇ̌̌
�
a;Ek
E
. Make

a table of all values �
a;Ek for all a and Ek.

6.3.2 Analytical Solutions

Now we calculate the state of the quantum walk in a generic time instant. Let us use
state

j‰.0/i D jDi
ˇ̌
ˇE0E; (6.93)

as initial condition, that is, initially the walker is located at vertex Ev D E0 with the
diagonal state in the coin space. This initial condition is invariant under permutation

of edges. Suppose that �
a;Ek is an eigenvalue associated with eigenvector

ˇ̌
ˇ�
a;Ek
E
.

Using the spectral decomposition of U , we have

U D
X
a;Ek
�
a;Ek
ˇ̌̌
�
a;Ek
E D
�
a;Ek
ˇ̌̌
: (6.94)

At time t , the state of the quantum walk will be given by

j‰.t/i D U t j‰.0/i
D
X
a;Ek

�
�t
a;Ek
D
�
a;Ek
ˇ̌
‰.0/

E� ˇ̌̌
�
a;Ek
E
; (6.95)

Using the above equation, we have
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j‰.t/i D
X
a;Ek
.�
a;Ek/

t
D
�
a;Ek
ˇ̌
‰.0/

E ˇ̌ˇ�
a;Ek
E

D
X
a;Ek
.�
a;Ek/

t
D
˛

Ek
a

ˇ̌
D
E D
ˇEk
ˇ̌E0E ˇ̌ˇ˛ Ek

a

Eˇ̌
ˇEk
˛

D 1p
2n

X
a;Ek
.�
a;Ek/

t
D
˛

Ek
a

ˇ̌
D
E ˇ̌ˇ˛ Ek

a

Eˇ̌
ˇEk
˛
: (6.96)

In the last formula, we have used (6.77) to simplify
D
ˇEk
ˇ̌E0E. Only eigenvectorsˇ̌

ˇ˛E0
1

E
D jDi,

ˇ̌
ˇ˛E1
n

E
D jDi, and associated with eigenvalues C1 and �1, and

eigenvectors of the type
ˇ̌̌
˛

Ek
1

E
and

ˇ̌̌
˛

Ek
n

E
for 0 < k < 2n � 1 associated with

eigenvalues e˙i!k are not orthogonal to vector jDi. Therefore, (6.96) reduces to

j‰.t/i D 1p
2n

�
.1/t

ˇ̌̌
˛

E0
1

Eˇ̌
ˇE0
˛C .�1/t

ˇ̌̌
˛

E1
n

Eˇ̌
ˇE1
˛

C
2n�2X
EkD1

.ei!k /t
D
˛

Ek
1

ˇ̌
D
E ˇ̌ˇ˛ Ek

1

Eˇ̌
ˇEk
˛

C
2n�2X
EkD1

.e�i!k /t
D
˛

Ek
n

ˇ̌
D
E ˇ̌ˇ˛ Ek

n

Eˇ̌
ˇEk
˛�
: (6.97)

Using (6.91), we have

D
˛

Ek
1

ˇ̌
D
E

D 1p
2

 r
k

n
C i

r
1 � k

n

!
; (6.98)

D
˛

Ek
n

ˇ̌
D
E

D 1p
2

 r
k

n
� i

r
1 � k

n

!
; (6.99)

for 1 < k < n. The state of the quantum walk on the hypercube at time t is

j‰.t/i D 1p
2n

�
jDiˇ̌ˇE0

˛C .�1/t jDiˇ̌ˇE1
˛�

C 1p
2nC1

2n�2X
EkD1

ei!kt

 r
k

n
C i

r
1 � k

n

! ˇ̌̌
˛

Ek
1

Eˇ̌
ˇEk
˛

C 1p
2nC1

2n�2X
EkD1

e�i!kt

 r
k

n
� i

r
1 � k

n

! ˇ̌
ˇ˛ Ek
n

Eˇ̌
ˇEk
˛
: (6.100)

www.it-ebooks.info

http://www.it-ebooks.info/


112 6 Quantum Walks on Finite Graphs

It is remarkable that we obtain an analytical expression for the quantum state
at any time. This result allows us to obtain several other results such as the
limiting distribution and the mixing time on the hypercube. The analytical result
was obtained, because we have used the Fourier transform. Note that only the
eigenvectors that are non-orthogonal to jDi ˝ I are used to obtain the expression of
j‰.t/i. This fact depends on the choice of initial condition. If the initial condition
is in a subspace spanned by some of the eigenvectors of U , the state will remain
in this subspace during the evolution. In the case of j‰.t/i, the dimension of the

subspace is 2nC1 � 2 and is spanned by an orthonormal basis given by
nˇ̌ˇ˛ Ek

1

Eˇ̌
ˇEk
˛ W

0 � Ek < 2n � 1,
ˇ̌̌
˛

Ek
n

Eˇ̌
ˇEk
˛ W 0 < Ek � 2n � 1

o
. We will show in the next section that

the evolution of the quantum walk with initial condition jDi
ˇ̌
ˇE0E uses a much smaller

subspace.
Before ending this section, we obtain a simpler expression for j‰.t/i, which will

be useful in future applications. Note that expression
r
k

n
C i

r
1 � k

n

is a complex number of modulus 1. Let us define eigenvectors

ˇ̌̌
Q̨ Ek
1

E
D
 r

k

n
C i

r
1 � k

n

! ˇ̌̌
˛

Ek
1

E
; (6.101)

ˇ̌̌
Q̨ Ek
n

E
D
 r

k

n
� i

r
1 � k

n

! ˇ̌̌
˛

Ek
n

E
; (6.102)

for 0 < k < n. Eigenvectors
ˇ̌
ˇ Q̨ Ek
1

E
and

ˇ̌
ˇ Q̨ Ek
n

E
are unit vectors and obey the

same properties that
ˇ̌̌
˛

Ek
1

E
and

ˇ̌̌
˛

Ek
n

E
obey. However, the inner product of these new

eigenvectors with jDi is 1=
p
2 and the expression of j‰.t/i reduces to

j‰.t/i D 1p
2n

�
jDiˇ̌ˇE0

˛C .�1/t jDiˇ̌ˇE1
˛�

C 1p
2nC1

2n�2X
EkD1

�
ei!kt

ˇ̌̌
Q̨ Ek
1

Eˇ̌
ˇEk
˛C e�i!kt

ˇ̌̌
Q̨ Ek
n

Eˇ̌
ˇEk
˛�
: (6.103)
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6.3.3 Reducing the Hypercube to a Line

Note the walker starts in vertex E0 with the diagonal state in the coin space. After the
first step, the state is

j‰.1/i D S .G ˝ I /jDi
ˇ̌
ˇE0E

D 1p
n

nX
aD1

jaiˇ̌Eea˛

D 1p
n

�
j1ij1; 0; : : : ; 0i C � � � C jnij0; : : : ; 0; 1i

�
: (6.104)

The quantum walk is described by a state that has the same amplitude for the vertices
with the same Hamming weight. Since the Grover coin is not biased, it is interesting
to ask whether the amplitudes corresponding to the vertices of the same weight will
remain the same in the next steps. Applying U on j‰.1/i, we obtain

j‰.2/i D 2 � n

n
jDi
ˇ̌
ˇE0EC 2

n
p
n

nX
a;bD1
a¤b

jaiˇ̌Eea ˚ Eeb
˛
: (6.105)

The terms with Hamming weight equal to zero have coefficient .2�n/=n. The terms
with Hamming weight 2 have coefficient 2=n

p
n. Again, the amplitudes are equal

for the vertices with the same Hamming weight. However, in the next step we obtain

j‰.3/i D 2 � n

n
p
n

nX
aD1

jaiˇ̌Eea˛C 2.4 � n/
n2

p
n

nX
a;bD1
a¤b

jaiˇ̌Eeb˛

C 4

n2
p
n

nX
a;b;cD1
a¤b¤c¤a

jciˇ̌Eea ˚ Eeb ˚ Eec
˛
: (6.106)

The terms with Hamming weight 3 have coefficient 4=n2
p
n, and the terms

with Hamming weight 1 are divided into two blocks, the first with coefficient
.2 � n/=n

p
n corresponding to terms with vertices that satisfy va D 1 and with

coefficient 2.4 � n/=n2
p
n corresponding to terms that satisfy va D 0. Since the

hypercube and the evolution operator are symmetric under permutation of edges, it
is interesting to ask again if the amplitudes corresponding to vertices jaiˇ̌Ev˛ with the
same Hamming weight belonging to the block va D 0 will remain equal to each
other in the next steps and the same regarding the amplitudes corresponding to the
terms belonging to the block va D 1.

A formal way of showing that j‰.t/i has the symmetry above described is to
consider the following permutation operation: a generic vector in the computational
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basis has the form jaijv1; : : : ; vni, where 1 � a � n, and Ev D .v1; : : : ; vn/ is
a binary vector. The permutation of i with j is defined as follows: it converts
vector jaiˇ̌v1; : : : ; vi ; : : : ; vj ; : : : ; vn˛ into vector jaiˇ̌v1; : : : ; vj ; : : : ; vi ; : : : ; vn˛ and
vice versa, if a ¤ i and a ¤ j . If a is equal to i or j , a should also be permuted.
If j‰.t/i is invariant under such a permutation for all i and j , then the coefficients
in block va D 0 are equal and the same is true for the coefficients in block va D 1.
Vice versa: If the coefficients are equal, j‰.t/i is invariant under such permutations
for all i and j . In other words, this kind of permutation preserves the blocks, that
is, a vector of a block does not move to another block and vice versa. Take, for
example, these two states for n D 2:

j i D 1p
2

�j1ij1; 0i C j2ij0; 1i�;

j�i D 1p
2

�j1ij0; 1i C j1ij1; 0i�:
State j i is invariant. On the other hand, j�i is not invariant, since the permutation
of 1 with 2 converts j�i into

�j2ij1; 0i C j2ij0; 1i�=p2:
Let us define a basis of invariant vectors under those permutations. This basis

will span an invariant subspace Hinv � H. The basis of Hinv is obtained as follows:
Select an arbitrary vector in the computational basis of Hilbert space H, for example
vector j1ij1; 0; 0i, which is associated with a 3-dimensional hypercube. Apply all

allowed permutations on j1ij1; 0; 0i. The resulting set is
n
j1ij1; 0; 0i, j2ij0; 1; 0i

j3ij0; 0; 1i
o
: Add up all these vectors and normalize. The result is

j�1i D 1p
3

�
j1ij1; 0; 0i C j2ij0; 1; 0i C j3ij0; 0; 1i

�
: (6.107)

By construction, vector j�1i is invariant under the permutation operations. Now
select another vector in the computational basis of H that is not in the previous set
and repeat the process over until you have exhausted all possibilities. The resulting
set is an invariant basis of Hinv. This basis has vectors j�0i, : : :, j�n�1i and vectors
j�1i, : : :, j�ni, defined by

j�vi D 1q
.n� v/

�
n
v

�
X
a;Ev

jEvjDv
vaD0

ˇ̌
a; Ev˛; (6.108)

j�vi D 1q
v
�
n
v

�
X
a;Ev

jEvjDv
vaD1

ˇ̌
a; Ev˛; (6.109)

where the sum runs over the vertices of the same Hamming weight v with the
following constraint:

ˇ̌
a; Ev˛ is in j�vi is a-th entry of Ev is 0, otherwise it is in j�vi. As
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usual,
�
n
v

�
is the binomial expression nŠ=.n � v/ŠvŠ. The basis described by (6.108)

and (6.109) is orthonormal and has 2n elements, which shows that the dimension of
Hinv is 2n.

Exercise 6.21. Obtain expressions (6.105) and (6.106) by applyingU D S.G˝I /

on j‰.1/i.
Exercise 6.22. Obtain all vectors invariant under the permutations in a 3-
dimensional hypercube following the method used to obtain (6.107). Divide the
set of vectors into two blocks right and left. Vectors jaiˇ̌Ev˛ in block right have the
property va D 0 and vectors in block left have the property va D 1. The names of
the vectors should use � for vectors in block right, � in block left, and the Hamming
weight of the vertices v as a sub-index. Verify the results of this process with vectors
of (6.108) and (6.109).

Exercise 6.23. Show that:

1. j�0i D jDi
ˇ̌
ˇE0E.

2. j�ni D jDi
ˇ̌
ˇE1E.

3. Vectors j�vi, 0 � v � n � 1, and j�vi, 1 � v � n are orthonormal.

The initial condition jDi
ˇ̌
ˇE0E is in the vector space spanned by j�vi and j�vi,

because jDi
ˇ̌
ˇE0E is equal to j�0i. One way to show that the state of the quantum

walk remains on the space spanned by j�vi and j�vi during the evolution is to show
that the evolution operator can be written only in terms of j�vi and j�vi. First we
show that the shift operator can be written in this basis. Let us calculate the action
of S on vector j�vi. Using (6.108), we have

S j�vi D 1q
.n � v/

�
n

v

�
X
a;Ev

jEvjDv
vaD0

S
ˇ̌
a; Ev˛

D 1q
.n � v/

�
n
v

�
X
a;Ev

jEvjDvC1
vaD1

ˇ̌
a; Ev˛

Note that the action of S on
ˇ̌
a; Ev˛ replace a-th entry of Ev from 0 to 1. Therefore, the

Hamming weight of this vertex increases one unit. Using the binomial expression,
we show that .n � v/

�
n
v

� D .v C 1/
�
n

vC1
�
. Using this equation, we obtain

S j�vi D 1q
.v C 1/

�
n

vC1
�
X
a;Ev

jEvjDvC1
vaD1

ˇ̌
a; Ev˛
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D j�vC1i: (6.110)

Similarly, we obtain
S j�vi D j�v�1i: (6.111)

Therefore, the shift operator can be written as

S D
n�1X
vD0

j�vC1ih�vj C
nX

vD1
j�v�1ih�vj: (6.112)

The physical interpretation of the shift operator shows that the quantum walk
takes place in a one-dimensional lattice with nC 1 vertices, with the position being
specified by v. The chirality is specified by � and � and it determines the direction of
the movement. Operator S shifts j�vi rightward and inverts the chirality and it shifts
j�vi leftward also inverting the chirality. The boundary conditions are reflective,
since in v D 0 the walker has no overlap with j�0i and in v D n it has no overlap
with j�ni.

The coin operator can also be expressed in terms of basis j�vi and j�vi. Actually,
the following results are valid:

G ˝ I j�vi D cos!vj�vi C sin!vj�vi; (6.113)

G ˝ I j�vi D sin!vj�vi � cos!vj�vi; (6.114)

where

cos!v D 1 � 2v

n
(6.115)

sin!v D 2

r
v

n

�
1 � v

n

�
: (6.116)

The proof of this result is oriented in Exercise 6.25. Equations (6.113) and (6.114)
show that the action of the coin operator on the quantum walk in the one-
dimensional lattice is a rotation of angle !v, which depends on point v. This is
different from the standard quantum walk.

Exercise 6.24. Show that (6.111) is true.

Exercise 6.25. The purpose of this exercise is to prove that the action of the Grover
coin on basis j�vi and j�vi is the one described in (6.113) and (6.114).

Show that X
a;Ev

jEvjDv0
vaD0

D
D; Ev0ˇ̌a; EvE D .n � v0/p

n
ıv0 v0 :
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�
Hint: Show that if j Ev0j ¤ v0, the result is zero. Fix a transposed vector

D
D; Ev0

ˇ̌
ˇ with

j Ev0j D v0 and expand the sum. Show that there are n � v0 values of a satisfying

va D 0 for a fixed vector such that
ˇ̌Ev˛ ˇ̌Ev˛ D

ˇ̌
ˇEv0
E
.
i

Use this result to show that

D
D; Ev0ˇ̌�v

E
D
s
n � v

n
�
n
v

� ıv;v0 :

Show also that

jDi
X
jEvjDv

ˇ̌Ev˛ D
vuutn � v

n

 
n

v

!
j�vi C

vuut v

n

 
n

v

!
j�vi:

Use expressionsG D 2jDihDj � In and I2n D P
Ev0

ˇ̌̌
Ev0
ED Ev0
ˇ̌̌

to calculate G ˝ I2n j�vi
and compare the result with (6.113). Use the previous identities.

Using a similar procedure, show that (6.114) is true.

Exercise 6.26. From (6.113) and (6.114), obtain an expression forG˝ I . Can this
expression be factored in Hinv‹ Define the computational basis of Hinv as

˚j0; vi,
j1; vi, 0 � v � n

�
, where fj0i; j1ig 2 H2 and jvi 2 Hn such that j0; vi D j�vi,

j1; vi D j�vi. Obtain operator Cv 2 H2 such that the coin operator has the formPn
vD0 Cv ˝ jvihvj. Give a physical interpretation for the action of the coin operator

on this expression.

Using (6.112)–(6.114), we obtain the following expression for the evolution
operator in basis j�vi and j�vi:

U D S.G ˝ I /

D
n�1X
vD0

� cos!vC1j�vih�vC1j C sin!vC1j�vih�vC1j

C
nX

vD1
sin!v�1j�vih�v�1j C cos!v�1j�vih�v�1j: (6.117)

Therefore, Hinv is an invariant subspace under the action of U . Since the initial

condition j�0i D jDi
ˇ̌
ˇE0E belongs to Hinv, the state of the quantum walk j‰.t/i

will be in Hinv during the evolution. The orthonormal basis j�vi, j�vi allows us to
interpret physically the quantum walk on a hypercube as a quantum walk on the
points of a finite line. From the state vector on the line, we can recover the state
vector on the hypercube. However, the basis j�vi, j�vi is not the best one to obtain
the evolution of the quantum walk, because j�vi and j�vi are not eigenvectors of the
reduced evolution operator.
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118 6 Quantum Walks on Finite Graphs

The strategy now is to find the spectral decomposition of U in Hinv. The goal
is to find 2n linearly independent eigenvectors of U that are in the reduced space

Hinv. We know that
nˇ̌ˇ Q̨ Ek

1

Eˇ̌
ˇEk
˛
;
ˇ̌
ˇ Q̨ Ek
n

Eˇ̌
ˇEk
˛ W 0 < Ek � 2n � 1

o
is an eigenbasis of

U for a subspace where the quantum walk is, as shown in (6.103). The associated
eigenvalues are

˚
ei!k ; e�i!k

�
, where !k satisfies

cos!k D 1� 2k

n
:

Eigenvectors jDiˇ̌ˇE0
˛

and jDiˇ̌ˇE1
˛

are in the space spanned by j�vi and j�vi (see
Exercises 6.27 and 6.28). However, the remaining eigenvectors are not. For example,ˇ̌
ˇ Q̨ Ek
1

Eˇ̌
ˇEk
˛

explicitly depends on Ek, and thus is not invariant by the permutations of

the entries of Ek, as the ones described at the beginning of this section. Note that all

eigenvectors of the kind
ˇ̌
ˇ Q̨ Ek
1

Eˇ̌
ˇEk
˛

with the same Hamming weight k have the same

eigenvalue ei!k . Since the sum of the eigenvectors with the same Hamming weight
is also an eigenvector, we can generate a new eigenvector, which is invariant under
permutation of the entries of Ek and, therefore, it will be in the subspace spanned by
j�vi and j�vi. So, we define

ˇ̌
!C
k

˛ D 1q�
n

k

�
X

jEkjDk

ˇ̌̌
Q̨ Ek
1

Eˇ̌
ˇEk
˛
; (6.118)

for 0 � k < n. Similarly, we define

j!�
k i D 1q�

n
k

�
X

jEkjDk

ˇ̌
ˇ Q̨ Ek
n

Eˇ̌
ˇEk
˛
; (6.119)

for 0 < k � n associated with eigenvalue e�i!k . These eigenvectors are in Hinv.

The number of eigenvectors coincides with the dimension of Hinv. Thus, set
nˇ̌
!C
k

˛ W
0 � k � n� 1,

ˇ̌
!�
k

˛ W 1 � k � n
o

is an orthonormal basis of eigenvectors of U for

Hinv associated with eigenvalues
˚
ei!k ; e�i!k

�
.

The initial condition jDi
ˇ̌̌
E0
E

can be expressed in this new basis of eigenvectors, if

there are coefficients ak and bk such that

jDi
ˇ̌
ˇE0E D

n�1X
kD0

ak
ˇ̌
!C
k

˛C
nX

kD1
bkj!�

k i: (6.120)

Since the eigenbasis is orthonormal, it follows that
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ak D
D
!C
k

ˇ̌
D; E0

E
;

bk D
D
!�
k

ˇ̌
D; E0

E
:

Using that
˝ Q̨ k1 ˇ̌D˛ D ˝ Q̨ kn ˇ̌D˛ D 1=

p
2, (6.118) and (6.119), we obtain

ak D
vuut 1

2nC1

 
n

k

!
;

bk D
vuut 1

2nC1

 
n

k

!
;

for 0 < k < n. Using (6.98) and (6.99), we obtain a0 D bn D 1=
p
2n. So,

j‰.0/i D 1p
2n

�ˇ̌
!C
0

˛C j!�
n i�

C 1p
2nC1

n�1X
kD1

vuut
 
n

k

!�ˇ̌
!C
k

˛C j!�
k i
�
: (6.121)

Then, the state of the quantum walk at time t is

j‰.t/i D 1p
2n

�ˇ̌
!C
0

˛C .�1/t j!�
n i�

C 1p
2nC1

n�1X
kD1

vuut
 
n

k

!�
ei!kt

ˇ̌
!C
k

˛C e�i!kt j!�
k i
�
: (6.122)

Exercise 6.27. Show that

ˇ̌
ˇ˛E0
1

Eˇ̌
ˇE0
˛ D jDi ˝ 1p

2n

2n�1X
EvD0

ˇ̌Ev˛

D 1p
2n

0
@n�1X

vD0

vuut
 
n � 1

v

!
j�vi C

nX
vD1

vuut
 
n � 1
v � 1

!
j�vi

1
A :

Exercise 6.28. Show that
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ˇ̌
ˇ˛E1
n

Eˇ̌
ˇE1
˛ D jDi ˝ 1p

2n

2n�1X
EvD0

.�1/vˇ̌Ev˛

D 1p
2n

0
@n�1X

vD0
.�1/v

vuut
 
n� 1

v

!
j�vi C

nX
vD1
.�1/v

vuut
 
n � 1
v � 1

!
j�vi

1
A :

�
Hint: Use the first identity of Exercise 6.25.

�

Exercise 6.29. Show that
nˇ̌
!C
k

˛ W 0 � k � n � 1,
ˇ̌
!�
k

˛ W 1 � k � n
o

is an

orthonormal basis of Hinv with eigenvalues e˙i!k .

Further Reading

The quantum walk on the cycle was analyzed in [3], which is a seminal paper in
the area. References [13,14,77] are also useful. Periodic solutions were obtained in
[76, 77]. The quantum walk on two-dimensional lattices was analyzed in [49, 77].
Periodic solutions can also be found on two-dimensional lattice, see [77, 81]. One
of the first paper analyzing quantum walks on the hypercube is [59]. Reference [43]
showed that the quantum hitting time between two opposite vertices of the
hypercube is exponentially smaller than the classical hitting time. More references
about quantum walks in finite graphs can be found in Venegas–Andraca’s review
book [80].
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Chapter 7
Limiting Distribution and Mixing Time

In this chapter, we use the notion of quantum walks on finite regular graphs with
the goal of analyzing the limiting probability distribution and the mixing time.
In finite quantum systems, there is a quasi-periodic pattern in the time evolution,
preventing the convergence to a limiting distribution. The quasi-periodic behavior
of the quantum state can be obtained from the expression of the eigenvalues
of the evolution operator. A possible way to obtain limiting configurations is to
define a new distribution called average probability distribution, which evolves
stochastically and does not have the quasi-periodic behavior.

We obtain the limiting distribution for cycles, finite lattices, and hypercubes using
the evolution operators and the initial conditions studied in previous chapters.

We define the concept of distance between probability distributions, which paves
the way for the definition of the mixing time. The mixing time captures the notion
of how quickly the average probability distribution approaches to the limiting
distribution.

7.1 Quantum Walks on Graphs

Consider a finite regular graph1 of degree d with N vertices. The Hilbert space
associated with a quantum walk on this graph is H D Hd ˝ HN , where Hd is the
coin space and HN is the position space. The computational basis of H is the set
of vectors fja; vi, 0 � a � d � 1; 0 � v � N � 1g. Labels v for the vertices
indicate the possible places the walker can visit and labels a for the edges indicate
the possible directions that the walker can take departing from vertex v. Label a
refers to a directed edge from v to some neighbor vertex w, since we can consider an

1A regular graph is a graph where each vertex has the same number of neighbors (each vertex have
the same degree).

R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, DOI 10.1007/978-1-4614-6336-8 7,
© Springer Science+Business Media New York 2013
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undirected edge as two opposite directed edges. The directed edge from w to v may
have another label. Disregarding the edge labels, the graphs we are considering are
undirected.

The evolution operator of the standard quantum walk is

U D S.C ˝ I /; (7.1)

where C is the coin operator, which must be unitary, and S is the shift operator,
which is usually defined as

S ja; vi D ja;wi; (7.2)

where w is the vertex adjacent to v through the edge of label a. The interpretation
of this action is: The walker leaves vertex v, takes direction a, and arrives in vertex
w. It is tempting to say that if the shift operator is applied again without using the
coin, the walker will go in the same direction, leaving vertex w this time. However,
the labels of the edges leaving vertex w can be chosen in any order, and thus the
result of this second hypothetical application of S must be specified and can move
the walker back to v.

Usually, we consider the graph embedded in a larger space, where we define
directions for the movement. For example, we use the label 0 on the line representing
“move rightward” and 1 representing “move leftward” and in the cycle, we use
0 for clockwise and 1 for counterclockwise. For the line, there is no m such that
Sm D I , and for the N -cycle, the smallest value ofm such that Sm D I is m D N .
Therefore, successive applications of S (without the application of coin) moves the
walker away who never returns for the walk on the line, and returns after N steps
on the cycle.

Equation (7.2) can be modified to

S ja; vi D jb;wi; (7.3)

where b may be different from a defining a second kind of shift operator. One of
the most interesting kinds of shift operator for search algorithms is called flip–flop.
If the walker leaves vertex v and goes to vertex w through the edge of label a, the
next value of the edge

�
b in (7.3)

�
can be chosen in such way that forces the walker

to go from w to v. In this case we S2 D I . We have used this kind of shift operator
in the analysis of quantum walks on finite two-dimensional lattices and hypercubes.
It improves the time complexity of search algorithms, making them faster than the
algorithms based on the walks of the first kind. The reason for this difference is
well understood and is related to the degeneracy of the eigenvalues of the subspace
containing the initial condition, as discussed in Sect. 8.1.

Instead of assuming that the graph is embedded in a larger space, we can define
the labels of the edges using an intrinsic method. If an edge is incident to vertices
v and w, we can give the same label a for both the edge from v to w and as
from w to v. However, this convention is only possible if the chromatic index
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(edge chromatic number)2 is d . The colors can be used as labels. The shift operator
is defined by (7.2) and is a flip–flop shift operator. If the walker is at vertex v and the
coin value is a, it goes to the vertex connected to v by edge a. The coin value is not
modified, so a new application of S (without applying the coin) moves the walker
back to vertex v. Therefore, S2 D I . Not all graphs have a compatible chromatic
index. A counter-example, where the chromatic index is different from d , is the
cycle with odd number of vertices. The cycle is a regular graph of degree 2. If N is
odd, the cycle has chromatic index 3. For example, forN D 3 all edges are adjacent,
so we need three different colors. We can still define the flip–flop shift operator on
those graphs, but the expression for the shift operator will be the one given in (7.3).

Equation (7.1) can be generalized such that the coin may depend on the vertex,
as in the abstract search algorithm analyzed in Sect. 8.1. In this case, the evolution
operator is U D S C 0, where C 0 is an operator of the composite Hilbert space.

In the most general case, we can remove any restriction in the form of the
evolution operator U and simply require that U follows the graph structure (being
unitary). That is, the walker should leave v and go to an adjacent vertex or remain
in v. So, U ja; vi should be written as a linear combination of vectors of the form
jb;wi, where w is adjacent to the v or is v itself and b assumes values in the edge
set. Some of the results of this chapter are valid in this more general situation. It is
possible to define quantum walks on non-regular graphs, but we do not address this
issue in this book.

7.2 Limiting Probability Distribution

Classical random walks in connected non-bipartite graphs have a limiting or
stationary distribution that does not depend on the initial condition. In the quantum
context, it is interesting to ask whether there is a stationary probability distribution
or if there is a stationary quantum state when the quantum walk evolves up to
t ! 1. If there is, how does the limiting distribution depend on the initial
condition?

Suppose that the initial condition of a quantum walk is j‰.0/i. The state of the
walker at time t is

j‰.t/i D U t j‰.0/i;
where U is the evolution operator. Suppose that

˚j�a;ki W 0 � a � d � 1 0 � k �
N � 1

�
is an orthonormal basis of eigenvectors of U associated with eigenvalues

e2� i�a;k . The spectral decomposition of U is

2The chromatic index is the smallest number of colors needed for an edge coloring of a graph so
that no vertex is incident to two edges of the same color.
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U D
d�1X
aD0

N�1X
kD0

e2� i�a;k j�a;kih�a;kj; (7.4)

where 0 � �a;k < 1. The initial state can be written in the basis of eigenvectors of
U as follows:

j‰.0/i D
d�1X
aD0

N�1X
kD0

ca;k j�a;ki; (7.5)

where ca;k D ˝
�a;k

ˇ̌
‰.0/

˛
. Then,

j‰.t/i D
d�1X
aD0

N�1X
kD0

ca;ke2� i�a;k t j�a;ki: (7.6)

One may wonder if state j‰.t/i tends to a stationary state when t ! 1, that is,
does limt!1 j‰.t/i exist? We can easily show that this limit does not exist, because
the norm

�� j‰.t C 1/i � j‰.t/i�� is constant for all t , in fact,

1

2

��j‰.t C 1/i � j‰.t/i��2 D 1

2

��U t.U � I /j‰.0/i��2
D 1 � <�h‰.0/jU j‰.0/i�:

Note that the dependence on t disappears, because operator U is unitary. Since the
real part of h‰.0/jU j‰.0/i is fixed, once given the evolution operator and the initial
condition, the norm is nonzero and constant, if U ¤ I . If j‰.t/i tended toward a
stationary value, the above norm would tend to zero.

The probability of finding the walker in vertex v is given by

pv.t/ D
d�1X
aD0

ˇ̌˝
a; v

ˇ̌
‰.t/

˛ˇ̌2
: (7.7)

When we consider the set of vertices of the graph, we have a probability distribution
pv.t/ that satisfies

N�1X
vD0

pv.t/ D 1:

The probability distribution depends on the initial condition. We may again ask
ourselves if there is a limiting probability distribution in the general case, since the
argument of the preceding paragraph does not directly exclude this possibility.

Both state j‰.t/i and the probability distribution contain terms of the type e2� i�t ,
which generate a quasi-periodic evolution, that is, for any positive value of 	 there
is an infinite number of values of t such that

ˇ̌ ˝
‰.t/

ˇ̌
‰.0/

˛ ˇ̌ � 1 � 	. When the
evolution is periodic, this inequality is true when we take 	 D 0. In the general case,
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the statement is true, if it is possible to find values of t such that all eigenvalues to
power t are arbitrarily close to 1 simultaneously. To show this, let us start showing
how to find an infinite number of values of t such that ei� t is arbitrarily close to 1 for
a fixed � . Let 	 > 0 be the desired accuracy. If � is a rational multiple 2� , simply
take t as integer multiples of the denominator of �=2� . To show the statement
when � is an irrational multiple of 2� , take an integer n greater than 2�=	 and
define 0 � �j < 2� such that j � � �j mod 2� .3 There will always be two values
j2 and j1 smaller than n such that j�j1 � �j2 j � 2�=n < 	, because if we divide
the unit circle into identical sections such that each sector has angle 	 and taking
n values j , there will be a sector with more than one �j . Suppose that j2 > j1,
then j�j2�j1 j < 	. Since � is an irrational multiple of 2� , we know that �j2�j1 ¤ 0.
Therefore, when l varies, sequence �l.j2�j1/ is a partition of the unit circle such that
the angles are smaller than 	. Therefore, the time instant t D j2 � j1 obeys �t < 	

and ei� t is close to 1, as desired. We can repeat the process taking 	 D �t to obtain a
second value of t greater than the first with the desired properties. This process can
be repeated an infinite number of times.

To obtain a value of t such that both ei�1t and ei�2t are close to 1, we use the
following procedure: Suppose that �2 > �1, �1 D �2 � �1, and 	 is the desired
accuracy. We use the method described in the preceding paragraph to find time t1
such that �1t1 < 	2 modulo 2� . Then, we find 0 � �2 < 2� such that �1t1 � �2
mod 2� and determine the value of t2 such that �2t2 < 	 modulo 2� . The desired
time is t1t2. When the number of eigenvalues is greater than 2, to find time t such
that all eigenvalues become arbitrarily close to 1, we use the described procedure
recursively. The procedure works correctly for two eigenvalues because in the first
step, we obtain t1 D O.1=	2/ such that j�2��1jt1 � 	2 modulo 2� . The geometrical
interpretation is that ei�1t1 and ei�2t1 are very close, but need not to be close to 1. In
the second step, we obtain t2 D O.1=	/ such that �1t1t2 � 	 modulo 2� . Therefore,
these inequalities imply that �2t1t2 � O.	/ modulo 2� . Thus, t D t1t2 is the time
instant we are looking for such that ei�1t and ei�2t are close to 1 within the error
margin. This process can be repeated over, and we take smaller values of 	 to obtain
the next values of t .

Figure 7.1 shows the probability of finding the walker in the initial vertex as a
function of the number of steps of a quantum walk in the cycle with ten vertices
using the Hadamard coin. Note that in some moments the probability approaches
1, in particular, at time t D 264. Note that the procedure described in the previous
paragraph does not necessarily find the first time such that the state of the walk
approaches the initial state. When the number of vertices increases, the frequency
to return to its original state decreases, because it takes longer for the powers of the
eigenvalues to collide.

We have showed that there is a time t > 0 such that j‰.t/i is arbitrarily close to
the initial condition. Due to the cyclic nature of the evolution, the same procedure

3The notation a � b mod 2� means that b (which can be an irrational number) is the remainder
of the division of a by an integer multiple of 2� .
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Fig. 7.1 Probability of finding the walker in the initial vertex for a quantum walk in a cycle with
ten vertices. The probabilities for odd t are not shown, because they are always equal to zero

can be used to find an infinite number of times such that the quantum state is close
to the initial condition. Since this is a general characteristic of quantum mechanics
in finite systems, we can ask ourselves if there is some way to define limiting
distributions in the context of quantum walks.

The average probability distribution in time is given by

Npv.T / D 1

T

T�1X
tD0

pv.t/: (7.8)

Note that Npv.T / is a probability distribution, because

N�1X
vD0

Npv.T / D 1

for all T . We can give a physical interpretation for Npv.T / as follows: Take an integer
value of t randomly distributed between 0 and T � 1. Let the quantum walk evolve
from the initial condition until that time t . Measure in the computational basis to
determine in what vertex the walker is. Keeping T fixed, repeat the process a large
number of times. Analyzing the results, we can determine how many times the
walker is in each vertex. Dividing these values by the total number of repetitions, we
obtain a probability distribution close to Npv.T /. Greater the number of repetitions,
better the approximation.

The interpretation of Npv.T / uses projective measurements. Therefore, Npv.T /

evolves stochastically. Now we have a good reason to believe that Npv.T / converges
to a limiting distribution when T tends to infinity. Define

�.v/ D lim
T!1 Npv.T /: (7.9)
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This limit exists and can be explicitly calculated once given the initial condition.
We can obtain a useful formula for calculating the limiting distribution and at the
same time prove its existence.

Using (7.7) and (7.8), we obtain

Npv.T / D 1

T

T�1X
tD0

d�1X
bD0

ˇ̌˝
b; v

ˇ̌
‰.t/

˛ˇ̌2
:

Using (7.6), we obtain

Npv.T / D 1

T

T�1X
tD0

d�1X
bD0

ˇ̌̌
ˇ̌
d�1X
aD0

N�1X
kD0

ca;ke2� i�a;k t
˝
b; v

ˇ̌
�a;k

˛ˇ̌̌ˇ̌
2

:

Using that jcj2 D c c� and switching the sums with the limit, we obtain

Npv.T / D
d�1X

a;a0 ;bD0

N�1X
k;k0D0

ca;kc
�
a0 ;k0

˝
b; v

ˇ̌
�a;k

˛ ˝
�a0;k0

ˇ̌
b; v

˛

� 1
T

T�1X
tD0

e2� i.�a;k��a0 ;k0
/t : (7.10)

To obtain the limiting distribution, we have to calculate the limit

lim
T!1

1

T

T�1X
tD0

�
e2� i.�a;k��a0 ;k0

/
�t
:

Using the formula for the sum of a geometric sequence, we obtain

1

T

T�1X
tD0

�
e2� i.�a;k��a0 ;k0

/
�t D

8̂̂
<
ˆ̂:

e
2�i.�a;k��a0 ;k0

/T �1
T
�

e
2�i.�a;k��a0 ;k0

/�1
� ; if �a;k ¤ �a0;k0 ;

1; if �a;k D �a0;k0 .

(7.11)

If �a;k ¤ �a0 ;k0 , the result is a complex number the modulus of which obeys the
following inequality:

ˇ̌
ˇ̌̌ e2� i.�a;k��a0 ;k0

/T � 1

T
�
e2� i.�a;k��a0 ;k0

/ � 1�
ˇ̌
ˇ̌̌2 D 1

T 2
1 � cos 2�.�a;k � �a0;k0/T

1 � cos 2�.�a;k � �a0 ;k0/

� 1

T 2
1

1 � cos 2�.�a;k � �a0;k0/
:
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Taking the limit T ! 1, we obtain that the modulus of this complex number is
zero. Then,

lim
T!1

1

T

T�1X
tD0

�
e2� i.�a;k��a0 ;k0

/
�t D


0; if �a;k ¤ �a0 ;k0 ;
1; if �a;k D �a0 ;k0 .

(7.12)

Substituting the above result for (7.10), we obtain the following expression for the
limiting distribution:

�.v/ D
d�1X
a;a0D0

N�1X
k;k0D0

�a;kD�a0 ;k0

ca;kc
�
a0 ;k0

d�1X
bD0

˝
b; v

ˇ̌
�a;k

˛ ˝
�a0 ;k0

ˇ̌
b; v

˛
: (7.13)

The sum should run over the pairs of indices .a; k/ and .a0; k0/ that correspond to
equal eigenvalues �a;k D �a0;k0 . If all eigenvalues are different, that is, �a;k ¤ �a0;k0

for all .a; k/ and .a0; k0/, the expression of the limiting distribution simplifies to

�.v/ D
d�1X
aD0

N�1X
kD0

jca;k j2 pa;k.v/; (7.14)

where

pa;k.v/ D
d�1X
bD0

ˇ̌˝
b; v

ˇ̌
�a;k

˛ˇ̌2
: (7.15)

Note that the limiting distribution depends on ca;k , which are the coefficients of the
initial state in the basis of eigenvectors of U . Therefore, the limiting distribution
depends on the initial condition in the general case.

Exercise 7.1. Let U be the evolution operator of a quantum walk as discussed in
Sect. 7.1. Suppose that the limiting distribution is the same for any initial condition
of type ja; vi. Show that the limiting distribution is uniform on the vertices of the
graph.

7.2.1 Limiting Distribution in the Fourier Basis

We have analyzed quantum walks in many graphs using the Fourier basis of the
Hilbert space associated with the vertices. Let us denote this basis by fˇ̌�Ek

˛g, where Ek
is the index of the vector basis, the size of which is equal to the number of vertices of
the graph. We use the notation Ek (as a vector) to include cases where the dimension
is greater than one, such as the two-dimensional lattice and the hypercube. The
evolution operator can be written using a reduced operator, which depends on Ek,
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acting on the coin space. If
nˇ̌ˇ˛

a;Ek
E
; 0 � a � d � 1

o
is an orthonormal basis

of eigenvectors with eigenvalues ˛
a;Ek of the reduced space, then

nˇ̌̌
˛
a;Ek; �Ek

E
; 0 �

a � d � 1; 0 � Ek � N � 1
o

is an orthonormal basis of eigenvectors of the

evolution operator, which replaces j�a;ki in (7.4) until (7.6). The notation Ek D n,
where n is a decimal number, means that the decimal number must be converted into
a vector with the corresponding number of entries. The eigenvalues of the evolution
operator are the same eigenvalues ˛

a;Ek of the reduced operator, because jsiˇ̌�Ek
˛

is an
eigenvector of the shift operator, where jsi is in the computational basis of the coin
space.

In the Fourier basis, the expression for the limiting distribution is simpler. When
all eigenvalues are different, (7.15) reduces to

p
a;Ek.v/ D

d�1X
bD0

ˇ̌
ˇDb ˇ̌˛

a;Ek
Eˇ̌ˇ2 ˇ̌˝vˇ̌�Ek

˛ˇ̌2
: (7.16)

Term
ˇ̌˝

v
ˇ̌
�Ek
˛ˇ̌2

is equal to 1=N , since the coefficients of vector
ˇ̌
�Ek
˛
are roots of unity

divided by
p
N . This is true when the graph is a Cayley graph4 of an abelian group,

which includes cycles .ZN /, two-dimensional lattices
�
Z
2p
N

�
, and hypercubes .Zn2/.

Since vectors
ˇ̌̌
˛
a;Ek
E

have unit norm, it follows that

d�1X
bD0

ˇ̌̌D
b
ˇ̌
˛
a;Ek
Eˇ̌̌2 D 1:

Therefore, p
a;Ek.v/ D 1=N for all v. Substituting for (7.14) and using that the initial

condition has unit norm, we obtain the uniform distribution

�.v/ D 1

N
: (7.17)

Among the graphs we have analyzed in Chap. 6, only cycles with odd number
of vertices have different eigenvalues, as we shall see. Therefore, the limiting
distribution is uniform in cycles with odd number of vertices, regardless of the initial
condition.

Let us return to (7.13), which is valid in the general case in the Fourier basis.
Renaming the original eigenvectors, we obtain

�.v/ D
d�1X
a;a0D0

N�1X
Ek;Ek0D0

˛
a;Ek

D˛
a0 ;Ek0

c
a;Ek c

�
a0 ;Ek0

d�1X
bD0

D
˛
a0 ;Ek0

ˇ̌
b
E D
b
ˇ̌
˛
a;Ek
E ˝

v
ˇ̌
�Ek
˛ ˝
�Ek0

ˇ̌
v
˛
: (7.18)

4A Cayley graph is a directed graph which encodes the structure of a discrete group. The graph
depends on the choice of a generating set S , which can be symmetric in the sense that if g 2 S

then g�1 2 S . In this case, the Cayley graph is a regular undirected graph. If the group is abelian,
the Fourier transform is defined using the group character.
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Using the completeness relation, we obtain

�.v/ D
d�1X
a;a0D0

N�1X
Ek;Ek0D0

˛
a;Ek

D˛
a0 ;Ek0

c
a;Ek c

�
a0;Ek0

D
˛
a0 ;Ek0

ˇ̌
˛
a;Ek
E ˝

v
ˇ̌
�Ek
˛ ˝
�Ek0

ˇ̌
v
˛
: (7.19)

We will use this last equation to calculate the limiting distribution in even cycles,
two-dimensional lattices, and hypercubes.

Exercise 7.2. Show that the expression of �.v/ in (7.19) satisfies

N�1X
vD0

�.v/ D 1:

7.3 Limiting Distribution in Cycles

In this section, we compute the limiting distribution in cycles. We need the expres-
sions of the eigenvalues and eigenvectors of the evolution operator to use (7.19). We
need also to convert the notation. For the Hadamard coin, the eigenvalues are

˛
0;Ek D e�i�k ; (7.20)

˛
1;Ek D ei.�C�k/ D �ei�k ; (7.21)

where �k is a solution of equation

sin �k D 1p
2

sin
2�k

N
; (7.22)

as described in Sect. 6.1.1. The analysis of eigenvalue collisions for different values
of k plays an important role for determining the sum describing �.v/.

Figure 7.2 shows the eigenvalues for cycles with N D 13 and N D 14. The
eigenvalues are confined to two regions of the unit circle. In fact, from (7.22),
we have

j sin �kj � 1p
2
:

Then, �k 2 Œ��
4
; �
4
 or �k 2 Œ 3�

4
; 5�
4
. If ��k is a solution of (7.22), then �C �k also

is, since sin.�C�k/ D sin.��k/. Each eigenvalue of the form e�i�k in the first sector
Œ��

4
; �
4
 matches another (different) eigenvalue of the form ei.�C�k/ symmetrically

opposite in the second sector.
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Fig. 7.2 Eigenvalues of the evolution operator for cycles with N D 13 and N D 14

The behavior of the eigenvalues depends on the parity ofN . Two eigenvalues are
equal if

sin
2�k

N
D sin

2�k0

N
:

This equation implies that k D k0 or k C k0 D N
2

or k C k0 D 3N
2

. If N is odd,
only the first of these equations is satisfied and hence all eigenvalues are different.
If N is even, there are 2 equal eigenvalues with different k’s, unless k D N=4 or
k D 3N=4, that only occur when 4 divides N .

Since all eigenvalues are different for cycles with odd number of vertices, the
limiting distribution is uniform for any initial condition. In the rest of this section,
we address the case N even.

The eigenvectors of the reduced operator are
ˇ̌̌
˛
0;Ek
E

D j˛ki and
ˇ̌̌
˛
1;Ek
E

D jˇki,

which are given by (6.16) and (6.17), respectively. Using the value of j�ki given by
(6.7), we obtain

˝
v
ˇ̌
�Ek
˛ ˝
�Ek0

ˇ̌
v
˛ D !

v.k�k0/
N

N
:

To adapt (7.19) for the cycle, we must take d D 2. Expanding the sum in
variables a and a0, we obtain

�.v/ D 1

N

N�1X
k;k0D0

e�i�k D e�i�k0

c0;k c
�
0;k0

˝
˛k0

ˇ̌
˛k
˛
!

v.k�k0/
N

C 1

N

N�1X
k;k0D0

ei.�C�k / D ei.�C�k0

/

c1;k c
�
1;k0

˝
ˇk0

ˇ̌
ˇk
˛
!

v.k�k0/
N : (7.23)
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The cross terms a D 0, a0 D 1, and vice versa do not contribute to any term,
because the eigenvalues e�i�k and ei.�C�k/ are never the same for any values of k
and k0, since e�i�k is either in quadrant I or quadrant IV, as we can see in Fig. 7.2,
while ei.�C�k0

/ is quadrant II or quadrant III. On the other hand, e�i�k is equal to
e�i�k0 , if k0 D k or k0 D N=2 � k, as discussed in Sect. 6.1.1. Therefore, the
double sums in �.v/ reduces to simple sums each generating three terms: k0 D k,
k0 D N=2 � k mod N , and k D N=2 � k0 mod N . When k0 D k, the sums can
be easily calculated, using that j˛ki, jˇki, and j‰.0/i are unit vectors, generating
term 1=N in (7.24). The sums under the constraints k0 D N=2 � k mod N and
k D N=2�k0 mod N are complex conjugate to each other. They can be simplified
using the symmetries of the eigenvalues. Moreover, we can always take an initial
condition such that c0;k and c1;k are real numbers, because the phases of c0;k and
c1;k can be absorbed in the eigenvectors. Eventually, (7.23) reduces to

�.v/ D 1

N
C 1

N
<

0
BB@

N�1X
kD0

k¤N
4 ;

3N
4

c0;k c0; N2 �k
D
˛N

2 �k
ˇ̌
˛k

E
!

v.2k�N
2 /

N

1
CCA

C 1

N
<

0
BB@

N�1X
kD0

k¤N
4 ;

3N
4

c1;k c1; N2 �k
D
ˇN

2 �k
ˇ̌
ˇk

E
!

v.2k�N
2 /

N

1
CCA ; (7.24)

where <. / is the real part and the sub-indices must be evaluated modulo N to
include case k > N=2. Note that if 4 divides N , we delete the terms k D N=4 and
k D 3N=4, since the eigenvalue is unique for these values of k.

Using that !N D exp.2�i=N/, we obtain

!
v.2k�N

2 /
N D .�1/ve 4�ikv

N : (7.25)

Using (6.16) and (6.17), we obtainD
˛N

2 �k
ˇ̌
˛k

E
D
D
ˇN

2 �k
ˇ̌
ˇk

E

D 1 � e
4�ik
N

2

q
1C cos2 2�k

N

: (7.26)

Substituting for (7.24), we obtain the limiting distribution in the cycle with generic
(real) initial conditions

�.v/ D 1

N
C .�1/v

2N

N�1X
kD0

k¤N
4 ;

3N
4

�
c0;k c0; N2 �k C c1;k c1; N2 �k

�

�cos 4�kv
N

� cos 4�k.vC1/
Nq

1C cos2 2�k
N

: (7.27)
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This expression is generic in the sense that any limiting distribution in the cycle
with the Hadamard coin can be obtained from it. The sub-indices are evaluated
moduloN .

The last step is to find coefficients c0;k and c1;k of the initial condition in the basis
of eigenvectors of the evolution operator. Taking t D 0 in (6.26), we obtain

j‰.0/i D
N�1X
kD0

0
B@ 1p

Nc�
k

j˛kij�ki C 1q
NcC

k

jˇkij�ki

1
CA : (7.28)

Therefore,

c0;k D 1p
Nc�

k

;

c1;k D 1q
NcC

k

:

Using (6.18), we obtain

c0;k c0; N2 �k C c1;k c1; N2 �k D 1

N

q
1C cos2 2�k

N

: (7.29)

Therefore, the limiting distribution in the cycle with the Hadamard coin and initial
condition j‰.0/i D j0ij0i is

�.v/ D 1

N
C .�1/v

2N 2

N�1X
kD0

k¤N
4 ;

3N
4

cos 4�kv
N

� cos 4�k.vC1/
N

1C cos2 2�k
N

: (7.30)

Figure 7.3 shows the limiting probability distribution �.v/ of a cycle with N D
102. The central peak pointing downward is typical for even values of N , that are
non-divisible by 4. When N is divisible by 4, the peak points upward.

Exercise 7.3. Show that

cos
4�kv

N
� cos

4�k .v C 1/

N
D 2 sin

2�k

N
sin

2�k

N
.2v C 1/:

From this equality, obtain an equivalent expression for �.v/.

Exercise 7.4. Show that the expression of �.v/ in (7.30) satisfies

N�1X
vD0

�.v/ D 1:
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Fig. 7.3 Limiting probability distribution in a cycle with N D 102 using the Hadamard coin and
initial condition j‰.0/i D j0ij0i

Exercise 7.5. Show that

�.0/ '
p
2

N
;

when N � 1.

Exercise 7.6. Show that

�.v/ ' c1.v/
p
2 � c2.v/

N
;

when v 
 N and 1 
 N , where

c1.v/ D 2C p
2

4
.dC/v C 2 � p

2

4
.d�/v;

c2.v/ D 3 .dC/2 v C 1C p
2

2
p
2 .dC/

v � 3 .d�/2 v C 1 � p
2

2
p
2 .d�/

v � 1;

and d˙ D 3˙ 2
p
2:

7.4 Limiting Distribution in Hypercubes

The spectral decomposition of the evolution operator for the hypercube is described
in Sect. 6.3. If the initial condition is

j‰.0/i D jDiˇ̌Ev D 0
˛
;

the state of the quantum walk at time t is given by (6.103). Replacing t D 0 into
this equation, we obtain the initial condition in the basis of the eigenvectors of the
evolution operator
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j‰.0/i D 1p
2n

�
jDiˇ̌ˇE0

˛C jDiˇ̌ˇE1
˛�

C 1p
2nC1

2n�2X
EkD1

�ˇ̌ˇęEk
1

Eˇ̌
ˇEk
˛C ˇ̌

ˇęEk
n

Eˇ̌
ˇEk
˛�
: (7.31)

Therefore,

c
1;Ek D c

n;Ek D
(

1p
2n
; Ek D 0; Ek D n;

1p
2nC1

; 0 < Ek < n; (7.32)

and all other values are zero. Equation (7.19) assumes the form

�.Ev/ D
N�1X

Ek;Ek0D0
kDk0

c
1;Ekc1;Ek0

DęEk0

1

ˇ̌ęEk
1

E ˝Evˇ̌ˇEk
˛ ˝
ˇEk0

ˇ̌Ev˛

C
N�1X

Ek;Ek0D0
kDk0

c
n;Ekcn;Ek0

DęEk0

n

ˇ̌ęEk
n

E ˝Evˇ̌ˇEk
˛ ˝
ˇEk0

ˇ̌Ev˛ : (7.33)

Note that parameter a starts at 1 and goes up to n in the convention used in the
description of the hypercube in Sect. 6.3. The cross terms do not appear becauseDęEk0

n

ˇ̌ęEk
1

E
D 0. The collision between the eigenvectors is guaranteed by restricting

k D k0 in the sum, where k is Hamming weight of Ek.
Using (6.101) and (6.102) along with (6.91) and (6.92), we obtain

DęEk0

1

ˇ̌ęEk
1

E
D
DęEk0

n

ˇ̌ęEk
n

E

D n .Ek � Ek0/C k.n � 2k/

2k.n � k/
: (7.34)

Using (6.77), we obtain
˝Evˇ̌ˇEk

˛ D 1p
2n
.�1/Ek�Ev: (7.35)

Substituting these results for (7.33), we obtain

�.Ev/ D 2

22n
C 1

22n

2n�1X
Ek;Ek0D0

.kDk0¤0;n/

.�1/.EkCEk0/�Ev n .Ek � Ek0/C k.n � 2k/
2k.n � k/ : (7.36)
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Fig. 7.4 Limiting distribution on the hypercube with N D 25. The labels of the vertices are in the
decimal notation

The graph in Fig. 7.4 shows the limiting distribution on the hypercube with N D
32 vertices, obtained from (7.36). Note that the distribution has the same value for
different vertices. In particular, the distribution is equal for all vertices of the same
Hamming weight. This suggests that � depends only on the Hamming weight of Ev.
We can see that the graph is symmetric with respect to central vertical axis. This
suggests that the limiting distribution has the following invariance: �.v/ D �.2n �
1 � v/, which can be confirmed with all points on the graph.

Since the limiting distribution depends only on the Hamming weight of the
vertices, we can define a new probability distribution for a walk on the line. The
new expression is

�.v/ D
 
n

v

!
�.Ev/: (7.37)

The binomial coefficient gives the number of vertices that have the same Hamming
weight. The new distribution satisfies

nX
vD0

�.v/ D 1:

The graph of Fig. 7.5 shows this distribution for a hypercube with 232 vertices.

Exercise 7.7. Show that

� .0/ D 1

4n
C �

�
nC 1

2

�
2

p
� n�.n/

D 1

4n

	
1C .2n/Š

2.nŠ/2




where � is the gamma function, which is an extension of the factorial function.
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Fig. 7.5 Limiting distribution as function of the Hamming weight for a hypercube withN D 232,
given by (7.37)

7.5 Limiting Distribution in Finite Lattices

The two-dimensional finite lattice is an interesting example where the limiting
distribution can be found analytically. The details of the calculation of the spectral
decomposition of the evolution operator are presented in Sect. 6.2. If the initial
condition is

j‰.0/i D jDijx D 0; y D 0i;
the state of the quantum walk at time t in the basis of the eigenvectors of the
evolution operator is

j‰.t/i D 1p
N

jDijDi

C 1p
2N

p
N�1X

kx ;kyD0
.kx;ky /¤.0;0/

�
ei� t

ˇ̌̌
��kx;ky

E
C e�i� t

ˇ̌̌
���
kx ;ky

E� ˇ̌
�kx;ky

˛
:

From this expression we can see that the eigenvectors of U that generate the

subspace where the quantum walk evolves are jDijDi,
ˇ̌
ˇ�˙�
kx;ky

Eˇ̌
�kx ;ky

˛
; 0 � kx; ky �p

N � 1, .kx; ky/ ¤ .0; 0/.
Equation (7.13) assumes the form
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�.x; y/ D jc0;0j2
0
@ 1X
d;sD0

ˇ̌˝
d; s

ˇ̌
D
˛ˇ̌2
1
A ˇ̌˝x; y ˇ̌D˛ˇ̌2

C
p
N�1X

kx ;kyD0
.kx;ky /¤.0;0/

p
N�1X

k0

x;k
0

yD0
.k0

x;k
0

y /¤.0;0/
�D� 0

cC
kx;ky

�
cC
k0

x;k
0

y

��

�
1X

d;sD0

D
d; s

ˇ̌
��kx ;ky

E D
��

0

k0

x ;k
0

y

ˇ̌
d; s

E ˝
x; y

ˇ̌
�kx;ky

˛ D
�k0

x;k
0

y

ˇ̌
x; y

E

Cc�
kx ;ky

�
c�
k0

x;k
0

y

��

�
1X

d;sD0

D
d; s

ˇ̌
���
kx ;ky

E D
��� 0

k0

x ;k
0

y

ˇ̌
d; s

E ˝
x; y

ˇ̌
�kx;ky

˛ D
�k0

x;k
0

y

ˇ̌
x; y

E
; (7.38)

where � 0 D �.k0
x; k

0
y/. Note that we have simply rewritten the terms of (7.13)

without performing simplifications. The label a in (7.13) is converted to d; s. The
index k of eigenvectors is converted to kx; ky . The sum in the new indices is
restricted to terms with nonzero ckx ;ky . Coefficients ckx;ky are obtained by taking
t D 0 in the equation of j‰.t/i, because for t D 0 we have the decomposition of
the initial condition in the basis of the eigenvectors of the evolution operator. Then,
we obtain

c0;0 D 1p
N
; (7.39)

cC
kx ;ky

D c�
kx ;ky

D 1p
2N
: (7.40)

Using the completeness relation I4 D P1
d;sD0 jd; sihd; sj, we obtain

1X
d;sD0

D
d; s

ˇ̌
�˙�
kx ;ky

E D
�˙� 0

k0

x;k
0

y

ˇ̌
d; s

E
D
D
�˙� 0

k0

x;k
0

y

ˇ̌
�˙�
kx;ky

E
: (7.41)

Using (6.43), we obtain

˝
x; y

ˇ̌
�kx;ky

˛ D 1p
N
!xkxCyky ; (7.42)

where ! D e
2�i

p

N .
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Substituting these partial results for (7.38) and simplifying, we obtain

�.x; y/ D 1

N 2
C 1

N 2

p
N�1X

kx;kyD0
.kx;ky/¤.0;0/

p
N�1X

k0

x;k
0

yD0
.k0

x;k
0

y/¤.0;0/
�.k0

x;k
0

y/D�.kx;ky /

D
��

0

k0

x;k
0

y

ˇ̌
��kx;ky

E

� e
2�i

p

N

�
x.kx�k0

x /Cy.ky�k0

y /
�
: (7.43)

We use
D
��

0

k0

x ;k
0

y

ˇ̌
��kx;ky

E
D
D
��� 0

k0

x;k
0

y

ˇ̌
���
kx;ky

E
, which can be verified using (6.58). The first

term is absorbed in the sum. In the double sum, values .kx; ky/ need not be equal
to .k0

x; k
0
y/, but the combination of values must be such that � 0 D � . Using that

cos � 0 D cos � , we obtain

D
��

0

k0

x;k
0

y

ˇ̌
��kx ;ky

E
D 1 � 2 cos2 �.kx; ky/C cos �.kx � k0

x; ky � k0
y/

2 sin2 �.kx; ky/
: (7.44)

The simplification of this equation requires detailed knowledge of the collisions of
the eigenvalues, that is, the relations about k0

x , k0
y such that �.k0

x; k
0
y/ D �.kx; ky/.

7.6 Distance Between Distributions

If we have more than one probability distribution on a graph with N vertices, it is
interesting to define the notion of closeness between them. To use terms close or
far, we have to define a metric. Let p and q be two probability distributions, that is,
0 � pv � 1, 0 � qv � 1, and

NX
vD1

pv D
NX

vD1
qv D 1: (7.45)

The definition that is usually used for distance is

D.p; q/ D 1

2

NX
vD1

jpv � qvj ; (7.46)

known as total variation distance or L1 distance, because the power of the terms
inside the sum has degree 1. This definition satisfies

1. 0 � D.p; q/ � 1,
2. D.p; q/ D 0 if and only if p D q,
3. D.p; q/ D D.q; p/,
4. D.p; q/ � D.p; r/CD.r; q/:

The last two properties are called symmetrical and triangle inequality, respectively.
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Fig. 7.6 Distance between the distribution pv.t / and the limiting distribution �v as a function of
time for a cycle with 102 vertices. The graph has a quasi-periodic pattern

Fig. 7.7 Distance between the average distribution Npv.t / and the limiting distribution �v as a
function of time for a cycle with 102 vertices

We can better understand the characteristics of the unitary evolution by analyzing
the distance between distribution pv.t/ and the limiting distribution �v. Figure 7.6
shows the typical behavior of this distance as a function of time for the even cycle
with 102 vertices and initial condition j .0/i D j0ij0i. The graph shows the quasi-
periodic behavior discussed in Sect. 7.2 manifesting in the distance between the
instantaneous and the limiting distribution.

It is much more interesting to analyze the distance between the average
distribution Npv.t/ and the limiting distribution �v as a function of time, because
we have a notion of convergence, since the limiting distribution is reached from
the average distribution in the limit t ! 1. Figure 7.7 shows D. Np.t/; �/ as a
function of time for a cycle with 102 vertices using the Hadamard coin and initial
condition j .0/i D j0ij0i. The curve does not have a quasi-periodic pattern, in fact,
disregarding the oscillation, we have the impression that the curve obeys a power
law such as 1=ta, where a is a positive number. This kind of conjecture can be
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Fig. 7.8 Loglog plot of the distance between the average distribution Npv.t / and the limiting
distribution �v as a function of time for the cycle with 102 vertices up to t D 104 . The equation of
the dashed line is 7:0=t

checked by plotting the curve using the axes in a log scale. If the result is a straight
line, the slope is a. Suppose that

D. Np.t/; �/ D b

ta

for some b. Taking the logarithm of both sides, we obtain

logD. Np.t/; �/ D �a log t C log b:

If the conjecture is true and we plot logD. Np.t/; �/ as a function of log t , we obtain
a straight line with negative slope. The base of the logarithm plays no role if we
want to check the conjecture. It is only relevant when we wish to obtain the value
of b. Figure 7.8 show the loglog plot of D. Np.t/; �/ as a function of t . It seems that
the curve oscillates around a straight line. To find the line equation we select the
extremum points, which are around .10; 0:7/ and .104; 0:0007/. Then,

a ' � log 0:0007� log 0:7

log 104 � log 10

' 1:0;

and b can be easily found. The line equation is 7:0=t .
In the nontrivial cases, we can analytically show thatD. Np.t/; �/ has a dominant

inverse power law behavior for a generic graph. Using (7.10) and (7.12), we obtain

Npv.t/ � �.v/ D
d�1X

a;a0 ;bD0

N�1X
k;k0D0

ca;kc
�
a0;k0

˝
b; v

ˇ̌
�a;k

˛ ˝
�a0 ;k0

ˇ̌
b; v

˛

�
 
1

t

t�1X
tD0

e2� i.�a;k��a0 ;k0
/t � ı�a;k ; �a0 ;k0

!
:
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The terms of the sum corresponding to �a;k D �a0 ;k0 vanish. Using (7.11) and (7.46),
we obtain

D. Np.t/; �/ D 1

2 t

NX
vD1

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ

d�1X
a;a0D0

N�1X
k;k0D0

�a;k¤�a0 ;k0

ca;kc
�
a0 ;k0

e2� i.�a;k��a0 ;k0
/t � 1

e2� i.�a;k��a0 ;k0
/ � 1

�
d�1X
bD0

˝
�a0 ;k0

ˇ̌
b; v

˛ ˝
b; v

ˇ̌
�a;k

˛ˇ̌ˇ̌̌
: (7.47)

The factor 1=t is responsible for the inverse power law. The only term that depends
on t in the sum is e2� i.�a;k��a0 ;k0

/t � 1, the modulus of which is a bounded periodic
function. The linear combination of terms of this kind produces the oscillatory
pattern around the straight line showed in Fig. 7.8.

Exercise 7.8. Show that in odd cycles, the distance between the limiting distribu-
tion and the initial distribution starting from any vertex is

D
�
p.0/; �

� D 1 � 1

N
: (7.48)

Note that when N � 1 this distance is close to the maximum distance.

Exercise 7.9. Simplify (7.47) for walks that can be analyzed in the Fourier basis.

Exercise 7.10. Obtain an explicit expression for (7.47) for walks on (odd and
even) cycles with the Hadamard coin using the initial condition j .t/i D j0ij0i.
Reproduce Fig. 7.7 using the analytical result.

7.7 Mixing Time

We have learned that the average distribution Npv.t/ tends to the limiting distribution
�v. Usually, the approach is not monotonic, but there is a moment, that we denote
by �	 , such that the distance between the distributions is smaller than or equal to the
threshold 	 and does not become larger.

Formally, the quantum mixing time is defined as

�	 D min
˚
T j 8t � T; D

� Npv.t/; �v
� � 	

�
; (7.49)

which can be interpreted as the number of steps it takes for the probability
distribution to approach its final configuration. The quantum mixing time depends
on the initial condition in general.
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Table 7.1 Quantum and classical mixing times for the N -cycle, the two-
dimensional lattice, and the hypercube with N vertices

�	 N -cycle 2d lattice Hypercube

Quantum O
�
N logN

	

�
O
�

p

N logN
	

�
O
�

logN
	

�
Classical O

�
N2 log 1

	

�
O
�
N log 1

	

�
O
�

logN log logN
	

�

The mixing time captures the notion of the velocity in which the limiting
distribution is reached. A small mixing time means that the limiting distribution
is quickly reached. The mixing time �	 depends on parameter 	. If D

� Npv.t/; �v
�

obeys an inverse power law as a function of time, then �	 obeys an inverse power
law as a function of 	. Parameter 	 is not the only one. In finite graphs, the number
of vertices is a key parameter to assess the characteristics of the mixing time. It is
interesting to compare the quantum mixing time with the classical mixing time of
a classical random walk on the same graph. The definition of the classical mixing
time is the same—(7.49), but instead of using the average probability distribution of
the quantum walk the definition employs the probability distribution of the classical
random walk.

In general, it is not possible to obtain closed analytical expressions for the mixing
time in terms of the number of vertices. We can obtain upper or lower bounds or we
can analyze numerically. Table 7.1 summarizes some results about quantum and
classical mixing times for comparison. The quantum mixing times were obtained
using numerical methods. The N -cycle with even N , the .

p
N � p

N/-lattice with
even

p
N , and hypercubes are bipartite graphs. The classical random walk in those

cases must be the lazy random walk, which is defined in such way that the walker
moves to one of its nearest neighbors or stays fixed with equal probability. This
guarantees that there is a classical limiting distribution, which is uniform for those
graphs.

The logarithm term in the classical mixing time shows that the limiting distribu-
tion is reached surprisingly rapidly by the classical random walk for a fixed N . On
the other hand, the scaling with the graph size for cycles and lattices is smaller for
the quantum mixing time.

Further Reading

The study of quantum walks on graphs received a boost after [3], which has provided
a definition of the limiting distribution and the quantum mixing time. This reference
also analyzes the quantum walk on odd cycles. The limiting distribution on even
cycles was calculated in [13, 14], on hypercubes in [55], and on two-dimensional
lattices in [54]. The mixing time in cycles was analyzed in [3], in hypercubes in
[55, 59]. Classical mixing times are analyzed in [60], which has a detailed study of
the classical mixing time of random walks on hypercubes.
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Chapter 8
Spatial Search Algorithms

An interesting problem in the area of algorithms is the spatial search problem,
which consists of finding one or more specific points in a physical region that can
be modelled by a two-dimensional lattice, so that the vertices are the places one can
search and the edges are the directions to which one can move. The quantum version
of this problem was analyzed by Benioff in a very concrete way. He imagined a
quantum robot that moves to adjacent nodes in a unit time. The position of the robot
can be in superposition of a finite number of places. How many steps will the robot
take to find a marked node with high probability?

If we consider n consecutive sites in a line, the quantum motion of the robot
from one end to the other will take n � 1 time units with no possibility of gain
in complexity compared to a classical robot. However, if the sites form a two-
dimensional lattice with the topology of a torus, the quantum robot can find a marked
site more quickly. A direct application of Grover’s algorithm to this problem in two-
dimensional lattices does not improve the time complexity compared to searching
using a classical robot that moves at random.

The quantum robot will be faster than the classical one if a strategy known as
abstract search algorithm is used. In this chapter, we describe how this algorithm
works and we analyze its time complexity in details. The two-dimensional lattice
is used as a concrete example. At the end, we show that Grover’s algorithm can be
seen as a spatial search problem in the complete graph.

8.1 Abstract Search Algorithm

The abstract search algorithm in a finite regular graph is based on a modification
of the standard quantum walk. Consider a quantum walk driven by

U D S.C ˝ I /; (8.1)

R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, DOI 10.1007/978-1-4614-6336-8 8,
© Springer Science+Business Media New York 2013
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146 8 Spatial Search Algorithms

where S is the shift operator and C is the coin operator. The computational basis
of the Hilbert space is fjaijvi; 0 � a � d � 1; 0 � v � N � 1g, where d is the
degree of the graph and N is the number of vertices. The state of a generic edge is
represented by jai and a generic vertex by jvi. The Grover coin is given by

G D 2jDihDj � I ; (8.2)

where jDi is the diagonal state, the coin space. Operator S moves the walker from
one vertex to its neighbor. The next neighbor is determined by the coin value.

In the standard quantum walk, the coin operator does not change from vertex
to vertex. The coin operator used in all the vertices is, for example, the Grover
operator. In the abstract search algorithm, we must somehow mark the vertex by
using an operator which distinguishes between searched and non-searched vertices.
A generalized coin operator can make this distinction. Consider the following coin
operator:

C 0 D �I ˝ jv0ihv0j CG ˝ .I � jv0ihv0j/; (8.3)

where v0 is the searched vertex. It is easy to verify that

C 0jaijvi D
 �jaijv0i; if v D v0;
.Gjai/jvi; if v ¤ v0.

(8.4)

The above equation shows that the action of C 0 is equivalent to operator �I , if the
associated vertex is v0, and is equivalent to Grover’s operator, if the vertex is not v0.
C 0 is the operator that marks vertex v0. It acts on the combined coin-vertex space,
yet it is called a coin operator.

We now have a new evolution operator

U 0 D SC 0: (8.5)

U 0 can be written as the product of the unmodified original operator U by a
reflection operator. To show this, we use (8.3) and then (8.2).

U 0 D S
�

� I ˝ jv0ihv0j CG ˝ .I � jv0ihv0j/
�

D S
�
G ˝ I � .I CG/˝ jv0ihv0j

�

D U � 2 S
�jDihDj ˝ jv0ihv0j

�
Note that jDi is an eigenvector of operator G with eigenvalue 1, that is, jDi D
GjDi. So,

U 0 D U � 2 S .G ˝ I /
�
jDihDj ˝ jv0ihv0j

�

D U
�
I � 2jDihDj ˝ jv0ihv0j

�
D U R;
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where

R D I � 2jD; v0ihD; v0j: (8.6)

R is a reflection operator around the hyperplane orthogonal to vector jDijv0i. To
check this fact note that

Rj ijvi D
 �jDijv0i; if j i D jDi and v D v0;

Cj ijvi; if j i D jDi? or v ¤ v0.
(8.7)

That is, any vector j ijvi orthogonal to jDijv0i is invariant under the action of R.
The linear combination of these vectors forms the hyperplane orthogonal to jDijv0i.
On the other hand, vector jDijv0i inverts the sign under the action of R. What
happens to a generic vector under the action of R can be seen by decomposing
the generic vector as the sum of a vector in the vector space spanned by jDijv0i and
another vector in the orthogonal hyperplane. Vector jDijv0i is called target state
because the goal of the algorithm is to drive the quantum computer to a state that
has high fidelity to jDijv0i. In this case, the measurement of the second register in
the computational basis will provide v0 with high probability.

The initial state of the abstract search algorithm is

j‰0i D jDCijDVi; (8.8)

where jDCi is the diagonal state of the coin space and jDVi is the diagonal state
of the vertex space. It is important that the initial state can be efficiently generated.
If the quantum walk is simulated in a quantum computer, the diagonal state will
be efficiently generated by applying Hadamard operators. However, the goal is to
implement the abstract search algorithm directly on a device built specifically for
quantum walks, that is, a device that implements the shift operator S and coin
operators C and C 0. Thus, j‰0i must be efficiently generated with operators S
and C .

Similar to Grover’s algorithm described in Sect. 4.1, the abstract search algorithm
is iterative, that is, operator U 0 must be applied successively until the probability of
finding the marked vertex is considerable. The number of applications of U 0 is used
for calculating the time complexity of the algorithm. We have to find tf such that
.U 0/tf j‰0i has high fidelity to jDijv0i. The value of tf is the algorithm runtime and
the success probability is

p D
X
a

jha; v0j.U 0/tf j‰0ij2: (8.9)

To determine tf , it is convenient to use the spectral decomposition of U 0.
Suppose that its eigenvectors and eigenvalues are j˛ki and ˛k , respectively. Then,

U 0 D
X
k

˛kj˛kih˛k j: (8.10)
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At the final time tf , the state of the walk is given by

.U 0/tf j‰0i D
X
k

.˛k/
tf j˛ki

˝
˛k
ˇ̌
‰0
˛
; (8.11)

since a function f applied to U 0 is by definition
P

k f .˛k/j˛kih˛kj. The calculation
of the eigenvalues and eigenvectors of an operator is usually a hard-working task. In
the case of operator U 0, the calculation of the spectral decomposition is not doable
even in the simplest graphs, where the search problem is nontrivial, such as in finite
two-dimensional lattices and hypercubes. Analytical results can be obtained without
calculating the complete spectral decomposition of U 0, because the evolution of
the walk can be obtained from the eigenvectors and eigenvalues of operator U
associated with the original unmodified walk. In the case of finite-dimensional
lattices and hypercubes, the spectral decomposition of U is known. However, there
is a price to pay. In this type of analysis, the results are approximations. From the
spectral decomposition of U , we obtain two complex conjugate eigenvectors of
U 0, which are associated with the complex eigenvalues with the smallest argument.
The abstract search algorithm approximately evolves in the two-dimensional vector
space spanned by these eigenvectors. It is notable that the algorithm evolves in a
real subspace of the Hilbert space (because all operators involved are real), but
its analysis is performed using two non-real eigenvectors of U 0 associated with
non-real eigenvalues. This analysis is similar to the analysis of Grover’s algorithm
presented in Sect. 4.1.2.

The eigenvalues of U 0 have the form exp.˙i�/, 0 � � � � , because U 0 is a
unitary operator. Among all eigenvalues different from 1, we select the eigenvalue
with the smallest argument � . Let us denote this eigenvalue by exp.i˛/ and the
associated unit eigenvector by

ˇ̌
˛C˛. Because U 0 is real, exp.�i˛/ is also an

eigenvalue. Let j˛�i be the associated unit eigenvector. Eigenvectors
ˇ̌
˛C˛ and j˛�i

are associated with different eigenvalues; therefore, they are orthogonal. Moreover,
they are complex conjugates. Those eigenvectors of U 0 can be calculated from the
eigenvectors of U , as we shall see.

Using
ˇ̌
˛C˛ and j˛�i, we define two key vectors for describing the evolution of

the abstract search algorithm, which are
ˇ̌
ˇC˛ D 1p

2

�ˇ̌
˛C˛C j˛�i� ; (8.12)

jˇ�i D 1p
2

�ˇ̌
˛C˛ � j˛�i� : (8.13)

Vectors
ˇ̌
ˇC˛ and jˇ�i are orthonormal and define a plane where the abstract search

algorithm evolves. Let us obtain what are the conditions that guarantee the success
of the algorithm. To begin, we must show that the initial condition has high fidelity
with that plane. In fact, we require that the initial condition should have high fidelity
to jˇ�i, that is, the first condition isˇ̌˝

‰0
ˇ̌
ˇ�˛ˇ̌ � 1; (8.14)

where j‰0i is given by (8.8).
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If the first condition is true, vector jˇ�i can be used as initial condition for the
analysis of the abstract search algorithm. The analysis using jˇ�i is simpler than
the one using j‰0i, because we know the expression of jˇ�i as a linear combination
of eigenvectors of U 0. Suppose tf is the algorithm runtime, the final state will be
approximately

ˇ̌
‰f
˛ � .U 0/tf jˇ�i

� 1p
2

�
ei˛tf

ˇ̌
˛C˛ � e�i˛tf j˛�i� : (8.15)

If we take tf D b�=2˛c, then
ˇ̌
‰f
˛ � i

ˇ̌
ˇC˛. This choice seems appropriate,

because the initial state rotates around 90 degrees, as in Grover’s algorithm. We
want a final state with high fidelity to vector jDijv0i associated with the marked
vertex, in which case the success probability of the algorithm would be high. So, the
second condition that guarantees that the algorithm is successful is

ˇ̌˝
D; v0

ˇ̌
ˇC˛ˇ̌ � 1: (8.16)

Summing up, the initial condition of the algorithm is j‰0i D jDCijDVi. We
apply .U 0/b�=2˛c to the initial state and measure the register associated with the
vertices in the computational basis. The analysis of the algorithm is as follows. If
the first condition is true, the final state will have high fidelity to i

ˇ̌
ˇC˛. If the second

condition is true, the success probability will be close to 1. Time complexity of the
algorithm cannot be determined in general, because it depends on angle ˛. If ˛ is
small, the number of applications ofU 0 will be large. The parameter used to measure
the time complexity is the number of vertices N . For example, if ˛ is of the order
of 1=

p
N , the time complexity of the algorithm will be around

p
N .

If the second condition is not true, the algorithm must be modified in order
to increase the success probability. A solution without creativity is to repeat the
algorithm 1=p times, where

p D ˇ̌˝
D; v0

ˇ̌
ˇC˛ˇ̌2 : (8.17)

This is the usual method of probability amplification of the success probability of
randomized algorithms with independent repetitions, which can be applied to both
the classical and quantum cases. If p does not depend onN , repeating the algorithm
1=p times does not change its time complexity. Each time the algorithm is executed,
we check if the resulting vertex is the searched one. This check is not expensive,
because it requires one application of the modified coin operator. The runtime is
increased by the factor 1=p.

If p depends on N , factor 1=p can significantly change the time complexity. In
this case, it is interesting to change the strategy. In Sect. 4.4, we have described
the method of amplitude amplification, which is useful for search algorithms and
when we want to find a marked point in the domain of a Boolean function. The

www.it-ebooks.info

http://www.it-ebooks.info/


150 8 Spatial Search Algorithms

Fig. 8.1 Circuit that
describes a new evolution
operator designed to increase
the success probability
maintaining the number of
iterations

purpose of the method is as follows: Let f W f0; 1gn ! f0; 1g be an oracle and Uf
be a unitary operator that implements function f . Suppose that we know a unitary
operator A such that a measurement of the register in state Aj0i˝n outputs x such
that f .x/ D 1 with known probability p. Then, we can define a quantum circuit
that determines x with high probability with O.1=

p
p/ applications of Uf .

If the second condition is not satisfied and the success probability depends
on N , it is necessary to apply the method of amplitude amplification. If p can be
explicitly found from the expression of (8.17), we find the marked element with
high probability with O.1=

p
p/ applications of .U 0/tf . The implementation details

should follow the description given in Sect. 4.4.
There is another way to avoid the second condition. The strategy is to use a

new evolution operator described in Fig. 8.1, where �Z is the negative of the Pauli
matrix Z and matrix Xp is given by

Xp D
	

cos
p
p sin

p
p

� sin
p
p cos

p
p



: (8.18)

The addition of a new control qubit, the state of which is rotated by a convenient
angle, increases the success probability. For the abstract search algorithm in two-
dimensional lattices, the probability p depends on the inverse of logN . Using the
algorithm in Fig. 8.1, the success probability is constant. In this case, there is no
need to apply the method of amplitude amplification.

As shown in Fig. 8.1, the initial condition of this new version of the algorithm is

j‰0i D j1ijDCijDVi: (8.19)

The evolution operator is

U 00 D .�Z ˝ I / � C.U / � .X�
p ˝ I / � C.R/ � .Xp ˝ I /; (8.20)

where C.U / and C.R/ are controlled operators as shown in Fig. 8.1. The target
state is jp1ijDCijv0i, where

jp1i � X�
pj1i D � sin

p
p j0i C cos

p
p j1i: (8.21)

The calculation of the stopping time and the success probability follows the rules of
the abstract search algorithm, see Exercise 8.3.
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Exercise 8.1.

1. Use the measurement postulate with projectors Pv D I ˝ jvihvj to show that p
given by (8.9) is the success probability if tf is the runtime of the abstract search
algorithm.

2. Show that

p � jhD; v0j.U 0/tf j‰0ij2:

Exercise 8.2. Let U 0 be a real unitary operator.

1. Show that the eigenvalues are complex conjugate pairs.
2. Show that the unit eigenvectors associated with a pair of conjugate eigenvalues

are complex conjugate.
3. Show that there is a basis of real eigenvectors for the eigenspaces associated with

eigenvalues ˙1.

Exercise 8.3. Show that operator U 00 of (8.20) can be written as

U 00 D Uc �Rc;

where Rc is a reflection operator around the hyperplane orthogonal to the target
vector jp1ijDCijv0i. Find the expression for Uc and show that the initial condition
j‰0i given by (8.19) is invariant under this operator. How can we calculate the
stopping time and the conditions which guarantee the success of the algorithm that
uses U 00 as evolution operator?

8.2 Analysis of the Evolution

The abstract search algorithm as a generic method is useful only if it is possible
to obtain the expressions of

ˇ̌
˛˙˛ in terms of the eigenvalues and eigenvectors of

the original operator U . From these expressions, we can explicitly calculate
ˇ̌
ˇ˙˛,ˇ̌˝

‰0
ˇ̌
ˇ�˛ˇ̌, and

ˇ̌˝
D; v0

ˇ̌
ˇC˛ˇ̌. We also need to obtain an expression for ˛ in terms of

the eigenvalues and eigenvectors of U . From the expressions of ˛,
ˇ̌˝
‰0
ˇ̌
ˇ�˛ˇ̌, andˇ̌˝

D; v0
ˇ̌
ˇC˛ˇ̌, we can find out what is the functional dependence of these expressions

on N and we can obtain the time complexity of the algorithm.
The initial condition of the algorithm is vector j‰0i D jDCijDVi, which is an

eigenvector of U with eigenvalue 1. j‰0i is invariant under the action of U , but it
is not invariant under the action of U 0. Therefore, the multiplicity of eigenvalue 1
of U is greater than or equal to 1.

Exercise 8.4. Show that the vector j‰0i D jDCijDVi is an eigenvector of U with
eigenvalue 1. Show that j‰0i is not an eigenvector of U 0.
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Suppose that the spectral decomposition of the original operatorU is known. Let
us denote:

1. jˆ0i as the normalized eigenvector with eigenvalue 1. This eigenvector is equal
to the initial condition.

2.
ˇ̌
ˇˆj̇

E
as the eigenvectors with eigenvalues e˙i�j , where 0 < �j < � .

3.
ˇ̌
ˇˆ.k/�1

E
as the orthonormal eigenvectors with eigenvalue �1. Eigenvalue �1 may

have multiplicity greater than 1. The eigenvectors are real and are indexed by k.

These eigenvectors form an orthonormal basis for the Hilbert space.
Let us start by decomposing the target vector jDijv0i in the basis of eigenvectors

of U .

jDijv0i D a0jˆ0i C
X
j

aj

�ˇ̌ˇˆC
j

E
C
ˇ̌
ˇˆ�

j

E�
C
X
k

ak

ˇ̌
ˇˆ.k/�1

E
: (8.22)

The coefficients are given by expressions

a0 D ˝
ˆ0
ˇ̌
D; v0

˛
;

aj D
D
ˆC
j

ˇ̌
D; v0

E
D
D
ˆ�
j

ˇ̌
D; v0

E
; (8.23)

ak D
D
ˆ
.k/
�1
ˇ̌
D; v0

E
:

Coefficients a0 and ak are real, because jD; v0i, jˆ0i, and
ˇ̌
ˇˆ.k/�1

E
are real. By

choosing appropriately eigenvectors
ˇ̌
ˇˆj̇

E
, coefficients aj are real numbers.

Exercise 8.5. Suppose that the decomposition of jDijv0i in the eigenspace asso-

ciated with eigenvalues e˙i�j has the form
P

j

�
aC
j

ˇ̌̌
ˆC
j

E
C a�

j

ˇ̌̌
ˆ�
j

E�
. Show thatˇ̌

ˇˆj̇
E

can be redefined such that aC
j D a�

j D aj , where aj are real numbers. Show

that after this redefinition the sum
ˇ̌
ˇˆC

j

E
C
ˇ̌
ˇˆ�

j

E
is a real vector.

Let us define vector j!˛i as follows:

j!˛i D a0 cot
˛

2
jˆ0i

C
X
j

aj

	
cot

˛ � �j

2

ˇ̌̌
ˆC
j

E
C cot

˛ C �j

2

ˇ̌̌
ˆ�
j

E


� tan
˛

2

X
k

ak

ˇ̌
ˇˆ.k/�1

E
: (8.24)
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Vector j!˛i is not a unit vector. It is useful for defining other vectors, which are unit
vectors. Let c be the norm of j!˛i, that is,

c D
q˝
!˛
ˇ̌
!˛
˛
: (8.25)

Angle ˛ is the smallest argument of the eigenvalues of U 0 different from 1. That
is, the eigenvalues of U 0 different from 1 have the form e˙i� 0

i , 0 < � 0
i � �=2, and

˛ D minf� 0
1; �

0
2; : : :g.

Using j!˛i, we define
ˇ̌
˛˙˛ as follows:

ˇ̌
˛C˛ D 1p

1C c2

�
jD; v0i C ij!˛i

�

j˛�i D 1p
1C c2

�
jD; v0i C ij!�˛i

�
; (8.26)

where j!�˛i is obtained from (8.24) by replacing ˛ by �˛. Vectors
ˇ̌
˛˙˛ are not

necessarily eigenvectors of U 0 as we wish. We must impose the restrictions

˝
D; v0

ˇ̌
!˙˛

˛ D 0: (8.27)

Actually, the following result is true:

˝
D; v0

ˇ̌
!˙˛

˛ D 0 , U 0ˇ̌˛˙˛ D e˙i˛
ˇ̌
˛˙˛; (8.28)

the proof of which is oriented in Exercise 8.6.
Using (8.22), (8.24), and the trigonometric relations

cotaC cot b D �2 sin.a C b/

cos.a C b/� cos.a � b/
; (8.29)

we obtain that restriction (8.27) is equivalent to

a20 cot
˛

2
� 2 sin˛

X
j

a2j

cos˛ � cos �j
� tan

˛

2

X
k

a2k D 0: (8.30)

We can obtain angle ˛ from (8.30), which is too complex to be exactly solved. For
two-dimensional lattices and hypercubes, when the number of vertices grows, ˛
tends to zero. In these cases, we use the following approximations:

sin˛ � tan ˛ � ˛;

cot˛ � 1

˛
;

cos˛ � 1: (8.31)
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Equation (8.30) reduces asymptotically to

˛ � a0rP
j

a2j
1�cos �j

C 1
4

P
k a

2
k

: (8.32)

Note that ˛ is given in terms of the eigenvalues of U and coefficients of the
expansion of jDijv0i in the basis of eigenvectors of U . If we know ˛, we can
estimate the number of steps of the algorithm, because the stopping time is tf D
�=2˛.

Exercise 8.6. The purpose of this exercise is to prove proposition (8.28). First
show that the left-hand side implies the right-hand side, that is, start assuming that˝
D; v0

ˇ̌
!˛
˛ D 0.

1. Show that

U 0ˇ̌˛C˛ D U
�jD; v0i C ij!˛ip

2
:

2. Replace U by UI in the previous equation and use the completeness relation

I D jˆ0ihˆ0j C
X
j

�ˇ̌̌
ˆC
j

ED
ˆC
j

ˇ̌̌
C
ˇ̌̌
ˆ�
j

ED
ˆ�
j

ˇ̌̌�
C
X
k

ˇ̌̌
ˆ
.k/
�1
ED
ˆ
.k/
�1
ˇ̌̌

to evaluate explicitly the right-hand side.
3. Show that

ei�

	
�1C i cot

˛ � �
2



D ei˛

	
1C i cot

˛ � �
2




for any angle � and use this fact to simplify the final result.
4. Show that the right-hand side implies the left-hand side.

Exercise 8.7. Using (8.24), show that if the orthogonality relation (8.30) is true,
then

˝
!�˛

ˇ̌
!˛
˛ D �1. You may use formula

cot
a C b

2
cot

a � b
2

D �cos .a/C cos .b/

cos .a/ � cos .b/
:

Using (8.26) and the previous result, show that
˝
˛� ˇ̌˛C˛ D 0. This is expected,

because
ˇ̌
˛C˛ and j˛�i are eigenvectors of a unitary operator associated with

different eigenvalues.

Vectors
ˇ̌
ˇC˛ and jˇ�i of (8.12) and (8.13) define a plane where the abstract

search algorithm approximately evolves as long as conditions (8.14) and (8.16) are
satisfied. Let us analyze when the first condition is valid. Using (8.13) and (8.26),
we obtain

jˇ�i D ip
2
p
1C c2

�
j!˛i � j!�˛i

�
: (8.33)
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Up a global phase, we can rewrite jˇ�i as follows:

jˇ�i D 1���j!˛i � j!�˛i
���
�
j!˛i � j!�˛i

�
: (8.34)

This last expression is better to evaluate
ˇ̌ ˝
ˆ0
ˇ̌
ˇ�˛ ˇ̌. In fact, using (8.24) and the

formula (8.29) for the sum of cotangents, we obtain

ˇ̌ ˝
ˆ0
ˇ̌
ˇ�˛ ˇ̌ D 2a0 cot ˛

2r
4a20 cot2 ˛

2
C 8 sin2 ˛

P
j

a2j

.cos˛�cos �j /2
C 4 tan2 ˛

2

P
k a

2
k

D
0
@1C 8 sin4 ˛

2

a20

X
j

a2j

.cos˛ � cos �j /2
C tan4 ˛

2

a20

X
k

a2k

1
A

�1=2

(8.35)

If angle ˛ tends to zero when we increase the number of vertices, we will
show that the first condition is satisfied asymptotically. In fact, using approxima-
tions (8.31) and formula .1 C 	/�1=2 � 1 � 	

2
, which is valid when 	 
 1, we

obtain

ˇ̌ ˝
ˆ0
ˇ̌
ˇ�˛ ˇ̌ � 1 � ˛4

0
@ 1

4a20

X
j

a2j

.1 � cos �j /2
C 1

32a20

X
k

a2k

1
A : (8.36)

We now consider the second condition. Using again (8.12), (8.13), and (8.26),
we obtain ˇ̌

ˇC˛ D 1p
2
p
1C c2

�
2jD; v0i C ij!˛i C ij!�˛i

�
: (8.37)

Again, we can rewrite
ˇ̌
ˇC˛ such that the normalization is easier to calculate. Using

that jD; v0i is a unit vector and orthogonal to j!˙˛i, we have

ˇ̌
ˇC˛ D 1r

4C
���j!˛i C j!�˛i

���2
�
2jD; v0i C ij!˛i C ij!�˛i

�
: (8.38)

Using (8.24), we obtain

���j!˛i C j!�˛i
���2 D 2

X
j

a2j

	
cot

˛ � �j
2

� cot
˛ C �j

2


2
: (8.39)
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Using again that jD; v0i is a unit vector orthogonal to j!˙˛i, we obtain

ˇ̌ ˝
D; v0

ˇ̌
ˇC˛ ˇ̌ D 1r

1CP
j a

2
j

�
cot ˛��j

2
� cot ˛C�j

2

�2 : (8.40)

The expression of
ˇ̌ ˝

D; v0
ˇ̌
ˇC˛ ˇ̌ is not as favorable as the expression

ˇ̌ ˝
ˆ0
ˇ̌
ˇ�˛ ˇ̌.

Note that the second condition is not satisfied automatically when ˛ tends to zero.
Expanding expression (8.40) in Taylor series in terms of variable ˛ and selecting
the first term, we obtain

ˇ̌ ˝
D; v0

ˇ̌
ˇC˛ ˇ̌ � 1q

1C 4
P

j a
2
j cot2 �j

2

: (8.41)

As we have discussed before, the second condition is to be relaxed. Any value ofˇ̌ ˝
D; v0

ˇ̌
ˇC˛ ˇ̌, which does not depend on the number of vertices, is satisfactory. We

will see, later on, that the validity of the second condition may depend on judicious
choices of the shift operator of the quantum walk.

8.3 Finite Two-Dimensional Lattice

As an application of the abstract search algorithm, we analyze the search for a
marked vertex in a two-dimensional lattice with periodic boundary conditions,
that is, a torus-shaped lattice. The standard quantum walk in this type of graph
is analyzed in Sect. 6.2, where we list an orthonormal basis of eigenvectors of U .
Here we are only interested in the eigenvectors that generate the smallest subspace
containing the initial condition j‰0i D jDCijDVi and the marked vertex jDijx0; y0i.
Therefore, we will list only the eigenvectors that are not orthogonal to jDCi. The
only eigenvector with eigenvalue 1 is

ˇ̌
�1a0;0

˛j�0;0i, which is equal to the initial

condition. The remaining eigenvectors are
ˇ̌
ˇ�˙�
kx;ky

Eˇ̌
�kx ;ky

˛
and are associated with

eigenvalues e˙i� , where � depends on kx and ky and is given by

cos �.kx; ky/ D 1

2

	
cos

2�kxp
N

C cos
2�kyp
N



: (8.42)

The first task is to determine the coefficients of the expansion of jDijx0; y0i is the
basis of eigenvectors of U , that is, to determine coefficients a0, aj , and ak defined
in (8.23). The searched vertex is jv0i D jx0; y0i. Equation (8.22) assumes the form

jDijx0; y0i D a1a0;0jDijDi

C
p
N�1X

kx ;kyD0
.kx;ky /¤.0;0/

�
aC�
kx ;ky

ˇ̌
ˇ��kx ;ky

E
C a��

kx ;ky

ˇ̌
ˇ���
kx;ky

E� ˇ̌
�kx;ky

˛
: (8.43)
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Using (6.43) on Page 6.43 and Exercise 6.12 on Page 6.12, we obtain

a1a0;0 D ˝
D
ˇ̌
D
˛ ˝
�0;0

ˇ̌
x0; y0

˛

D 1p
N
;

aC�
kx ;ky

D
D
�C�
kx;ky

ˇ̌
D
E ˝
�kx;ky

ˇ̌
x0; y0

˛

D 1p
2N

!�x0kx�y0ky ;

a��
kx ;ky

D
D
���
kx;ky

ˇ̌
D
E ˝
�kx;ky

ˇ̌
x0; y0

˛

D 1p
2N

!�x0kx�y0ky : (8.44)

These coefficients correspond to a0 and aj in (8.23). Note that aC�
kx ;ky

D a��
kx ;ky

. This

is the result of a proper choice of the eigenvectors
ˇ̌̌
�˙�
kx;ky

E
in (6.58) on Page. 6.58.

The phases of these eigenvectors are chosen such that
D
�˙�
kx;ky

ˇ̌
D
E

are real (see

Exercise 8.5). Note also that the coefficient ak is zero because the two eigenvectors
associated with eigenvalue �1, which are not orthogonal to the initial condition,
have already been included. These two eigenvectors play some role only when

p
N

is even and kx D ky D p
N=2:

We will calculate angle ˛ using (8.32). The number of steps of the algorithm is
�=2˛. Equation (8.32) reduces to

1

˛
� 1

a1a0;0

vuuuuut
p
N�1X

kx;kyD0
.kx;ky/¤.0;0/

�
aC�
kx ;ky

�2
1 � cos �.kx; ky/

: (8.45)

Using (8.44), we obtain

1

˛
�

vuuuut
1

2

p
N�1X

kx;kyD0
.kx;ky/¤.0;0/

1

1 � cos �.kx; ky/
: (8.46)

Our goal is to determine how ˛ depends onN . The above expression is too complex
to be exactly evaluated. We define upper and lower bounds for ˛, which are more
tractable algebraically. The main inequality that we use is

1 � �2

2
� cos � � 1 � 2�2

�2
; (8.47)

which can be checked in Fig. 8.2 for the range 0 � � � � showing the functions
of � involved in the inequalities.
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Fig. 8.2 The cosine function
between an upper and a lower
bounds given by
inequalities (8.47)

To continue the analysis, we assume that
p
N is even. Inequalities (8.47) can

only be used to evaluate the right-hand side of (8.42) if 0 � kx; ky � p
N=2 � 1.

We separate the sum of (8.46) into two parts as follows:

p
2

˛
�

vuuuuut

p

N
2 �1X

kx;kyD0
.kx;ky/¤.0;0/

1

1 � cos �.kx; ky/
C

p
N�1X

kx ;kyD
p

N
2

1

1 � cos �.kx; ky/
: (8.48)

The second term within the root contributes with a value close to the first term. The
detailed analysis is oriented in Exercise 8.8. Let us analyze the first term.

Using inequalities (8.47), we obtain

1 � 2�2k2x
N

� cos
2�kxp
N

� 1 � 8k2x
N
: (8.49)

We have similar inequalities for the variable ky . Adding up these inequalities,
dividing by 2, and using (8.42), we obtain

1 � �2.k2x C k2y/

N
� cos � � 1 � 4.k2x C k2y/

N
: (8.50)

Subtracting 1 and inverting, we obtain

X
kx;ky

N

�2.k2x C k2y/
�
X
kx ;ky

1

1 � cos �
�
X
kx;ky

N

4.k2x C k2y/
: (8.51)
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We have to evaluate the sum

S D
p

N
2 �1X

kx;kyD0
.kx;ky/¤.0;0/

1

k2x C k2y
: (8.52)

Again we are faced with a complex expression. Since our goal is to determine the
functional dependence with variable N , we use the following approach: Consider ap
N -by-

p
N square lattice such that vertex .0; 0/ is in the center. Each vertex can

be labeled by .kx; ky/. The sum uses all the lattice vertices except the origin. Now
draw circles of integer radius r D 1; : : : ;

p
N=2. The points that lie on a circle of

radius r satisfy k2x C k2y D r2. To determine the contribution of these points, we
calculate how many of them are on the circumference. Let p.r/ be this number of
points. The sum will be approximately

S �
p

N
2X

rD1

p.r/

r2
:

Each lattice point represents a cell of unit area. The number of cells that a circle of
radius r cuts is approximately given by the perimeter, that is, p.r/ � 2�r . The sum
is approximately

S � 2 �

p

N
2X

rD1

1

r

D 2 � ‰

 p
N

2
C 1

!
C 2 � ”;

where‰ is the digamma function and � is the Euler number. Selecting the dominant
term of the asymptotic expansion of the digamma function and neglecting additive
constants, we obtain asymptotically

S � � logN: (8.53)

Substituting this result for inequalities (8.51), we obtain

1

�
N logN �

X
kx;ky

1

1 � cos �
� �

4
N logN: (8.54)

Thus, the functional dependence of the inverse of ˛ with N is

1

˛
D O

�p
N logN

�
: (8.55)
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The above expression describes the time complexity of the algorithm, since the
number of times we apply the evolution operator is �=2˛. Next step is the analysis
of the success probability.

The success probability is determined by the value of
ˇ̌ ˝

D; v0
ˇ̌
ˇC˛ ˇ̌2, which can

be obtained from (8.41), assuming that the first condition is satisfied. The proof of
the validity of the first condition is proposed as an exercise. For finite lattices, (8.41)
reduces to

ˇ̌ ˝
D; x0; y0

ˇ̌
ˇC˛ ˇ̌ � 1s

1C 4
Pp

N�1
kx ;kyD0

.kx;ky /¤.0;0/
.aC�
kx ;ky

/2 cot2 �.kx;ky/
2

: (8.56)

Using the trigonometric identity

cot2
�

2
D 1C cos �

1 � cos �
(8.57)

and the expression for coefficients aC�
kx ;ky

, we obtain

ˇ̌ ˝
D; x0; y0

ˇ̌
ˇC˛ ˇ̌2 � 1

1C 1
N

Pp
N�1
kx;kyD0

.kx;ky/¤.0;0/
1Ccos �
1�cos �

: (8.58)

Assuming that the term 1C cos � is constant and using inequality (8.54), we obtain

ˇ̌ ˝
D; x0; y0

ˇ̌
ˇC˛ ˇ̌2 D O

	
1

logN



: (8.59)

This result shows that the success probability tends to zero as N increases. This is a
negative result, which contributes to the total cost of the algorithm. If the success
probability is p, we use the method of amplitude amplification, which multiplies
the factor �=4

p
p to the original time complexity. Since the time complexity of the

original algorithm is given by (8.55), the total cost of the algorithm applying the

method of amplitude amplification is O
�p

N logN
�

.

Exercise 8.8. Show that the second term within the root in (8.48) is equivalent to

p

N
2 �1X

kx;kyD0

1

1C cos �
:

Using inequality 1 � cos � � 1 C cos � , show that this term is positive and is less
than or equal to the first term within the root. If 1=˛0 is the value without the second
term, show that 1=˛0 � 1=˛ � 2=˛0:
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Exercise 8.9. Show that the inner product between the initial condition jDCijDVi
and jˇ�i given by (8.36) is

˝
D
ˇ̌
ˇ�˛ D 1 �O

	
1

log2 N



:

Is the first condition described by (8.14) asymptotically satisfied?

8.4 Grover’s Algorithm as an Abstract Search Algorithm

Grover’s algorithm can be seen as an abstract search algorithm in a complete graph
with N vertices. In the complete graph, all vertices are connected by undirected
edges. Suppose that each vertex has a directed loop (an edge that connects to the
same vertex at both ends). In this case, each vertex has incidentN edges with labels
1 toN . The choice of these labels should be as natural as possible: All edges incident
to vertex v have label number v, including the loop. The basis of the Hilbert space is
fjaijvi; 1 � a � N; 1 � v � N g, where jai is the coin state and jvi is the position
state. The shift operator is given by

S jaijvi D jvijai: (8.60)

Note that if the walker is at vertex v and the coin value is a, it should go to the vertex
a, since the label of the edge incident to vertex a coming from vertex v is a and vice
versa, the label of the edge incident to vertex v coming from vertex a is v.

Exercise 8.10. Why the shift operator of (8.60) was not defined preserving the coin
state?

A small modification must be made in the general method described in Sect. 8.1.
In (8.3), we have learned that the modified coin operator applies operator �I on the
coin state of the searched vertex and applies the Grover coin on the other vertices.
This is equivalent to applying operatorU 0 D UR, whereU is the evolution operator
of original quantum walk and R is a reflection operator. There is another way to
obtain the same result, which is used to show that Grover’s algorithm can be seen as
an abstract search algorithm. Consider the following coin operator:

C 0
G D �G ˝ jv0ihv0j CG ˝ .I � jv0ihv0j/: (8.61)

The difference from the modified coin operator C 0 defined in (8.3) is that operator
C 0
G applies �G instead of �I on the searched state. The evolution operator in this

case is given by

U 0 D S.G ˝R/; (8.62)

where R D I � 2jv0ihv0j. R is a reflection operator around the hyperplane
orthogonal to vector jv0i.

www.it-ebooks.info

http://www.it-ebooks.info/


162 8 Spatial Search Algorithms

OperatorR is the same one used in the original Grover’s algorithm, which applies

.GR/t on the initial state jDi, where t D
j
�
4

p
N
k

. The state of the quantum

computer immediately before the measurement is .GR/b �
4

p
NcjDi.

The evolution operator in the abstract search algorithm uses the tensor product

G ˝ R. Operator U 0 must be applied
j
�
2

p
N
k

times, that is, twice the value used

in the original algorithm. The initial state in this case should be jˆ0i D jDCijDVi.
Let us follow step-by-step the evolution of the quantum computer:

U 0jˆ0i D D S.GjDi ˝RjDi/
D S.jDi ˝RjDi/
D RjDi ˝ jDi (8.63)

To obtain the last equality, we use (8.60). The next application of U 0 yields

.U 0/2jˆ0i D D S.G ˝R/.RjDi ˝ jDi/
D S.GRjDi ˝RjDi/
D RjDi ˝GRjDi: (8.64)

Repeating this process, we easily convince ourselves that

.U 0/b �
2

p
Ncjˆ0i D R.GR/b �

4

p
Nc�1jDi ˝ .GR/b �

4

p
NcjDi: (8.65)

Measuring the register associated with the position state in the computational basis,
we obtain the same result of the original Grover’s algorithm.

Exercise 8.11. Consider the quantum walk with the original Grover coin and with
the shift operator given by (8.60). Take as initial condition a walker located at a
vertex with the diagonal state in the coin space. Show that one can obtain the same
result of the original Grover’s algorithm. At what time must the quantum computer
be measured?

Exercise 8.12. Consider the quantum walk with the original Grover coin and with
the shift operator given by (8.60). Take as initial condition a walker located at a
vertex with the diagonal state in the coin space. Show that at time t D 4 the walk
returns to the initial condition. Exercise 8.13 suggests another form of solving this
problem.

Exercise 8.13. Consider the quantum walk with the original Grover coin and with
the shift operator given by (8.60).

1. Show that U 4 D I .
2. From the previous item, obtain the eigenvalues of U .
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8.5 Generalization

We have showed that the abstract search algorithm is obtained by modifying the
coin of the standard quantum walk. The evolution operator of the abstract search
algorithm is U 0 D UR, where U is the evolution operator of the original standard
quantum walk and R is a reflection operator around the hyperplane orthogonal to
vector jD; v0i, where v0 is the marked vertex. The abstract search algorithm can be
generalized, without being linked to a quantum walk. In its most general form, the
abstract search algorithm consists of two unitary operatorsU1 and U2 and two states
j 1i and j 2i satisfying the following conditions:

1. U2 D I � 2j 2ih 2j.
2. U1j 1i D j 1i and there is no other eigenvector with eigenvalue 1.
3. U1 and j 1i are real.

The evolution operator of the abstract search algorithm is U 0 D U1U2. The initial
state is j 1i. Under certain constraints, the final state .U1U2/tf j 1i will have high
fidelity to state j 2i, which has the searched information.

Further Reading

The idea of space search algorithms started with Benioff in [15], who showed
that a direct application of Grover’s algorithm does not provide an improvement
in the time complexity for searching a marked vertex in lattices. A more efficient
algorithm was presented in [1]. The abstract search algorithm originated in [71],
which describes a search algorithm on hypercubes. The formalization of the
method is described in [10], which analyzes the search for a marked vertex in

two-dimensional lattices with time complexity O
�p

N logN
�

. Using the same

general method, Tulsi described a more efficient algorithm in [78], achieving an

algorithm with time complexity O
�p

N logN
�

. Reference [8] does not use the

amplitude–amplification method for searching in the two-dimensional lattice. The
abstract search algorithm was analyzed with more detail and has been applied
on several other graphs generating more efficient algorithms than their classical
analogues [2, 28, 35].
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Chapter 9
Hitting Time

In this chapter we define a new model of discrete-time quantum walks on graphs
without using an explicit coin operator. Instead, the model uses an auxiliary space
by duplicating the original graph and forcing the walker to jump systematically from
the original graph to the copy and vice versa. The graph and its copy form a bipartite
graph. At the end, the copy is discarded. This model has many advantages over the
standard quantum walk model and it allows to define the quantum hitting time in a
natural and elegant way.

As usual, before entering the quantum context, we present the relevant classical
notions. The focus of this chapter is the hitting time; hence, we restrict ourselves to
the basic theory of classical Markov chains. The most known formula for calculating
the classical hitting time in graphs uses the stationary distribution. However, there
is an alternative formula that does not rely on the stationary distribution and requires
the definition of an associated directed graph. This process can be generalized to the
quantum context. Using the original graph, we define an associated bipartite graph,
and then a directed bipartite graph. To define the quantum hitting time in the original
graph, the quantum walk takes place in the directed bipartite graph. We show how
the evolution operator is obtained from the stochastic matrix of the original graph
and we exemplify the process in the complete graph.

9.1 Classical Hitting Time

Consider a connected, non-directed, and non-bipartite graph �.X;E/, where X D
fx1; : : : ; xng is the vertex set and E is the edge set. The hitting time of a classical
random walk in this graph is the expected time for the walker to reach a marked
vertex for the first time, once given the initial conditions. We may have more than
one marked vertex forming a subset M of the vertex set X . In this case, the hitting
time is the expected time for the walker to reach a vertex in M for the first time.
It does not matter which the vertex is, but it must be the first vertex in M to be
visited.

R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, DOI 10.1007/978-1-4614-6336-8 9,
© Springer Science+Business Media New York 2013
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166 9 Hitting Time

If px x0.t/ is the probability of the walker to reach x0 for the first time at time t
having left x at t D 0, the hitting time from vertex x to x0 is

Hx x0 D
1X
tD0

t px x0.t/: (9.1)

Define Hx x D 0 when the departure and arrival vertices are the same.
For example, the probability px x0.t/ at time t D 1 when x ¤ x0 for the complete

graph with n vertices is 1=.n � 1/, because the walker has n � 1 possible vertices
to go in the first step. To arrive in vertex x0 at time t D 2 for the first time, the
walker must visit one of n � 2 vertices different from x and x0. The probability is
.n � 2/=.n� 1/. After this visit, it must go directly to vertex x0, which occurs with
probability 1=.n � 1/. Therefore, px x0.2/ D .n � 2/=.n � 1/2. Generalizing this
argument, we obtain px x0.t/ D .n � 2/t�1=.n � 1/t . Then,

Hxx0 D
1X
tD0

t
.n � 2/t�1

.n � 1/t :

Using the identity
P1

tD0 t˛t D 1=.1� ˛/2, which is valid for 0 < ˛ < 1, we obtain

Hx x0 D n � 1: (9.2)

Usually, the hitting time depends on x and x0, but in the complete graph the
departure and arrival vertices are equivalent. In the general case, Hx x0 can be
different fromHx0x .

The notion of hitting time from a vertex to a subset can be formalized as follows:
suppose that M is a non-empty subset of X with cardinality m and let pxM.t/ be
the probability that the walker reaches any of the vertices in M for the first time at
time t having left x at t D 0. The hitting time from x to M is

HxM D
1X
tD0

t pxM .t/: (9.3)

Again, we define HxM D 0 if x 2 M .
Let us use an extended notion of hitting time when the walker starts from a

probability distribution. In the former case, the probability to depart from vertex x
is 1 and the probability to depart from any other vertex is 0. Suppose that the walker
starts in a distribution � , that is, at the initial time the probability of the walker to
be at vertex x is �x . The most used initial distributions are the uniform distribution
�x D 1=n and the stationary distribution, which will be defined ahead. In any case,
the initial distribution must satisfy

P
x2X �x D 1. The hitting time from � to M is

H�M D
X
x2X

�x HxM : (9.4)

That is, H�M is the expected value of the hitting time HxM from x to M weighted
with distribution � .
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9.1 Classical Hitting Time 167

Exercise 9.1. Show that for the complete graph

HxM D n� 1

m

if x 62 M .

Exercise 9.2. Show that for the complete graph

H�M D .n�m/.n� 1/

mn

if � is the uniform distribution. Why H�M � HxM for n � m?

9.1.1 Hitting Time Using the Stationary Distribution

Equations (9.1) and (9.3) are unpleasant for the practical calculation of the hitting
time in graphs. Fortunately, there are alternative methods. The best-known method
uses a recursive reasoning. Let us illustrate this method using the complete graph.
We want to calculate Hxx0 . The walker departs from x, moves directly to x0 with
probability 1=.n � 1/ taking one time unit. With probability .n � 2/=.n � 1/, the
walker moves to vertex x00 different from x0 and therefore will take one time unit
plus the expected time to go from x00 to x0, which is Hx x0 . Thus, we establish the
following recursive equation:

Hx x0 D 1

n � 1
C n � 2
n � 1

�
1CHxx0

�
; (9.5)

the solution of which is equal to (9.2).
This method works for a generic graph. If Vx is the neighborhood of x, the

cardinality of Vx is the degree of x denoted by dx. To help this calculation, we
assume that the distance between x and x0 is greater than 1. So, the walker will
depart from x and will move to the neighboring vertex x00 with probability 1=dx
taking one time unit. Now, we must add this result by the expected time to move
from x00 to x0. This has to be done for all vertices x00 that are neighbors of vertex x.
We obtain

Hx x0 D 1

dx

X
x002Vx

�
1CHx00 x0

�
: (9.6)

Equation (9.5) is a special case of (9.6), because for the complete graph dx D n� 1
and Hx00 x0 D Hx x0 unless x00 D x0. The case x00 D x0 generates the first term in
(9.5). The remaining n � 2 cases generate the second term. This shows that (9.6) is
general and the distance between x and x0 need not be greater than 1. However, we
cannot take x D x0 (distance 0), since the left-hand side is zero and the right-hand
side is not.
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The goal now is to solve (9.6) in terms of the hitting time Hx x0 . This task is
facilitated if (9.6) is converted to the matrix form. If H is an n � n-matrix with
entries Hxx0 , the left-hand side will be converted into H and the right-hand side
must be expanded. Using that

px x0 D
(

1
dx
; if x0 is adjacent to x;

0; otherwise,
(9.7)

we obtain the following matrix equation:

H D J C PH CD; (9.8)

where J is a matrix with all entries equal to 1, P is the right stochastic matrix, and
D is a diagonal matrix that should be introduced to validate the matrix equation for
the diagonal elements. P is also called by the transition matrix or the probability
matrix, as we have discussed in Chap. 3.

The diagonal matrix D can be calculated using the stationary distribution � ,
which is the distribution that satisfies equation �T �P D �T . It is also called limiting
or equilibrium distribution. For graphs �.X;E/ described in the beginning of this
section, there is always a limiting distribution. Multiplying (9.8) by �T from the left
side, we obtain

Dx x D � 1

�x
;

where �x is the x-th entry of � .
Equation (9.8) can be written as .I � P/H D J C D. When we try to find

H using this equation, we deal with the fact that I � P is a non-invertible matrix,
because I � P has the eigenvalue 0 associated with an eigenvector with all entries
equal to 1, which we denote by 1. This means that equation .I �P/X D J CD has
more than one solution X . In fact, if matrix X is a solution, then X C 1 � vT is also
a solution for any vector v. However, having at hand a solution X of this equation
does not guarantee that we have found H . There is a way to verify whether X is
a correct solution by using that Hx x must be zero for all x. A solution of equation
.I � P/X D J CD is

X D .I � P C 1 � �T /�1.J CD/; (9.9)

as can be checked by solving Exercise 9.3. Now we add a term of type 1 � vT to
cancel out the diagonal entries of X , and we obtain

H D X � 1 � vT ; (9.10)

where the entries of vector v is the diagonal entries of X , that is, vx D Xx x .

Exercise 9.3. Let

M D I � P C 1 � �T :
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1. Show that M is invertible.
2. Using equations �T � P D �T , P � 1 D 1, and

M�1 D
1X
tD0
.I �M/t ;

show that

M�1 D
1X
tD0

P t � 1 � �T :

3. Show that solution (9.9) satisfies equation .I � P/X D J CD.
4. Show that matrixH given by (9.10) satisfies Hxx D 0.

Exercise 9.4. Find the stochastic matrix of the complete graph with n vertices.
Using the fact that the stationary distribution is uniform in this graph, find matrixX
using (9.9) and then find matrixH using (9.10). Check out the results with (9.2).

9.1.2 Hitting Time Without Using the Stationary Distribution

There is an alternative method for calculating the hitting time that does not use
the stationary distribution. We will use definition (9.4) to describe the method for
H�M . The vertices in M are called marked vertices. We define a modified directed
graph from the original undirected graph �.X;E/. Each edge of an undirected
graph can be viewed as two opposite directed edges, that is, the directed edges
are fused to form the non-directed edge. The modified directed graph is obtained
by converting all directed edges leaving the marked vertices into loops, while
maintaining unchanged the incoming directed edges. This means that if the walker
reaches a marked vertex, the walker will be imprisoned in the steps following. To
calculate the hitting time, the original undirected graph and the modified directed
graph are equivalent. However, the probability matrices are different. Let us denote
the stochastic matrix of the modified graph by P 0. The entries of P 0 are

p0
xy D


pxy; x 62 M ;
ıxy; x 2 M .

(9.11)

What is the probability of finding the walker in XnM at time t before visiting
M ? Let �.0/ be the initial probability distribution on the vertices of the original
graph viewed as a row vector. Then, the distribution after t steps is

�.t/ D �.0/ � P t : (9.12)

Let 1 be the column n-vector with all entries equal to 1. Define 1XnM as the column
n-vector with n�m entries equal to 1 corresponding to the vertices that are inXnM
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and m entries equal to zero corresponding to the vertices are in M . The probability
of finding the walker in XnM at time t is �.t/ � 1XnM . However, this expression is
not useful for calculating the hitting time, because the walker has already visitedM .
We want to find the probability of the walker being in XnM at time t having not
visitedM . This result is obtained if we use matrix P 0 instead of P in (9.12). In fact,
if the evolution is driven by matrix P 0 and the walker has visited M , it remains
imprisoned in M in the steps following. Therefore, if the walker is found in XnM ,
it has certainly not visitedM . The probability of finding the walker in XnM at time
t without having visited M is �.0/ � .P 0/t � 1XnM .

In (9.3), we have calculated the average time to reach a marked vertex for the
first time employing the usual formula for calculating weighted averages. When the
variable t assumes nonnegative integer values, there is an alternative formula for
calculating this average. This formula applies in this context, because time t is the
number of steps. Let T be the number of steps to reach a marked vertex for the first
time and let p.T � t/ be the probability of reaching M for the first time for any
number of steps T equal to or greater than t . If the initial condition is distribution
� , the hitting time can be equivalently defined by formula

H� M D
1X
tD1

p.T � t/: (9.13)

To verify the equivalence of this new formula with the previous one, note that

p.T � t/ D
1X
jDt

p.T D j /; (9.14)

where p.T D t/ is the probability of reaching M for the first time with exactly t
steps. Substituting (9.14) for (9.13) and inverting the sum order, we obtain

H�M D
1X
jD1

jX
tD1

p.T D j /

D
1X
jD1

j p.T D j /: (9.15)

This last equation is equivalent to (9.3).
We can give another interpretation for probability p.T � t/. If the walker

reaches M at T � t , then in the first t � 1 steps it will still be in XnM , that
is, it will be in one of the unmarked vertices without having visited M . We have
learned in a previous paragraph that the probability of the walker being in XnM at
time t without having visited M is �.0/ � .P 0/t�1 � 1XnM . Then,

p.T � t/ D �.0/ � .P 0/t�1 � 1XnM: (9.16)
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Define PM as a square .n � m/-matrix obtained from P by deleting the rows
and columns corresponding to vertices of M . Define �M and 1M using the same
procedure. Analyzing the entries that do not vanish after multiplying the matrices in
the right-hand side of (9.16), we conclude that

p.T � t/ D �
.0/

M
� P t�1

M
� 1M : (9.17)

Substituting the above equation for (9.13), we obtain

H� M D �
.0/

M
�
 1X
tD0

P t

M

!
� 1M

D �
.0/

M
� �I � PM

��1 � 1M : (9.18)

Matrix I � PM is always invertible for connected, non-directed, and non-bipartite
graphs. This result follows from the fact that 1 is not an eigenvector of PM , and
hence I � PM has no eigenvalue equal to 0.

Among the results presented here, the most important one is the strategy that was
used to generate (9.18), because it will be also used to define the quantum hitting
time, which is the main topic of the next sections.

Exercise 9.5. Use (9.18) to find the hitting time in the complete graph with n
vertices and compare the results with Exercises 9.1 and 9.2.

9.2 Reflection Operators in a Bipartite Graph

To define the quantum hitting time, we use a duplication process in order to obtain
a bipartite graph associated with the original graph, as will be explained in details
in Sect. 9.6. At the moment, we define the quantum operators in the bipartite graph.
Using these operators we will define the quantum hitting time in the original graph
in Sect. 9.6.

Consider a bipartite graph with sets X and Y of equal cardinalities. Let x and
y be generic vertices of X and Y , respectively. Define pxy as the inverse of the
outdegree of vertex x, if y is adjacent to x, otherwise pxy D 0. For example, if
x is adjacent to only two vertices y1 and y2 in set Y , then pxy1 D pxy2 D 1=2.
Analogously, we define qyx as the inverse of the outdegree of vertex y. Variables
pxy and qyx satisfy

X
y2Y

pxy D 1 8x 2 X; (9.19)

X
x2X

qyx D 1 8y 2 Y: (9.20)
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The quantum walk on the bipartite graph has an associated Hilbert space
Hn2 D Hn ˝ Hn, where n D jX j D jY j. The computational basis of the first
factor is

˚jxi W x 2 X
�

and of the second is
˚jyi W y 2 Y

�
. The computational

basis of Hn2 is
˚jx; yi W x 2 X; y 2 Y

�
. Instead of using probability matrices P

andQ of the classical random walk, the entries of which are pxy and qyx , we define
operatorsA W Hn ! Hn2 and B W Hn ! Hn2 as follows:

A D
X
x2X

j˛xihxj; (9.21)

B D
X
y2Y

ˇ̌
ˇy
˛hyj; (9.22)

where

j˛xi D jxi ˝
0
@X
y2Y

p
pxy jyi

1
A ; (9.23)

ˇ̌
ˇy
˛ D

 X
x2X

p
qyx jxi

!
˝ jyi: (9.24)

The dimensions of A and B are n2 � n. Another way to write (9.21) and (9.22) is

Ajxi D j˛xi; (9.25)

Bjyi D ˇ̌
ˇy
˛
; (9.26)

the interpretation of which is that the result of multiplying matrix A by the x-th
vector in the computational basis of Hn is the x-th column of A. Therefore, the
columns of matrix A are the vectors j˛xi and the columns of matrix B are the
vectors

ˇ̌
ˇy
˛
. Using (9.23) and (9.24) along with (9.19) and (9.20), we obtain

˝
˛x
ˇ̌
˛x0

˛ D ıx;x0 ; (9.27)D
ˇy
ˇ̌
ˇ0
y

E
D ıy;y0 : (9.28)

Then, we have

ATA D In; (9.29)

BTB D In: (9.30)

These equations imply that the actions of A and B preserve the norm of vectors. So,
if j�i is a unit vector in Hn, thenAj�i is a unit vector in Hn2 . The same regardingB .
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It is natural to investigate the product in the reverse order. Using (9.21) and
(9.22), we obtain

AAT D
X
x2X

j˛xih˛x j; (9.31)

BBT D
X
y2Y

ˇ̌
ˇy
˛˝
ˇy
ˇ̌
: (9.32)

Using (9.29) and (9.30), we have .AAT/2 D AAT and .BBT/2 D BBT. So, let us
define the projectors

…A D AAT; (9.33)

…B D BBT: (9.34)

Equations (9.31) and (9.32) show that …A projects a generic vector in Hn2 in
subspace HA spanned by

˚j˛xi W x 2 X� and…B projects in subspace HB spanned
by
˚ˇ̌
ˇy
˛ W y 2 Y �.

After obtaining the projectors, we can define the associated reflection operators,
which are

RA D 2…A � In2; (9.35)

RB D 2…B � In2 : (9.36)

RA reflects a generic vector in Hn2 around subspace HA. We can check this in the
following way: RA leaves invariant any vector in HA, that is, if j i 2 HA, then
RAj i D j i, as can be confirmed by (9.35). On the other hand, RA inverts the
sign of any vector orthogonal to HA, that is, if j i 2 H?

A , then RAj i D �j i.
A generic vector in Hn2 can be written as a linear combination of a vector in HA

with one in H?
A . The action of RA leaves the component in HA unchanged and

inverts the sign of the component in H?
A . Geometrically, this is a reflection around

HA, as if HA is the mirror and RAj i is the image of j i. The same is true for RB

with respect to subspace HB .
Now let us analyze the relation between subspaces HA and HB . The best way

is to analyze the angles between vectors in basis
˚j˛xi W x 2 X

�
and vectors in˚ˇ̌

ˇy
˛ W y 2 Y

�
. Define the inner product matrix C such that Cxy D ˝

˛x
ˇ̌
ˇy
˛
.

Using (9.23) and (9.24), we can express the entries of C in terms of the transition
probabilities as Cxy D p

pxyqyx . In matrix form, we write

C D ATB; (9.37)

which can be obtained from (9.21) and (9.22). C is an n-dimensional matrix called
discriminant. It provides essential information about the quantum walk that we
will define on the bipartite graph. C is not a normal matrix in general, and the
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eigenvalues and eigenvectors do not play an important role in this context. We will
analyze its singular values and vectors, which are quantities conceptually close to
eigenvalues and eigenvectors.

Exercise 9.6. Consider the complete bipartite graph with sets X and Y both with
cardinality 2. Find the vectors j˛xi and

ˇ̌
ˇy
˛
. Eliminating the last entry, these vectors

can be represented in R
3. Sketch a cube with a vertex in the origin, the opposite

vertex in point .1; 1; 1/, and with three edges on axis x, y, and z. Show that the real
vector space R

3
A spanned by the columns of A is a vertical plane containing axis

z and cutting the cube in half. Show that the real vector space R
3
B spanned by the

columns of B is a 45ı tilted plane containing axis y and also cutting the cube in
half. Show that the intersection of these vector spaces is spanned by vector

j�i D 1p
3

2
411
1

3
5 :

Find a vector j Ai orthogonal to j�i belonging to R
3
A. Find a vector j B i orthogonal

to j�i belonging to R
3
B . What is the angle between j Ai and j B i? Let j i be a

vector orthogonal to j�i belonging to R
3. Show that RBRA rotates vector j i of

2�=3 radians in the plane orthogonal to j�i.

Exercise 9.7. The purpose of this exercise is to generalize the formulas of this
section when the cardinality of set X is different from the cardinality of set Y .
Let jX j D m and jY j D n. What are the dimensions of matrices A, B , and C in this
case? What formulas of this section explicitly change?

Exercise 9.8. Consider the complete bipartite graph when X has a single element
and Y has two elements. Show that RA is the Pauli matrix �x and RB is the identity
matrix I2.

9.3 Quantum Evolution Operator

We are now ready to define a quantum walk on the bipartite graph. Let us define the
evolution operator as

UP WD RB RA; (9.38)

where RA and RB are the reflection operators given by (9.35) and (9.36). At time t ,
the state of the quantum walk is U t

P applied to the initial state. Note that the
structure of this walk is different from the structure of the standard quantum walk,
which employs a coin and a shift operator. The new definition has some advantages.
In particular, the quantum hitting time can be naturally defined as a generalization of
the classical hitting time. It can be shown using general arguments that the quantum
hitting time for this quantum walk on a finite graph is at least quadratically smaller
than the classical hitting time of a random walk on the same graph.
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The analysis of the evolution of the quantum walk can be performed from the
spectral decomposition of UP , which simplifies the calculation of U t . The spectral
decomposition associated with the nontrivial eigenvalues can be calculated from
the singular values and vectors of matrix C defined by (9.37), as discussed in the
following sections.

The definition ofUP is different from the standard quantum walk, but it is similar
to the evolution operator of Grover’s algorithm. In Sect. 4.1, we have showed that
the evolution operator of Grover’s algorithm is the product of two reflections. In the
context of discrete-time quantum walks, the fact that UP does not explicitly use a
coin is an interesting property.

Exercise 9.9. The objective of this exercise is to determine under what conditions
state

j .0/i D 1p
n

X
x2X
y2Y

p
pxy jx; yi

is an eigenvector of UP associated with eigenvalue 1. Show that the action of RA

leaves j .0/i invariant. Does the action of RB leave j .0/i invariant? Under what
conditions?

9.4 Singular Values and Vectors

The singular value decomposition theorem states that there are unitary matrices U
and V such that

C D UDV �; (9.39)

whereD is an n-dimensional diagonal matrix with nonnegative real entries. Usually
the diagonal elements are sorted with the largest element occupying the first
position. These elements are called singular values and are uniquely determined
once given matrix C . In the general case, matrices U and V are not uniquely
determined. They can be determined by applying the spectral theorem on matrix
C�C . C�C is a positive semidefinite Hermitian matrix, that is, its eigenvalues are
nonnegative real numbers. Then, C�C admits a spectral decomposition and the
square root

p
C�C is well defined. Written in the basis of eigenvectors of C�C ,p

C�C is a diagonal matrix where each diagonal element is the square root of
corresponding eigenvalue of C�C .

Let �2i and j�i i be the eigenvalues and eigenvectors of C�C . Then,

C�C D
nX
iD1

�2i j�i ih�i j (9.40)
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hence

p
C�C D

nX
iD1

�i j�i ih�i j: (9.41)

We will show how to find U and V . For each i such that �i > 0, define

j�i i D 1

�i
C j�i i: (9.42)

Since
˚j�i i W 1 � i � n

�
is an orthonormal basis, it follows that

˝
�i
ˇ̌
�j
˛ D ıij ; (9.43)

for all i; j such that �i and �j are positive. For the eigenvectors in the kernel

of
p
C�C , define

ˇ̌̌
�0
j

E
D ˇ̌

�j
˛
. However, with this extension we generally lose

the orthogonality between vectors j�i i and
ˇ̌̌
�0
j

E
. We can apply the Gram–Schmidt

procedure to redefine vectors
ˇ̌
ˇ�0

j

E
such that they are orthogonal to the vectors that

do not belong to the kernel and we shall call them
ˇ̌
�j
˛
. At the end, we can obtain a

complete set satisfying orthonormality condition (9.43). With vectors j�i i and j�i i,
we obtain U and V using equations

U D
nX
iD1

j�i ihi j; (9.44)

V D
nX
iD1

j�iihi j: (9.45)

j�ii and j�i i are the singular vectors and �i are the corresponding singular values.
They obey the following equations:

C j�i i D �i j�i i; (9.46)

C Tj�i i D �i j�i i; (9.47)

for 1 � i � n. Note that j�i i and j�i i have a dual behavior. In fact, they are called
the left and right singular vectors, respectively.

By left multiplying (9.46) by A and (9.47) by B , we obtain

…ABj�i i D �i Aj�i i; (9.48)

…B Aj�i i D �i Bj�ii: (9.49)

We have learned earlier that the action of operators A and B preserves the norm
of the vectors. Since j�i i and j�ii are unit vectors, Aj�i i and Bj�i i are also unit
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vectors. The action of projectors either decreases the norm of vectors or maintains
it invariant. Using (9.48), we conclude that the singular values satisfy inequalities
0 � �i � 1. Therefore, �i can be written as �i D cos �i , where 0 � �i � �=2.
The geometric interpretation of �i is the angle between vectors Aj�i i and Bj�ii.
In fact, using (9.37) and (9.46) we obtain that the inner product between Aj�i i and
Bj�i i is

cos �i D h�i jATBj�i i: (9.50)

Exercise 9.10. Show that U and V given by (9.44) and (9.45) are unitary. Show
that (9.39) is satisfied for these U and V .

Exercise 9.11. Show that if �i ¤ �j then the vector space spanned by Aj�i i and
Bj�i i is orthogonal to the vector space spanned by A

ˇ̌
�j
˛

and B
ˇ̌
�j
˛
.

Exercise 9.12. The objective of this exercise is to use matrix CC� instead of C�C

to obtain the singular values and vectors of C .

1. Show that if j�i is an eigenvector of C�C associated with the eigenvalue �2, then
C j�i is an eigenvector of CC� with the same eigenvalue.

2. Use C� to define vectors j�i i in (9.42) and interchange the roles of j�i i and j�i i
to define U and V .

3. Show that the new matrices U and V are unitary and satisfy (9.39).

Exercise 9.13. Calculate the singular values and vectors of C associated with
Exercise 9.6. Calculate vectors Aj�i i and Bj�i i and show that they play a key role
in the geometric interpretation used in Exercise 9.6.

9.5 Spectral Decomposition of the Evolution Operator

Equations (9.48) and (9.49) show that the projectors…A and …B have a symmetric
action on vectors A

ˇ̌
�j
˛

and B
ˇ̌
�j
˛

for each j . It is expected that the action of
the reflection operators RA and RB on a linear combination of vectors A

ˇ̌
�j
˛

and
B
ˇ̌
�j
˛

outputs a vector in the plane spanned by A
ˇ̌
�j
˛

and B
ˇ̌
�j
˛
. That is, this plane

is invariant under the action of UP . So, let us try the following Ansatz to obtain the
eigenvectors of UP :

U
�
aA

ˇ̌
�j
˛C b B

ˇ̌
�j
˛� D �0

j

�
aA

ˇ̌
�j
˛C b B

ˇ̌
�j
˛�
: (9.51)

The goal is to find a, b, and �0
j obeying (9.51). Using (9.38), (9.35), and (9.36), we

obtain

.2…B � I /.2…A � I /�aAˇ̌�j ˛C b B
ˇ̌
�j
˛� D �0

j

�
aA

ˇ̌
�j
˛C b B

ˇ̌
�j
˛�
: (9.52)
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Using (9.48) and (9.49), we obtain the equations

�0
j a D �a � 2�j b; (9.53)

�0
j b D 2�j a C .4�2j � 1/b; (9.54)

when A
ˇ̌
�j
˛

and B
ˇ̌
�j
˛

are linearly independent, that is, non-collinear. It follows
that �j ¤ 0, since �j is the angle between A

ˇ̌
�j
˛

and B
ˇ̌
�j
˛
—see (9.50). Using

�j D cos �j , the above system of equations requires that

�0
j D e˙2i�j : (9.55)

Using (9.53), we obtain

b

a
D � 1C e˙2 i�j

2 cos
�
�j
�

D � e˙ i�j : (9.56)

Therefore, vectors
ˇ̌̌
�j̇

E
D A

ˇ̌
�j
˛ � e˙ i�j B

ˇ̌
�j
˛

p
2 sin �j

(9.57)

are normalized eigenvectors of UP associated with eigenvalues e˙2i�j , when 0 <
�j � �=2.

Vectors A
ˇ̌
�j
˛

and B
ˇ̌
�j
˛

are linearly independent only if �j ¤ 1. When A
ˇ̌
�j
˛

and B
ˇ̌
�j
˛

are collinear, (9.57) does not provide the expression for the eigenvectors
associated with �j D 1. However, since A

ˇ̌
�j
˛

is invariant under the action of
…A, B

ˇ̌
�j
˛

also is. And vice versa, since B
ˇ̌
�j
˛

is invariant under …B , A
ˇ̌
�j
˛

also is. Therefore, A
ˇ̌
�j
˛

and B
ˇ̌
�j
˛

are invariant under the action of RB and RA

and are eigenvectors of UP with eigenvalue 1. The number of eigenvectors with
eigenvalue 1 that we can find using this method will depend on the multiplicity
.k/ of the singular value 1. Table 9.1 summarizes the results of the spectral
decomposition of UP obtained so far. We have already found 2n � k eigenvectors
of UP , where the first 2.n� k/ are associated with the eigenvalues e˙2i�j and the k
remaining eigenvectors are associated with the eigenvalue 1.

HA and HB are the vector spaces spanned by the columns of matrix A and
B , respectively, that is, HA is spanned by vectors j˛xi, where x 2 X , and HB

is spanned by vectors
ˇ̌
ˇy
˛
, y 2 Y . Both spaces HA and HB are n-dimensional

subspaces of Hn2 . Let HA;B be the vector space spanned by vectors j˛xi and
ˇ̌
ˇy
˛
.

The dimension of HA;B is at most 2n. The dimension of HA;B will be exactly 2n,
if A

ˇ̌
�j
˛

and B
ˇ̌
�j
˛

are linearly independent for all j . For each j such that �j D 1,
the dimension of HA;B is reduced by 1. On the other hand, the dimension of HA;B is
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Table 9.1 Eigenvalues and normalized eigenvectors of UP obtained
from the singular values and vectors of C , where k is the multiplicity
of the singular value 1 of C and n is the dimension of C

Eigenvalue Eigenvector Range

e˙2i�j
ˇ̌
ˇ�˙

j

E
D Aj�j i�e˙ i�j Bj�j i

p

2 sin �j
1 � j � n� k

1
ˇ̌
�j
˛ D A

ˇ̌
�j
˛

n� k C 1 � j � n

1
ˇ̌
�j
˛ D no expr. 2n� k C 1 � j � n2

Angles �j are obtained from the singular values �j through formula
cos �j D �j . The eigenvectors

ˇ̌
�j
˛
, for 2n� k C 1 � j � n2, cannot

be obtained by the method described in this section, but we know that
they are associated with eigenvalue 1

2n minus the dimension of HA \ HB . Therefore, the eigenvectors
ˇ̌
�j
˛
, 1 � j � k,

span the subspace HA \ HB , and
ˇ̌
ˇ�j̇

E
, k C 1 � j � n, span the space orthogonal

to HA \ HB in HA;B .
The set of eigenvectors found so far does not form a basis, since n2 � 2n C k

eigenvectors belonging to the vector space orthogonal to HA;B .H?
A \ H?

B / are
missing. These eigenvectors are associated with the eigenvalue 1, because projectors
…A and…B cancel a vector j i that is in the space orthogonal to both HA and HB .
Therefore, RAj i D �j i and RB j i D �j i. Since U D RBRA, it follows that
U j i D j i. A basis of orthonormal vectors for space H?

A \ H?
B completes the

spectral decomposition of UP . The method of singular values and vectors cannot
be used to calculate these remaining eigenvectors. However, we show later on that
only the eigenvectors associated with eigenvalues other than 1 contribute to the
calculation of the hitting time.

Exercise 9.14. Show that if the singular value �j is equal to 0, then A
ˇ̌
�j
˛

and
B
ˇ̌
�j
˛

are orthonormal eigenvectors of UP associated with the eigenvalue �1.

Exercise 9.15. Using the eigenvectors in Table 9.1, compute a basis of eigenvectors
of the evolution operator UP associated with the graph of Exercise 9.6 for the
subspace HA;B . Find a basis for H?

A;B and check whether this basis is formed by
eigenvectors of UP associated with the eigenvalue 1. Check whether any eigenvalue
has multiplicity greater than 1 and completely characterize the eigenvectors of UP .

Exercise 9.16. Suppose that sets X and Y have two vertices each. Consider the
complete bipartite graph. Use Table 9.1 to calculate a basis of eigenvectors of the
evolution operator UP associated with this graph for space HA;B . Find a basis for
H?
A;B , the searched vector being orthogonal to the basis vectors of HA;B . Check

which eigenvalues have multiplicity greater than 1 and completely characterize the
eigenvectors of UP .
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9.6 Quantum Hitting Time

Let us define the quantum hitting time in a connected, non-directed, and
non-bipartite graph �.X;E/ as a natural generalization of the classical concept.
We define an associated bipartite graph using a process of duplication. Let X and
Y be the sets of vertices of the same cardinality of the bipartite graph. Each edge
fxi ; xj g in set E of the original graph, which connects the adjacent vertices xi and
xj , corresponds to two edges fxi ; yj g and fyi ; xj g in the bipartite graph. Figure 9.1
shows an example of an undirected graph (first graph) and its associated bipartite
graph (second graph). Using the notation of Sect. 9.2, we have pxy D qxy and
pxy D pyx , since the bipartite graph is undirected and there is an identification
between X and Y .

The quantum walk in the bipartite graph is defined by the evolution operator UP
given by (9.38). In the bipartite graph, one application of UP corresponds to two
steps of the quantum walk, from X to Y and from Y to X . We have to take the
partial trace over the space associated with Y to obtain the state of the quantum
walk in X .

To define the quantum hitting time, we use a second evolution operator associated
with a directed bipartite graph modified from the original bipartite graph. This pro-
cess is similar to the method used to calculate the classical hitting time without using
the classical stationary distribution described in Sect. 9.1.2. The modified directed
graph is obtained from the original bipartite graph converting all directed edges
leaving the marked vertices into loops, but keeping the incoming directed edges
unchanged. The third graph in Fig. 9.1 is an example in which set M D fx3g
has a single element (the loops were omitted). Note that if x3 is a marked vertex, y3
will also be marked by the duplication process. All edges leaving x3 and y3 were
removed. This means that if the walker reaches a marked vertex, the walker will be
stuck in this marked vertex in the steps following.

We have learned in Sect. 9.1.2 that the original undirected graph and the modified
directed graph are equivalent to calculate the classical hitting time. In the quantum
case, to define the hitting time in the original graph, the quantum walk evolves in

x1

xx3 x2

x1

x2

x3

y1

y2

y3

x1

x2

x3

y1

y2

y3

Fig. 9.1 Example of a connected graph with three vertices, its bipartite graph generated by the
duplication process, and the directed bipartite graph assuming that x3 is the only marked vertex.
The quantum hitting time is defined in the first graph, but the quantum walk evolves in the third
graph
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the modified directed graph driven by the evolution operator UP 0 , where P 0 is the
modified stochastic matrix given by

p0
xy D


pxy; x 62 M ;
ıxy; x 2 M ,

(9.58)

where pxy are the entries of the stochastic matrix P of the undirected bipartite
graph. When we use operatorUP 0 of the directed graph, the probabilities associated
with the marked vertices increase periodically. To find a marked vertex, we must
measure the position of the walker as soon as the probability of being in M is high.
The hitting time is a good metric for quantifying at what time we must perform a
measurement to find the walker’s position.

The initial condition of the quantum walk is

j .0/i D 1p
n

X
x2X
y2Y

p
pxyjx; yi: (9.59)

Note that j .0/i is defined using the stochastic matrix of the original graph and
it is invariant under the action of UP associated with the original graph, when the
probability distribution pxy is symmetric, that is, j .0/i is an eigenvector of UP
associated with the eigenvalue 1. However, j .0/i is not an eigenvector of UP 0 in
general. Now let us define the quantum hitting time.

Definition 9.17 (Quantum Hitting Time). The quantum hitting time HP;M of a
quantum walk on a graph with the associated evolution operator UP starting from
the initial condition j .0/i is defined as the smallest number of steps T such that

F.T / � 1 � m

n
;

wherem is the number of marked vertices, n is the number of vertices of the original
graph, and

F.T / D 1

T C 1

TX
tD0

���j .t/i � j .0/i
���2; (9.60)

where j .t/i is the quantum state at step t of the quantum walk in the modified di-
rected bipartite graph with the stochastic matrix P 0, that is, j .t/i D .UP 0/t j .0/i:

Value 1 � m=n is taken as reference because it is the distance between the
uniform probability distribution and the uniform probability distribution on the
marked vertices. This distance can be confirmed by using (7.46) of Sect. 7.6.

The hitting time depends only on the eigenspace of UP 0 that is associated with
eigenvalues different from 1. Or, similarly, the hitting time depends only on the
singular values of C different from 1. We will show this fact. Table 9.1 summarizes
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the results of the eigenvalues and eigenvectors of the evolution operator. Using the
notation of this table, we can write the initial condition of the quantum walk in the
basis of eigenvectors as follows:

j .0/i D
n�kX
jD1

�
cC
j

ˇ̌
ˇ�C
j

E
C c�

j

ˇ̌
ˇ��
j

E�C
n2�nCkX
jDn�kC1

cj
ˇ̌
�j
˛
; (9.61)

where coefficients cj̇ are given by

cj̇ D
D
�j̇
ˇ̌
 .0/

E
; (9.62)

and satisfy the constraint

n�kX
jD1

�ˇ̌
cC
j

ˇ̌2 C ˇ̌
c�
j

ˇ̌2�C
n2�nCkX
jDn�kC1

ˇ̌
cj
ˇ̌2 D 1: (9.63)

Applying U t
P 0

on j .0/i, we obtain

j .t/i D
n�kX
jD1

�
cC
j e2i�j t

ˇ̌
ˇ�C
j

E
C c�

j e�2i�j t
ˇ̌
ˇ��
j

E�
C

n2�nCkX
jDn�kC1

cj
ˇ̌
�j
˛
: (9.64)

When we take the difference j .t/i � j .0/i, the terms associated with the
eigenvalue 1 are eliminated.

Since vectors
ˇ̌
ˇ�j̇

E
are complex conjugates and j .0/i is real, it follows from

(9.62) that
ˇ̌
cC
j

ˇ̌2 D ˇ̌
c�
j

ˇ̌2
. We will denote both

ˇ̌
cC
j

ˇ̌2
and

ˇ̌
c�
j

ˇ̌2
by
ˇ̌
cj
ˇ̌2

such that
the value of the sub-index j characterizes the coefficient. Using (9.61) and (9.64),
we obtain

���j .t/i � j .0/i
���2 D 4

n�kX
jD1

ˇ̌
cj
ˇ̌2 �
1 � T2t .cos �j /

�
; (9.65)

where Tn is the n-th Chebyshev polynomial of the first kind defined by Tn.cos �/ D
cosn� . F.T / defined in (9.60) can be explicitly calculated. The result is

F.T / D 2

T C 1

n�kX
jD1

ˇ̌
cj
ˇ̌2�
2 T C 1 � U2T .cos �j /

�
; (9.66)

where Un are the Chebyshev polynomials of the second kind defined by

Un.cos �/ D sin.nC 1/�

sin �
:
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Function F.T / is continuous, and we can select a range Œ0; T  containing point 1�
m=n where F.T / can be inverted to obtain the quantum hitting time by employing
the following equation:

HP;M D
l
F�1 �1 � m

n

�m
: (9.67)

In principle, it is not necessary to define the hitting time as an integer value, since it
is an average. If we remove the ceiling function from the above equation, we have
a valid definition. In the example of the complete graph given below, we use this
alternative definition.

9.7 Probability of Finding a Marked Element

The quantum walk defined by the evolution operator UP 0 was designed such that
the probability of finding a marked element increases during some time. Since
the evolution is unitary, the probability of finding a marked element will have an
oscillatory pattern. Then, determining the stopping time (execution time) of the
algorithm is crucial. If the measurement is delayed, the success probability may
be very low. The hitting time must be close to the time tmax where the probability
reaches the maximum for the first time.

In order to determine tmax and calculate the success probability, we need to find
the analytical expression of j .t/i. Subtracting (9.64) of (9.61), we obtain

j .t/i D j .0/i C
n�kX
jD1

�
cC
j

�
e2i�j t � 1

� ˇ̌ˇ�C
j

E
C c�

j

�
e�2i�j t � 1

� ˇ̌ˇ��
j

E�
: (9.68)

The probability of finding a marked element is calculated with the projector on the
vector space spanned by the marked elements, which is

PM D
X
x2M

jxihxj ˝ I

D
X
x2M

X
y

jx; yihx; yj: (9.69)

The probability at time t is given by h .t/jPM j .t/i.
In this context, we highlight: (1) the problem of determining whether the set

of the marked elements is empty, called detection problem and (2) the problem of
finding an explicit marked element, called finding problem. In the general case, the
detection problem is simpler than the finding problem, since it does not require
calculating the probability of finding a marked element. The detection problem only
requires the calculation of the hitting time. The calculation of the probability of
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finding a marked element requires the knowledge of j .t/i, while the calculation of
the hitting time requires knowledge of j .t/i � j .0/i. In the latter case, we need
not calculate the eigenvectors associated with the eigenvalue 1.

9.8 Quantum Hitting Time in the Complete Graph

The purpose of this section is to calculate the quantum hitting time in the complete
graph. Let n be the number of vertices. All vertices are adjacent in the complete
graph. If the walker is in one vertex, it can go to n � 1 vertices. Therefore, the
stochastic matrix is

P D 1

n � 1

2
666664

0 1 1 � � � 1
1 0 1 � � � 1
1 1 0 � � � 1
:::
:::
:::
: : :

:::

1 1 1 � � � 0

3
777775
: (9.70)

Multiplying P by .n � 1/, we obtain a matrix with all entries equal to 1 minus the
identity matrix. Therefore, we can write P as follows:

P D 1

n � 1

�
n
ˇ̌
u.n/

˛˝
u.n/

ˇ̌ � In
�
; (9.71)

where
ˇ̌
u.j /

˛
is defined by

ˇ̌
u.j /

˛ D 1p
j

jX
iD1

jii: (9.72)

We number the vertices from 1 to n, such that in this section the computational basis
of the Hilbert space Hn is

˚j1i; : : : ; jni�. We suppose that the marked vertices are
the last m vertices, that is, x 2 M if and only if n �m < x � n.

In the definition of the quantum hitting time, the evolution operator uses the
modified stochastic matrix P 0 defined in (9.58) instead of the original matrix P .
The entries of matrix P 0 are

p0
xy D

(
1�ıxy
n�1 ; 1 � x � n �m;
ıxy; n �m < x � n.

(9.73)

All vectors and operators in Sect. 9.2 must be calculated using P 0. Operator C in
(9.37) is important because their singular values and vectors are used to calculate
some eigenvectors of the evolution operator UP 0 . In Sect. 9.2, we have learned that
the entries Cxy are given by

p
p0
xyqyx . Here we are setting qyx D p0

yx . In the
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complete graph, we have pxy D pyx . However, p0
xy ¤ p0

yx , if x and y are in M .
Using (9.73) and analyzing the values of the entries of C , we conclude that

C D
�
PM 0

0 Im

�
; (9.74)

where PM is the matrix obtained from P by eliminating m rows and m columns
corresponding to the marked vertices. We find the singular values and vectors of C
through the spectral decomposition of PM .

The algebraic expression of PM is

PM D 1

n � 1

�
.n�m/

ˇ̌
u.n�m/˛˝u.n�m/ˇ̌ � In�m

�
; (9.75)

where
ˇ̌
u.n�m/˛ is obtained from (9.72). Its characteristic polynomial is

det.PM � �I/ D
	
� � n �m � 1

n � 1

	

�C 1

n � 1


n�m�1
: (9.76)

The eigenvalues are n�m�1
n�1 with multiplicity 1 and �1

n�1 with multiplicity n�m� 1.
Note that if m � 1, then 1 is not an eigenvalue of PM . The eigenvector associated
with eigenvalue n�m�1

n�1 is

j�n�mi WD ˇ̌
u.n�m/˛ (9.77)

and the eigenvectors associated with the eigenvalue �1
n�1 are

j�i i WD 1p
i C 1

�ˇ̌
u.i/
˛ � p

i ji C 1i
�
; (9.78)

where 1 � i � n�m� 1. The set
˚j�ii; 1 � i � n�m� is an orthonormal basis of

eigenvectors of PM . The verification is oriented in Exercise 9.18.

Exercise 9.18. The objective of this exercise is to explicitly check the orthonormal-
ity of the spectral decomposition of PM .

1. Use (9.75) to verify that PM jun�mi D n�m�1
n�1 jun�mi.

2. Show that
˝
u.n�m/ˇ̌�i ˛ D 0, for 1 � i � n � m � 1. Use this fact and (9.75) to

verify that PM j�i i D �1
n�1 j�i i.

3. Show that
˝
u.i/
ˇ̌
i C 1

˛ D 0 and conclude that
˝
u.i/
ˇ̌
u.i/
˛ D 1, for 1 � i � n�m�

1. Use this fact to show that
˝
�i
ˇ̌
�i
˛ D 1.

4. Suppose that i < j . Show that
˝
u.i/
ˇ̌
u.j /

˛ D
q

i
j

and
˝
u.i/
ˇ̌
j C 1

˛ D 0. Use these

facts to show that
˝
�i
ˇ̌
�j
˛ D 0.
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Table 9.2 Right and left
singular values and vectors
of matrix C

Right Left
singular singular

Singular value vector vector Range

cos �1 D 1
n�1

ˇ̌
�j
˛ �ˇ̌�j ˛ 1 � j � n�m� 1

cos �2 D n�m�1
n�1

j�n�mi j�n�mi j D n�m

cos �3 D 1 jj i jj i n�mC 1 � j � n

Vectors j�n�mi and j�i i are given by (9.77) and (9.78). Angles
�1, �2, and �3 are defined from the singular values

Table 9.3 Eigenvalues and normalized eigenvectors of UP 0 ob-
tained from the singular values and vectors of C

Eigenvalue Eigenvector Range

e˙2i�1

ˇ̌̌
�˙

j

E
D �

�
ACe˙i�1 B

�j�j i
p

2 sin �1
1 � j � n�m� 1

e˙2i�2

ˇ̌
ˇ�˙

n�m

E
D
�
A�e˙i�2B

�
j�n�mi

p

2 sin �2
j D n�m

1
ˇ̌
�j
˛ D Ajj i n�mC 1 � j � n

Matrix C is Hermitian. Therefore, the nontrivial singular values �i of C defined
in (9.41) are obtained by taking the modulus of the eigenvalues of PM . The right
singular vectors j�i i are the eigenvectors of PM and the left singular vectors
are obtained from (9.42). If an eigenvalue of PM is negative, the left singular
vector is the negative of the corresponding eigenvector of PM . These vectors must
be augmented with m zeros to have the dimension compatible with C . Finally,
submatrix Im in (9.74) adds to the list the singular value 1 with multiplicity m and
the associated singular vectors jj i, where n�mC1 � j � n. Table 9.2 summarizes
these results.

Eigenvalues and eigenvectors of UP 0 that can be obtained from the singular
values and vectors of C are given in Table 9.1. Table 9.3 reproduces these results
for the complete graph. It is still missing n2 � 2nCm eigenvectors associated with
eigenvalue 1.

The initial condition is given by (9.59), which reduces to

j .0/i D 1p
n.n � 1/

nX
x;yD1

.1 � ıxy/jxijyi: (9.79)

Just the eigenvectors of UP 0 that are not orthogonal to the initial condition j .0/i
are involved in the dynamics. Exercise 9.19 guides the proof that the eigenvectorsˇ̌
�j
˛
, n � m C 1 � j � n, are orthogonal to the initial condition. Exercise 9.20

guides the proof that the eigenvectors
ˇ̌̌
�j̇

E
, 1 � j � n�m� 1, are also orthogonal
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to the initial condition. The remaining eigenvectors are
ˇ̌
�ṅ�m

˛
, associated with the

positive eigenvalue ofPM , and the eigenvectors associated with eigenvalue 1, which
has not been addressed yet. Therefore, the initial condition j .0/i can be written as

j .0/i D cC ˇ̌�C
n�m

˛C c�j��
n�mi C jˇi; (9.80)

where coefficients c˙ are given by (see Exercise 9.21)

c˙ D
p
n �m

�
1 � e�i�2

�
p
2n sin �2

; (9.81)

where �2 is defined by

cos �2 D n �m � 1

n � 1
: (9.82)

Vector jˇi is the component of j .0/i in the eigenspace associated with eigenvalue
1. The calculation of a basis of eigenvectors for this eigenspace is hard-working, we
postpone this calculation for now.

Exercise 9.19. To show that
˝
�j
ˇ̌
 .0/

˛ D 0 when n � m C 1 � j � n, use the
expression for A given by (9.21) and the expression for j˛xi given by (9.23), where
pxy and qxy are given by (9.73). Show that

˝
�j
ˇ̌
 .0/

˛ D
X
x2M

˝
˛x
ˇ̌
 .0/

˛
:

Use (9.79) to show that
˝
˛x
ˇ̌
 .0/

˛ D 0 if x 2 M .

Exercise 9.20. To show that
D
�j̇
ˇ̌
 .0/

E
D 0, for 1 � j � n � m � 1, use

the expressions of A and B given by (9.21) and (9.22), and the expressions for
j˛xi and

ˇ̌
ˇy
˛

given by (9.23) and (9.24), where pxy and qxy are given by (9.73).
Equation (9.78) and Exercise 9.18 must also be used. The expression of j .0/i is
given by (9.79).

Exercise 9.21. The purpose of this exercise is to guide the calculation of coeffi-
cients c˙ in (9.80), which are defined by

c˙ D ˝
�ṅ�m

ˇ̌
 .0/

˛
:

Using (9.79) and (9.88), cancel out the orthogonal terms and simplify the result.
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Applying U t
P 0

on j .0/i—given by (9.80)—using that
ˇ̌
�ṅ�m

˛
are eigenvectors

associated with eigenvalues e˙2i�2 , and jˇi is in the eigenspace associated with the
eigenvalue 1, we obtain

j .t/i D U t
P 0

j .0/i
D cCe2i�2t

ˇ̌
�C
n�m

˛C c�e�2i�2t j��
n�mi C jˇi; (9.83)

Using the expression of j .t/i and (9.60), we can calculate F.T /. The difference
j .t/i � j .0/i can be calculated as follows: using (9.80) and (9.83), we obtain

j .t/i � j .0/i D cC.e2i�2t � 1/
ˇ̌
�C
n�m

˛C c�.e�2i�2t � 1/j��
n�mi (9.84)

and using (9.81), we obtain

���j .t/i � j .0/i
���2 D ˇ̌

cC.e2i�2t � 1/ˇ̌2 C ˇ̌
c�.e�2i�2t � 1/ˇ̌2

D 4.n� 1/.n �m/
n.2n �m � 2/

	
1 � T2t

	
n �m � 1
n � 1




;

where Tn are the Chebyshev polynomials of the first kind. Taking the average and
using

TX
tD0

T2t

	
n �m � 1

n � 1



D 1

2
C 1

2
U2T

	
n �m � 1

n� 1



(9.85)

we obtain

F.T / D 2 .n � 1/ .n �m/ �2 T C 1 � U2T
�
n�m�1
n�1

��
n .2 n�m � 2/ .T C 1/

; (9.86)

where Un are the Chebyshev polynomials of the second kind. The graph in Fig. 9.2
shows the behavior of function F.T /. F.T / grows rapidly passing through the
dashed line, which represents value 1 � m=n, and oscillates around the limiting
value 4.n�1/.n�m/

n.2 n�m�2/ .
For n � m, we obtain the hitting time HP;M by inverting the Laurent series of

the equation F.T / D 1 � m
n

. The first terms are

HP;M D j�1
0

�
1
2

�
2

r
n

2m
�

q
1 � 1

4
j�1
0

�
1
2

�2
1C 2

q
1 � 1

4
j�1
0

�
1
2

�2 CO

	
1p
n



; (9.87)

where j0 is a spherical Bessel function of the first kind or the unnormalized sync
function. The value of j�1

0

�
1
2

�
is approximately 1.9.
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Fig. 9.2 Graph of function F.T / (solid line), the line 1� m
n

(dashed line), and the line 4.n�1/.n�m/

n.2 n�m�2/

(dotted line) for n D 100 and m D 21. The hitting time is the time T such that F.T / D 1� m
n

,
which is around 1:13

Exercise 9.22. The purpose of this exercise is to obtain (9.85). Use the trigono-
metric representation of Tn and convert the cosine into a sum of exponentials of
complex arguments. Use the formula for geometric sequence

PT
tD0 at D aTC1�1

a�1 to
simplify the sum. Convert the result to the form of Chebyshev polynomials of the
second kind.

9.8.1 Probability of Finding a Marked Element

The hitting time is used in search algorithms as the stopping time. It is important to
calculate the success probability when we use the hitting time. The calculation of
the probability of finding a marked element as a function of time is more elaborated
than the calculation of the hitting time because we explicitly calculate j .t/i, that
is, we calculate the vectors

ˇ̌
�ṅ�m

˛
and jˇi that appear in (9.83).

Using (9.21) and (9.22), we obtain

ˇ̌
�ṅ�m

˛ D 1p
2 sin �2

�
A� e˙i�2B

�ˇ̌
u.n�m/˛

D 1p
2.n�m/ sin �2

0
@n�mX
xD1

j˛xi � e˙i�2
n�mX
yD1

ˇ̌
ˇy
˛1A:
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Using (9.23), (9.24), and (9.73), we obtain

ˇ̌
�ṅ�m

˛ D 1p
2.n� 1/.n�m/ sin �2

0
@�1 � e˙i�2

� n�mX
x;yD1

�
1 � ıxy

�jxijyi

C
n�mX
xD1

nX
yDn�mC1

jxijyi � e˙i�2
nX

xDn�mC1

n�mX
yD1

jxijyi
1
A : (9.88)

Using (9.81) and (9.82), the expression for the quantum state at time t reduces to

j .t/i D 1p
n.n � 1/

0
@2.n� 1/T2t

�
n�m�1
n�1

�
2 n�m � 2

n�mX
x;yD1

�
1 � ıxy

�jxijyi

C
 
.n� 1/T2t

�
n�m�1
n�1

�
2 n�m � 2 � U2t�1

	
n �m � 1

n � 1

! n�mX

xD1

nX
yDn�mC1

jxijyi

C
 
.n�1/T2t

�
n�m�1
n�1

�
2 n �m � 2

C U2t�1
	
n �m � 1
n � 1


! nX
xDn�mC1

n�mX
yD1

jxijyi
1
A

Cjˇi: (9.89)

Vector jˇi can be determined from (9.80), since we know j .0/i and
ˇ̌
�ṅ�m

˛
.

The result is

jˇi D 1p
n.n � 1/

0
@ �m
2n �m � 2

n�mX
x;yD1

�
1 � ıxy

�jxijyi

C n �m � 1
2n �m � 2

n�mX
xD1

nX
yDn�mC1

�jxijyi C jyijxi�

C
nX

x;yDn�mC1

�
1 � ıxy

�jxijyi
1
A : (9.90)

The probability of finding a marked element pM.t/ after performing a
measurement with projectors PM and I � PM , where PM is the projector on
the vector space spanned by the marked elements

PM D
nX

xDn�mC1
jxihxj ˝ I

D
nX

xDn�mC1

nX
yD1

jx; yihx; yj; (9.91)
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Fig. 9.3 Graph of the
probability of finding a
marked vertex as a function
of time for n D 100 and
m D 21. The initial value is
m
n

and the probability has
period �

�2

is given by h .t/jPM j .t/i. Using (9.89), we obtain

pM .t/ D m.m � 1/
n.n � 1/ C m.n�m/

n.n � 1/
	

n � 1

2 n�m � 2T2t
	
n �m � 1

n � 1




C U2t�1
	
n �m � 1
n � 1



C n �m � 1

2n �m� 2


2
(9.92)

the graph of which is shown in Fig. 9.3 for n D 100 and m D 21.
We can determine the critical points of pM.t/ by differentiating with respect to

time. The first maximum point occurs at time

tmax D
arctan

 p
2n �m � 2p

m

!

2 arccos

	
n �m � 1
n � 1


 ; (9.93)

the asymptotic expansion of which is

tmax D �

4

r
n

2m
� 1

4
CO

	r
m

n



: (9.94)

Substituting for the expression of the probability, we obtain

pM.tmax/ D 1

2
C
r
m

2n
CO

�m
n

�
: (9.95)
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For any values n and m, the probability of finding the marked vertex is greater than
1
2

if the measurement is performed at time tmax. The time tmax is less than the hitting

time—see (9.87), because �

4
p
2

� 0:56 and
j�1
0 .

1
2 /

2
p
2

� 0:67. The value of the success
probability in an algorithm that uses the hitting time as the stopping time will be
smaller than the probability at time tmax. Evaluating pM at time HP;M and taking
the asymptotic expansion, we obtain

pM.HP;M / D 1

8
j�1
0

	
1

2


2
CO

	
1p
n



: (9.96)

The first term is around 0:45 and does not depend on n or m. This shows that the
hitting time in the complete graph is a good parameter for the stopping time of
searching algorithm.

Exercise 9.23. Using (9.92), show that

1. pM .0/ D m
n

.
2. pM .t/ is a periodic function with period �

�2
.

3. the maximum points for t � 0 are given by

tj D 1

2�2
arctan

	
1C cos �2

sin �2



C j�

2�2
;

where j D 0; 1; : : :.

Exercise 9.24. Show that in the asymptotic limit n � m, the expression of the
success probability is

pM.t/ D 1

2
sin2 2t�2 CO

	
1p
n



:

Further Reading

The theory of classical Markov chains can be found in [6, 47, 58, 62]. The last
chapter of [58] describes in detail the Perron–Frobenius theorem that is important
in the context of this chapter. The definition of the quantum hitting time presented in
Sect. 9.6 was based on [74]. Reference [75] is also useful. The quantum walk model
described in this chapter was defined by Mario Szegedy in [74] and was inspired
by the algorithm for element distinctness developed by Andris Ambainis [9].
An extension of Szegedy’s model for ergodic Markov chains was introduced in
[46, 51, 52]. The main problem that these references are addressing is to show that
the hitting time is of the order of the detection time. Reference [51] uses Tulsi’s
algorithm [78] to amplify the probability of finding a marked element, but can only
be used for symmetrical ergodic Markov chains. Reference [46] proposed a more
general algorithm which is able to find a marked element with a quadratic speedup.
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Szegedy’s ideas helped the development of new quantum algorithms faster than their
classical counterparts. Reference [53] presents an algorithm for finding triangles in
a graph. Reference [50] presents an algorithm to test the commutativity of black box
groups. The calculation of the hitting time in the complete graph was presented in
[70]. Master’s thesis [40] presents an overview of the Szegedy’s hitting time and the
algorithm to test the commutativity of groups.
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Appendix A
Linear Algebra for Quantum Computation

The purpose of this appendix is to compile the definitions, notations, and facts of
linear algebra that are important for this book. This appendix also serves as a quick
reference for the main operations in vector spaces, for instance, the inner and tensor
products. Quantum computation inherited linear algebra from quantum mechanics
as the supporting language for describing this area. Therefore, it is essential
to have a solid knowledge of the basic results of linear algebra to understand
quantum computation and quantum algorithms. If the reader does not have this base
knowledge, we suggest reading some of the basic references recommended at the
end of this appendix.

A.1 Vector Spaces

A vector space V over the field of complex numbers C is a non-empty set of
elements called vectors. In V , it is defined the operations of vector addition and
multiplication of a vector by a scalar in C. The addition operation is associative and
commutative. It also obeys properties

• There is an element 0 2 V , such that, for each v 2 V , v C 0 D 0 C v D v
(existence of neutral element)

• For each v 2 V , there exists u D .�1/v in V such that v C u D 0 (existence of
inverse element)

0 is called zero vector. The scalar multiplication operation obeys properties

• a:.b:v/ D .a:b/:v (associativity)
• 1:v D v (1 is the neutral element of multiplication)
• .a C b/:v D a:v C b:v (distributivity of sum of scalars)
• a:.v C w/ D a:v C a:w (distributivity in V )

where v;w 2 V and a; b 2 C.

R. Portugal, Quantum Walks and Search Algorithms, Quantum Science
and Technology, DOI 10.1007/978-1-4614-6336-8,
© Springer Science+Business Media New York 2013
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A vector space can be infinite, but in most applications in quantum computation,
finite vector spaces are used and are denoted by C

n. In this case, the vectors have n
complex entries. In this book, we rarely use infinite spaces, and in these few cases,
we are interested only in finite subspaces. In the context of quantum mechanics,
infinite vector spaces are used more frequently than finite spaces.

A basis for Cn consists of exactly n linearly independent vectors. If fv1; : : : ; vng
is a basis for Cn, then a generic vector v can be written as

v D
nX
iD1

aivi;

where coefficients ai are complex numbers. The dimension of a vector space is the
number of basis vectors.

A.2 Inner Product

The inner product is a binary operation .�; �/ W V � V 7! C, which obeys the
following properties:

1. .�; �/ is linear in the second argument

 
v;

nX
iD1

aivi

!
D

nX
iD1

ai .v; vi /:

2. .v1; v2/ D .v2; v1/�.
3. .v; v/ � 0. The equality holds if and only if v D 0.

In general, the inner product is not linear in the first argument. The property in
question is called conjugate-linear.

There is more than one way to define an inner product on a vector space. In C
n,

the most used inner product is defined as follows: If

v D

2
64
a1
:::

an

3
75 ; w D

2
64
b1
:::

bn

3
75;

then

.v;w/ D
nX
iD1

a�
i bi:

This expression is equivalent to the matrix product of the transpose-conjugate
vector, which is usually denoted by v�, by w.
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If an inner product is introduced in a vector space, we can define the notion
of orthogonality. Two vectors are orthogonal if the inner product is zero. We also
introduce the notion of norm using the inner product. The norm of v, denoted by
kvk, is defined as

kvk D p
.v; v/:

A normalized vector or unit vector is a vector whose norm is equal to 1. A basis is
said orthonormal if all vectors are normalized and mutually orthogonal.

A finite vector space with an inner product is called a Hilbert space. In order
to an infinite vector space be a Hilbert space, it must obey additional properties
besides having an inner product. Since we will deal primarily with finite vector
spaces, we use the term Hilbert space as a synonym for vector space with an
inner product. A subspace W of a finite Hilbert space V is also a Hilbert space.
The set of vectors orthogonal to all vectors of W is the Hilbert space W ? called
orthogonal complement. V is the direct sum ofW andW ?, that is, V D W ˚W ?.
An N -dimensional Hilbert space will be denoted by HN to highlight its dimension.
A Hilbert space associated with a system A will be denoted by HA.

A.3 The Dirac Notation

In this review of linear algebra, we will systematically be using the Dirac or bra-ket
notation, which was introduced by the English physicist Paul Dirac in the context
of quantum mechanics to aid algebraic manipulations. This notation is very simple.
Several notations are used for vectors, such as v and Ev. The Dirac notation uses

v � jvi:

Up to this point, instead of using bold or putting an arrow over letter v, we put letter v
between a vertical bar and a right angle bracket. If we have an indexed basis, that is,
fv1; : : : ; vng, in the Dirac notation we use the form fjv1i; : : : ; jvnig or fj1i; : : : ; jnig.
Note that if we are using a single basis, letter v is unnecessary in principle. Computer
scientists usually start counting from 0. So, the first basis vector is usually called v0.
In the Dirac notation we have

v0 � j0i:
Vector j0i is not the zero vector, it is only the first vector in a collection of vectors. In
the Dirac notation, the zero vector is an exception, whose notation is not modified.
Here we use the notation 0.

Suppose that vector jvi has the following entries in a basis

jvi D

2
64
a1
:::

an

3
75 :
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The dual vector is denoted by hvj and is defined by

hvj D �
a�
1 � � � a�

n

�
:

Usual vectors and their duals can be seen as column and row matrices, respectively,
for algebraic manipulation. The matrix product of hvj by jvi is denoted by

˝
v
ˇ̌
v
˛

and
its value in terms of their entries is

˝
v
ˇ̌
v
˛ D

nX
iD1

a�
i ai :

This is an example of an inner product, which is naturally defined via the Dirac
notation. If fjv1i; : : : ; jvnig is an orthonormal basis, then

˝
vi
ˇ̌
vj
˛ D ıij ;

where ıij is the Kronecker delta. The norm of a vector in this notation is

��jvi�� D
q˝

v
ˇ̌
v
˛
:

We use the terminology ket for vector jvi and bra for dual vector hvj. Keeping
consistency, we use the terminology bra-ket for

˝
v
ˇ̌
v
˛
.

It is also very common to meet the matrix product of jvi by hvj, denoted by jvihvj,
known as the outer product, whose result is an n � n matrix

jvihvj D

2
64
a1
:::

an

3
75 � �a�

1 � � � a�
n

�

D

2
64
a1a

�
1 � � � a1a�

n

: : :

ana
�
1 � � � ana�

n

3
75 :

The key to the Dirac notation is to always view kets as column matrices, bras as
row matrices, and recognize that a sequence of bras and kets is a matrix product,
hence associative, but non-commutative.

A.4 Computational Basis

The computational basis of Cn, denoted by fj0i; : : : ; jn � 1ig, is given by
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j0i D

2
6664
1

0
:::

0

3
7775 ; : : : ; jn� 1i D

2
6664
0

0
:::

1

3
7775 :

This basis is also known as canonical basis. A few times we will use the numbering
of the computational basis beginning with j1i and ending with jni. In this book,
when we use a small-caption Latin letter within a ket or bra, we are referring to the
computational basis. Then, the following expression will always be valid

˝
i
ˇ̌
j
˛ D ıij :

The normalized sum of all computational basis vectors defines vector

jDi D 1p
n

n�1X
iD0

jii;

which we will call diagonal state. When n D 2, the diagonal state is given by
jDi D jCi where

jCi D j0i C j1ip
2

:

Exercise A.1. Explicitly calculate the values of jiihj j and

n�1X
iD0

jiihi j

in C
3.

A.5 Qubit and the Bloch Sphere

The qubit is a unit vector in vector space C2. A generic qubit j i is represented by

j i D ˛ j0i C ˇ j1i;

where coefficients ˛ and ˇ are complex numbers and obey the constraint

j˛j2 C jˇj2 D 1:

The set fj0i; j1ig is the computational basis of C2 and ˛; ˇ are called amplitudes of
state j i. The term state (or state vector) is used as a synonym for unit vector in a
Hilbert space.
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Fig. A.1 Bloch Sphere. The
state j i of a qubit is
represented by a point on the
sphere

In principle, we need four real numbers to describe a qubit, two for ˛ and two for
ˇ. The constraint j˛j2 C jˇj2 D 1 reduces to three numbers. In quantum mechanics,
two vectors that differ from a global phase factor are considered equivalent. A
global phase factor is a complex number of unit modulus multiplying the state. By
eliminating this factor, a qubit can be described by two real numbers � and � as
follows:

j i D cos
�

2
j0i C ei� sin

�

2
j1i;

where 0 � � � � and 0 � � < 2� . In the above notation, state j i can be
represented by a point on the surface of a sphere of unit radius, called Bloch sphere.
Numbers � and � are spherical angles that locate the point that describes j i, as
shown in Fig. A.1. The vector showed there is given by

2
4sin � cos�

sin � sin �
cos �

3
5 :

When we disregard global phase factors, there is a one-to-one correspondence
between the quantum states of a qubit and the points on the Bloch sphere. State j0i
is in the north pole of the sphere, because it is obtained by taking � D 0. State j1i
is in the south pole. States

j˙i D j0i ˙ j1ip
2

are the intersection points of the x-axis and the sphere, and states .j0i ˙ ij1i/=p2
are the intersection points of the y-axis with the sphere.

The representation of classical bits in this context is given by the poles of the
Bloch sphere and the representation of the probabilistic classical bit, that is, 0 with
probability p and 1 with probability 1 � p, is given by the point in z-axis with
coordinate 2p � 1. The interior of the Bloch sphere is used to describe the states of
a qubit in the presence of decoherence.
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Exercise A.2. Using the Dirac notation, show that opposite points in the Bloch
sphere correspond to orthogonal states.

Exercise A.3. Suppose you know that a qubit is either is in state jCi with
probability p or in state j�i with probability 1 � p. If this is the best you know
about the qubit’s state, where in the Bloch sphere would you represent this qubit?

Exercise A.4. Does the outside of Bloch sphere play any role?

A.6 Linear Operators

Let V and W be vector spaces, fjv1i; : : : ; jvnig a basis for V , and A a function
A W V 7! W that satisfies

A
 X

i

ai jvi i
!

D
X
i

aiA.jvi i/;

for any complex numbers ai . A is called a linear operator from V to W . The term
linear operator in V means that both the domain and codomain of A is V . The
composition of linear operators A W V1 7! V2 and B W V2 7! V3 is also a linear
operator C W V1 7! V3 obtained through the composition of their functions: C.jvi/ D
B.A.jvi/. The sum of two linear operators, both from V to W , is naturally defined
by formula .A C B/.jvi/ D A.jvi/C B.jvi/.

The identity operator I in V is a linear operator such that I.jvi/ D jvi for all
jvi 2 V. The null operator O in V is a linear operator such that O.jvi/ D 0 for all
jvi 2 V.

The rank of a linear operator A in V is the dimension of the image of A. The
kernel or nullspace of a linear operator A in V is the set of all vectors jvi for which
A.jvi/ D 0. The dimension of the kernel is called the nullity of the operator. The
rank-nullity theorem states that rank A + nullity A = dim V .

Fact

If we specify the action of a linear operator on a basis of vector space V , its action
on any vector in V can be straightforwardly determined.
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A.7 Matrix Representation

Linear operators can be represented by matrices. Let A W V 7! W be a linear
operator, fjv1i; : : : ; jvnig and fjw1i; : : : ; jwmig orthonormal bases for V and W ,
respectively. A matrix representation of A is obtained by applyingA to every vector
in the basis of V and expressing the result as a linear combination of basis vectors
of W , as follows:

A �ˇ̌vj ˛� D
mX
iD1

aij jwi i;

where index j run from 1 to n. Therefore, aij are entries of an m� n matrix, which
we call A. In this case, expression A �ˇ̌vj ˛�, which means function A applied to
argument

ˇ̌
vj
˛
, is equivalent to the matrix product A

ˇ̌
vj
˛
. Using the outer product

notation, we have

A D
mX
iD1

nX
jD1

aij jwi i
˝
vj
ˇ̌
:

Using the above equation and the fact that the basis of V is orthonormal, we can
verify that the matrix product of A by

ˇ̌
vj
˛

is equal to A �ˇ̌vj ˛�. The key to this
calculation is to use the associativity of matrix multiplication:

�jwi i˝vj ˇ̌�jvki D jwi i
� ˝

vj
ˇ̌
vk
˛ �

D ıjkjwi i:

In particular, the matrix representation of the identity operator I in any orthonor-
mal basis is the identity matrix I and the matrix representation of the null operator
O in any orthonormal basis is the zero matrix.

If the linear operator C is the composition of the linear operators B and A, the
matrix representation of C will be obtained by multiplying the matrix representation
of B with that of A, that is, C D BA.

When we fix orthonormal bases for the vector spaces, there is a one-to-
one correspondence between linear operators and matrices. In C

n, we use the
computational basis as a reference basis, so the terms linear operator and matrix
are taken as synonyms. We will also use the term operator as a synonym for linear
operator.

Exercise A.5. Suppose B is an operator whose action on the computational basis
of the n-dimensional vector space V is

Bjj i D ˇ̌
 j
˛
;

where
ˇ̌
 j
˛

are vectors in V for all j .

1. Obtain the expression of B using the outer product.
2. Show that

ˇ̌
 j
˛

is the j -th column in the matrix representation of B .
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3. Suppose that B is the Hadamard operator

H D 1p
2

�
1 1

1 �1
�
:

Redo the previous items using operatorH .

A.8 Diagonal Representation

Let O be an operator in V . If there exists an orthonormal basis fjv1i; : : : ; jvnig of V
such that

O D
nX
iD1

�i jvi ihvi j;

we say that O admits a diagonal representation or, equivalently, O is diago-
nalizable. The complex numbers �i are the eigenvalues of O and jvi i are the
corresponding eigenvectors. Any multiple of an eigenvector is also an eigenvector.
If two eigenvectors are associated with the same eigenvalue, then any linear
combination of these eigenvectors is an eigenvector. The number of linearly
independent eigenvectors associated with the same eigenvalue is the multiplicity
of that eigenvalue.

If there are eigenvalues with multiplicity greater than one, the diagonal represen-
tation can be factored out as follows:

O D
X
�

�P�;

where index � runs only on the distinct eigenvalues and P� is the projector on
the eigenspace of O associated with eigenvalue �. If � has multiplicity 1, P� D
jvihvj, where jvi is the unit eigenvector associated with �. If � has multiplicity 2
and jv1i; jv2i are linearly independent unit eigenvectors associated with �, P� D
jv1ihv1j C jv2ihv2j and so on. The projectors P� satisfy

X
�

P� D I:

An alternative way to define a diagonalizable operator is by requiring that O is
similar to a diagonal matrix. Matrices O and O 0 are similar if O 0 D M�1OM for
some invertible matrix M . We have interest only in the case when M is a unitary
matrix. The term diagonalizable we use here is narrower than the one used in the
literature, because we are demanding that M be a unitary matrix.
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Exercise A.6. Suppose that O is a diagonalizable operator with eigenvalues ˙1.
Show that

P˙1 D I ˙O

2
:

A.9 Completeness Relation

The completeness relation is so useful that it deserves to be highlighted. Let fjv1i,
: : :, jvnig be an orthonormal basis of V . Then,

I D
nX
iD1

jviihvi j:

The completeness relation is the diagonal representation of the identity matrix.

Exercise A.7. If fjv1i; : : : ; jvnig is an orthonormal basis, it is straightforward to
verify the validity of equations

A
ˇ̌
vj
˛ D

mX
iD1

aij jwi i

from equation

A D
mX
iD1

nX
jD1

aij jwi i
˝
vj
ˇ̌
:

Verify in the reverse direction using the completeness relation, that is, assuming that
expressions A

ˇ̌
vj
˛

are given for all 1 � j � n, obtain A.

A.10 Cauchy–Schwarz Inequality

Let V be a Hilbert space and jvi; jwi 2 V . Then,

ˇ̌ ˝
v
ˇ̌
w
˛ ˇ̌ �

q˝
v
ˇ̌
v
˛ ˝

w
ˇ̌
w
˛
:

A more explicit way of presenting the Cauchy–Schwarz inequality is

ˇ̌̌
ˇ̌X
i

viwi

ˇ̌̌
ˇ̌
2

�
 X

i

jvi j2
! X

i

jwi j2
!
;

which is obtained when we take jvi D P
i v�
i jii and jwi D P

i wi jii.
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A.11 Special Operators

Let A be a linear operator in Hilbert space V . Then, there exists a unique linear
operator A� in V , called adjoint operator, that satisfies

.jvi; Ajwi/ D �
A�jvi; jwi� ;

for all jvi; jwi 2 V .
The matrix representation of A� is the transpose-conjugate matrix .A�/T. The

main properties of the dagger or transpose-conjugate operation are

1. .AB/� D B�A�

2. jvi� D hvj
3.
�
Ajvi�� D hvjA�

4.
�jwihvj�� D jvihwj

5.
�
A�
�� D A

6.
�P

i aiAi
�� D P

i a
�
i A

�
i

The last property shows that the dagger operation is conjugate-linear when applied
on a linear combination of operators.

Normal Operator

An operator A in V is normal if A�A D AA�.

Spectral Theorem

An operator A in V is diagonalizable if and only if A is normal.

Unitary Operator

An operator U in V is unitary if U �U D UU � D I.

Facts About Unitary Operators

Unitary operators are normal, so they are diagonalizable with respect to an
orthonormal basis. Eigenvectors of a unitary operator associated with different
eigenvalues are orthogonal. The eigenvalues have unit modulus, that is, their form
is ei˛, where ˛ is a real number. Unitary operators preserve the inner product, that
is, the inner product of U jv1i by U jv2i is equal to the inner product of jv1i by jv2i.
The application of a unitary operator on a vector preserves its norm.
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Hermitian Operator

An operator A in V is Hermitian or self-adjoint if A� D A.

Facts About Hermitian Operators

Hermitian operators are normal, so they are diagonalizable with respect to an
orthonormal basis. Eigenvectors of a Hermitian operator associated with different
eigenvalues are orthogonal. The eigenvalues of a Hermitian operator are real
numbers. A real symmetric matrix is Hermitian.

Orthogonal Projector

An operator P in V is an orthogonal projector if P2 D P and P� D P .

Facts About Orthogonal Projectors

The eigenvalues are equal to 0 or 1. If P is an orthogonal projector, then the
orthogonal complement I �P is also an orthogonal projector. Applying a projector
on a vector either decreases its norm or maintains invariant. In this book, we use
the term projector as a synonym for orthogonal projector. We will use the term
non-orthogonal projector explicitly to distinguish this case. An example of a non-
orthogonal projector on a qubit is P D j1ihCj.

Positive Operator

An operator A in V is said positive if
˝
v
ˇ̌
A
ˇ̌
v
˛ � 0 for any jvi 2 V . If the inequality

is strict for any nonzero vector in V , then the operator is said positive definite.

Facts About Positive Operators

Positive operators are Hermitian. The eigenvalues are nonnegative real numbers.

Exercise A.8. Consider matrix

M D
�
1 0

1 1

�
:

1. Show that M is not normal.
2. Show that the eigenvectors ofM generate a one-dimensional space.
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Exercise A.9. Consider matrix

M D
�
1 0

1 �1
�
:

1. Show that the eigenvalues of M are ˙1.
2. Show that M is neither unitary nor Hermitian.
3. Show that the eigenvectors associated with distinct eigenvalues of M are not

orthogonal.
4. Show that M has a diagonal representation.

Exercise A.10.

1. Show that the product of two unitary operators is a unitary operator.
2. The sum of two unitary operators is necessarily a unitary operator? If not, give a

counterexample.

Exercise A.11.

1. Show that the sum of two Hermitian operators is a Hermitian operator.
2. The product of two Hermitian operators is necessarily a Hermitian operator? If

not, give a counterexample.

Exercise A.12. Show that A�A is a positive operator for any operator A.

A.12 Pauli Matrices

The Pauli matrices are

�0 D I D
�
1 0

0 1

�
;

�1 D �x D X D
�
0 1

1 0

�
;

�2 D �y D Y D
�
0 �i
i 0

�
;

�3 D �z D Z D
�
1 0

0 �1
�
:

These matrices are unitary and Hermitian, and hence their eigenvalues are equal to
˙1. Putting in another way: �2j D I and ��j D �j for j D 0; : : : ; 3.
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The following facts are extensively used:

X j0i D j1i; X j1i D j0i;

Zj0i D j0i; Zj1i D �j1i:
Pauli matrices form a basis for the vector space of 2 � 2 matrices. Therefore, a
generic operator that acts on a qubit can be written as a linear combination of Pauli
matrices.

Exercise A.13. Consider the representation of the state j i of a qubit in the Bloch
sphere. What is the representation of states X j i, Y j i, and Zj i relative to j i?
What is the geometric interpretation of the action of the Pauli matrices on the Bloch
sphere?

A.13 Operator Functions

If we have an operator A in V , we can ask whether it is possible to calculate
p
A,

that is, to find an operator the square of which is A? In general, we can ask ourselves
whether it makes sense to use an operator as an argument of a usual function, such
as, exponential or logarithmic function. If operator A is normal, it has a diagonal
representation, that is, can be written in the form

A D
X
i

ai jvi ihvi j;

where ai are the eigenvalues and the set fjvi ig is an orthonormal basis of eigen-
vectors of A. We can extend the application of a function f W C 7! C to A as
follows

f .A/ D
X
i

f .ai /jvi ihvi j:

The result is an operator defined in the same vector space V and it is independent of
the choice of basis of V .

If the goal is to calculate
p
A, first A must be diagonalized, that is, we must

determine a unitary matrix U such that A D UDU�, where D is a diagonal matrix.
Then, we use the fact that

p
A D U

p
DU�, where

p
D is calculated by taking the

square root of each diagonal element.
If U is the evolution operator of an isolated quantum system that is initially in

state j .0/i, the state at time t is given by

j .t/i D U t j .0/i:

The most efficient way to calculate state j .t/i is to obtain the diagonal representa-
tion of the unitary operator U
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U D
X
i

�i jvi ihvi j;

and to calculate the t-th power U , that is,

U t D
X
i

�ti jviihvi j:

The system state at time t will be

j .t/i D
X
i

�ti
˝
vi
ˇ̌
 .0/

˛ jvii:

The trace of a matrix is another type of operator function. In this case, the result
of applying the trace function is a complex number defined as

tr.A/ D
X
i

ai i ;

where aii are the diagonal elements of A. In the Dirac notation

tr.A/ D
X
i

hvi jAjvii;

where fjv1i; : : : ; jvnig is an orthonormal basis of V . The trace function satisfies the
following properties:

1. tr.aAC bB/ D a tr.A/C b tr.B/; (linearity)
2. tr.AB/ D tr.BA/;
3. tr.AB C/ D tr.CAB/: (cyclic property)

The third property follows from the second one. Properties 2 and 3 are valid even
when A, B , and C are not square matrices.

The trace function is invariant under similarity transformations, that is,
tr(M�1AM ) = tr(A), where M is an invertible matrix. This implies that the trace
does not depend on the basis choice for the matrix representation of A.

A useful formula involving the trace of operators is

tr.Aj ih j/ D ˝
 
ˇ̌
A
ˇ̌
 
˛
;

for any j i 2 V and any A in V . This formula can be easily proved using the cyclic
property of the trace function.

Exercise A.14. Using the method of applying functions on matrices described in
this section, find all matricesM such that

M2 D
�
5 4

4 5

�
:
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A.14 Tensor Product

Let V and W be finite Hilbert spaces with basis fjv1i, : : :, jvmig and fjw1i, : : :,
jwnig, respectively. The tensor product of V by W , denoted by V ˝ W , is an mn-
dimensional Hilbert space, for which set fjv1i˝jw1i; jv1i˝jw2i; : : : ; jvmi˝jwnig is
a basis. The tensor product of a vector in V by a vector inW , such as jvi˝ jwi, also
denoted by jvijwi or jv;wi or jv wi, can be calculated explicitly via the Kronecker
product, defined ahead. A generic vector in V ˝W is a linear combination of vectors
jvii ˝ ˇ̌

wj
˛
, that is, if j i 2 V ˝W then

j i D
mX
iD1

nX
jD1

aij jvi i ˝ ˇ̌
wj
˛
:

The tensor product is bilinear, that is, linear in each argument:

1. jvi ˝ �
a jw1i C b jw2i

� D a jvi ˝ jw1i C b jvi ˝ jw2i;
2.
�
a jv1i C b jv2i

�˝ jwi D a jv1i ˝ jwi C b jv2i ˝ jwi:
A scalar can always be factored out to the beginning of the expression:

a
�jvi ˝ jwi� D �

ajvi�˝ jwi D jvi ˝ �
ajwi�:

The tensor product of a linear operator A in V by B in W , denoted by A˝B , is
a linear operator in V ˝W defined by

�
A˝ B

��jvi ˝ jwi� D �
Ajvi�˝ �

Bjwi�:
A generic linear operator in V ˝ W can be written as a linear combination of
operators of the form A ˝ B , but an operator in V ˝ W cannot be factored out
in general. This definition can easily be extended to operators A W V 7! V 0 and
B W W 7! W 0. In this case, the tensor product of these operators is of type
.A˝ B/ W .V ˝W / 7! .V 0 ˝W 0/.

In quantum mechanics, it is very common to use operators in the form of external
products, for example, A D jvihvj and B D jwihwj. The tensor product of A by B
can be represented by the following equivalent ways:

A˝B D �jvihvj�˝ �jwihwj�
D jvihvj ˝ jwihwj
D jv;wihv;wj:

If A1;A2 are operators in V and B1;B2 are operators inW , then the composition
or the matrix product of the matrix representations obey the property

.A1 ˝ B1/ � .A2 ˝ B2/ D .A1 � A2/˝ .B1 � B2/:
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The inner product of jv1i ˝ jw1i by jv2i ˝ jw2i is defined as

�jv1i ˝ jw1i ; jv2i ˝ jw2i
� D ˝

v1
ˇ̌
v2
˛ ˝

w1
ˇ̌
w2
˛
:

The inner product of vectors written as a linear combination of basis vectors are
calculated by applying the linear property in the second argument and the conjugate-
linear property in the first argument of the inner product. For example,

  
nX
iD1

ai jvii
!

˝ jw1i ; jvi ˝ jw2i
!

D
 

nX
iD1

a�
i

˝
vi
ˇ̌
v
˛! ˝

w1
ˇ̌
w2
˛
:

The inner product definition implies that

�� jvi ˝ jwi �� D �� jvi �� � �� jwi ��:
In particular, the norm of the tensor product of unit-norm vectors is a unit-norm
vector.

When we use matrix representations for operators, the tensor product can be
calculated explicitly via the Kronecker product. Let A be a m � n matrix and B a
p � q matrix. Then,

A˝ B D

2
64
a11B � � � a1nB

: : :

am1B � � � amnB

3
75 :

The dimension of the resulting matrix is mp � nq. The Kronecker product can be
used for matrices of any dimension, particularly for two vectors,

�
a1
a2

�
˝
�
b1
b2

�
D

2
6666666664

a1

2
4b1
b2

3
5

a2

2
4b1
b2

3
5

3
7777777775

D

2
6666666664

a1b1

a1b2

a2b1

a2b2

3
7777777775
:

The tensor product is an associative and distributive operation, but noncommu-
tative, that is, jvi ˝ jwi ¤ jwi ˝ jvi if v ¤ w. Most operations on a tensor product
are performed term by term, such as

.A˝ B/� D A� ˝ B�:

If both operatorsA andB are special operators of the same type, as the ones defined
in Sect. A.11, then the tensor product A˝ B is also a special operator of the same
type. For example, the tensor product of Hermitian operators is a Hermitian operator.
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The trace of a Kronecker product of matrices is

tr.A˝ B/ D trA trB;

while the determinant is

det.A˝B/ D .detA/m .detB/n;

where n is the dimension of A and m of B .
The direct sum of a vector space V with itself n times is a particular case of the

tensor product. In fact, a matrixA˚� � �˚A in V ˚� � �˚V is equal to I ˝A for any
A in V , where I is the n � n identity matrix. This shows that, somehow, the tensor
product is defined from the direct sum of vector spaces, analogous to the product of
numbers which is defined from the sum of numbers. However, the tensor product is
richer than the simple repetition of the direct sum of vector spaces. Anyway, we can
continue generalizing definitions: It is natural to define tensor potentiation, in fact,
V ˝n means V ˝ � � � ˝ V with n terms.

If the diagonal state of the vector space V is jDiV and of space W is jDiW , then
the diagonal state of space V ˝W is jDiV ˝ jDiW : Therefore, the diagonal state of
space V ˝n is jDi˝n:

Exercise A.15. Let H be the Hadamard operator

H D 1p
2

�
1 1

1 �1
�
:

Show that

hi jH˝njj i D .�1/i �jp
2n

;

where n represents the number of qubits and i � j is the binary inner product, that is,
i � j D i1j1 C � � � C injn mod 2, where .i1; : : : ; in/ and .j1; : : : ; jn/ are the binary
decompositions of i and j , respectively.

A.15 Registers

A register is a set of qubits treated as a composite system. In many quantum
algorithms, the qubits are divided into two registers: one for the main calculation
from where the result comes out and the other for the draft (calculations that will be
erased). Suppose we have a register with two qubits. The computational basis is

j0; 0i D

2
664
1

0

0

0

3
775 j0; 1i D

2
664
0

1

0

0

3
775 j1; 0i D

2
664
0

0

1

0

3
775 j1; 1i D

2
664
0

0

0

1

3
775 :
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A generic state of this register is

j i D
1X
iD0

1X
jD0

aij ji; j i

where coefficients aij are complex numbers that satisfy the constraint

ˇ̌
a00
ˇ̌2 C ˇ̌

a01
ˇ̌2 C ˇ̌

a10
ˇ̌2 C ˇ̌

a11
ˇ̌2 D 1:

To help generalizing to n qubits, it is usual to compress the notation by converting
binary-base representation to decimal-base. The computational basis for two-qubit
register in decimal-base representation is fj0i; j1i; j2i; j3ig. In the binary-base
representation, we can determine the number of qubits by counting the number of
digits inside the ket, for example, j011i refers to three qubits. In the decimal-base
representation, we cannot determine what is the number of qubits of the register.
This information should come implicit. In this case, we can go back, write the
numbers in the binary-base representation and explicitly retrieve the notation. In
the compact notation, a generic state of a n-qubit register is

j i D
2n�1X
iD0

ai jii;

where coefficients ai are complex numbers that satisfy the constraint

2n�1X
iD0

ˇ̌
ai
ˇ̌2 D 1:

The diagonal state of a n-qubit register is the tensor product of the diagonal state
of each qubit, that is, jDi D jCi˝n.

Exercise A.16. Let f be a function with domain f0; 1gn and codomain f0; 1gm.
Consider a 2-register quantum computer with n andm qubits, respectively. Function
f can be implemented by using operator Uf defined in the following way:

Uf jxijyi D jxijy ˚ f .x/i;

where x has n bits, y hasm bits, and ˚ is the binary sum (bitwise xor).

1. Show that Uf is a unitary operator for any f .
2. If n D m and f is injective, show that f can be implemented on a 1-register

quantum computer with n qubits.
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Further Reading

There are many good books about linear algebra. For an initial contact, we suggest
[11,12,37,72]; for a more advanced approach, we suggest [36]; for those who have
mastered the basics and are only interested in the application of linear algebra on
quantum computation, we suggest [64].
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