

“Successful companies embrace risk, and Schneier shows how to bring
that thinking to the Internet.”

– Mary Meeker, Managing Director and Internet Analyst, Morgan
Stanley, Dean Witter

“Bruce shows that concern for security should not rest in the IT
department alone, but also in the business office . . . Secrets and Lies is the
breakthrough text we’ve been waiting for to tell both sides of the story.”

–Steve Hunt, Vice President of Research, Giga Information Group

“Good security is good business. And security is not (just) a technical
issue; it’s a people issue! Security expert Bruce Schneier tells you why
and how. If you want to be successful, you should read this book before
the competition does.”

–Esther Dyson, Chairman, EDventure Holdings

“Setting himself apart, Schneier navigates rough terrain without being
overly technical or sensational—two common pitfalls of writers who
take on cybercrime and security. All this helps to explain Schneier’s
long-standing cult-hero status, even—indeed especially—among his
esteemed hacker adversaries.”

–Industry Standard

“All in all, as a broad and readable security guide, Secrets and Lies should
be near the top of the IT required-reading list.”

–eWeek

“Secrets and Lies should begin to dispel the fog of deception and special
pleading around security, and it’s fun.”

–New Scientist

“This book should be, and can be, read by any business executive, no
specialty in security required . . . At Walker Digital, we spent millions of
dollars to understand what Bruce Schneier has deftly explained here.”

–Jay S. Walker, Founder of Priceline.com

Praise for Secrets and Lies

ffirs.indd 1 2/16/15 10:59 AM

“Just as Applied Cryptography was the bible for cryptographers in the 90’s,
so Secrets and Lies will be the official bible for INFOSEC in the new mil-
lennium. I didn’t think it was possible that a book on business security
could make me laugh and smile, but Schneier has made this subject very
enjoyable.”
 –Jim Wallner, National Security Agency

“The news media offer examples of our chronic computer security woes
on a near-daily basis, but until now there hasn’t been a clear, compre-
hensive guide that puts the wide range of digital threats in context. The
ultimate knowledgeable insider, Schneier not only provides definitions,
explanations, stories, and strategies, but a measure of hope that we can
get through it all.”
 –Steven Levy, author of Hackers and Crypto

“In his newest book, Secrets and Lies: Digital Security in a Networked World,
Schneier emphasizes the limitations of technology and offers managed
security monitoring as the solution of the future.”
 –Forbes Magazine

ffirs.indd 2 2/16/15 10:59 AM

Secrets and Lies
DIGITAL SECuRITy

IN A NETWORkED WORLD

15th Anniversary Edition

Bruce Schneier

ffirs.indd 3 2/16/15 10:59 AM

Secrets and Lies: Digital Security in a Networked World, 15th Anniversary Edition
Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2000 by Bruce Schneier. All rights reserved.
Introduction to the Paperback Edition, Copyright © 2004 by Bruce Schneier. All rights reserved.
New foreword copyright © 2015 by Bruce Schneier. All rights reserved.

Published by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 9781119092438
Manufactured in the united States of America
10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
as permitted under Sections 107 or 108 of the 1976 united States Copyright Act, without either
the prior written permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations
or warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies
contained herein may not be suitable for every situation. This work is sold with the understanding that
the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of further information does
not mean that the author or the publisher endorses the information the organization or website may
provide or recommendations it may make. Further, readers should be aware that Internet websites listed
in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care
Department within the united States at (877) 762-2974, outside the united States at (317) 572-3993
or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-
demand. If this book refers to media such as a CD or DVD that is not included in the version you
purchased, you may download this material at http://booksupport.wiley.com. For more information
about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015932613

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates, in the united States and other countries, and may not be used without
written permission. [Insert third-party trademark information] All other trademarks are the property
of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book

ffirs.indd 4 2/16/15 10:59 AM

To Karen: DMASC

ffirs.indd 5 2/16/15 10:59 AM

ffirs.indd 6 2/16/15 10:59 AM

vii

Contents

F o r e w o r d t o 2 0 1 5
1 5 t h A n n i v e r s A r y e d i t i o n i x

i n t r o d u c t i o n F r o m t h e
p A p e r b A c k e d i t i o n x i i i

p r e F A c e x x i i i

A b o u t t h e A u t h o r x x v i i

1 . i n t r o d u c t i o n 1

p A r t 1 : t h e L A n d s c A p e 1 1

2 . d i g i t A L t h r e A t s 1 4

3 . A t t A c k s 2 3

4 . A d v e r s A r i e s 4 2

5 . s e c u r i t y n e e d s 5 9

p A r t 2 : t e c h n o L o g i e s 8 3

6 . c r y p t o g r A p h y 8 5

7 . c r y p t o g r A p h y i n c o n t e x t 1 0 2

8 . c o m p u t e r s e c u r i t y 1 2 0

ftoc.indd 7 2/18/15 7:15 AM

viii Contents

9 . i d e n t i F i c A t i o n A n d A u t h e n t i c A t i o n 1 3 5

1 0 . n e t w o r k e d - c o m p u t e r s e c u r i t y 1 5 1

1 1 . n e t w o r k s e c u r i t y 1 7 6

1 2 . n e t w o r k d e F e n s e s 1 8 8

1 3 . s o F t w A r e r e L i A b i L i t y 2 0 2

1 4 . s e c u r e h A r d w A r e 2 1 2

1 5 . c e r t i F i c A t e s A n d c r e d e n t i A L s 2 2 5

1 6 . s e c u r i t y t r i c k s 2 4 0

1 7 . t h e h u m A n F A c t o r 2 5 5

p A r t 3 : s t r A t e g i e s 2 7 1

1 8 . v u L n e r A b i L i t i e s A n d t h e v u L n e r A b i L i t y
L A n d s c A p e 2 7 4

1 9 . t h r e A t m o d e L i n g A n d r i s k
A s s e s s m e n t 2 8 8

2 0 . s e c u r i t y p o L i c i e s A n d
c o u n t e r m e A s u r e s 3 0 7

2 1 . A t t A c k t r e e s 3 1 8

2 2 . p r o d u c t t e s t i n g A n d v e r i F i c A t i o n 3 3 4

2 3 . t h e F u t u r e o F p r o d u c t s 3 5 3

2 4 . s e c u r i t y p r o c e s s e s 3 6 7

2 5 . c o n c L u s i o n 3 8 9

A F t e r w o r d 3 9 6

r e s o u r c e s 3 9 9

A c k n o w L e d g m e n t s 4 0 1

i n d e x 4 0 3

ftoc.indd 8 2/18/15 7:15 AM

Foreword to 2015
15th Anniversary Edition

Rereading a book that I finished fifteen years ago—in 2000—
perhaps the most surprising thing is how little things have
changed. Of course, there have been many changes in security

over that time: advances in attack tools, advances in defensive tools, new
cryptographic algorithms and attacks, new technological systems with
their own security challenges, and different mainstream security systems
based on changing costs of technologies. But the underlying princi-
ples remain unchanged. My chapters on cryptography and its limits, on
authentication and authorization, and on threats, attacks, and adversar-
ies could largely have been written yesterday. (Go read my section in
Chapter 4 on “national intelligence organizations” as an adversary, and
think about it in terms of what we know today about the NSA.)

To me, the most important part of Secrets & Lies is in Chapter 24,
where I talk about security as a combination of protection, detection,
and response. This might seem like a trivial observation, and even back
then it was obvious if you looked around at security in the real world,
but back in 2000 it was a bigger deal. We were still very much in the
mindset of security equals protection. The goal was to prevent attacks:
through cryptography, access control, firewalls, antivirus, and all sorts of
other technologies. The idea that you had to detect attacks was still in its
infancy. Intrusion Detection Systems (IDS) were just starting to become
popular. Fully fleshing out detection is what led me to the concept of
continually monitoring your network against attack, and to start the
company called Counterpane Internet Security, Inc.

Now there are all sorts of products and services that detect Internet
attacks. IDS has long been a robust product category. There are log moni-

ix

fbetw.indd 9 2/18/15 7:04 AM

x Introduction

toring and analysis tools. There are systems that detect when critical files are
accessed or changed. And Managed Security Monitoring is a fully mature
part of the IT security industry. (BT acquired Counterpane in 2006.)

I bring this up because there’s a parallel to today, in both my own
thinking and in Internet security. If the 1990s were the decade of pro-
tection, and the 2000s became the decade of detection, the 2010s are the
decade of response. The coming years are when IT incident response
products and services will fully mature as a product category.

Again, on the surface it seems obvious. What good is an alarm system
if no one responds to it? But my 2000 writings in this book barely flesh
that idea out, and even in the years after, most of us talked about incident
response in only the most general terms. (See Chapter 24 for an example.)
The FIRST conference for IT response professionals has been around
since 1988, but it’s long been a sidelight to the rest of IT security. It’s only
recently that it has become incorporated into the industry. Again I am in
a company that is at the forefront of this: building an incident response
management platform. But this time I am not alone; there are other com-
panies building products and services around IT incident response.

This is a good thing. If there’s anything we’ve learned about IT
security in recent years, it’s that successful attacks are inevitable. There
are a bunch of reasons why this is true, but the most important is what
I wrote about in Chapter 23: complexity. Complex systems are inher-
ently more vulnerable than simple ones, and the Internet is the most
complex machine mankind has ever built. It’s simply easier to attack our
modern computer systems than it is to defend them, and this is likely to
remain true for the foreseeable future. It’s not that defense is futile, it’s
that attack has the upper hand.

This means that we have to stop believing that we can be resistant
against attacks, and start thinking about how we can be resilient in the
face of attacks. Resilience comes from a combination of elements: fault-
tolerance, redundancy, adaptability, mitigation, and survivability. And a
big part of it is incident response. Too many of the high-profile security
incidents over the past few years have been followed by ham-handed
responses by the victims, both technically and organizationally. We all
know that response is important, yet we largely approach it in an ad hoc
manner. We simply have to get better at it.

The best way I’ve found to think about incident response is through
a military concept called OODA loops. OODA stands for “observe,

fbetw.indd 10 2/18/15 7:04 AM

 Introduction xi

orient, decide, act,” and it’s a way of thinking about real-time adver-
sarial situations. The concepts were developed by U.S. Air Force mili-
tary strategist Colonel John Boyd as a way of thinking about fighter-jet
dogfights, but the general idea has been applied to everything from busi-
ness negotiations to litigation to strategic military planning to boxing—
and computer and network incident response.

The basic idea is that a fighter pilot is constantly going through
OODA loops in his head. And the faster he can perform these loops—if,
in Boyd’s terminology, he can get inside his opponent’s OODA loop—
he has an enormous advantage. Boyd looked at everything on an aircraft
in terms of how it improved one or more aspects of the pilot’s OODA
loop. And if it didn’t improve his OODA loop, what was it doing on
the aircraft?

More generally, people in any of these real-time adversarial situa-
tions need tools to improve the speed and effectiveness of their OODA
loops. In IT, we need tools to facilitate all four OODA-loop steps.
Pulling tools for observation, orientation, decision, and action together
under a unified framework will make incident response work. And mak-
ing incident response work is the ultimate key to making security work.
The goal here is to bring people, process, and technology together in a
way we haven’t seen before in network security. It’s something we need
to do to continue to defend against the threats.

This is what’s missing from Secrets & Lies, and this is what I am
trying to do today. My company, Resilient Systems, Inc., has built a
coordination platform for incident response. The idea is that when an
incident occurs, people need to immediately convene and figure out
what’s happening, what to do, and how to do it. Any coordination
system has to be flexible in every possible dimension. You won’t know
beforehand who has to be involved in an incident response. You won’t
know beforehand what has to be done, and who has to do it. You won’t
know what information you will need, and what information you will
need to disseminate. In short, you have to be ready for anything.

Protection, detection, and response are not unique to computers
and networks, or even to technology. When I look at all the threats in
a hyper-complex, hyper-technological, hyper-connected world, I rec-
ognize that we simply can’t predict the threat. Our only chance for
real security is to be resilient in the face of unknown and unknowable
threats. I’m working in IT and information resilience. We need political

fbetw.indd 11 2/18/15 7:04 AM

xii Introduction

resilience, social resilience, economic resilience, and lots more besides.
This is what I am thinking about now—how to be resilient in the face
of catastrophic risks—and something I hope to be my next book.

Since writing Secrets & Lies in the late 1990s, I have learned a lot
about security from domains outside of IT. I have also tried to bring
some of the best security ideas from IT into more general security
domains. Today, many of us are doing that. This book still has a lot to
teach people, both within IT and without. But the rest of the world has
a lot to teach us in IT security; OODA loops are just one example. Our
goal should be to always keep learning from each other.

— Minneapolis, Minnesota, and Cambridge,
Massachusetts, January 2015

fbetw.indd 12 2/18/15 7:04 AM

Introduction from the
Paperback Edition

It’s been over three years since the first edition of Secrets and Lies was
published. Reading through it again after all this time, the most
amazing thing is how little things have changed. Today, two years

after 9/11 and in the middle of the worst spate of computer worms and
viruses the world has ever seen, the book is just as relevant as it was when
I wrote it.

The attackers and attacks are the same. The targets and the risks are
the same. The security tools to defend ourselves are the same, and they’re
just as ineffective as they were three years ago. If anything, the problems
have gotten worse. It’s the hacking tools that are more effective and
more efficient. It’s the ever-more-virulent worms and viruses that are
infecting more computers faster. Fraud is more common. Identity theft
is an epidemic. Wholesale information theft—of credit card numbers and
worse—is happening more often. Financial losses are on the rise. The
only good news is that cyberterrorism, the post-9/11 bugaboo that’s scar-
ing far too many people, is no closer to reality than it was three years ago.

The reasons haven’t changed. In Chapter 23, I discuss the problems
of complexity. Simply put, complexity is the worst enemy of security.
As systems get more complex, they necessarily get less secure. Today’s
computer and network systems are far more complex than they were
when I wrote the first edition of this book, and they’ll be more complex
still in another three years. This means that today’s computers and
networks are less secure than they were earlier, and they will be even less

xiii

fbetw.indd 13 2/18/15 7:04 AM

secure in the future. Security technologies and products may be
improving, but they’re not improving quickly enough. We’re forced to
run the Red Queen’s race, where it takes all the running you can do just
to stay in one place.

As a result, today computer security is at a crossroads. It’s failing,
regularly, and with increasingly serious results. CEOs are starting to
notice. When they finally get fed up, they’ll demand improvements.
(Either that or they’ll abandon the Internet, but I don’t believe that is a
likely possibility.) And they’ll get the improvements they demand; cor-
porate America can be an enormously powerful motivator once it gets
going.

For this reason, I believe computer security will improve eventually.
I don’t think the improvements will come in the short term, and I think
they will be met with considerable resistance. This is because the engine
of improvement will be fueled by corporate boardrooms and not com-
puter-science laboratories, and as such won’t have anything to do with
technology. Real security improvement will only come through liability:
holding software manufacturers accountable for the security and, more
generally, the quality of their products. This is an enormous change,
and one the computer industry is not going to accept without a fight.

But I’m getting ahead of myself here. Let me explain why I think the
concept of liability can solve the problem.

It’s clear to me that computer security is not a problem that technol-
ogy can solve. Security solutions have a technological component, but
security is fundamentally a people problem. Businesses approach security
as they do any other business uncertainty: in terms of risk management.
Organizations optimize their activities to minimize their cost–risk prod-
uct, and understanding those motivations is key to understanding com-
puter security today. It makes no sense to spend more on security than
the original cost of the problem, just as it makes no sense to pay liability
compensation for damage done when spending money on security is
cheaper. Businesses look for financial sweet spots—adequate security for
a reasonable cost, for example—and if a security solution doesn’t make
business sense, a company won’t do it.

This way of thinking about security explains some otherwise puzzling
security realities. For example, historically most organizations haven’t
spent a lot of money on network security. Why? Because the costs have

xiv Introduction from the Paperback Edition

fbetw.indd 14 2/18/15 7:04 AM

been significant: time, expense, reduced functionality, frustrated end-
users. (Increasing security regularly frustrates end-users.) On the other
hand, the costs of ignoring security and getting hacked have been, in the
scheme of things, relatively small. We in the computer security field like
to think they’re enormous, but they haven’t really affected a company’s
bottom line. From the CEO’s perspective, the risks include the possibil-
ity of bad press and angry customers and network downtime—none of
which is permanent. And there’s some regulatory pressure, from audits or
lawsuits, which adds additional costs. The result: a smart organization
does what everyone else does, and no more. Things are changing; slowly,
but they’re changing. The risks are increasing, and as a result spending is
increasing.

This same kind of economic reasoning explains why software vendors
spend so little effort securing their own products. We in computer secu-
rity think the vendors are all a bunch of idiots, but they’re behaving com-
pletely rationally from their own point of view. The costs of adding good
security to software products are essentially the same ones incurred in
increasing network security—large expenses, reduced functionality,
delayed product releases, annoyed users—while the costs of ignoring
security are minor: occasional bad press, and maybe some users switching
to competitors’ products. The financial losses to industry worldwide due
to vulnerabilities in the Microsoft Windows operating system are not
borne by Microsoft, so Microsoft doesn’t have the financial incentive to
fix them. If the CEO of a major software company told his board of
directors that he would be cutting the company’s earnings per share by a
third because he was going to really—no more pretending—take security
seriously, the board would fire him. If I were on the board, I would fire
him. Any smart software vendor will talk big about security, but do as
little as possible, because that’s what makes the most economic sense.

Think about why firewalls succeeded in the marketplace. It’s not
because they’re effective; most firewalls are configured so poorly that
they’re barely effective, and there are many more effective security prod-
ucts that have never seen widespread deployment (such as e-mail encryp-
tion). Firewalls are ubiquitous because corporate auditors started
demanding them. This changed the cost equation for businesses. The
cost of adding a firewall was expense and user annoyance, but the cost of
not having a firewall was failing an audit. And even worse, a company

 Introduction from the Paperback Edition xv

fbetw.indd 15 2/18/15 7:04 AM

without a firewall could be accused of not following industry best
practices in a lawsuit. The result: everyone has firewalls all over their
network, whether they do any actual good or not.

As scientists, we are awash in security technologies. We know how
to build much more secure operating systems. We know how to build
much more secure access control systems. We know how to build much
more secure networks. To be sure, there are still technological problems,
and research continues. But in the real world, network security is a busi-
ness problem. The only way to fix it is to concentrate on the business
motivations. We need to change the economic costs and benefits of
security. We need to make the organizations in the best position to fix
the problem want to fix the problem.

To do that, I have a three-step program. None of the steps has
anything to do with technology; they all have to do with businesses,
economics, and people.

STEP ONE: ENFORCE LIABILITIES

This is essential. Remember that I said the costs of bad security are not
borne by the software vendors that produce the bad security. In eco-
nomics this is known as an externality: a cost of a decision that is borne
by people other than those making the decision. Today there are no real
consequences for having bad security, or having low-quality software of
any kind. Even worse, the marketplace often rewards low quality. More
precisely, it rewards additional features and timely release dates, even if
they come at the expense of quality. If we expect software vendors to
reduce features, lengthen development cycles, and invest in secure soft-
ware development processes, they must be liable for security vulnerabili-
ties in their products. If we expect CEOs to spend significant resources
on their own network security—especially the security of their cust-
omers—they must be liable for mishandling their customers’ data. Basic-
ally, we have to tweak the risk equation so the CEO cares about actually
fixing the problem. And putting pressure on his balance sheet is the best
way to do that.

This could happen in several different ways. Legislatures could impose
liability on the computer industry by forcing software manufacturers
to live with the same product liability laws that affect other industries.

xvi Introduction from the Paperback Edition

fbetw.indd 16 2/18/15 7:04 AM

If software manufacturers produced a defective product, they would
be liable for damages. Even without this, courts could start imposing
liability-like penalties on software manufacturers and users. This is starting
to happen. A U.S. judge forced the Department of Interior to take its net-
work offline, because it couldn’t guarantee the safety of American Indian
data it was entrusted with. Several cases have resulted in penalties against
companies that used customer data in violation of their privacy promises,
or collected that data using misrepresentation or fraud. And judges have
issued restraining orders against companies with insecure networks that
are used as conduits for attacks against others. Alternatively, the industry
could get together and define its own liability standards.

Clearly this isn’t all or nothing. There are many parties involved in a
typical software attack. There’s the company that sold the software with
the vulnerability in the first place. There’s the person who wrote the
attack tool. There’s the attacker himself, who used the tool to break into
a network. There’s the owner of the network, who was entrusted with
defending that network. One hundred percent of the liability shouldn’t
fall on the shoulders of the software vendor, just as 100 percent shouldn’t
fall on the attacker or the network owner. But today 100 percent of the
cost falls on the network owner, and that just has to stop.

However it happens, liability changes everything. Currently, there is
no reason for a software company not to offer more features, more com-
plexity, more versions. Liability forces software companies to think twice
before changing something. Liability forces companies to protect the data
they’re entrusted with.

STEP TWO: ALLOW PARTIES TO TRANSFER LIABILITIES

This will happen automatically, because CEOs turn to insurance com-
panies to help them manage risk, and liability transfer is what insurance
companies do. From the CEO’s perspective, insurance turns variable-cost
risks into fixed-cost expenses, and CEOs like fixed-cost expenses because
they can be budgeted. Once CEOs start caring about security—and it
will take liability enforcement to make them really care—they’re going
to look to the insurance industry to help them out. Insurance compa-
nies are not stupid; they’re going to move into cyberinsurance in a big

 Introduction from the Paperback Edition xvii

fbetw.indd 17 2/18/15 7:04 AM

way. And when they do, they’re going to drive the computer security
industry...just as they drive the security industry in the brick-and-mortar
world.

A CEO doesn’t buy security for his company’s warehouse—strong
locks, window bars, or an alarm system—because it makes him feel safe.
He buys that security because the insurance rates go down. The same
thing will hold true for computer security. Once enough policies are
being written, insurance companies will start charging different premiums
for different levels of security. Even without legislated liability, the CEO
will start noticing how his insurance rates change. And once the CEO
starts buying security products based on his insurance premiums, the
insurance industry will wield enormous power in the marketplace. They
will determine which security products are ubiquitous, and which are
ignored. And since the insurance companies pay for the actual losses, they
have a great incentive to be rational about risk analysis and the effective-
ness of security products. This is different from a bunch of auditors
deciding that firewalls are important; these are companies with a financial
incentive to get it right. They’re not going to be swayed by press releases
and PR campaigns; they’re going to demand real results.

And software companies will take notice, and will strive to increase
the security in the products they sell, in order to make them competitive
in this new “cost plus insurance cost” world.

STEP THREE: PROVIDE MECHANISMS
TO REDUCE RISK

This will also happen automatically. Once insurance companies start
demanding real security in products, it will result in a sea change in the
computer industry. Insurance companies will reward companies that
provide real security, and punish companies that don’t—and this will
be entirely market driven. Security will improve because the insur-
ance industry will push for improvements, just as they have in fire safety,
electrical safety, automobile safety, bank security, and other industries.

Moreover, insurance companies will want it done in standard models
that they can build policies around. A network that changes every month
or a product that is updated every few months will be much harder to

xviii Introduction from the Paperback Edition

fbetw.indd 18 2/18/15 7:04 AM

insure than a product that never changes. But the computer field natu-
rally changes quickly, and this makes it different, to some extent, from
other insurance-driven industries. Insurance companies will look to
security processes that they can rely on: processes of secure software
development before systems are released, and the processes of protection,
detection, and response that I talk about in Chapter 24. And more and
more, they’re going to look toward outsourced services.

For over four years I have been CTO of a company called Counter-
pane Internet Security, Inc. We provide outsourced security monitoring
for organizations. This isn’t just firewall monitoring or IDS monitoring
but full network monitoring. We defend our customers from insiders,
outside hackers, and the latest worm or virus epidemic in the news. We
do it affordably, and we do it well. The goal here isn’t 100 percent per-
fect security, but rather adequate security at a reasonable cost. This is the
kind of thing insurance companies love, and something I believe will
become as common as fire-suppression systems in the coming years.

The insurance industry prefers security outsourcing, because they can
write policies around those services. It’s much easier to design insurance
around a standard set of security services delivered by an outside vendor
than it is to customize a policy for each individual network. Today, net-
work security insurance is a rarity—very few of our customers have such
policies—but eventually it will be commonplace. And if an organization
has Counterpane—or some other company—monitoring its network, or
providing any of a bunch of other outsourced services that will be pop-
ping up to satisfy this market need, it’ll easily be insurable.

Actually, this isn’t a three-step program. It’s a one-step program with
two inevitable consequences. Enforce liability, and everything else will
flow from it. It has to. There’s no other alternative.

Much of Internet security is a common: an area used by a community
as a whole. Like all commons, keeping it working benefits everyone, but
any individual can benefit from exploiting it. (Think of the criminal jus-
tice system in the real world.) In our society we protect our commons—
environment, working conditions, food and drug practices, streets,
accounting practices—by legislating those areas and by making companies
liable for taking undue advantage of those commons. This kind of think-
ing is what gives us bridges that don’t collapse, clean air and water, and
sanitary restaurants. We don’t live in a “buyer beware” society; we hold
companies liable when they take advantage of buyers.

 Introduction from the Paperback Edition xix

fbetw.indd 19 2/18/15 7:04 AM

There’s no reason to treat software any differently from other prod-
ucts. Today Firestone can produce a tire with a single systemic flaw
and they’re liable, but Microsoft can produce an operating system with
multiple systemic flaws discovered per week and not be liable. Today if
a home builder sells you a house with hidden flaws that make it easier for
burglars to break in, you can sue the home builder; if a software company
sells you a software system with the same problem, you’re stuck with the
damages. This makes no sense, and it’s the primary reason computer
security is so bad today. I have a lot of faith in the marketplace and in
the ingenuity of people. Give the companies in the best position to fix
the problem a financial incentive to fix the problem, and fix it they will.

ADDITIONAL BOOKS

I’ve written two books since Secrets and Lies that may be of interest to
readers of this book:

Beyond Fear: Thinking Sensibly About Security in an Uncertain World is
a book about security in general. In it I cover the entire spectrum of
security, from the personal issues we face at home and in the office to the
broad public policies implemented as part of the worldwide war on
terrorism. With examples and anecdotes from history, sports, natural
science, movies, and the evening news, I explain to a general audience
how security really works, and demonstrate how we all can make
ourselves safer by thinking of security not in absolutes, but in terms of
trade-offs—the inevitable cash outlays, taxes, inconveniences, and dimin-
ished freedoms we accept (or have forced on us) in the name of enhanced
security. Only after we accept the inevitability of trade-offs and learn to
negotiate accordingly will we have a truly realistic sense of how to deal
with risks and threats.

 http://www.schneier.com/bf.html

Practical Cryptography (written with Niels Ferguson) is about cryptog-
raphy as it is used in real-world systems: about cryptography as an engi-
neering discipline rather than cryptography as a mathematical science.
Building real-world cryptographic systems is vastly different from the
abstract world depicted in most books on cryptography, which assumes a
pure mathematical ideal that magically solves your security problems.

xx Introduction from the Paperback Edition

fbetw.indd 20 2/18/15 7:04 AM

Designers and implementers live in a very different world, where nothing
is perfect and where experience shows that most cryptographic systems
are broken due to problems that have nothing to do with mathematics.
This book is about how to apply the cryptographic functions in a real-
world setting in such a way that you actually get a secure system.

 http://www.schneier.com/book-practical.html

FURTHER READING

There’s always more to say about security. Every month there are new
ideas, new disasters, and new news stories that completely miss the point.
For almost six years now I’ve written Crypto-Gram¸ a free monthly e-mail
newsletter that tries to be a voice of sanity and sense in an industry filled
with fear, uncertainty, and doubt. With more than 100,000 readers,
Crypto-Gram is widely cited as the industry’s most influential publication.
There’s no fluff. There’s no advertising. Just honest and impartial
summaries, analyses, insights, and commentaries about the security stories
in the news.

To subscribe, visit:

 http://www.schneier.com/crypto-gram.html

Or send a blank message to:

 crypto-gram-subscribe@chaparraltree.com

You can read back issues on the Web site, too. Some specific articles
that may be of interest are:

 Risks of cyberterrorism:
 http://www.schneier.com/crypto-gram-0306.html#1

 Militaries and cyberwar:
 http://www.schneier.com/crypto-gram-0301.html#1

 The “Security Patch Treadmill”:
 http://www.schneier.com/crypto-gram-0103.html#1

 Full disclosure and security:
 http://www.schneier.com/crypto-gram-0111.html#1

 How to think about security:
 http://www.schneier.com/crypto-gram-0204.html#1

 Introduction from the Paperback Edition xxi

fbetw.indd 21 2/18/15 7:04 AM

 What military history can teach computer security (parts 1 and 2):
 http://www.schneier.com/crypto-gram-0104.html#1
 http://www.schneier.com/crypto-gram-0105.html#1

Thank you for taking the time to read Secrets and Lies. I hope you
enjoy it, and I hope you find it useful.

Bruce Schneier
January 2004

xxii Introduction from the Paperback Edition

fbetw.indd 22 2/18/15 7:04 AM

Preface

xxiii

I have written this book partly to correct a mistake.
Seven years ago I wrote another book: Applied Cryptography. In

it I described a mathematical utopia: algorithms that would keep your
deepest secrets safe for millennia, protocols that could perform the most
fantastical electronic interactions—unregulated gambling, undetectable
authentication, anonymous cash—safely and securely. In my vision
cryptography was the great technological equalizer; anyone with a cheap
(and getting cheaper every year) computer could have the same security
as the largest government. In the second edition of the same book, writ-
ten two years later, I went so far as to write: “It is insufficient to protect
ourselves with laws; we need to protect ourselves with mathematics.”

It’s just not true. Cryptography can’t do any of that.
It’s not that cryptography has gotten weaker since 1994, or that the

things I described in that book are no longer true; it’s that cryptography
doesn’t exist in a vacuum.

Cryptography is a branch of mathematics. And like all mathematics,
it involves numbers, equations, and logic. Security, palpable security that
you or I might find useful in our lives, involves people: things people
know, relationships between people, people and how they relate to
machines. Digital security involves computers: complex, unstable, buggy
computers.

Mathematics is perfect; reality is subjective. Mathematics is defined;

fpref.indd 23 2/16/15 10:59 AM

computers are ornery. Mathematics is logical; people are erratic, capri-
cious, and barely comprehensible.

The error of Applied Cryptography is that I didn’t talk at all about the
context. I talked about cryptography as if it were The Answer™. I was
pretty naïve.

The result wasn’t pretty. Readers believed that cryptography was a
kind of magic security dust that they could sprinkle over their software
and make it secure. That they could invoke magic spells like “128-bit
key” and “public-key infrastructure.” A colleague once told me that the
world was full of bad security systems designed by people who read
Applied Cryptography.

Since writing the book, I have made a living as a cryptography con-
sultant: designing and analyzing security systems. To my initial surprise, I
found that the weak points had nothing to do with the mathematics.
They were in the hardware, the software, the networks, and the people.
Beautiful pieces of mathematics were made irrelevant through bad pro-
gramming, a lousy operating system, or someone’s bad password choice.
I learned to look beyond the cryptography, at the entire system, to find
weaknesses. I started repeating a couple of sentiments you’ll find through-
out this book: “Security is a chain; it’s only as secure as the weakest link.”
“Security is a process, not a product.”

Any real-world system is a complicated series of interconnections.
Security must permeate the system: its components and connections. And
in this book I argue that modern systems have so many components and
connections—some of them not even known by the systems’ designers,
implementers, or users—that insecurities always remain. No system is
perfect; no technology is The Answer™.

This is obvious to anyone involved in real-world security. In the real
world, security involves processes. It involves preventative technologies,
but also detection and reaction processes, and an entire forensics system to
hunt down and prosecute the guilty. Security is not a product; it itself is a
process. And if we’re ever going to make our digital systems secure, we’re
going to have to start building processes.

A few years ago I heard a quotation, and I am going to modify it here:
If you think technology can solve your security problems, then you don’t
understand the problems and you don’t understand the technology.

This book is about those security problems, the limitations of tech-
nology, and the solutions.

xxiv Preface

fpref.indd 24 2/16/15 10:59 AM

How To ReAD THIS Book

Read this book in order, from beginning to end.
No, really. Many technical books are meant to skim, bounce around

in, and use as a reference. This book isn’t. This book has a plot; it tells a
story. And like any good story, it makes less sense telling it out of order.
The chapters build on each other, and you won’t buy the ending if you
haven’t come along on the journey.

Actually, I want you to read the book through once, and then read it
through a second time. This book argues that in order to understand the
security of a system, you need to look at the entire system—and not at any
particular technologies. Security itself is an interconnected system, and it
helps to have cursory knowledge of everything before learning more
about anything. But two readings is probably too much to ask; forget I
mentioned it.

This book has three parts. Part 1 is “The Landscape,” and gives con-
text to the rest of the book: who the attackers are, what they want, and
what we need to deal with the threats. Part 2 is “Technologies,” basically
a bunch of chapters describing different security technologies and their
limitations. Part 3 is “Strategies”: Given the requirements of the landscape
and the limitations of the technologies, what do we do now?

I think digital security is about the coolest thing you can work on
today, and this book reflects that feeling. It’s serious, but fun, too. enjoy
the read.

 Preface xxv

fpref.indd 25 2/16/15 10:59 AM

fpref.indd 26 2/16/15 10:59 AM

xxvii

About the Author

Bruce Schneier is an internationally renowned security technologist,
called a “security guru” by The Economist. He is the author of twelve
books, including his seminal work, Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C; Secrets & Lies: Digital Security in a Networked
World, which has become a classic; and his most recent book, Data and
Goliath: The Hidden Battles to Collect Your Data and Control Your World.
In addition, he has written hundreds of articles, essays, and academic
papers. His influential newsletter “Crypto-Gram” and blog “Schneier
on Security” are read by more than 250,000 people. Schneier is a fellow
at the Berkman Center for Internet and Society at Harvard Law School,
a program fellow at the New America Foundation’s Open Technol-
ogy Institute, a board member of the Electronic Frontier Foundation,
and an Advisory Board member of the Electronic Privacy Information
Center. He is also the Chief Technology Officer of Resilient Systems,
Inc. You can read his blog, essays, and academic papers at www.schneier
.com. He tweets at @schneierblog.

flast.indd 27 2/16/15 10:59 AM

flast.indd 28 2/16/15 10:59 AM

1

Introduction

It’s been over three years since the first edition of Secrets and Lies was
published. Reading through it again after all this time, the most
amazing thing is how little things have changed. Today, two years

after 9/11 and in the middle of the worst spate of computer worms and
viruses the world has ever seen, the book is just as relevant as it was
when I wrote it.

The attackers and attacks are the same. The targets and the risks are
the same. The security tools to defend ourselves are the same, and
they’re just as ineffective as they were three years ago. If anything, the
problems have gotten worse. It’s the hacking tools that are more effec-
tive and more efficient. It’s the ever-more-virulent worms and viruses
that are infecting more computers faster. Fraud is more common.
Identity theft is an epidemic. Wholesale information theft—of credit
card numbers and worse—is happening more often. Financial losses are
on the rise. The only good news is that cyberterrorism, the post-9/11
bugaboo that’s scaring far too many people, is no closer to reality than it
was three years ago.

The reasons haven’t changed. In Chapter 23, I discuss the problems
of complexity. Simply put, complexity is the worst enemy of security.
As systems get more complex, they necessarily get less secure. Today’s
computer and network systems are far more complex than they were
when I wrote the first edition of this book, and they’ll be more complex
still in another three years. This means that today’s computers and net-
works are less secure than they were earlier, and they will be even less

1

c01.indd 1 2/16/15 10:42 AM

secure in the future. Security technologies and products may be
improving, but they’re not improving quickly enough. We’re forced to
run the Red Queen’s race, where it takes all the running you can do just
to stay in one place.

As a result, today computer security is at a crossroads. It’s failing,
regularly, and with increasingly serious results. CEOs are starting to
notice. When they finally get fed up, they’ll demand improvements.
(Either that or they’ll abandon the Internet, but I don’t believe that is a
likely possibility.) And they’ll get the improvements they demand; cor-
porate America can be an enormously powerful motivator once it gets
going.

For this reason, I believe computer security will improve eventually.
I don’t think the improvements will come in the short term, and I think
they will be met with considerable resistance. This is because the engine
of improvement will be fueled by corporate boardrooms and not com-
puter-science laboratories, and as such won’t have anything to do with
technology. Real security improvement will only come through liabil-
ity: holding software manufacturers accountable for the security and,
more generally, the quality of their products. This is an enormous
change, and one the computer industry is not going to accept without a
fight.

But I’m getting ahead of myself here. Let me explain why I think
the concept of liability can solve the problem.

It’s clear to me that computer security is not a problem that tech-
nology can solve. Security solutions have a technological component,
but security is fundamentally a people problem. Businesses approach
security as they do any other business uncertainty: in terms of risk man-
agement. Organizations optimize their activities to minimize their
cost–risk product, and understanding those motivations is key to under-
standing computer security today. It makes no sense to spend more on
security than the original cost of the problem, just as it makes no sense
to pay liability compensation for damage done when spending money
on security is cheaper. Businesses look for financial sweet spots—ade-
quate security for a reasonable cost, for example—and if a security solu-
tion doesn’t make business sense, a company won’t do it.

This way of thinking about security explains some otherwise puz-
zling security realities. For example, historically most organizations
haven’t spent a lot of money on network security. Why? Because the

2 C H A P T E R O N E

c01.indd 2 2/16/15 10:42 AM

costs have been significant: time, expense, reduced functionality, frus-
trated end-users. (Increasing security regularly frustrates end-users.)
On the other hand, the costs of ignoring security and getting hacked
have been, in the scheme of things, relatively small. We in the computer
security field like to think they’re enormous, but they haven’t really
affected a company’s bottom line. From the CEO’s perspective, the
risks include the possibility of bad press and angry customers and net-
work downtime—none of which is permanent. And there’s some reg-
ulatory pressure, from audits or lawsuits, which adds additional costs.
The result: a smart organization does what everyone else does, and no
more. Things are changing; slowly, but they’re changing. The risks are
increasing, and as a result spending is increasing.

This same kind of economic reasoning explains why software ven-
dors spend so little effort securing their own products. We in computer
security think the vendors are all a bunch of idiots, but they’re behaving
completely rationally from their own point of view. The costs of adding
good security to software products are essentially the same ones incurred
in increasing network security—large expenses, reduced functionality,
delayed product releases, annoyed users—while the costs of ignoring
security are minor: occasional bad press, and maybe some users switch-
ing to competitors’ products. The financial losses to industry worldwide
due to vulnerabilities in the Microsoft Windows operating system are
not borne by Microsoft, so Microsoft doesn’t have the financial incen-
tive to fix them. If the CEO of a major software company told his board
of directors that he would be cutting the company’s earnings per share
by a third because he was going to really—no more pretending—take
security seriously, the board would fire him. If I were on the board, I
would fire him. Any smart software vendor will talk big about security,
but do as little as possible, because that’s what makes the most economic
sense.

Think about why firewalls succeeded in the marketplace. It’s not
because they’re effective; most firewalls are configured so poorly that
they’re barely effective, and there are many more effective security prod-
ucts that have never seen widespread deployment (such as e-mail
encryption). Firewalls are ubiquitous because corporate auditors started
demanding them. This changed the cost equation for businesses. The
cost of adding a firewall was expense and user annoyance, but the cost of
not having a firewall was failing an audit. And even worse, a company

 Introduction 3

c01.indd 3 2/16/15 10:42 AM

without a firewall could be accused of not following industry best prac-
tices in a lawsuit. The result: everyone has firewalls all over their net-
work, whether they do any actual good or not.

As scientists, we are awash in security technologies. We know how
to build much more secure operating systems. We know how to build
much more secure access control systems. We know how to build much
more secure networks. To be sure, there are still technological prob-
lems, and research continues. But in the real world, network security is
a business problem. The only way to fix it is to concentrate on the busi-
ness motivations. We need to change the economic costs and benefits
of security. We need to make the organizations in the best position to
fix the problem want to fix the problem.

To do that, I have a three-step program. None of the steps has any-
thing to do with technology; they all have to do with businesses, eco-
nomics, and people.

S T E P O N E : E N F O R C E L I A B I L I T I E S

This is essential. Remember that I said the costs of bad security are not
borne by the software vendors that produce the bad security. In eco-
nomics this is known as an externality: a cost of a decision that is borne
by people other than those making the decision. Today there are no real
consequences for having bad security, or having low-quality software of
any kind. Even worse, the marketplace often rewards low quality. More
precisely, it rewards additional features and timely release dates, even if
they come at the expense of quality. If we expect software vendors to
reduce features, lengthen development cycles, and invest in secure soft-
ware development processes, they must be liable for security vulnerabil-
ities in their products. If we expect CEOs to spend significant resources
on their own network security—especially the security of their cus-
tomers—they must be liable for mishandling their customers’ data.
Basically, we have to tweak the risk equation so the CEO cares about
actually fixing the problem. And putting pressure on his balance sheet
is the best way to do that.

This could happen in several different ways. Legislatures could
impose liability on the computer industry by forcing software manu-
facturers to live with the same product liability laws that affect other

4 C H A P T E R O N E

c01.indd 4 2/16/15 10:42 AM

industries. If software manufacturers produced a defective product,
they would be liable for damages. Even without this, courts could start
imposing liability-like penalties on software manufacturers and users.
This is starting to happen. A U.S. judge forced the Department of
Interior to take its network offline, because it couldn’t guarantee the
safety of American Indian data it was entrusted with. Several cases have
resulted in penalties against companies that used customer data in vio-
lation of their privacy promises, or collected that data using misrepre-
sentation or fraud. And judges have issued restraining orders against
companies with insecure networks that are used as conduits for attacks
against others. Alternatively, the industry could get together and define
its own liability standards.

Clearly this isn’t all or nothing. There are many parties involved in
a typical software attack. There’s the company that sold the software
with the vulnerability in the first place. There’s the person who wrote
the attack tool. There’s the attacker himself, who used the tool to break
into a network. There’s the owner of the network, who was entrusted
with defending that network. One hundred percent of the liability
shouldn’t fall on the shoulders of the software vendor, just as 100 per-
cent shouldn’t fall on the attacker or the network owner. But today 100
percent of the cost falls on the network owner, and that just has to stop.

However it happens, liability changes everything. Currently, there
is no reason for a software company not to offer more features, more
complexity, more versions. Liability forces software companies to think
twice before changing something. Liability forces companies to protect
the data they’re entrusted with.

S T E P T W O : A L L O W P A R T I E S T O T R A N S F E R
L I A B I L I T I E S

This will happen automatically, because CEOs turn to insurance com-
panies to help them manage risk, and liability transfer is what insurance
companies do. From the CEO’s perspective, insurance turns variable-
cost risks into fixed-cost expenses, and CEOs like fixed-cost expenses
because they can be budgeted. Once CEOs start caring about secu-
rity—and it will take liability enforcement to make them really care—
they’re going to look to the insurance industry to help them out.

 Introduction 5

c01.indd 5 2/16/15 10:42 AM

Insurance companies are not stupid; they’re going to move into cyberin-
surance in a big way. And when they do, they’re going to drive the
computer security industry... just as they drive the security industry in
the brick-and-mortar world.

A CEO doesn’t buy security for his company’s warehouse—strong
locks, window bars, or an alarm system—because it makes him feel safe.
He buys that security because the insurance rates go down. The same
thing will hold true for computer security. Once enough policies are
being written, insurance companies will start charging different premi-
ums for different levels of security. Even without legislated liability, the
CEO will start noticing how his insurance rates change. And once the
CEO starts buying security products based on his insurance premiums,
the insurance industry will wield enormous power in the marketplace.
They will determine which security products are ubiquitous, and which
are ignored. And since the insurance companies pay for the actual
losses, they have a great incentive to be rational about risk analysis and
the effectiveness of security products. This is different from a bunch of
auditors deciding that firewalls are important; these are companies with
a financial incentive to get it right. They’re not going to be swayed by
press releases and PR campaigns; they’re going to demand real results.

And software companies will take notice, and will strive to increase
the security in the products they sell, in order to make them competi-
tive in this new “cost plus insurance cost” world.

S T E P T H R E E : P R O V I D E M E C H A N I S M S
T O R E D U C E R I S K

This will also happen automatically. Once insurance companies start
demanding real security in products, it will result in a sea change in the
computer industry. Insurance companies will reward companies that
provide real security, and punish companies that don’t—and this will be
entirely market driven. Security will improve because the insurance
industry will push for improvements, just as they have in fire safety, elec-
trical safety, automobile safety, bank security, and other industries.

Moreover, insurance companies will want it done in standard mod-
els that they can build policies around. A network that changes every
month or a product that is updated every few months will be much

6 C H A P T E R O N E

c01.indd 6 2/16/15 10:42 AM

harder to insure than a product that never changes. But the computer
field naturally changes quickly, and this makes it different, to some
extent, from other insurance-driven industries. Insurance companies
will look to security processes that they can rely on: processes of secure
software development before systems are released, and the processes of
protection, detection, and response that I talk about in Chapter 24. And
more and more, they’re going to look toward outsourced services.

For over four years I have been CTO of a company called Counter-
pane Internet Security, Inc. We provide outsourced security monitor-
ing for organizations. This isn’t just firewall monitoring or IDS
monitoring but full network monitoring. We defend our customers
from insiders, outside hackers, and the latest worm or virus epidemic in
the news. We do it affordably, and we do it well. The goal here isn’t
100 percent perfect security, but rather adequate security at a reasonable
cost. This is the kind of thing insurance companies love, and something
I believe will become as common as fire-suppression systems in the
coming years.

The insurance industry prefers security outsourcing, because they
can write policies around those services. It’s much easier to design
insurance around a standard set of security services delivered by an out-
side vendor than it is to customize a policy for each individual network.
Today, network security insurance is a rarity—very few of our cus-
tomers have such policies—but eventually it will be commonplace. And
if an organization has Counterpane—or some other company—moni-
toring its network, or providing any of a bunch of other outsourced ser-
vices that will be popping up to satisfy this market need, it’ll easily be
insurable.

Actually, this isn’t a three-step program. It’s a one-step program
with two inevitable consequences. Enforce liability, and everything else
will flow from it. It has to. There’s no other alternative.

Much of Internet security is a common: an area used by a commu-
nity as a whole. Like all commons, keeping it working benefits every-
one, but any individual can benefit from exploiting it. (Think of the
criminal justice system in the real world.) In our society we protect our
commons—environment, working conditions, food and drug practices,
streets, accounting practices—by legislating those areas and by making
companies liable for taking undue advantage of those commons. This
kind of thinking is what gives us bridges that don’t collapse, clean air

 Introduction 7

c01.indd 7 2/16/15 10:42 AM

and water, and sanitary restaurants. We don’t live in a “buyer beware”
society; we hold companies liable when they take advantage of buyers.

There’s no reason to treat software any differently from other prod-
ucts. Today Firestone can produce a tire with a single systemic flaw and
they’re liable, but Microsoft can produce an operating system with mul-
tiple systemic flaws discovered per week and not be liable. Today if a
home builder sells you a house with hidden flaws that make it easier for
burglars to break in, you can sue the home builder; if a software com-
pany sells you a software system with the same problem, you’re stuck
with the damages. This makes no sense, and it’s the primary reason
computer security is so bad today. I have a lot of faith in the market-
place and in the ingenuity of people. Give the companies in the best
position to fix the problem a financial incentive to fix the problem, and
fix it they will.

A D D I T I O N A L B O O K S

I’ve written two books since Secrets and Lies that may be of interest to
readers of this book:

Beyond Fear:Thinking Sensibly About Security in an Uncertain World is a
book about security in general. In it I cover the entire spectrum of
security, from the personal issues we face at home and in the office to
the broad public policies implemented as part of the worldwide war on
terrorism. With examples and anecdotes from history, sports, natural
science, movies, and the evening news, I explain to a general audience
how security really works, and demonstrate how we all can make our-
selves safer by thinking of security not in absolutes, but in terms of
trade-offs—the inevitable cash outlays, taxes, inconveniences, and
diminished freedoms we accept (or have forced on us) in the name of
enhanced security. Only after we accept the inevitability of trade-offs
and learn to negotiate accordingly will we have a truly realistic sense of
how to deal with risks and threats.

http://www.schneier.com/bf.html

Practical Cryptography (written with Niels Ferguson) is about cryptog-
raphy as it is used in real-world systems: about cryptography as an engi-
neering discipline rather than cryptography as a mathematical science.

8 C H A P T E R O N E

c01.indd 8 2/16/15 10:42 AM

Building real-world cryptographic systems is vastly different from the
abstract world depicted in most books on cryptography, which
assumes a pure mathematical ideal that magically solves your security
problems. Designers and implementers live in a very different world,
where nothing is perfect and where experience shows that most crypto-
graphic systems are broken due to problems that have nothing to do
with mathematics. This book is about how to apply the cryptographic
functions in a real-world setting in such a way that you actually get a
secure system.

http://www.schneier.com/book-practical.html

F U R T H E R R E A D I N G

There’s always more to say about security. Every month there are new
ideas, new disasters, and new news stories that completely miss the
point. For almost six years now I’ve written Crypto-Gram¸ a free
monthly e-mail newsletter that tries to be a voice of sanity and sense in
an industry filled with fear, uncertainty, and doubt. With more than
100,000 readers, Crypto-Gram is widely cited as the industry’s most
influential publication. There’s no fluff. There’s no advertising. Just
honest and impartial summaries, analyses, insights, and commentaries
about the security stories in the news.

To subscribe, visit:
http://www.schneier.com/crypto-gram.html

Or send a blank message to:
crypto-gram-subscribe@chaparraltree.com

You can read back issues on the Web site, too. Some specific arti-
cles that may be of interest are:

Risks of cyberterrorism:
http://www.schneier.com/crypto-gram-0306.html#1

Militaries and cyberwar:
http://www.schneier.com/crypto-gram-0301.html#1

The “Security Patch Treadmill”:
http://www.schneier.com/crypto-gram-0103.html#1

Full disclosure and security:
http://www.schneier.com/crypto-gram-0111.html#1

 Introduction 9

c01.indd 9 2/16/15 10:42 AM

10 C H A P T E R O N E

How to think about security:
http://www.schneier.com/crypto-gram-0204.html#1

What military history can teach computer security (parts 1 and 2):
http://www.schneier.com/crypto-gram-0104.html#1
http://www.schneier.com/crypto-gram-0105.html#1

Thank you for taking the time to read Secrets and Lies. I hope you
enjoy it, and I hope you find it useful.

Bruce Schneier
January 2004

c01.indd 10 2/16/15 10:42 AM

P a r t 1

t h e L a n d s c a P e

p01.indd 11 2/16/15 10:39 AM

computer security is often advertised in the abstract: “this system is
secure.” a product vendor might say: “this product makes your net-
work secure.” Or: “We secure e-commerce.” Inevitably, these claims are
naïve and simplistic. they look at the security of the product, rather than
the security of the system. the first questions to ask are: “secure from
whom?” and “secure against what?”

they’re real questions. Imagine a vendor selling a secure operat-
ing system. Is it secure against a hand grenade dropped on top of the
cPU? against someone who positions a video camera directly behind
the keyboard and screen? against someone who infiltrates the company?
Probably not; not because the operating system is faulty, but because
someone made conscious or unconscious design decisions about what
kinds of attacks the operating system was going to prevent (and could pos-
sibly prevent) and what kinds of attacks it was going to ignore.

Problems arise when these decisions are made without consideration.
and it’s not always as palpable as the preceding example. Is a secure
telephone secure against a casual listener, a well-funded eavesdropper, or
a national intelligence agency? Is a secure banking system secure against
consumer fraud, merchant fraud, teller fraud, or bank manager fraud?
does that other product, when used, increase or decrease the security of
whatever needs to be secured? exactly what a particular security tech-
nology does, and exactly what it does not do, is just too abstruse for
many people.

security is never black and white, and context matters more than
technology. Just because a secure operating system won’t protect against
hand grenades doesn’t mean that it is useless; it just means that we can’t
throw away our walls and door locks and window bars. different secu-
rity technologies have important places in an overall security solution. a
system might be secure against the average criminal, or a certain type of
industrial spy, or a national intelligence agency with a certain skill set. a
system might be secure as long as certain mathematical advances don’t

12

p01.indd 12 2/16/15 10:39 AM

occur, or for a certain period of time, or against certain types of attacks.
Like any adjective, “secure” is meaningless out of context.

In this section, I attempt to provide the basis for this context. I talk
about the threats against digital systems, types of attacks, and types of
attackers. then I talk about security desiderata. I do this before discuss-
ing technology because you can’t intelligently examine security technolo-
gies without an awareness of the landscape. Just as you can’t understand
how a castle defended a region without immersing yourself in the medi-
eval world in which it operated, you can’t understand a firewall or an
encrypted Internet connection outside the context of the world in which
it operates. Who are the attackers? What do they want? What tools are
at their disposal? Without a basic understanding of these things, you can’t
reasonably discuss how secure anything is.

 The Landscape 13

p01.indd 13 2/16/15 10:39 AM

2

Digital Threats

The world is a dangerous place. Muggers are poised to jump you
if you walk down the wrong darkened alley, con artists are
scheming to relieve you of your retirement fund, and co-work-

ers are out to ruin your career. Organized crime syndicates are spread-
ing corruption, drugs, and fear with the efficiency of Fortune 500
companies. There are crazed terrorists, nutty dictators, and uncontrol-
lable remnants of former superpowers with more firepower than sense.
And if you believe the newspapers at your supermarket’s checkout
counter, there are monsters in the wilderness, creepy hands from beyond
the grave, and evil space aliens carrying Elvis’s babies. Sometimes it’s
amazing that we’ve survived this long, let alone built a society stable
enough to have these discussions.

The world is also a safe place. While the dangers in the industrial-
ized world are real, they are the exceptions. This can sometimes be hard
to remember in our sensationalist age—newspapers sell better with the
headline “Three Shot Dead in Random Act of Violence” than “Two
Hundred and Seventy Million Americans have Uneventful Day”—but it
is true. Almost everyone walks the streets every day without getting
mugged. Almost no one dies by random gunfire, gets swindled by flim-
flam men, or returns home to crazed marauders. Most businesses are not
the victims of armed robbery, rogue bank managers, or workplace vio-
lence. Less than one percent of eBay transactions—unmediated long-
distance deals between strangers—result in any sort of complaint. People
are, on the whole, honest; they generally adhere to an implicit social

14

c02.indd 14 2/16/15 10:42 AM

contract. The general lawfulness in our society is high; that’s why it works
so well.

(I realize that the previous paragraph is a gross oversimplification of
a complex world. I am writing this book in the United States at the turn
of the millennium. I am not writing it in Sarajevo, Hebron, or Ran-
goon.I have no experiences that can speak to what it is like to live in
such a place. My personal expectations of safety come from living in a
stable democracy. This book is about the security from the point of view
of the industrialized world, not the world torn apart by war, suppressed
by secret police, or controlled by criminal syndicates. This book is about
the relatively minor threats in a society where the major threats have
been dealt with.)

Attacks, whether criminal or not, are exceptions. They’re events
that take people by surprise, that are “news” in its real definition.
They’redisruptions in the society’s social contract, and they disrupt the
lives of the victims.

T H E U n c H A n g I n g n A T U R E O F A T T A c k S

If you strip away the technological buzzwords and graphical user inter-
faces, cyberspace isn’t all that different from its flesh-and-blood, bricks-
and-mortar, atoms-not-bits, real-world counterpart. Like the physical
world, people populate it. These people interact with others, form com-
plex social and business relationships, live and die. cyberspace has com-
munities, large and small. cyberspace is filled with commerce. There are
agreements and contracts, disagreements and torts.

And the threats in the digital world mirror the threats in the phys-
ical world. If embezzlement is a threat, then digital embezzlement is
also a threat. If physical banks are robbed, then digital banks will be
robbed. Invasion of privacy is the same problem whether the invasion
takesthe form of a photographer with a telephoto lens or a hacker
who can eavesdrop on private chat sessions. cyberspace crime includes
everything you’d expect from the physical world: theft, racketeering,
vandalism, voyeurism, exploitation, extortion, con games, fraud. There
is even the threat of physical harm: cyberstalking, attacks against the air
traffic control system, etc. To a first approximation, online society is
the same as offline society. And to the same first approximation, attacks

 Digital Threats 15

c02.indd 15 2/16/15 10:42 AM

against digital systems will be the same as attacks against their analog ana-
logues.

This means we can look in the past to see what the future will hold.
The attacks will look different—the burglar will manipulate digital con-
nections and database entries instead of lockpicks and crowbars, the ter-
rorist will target information systems instead of airplanes—but the
motivation and psychology will be the same. It also means we don’t
need a completely different legal system to deal with the future. If the
future is like the past—except with cooler special effects—then a legal
system that worked in the past is likely to work in the future.

Willie Sutton robbed banks because that was where the money was.
Today, the money isn’t in banks; it’s zipping around computer networks.
Every day, the world’s banks transfer billions of dollars among them-
selves by simply modifying numbers in computerized databases. Mean-
while, the average physical bank robbery grosses a little over fifteen
hundred dollars. And cyberspace will get even more enticing; the dollar
value of electronic commerce gets larger every year.

Where there’s money, there are criminals. Walking into a bank or a
liquor store wearing a ski mask and brandishing a .45 isn’t completely
passé, but it’s not the preferred method of criminals drug-free enough
to sit down and think about the problem. Organized crime prefers to
attack large-scale systems to make a large-scale profit. Fraud against
credit cards and check systems has gotten more sophisticated over the
years, as defenses have gotten more sophisticated. Automatic teller
machine (ATM) fraud has followed the same pattern. If we haven’t seen
widespread fraud against Internet payment systems yet, it’s because there
isn’t a lot of money to be made there yet. When there is, criminals will
be there trying. And if history is any guide, they will succeed.

Privacy violations are nothing new, either. An amazing array of legal
paperwork is public record: real estate transactions, boat sales, civil and
criminal trials and judgments, bankruptcies. Want to know who owns
that boat and how much he paid for it? It’s a matter of public record.
Even more personal information is held in the 20,000 or so (in the
United States) personal databases held by corporations: financial details,
medical information, lifestyle habits.

Investigators (private and police) have long used this and other data
to track down people. Even supposedly confidential data gets used in
this fashion. no TV private investigator has survived half a season

16 c H A P T E R T W O

c02.indd 16 2/16/15 10:42 AM

without a friend in the local police force willing to look up a name or a
license plate or a criminal record in the police files. Police routinely use
industrydatabases. And every few years, some bored IRS operator gets
caught looking up the tax returns of famous people.

Marketers have long used whatever data they could get their hands
on to target particular people and demographics. In the United States,
personal data do not belong to the person whom the data are about,
they belong to the organization that collected it. Your financial infor-
mation isn’t your property, it’s your bank’s. Your medical information
isn’t yours, it’s your doctor’s. Doctors swear oaths to protect your pri-
vacy, but insurance providers and HMOs do not. Do you really want
everyone to know about your heart defect or your family’s history of
glaucoma? How about your bout with alcoholism, or that embarrassing
brush with venereal disease two decades ago?

Privacy violations can easily lead to fraud. In the novel Paper Moon,
Joe David Brown wrote about the Depression-era trick of selling bibles
and other merchandise to the relatives of the recently deceased. Other
scams targeted the mothers and widows of overseas war dead—“for
only pennies a day we’ll care for his grave”—and people who won
sweepstakes. In many areas in the country, public utilities are installing
telephone-based systems to read meters: water, electricity, and the like.
It’s a great idea, until some enterprising criminal uses the data to track
when people go away on vacation. Or when they use alarm monitor-
ing systems that give up-to-the-minute details on building occupancy.
Wherever data can be exploited, someone will try it, computers or no
computers.

nothing in cyberspace is new. child pornography: old hat. Money
laundering: seen it. Bizarre cults offering everlasting life in exchange for
your personal check: how déclassé. The underworld is no better than
businesspeople at figuring out what the net is good for; they’re just
repackaging their old tricks for the new medium, taking advantage of
the subtle differences and exploiting the net’s reach and scalability.

T H E c H A n g I n g n A T U R E O F A T T A c k S

The threats may be the same, but cyberspace changes everything.
Although attacks in the digital world might have the same goals and

 Digital Threats 17

c02.indd 17 2/16/15 10:42 AM

share a lot of the same techniques as attacks in the physical world, they
will be very different. They will be more common. They will be more
widespread. It will be harder to track, capture, and convict the perpe-
trators. And their effects will be more devastating. The Internet has
three new characteristics that make this true. Any one of them is bad;
the three together are horrifying.

Automation

Automation is an attacker’s friend. If a sagacious counterfeiter invented
a method of minting perfect nickels, no one would care. The counter-
feiter couldn’t make enough phony nickels to make it worth the time
and effort. Phone phreaks were able to make free local telephone calls
from payphones pretty much at will from 1960 until the mid-1980s.
Sure, the phone company was annoyed, and it made a big show about
trying to catch these people—but they didn’t affect its bottom line. You
just can’t steal enough 10-cent phone calls to affect the earnings-per-
share of a multibillion-dollar company, especially when the marginal
cost of goods is close to zero.

In cyberspace, things are different. computers excel at dull, repeti-
tive tasks. Our counterfeiter could mint a million electronic nickels
while he sleeps. There’s the so-called salami attack of stealing the frac-
tions ofpennies, one slice at a time, from everyone’s interest-bearing
accounts; this is a beautiful example of something that just would not
have been possible without computers.

If you had a great scam to pick someone’s pocket, but it only worked
once every hundred thousand tries, you’d starve before you robbed any-
one. In cyberspace, you can set your computer to look for the one-in-
a-hundred-thousand chance. You’ll probably find a couple dozen every
day. If you can enlist other computers, you might get hundreds.

Fast automation makes attacks with a minimal rate of return profit-
able. Attacks that were just too marginal to notice in the physical world
can quickly become a major threat in the digital world. Many commer-
cial systems just don’t sweat the small stuff; it’s cheaper to ignore it than
to fix it. They will have to think differently with digital systems.

cyberspace also opens vast new avenues for violating someone’s pri-
vacy, often simply a result of automation. Suppose you have a marketing
campaign tied to rich, penguin-loving, stamp-collecting Elbonians with

18 c H A P T E R T W O

c02.indd 18 2/16/15 10:42 AM

children. It’s laborious to walk around town and find wealthy Elbonians
with children, who like penguins, and are interested in stamps. On the
right computer network, it’s easy to correlate a marketing database of zip
codes of a certain income with birth or motor vehicle records, posts to
rec.collecting.stamps, and penguin-book purchases at Amazon.com. The
Internet has search tools that can collect every Usenet posting a person
ever made. Paper data, even if it is public, is hard to search and hard to
correlate. computerized data can be searched easily. networked data can
be searched remotely and correlated with other databases.

Under some circumstances, looking at this kind of data is illegal.
People, often employees, have been prosecuted for peeking at confiden-
tial police or IRS files. Under other circumstances, it’s called data mining
and is entirely legal. For example, the big credit database companies,
Experian (formerly TRW), TransUnion, and Equifax, have mounds of
data about nearly everyone in the United States. These data are collected,
collated, and sold to anyone willing to pay for it. credit card databases
have a mind-boggling amount of information about individuals’ spend-
ing habits: where they shop, where they eat, what kind of vacations they
take—it’s all there for the taking. Doubleclick is trying to build a data-
base of individual Web-surfing habits. Even grocery stores are giving out
frequent shopper cards, allowing them to collect data about the food-
buying proclivities of individual shoppers. Acxiom is a company that spe-
cializes in the aggregation of public and private databases.

The news here is not that the data are out there, but how easily they
can be collected, used, and abused. And it will get worse: More data
are being collected. Banks, airlines, catalog companies, medical insurers
are all saving personal information. Many Web sites collect and sell per-
sonal data. And why not? Data storage is cheap, and maybe it will be
useful some day. These diverse data archives are moving onto the pub-
lic networks. And more and more data are being combined and cross-
referenced. Automation makes it all easy.

Action at a Distance

As technology pundits like to point out, the Internet has no borders or
natural boundaries. Every two points are adjacent, whether they are
across the hall or across the planet. It’s just as easy to log on to a computer
in Tulsa from a computer in Tunisia as it is from one in Tallahassee. Don’t

 Digital Threats 19

c02.indd 19 2/16/15 10:42 AM

like the censorship laws or computer crime statutes in your country?
Find a country more to your liking. countries like Singapore have tried
to limit their citizens’ abilities to search the Web, but the way the Inter-
net is built makes blocking off parts of it unfeasible. As John gilmore
opined, “The Internet treats censorship as damage and routes around it.”

This means that Internet attackers don’t have to be anywhere near
their prey. An attacker could sit behind a computer in St. Petersburg and
attack citibank’s computers in new York. This has enormous security
implications. If you were building a warehouse in Buffalo, you’d only
have to worry about the set of criminals who would consider driving to
Buffalo and breaking into your warehouse. Since on the Internet every
computer is equidistant from every other computer, you have to worry
about all the criminals in the world.

The global nature of the Internet complicates criminal investigation
and prosecution, too. Finding attackers adroit at concealing their where-
abouts can be near impossible, and even if you do find them, what do you
do then? And crime is only defined with respect to political borders. But
if the Internet has no physical “area” to control, who polices it?

So far, every jurisdiction that possibly can lay a claim to the Internet
has tried to. Does the data originate in germany? Then it is subject to
german law. Does it terminate in the United States? Then it had better
suit the American government. Does it pass through France? If so, the
French authorities want a say in qu’il s’est passé. In 1994, the operators
of a computer bulletin board system (BBS) in Milpitas, california—
where both the people and the computers resided—were tried and con-
victed in a Tennessee court because someone in Tennessee made a
long-distance telephone call to california and downloaded dirty pic-
tures that were found to be acceptable in california but indecent in Ten-
nessee. The bulletin board operators never set foot in Tennessee before
the trial. In July 1997, a 33-year old woman was convicted by a Swiss
court for sending pornography across the Internet—even though she had
been in the United States since 1993. Does this make any sense?

In general, though, prosecuting across jurisdictions is incredibly dif-
ficult. Until it’s sorted out, criminals can take advantage of the confu-
sion as a shield. In 1995, a 29-year-old hacker from St. Petersburg,
Russia, made $12 million breaking into citibank’s computers. citibank
eventually discovered the break and recovered most of the money, but
had trouble extraditing the hacker to stand trial.

20 c H A P T E R T W O

c02.indd 20 2/16/15 10:42 AM

This difference in laws among various states and countries can even
lead to a high-tech form of jurisdiction shopping. Sometimes this can
work in the favor of the prosecutor, because this is exactly what the Ten-
nessee conviction of the california BBS was. Other times it can work in
the favor of the criminal: Any organized crime syndicate with enough
money to launch a large-scale attack against a financial system would do
well to find a country with poor computer crime laws, easily bribable
police officers, and no extradition treaties.

Technique Propagation

The third difference is the ease with which successful techniques can
propagate through cyberspace. HBO doesn’t care very much if someone
can build a decoder in his basement. It requires time, skill, and some
money. But what if that person published an easy way for everyone to get
free satellite TV? no work. no hardware. “Just punch these seven digits
into your remote control, and you never have to pay for cable TV again.”
That would increase the number of nonpaying customers to the millions,
and could significantly affect the company’s profitability.

Physical counterfeiting is a problem, but it’s a manageable problem.
Over two decades ago, we sold the Shah of Iran some of our old intaglio
printing presses. When Ayatollah khomeini took over, he realized that
it was more profitable to mint $100 bills than Iranian rials. The FBI calls
them supernotes, and they’re near perfect. (This is why the United States
redesigned its currency.) At the same time the FBI and the Secret Service
were throwing up their hands, the Department of the Treasury did some
calculating: The Iranian presses can only print so much money a minute,
there are only so many minutes in a year, so there’s a maximum to the
amount of counterfeit money they can manufacture. Treasury decided
that the amount of counterfeit currency couldn’t affect the money supply,
so it wasn’t a serious concern to the nation’s stability.

If the counterfeiting were electronic, it would be different. An elec-
tronic counterfeiter could automate the hack and publish it on some
Web site somewhere. People could download this program and start
undetectably counterfeiting electronic money. By morning it could be
in the hands of 1,000 first-time counterfeiters; another 100,000 could
have it in a week. The U.S. currency system could collapse in a week.

 Digital Threats 21

c02.indd 21 2/16/15 10:42 AM

Instead of there being a maximum limit to the damage this attack can do,
in cyberspace, damage could grow exponentially.

The Internet is also a perfect medium for propagating successful
attack tools. Only the first attacker has to be skilled; everyone else can
use his software. After the initial attacker posts it to an archive—conve-
niently located in some backward country—anyone can download and
use it. And once the tool is released, it can be impossible to control.

We’ve seen this problem with computer viruses: Dozens of sites let
you download computer viruses, computer virus construction kits, and
computer virus designs. And we’ve seen the same problem with hacking
tools: software packages that break into computers, bring down servers,
bypass copy protection measures, or exploit browser bugs to steal data
from users’ machines. Internet worms are already making floppy-disk-
borne computer viruses look like quaint amusements. It took no skill
to launch the wave of distributed denial-of-service attacks against major
Web sites in early 2000; all it took was downloading and running a script.
And when digital commerce systems are widespread, we’ll see automated
attacks against them too.

computer-based attacks mean that criminals don’t need skill to
succeed.

P R O A c T I O n V S . R E A c T I O n

Traditionally, commerce systems have played catch-up in response to
fraud: online credit card verification in response to an increase in credit
card theft, other verification measures in response to check fraud. This
won’t work on the Internet, because Internet time moves too quickly.
Someone could figure out a successful attack against an Internet credit
card system, write a program to automate it, and within 24 hours it
could be in the hands of half a million people all over the world—many
of them impossible to prosecute. I can see a security advisor walking
into the cEO’s office and saying: “We have two options. We can accept
every transaction as valid, both the legitimate and fraudulent ones, or we
can accept none of them.” The cEO would be stuck with this Hob-
son’s choice.

22 c H A P T E R T W O

c02.indd 22 2/16/15 10:42 AM

3

Attacks

I’m going to discuss three broad classes of attacks. Criminal attacks
are the most obvious, and the type that I’ve focused on. But the
others—publicity attacks and legal attacks—are probably more

damaging.

C r I m I n a l at ta C k s

Criminal attacks are easy to understand: “How can I acquire the maxi-
mum financial return by attacking the system?” attackers vary, from
lone criminals to sophisticated organized crime syndicates, from insiders
looking to make a fast buck to foreign governments looking to wage
war on a country’s infrastructure.

Fraud

Fraud has been attempted against every commerce system ever invented.
Unscrupulous merchants have used rigged scales to shortchange their cus-
tomers; people have shaved silver and gold off the rims of coins. Every-
thing has been counterfeited: currency, stock certificates, credit cards,
checks, letters of credit, purchase orders, casino chips. modern financial
systems—checks, credit cards, and automatic teller machine networks—
each rack up multi-million-dollar fraud losses per year. Electronic com-
merce will be no different; neither will the criminals’ techniques.

23

c03.indd 23 2/16/15 10:42 AM

Scams

according to the national Consumers league, the five most common
online scams are sale of Internet services, sale of general merchandise,
auctions, pyramid and multilevel marketing schemes, and business oppor-
tunities. People read some enticing e-mail or visit an enticing Web site,
send money off to some post office box for some reason or another, and
end up either getting nothing in return or getting stuff of little or no value.
sounds just like the physical world: lots of people get burned.

Destructive Attacks

Destructive attacks are the work of terrorists, employees bent on revenge,
or hackers gone over to the dark side. Destruction is a criminal attack—
it’s rare that causing damage to someone else’s property is legal—but there
is often no profit motive. Instead, the attacker asks: “How can I cause the
most damage by attacking this system?”

there are many different kinds of destructive attacks. In 1988, some-
one wrote a computer virus specifically targeted against computers owned
by Electronic Data systems. It didn’t do too much damage (actually, it did
more damage to nasa), but the idea was there. In early 2000, we watched
distributed denial-of-service attacks against Yahoo!, amazon.com,
E*trade, Buy.com, Cnn, and eBay. a deft attacker could probably keep
an IsP down for weeks. In fact, a hacker with the right combination of
skills and morals could probably take down the Internet.

at the other end of the spectrum, driving a truck bomb through a
company’s front window works too. the United states’ attacks against
Iraqi communications systems in the Persian Gulf are probably the best
example of this. the French terrorist group Comité liquidant ou Détour-
nant les Ordinateurs (Computer liquidation and Deterrence Committee)
bombed computer centers in the toulouse region in the early 1980s. more
spectacular was the burning of the library of alexandria in 47 b.c. (by
Julius Caesar), in a.d. 391 (by the Christian emperor theodosius I), and in
a.d. 642 (by Omar, Caliph of Baghdad): all excellent lessons in the
importance of off-site backups.

Intellectual Property Theft

Intellectual property is more than trade secrets and company databases. It’s
also electronic versions of books, magazines, and newspapers; digital

24 C H a P t E r t H r E E

c03.indd 24 2/16/15 10:42 AM

videos, music, and still images; software; and private databases available
to the public for a fee. the difficult problem here is not how to keep
private data private, but how to maintain control and receive appropriate
compensation for proprietary data while making it public.

software companies want to sell their software to legitimate buyers
without pirates making millions of illegal copies and selling them (or
giving them away) to others. In 1997, the Business software alliance had
a counter on its Web page that charted the industry’s losses due to piracy:
$482 a second, $28,900 a minute, $1.7 million an hour, $15 billion a year.
these numbers were inflated, since they make the mendacious assump-
tion that everyone who pirates a copy of (for example) autodesk’s 3D
studio maX would have otherwise paid $2,995—or $3,495 if you use
the retail price rather than the street price—for it. the prevalence of
software piracy greatly depends on the country: It is thought that 95
percent of the software in the People’s republic of China is pirated, while
only 50 percent of the software in Canada is pirated. (Vietnam wins, with
98 percent pirated software.) software companies, rightfully so, are miffed
at these losses.

Piracy happens on different scales. there are disks shared between
friends, downloads from the Internet (search under warez to find out more
about this particular activity), and large-scale counterfeiting operations
(usually run in the Far East).

Piracy also happens to data. Whether it’s pirated CDs of copyrighted
music hawked on the backstreets of Bangkok or mP3 files of copyrighted
music peddled on the Web, digital intellectual property is being stolen all
the time. (and, of course, this applies to digital images, digital video, and
digital text just as much.)

the common thread here is that companies want to control the dis-
semination of their intellectual property. this attitude, while perfectly rea-
sonable, is contrary to what the digital world is all about. the physics of the
digital world is different: Unlike physical goods, information can be in two
places at once. It can be copied infinitely. someone can both give away a
piece of information and retain it. Once it is dispersed hither and thither,
it can be impossible to retrieve. If a digital copy of The Lion King ever
gets distributed over the Internet, Disney will not be able to delete all the
copies.

Unauthorized copying is not a new problem; it’s as old as the
recording industry. In school, I had cassette tapes of music I couldn’t
afford to buy; so did everyone else I knew. taiwan and thailand have

 Attacks 25

c03.indd 25 2/16/15 10:42 AM

long been a source of counterfeit CDs. the russian mafia has become a
player in the pirated video industry, and the Chinese triads are becoming
heavily involved in counterfeit software. Industry losses were estimated to
be $11 billion per year, although the number is probably based on some
imaginative assumptions, too.

Digital content has no magic immunity from counterfeiters. In fact,
it’s unique in that it can be copied perfectly. Unlike my cassette tapes,
an illegal DVD of The Lion King or a software product isn’t degraded in
quality; it’s another original. Counteracting that is like trying to make
water not wet; it just doesn’t work.

Identity Theft

Why steal from someone when you can just become that person? It’s far
easier, and can be much more profitable, to get a bunch of credit cards
in someone else’s name, run up large bills, and then disappear. It’s called
identity theft, and it’s a high-growth area of crime. One albuquerque,
new mexico, criminal ring would break into homes specifically to col-
lect checkbooks, credit card statements, receipts, and other financial mail,
looking for social security numbers, dates of birth, places of work, and
account numbers.

this is scary stuff, and it happens all the time. there were thousands
of cases of identity theft reported in the United states during 1999
alone. Dealing with the aftermath can be an invasive and exhaustive
experience.

It’s going to get worse. as more identity recognition goes elec-
tronic, identity theft becomes easier. at the same time, as more systems
use electronic identity recognition, identity theft becomes more prof-
itable and less risky. Why break into someone’s house if you can collect
the necessary identity information online?

and people are helpful. they give out sensitive information to
anyone who asks; many print their driver’s license numbers on their
checks. they throw away bills, bank statements, and so forth. they’re
too trusting.

For a long time, we’ve gotten by with an ad hoc system of remote
identity. “mother’s maiden name” never really worked as an identifi-
cation system (especially now, given the extensive public databases on
 genealogical Web sites). still, the fiction worked as long as criminals

26 C H a P t E r t H r E E

c03.indd 26 2/16/15 10:42 AM

 didn’t take too much advantage of it. that’s history now, and we’ll never
get back to that point again.

Brand Theft

Virtual identity is vital to businesses as well as individuals. It takes time and
money to develop a corporate identity. this identity is more than logos
and slogans and catchy jingles. It’s product, bricks-and-mortar build-
ings, customer service representatives—things to touch, people to talk to.
Brand equals reputation.

On the Internet, the barrier to entry is minimal. anyone can have a
Web site, from Citibank to Fred’s safe-money mattress. and everyone
does. How do users know which sites are worth visiting, worth book-
marking, worth establishing a relationship with? thousands of companies
sell PCs on the Web. Who is real, and who is fly-by-night?

Branding is the only answer to this question. When the Web first
entered the public eye, pundits claimed that it heralded the end of the
big brand. Because anyone could go on the Web and compete with the
big names, brands were meaningless. the reality is exactly the opposite.
since anyone can go on the Web and compete with the big names, the
only way to tell products apart is by their brands. Users look at brands,
and they return to the sites they trust. a brand has real value, and it’s
worth stealing.

an example: a malaysian company wanted to market condoms
using the “Visa” brand. they claimed that it had nothing to do with the
credit card company, but was a pun on “permit to entry.” Visa was una-
mused, and sued. It won, and I believe this ruling has profound implica-
tions for brand ownership.

Cyberspace has many opportunities for brand theft. In 1998, some-
one forged a domain-name transfer request to network solutions and
stole sex.com; the original owner is still trying to get it back. another
recent case involved a plumber who rerouted customer phone calls for
another plumber to his own number. Organized crime syndicates in las
Vegas have done the same thing with escort-service phone numbers.
this kind of attack is nothing new. almon strowger was an undertaker
in kansas City. He was convinced that telephone operators were rerout-
ing telephone calls to rival businesses, so he invented the dial telephone
in 1887 to bypass the operators.

 Attacks 27

c03.indd 27 2/16/15 10:42 AM

some merchants have designed their Web sites to steal traffic away
from other Web sites; this is known as page-jacking. also on the net are
typo pirates, who register a domain name just a typo away from legiti-
mate Web sites. many porn sites do that. Big companies are not above
these kinds of tactics: when mCI’s 1-800-COllECt became popular,
at&t set up a collect-calling service on 1-800-C0llECt, with a zero
instead of the letter O, the most common misdial. mCI stooped to the
same tactic, registering 1-800-0PEratOr, with a zero instead of
at&t’s O. some of these tactics are illegal today; I expect more will
be in the future.

Prosecution

Unfortunately, prosecution can be difficult in cyberspace. On the one
hand, the crimes are the same. theft is illegal, whether analog or digital,
online or offline. so is trespassing, counterfeiting, racketeering, swindling,
stalking, and a criminal-code worth of other things. the laws against these
practices, complete with the criminal justice infrastructure to enforce them,
are already in place. some new laws have been passed, specifically for
the digital world, but we don’t know the full ramifications of those laws.
the court system doesn’t work on Internet time. In the United states, it
can take a decade to erase a bad law, or to figure out how a law should
really be applied.

Over time, the laws will better reflect the reality of the digital world.
a few years ago, when a group of German hackers was caught breaking
into U.s. computer systems, the German government had no criminal
laws to charge them with. today, some criminal statutes specifically make
it a crime to break into remote computer systems, because the old tres-
passing statues didn’t deal well with trespassers sitting comfortably in their
bedrooms while their computer commands “trespassed” via the telephone
network. likewise, statutes on stalking, invasions of privacy, copyright,
and solicitation are being modified for a world where things don’t work
exactly like they used to.

Eventually, people will realize that it doesn’t make sense to write laws
that are specific to a technology. Fraud is fraud, whether it takes place over
the U.s. mail, the telephone, or the Internet. a crime is no more or less of
a crime if cryptography is involved. (the new York sales clerk who, in
1999, used a Palm Pilot to copy customers’ credit card numbers would be

28 C H a P t E r t H r E E

c03.indd 28 2/16/15 10:42 AM

no less guilty if he used a pen and paper.) and extortion is no better or
worse if carried out using computer viruses or old-fashioned compromis-
ing photos. Good laws are written to be independent of technology. In a
world where technology advances much faster than con gressional sessions,
this is what can work today. Faster and more responsive mechanisms for
legislation, prosecution, and adjudication . . . maybe someday.

P r I Va C Y V I O l at I O n s

Privacy violations are not necessarily criminal, but they can be. (they
can be a prelude to identity theft, for example.) In the United states,
most privacy violations are legal. People do not own their own data. If
a credit bureau or a marketing research firm collects data about you—
your personal habits, your buying patterns, your financial status, your
physical health—it can sell it to anyone who wants it without your
knowledge or consent. It’s different elsewhere. Privacy laws in much of
Europe (including the European Union), taiwan, new Zealand, and
Canada are more restrictive.

Other types of privacy violations are legal, too. Hiring a private
investigator to collect information on a person or a company is legal, as
long as the investigator doesn’t use any illegal methods. all sorts of pri-
vacy violations by the police are legal with a warrant, and many are legal
without. (Did you know that in the United states police don’t need
a warrant to demand a copy of the photographs you dropped off for
developing?)

there are two types of privacy violations—targeted attacks and data
harvesting—and they are fundamentally different. In a targeted attack, an
attacker wants to know everything about alice. If “alice” is a person, it’s
called stalking. If “alice” is a company, it’s called industrial espionage.
If “alice” is a government, it’s called national intelligence or spying.
all of these will get you thrown in jail if you use some techniques, but
not if you use others.

Computer security can protect alice against a targeted attack, but
only up to a point. If attackers are well enough funded, they can always
get around computer security measures. they can install a bug in alice’s
office, rummage through alice’s trash, or spy with a telescope. Informa-
tion is information, and computer security only protects the informa-

 Attacks 29

c03.indd 29 2/16/15 10:42 AM

tion while it is on computers. What computer security protects against
are non-invasive attacks. It forces the attacker to get close to alice and
makes privacy violations riskier, more expensive, and subject to differ-
ent laws.

Data harvesting is the other type of privacy violation. this attack har-
nesses the power of correlation. suppose an attacker wants a list of every
widow, 70 years or older, with more than $1 million in the bank, who
has given to more than eight charities in the past year, and who subscribes
to an astrological magazine. Or a list of everybody in the United states
who has been prescribed aZt. Or who views a particular socialist
Web site. although con artists have collected names of people who
might be susceptible to particular scams for over a century, the prevalence
of databases on the Internet allows them to automate and better target
their searches.

Good cryptography and computer security can help protect against
data-harvesting attacks (assuming it is illegal to simply buy the data from
those who own the various databases) by making the collection problem
intractable. Data harvesting is worthwhile only because it can be auto-
mated; it makes no sense to sort through an entire neighborhood’s
trashcans to cull a demographic. If all computerized data is protected,
an attacker doesn’t even know where to look. Even moderate levels of
cryptography can protect absolutely against data harvesting.

Surveillance

One hundred years ago, everyone could have personal privacy. You and
a friend could walk into an empty field, look around to see that no one
else was nearby, and have a level of privacy that has forever been lost. as
Whitfield Diffie has said: “no right of private conversation was enumer-
ated in the Constitution. I don’t suppose it occurred to anyone at the time
that it could be prevented.” the ability to have a private conversation,
like the ability to keep your thoughts in your head and the ability to fall
to the ground when pushed, was a natural consequence of how the world
worked.

technology has demolished that world view. Powerful directional
microphones can pick up conversations hundreds of yards away. In
the aftermath of the mrta terrorist group’s takeover of the Japanese
embassy in Peru (1997), news reports described audio bugs being hidden

30 C H a P t E r t H r E E

c03.indd 30 2/16/15 10:42 AM

in shirt buttons that allowed police to pinpoint everyone’s loca-
tion. Van Eck devices can read what’s on your computer monitor
from halfway down the street. (right now this is an expensive and
complicated attack, but just wait until wireless lans become popu-
lar.) Pinhole cameras—now being sold in electronics catalogs—can
hide in the smallest cracks; satellite cameras can read your license plate
from orbit. and the Department of Defense is prototyping micro air
vehicles, the size of small birds or butterflies, that can scout out enemy
snipers, locate hostages in occupied buildings, or spy on just about
anybody.

the ability to trail someone remotely has existed for a while, but
it is only used in exceptional circumstances (except on tV). In 1993,
Colombian drug lord Pablo Escobar was identified partly by tracking
him through his cellular phone usage: a technique known as pinpointing.
In 1996, the russian army killed Chechnyan leader Dzholar Dudayev
with an air-to-surface missile after pinpointing his location from the
trans missions of his personal satellite phone. the FBI found the truckbe-
longing to the Oklahoma City federal building’s bomber because agents
collected the tapes from every surveillance camera in the city, correlated
them by time (the explosion acted as a giant synch pulse), and looked for
it. Invisible identification tags are printed on virtually all color xerographic
output, from all of the manufacturers. (these machines also include anti-
counterfeiting measures, such as dumping extra cyan toner onto images
when the unit detects an attempt to copy U.s. currency.) Explosives have
embedded taggants.

the technology to automatically search for drug negotiations in
random telephone conversations, for suspicious behavior in satellite
images, or for faces on a “wanted list” of criminals in on-street cameras
isn’t commonplace yet, but it’s just a matter of time. Face recognition will
be able to pick individual people out of a crowd. Voice recognition will
be able to scan millions of telephone calls listening for a particular person;
it can already scan for suspicious words or phrases and pick conversations
out of a crowd. moore’s law, which predicts the industry can double
thecomputing power of a microchip every 18 months, affects surveil-
lance computing just as it does everything else: the next generation will
be smaller, faster, a lot cheaper, and more easily available. as soon as the
recognition technologies isolate the people, the computers will be able to
do the searching.

 Attacks 31

c03.indd 31 2/16/15 10:42 AM

storage is getting cheaper, too. We’re only a few generations away
from being able to record our entire lives—in audio and video—and
save the data. It could be introduced as a preemptive defense mechanism,
“in case you ever need to prove an alibi,” or a public-good mechanism,
because “you never know when you’ll be the witness to a crime.” some-
day not wearing your life recorder may be cause for suspicion.

the surveillance infrastructure is being installed in our country under
the guise of “customer service.” Who hasn’t heard the ubiquitous mes-
sage that “this conversation may be monitored or recorded for quality
assurance purposes”? some hotels track guest preferences in international
databases, so that customers will feel at home even if it is their first stay in
a particular city. High-end restaurants now have video cameras in the din-
ing room, to study diners’ eating habits and meal progress, and databases
of customer preferences. amazon.com tracks the buying behavior of dif-
ferent demographic groups. melissa virus writer David smith was identi-
fied because microsoft Word automatically embeds identity information
in all documents. automatic toll-collection systems keep records of what
cars went through different tollbooths. In 2000, some cities started mea-
suring highway congestion by tracking motorists by their cell phones.
there’s a fine line between good customer service and stalking.

sometimes there’s no customer-service spin: Credit card companies
keep detailed purchasing records so they can reduce fraud. Companies
monitor employee Web site surfing to limit abuse and liability. many
airports record the license plates of everyone who uses the parking lot—
Denver International airport records the plates of everyone who enters
airport grounds—as a security measure.

GPs, the satellite-based Global Positioning system, is a dream tech-
nology for surveillance. at least two companies are marketing a smart
automobile locator, based on GPs. One company is selling an automatic
warehouse inventory system, using GPs and affixable transmitters on
objects. the transmitters broadcast their location, and a central computer
keeps track of where everything is. spies have probably been able to use
this kind of stuff for years, but it’s now a consumer item so Dad knows
where Junior is taking the car.

Individual privacy is being eroded from a variety of directions. most
of the time, the erosions are small, and no one kicks up a fuss. But less
and less privacy is available, and most people are completely oblivious
of it. surveillance devices are getting cheaper and smaller and more

32 C H a P t E r t H r E E

c03.indd 32 2/16/15 10:42 AM

ubiquitous. It is plausible that we could soon be living in a world without
expectation of privacy, anywhere or at any time.

Databases

Historically, privacy was only about surveillance. then, in the 1960s,
society reached a watershed. Computers with large databases entered
business, and organizations started keeping databases on individuals.
recently, we’ve reached a second watershed: networked computers
are allowing disparate databases to be shared, correlated, and combined.
the effects of these databases on personal privacy are still to be felt.
We’ve managed to successfully beat back Big Brother, only to lose to
a network of little Brothers. For the first time, someone can be unsur-
veillably surveilled.

recently, more and more data is being collected and saved, both
because data collection is cheaper and because people leave more
electronic footprints in their daily lives. more of it is being collected and
cross-correlated. and more of it is available online. the upshot is that it is
not difficult to collect a detailed dossier on someone.

many of these databases are commercial: large credit databases
owned by Experian, transUnion, and Equifax; telephone databases of
individual calls made; credit card databases of individual purchases. the
 information can be used for its original intent or sold for other pur-
poses. those legitimately allowed to can access it, and it is potentially
available to those adroit enough to break into the computers. this can
be correlated with other databases: your health information, your finan-
cial details, any lifestyle information you’ve made public. In 1999, there
was a small press flare-up because some public television stations traded
donor lists with the Democratic Party. In 2000, public furor forced
DoubleClick to reverse its plans to correlate Web-surfing records with
individual identities.

the Web provides even more potential for invasions of privacy.
Online stores can, in theory, keep records of everything you buy.
(Blockbuster, for example, has a database of every video you’ve rented.)
they can also keep records of everything you look at: every item you ask
to see more information about, every topic you search for, how long you
spend looking at each item . . . not just what you buy, but what you look
at and don’t buy.

 Attacks 33

c03.indd 33 2/16/15 10:42 AM

Online law enforcement databases are a great boon to the police—it
really helps to be able to automatically download a criminal record or
mugshot directly to a squad car—but privacy fears remain. Police databases
are not much more secure than any other commercial database, and the
information is a lot more sensitive.

Traffic Analysis

Traffic analysis is the study of communication patterns. not the content of
the messages themselves, but characteristics about them. Who communi-
cates with whom? When? How long are the messages? How quickly are
the replies sent, and how long are they? What kinds of communications
happen after a certain message is received? these are all traffic analysis
questions, and their answers can reveal a lot of information.

For example, if each time alice sends a long message to Bob, Bob
sends a short reply back to alice and a long message to five other peo-
ple, this indicates a chain of command. alice is clearly sending orders to
Bob, who is relaying them to his subordinates. If alice sends regular short
messages to Bob, and suddenly sends a series of long ones,
this indicates that something (what?) has changed.

Often the patterns of communication are just as important as the
contents of communication. For example, the simple fact that alice
telephones a known terrorist every week is more important than the details
of their conversation. the nazis used the traffic-analysis data in item-
ized French phone bills to arrest friends of the arrested; they didn’t really
care what the conversations were about. Calls from the White House to
monica lewinsky were embarrassing enough, even without a transcrip-
tion of the conversation. In the hours preceding the U.s. bombing of
Iraq in 1991, pizza deliveries to the Pentagon increased one hundredfold.
anyone paying attention certainly knew something was up. (Interestingly
enough, the CIa had the same number of pizzas delivered as any other
night.) some studies have shown that even if you encrypt your Web traf-
fic, traffic analysis based on the size of the encrypted Web pages is more
than enough to figure out what you’re browsing.

While militaries have used traffic analysis for decades, it is still a new
area of study in the academic world. We don’t really know how vulner-
able our communications—especially our Internet communications—

34 C H a P t E r t H r E E

c03.indd 34 2/16/15 10:42 AM

are to traffic analysis, and what can be done to reduce the risks. Expect
this to be an important area of research in the future.

Massive Electronic Surveillance

ECHElOn is a code word for an automated global interception system
operated by the intelligence agencies of the United states, the United
kingdom, Canada, australia, and new Zealand, and led by the national
security agency (nsa). I’ve seen estimates that ECHElOn intercepts
as many as 3 billion communications everyday, including phone calls,
e-mail messages, Internet downloads, satellite transmissions, and so on. the
system gathers all of these transmissions indiscriminately, then sorts and
distills the information through artificial intelligence programs. some
sources have claimed that ECHElOn sifts through 90 percent of the
Internet’s traffic, although that seems doubtful.

this kind of massive surveillance effort is daunting, and provides
some unique problems. surveillance data is only useful when it is dis-
tilled to a form that people can understand and act upon. the United
states intercepted a message to the Japanese ambassador in Washington,
D.C., discussing the Pearl Harbor bombing, but the information only
made sense in retrospect and never made it past the low-level clerks.
But as difficult as analysis is, even more difficult is the simple decision of
what to record.

Potential ECHElOn intercepts are an unending firehose of data:
more than any group of human analysts can ever analyze. the interception
equipment must decide, in real time, whether or not any piece of data
is worth recording for later analysis. and the system cannot afford to do
much “later analysis”; there’s always more data being recorded. I’m sure
much valuable intelligence has been recorded that a human will never
scrutinize.

to build a system like this, you would have to invest in two technol-
ogies: diagnostic capabilities and traffic analysis. Interception equipment
must to be able to quickly characterize a piece of data: who the sender and
receiver are, the topic of conversation, how it fits in any larger pattern of
communication. (If you think this is hard for Internet e-mail, think how
hard it is for voice conversations.) much of this technology is similar to
what you might find in a search engine.

 Attacks 35

c03.indd 35 2/16/15 10:42 AM

traffic analysis is even more important. traffic patterns reveal a lot
about any organization and are much easier to collect and analyze than
actual communications data. they also provide additional information to
a diagnostic engine. Elaborate databases of traffic patterns are un doubtedly
the heart of any ECHElOn-like system.

One last note: In a world where most communications are unen-
crypted, encrypted communications are probably routinely recorded.
the mere indication that the conversers do not want to be overheard
would be enough to raise an alarm.

P U B l I C I t Y at ta C k s

the publicity attack is conceptually simple: “How can I get my name in
the newspapers by attacking the system?” this type of attack is relatively
new in the digital world: a few years ago, computer hacks weren’t con-
sidered newsworthy, and I can’t think of any other technology in history
that people would try to break simply to get their names in the paper. In
the physical world, this attack is ancient: the man who burned down the
temple of artemis in ancient Greece did so because he wanted his name
to be remembered forever. (His name was Herostratus, by the way.) more
recently, the kids who shot up Columbine High school wanted infamy.

most attackers of this type are hackers: skilled individuals who know
a lot about systems and their security. they often have access to signifi-
cant resources, either as students of large universities or as employees of
large companies. they usually don’t have a lot of money, but sometimes
have a lot of time. Furthermore, they are not likely to do anything that
will put them in jail; the idea is publicity, not incarceration.

the canonical example of this is the breaking of netscape naviga-
tor’s encryption scheme by two Berkeley graduate students in 1995.
thesestudents didn’t use the weakness for ill-gotten gain; they called
the New York Times. netscape’s reaction was something on the order of
“We did some calculations, and thought it would take umpteen dollars
of computing power; we didn’t think it was worth anyone’s trouble to
break it.” they were right; it wasn’t worth anyone’s trouble . . . any-
one who was interested in the money. the grad students had all sorts of
skills, access to all the unused computer time at their university, and no
social lives.

36 C H a P t E r t H r E E

c03.indd 36 2/16/15 10:42 AM

What’s important for system designers to realize is that publicity
seekers don’t fall into the same threat model that criminals do. Criminals
will only attack a system if there’s a profit to be made; publicity seekers will
attack a system if there is a good chance the press will cover it. attacks
against large-scale systems and widely fielded products are best.

sometimes these attacks are motivated by a desire to fix the problems.
many companies ignore security vulnerabilities unless they are made
public. Once the researcher announces the attack, the victim company
will scurry to fix the problem. In this way, attacks increase the security of
systems.

Publicity attacks can be costly. Customers may desert one system in
favor of another after a publicity attack, as has happened in the wake of
several attacks against banking systems. and investors might desert the
victim’s stock. this has happened in the digital cellular industry after pub-
licity attacks exposed weaknesses in various privacy and antitheft mea-
sures. Citibank lost several high-profile accounts after the st. Petersburg
hack. the DVD security break delayed a sony product launch past the
1999 Christmas season. In 2000, CD Universe lost a lot of customers after
a hacker stole 300,000 credit card numbers off of its Web site. sometimes
the bad press is more costly than the actual theft.

Publicity attacks have other dangers. One is that criminals will learn
about these attacks and exploit them. another is that public confidence in
the systems will be eroded by the announcements. this could be a major
problem in electronic commerce systems in particular. Banks like to keep
successful criminal attacks against their systems quiet, so as not to alarm
the public. But hackers and academics are much harder to keep quiet and
are going to be all over commerce systems once they’re fielded. If there
are security holes anywhere, someone is going to find them and call a press
conference. maybe not the first person who finds them, but someone will.
Companies need to be prepared.

Defacing someone’s Web page is one form of publicity attack. It used
to be big news. the 1996 hack of the Department of Justice Web site made
the news. so did the 1997 hack of the airtran site, and the 1998 hack of
the New York Times main page.

In those days, the publicity was such that some sites didn’t wait to be
hacked. mGm/Universal studios was thrilled when the Web site for its
movie Hackers was hacked in 1995. and in 1997, Universal Pictures
hacked its own Web site for Jurassic Park: The Lost World as a publicity

 Attacks 37

c03.indd 37 2/16/15 10:42 AM

stunt. (they tried to pretend it was hackers, but the parody site looked
too professional, and the hacked page was uploaded to the site three days
before the legitimate site came online.)

these days it happens so often that it barely rates a mention in the
news. Probably every major U.s. government Web site was hacked in
1999, as were the Web sites of many local and foreign governments. I
listed 65 Web site defacements in the first week of march 2000 in Chap-
ter 1. sysadmins have become inured to the problem.

Denial-of-Service Attacks

more recently, denial-of-service attacks have become the publicity attack
du jour. this is only because of their massive press coverage, and will hope-
fully become old news, too. the idea is simply to stop something from
working. and as anyone who has had to deal with the effects of striking
workers—bus drivers, air traffic controllers, farm laborers, and so forth—
can tell you, these attacks are effective.

there are other denial-of-service attacks in the physical world: boy-
cotts and blockades, for example. these attacks all have analogues in
cyberspace. someone with enough phone connections can tie up all the
modem connections of a local IsP. the analog cell phone networks had
trouble freeing connections when a mobile user went from cell to cell; it
was possible to sit on a hill with a directional antenna and, by spinning it
around and around slowly, tie up all the channels in the nearby cells.

Denial-of-service attacks work because computer networks are there
to communicate. some simple attack, like saying hello, can be automated
to the point where it becomes a denial-of-service attack. this is basically
the sYn flood attack that brought down several IsPs in 1996.

Here’s another denial-of-service attack: In the mid-1980s, Jerry Fal-
well’s political organization set up a toll-free number for something or
other. One guy programmed his computer to repeatedly dial the num-
ber and then hang up. this did two things: It busied the phone lines so
that legitimate people could not call the number, and it cost Falwell’s
organization money every time a call was completed. nice denial-of-
service attack.

Denial-of-service attacks can be preludes to criminal attacks. Bur-
glars approach a warehouse at 1:00 a.m. and cut the connection between
the burglar alarm and the police station. the alarm rings, and the police

38 C H a P t E r t H r E E

c03.indd 38 2/16/15 10:42 AM

are alerted that the connection has been broken. Burglars retreat a safe
distance and wait for the police to arrive. Police arrive and find nothing.
(If the burglars are inventive, they cut the connection in some way that
isn’t obvious.) Police decide that it’s a problem with the system, and the
warehouse owner decides to deal with it in the morning. Police leave.
Burglars reappear and steal everything.

a variant on this, which insurers have noted on several occasions, is to
attack the telephone exchange that routes the alarm signals. many alarms
have a heartbeat back to the monitoring station, and call the police if the
signal is interrupted. By attacking the exchange, every alarm is triggered
and the police don’t know which alarm to respond to.

Here’s another example: a military base protected by a fence and
motion sensors. the attackers take a rabbit and throw it over the fence;
then they leave. the motion sensors go off. the guards respond, find
nothing, and return to their posts. the attackers do this again, and the
guards respond again. after a few nights of this, the guards turn the
motion sensors off. and the attackers drive a jeep right through the fence.
this kind of thing was done repeatedly against the russian military bases
in afghanistan, and in tests against several U.s. military bases. It’s surpris-
ingly successful.

a similar attack was supposedly done against the soviet embassy in
Washington, D.C. the americans fired a Canada mint (basically, a sugar
pellet) against the window. the rattle set off an alarm, but the sugar ball
disintegrated and there was nothing to respond to. then another ball.
thwap. alarm. nothing. Eventually the alarms were modified so that
banging against the window didn’t trigger them. (I don’t know if any
actual penetration resulted from this attack, or if it was just to nettle the
soviets.)

Closer to home, it’s a common auto-theft technique to set a car alarm
off at 2:00 a.m., 2:10, 2:20, 2:30 . . . until the owner turns the alarm off to
appease the angry neighbors. In the morning, the car is gone.

Warfare uses denial-of-service attacks all the time. Each side tries to
jam the other’s radar systems and missile guidance systems, disrupt com-
munications systems, and blow up bridges. One of the characteristics of
denial-of-service attacks is that low-tech is often better than high-tech:
Blowing up a computer center works much better than exploiting a
Windows 2000 vulnerability.

Internet denial-of-service attacks are discussed in detail in Chapter 11.

 Attacks 39

c03.indd 39 2/16/15 10:42 AM

l E G a l at ta C k s

In 1994, in the United kingdom, a man found his bank account emp-
tied. When he complained about six withdrawals he did not make, he
was arrested and charged with attempted fraud. the British bank
claimed that the security in the atm system was infallible, and that the
defendant was unequivocally guilty. When the defense attorney exam-
ined the evidence, he found (1) that the bank had no security manage-
ment or quality assurance for its software, (2) that there was never any
external security assessment, and (3) that the disputed withdrawals were
never investigated. In fact, the bank’s programmers claimed that since the
code was written in assembly language, it couldn’t possibly be the prob-
lem (because if there was a bug, it would cause a system crash). the man
was convicted anyway. On appeal, the bank provided the court a huge
security assessment by an auditing firm. When the defense demanded
equal access to their systems in order to evaluate the security directly, the
bank refused and the conviction was overturned.

attacks that use the legal system are the hardest to protect against.
the aim here isn’t to exploit a flaw in a system. It isn’t even to find a
flaw in a system. the aim here is to persuade a judge and jury (who
probably aren’t technically savvy) that there could be a flaw in the sys-
tem. the aim here is to discredit the system, to put enough doubt in the
minds of the judge and jury that the security isn’t perfect, to prove a
client’s innocence.

Here’s a hypothetical example. In a major drug case, the police are
using data from a cellular phone that pinpoints the defendant’s phone at a
particular time and place. the defense attorney finds some hacker expert
who testifies that it is easy to falsify that kind of data, that it isn’t reliable,
that it could have been planted, and should not be counted as evidence.
the prosecution has its own set of experts that say the opposite, and one
possible outcome is that they cancel each other out and the trial goes on
without the cellular-phone evidence.

the same thing can happen to audit data being used to prosecute
someone who broke into a computer system, or signature data that is
being used to try to enforce a contract. “I never signed that,” says the
defendant. “the computer told me to enter my passphrase and then push
this button. that’s what I did.” a jury of the defendant’s peers—probably

40 C H a P t E r t H r E E

c03.indd 40 2/16/15 10:42 AM

just as befuddled by technology as the accused is claiming to be—is likely
to sympathize.

the other side of the coin can be just as damaging. the police can
use experts to convince a jury that a decrypted conversation is damning
even though it is not 100 percent accurate, or that the computer intrusion
detection is infallible and therefore the defendant is guilty.

When used to its fullest effect, the legal attack is potent. the attackers
are likely to be extremely skilled—in high-profile cases, they can afford the
best security researchers—and well-funded. they can use the discovery
process to get all the details of the target system that they need. and the
attack doesn’t even have to work operationally; the attackers only have to
find enough evidence to adduce a flaw. think of it as a publicity attack
with a bankroll and more relaxed victory conditions.

 Attacks 41

c03.indd 41 2/16/15 10:42 AM

42

4

Adversaries

So who is threatening the digital world anyway? Hackers? Crimi-
nals? Child pornographers? Governments? The adversaries are the
same as they are in the physical world: common criminals looking

for financial gain, industrial spies looking for a competitive advantage,
hackers looking for secret knowledge, military-intelligence agencies
looking for, well, military intelligence. People haven’t changed; it’s just
that cyberspace is a new place to ply their trades.

We can categorize adversaries in several ways: objectives, access,
re sources, expertise, and risk.

Adversaries have varying objectives: raw damage, financial gain, infor-
mation, and so on. This is important. The objectives of an industrial spy
are different from the objectives of an organized-crime syndicate, and
the countermeasures that stop the former might not even faze the latter.
Understanding the objectives of likely attackers is the first step toward
figuring out what countermeasures are going to be effective.

Adversaries have different levels of access; for example, an insider
has much more access than someone outside the organization. Adver-
saries also have access to different levels of resources: some are well
funded; others operate on a shoestring. Some have considerable technical
expertise; others have none.

Different adversaries are willing to tolerate different levels of risk.
Terrorists are often happy to die for their cause. Criminals are willing
to risk jail time, but probably don’t want to sacrifice themselves to the
higher calling of bank robbery. Publicity seekers don’t want to go to jail.

c04.indd 42 2/16/15 10:42 AM

A wealthy adversary is the most flexible, since he can trade his
resources for other things. He can gain access by paying off an insider,
and expertise by buying technology or hiring experts (maybe telling them
the truth, maybe hiring them under false pretenses). He can also trade
money for risk by executing a more sophisticated—and therefore more
expensive—attack.

The rational adversary—not all adversaries are sane, but most are
rational within their frames of reference—will choose an attack that gives
him a good return on investment, considering his budget constraints:
expertise, access, manpower, time, and risk. Some attacks require a lot
of access but not much expertise: a car bomb, for example. Some attacks
require a lot of expertise but no access: breaking an encryption algo-
rithm, for example. Each adversary is going to have a set of attacks that is
affordable to him, and a set of attacks that isn’t. If the adversary is paying
attention, he will choose the attack that minimizes his cost and maximizes
his benefits.

H A C k E r S

The word hacker has several definitions, ranging from a corporate sys-
tem administrator adept enough to figure out how computers really
work to an ethically inept teenage criminal who cackles like Beavis and
Butthead as he trashes your network. The word has been co-opted by
the media and stripped of its meaning. It used to be a compliment; then
it became an insult. Lately, people seem to like “cracker” for the bad
guys, and “hacker” for the good guys. I define a hacker as an individ-
ual who experiments with the limitations of systems for intellectual
curiosity or sheer pleasure; the word describes a person with a particu-
lar set of skills and not a particular set of morals. There are good hack-
ers and bad hackers, just as there are good plumbers and bad plumbers.
(There are also good bad hackers, and bad good hackers . . . but never
mind that.)

Hackers are as old as curiosity, although the term itself is modern.
Galileo was a hacker. Mme. Curie was one, too. Aristotle wasn’t. (Aristotle
had some theoretical proof that women had fewer teeth than men.
A hacker would have simply counted his wife’s teeth. A good hacker
would have counted his wife’s teeth without her knowing about it,

 Adversaries 43

c04.indd 43 2/16/15 10:42 AM

while she was asleep. A good bad hacker might remove some of them,
just to prove a point.)

When I was in college, I knew a group similar to hackers: the key
freaks. They wanted access, and their goal was to have a key to every
lock on campus. They would study lockpicking and learn new tech-
niques, trade maps of the steam tunnels and where they led, and exchange
copies of keys with each other. A locked door was a challenge, a personal
affront to their ability. These people weren’t out to do damage—stealing
stuff wasn’t their objective—although they certainly could have. Their
hobby was the power to go anywhere they wanted to.

remember the phone phreaks of yesteryear, the ones who could
whistle into payphones and make free phone calls. Sure, they stole phone
service. But it wasn’t like they needed to make eight-hour calls to Manila
or McMurdo. And their real work was secret knowledge: The phone
network was a vast maze of information. They wanted to know the
system better than the designers, and they wanted the ability to modify
it to their will. Understanding how the phone system worked—that was
the true prize. Other early hackers were ham-radio hobbyists and
model-train enthusiasts.

richard Feynman was a hacker; read any of his books.
Computer hackers follow these evolutionary lines. Or, they are the

same genus operating on a new system. Computers, and networks in
particular, are the new landscape to be explored. Networks provide the
ultimate maze of steam tunnels, where a new hacking technique becomes
a key that can open computer after computer. And inside is knowledge,
understanding. Access. How things work. Why things work. It’s all out
there, waiting to be discovered.

Today’s computer hackers are stereotypically young (twenty-some-
thing and younger), male, and socially on the fringe. They have their
own counterculture: hacker names or handles, lingo, rules. And like any
subculture, only a small percentage of hackers are actually smart. The
real hackers have an understanding of technology at a basic level, and
are driven by a desire to understand. The rest are talentless poseurs and
hangers-on, either completely inept or basic criminals. Sometimes they’re
called lamers or script kiddies.

Hackers can have considerable expertise, often greater than that of
the system’s original designers. I’ve heard lots of security lectures,
and the most savvy speakers are the hackers. For them, it’s a passion.

44 C H A P T E r F O U r

c04.indd 44 2/16/15 10:42 AM

Hackers look at a system from the outside as an attacker, not from the
inside as a designer. They look at the system as an organism, as a coherent
whole. And they often understand the attacks better than the people who
designed the systems. The real hackers, that is.

Hackers generally have a lot of time, but few financial resources. (Put
one of them to work at a big company, and that will change.) Some of
them are risk averse and tread gingerly around the edges of the law, but
others have no fear of prosecution and engage in illegal activities with no
consideration of the risk involved.

There are hacker newsgroups, hacker Web sites and hacker conven-
tions. Hackers often trade attacks and automated attacking tools among
themselves. There are different hacker groups (or gangs, if you are less
kind), but there is no hierarchy. You can’t galvanize the hacker commu-
nity against a particular target; hackers go after what they can. Often they’ll
hack something because it’s widely deployed, interesting, or because the
target “deserves” it.

Unfortunately, much of what hackers do is illegal. I’m not talking
about the few who work in research environments, who evaluate the
security of systems in laboratory settings, and who publish analyses of
products and systems. I’m talking about the hackers who break into other
people’s networks, deface Web pages, crash computers, spread viruses,
and write automatic programs that let other people do these things. These
people are criminals, and society needs to treat them as such.

I don’t buy the defense that a hacker just broke in a system to look
around, and didn’t do any damage. Some systems are frangible, and sim-
ply looking around can inadvertently cause damage. And once an unau-
thorized person has been inside a system, you can’t trust its integrity.
You don’t know that the intruder didn’t touch anything.

Imagine that you come home to find a note on your refrigerator door
saying: “Hi. I noticed that you had a lousy front door lock, so I broke in.
I didn’t touch anything. You really should get a better security system.”
How would you feel?

The problem starts with the hackers who write hacking tools. These
are programs—sometimes called exploits—that automate the process of
breaking into systems. An example is the Trin00 distributed denial-of-
service tool. Thousands of servers have been brought down because of
this attack, and it’s caused legitimate companies millions of dollars in
time and effort to recover from. It’s one thing to research the vulnerability

 Adversaries 45

c04.indd 45 2/16/15 10:42 AM

of the Internet against this type of attack, and to write a research paper
about defending against it. It’s another thing entirely to write a program
that automates the attack.

The Trin00 exploit serves no conceivable purpose other than to attack
systems. Gun owners can argue self-defense, but Internet servers don’t
break into anyone’s house at night. It’s actually much worse, because
once an exploit is written and made available, any wannabe hacker can
download it and attack computers on the Internet. He doesn’t even have
to know how it works. (See why they’re called “script kiddies”?) Trin00
attacks were popular in early 2000 because the exploit was available. If it
weren’t—even if a research paper were available—none of the script kid-
dies would be able to exploit the vulnerability.

Certainly the lamers that use Trin00 to attack systems are criminals.
I believe the person who wrote the exploit is, too. A fine line exists
between writing code to demonstrate research and publishing attack
tools; between hacking for good and hacking as a criminal activity. I will
get back to this in Chapter 22.

Most organizations are wary about hiring hackers, and rightfully so.
There are exceptions—the NSA offering scholarships to hackers will-
ing to work at Fort Meade, Israeli intelligence hiring Jewish hackers
from the United States, Washington offering security fellowships—and
some hackers have gone on to form upstanding and professional security
companies. recently, a handful of consulting companies have sprung
up to whitewash hackers and present them in a more respectable light.
And sometimes this works, but for many people it can be hard to tell the
ethical hackers from the criminals.

L O N E C r I M I N A L S

In April 1993, a small group of criminals wheeled a Fujitsu model 7020
automated teller machine into the Buckland Hills Mall in Hartford,
Connecticut, and turned it on. The machine was specially programmed
to accept ATM cards from customers, record their account numbers and
PINs, and then tell the unfortunate consumers that no transactions were
possible. A few days later, the gang encoded the stolen account num-
bers and PINs onto counterfeit ATM cards, and started withdrawing cash
from ATMs in midtown Manhattan. They were eventually caught when

46 C H A P T E r F O U r

c04.indd 46 2/16/15 10:42 AM

the bank correlated the use of the counterfeit ATM cards with routine
surveillance films.

It was a shrewd attack, and much higher tech than most banking
crimes. One innovative criminal in New Jersey attached a fake night
deposit box to a bank wall, and took it away early in the morning.
It’s worse elsewhere. A few years ago, an ATM was stolen in South
Africa . . . from inside police headquarters in broad daylight.

Lone criminals cause the bulk of computer-related crimes. Some-
times they are insiders who notice a flaw in a system and decide to
exploit it; other times they work outside the system. They usually don’t
have much money, access, or expertise, and they often get caught be cause
of stupid mistakes. Someone might be smart enough to install a fake ATM
and collect account numbers and PINs, but if he brags about his cleverness in
a bar and gets himself arrested before cleaning out all the accounts . . . well,
it’s hard to have any sympathy for him. Look at the two public Inter-
net attacks of early 2000. Someone manages to gain access to over ten
thousand credit card numbers, with names and addresses. The best crime
he can think of to do: extortion. Someone else manages to control a large
number of distributed computers, ready to do his bidding. The best crime
he can think of: irritate major Web sites.

Lone criminals will target commerce systems because that’s where the
money is. Their techniques may lack elegance, but they will steal money,
and they will cost even more money to catch and prosecute. And there
will be a lot of them.

M A L I C I O U S I N S I D E r S

A malicious insider is a dangerous and insidious adversary. He’s already
inside the system he wants to attack, so he can ignore any perimeter
defenses around the system. He probably has a high level of access, and
could be considered trusted by the system he is attacking. remember
the russian spy Aldrich Ames? He was in a perfect position within the
CIA to sell the names of U.S. operatives living in Eastern Europe to
the kGB; he was trusted with their names. Think about a programmer
writingmalicious code into the payroll database program to give himself a
raise every six months. Or the bank vault guard purposely missetting
the time lock to give his burglar friends easy access. Insiders can be

 Adversaries 47

c04.indd 47 2/16/15 10:42 AM

impossible to stop because they’re the exact same people you’re forced
to trust.

Here’s a canonical insider attack. In 1978, Stanley Mark rifkin was
a consultant at a major bank. He used his insider knowledge of (and
access to) the money transfer system to move several million dollars into
a Swiss account, and then to convert that money into diamonds. He also
programmed the computer system to automatically erase the backup tapes
that contained evidence of his crime. (He would have gotten away with
it, except that he bragged to his lawyer, who turned him in.)

Insiders don’t always attack a system; sometimes they subvert a system
for their own ends. In 1991, employees at Charles Schwab in San Fran-
cisco used the company’s e-mail system to buy and sell cocaine. A con-
victed child rapist working in a Boston-area hospital stole a co-worker’s
password, paged through confidential patient records, and made obscene
phone calls.

Insiders are not necessarily employees. They can be consultants and
contractors. During the Y2k scare, many companies hired program-
mers from China and India to update old software. rampant xenophobia
aside, any of those programmers could have attacked the systems as an
insider.

Most computer security measures—firewalls, intrusion detection
systems, and so on—try to deal with the external attacker, but are pretty
much powerless against insiders. Insiders might be less likely to attack a
system than outsiders are, but systems are far more vulnerable to them.

An insider knows how the systems work and where the weak points
are. He knows the organizational structure, and how any investigation
against his actions would be conducted. He may already be trusted by the
system he is going to attack. An insider can use the system’s own resources
against itself. In extreme cases the insider might have considerable
expertise, especially if he was involved in the design of the systems he is
now attacking.

revenge, financial gain, institutional change, or even publicity can
motivate insiders. They generally also fit into another of the categories: a
hacker, a lone criminal, or a national intelligence agent. Malicious insid-
ers can have a risk tolerance ranging from low to high, depending on
whether they are motivated by a “higher purpose” or simple greed.

Of course, insider attacks aren’t new, and the problem is bigger than
cyberspace. If the e-mail system hadn’t been there, the Schwab employees

48 C H A P T E r F O U r

c04.indd 48 2/16/15 10:42 AM

might have used the telephone system, or fax machines, or maybe even
paper mail.

I N D U S T r I A L E S P I O N A G E

Business is war. Well, it’s kind of like war, but it has referees. The refer-
ees establish the rules—what is legal and what isn’t—and do their best to
enforce them. Sometimes, if a business has enough money and clout, it
can petition to the referees and get the rules changed. Usually, it just plays
within them.

The line where investigative techniques stop being legal and start
being illegal is where competitive intelligence stops and industrial espio-
nage starts. The line moves from jurisdiction to jurisdiction, but there
are gross generalities. Breaking into a competitor’s office and stealing files
is always illegal (even for richard Nixon); looking them up in a news
article database is always legal. Bribing their senior engineers is illegal;
hiring them is legal. Hiring them and having them bring a copy of the
competitor’s source code is illegal. Pretending to want to hire their senior
engineers so that you can interview them . . . that’s legal, pretty sleazy,
and really clever.

Industrial espionage attacks have precise motivations: to gain an
advantage over the competition by stealing competitors’ trade secrets. In
one public example, Borland accused Symantec of stealing trade secrets
via a departing executive. In another case, Cadence Design Systems filed
suit against competitor Avant! for, among other things, stealing source
code. In 1999, online bookseller Alibris pled guilty to eavesdropping on
Amazon.com corporate e-mail. Companies from China, France, russia,
Israel, the United States, and elsewhere have stolen technology secrets
from foreign competitors.

Industrial espionage can be well-funded; an amoral but rational
company will devote enough resources toward industrial espionage to
achieve an acceptable return on investment. Even if stealing a rival’s
technology costs you half a million dollars, it could be one-tenth the
cost of developing the technology yourself. (Ever wonder why the rus-
sian Space Shuttle looks a whole lot like the U.S. Space Shuttle?) This
kind ofadversary has a medium risk tolerance because a company’s repu-
tation (an intangible but valuable item) will be damaged considerably if

 Adversaries 49

c04.indd 49 2/16/15 10:42 AM

it is caught spying on the competition—but desperate times can bring
desperate measures.

P r E S S

Think of the press as a subspecies of industrial spy, but with different
motivations. The press isn’t interested in a competitive advantage over
its targets; it is interested in a “newsworthy” story. This would be the
Washington City Pages publishing the video rental records of Judge Bork
(which led to the Video Privacy Protection Act of 1988), the British tab-
loids publishing private phone conversations between Prince Charles and
Camilla Parker Bowles, or a newspaper doing an exposé on this company
or that government agency.

It can be worth a lot of newspaper sales to get pictures of a presidential
candidate like Gary Hart with a not-his-wife on his lap. Even marginally
compromising photographs of Princess Di were worth over half a mil-
lion dollars. Some reporters have said that they would not think twice
about publishing national security secrets; they believe the public’s right
to know comes first.

In many countries, the free press is viewed as a criminal. In such
countries, the press is usually not well funded, and generally more the
victim of attack than the attacker. Journalists have gone to jail, been tor-
tured, and have even been killed for daring to speak against the ruling
government. This is not what I mean by the press as an attacker.

In industrial countries with reasonable freedoms, the press can bring
considerable resources to bear on attacking a particular system or target.
They can be well funded; they can hire experts and gain access. And
if they believe their motivations are true, they can tolerate risk. (Cer-
tainly the reporters who broke the Watergate story fall into this category.)
reporters in the United States and other countries have gone to jail to
protect what they believe is right. Some have even died for it.

O r G A N I z E D C r I M E

Organized crime is a lot more than Italian Mafia families and Francis
Ford Coppola movies. It’s a global business. russian crime syndicates
operate both in russia and in the United States. Asian crime syndicates

50 C H A P T E r F O U r

c04.indd 50 2/16/15 10:42 AM

operate both at home and abroad. Colombian drug cartels are also inter-
national. Nigerian and other West African syndicates have captured 70
percent of the Chicago heroin market. Polish gangsters run an elaborate
car theft operation, stealing cars in the United States and shipping them
back to Poland. Of course, there are turf battles between rival gangs, but
there is a lot of international cooperation, too.

Organized crime’s core competencies haven’t changed much this
century: drugs, prostitution, loan sharking, extortion, fraud, and gambling.
And they use technology in two ways. First, it’s a new venue for crime.
They use hacking tools to break into bank computers and steal money;
they steal cell phone IDs and resell them; they engage in computer fraud.
Identity theft is a growth area; Chinese gangs are industry leaders here.
Certainly electronic theft is more profitable: One big Chicago bank lost
$60,000 in 1996 to bank robbers, and $60 million to check-related fraud.

The mob also uses computers to assist its core businesses. Illegal
gambling is easier to run: Cell phones allow bookies to operate from
anywhere, and hair-trigger computers can erase all evidence within sec-
onds of a raid. And money laundering is increasingly a business of com-
puters and electronic funds transfers: moving money from one account
to another to a third, changing ownership of accounts, disguising the
money’s origins, moving it through countries that keep less detailed
records.

In terms of risk, organized crime is what you get when you combine
lone criminals with a lot of money and organization. These guys know
that you have to spend money to make money, and are willing to invest
in profitable attacks against a financial system. They have minimal exper-
tise, but can purchase it. They have minimal access, but they can purchase
it. They often have a higher risk tolerance than lone criminals; the peck-
ing order of the crime syndicate often forces those in the lower ranks to
take greater risks, and the protection afforded by the syndicate makes the
risks more tolerable.

P O L I C E

You can think of the police as kind of like a national intelligence orga-
nization, except that they are less well funded, less technically savvy, and
focused on crimefighting. Understand, though, that depending on how

 Adversaries 51

c04.indd 51 2/16/15 10:42 AM

benevolent the country is and whether or not they hold occasional
democratic elections, “crimefighting” could cover a whole lot of things
not normally associated with law enforcement. Maybe they’re more like
the press, but with better funding and a readership that only cares about
true crime stories. Or maybe you can think of them as organized crime’s
industrial competitor.

In any case, police have a reasonable amount of funding and exper-
tise. They’re pretty risk averse—no cop wants to die for his beliefs—
but since they have the laws on their side, things that are risks to some
groups can be less risky to the police. (Having a warrant issued, for
example, turns eavesdropping from a risky attack to a valid evidence-
gathering tool.) Their primary goal is information gathering, with
information that stands up in court being more useful than information
that doesn’t.

But police aren’t above breaking the law. The fundamental assump-
tion is that we trust the individual or some government to respect our
privacy and to only use their powers wisely. While this is true most of
the time, abuses are regular and can be pretty devastating. A spate of ille-
gal FBI wiretaps in Florida and a subsequent cover-up got some press in
1992; the 150 or so illegal wiretaps by the Los Angeles Police Department
have gotten more. (Drugs were involved, of course; more than one per-
son has pointed out that the war on drugs seems to be the root password
to the U.S. Constitution.) J. Edgar Hoover regularly used illegal wiretaps
to keep tabs on his enemies. And 25 years ago a sitting president used
illegal wiretaps in an attempt to stay in power.

Things seem to have improved since the days of Hoover and Nixon,
and I have many reasons to hope we won’t be back there again. But the
risk remains. Technology moves slowly, but intentions change quickly.
Even if we are sure today that the police will follow all privacy legisla-
tion, eavesdrop only when necessary, obtain all necessary warrants, follow
proper minimization procedures, and generally behave like upstanding
public servants, we don’t know about tomorrow. The same kind of reac-
tive crisis thinking that led us to persecute suspected Communists during
the McCarthy era could again sweep across the country. Census data
is, by law, not supposed to be used for any other purpose. Even so, it
was used during World War II to round up Japanese Americans and put
them in concentration camps. The eerily named “Mississippi Sovereignty
Commission” spied on thousands of civil rights activists in the 1960s.

52 C H A P T E r F O U r

c04.indd 52 2/16/15 10:42 AM

The FBI used illegal wiretaps to spy on Martin Luther king, Jr. A national
public-key infrastructure could be a precursor to national registration of
cryptography. Once the technology is in place, there will always be the
temptation to use it. And it is poor civic hygiene to install technologies
that could someday facilitate a police state.

T E r rO r I S T S

This category is a catchall for a broad range of ideological groups and
individuals, both domestic and international. There’s no attempt to make
moral judgments here: One person’s terrorist is another person’s free-
dom fighter. Terrorist groups are usually motivated by geopolitics or
(even worse) ethnoreligion—Hezbollah, red Brigade, Shining Path,
Tamil Tigers, IrA, ETA, FLNC, Pkk, UCk—but can also be moti-
vated by moral and ethical beliefs, such as those of Earth First and radical
antiabortion groups.

These groups are generally more concerned with causing harm than
gathering information, so their techniques run more along the lines of
denial of service and outright destruction. While their long-term goals
are usually something vaguely reasonable, like the reunification of Gond-
wanaland or the return of all cows to the wild, their near-term goals are
things like revenge, chaos, and blood-soaked publicity. Bombings are a
favorite; kidnappings also work well. It makes a big international splash
when a DC-10 falls out of the sky or an abortion clinic is blown to bits,
but eventually these guys will figure out that a lot more damage is done
when O’Hare air traffic control starts vectoring planes into each other. Or
that if they can hack the airline reservation system to find out which 747
is taking the congressional delegation to the south of France this summer,
their bombing will be all that much more effective.

There are actually very few terrorists. Their attacks are acts of war
more than anything else, and probably should be in the “infowarrior”
category. And since terrorists generally consider themselves to be person-
ally in a state of war, they have a very high risk-tolerance.

Unless they have a rich idealist funding their actions, most terrorists
operate on a shoestring budget. Most of them are unskilled: “You there.
Carry this bag. Walk into the middle of that busy market. Push this but-
ton. See you in the glorious afterlife.” There are exceptions (some of the

 Adversaries 53

c04.indd 53 2/16/15 10:42 AM

organizations in the first paragraph are well-organized, well-trained, and
well-supported—it is believed that the counterfeit TV descramblers sold
in Ireland helped finance the IrA, for example), but the majority of
groups don’t have good organization or access. And they tend to make
stupid mistakes.

N AT I O N A L I N T E L L I G E N C E O r G A N I z AT I O N S

These are the big boys. The CIA, NSA, DIA, and NrO in the United
States (there are others), the kGB (now FAPSI for counter-intelligence
and FSB for foreign intelligence) and GrU (military intelligence) in
russia, MI5 (counter-intelligence), MI6 (like the CIA), and GCHQ
(like the NSA) in the United kingdom, DGSE in France, BND in Ger-
many, Ministry of National Security in China (also called the “Technical
Department”), Mossad in Israel, CSE in Canada. For most of the other
adversaries, this is all a game: break into a Web site, gain some competi-
tive intelligence, steal some money, cause a little mayhem, whatever. For
these guys, it’s very real.

A major national intelligence organization is the most formidable
adversary around. It is extremely well funded, since it is usually consid-
ered a branch of the military. (Although the exact number is a secret,
the press reports that “congressional sources” put the combined bud-
gets of the CIA, Defense Intelligence Agency, NSA, the National
reconnaissance Office, and other federal intelligence agencies as
$33.5 billion in 1997.) It is a dedicated and capable adversary, with the
funding to buy a whole lot of research, equipment, expertise, and plain
old skilled manpower.

On the other hand, a major national intelligence organization is
usually highly risk averse. National intelligence organizations don’t like
to see their names on the front page of the New York Times, and gener-
ally don’t engage in risky activities. (Exceptions, of course, exist; they’re
the ones you read about on the front page of the New York Times.)
Exposed operations cause several problems. One, they expose the data.
National intelligence is based on gathering information that the coun -
try should not know. It’s eavesdropping on a negotiating position,
sneaking a peek at a new weapons system, knowing more than the
adversary does. If the adversary learns what the intelligence organization
knows, some of the benefit of that knowledge is lost.

54 C H A P T E r F O U r

c04.indd 54 2/16/15 10:42 AM

Two, and probably more important, botched operations expose
techniques, capabilities, and sources. For many years the NSA eavesdropped
on Soviet car phones as the Politburo drove around Moscow. Someone
leaked information about khrushchev’s health in the news papers, and sud-
denly the car phones were encrypted. The newspapers didn’t say anything
about car phones, but the kGB wasn’t stupid. The leak here wasn’t that
we knew about khrushchev’s health, but that we were listening to their
communications. The same thing happened after some terrorists bombed
a Berlin disco in 1986. reagan announced that we had proof of Libya’s
involvement, compromising the fact that we were able to eavesdrop on
their embassy traffic to and from Tripoli. During World War II, the Allies
couldn’t use much of the intelligence gleaned from decrypting German
Enigma traffic out of fear that the Germans would change their codes.

Intelligence objectives include everything you’d normally think
about—military information, weapons designs, diplomatic informa-
tion—and a lot of things you wouldn’t. The telephone system is probably
a gold mine of intelligence information; so is the Internet. Several
national intelligence organizations are actively engaged in industrial
espionage (the FBI estimates “up to 20” are targeting U.S. companies)
and passing the information gained to rival companies in their own
countries. China is the world’s worst offender, France and Japan are also
bad, and there are others.

The United States is not above this. A 1999 EU report gives several
examples, including the following:

•	 In	1994,	the	Brazilian	government	awarded	a	$1.4	billion	contract	to	
raytheon Corporation, rather than two French companies. raytheon sup-
posedly altered its bid when it learned of details of the French proposals.

•	 In	1994,	McDonnell	Douglas	Corporation	won	a	Saudi	Arabia	contract	over	
Airbus Industrie, supposedly based on inside information passed from U.S.
intelligence.

Former CIA director r. James Woosley has admitted using ECHE-
LON information about foreign companies using bribes to win foreign
contracts to help “level the playing field,” passing the information to
U.S. companies and pressuring the foreign governments to stop the
bribes. None of this is proven, though. Certainly any company that
loses a bid is going to look for reasons why it wasn’t its fault, and none

 Adversaries 55

c04.indd 55 2/16/15 10:42 AM

of the “victims” have said anything in public. Still, the possibilities are
disturbing.

And this kind of stuff is even worse in cyberspace. ECHELON is
not the only program that targets the Internet. Singapore and China
eavesdrop on Internet traffic in their countries (China uses its national
firewall, the Great Wall). Internet service providers across russia are
helping the main kGB successor agencies to read private e-mails and
other Internet traffic, as part of an internal espionage program called
SOrM-2.

National intelligence organizations are not above using hacker tools,
or even hackers, to do their work. The Israeli and Japanese governments
both have programs to bring hackers into their country, feed them pizza
and Jolt Cola, and have them do intelligence work. Other governments
go onto the Net and taunt hackers, trying to get them to work for free.
“If you’re so good you’ll have the password to this government com-
puter”—that sort of thing works well if directed against a talented
teenager with no self-esteem. The Cuckoo’s Egg by Clifford Stoll is about
the exploits of three hackers who worked for the kGB in exchange for
cash and cocaine.

The techniques of national security agencies are varied and, with
the full weight of a nation behind them, can be very effective. British
communications security companies have been long rumored to build
exploitable features into their encryption products, at the request of
British intelligence. In 1997, CIA director George Tenet mentioned
(in passing, without details) using hacker tools and techniques to dis-
rupt international money transfers and other financial activities of Arab
businessmen who support terrorists. The possibilities are endless.

I N F OWA r r I O r S

Yes, it’s a buzzword. But it’s also real. An infowarrior is a military adver-
sary who tries to undermine his target’s ability to wage war by attack-
ing the information or network infrastructure. Specific attacks range
from subtly modifying systems so that they don’t work (or don’t work
correctly) to blowing up the systems completely. The attacks could be
covert, in which case they might resemble terrorist attacks (although a
good infowarrior cares less about publicity than results). If executed via

56 C H A P T E r F O U r

c04.indd 56 2/16/15 10:42 AM

the Internet, the attacks could originate from foreign soil, making detec-
tion and retaliation much more difficult.

This adversary has all the resources of a national intelligence organiza-
tion, but differs in two important areas. One, he focuses almost exclusively
on the short-term goal of affecting his target’s ability to wage war. And
two, he is willing to tolerate risks that would be intolerable to long-
term intelligence interests. His objectives are military advantage and,
more generally, chaos. Some of the particular targets that might interest
an infowarrior include military command and control facilities,
telecommunications, logistics and supply facilities and infrastructure (think
“commercial information systems”), and transportation lines (think “com-
mercial aviation”). These kinds of targets are called critical infrastructure.

In 1999, NATO targeted Belgrade’s electric plants; this had
profound effects on its computing resources. In retaliation, Serbian
hackers attacked hundreds of U.S. and NATO computer sites. Chinese
hackers crashed computers in the Department of the Interior, the Depart-
ment of Energy, and the U.S. embassy in Beijing in retaliation for our
accidental bombing of their embassy in Belgrade. China and Taiwan
engaged in a little cyberwar through most of 1999, attacking each other’s
computers over the Internet (although this was probably not government
coordinated on either side).

In the past, military and civilian systems were separate and distinct:
different hardware, different communications protocols, different every-
thing. Over the past decade, this has shifted; advances in technology are
coming too fast for the military’s traditional multiyear procurement cycle.
More and more, commercial computer systems are being used for mili-
tary applications. This means that all of the vulnerabilities and attacks that
work against commercial computers may work against militaries. And
both sides of a conflict may be using the same equipment and protocols:
TCP/IP, Windows operating systems, GPS satellite receivers. The U.S.
Air Force’s Strategic Air Command (SAC) recently switched to Windows
NT on its external networks.

Militaries have waged war on infrastructure ever since they started
waging war. Medieval knights killed serfs, Napoleonic armies burned
crops, Allied bombers targeted German factories during World War
II. (Ball bearing factories were a favorite.) Today, information is infra-
structure. During Desert Storm, the Americans systematically destroyed
Iraq’s command and control infrastructure. Communications systems

 Adversaries 57

c04.indd 57 2/16/15 10:42 AM

were jammed; individual communications cables were bombing targets.
Without command and control, the ground troops were all but useless.
The media hype surrounding infowar is embarrassing, but the militaries
of the world are taking this seriously. Here is a quote from the Chi-
nese Army newspaper, Jiefangjun Bao, a summary of speeches delivered in
May 1996:

After the Gulf War, when everyone was looking forward to eternal
peace, a new military revolution emerged. This revolution is essen-
tially a transformation from the mechanized warfare of the industrial
age to the information warfare of the information age. Information
warfare is a war of decisions and control, a war of knowledge, and a
war of intellect. The aim of information warfare will be gradually
changed from “preserving oneself and wiping out the enemy” to
“preserving oneself and controlling the opponent.” Information war-
fare includes electronic warfare, tactical deception, strategic deter-
rence, propaganda warfare, psychological warfare, network warfare,
and structural sabotage. Under today’s technological conditions, the
“all conquering stratagems” of Sun Tzu more than two millennia
ago—“vanquishing the enemy without fighting” and subduing the
enemy by “soft strike” or “soft destruction”—could finally be truly
realized.

War isn’t necessarily a major conflict like World War II or the oft-
feared United States versus USSr, Armageddon. More likely, it is a
“low-intensity conflict”: Desert Storm, the Argentine invasion of the
Falklands, civil war in rwanda. In The Transformation of War, Martin van
Creveld points out that so-called low-intensity conflicts have been the
dominant form of warfare since World War II, killing over 20 million
people worldwide. This shift is a result of two main trends. One, it is
easier for smaller groups to lay their hands on weapons of mass destruc-
tion: chemical weapons, biological weapons, long-range missiles, and so
forth. Two, more nonnation states are capable of waging war. In fact, the
distinction between nation and nonnation states is blurring. Organized
crime groups are merging with government at various levels in coun-
tries such as Mexico, Colombia, and russia. Infowarriors don’t all work
for major industrial nations. Increasingly, they work for minor political
powers.

58 C H A P T E r F O U r

c04.indd 58 2/16/15 10:42 AM

5

Security Needs

What kinds of security do we need, anyway? Before examin-
ing (and often dismissing) specific countermeasures against
the threats we’ve already talked about, let’s stop and talk

about needs. In today’s computerized, international, interconnected,
interdependent world, what kind of security should we expect?

P r I v a c y

People have a complicated relationship with privacy. When asked to pay
for it, they often don’t want to. Businesses also have a complicated rela-
tionship with privacy. They want it—they know the importance of not
having their dirty laundry spread all over the newspapers—and are even
willing to pay for it: with locks, alarms, firewalls, and corporate security
policies. But when push comes to shove and work needs to get done,
security is the first thing that gets thrown out the window. Governments
are comfortable with privacy: They know the importance of not having
their military secrets in the hands of their enemies. They know they need
it, and know that they are going to have to pay dearly for it. and they
accept the burden that privacy puts on them. Governments often get the
details wrong, but they grok the general idea.

almost no one realizes exactly how important privacy is in his or
her life. The Supreme court has insinuated that it is a right guaranteed
by the constitution. Democracy is built upon the notion of privacy;

59

c05.indd 59 2/16/15 10:42 AM

you can’t have a secret ballot without it. Businesses can’t function with-
out some notion of privacy; multiple individuals within a company need
to know proprietary information that people outside the company don’t.
People want to be secure in their conversations, their papers, and their
homes.

In the United States, individuals don’t own the data about them-
selves. customer lists belong to the businesses that collect them. Personal
databases belong to the database owner. Only in rare instances do indi-
viduals have any rights or protections about the data that are collected
about them.

Most countries have laws protecting individual privacy. The EU,
for example, has the Data Protection act of 1998. Organizations that
collect personal data must register with the government, and take pre-
cautions against misuse of that data. They are also prohibited from the
collection, use, and dissemination of personal information without the
consent of the person. Organizations also have the duty to tell individ-
uals about the reason for the information collection, to provide access
and correct inaccurate information, and to keep that information secure
from access by unauthorized parties. Individuals have a right to see their
own personal data that has been collected and have inaccuracies cor-
rected. Individuals also have the right to know what their data is being
collected for, and to be sure that their data isn’t being sold for other pur-
poses. They also have the right to “opt out” of any data collection that
doesn’t appeal to them. Data collectors have the responsibility to pro-
tect individual data to areasonably high degree, and to not share the data
with anyone who does not adhere to these rules.

That last clause has caused a contretemps between the EU and the
United States, since the United States does not enforce any controls
on personal data and allows companies to buy and sell it at will. at this
writing, the United States and the EU have tentatively agreed on safe-
harbor provisions for american companies that meet “adequate” levels
of privacy by July 2001. Some members of congress have tried several
times to pass pro-privacy legislation (although nothing as encompassing
as what the EU does), but have been blocked through industry pressure.
The lobbying group Netcoalition.com, which includes aOL, ama-
zon.com, yahoo!, eBay, and Doubleclick, believes in self-regulation,
which is the equivalent of no privacy protection. Unfortunately, much
of the industry feels that privacy is bad for business; invading personal
privacy is sometimes the only way some companies see to make money.

60 c H a P T E r F I v E

c05.indd 60 2/16/15 10:42 AM

On to business privacy. Businesses don’t generally need long-term
privacy. (Trade secrets—the formula for coke, for example—are the
exceptions.) customer databases might need to remain confidential
for a few years. Product development data, only a few years—and for
computer-related businesses, a lot less than that. Information about gen-
eral financial health, business negotiations, and tactical maneuvers: weeks
to months. Marketing and product plans, strategies, long-range negotia-
tions: months to years. Detailed financial information might need to be
secure for a few years, but probably not more. Even corporate five-year
plans are obsolete after nine months. We live in a world where informa-
tion diffuses rapidly. Last week’s business secrets have been supplanted by
this week’s new business secrets. and this week’s business secrets are next
week’s Wall Street Journal headlines.

Governments need short-term privacy as well. Often the interests of
one country run counter to the interests of another country, and gov-
ernments need to keep certain pieces of information secret from that
other country. Unfortunately, countries are a lot bigger than companies.
It’s impossible to tell everyone in the United States a secret without it
leaking to the government of china. Therefore, if the United States
wants to keep a secret from the chinese, it has to keep it a secret from
almost all americans as well.

These secrets are usually military in nature: strategy and tactics, weap-
ons capabilities, designs and procurements, troop strengths and move-
ments, research and development. Military secrets often broaden into
state secrets: negotiating positions on treaties and the like. and they often
overlap into corporate secrets: military contracts, bargaining positions,
import and export dealings, and so forth.

The exceptions to this short-term privacy need are embarrassments:
personal, political, or business. Union carbide would have been hap-
pier if information about Bhopal stayed secret for longer than it did.
Governments don’t want their political embarrassments leaking into the
press. (Think Watergate. Think Iran-contra. Think almost any political
scandal uncovered by the media.) People don’t want their personal pasts
made public. (Think Bill clinton. Think Bob Livingston, the congress-
man and Speaker of the House nominee who resigned in 1999, after a
20-year-old affair was made public. Think arthur ashe, whose aIDS
condition was discovered by the press.) In about two decades, we’re
going to have elections where candidates are going to have to try to
explain e-mail that they wrote when they were adolescents.

 Security Needs 61

c05.indd 61 2/16/15 10:42 AM

The few instances of very long privacy requirements I know of are
government related. U.S. census data—the raw data, not the compi-
lations—must remain secret for 72 years. The cIa mandates that the
identities of spies remain secret until the spy is dead and all the spy’s chil-
dren are dead. canadian census data remains secret forever.

M U L T I L E v E L S E c U r I T y

Militaries have a lot of information that needs to be kept secret, but
some pieces of information are more secret than others. The locations of
Navy ships might be of moderate interest to the enemy, but the launch
codes for the missiles on those ships are much more important. The num-
ber of bedrolls in the supply chain is of marginal interest; the number of
rifles is of greater interest.

To deal with this kind of thing, militaries have invented multiple
levels of security classifications. In the U.S. military, data is either Unclas-
sified, confidential, Secret, or Top Secret. rules govern what kind of
data falls into what classification, and different classifications have differ-
ent rules for storage, dissemination, and so forth. For example, different
strength safes are required for different classifications of data. Top Secret
data might only be stored in certain guarded, windowless, rooms without
photocopiers, and might need to be signed out.

People working with this data need security clearances commensu-
rate with the highest classification of information they are working with.
Someone with a Secret clearance, for example, can see information that
is Unclassified, confidential, and Secret. Someone with a confidential
clearance can only see Unclassified and confidential data. (Of course,
clearance is not a guarantee of trustworthiness. The cIa’s head rus-
sian counterintelligence officer, aldrich ames, had a Top Secret security
clearance; he also was a russian spy.)

Data at the Top Secret level or above is sometimes divided by topic,
or compartment. The designation “TS/ScI,” for “Top Secret/Special
compartmented Intelligence,” indicates these documents. Each com-
partment has a codeword. TaLENT and KEyHOLE, for example, are
the keywords associated with the KH-11 spy satellites. SILvEr, rUFF,
TEaPOT, UMBra, and ZarF are others. (UMBra applies to com-
munications intelligence, and rUFF applies to imagery intelligence.)

62 c H a P T E r F I v E

c05.indd 62 2/16/15 10:42 AM

compartments are topical access barriers; someone who has a Top Secret
clearance with an additional KEyHOLE clearance (sometimes called a
“ticket”) is not authorized to see Top Secret cOBra data.

These compartments are a formal codification of the notion of “need
to know.” Just because someone has a certain level of clearance doesn’t
mean he automatically gets to see every piece of data at that clearance
level. He only gets to see the data that he needs to know to do his job.
and there are other designations that modify classifications: NOFOrN
is “No Foreign Nationals,” WNINTEL is “Warning Notice, Intelligence
Sources and Methods,” LIMDIS is “Limited Dissemination.”

Other countries have similar rules. The United Kingdom has one
additional classification level, restricted, which falls between Unclas-
sified and confidential. The United States has something similar called
FOUO—For Official Use Only—which means “Unclassified, but don’t
tell anyone anyway.”

Two points are salient here. One, this kind of thing is much easier to
implement on paper than on computer. chapter 8 talks about some of
the multilevel security systems that have been built and used, but none
of them have ever worked on a large scale. and two, this kind of thing
is largely irrelevant outside a military setting. corporate secrets just don’t
work this way; neither do individuals’ secrets. Security in the real world
doesn’t fit into little hierarchical boxes.

a N O N y M I T y

Do we need anonymity? Is it a good thing? The whole concept of ano-
nymity on the Internet has been hotly debated, with people weighing in
on both sides of the issue.

anyone who works on the receiving end of a crisis telephone line—
suicide, rape, whatever—knows the power of anonymity. Thousands
of people on the Internet discuss their personal lives in newsgroups for
abuse survivors, aIDS sufferers, and so on, that are only willing to do so
through anonymous remailers. This is social anonymity, and it is vital
for the health of the world, because it allows people to talk about things
they are unwilling to sign their name to. For example, some people
posting to alt.religion.scientology do so anonymously, and would not do
so otherwise.

 Security Needs 63

c05.indd 63 2/16/15 10:42 AM

Political anonymity is important, too. There is not, and should not
be, any requirement that all political speech be signed. Just as some-
one can do a mass political mailing with no return address, they can do
the same over the Internet. This matters more in certain parts of the
world: In 1999, online anonymity allowed Kosovars, Serbs, and others
caught up in the Balkan war to send news about the conflict to the rest
of the world without taking the life-threatening risk of revealing their
identities.

On the other hand, people are using the anonymity of the Internet
to send threatening e-mail, publish hate speech and other obloquies, dis-
perse computer viruses and worms, and otherwise roil the good citizens
of cyberspace.

There are two different types of anonymity. The first is complete
anonymity: a letter without a return address, a message in a bottle, a
phone call in a world without caller ID or phone tracing. The person
initiating the communication is completely anonymous: No one can
figure out who it is, and more importantly, if the person initiates
another communication, the recipient doesn’t know it came from the
same person.

The second type of anonymity is more properly called pseudonymity.
Think of a Swiss bank account (although the Swiss actually stopped
doing this in 1990), a Post Office box rented with cash under an
assumed name (although this is no longer possible in the United States
without a fake ID), an alcoholics anonymous meeting where you’re
just known as “Bob.” It’s anonymous in that no one knows who you
are, but it is possible to link different communications from the same
pseudonym. This is exactly what a Swiss bank needs: It doesn’t care who
you are, only that you’re the same person that deposited the money last
week. a merchant doesn’t need to know your name, but it does need to
know that you legitimately bought the merchandise you are now trying
to return.

Both types of anonymity are hard in cyberspace, because so much of
the infrastructure is identifying. The new Intel Pentium III–class micro-
processors have unique serial numbers that can be tracked, as do Ether-
net network cards. Microsoft Office documents automatically contain
information identifying the author. cookies track people on the Web;
even anonymous e-mail addresses can theoretically be linked back to the
real person by tracking IP addresses. and many flaws have been found in

64 c H a P T E r F I v E

c05.indd 64 2/16/15 10:42 AM

the various products that promise anonymous browsing. Superficial
anonymity is easy, but true anonymity is probably not possible on today’s
Internet.

Commercial Anonymity

The notion of pseudonymity brings us nicely to anonymity in finan-
cial transactions. What about it? a small group is a vocal proponent of
fi nancial anonymity. It’s no one’s business—not the government’s, not
the merchants’, not the marketers’—what people buy, whether it be
X-rated videos or surprise birthday presents. Unfortunately, there is also a
large group of nonvocal proponents of financial anonymity: drug dealers
and other maleficent elements. can these two sides reconcile?

Obviously they can, because cash exists. The real question is whether
we will ever get an electronic version of cash. I don’t believe we will,
except for low-value transactions.

anonymity is more expensive because extra risks are associated
with an anonymous system. (Government regulations also affect
things.) Banks aren’t stupid; they prefer a less risky system. and choos-
ing an anonymous system is more expensive than a system based on
accounts and relationships. Banks could build the extra costs into the
system, but customers aren’t willing to pay for it. If you are a merchant,
try this experiment. Put a sign up in your store with the words “5 per-
cent discount if you give us your name and address and let us track your
buying habits.” See how many customers prefer anonymity. People talk
as if they don’t want megadatabases tracking their every spending
move, but they are willing to get a frequent-flyer affinity card and give
all that data away for one thousandth of a free flight to Hawaii. If
McDonald’s offered three free Big Macs for a DNa sample, there
would be lines around the block.

On the other hand, put up a sign saying “5 percent discount if you
give us the name and address of your child’s daycare center” and you’re
likely to get a different reaction. There are some things most people
want to keep private, and there are people who want to keep most
things private. There will always be the Swiss-bank style anonymous
payment systems for the rich, who are willing to pay a premium for their
privacy. But the average consumer isn’t one of those people. average
consumers will have personal exceptions, but in general they don’t care

 Security Needs 65

c05.indd 65 2/16/15 10:42 AM

about anonymity. Banks have no reason to give it to them, especially
while the government is pressuring them not to.

Medical Anonymity

and then there are medical databases. On the one hand, medical
data are only useful if shared. Doctors need to know the medical his-
tory of their patients, and aggregate medical data is useful for all sorts
of research. On the other hand, medical information is about as personal
as it gets: genetic predisposition to disease, abortions and reproductive
health, emotional health and psychiatric care, drug abuse, sexual behav-
iors, sexually transmitted diseases, HIv status, physical abuse. People
have a right to keep their medical information private. People have been
harassed, threatened, and fired after personal medical information was
made public.

and it’s not hard to get this information. Nicole Brown Simpson’s
medical records were leaked to the press within a week after her 1994
murder. In 1995, the Sunday Times of London reported that the going
price for anyone’s medical record in England was £200. and these cases
are from wealthy countries; just imagine what kinds of abuses are possible
in countries like India or Mexico, where a $10 bill can tempt even the
most virtuous civil servant.

computerized patient data is bad for privacy. But it’s good for just
about everything else, so it’s inevitable. HIPaa (the Health Insurance
Portability and accessibility act) now has standards for computerized
medical records. It makes it easier to provide information when and where
it is needed, for a population that is less likely to have a family doctor and
more likely to move around the country, visiting different doctors and
hospitals when necessary. Specialists can easily call up vital data. Insurance
companies like it because it allows more automation, greater standardiza-
tion, and cheaper processing: If all the data are electronic, then it will be
cheaper to process claims. and researchers like it because it allows them
to make better use of the available data: For the first time they can look at
everything, in standard form.

This is a big deal, probably as important as the financial and credit
databases mentioned previously. We as a society are going to have to
balance the need for access (which is much more evident for medical
information than financial information) with the need for privacy.

66 c H a P T E r F I v E

c05.indd 66 2/16/15 10:42 AM

computerization is coming to the medical profession, like it or not. We
need to make sure it’s done correctly.

P r I v a c y a N D T H E G O v E r N M E N T

The government, and the FBI in particular, likes to paint privacy (and
the systems that achieve it) as a flagitious tool of the Four Horsemen
of the Information apocalypse: terrorists, drug dealers, money launder-
ers, and child pornographers. In 1994, the FBI pushed the Digital Tele-
phony Bill through congress, which tried to force telephone companies
to install equipment in their switches to make it easier to wiretap people.
In the aftermath of the World Trade center bombing, they pushed the
Omnibus counterterrorism Bill, which gave them the power to do rov-
ing wiretaps and the President the power to unilaterally and secretly clas-
sify political groups as terrorist organizations. Thankfully, it didn’t pass.
after TWa Flight 800 fell out of the sky in 1996 because of a fuel-tank
explosion, the FBI played on rumors that it was a missile attack and passed
another series of measures that further eroded privacy. They’re continu-
ing to lobby for giving the government access to all cryptographic keys
that protect privacy, or weakening the security so that it doesn’t matter.

For the past few decades, computer privacy in the United States has
been limited by what are called export laws. Export laws limit what kind
of encryption U.S. companies can export. Since most software products
are global, this effectively limited the strength of the cryptography in mass
products like Internet browsers and operating systems.

Since 1993, the U.S. government has been advocating something
called key escrow, which I discuss in detail in chapter 16. This is the
system that gives the police access to your encryption keys.

The debate is ongoing. The FBI has been pushing for stronger anti-
privacy measures: the right to eavesdrop on broad swaths of the telephone
network, the right to install listening devices on people’s computers—
without warrants wherever possible. at the time of writing (early 2000),
we have new export rules for mass-market software, a variety of encryption
liberalization bills are in congress, and several court cases about export
controls are working their way to the Supreme court. changes happen
all the time; anything I say here could be obsolete by the time this book is
published.

 Security Needs 67

c05.indd 67 2/16/15 10:42 AM

also interesting (and timeless) are the philosophical issues. First, is the
government correct when it implies that the social ills of privacy outweigh
the social goods? I argued in the previous section that the benefits of ano-
nymity outweigh the problems. It is the same with privacy. It has many
positive uses, and the positive uses are much more common than the
negative ones.

Second, can a government take a technology that clearly does an
enormous amount of social good and, because they perceive that it hin-
ders law enforcement in some way, limit its use? The FBI shibboleth is
that encryption is a great hindrance to criminal investigations, and that
they are only asking for the same eavesdropping capabilities they had
ten years ago. However, they offer no evidence, and the historic record
convincingly shows that wiretaps are not cost-effective crimefighting
techniques. Widespread cryptography may be a step back for law enforce-
ment’s desires, but it may not be a step back in convicting criminals.

I don’t know the answers. a balance exists between privacy and safety.
Laws about search and seizure and due process hinder law enforcement,
and probably result in some criminals going free. On the other hand, they
protect citizens against abuse by the police. We as a society need to decide
what particular balance is right for us, and then create laws that enforce
that balance. Warrants are a good example of this balance; they give police
the right to invade privacy, but add some judicial oversight. I don’t neces-
sarily object to invasions of privacy in order to aid law enforcement, but I
vociferously object to the FBI trying to ram them through without public
debate or even public awareness.

In any case, the future does not look good. Privacy is the first thing
jettisoned in a crisis, and already the FBI is trying to manufacture crises
in an attempt to seize more powers to invade privacy. a war, a terrorist
attack, a police action . . . would cause a sea change in the debate. and
even now, in an environment that is most conducive to a reasoned debate
on privacy, we’re losing more and more of our privacy.

a U T H E N T I c a T I O N

Privacy and anonymity might be important for our social and business
well-being, but authentication is essential for survival. authentication
is about the continuity of relationships, knowing who to trust and who

68 c H a P T E r F I v E

c05.indd 68 2/16/15 10:42 AM

not to trust, making sense of a complex world. Even nonhumans need
authentication: smells, sounds, touch. arguably, life itself is an authenticat-
ing molecular pit of enzymes, antibodies, and so on.

People authenticate themselves zillions of times a day. When you log
on to a computer system, you authenticate yourself to the computer. In
1997, the Social Security administration tried to put people’s data up on
the Web; they shut down after complaints that Social Security number
and mother’s maiden name weren’t good enough authentication means,
that people would be able to see other people’s data. The computer also
needs to authenticate itself to you; otherwise, how to do you know it’s
your computer and not some impostor’s?

consider the average man on the street going to buy a bratwurst. He
examines storefront after storefront, looking for one that sells bratwurst.
Or maybe he already knows his favorite bratwurst store, and just goes
there. In any case, when he gets to the store he authenticates that it is
the correct store. The authentication is sensory: He sees bratwurst on the
menu, he smells it in the air, the store looks like the store did the last time
he was there.

Our man talks to the deli man and asks for a bratwurst. To some
degree, both authenticate each other. The deli man wants to know if the
customer is likely to pay. If the customer is dressed in rags, the deli man
might ask him to leave (or at least to pay beforehand). If the customer
is wearing a balaclava and brandishing an aK-47, the deli man might
simply run away.

The customer, too, is authenticating the deli man. Is he a real deli
man? Will he deliver me my bratwurst, or will he just give me a pile of
sawdust on my bun? What about the restaurant? There’s probably some
kind of certificate of cleanliness, signed by the local health inspector,
on the wall somewhere if the customer cares to check. More often, the
customer trusts his instincts. We’ve all walked out of restaurants because
we didn’t like the “feel” of the place.

The deli man hands over the bratwurst, and the customer hands over
a $5 bill. More authentication. Is this bill authentic? Is this bratwurst-
looking thing food? We’re so good at visual (and olfactory) authentication
that we don’t think about it, but we do it all the time. The customer gets
his change, checks to make sure it is legal tender, and puts it in his pocket.

If the customer paid using a credit card, there would be lot of
behind-the-scenes authentication. The deli man would swipe the card

 Security Needs 69

c05.indd 69 2/16/15 10:42 AM

through a veriFone reader, which would dial into a central server and
make sure the account was valid and had enough credit for the purchase.
The deli man would be expected to examine the card to make sure it
isn’t a forgery, and check the signature against the one on the back of
the card. (Most merchants don’t bother, especially for low-value trans-
actions.)

If the customer paid by check, there would be another authentica-
tion dance. The deli man would look at the check, and possibly ask the
customer for some identification. Then he might write the customer’s
driver’s license number and phone number on the back of the check,
or maybe the customer’s credit card number. None of this will actually
help the deli man collect on a bad check, but it does help him track the
customer down in the event of a problem.

attacking authentication can be very profitable. In 1988, Thomp-
son Sanders was convicted of defrauding the chicago Board of Trade.
He synthesized a nonexistent trader, complete with wig, beard,
and fake credentials. This fake trader would place large risky orders, then
claim those that were profitable and walk away from those that were
not. The brokers on the other side of the losing transactions, unable
to prove who they made the trade with, would be responsible for the
losses.

Back to the deli. another customer walks in. She and the deli man
are old friends. They recognize each other—authenticating each other
by face. This is a robust authentication system; people recognize each
other even though she has a new hairstyle and he is wearing a new toupee
and glasses. Superheroes realize this, and wear masks to hide their secret
identity. That works better in comic books than in real life, because face-
to-face authentication isn’t only face recognition (otherwise the blind
would never recognize anyone). People remember each other’s voice,
build, mannerisms, and so forth. If the deli man called his friend on the
phone, they could authenticate each other without any visual cues at all.
commissioner Gordon ought to figure out that Bruce Wayne is really
Batman, simply because they talk on the phone so often.

In any case, our bratwurst-filled customer finishes eating. He says
goodbye to the deli man, sure in the knowledge that he is saying good-
bye to the same deli man who served him his bratwurst. He leaves
through the same door that he came in by, and goes home.

70 c H a P T E r F I v E

c05.indd 70 2/16/15 10:42 AM

Easy enough, because everyone involved was there . . . in the deli.
Plato (and Hume) distrusted writing because you couldn’t know what
was true if the person wasn’t right there in front of you. What would
he say about the World Wide Web: no handwriting, no voice, no
face . . . nothing but bits.

The same customer who bought the bratwurst is now surfing the
Net, and he wants to buy something a little less perishable: a painting of
a bratwurst, for example. He fires up his trusty search engine and finds a
few Web sites that sell bratwurst paintings. They all take credit cards over
the Internet, or let him mail a check in. They all promise delivery in three
to four days. Now what?

How does the poor customer know whether to trust them? It
takes some doing to put up a storefront; on the Web, anyone can do
it in a few hours. Which of these merchants are honest, and which are
scams? The UrL might be that of a trusted name in the bratwurst-
painting business, but who’s to say that the UrL is owned by that
same trusted name? Northwest airlines has a Web site where you can
purchase tickets: www.nwa.com. Until recently, a travel agent had the
Web site www.northwest-airlines.com. How many people bought
from the latter, thinking they were buying from the former? (Many
companies do not own their namesake domain name.) Some compa-
nies embed their competitors’ names in their Web site (usually hidden)
in an effort to trick search engines to point to them instead of their
competitors. Internic.net, which is where you go to register domain
names, is not the same as Internic.com. The latter started out as a
spoof, morphed into Internic Software, and now registers domain
names as well. They probably get a considerable business from the
confused. and there’s an even more sinister thought: Who’s to say that
some illicit hacker hasn’t convinced the browser to display one UrL
while pointing to another?

The customer finds a Web site that looks reasonable and chooses a
bratwurst painting. He then has to pay the merchant. If he’s buying any-
thing of value, we are going to need some serious authentication here.
(If he’s spending 25 cents for a virtual newspaper, it’s a little easier to
let this slide.) Is this digital cash valid? Is this credit card valid, and is the
customer authorized to use it? Is the customer authorized to write a digital
check? Some face-to-face merchants ask to see a driver’s license before

 Security Needs 71

c05.indd 71 2/16/15 10:42 AM

accepting a check; what can a digital merchant examine before accepting
a digital check?

This is the most important security problem to solve: authentication
across digital networks. and there are going to be as many different solu-
tions as there are different requirements. Some solutions are going to have
to be robust, protecting values in the millions of dollars. Some won’t have
to be strong: authentication for a merchant’s discount card, for example.
Some solutions are going to be anonymous—cash, or a card that lets
you in to a particular area of the Net without necessarily revealing your
name—while others will need strong audit trails. Most will have to be
international: a Net-based passport, commerce systems used for interna-
tional commerce (which is all of them, these days), digital signatures on
international contracts and agreements.

Often computer authentication is invisible to the user. When you
use your cell phone (or your pay-Tv system), it authenticates itself to the
network so the network knows who to bill. Military aircraft have IFF
(identification friend or foe) systems to authenticate themselves to allied
aircraft and antiaircraft batteries. Burglar alarms include authentication,
to detect someone splicing a rogue alarm (that will never go off) into the
circuit. Tachographs, used in trucks throughout Europe to enforce driv-
ing rules, such as mandatory rest periods, use authentication techniques
to prevent fraud. Prepaid electricity meters in the United Kingdom are
another example.

When thinking about authentication, keep in mind these two dif-
ferent types. They might feel the same, but the techniques used are very
different. The first one is session authentication: a conversation, either
face to face, over the telephone, or via an Irc (Internet relay chat) link.
Sessions can also be a single shopping expedition at an online store. What
is authenticated here is the continuity of the particular conversation: Is
the person who said this the same person who said the previous thing?
(That’s easy to do on the phone or face to face—the person sounds or
looks the same, so it’s probably the same person. On the Net, it’s a lot
harder.)

The other is transaction authentication: a credit card purchase, a
piece of currency. The authentication here is whether or not the trans-
action is valid: whether the parties should accept the transaction or call
the cops. The issues surrounding this kind of authentication are the
same whether the transaction is done over the Net, over the telephone,

72 c H a P T E r F I v E

c05.indd 72 2/16/15 10:42 AM

or face to face. Think of a merchant checking a $100 bill to make sure
it’s not counterfeit, or comparing the signature on a credit card with the
signature on the sales slip.

I N T E G r I T y

Sometimes when we think of authentication, we really mean integrity.
The two concepts are distinct but sometimes confused. authentication
has to do with the origin of the data: who signed the license to prac-
tice medicine, who issued the currency, who authorized this purchase
order for 200 pounds of fertilizer and five gallons of diesel fuel?
Integrity has to do with the validity of data. are these the correct pay-
roll numbers? Has this environmental test data been tampered with
since I last looked at it? Integrity isn’t concerned with the origin of
the data—who created it, when, or how—but whether it has been
modified since its creation.

Integrity is not the same as accuracy. accuracy has to do with a
datum’s correspondence to the flesh-and-blood world; integrity is about a
datum’s relation to itself over time. They are often closely related.

In any society where computerized data are going to be used to
make decisions, the integrity of the data is important. Sometimes it is
important on an aggregate scale: if that faulty statistic about children
below the poverty line is accepted as fact, it could change the amount of
federal aid spent. Someone who fiddles with the closing prices for a
handful of NaSDaQ stocks could make a killing on the resultant con-
fusion. Sometimes it is important to an individual: you can really mess
up someone’s day tampering with his DMv records and marking his
license as suspended. (This was accidentally done in 1985 in anchorage,
alaska, to 400 people, at least one of whom had to spend the night in
jail. Think of the fun someone could have doing it on purpose.)

There have been several integrity incidents regarding stocks. In
1997, a company called Swisher that makes toilet bowl deodorizers
got a big boost to its stock prices because the news services kept mix-
ing up its stock symbol with that of another company called Swisher,
which makes cigars. Swisher(1) was a much smaller company than
Swisher(2), so when you plugged in the mistaken earnings figures, it
looked like an incredibly undervalued stock. Some guys on the Motley

 Security Needs 73

c05.indd 73 2/16/15 10:42 AM

Fool Web site figured out what had happened and sold Swisher(1)’s stock
short, figuring it would come back down when investors realized their
mistake.

In 1999, an employee of PairGain Technologies posted fake take-
over announcements designed to look like they came from the Bloom-
berg news service, running the stock up 30 percent before the hoax was
exposed.

These attacks are not about authentication—it doesn’t matter who
collected the census data, who compiled the closing stock prices, or who
input the motor vehicle records—they’re about integrity. There are many
other databases where integrity is important: telephone books, medical
records, financial records, and so on.

If there’s a mystery writer in the audience, I always thought that a cool
way to murder someone would be to modify the drug dosage database
in a hospital. If the physician isn’t paying close enough attention—he’s
tired, the drug is an obscure one, some MacGuffin is distracting him—
he might just prescribe what the computer tells him to. This might be
far-fetched today—there’s still a lot of reliance on hard-copy documenta-
tion like the Physician’s Desk Reference and AHFS Drug Information—but
it won’t be soon. Millions of people are getting medical information on-
line. For example, drugemporium.com queries another site, drkoop.
com, to search for any harmful drug interactions among the products in
your order (which can include prescription drugs). Users are admonished
not to rely on this information alone, but most of them probably will
anyway. Someone playing with the integrity of that data can cause a lot
of harm.

and even if no malice is involved, any online system that deals with
prescriptions and treatments had better implement integrity checking
against random errors: No one wants a misplaced byte to result in an acci-
dental hospital death, neither the patient nor the software company who
is going to have to deal with the lawsuits.

In the physical world, people use the physical instantiation of an
object as proof of integrity. We trust the phone book, the Physician’s
Desk Reference, and the U.S. Statistical Abstracts because they are bound
books that look real. If they are fake, someone is spending a lot of
money making them look real. If you pull a Dickens novel off the shelf
and start reading it, you don’t think twice about whether it is real or not.
The same with a clipping from Business Week; it’s just a piece of paper,

74 c H a P T E r F I v E

c05.indd 74 2/16/15 10:42 AM

but it looks and feels like a page from the magazine. If you get a photocopy
of the clipping, then it just looks like a page from the magazine. If someone
retypes the article (or downloads it from LEXIS-NEXIS) and e-mails it to
you . . . then who knows.

On august 1, 1997, I received an e-mail from a friend; in it was a
copy of Kurt vonnegut’s 1997 MIT commencement address. at least, I
assumed it was vonnegut’s 1997 MIT commencement address. My friend
mailed it to me in good faith. But it wasn’t Kurt vonnegut’s 1997 MIT
commencement address. vonnegut didn’t deliver the 1997 commence-
ment address at MIT. He never wrote the speech, or delivered it any-
where. The words were written by Mary Schmich, and published in her
June 1, 1997, Chicago Tribune column.

contrast that with another piece of alleged vonnegut writing I
received, about 15 years previous. This was before the World Wide Web,
before I even had an e-mail address (but not before the Internet). This was
an essay entitled “a Dream of the Future (Not Excluding Lobsters)”; a
friend sent a photocopy in the mail. The copy was clearly from a publica-
tion. yes, it could have been faked, but it would have been a lot of work.
This was before the era of desktop publishing, and making something
look like it was photocopied out of Esquire magazine was difficult and
expensive. Today it’s hard to tell the difference between the real thing
and a canard.

I’ve been e-mailed articles from magazines and newspapers many
times. What kind of assurance do I have that those articles are really from
the newspapers and magazines they are claimed to be from? How do I
know that they haven’t been subtly modified, a word here and a sentence
there? What if I make this book available online, and some hacker comes
in and changes my words? Maybe you’re reading this book online; did
you ever stop to think that these might not be my actual words, that
you’re trusting the server you downloaded the book from? Is there a
mechanism that you can use to verify that these are my words? If enough
years go by, more people will have read the altered version of the book
than my original words. Will anyone ever notice? How long before the
modified version becomes the “real” version? When will vonnegut’s
denial be forgotten and his commencement address become history?

The temptation to falsify, or modify, data remains. a rune-cov-
ered stone discovered in Minnesota supposedly described a visit by the
vikings in 1362; never mind that it contained a word only found in

 Security Needs 75

c05.indd 75 2/16/15 10:42 AM

modern Swedish. Paul Schliemann (Heinrich Schliemann’s grandson)
claimed to have discovered the secret of atlantis in the ancient Mayan
Troano codex, which he read in the British Museum. Never mind that
no one could read Mayan, and that the codex was stored in Madrid.
Bismarck’s rewrite of the 1870 Ems telegram effectively started the
Franco-Prussian War. In 1996, when David Selbourne tried to pass off his
translation of a thirteenth-century Italian traveler’s visit to china (beating
Marco Polo by three years); he used the “owner of the manuscript allowed
him to translate it only if he swore himself to secrecy” trick to avoid having
to produce a suitable forgery.

The problem is that the digital world makes this kind of thing easier,
because it is so easy to produce a forgery and so hard to verify the accu-
racy of anything. In May 1997, a 13-year-old Brooklynite won a national
spelling bee. When the New York Post published the associated Press
photo of her jumping for joy, it erased the name of her sponsoring news-
paper, the New York Daily News, from a sign around her neck. video,
too: When cBS covered the 2000 New year celebration, they digitally
superimposed their own logo over the 30-by-40-foot NBc logo in
Times Square. and fake essays and speeches, like the vonnegut speech,
are posted on the Internet all the time.

Images can have powerful effects on people. They can change minds
and move foreign policy. Desert Storm pictures of trapped Iraqis being
shot up by coalition airpower played a large part in the quick cease-
fire: americans didn’t like seeing the lopsided carnage. and remember
Somalia? all it took was a 30-second video clip of a dead Marine being
dragged through the streets of Mogadishu to undermine the american
will to fight. Information is power. and next time, the video clip could
be a fake.

It sounds spooky, but unless we pay attention to this problem
we will lose the ability to tell the real thing from a fake. Throughout
human history, we’ve used context to verify integrity; the electronic
world has no context. In the movie The Sting, Newman and red-
ford hired a cast of dozens and built an entire fake horseracing-betting
parlor in order to con one person. a more recent movie, The Spanish
Prisoner, had a similar big con. cons this involved were popular around
the time of the Depression; for all I know it’s still done today. The mark is
taken because he can’t imagine that what he’s seeing—the rooms, the
people, the noise, the action—is really only a performance enacted

76 c H a P T E r F I v E

c05.indd 76 2/16/15 10:42 AM

solely for his benefit. On the Net, this is easy to do. In a world without
physical cues, people need some new way to verify the integrity of what
they see.

a U D I T

Double-entry bookkeeping was codified by 1497 by Luca Pacioli
of Borgo San Sepolcro, although the concept is as much as 200 years
older. The basic idea is that every transaction will affect two or more
accounts. One account is debited by an amount exactly equal to what
the other is credited. Thus, all transactions are always transfers between
two accounts, and since they always appear with a plus sign in one
account and a minus sign in the other, the total over all accounts will
always be zero.

This system had two main purposes. The two books would be
kept by two different clerks, reducing the possibility of fraud. But more
importantly, the two books would be routinely balanced against each
other (businesses would balance their books every month; banks, every
day). This balancing process was an audit: If one clerk tried to commit
fraud—or simply made a mistake—it would be caught in the balancing
process, because someone other than the clerk would be checking the
work. additionally, there would be outside audits, where accountants
would come in and check the books over again . . . just to make sure.

audit is vital wherever security is taken seriously. Double-entry
bookkeeping is just the beginning; banks have complex and compre-
hensive audit requirements. So do prisons, nuclear missile silos, and gro-
cery stores. a prison might keep a record of everyone who goes in and
out the doors, and balance the record regularly to make sure that no one
unexpectedly left (or unexpectedly stayed). a missile silo might go even
further and audit every box and package that enters and leaves, com-
paring shipping and receiving records with another record of what was
expected. a grocery store keeps a register tape of all transactions that
happen at the register, and compares how much money the register
thinks is in the drawer with what is actually in the drawer.

These are not preventive security measures (although they may dis-
suade attacks); audit is designed to aid forensics. audit is there so that you
can detect a successful attack, figure out what happened after the fact, and

 Security Needs 77

c05.indd 77 2/16/15 10:42 AM

then prove it in court. a system’s particular needs for audit depend on
the application and its value. you don’t need much of an audit trail for
a stored-value card system for photocopy machines at a university; you
need a much stronger audit trail if the cards are going to be used to make
high-value purchases that can be converted back to cash.

auditing can be difficult on computers. register tapes make good
audit records because the clerk cannot change them: Transactions are
printed sequentially on a single sheet of paper, and it is impossible to
add or delete a transaction without raising some suspicion. (Well, there
are some attacks: blocking the writing, simulating running out of ink,
disabling the writing for a single transaction, forging an entire tape, and so
forth.) On the other hand, computer files can easily be erased or modified;
this makes the job of verifying audit records more difficult. and most sys-
tem designers don’t think about audit when building their systems. recall
the built-in audit property of double-entry bookkeeping. That audit-
ability fails when both books are stored on the same computer system,
with the same person having access to both. But this is exactly how all
computer bookkeeping programs work.

E L E c T r O N I c c U r r E N c y

Back in the old days (1995 or so), everyone thought that we would have
to develop new forms of money to deal with electronic commerce. Many
companies died, trying to redefine money. Some companies tried to
create an electronic equivalent of cash; others tried to create electronic
equivalents of checks and credit cards. One of the last vestiges of this, the
joint visa/Mastercard SET protocol, is designed to use existing credit
cards together with an Internet-specific system to make credit cards safe
for e-commerce.

It turns out that it doesn’t matter. credit cards are fine for the Inter-
net, and most everyone uses them with alacrity to buy books, clothing,
pay-per-porn, and everything else. Still, security breaches like the series of
credit card number thefts in 2000 make you wonder. Is there ever going
to be an Internet-specific form of payment?

This is more of a regulatory question than a security question. The
security needs for electronic commerce can be cobbled together from
the previous sections: authentication, privacy, integrity, nonrepudiation,

78 c H a P T E r F I v E

c05.indd 78 2/16/15 10:42 AM

audit. The requirements are pretty simple: We need the ability to trans-
fer monetary value over computer networks. Looking closer, there are
several ways to achieve this. We can take any of the existing commerce
metaphors—cash, checks, debit cards, credit cards, letters of credit—and
move them to cyberspace. Different metaphors have different rules and
requirements.

Some requirements depend on who has what liability. Merchants and
credit card companies hold most of the liabilities for stolen credit cards
and fraudulent credit card transactions, so electronic versions of those
systems are generally designed to make their lives easier, and not the
consumers’.

Different physical implementations also have different requirements.
Is this an online system or an offline system? Things are simpler if you
can assume an online connection with a bank (such as aTMs require). If
you’re building a commerce system for use in parts of the world where
telephone lines are scarce (like parts of africa), you can’t make that
assumption. Does the system have to work in a software environment,
or can we assume a secure-hardware token like a smart card? and does
this system have to be anonymous, like cash, or include identities, like
credit cards? Finally, what government regulations does this system have
to meet? This depends not only on the metaphor chosen, but also the
regulations of the particular government or governments who have
jurisdiction over the system.

We’re already seeing some of this. We’re not seeing digital cash,
but we’re seeing alternative “points” systems that are the same thing as
currency. Flooz.com created a specialized currency for gift giving. Flooz
can be given away as gift certificates, which makes them usable as money.
Beenz.com does something similar; beenz are not real currency, but they
can be used and traded as such. Other companies are following suit.

I expect this to become a big deal, and potentially dangerous,
because these pseudocurrencies don’t have the same regulatory rules as
real money.

P r O a c T I v E S O L U T I O N S

Traditionally, fraud prevention has been reactive. criminals find a flaw in
a commerce system and exploit it. They keep going while the system’s

 Security Needs 79

c05.indd 79 2/16/15 10:42 AM

designers figure out how to fix the flaw, or at least minimize the risk. The
criminals learn that their attack doesn’t work, and then go on to some
other attack. and the process continues.

you can see this in credit cards. Originally, card verification was
offline. Merchants were given books of bad credit card numbers every
week, and they had to manually check the number against the book.
Now, card verification is done online, in real time. People were stealing
new cards out of mailboxes, so the credit card companies started requir-
ing you to call in to activate your card. Now, the card and the activation
notice are mailed from different points. companies also have artificial
intelligence programs checking for irregular spending patterns. (“Good
morning, sir, sorry to bother you. you’ve been a good customer for years.
We’d like to confirm that you suddenly moved to Hong Kong and spent
your entire credit limit on Krugerands.”)

When aTMs were first introduced by citicorp in 1971, you would
put your card into a slot and type in your PIN. The machine would
verify your PIN, spit the card back out at you, and then you could finish
your transaction. Enterprising New york criminals would dress up in
suits and wait near these machines. after a customer’s PIN was veri-
fied, she would be approached by a suited criminal and be told that this
machine was broken, or being tested, or just out of money, and wouldn’t
she please use the machine over there. People in suits can be trusted, after
all. after the customer left, the suit would finish the first transaction and
pocket the cash.

The work-around was to hold the card until the end of the transac-
tion, but that required rebuilding the hardware. The banks needed a solu-
tion fast, and they figured out a fix that could be quickly installed at the
aTMs: They had the nearby machines communicate with each other.
as they installed the fix throughout the branches, they could watch the
criminals migrate across the city looking for machines where the attack
still worked. They then retrofitted the aTMs to hold the card until the
end of the transaction. The long-term solution was to modify the back-
end network to make sure that only one transaction per card is active at
any time. This has been done, so now it doesn’t matter if the card is held
by the machine anymore. Now many aTMs have you swipe your card
instead of inserting it, but back then there was considerable fraud while the
problem was being fixed.

80 c H a P T E r F I v E

c05.indd 80 2/16/15 10:42 AM

This notion of fixing a security flaw after it becomes a problem won’t
work on the Internet. attacks can be automated, and they can propa-
gate to unskilled attackers quickly and easily. a similar attack on what-
ever turns out to be the Internet equivalent of an aTM could demolish
the banking system. It’s not enough to react to fraud after it’s been
demonstrated to work; we have to be proactive and deal with fraud before
it happens.

 Security Needs 81

c05.indd 81 2/16/15 10:42 AM

c05.indd 82 2/16/15 10:42 AM

P a r t 2

t e c h n o l o g i e s

p02.indd 83 2/16/15 10:39 AM

security is layered like an onion. on the outside are the users: how
they use the system, who they trust, what they do when the system fails.
inside that are the security relationships between the user and the sys-
tem, and between different systems. Further inside is the software, those
bug-riddled pieces of code that are expected to enforce whatever security
rules we have. that software works on networks and computers. looking
further in toward the theoretical are the idealized protocols that the
computers run. and in the center (sometimes) is the cryp-
tography: the mathematical equations that enforce security.

security is a process, not a product. as a process, it has many com-
ponents. and like any process, some of these components are sturdier,
more reliable, more oiled, more secure. Moreover, the components have
to fit together. the better they fit together, the better the process works.
often it’s the interfaces between components that are the least secure.

security is also like a chain. it is composed of many links, and each
one of them is essential to the strength of the chain. and like a chain,
security is only as strong as the weakest link. in this part, we look at the
different security technologies that make up a chain, looking from the
inside of the onion to the outside.

and we try not to mix metaphors quite so badly anymore.

84

p02.indd 84 2/16/15 10:39 AM

6

Cryptography

Cryptography is pretty amazing. On one level, it’s a bunch of
complicated mathematics. It’s cryptographers designing ever
more complicated mathematical transformations and cryptana-

lysts countering with ever more ingenious ways of breaking the math-
ematics. It also has a long and proud history: confidants, lovers, secret
societies, and governments have been using cryptography to protect their
secrets for millennia.

On another level, cryptography is a core technology of cyberspace.
It lets us take all of the business and social constructs we’re used to in the
physical world, and move them to cyberspace. It’s the technology that
lets us build security into cyberspace, to deal with the attacks and attack-
ers discussed in Part 1. Without cryptography, e-commerce could never
enter the mainstream. Cryptography is not a panacea—you need a lot
more than cryptography to have security—but it is essential.

In order to understand security in cyberspace, you need to understand
cryptography. You don’t have to understand the math, but you have to
understand its ramifications. You need to know what cryptography can
do, and more importantly, what cryptography cannot do. You need to
know how to think about cryptography in the context of computer and
network security. These two chapters won’t turn you into a cryptogra-
pher, only an intelligent consumer of cryptography.

To the consumer, cryptography is a shadowy protective entity—
something like Batman—kind of menacing but on the side of justice,
and endowed with mystic powers. If the consumer is paying attention,

85

c06.indd 85 2/16/15 10:42 AM

cryptography is a boatload of acronyms that accomplish various security
tasks. IPsec, for example, secures IP traffic across the Internet. It secures
virtual private networks (VPNs). Secure Sockets Layer (SSL) secures
WWW connections. Pretty Good Privacy (PGP) and S/MIME secure
e-mail; they prevent others from reading e-mail that isn’t addressed to
them, and from forging e-mail to look like it came from someone else.
SET secures Internet credit card transactions. These are all protocols.
There are protocols for digital content protection (music, movies, etc.),
cell phone authentication (to stop fraud), electronic commerce, and just
about everything else. To build these protocols, cryptographers use dif-
ferent algorithms: encryption algorithms, digital signature algorithms, and
so forth.

S Y M M E T r I C E N C rY P T I O N

Historically, cryptography has been used for one thing: to keep secrets.
Written language itself has been used as a form of cryptography—in
ancient China only the upper classes were allowed to learn to read and
write—but the first documented use of cryptography was around 1900
b.c. in Egypt: A scribe used nonstandard hieroglyphs in an inscription.
There were other examples: a Mesopotamian tablet from 1500 b.c. con-
taining an enciphered formula for making pottery glazes, the Hebrew
ATBASH cipher from 500–600 b.c., the Greek skytale from 486 b.c.,
and Julius Caesar’s simple substitution cipher from 50–60 b.c. The
Kama Sutra of Vatsyayana even lists secret writing as the 44th, and secret
talking as the 45th, of 64 arts (yogas) men and women should know and
practice.

The main idea behind cryptography is that a group of people can
use private knowledge to keep written messages secret from everyone
else. There is a message, sometimes called the plaintext, that someone
wants to keep secure. Maybe the someone (we’ll call her Alice) wants to
send it to someone else (we’ll call him Bob); maybe she wants to be able
to read it herself at some later date. What she doesn’t want is for anyone
other than (possibly) Bob to be able to read the message.

So Alice encrypts the message. She invents some transformation,
called an algorithm, of the plaintext message into a ciphertext message.
This ciphertext message is gibberish, so that an eavesdropper (we’ll call

86 C H A P T E r S I X

c06.indd 86 2/16/15 10:42 AM

her Eve) who gets her hands on this ciphertext cannot figure out the plain-
text, and therefore cannot figure out what the message means. Bob knows
how to reverse the transformation—how to turn the ciphertext message
back into plaintext.

This works, more or less. Alice can use an algorithm of her own
devising to keep her pottery glazes secret. Alice and Bob can agree on an
algorithm to share their thoughts on the Kama Sutra. And an entire class
of Chinese nobles (even though none of them is called Bob) can use their
written language to keep state secrets safe from the peasants.

But there are complications. First, the algorithm has to be good.
Eve isn’t going to look at the ciphertext message, shrug her shoulders,
and wander off. She’s going to try to figure out what the plaintext is.
If she’s the World War II British government, she is going to hire the
best mathematicians, linguists, and chess players in the country, stick
them and 10,000 others in a secret compound at Bletchley Park, and
invent the computer—just so she can break the algorithm and recover the
plaintexts. Even today, the National Security Agency (NSA) is the single
largest consumer of computer hardware and the single largest employer of
mathematicians in the world. Alice had better be a pretty smart cryptog-
rapher if she is going to outsmart these sorts of Eves. I’ll talk more about
this later.

Second, it’s hard to bring people in and out of the fold. To exchange
secret messages with Chinese noblemen, you had to learn how to
become literate. This took time. If you later fell out of favor with the
government, there was no way for them to prevent you from reading all
the messages. You knew how the encryption worked, and they had to
kill you if they didn’t want you reading their messages. (During World
War II, the American military used the Navajo language as a code. These
Navajo code talkers kept their language secret from the Japanese in World
War II, but the whole system would have collapsed if a single Navajo
switched allegiances.)

These two problems, left unsolved, would make cryptography
almost useless today. You’re one of the whatever-million people on
the Internet, and you want to communicate securely with 100 of your
closest friends. You don’t want to share a common secret language with
the 100 people; you want 100 separate secure algorithms. (You need
security pairwise.) And so do all the other whatever-million Internet
users. This means that you have to invent 100 different encryption

 Cryptography 87

c06.indd 87 2/16/15 10:42 AM

algorithms, exchange one with each of your close friends, program them
all into your computers yourself (you wouldn’t trust anyone else to do
it), and hope you’re smarter than everyone who might try to break your
algorithm.

Not bloody likely.
Such is the beauty of a key. Your front door lock is mass-produced

by some faceless company that hasn’t the faintest idea how valuable your
vintage PEZ collection is, but you don’t have to trust them. They don’t
say: “remember, anyone else who has the same brand lock can open the
lock.” You have a key. The pin settings inside your lock, which match
your key, make your lock different from all the other locks in the neigh-
borhood, even though they might be exactly the same make and model
number. (Actually, the example is simplistic. You do have to trust them
to install the lock correctly, and not to pocket an extra copy of the key.
But never mind that.)

This is the same security model that Leon Battista Alberti, the famous
Italian renaissance architect, brought to cryptography in 1466 when he
invented the cryptographic key. Everyone can have the same brand lock,
but everyone has a different key. The design of the lock is public—lock-
smiths have books with detailed diagrams, and most of the good designs
are described in public patents—but the key is secret. You have a key, so
you can get in your front door. If you give a key to your friend, he can
get in your front door. Someone without a key cannot. (The locksmiths
are the cryptanalysts; we’ll get to them later.)

Applying this model to cryptography solves both of the preceding
problems. Algorithms, like locks, can be standardized. The Data Encryp-
tion Standard (also called DES) has been a standard cryptographic algo-
rithm, worldwide, since 1977. It’s been used in thousands of different
products for all sorts of applications. The innermost workings of DES
have been public from day one; they were published even before it was
adopted as a standard. The public nature of the algorithm doesn’t affect
security, because each different group of users chooses its own secret key.
Alice and Bob share the same key, so they can communicate. Eve doesn’t
know the key, so she can’t read their communications—even though she
has a copy of the exact same encryption software that Alice and Bob have.

Keys solve the problem of people moving in and out of a private
group. If Alice and Bob share a key, and they want to let Kim Philby
join their conversations, they just give him a copy of the key. If they later

88 C H A P T E r S I X

c06.indd 88 2/16/15 10:42 AM

learn that Philby is passing secrets to the Soviet Union, they can simply
agree on a new key and not tell Philby. From that moment forward, he is
cut out of the system and can no longer read newly encrypted messages.
(Of course, he can still read the old ones.)

This is the way conventional cryptography works today. The algo-
rithms are designed for computers instead of pencil and paper—they oper-
ate on binary bits instead of alphabetic characters, they’re designed with
the efficiencies of microprocessors and integrated circuits in mind—but
the philosophy is the same. The algorithm is public, and the communicat-
ing parties agree on a shared secret key to use with the algorithm.

These algorithms are called symmetric because the sender and receiver
must share the same key. The key is a string of random bits of some
length: in the year 2000, 128 bits is a good key length. Different symmet-
ric algorithms have different key lengths.

Symmetric algorithms can be found in encryption systems all over
the computerized world. Common algorithms are DES and triple-DES,
rC4 and rC5, IDEA, and Blowfish. AES is the Advanced Encryption
Standard; it will soon be the U.S. government standard encryption algo-
rithm. These algorithms secure private e-mail, personal computer files,
electronic banking transactions, and nuclear launch codes. They protect
privacy.

But they’re not perfect.
The problem is distributing the keys. For this system to work, Alice

and Bob need to agree on a secret key before exchanging any secret
messages. If Alice and Bob are smart, they are going to change their key
routinely: daily, perhaps. They need to agree on these daily keys in some
secure manner, since anyone who eavesdrops on the key can eavesdrop
on all communications encrypted with that key. And assuming you want
pairwise security, the number of keys needed grows with the square
of the number of users: Two users need just one key, but a ten-user
network needs 45 keys to allow every pair of users to communicate
securely. And a 100-user network needs 4,950 different keys. In the
1980s, U.S. Navy ships would often sail with a forklift-full of NSA-
distributed keys—each printed on paper tape or punch cards or what-
ever—enough for all of their communications circuits for the entire
length of their missions.

And it isn’t enough to disseminate these keys securely: They have to
be stored securely, used securely, and then destroyed securely. Alice and

 Cryptography 89

c06.indd 89 2/16/15 10:42 AM

Bob need to keep their keys secret until they need to talk with one
another and they need to make sure that no one gets their keys, either
before they use them, while they are using them, or after they have
used them.

This means that destruction is critical. Alice and Bob can’t just toss
their key in the Dumpster in the back and hope no one finds it. Eaves-
droppers are not above storing encrypted communications that they can’t
read, hoping that they will find the key at some later date. The NSA’s
decryption of the russian VENONA traffic (look up the story; it’s cool
beans) was possible only because the Soviets reused keys that should have
been thrown away, and because the NSA stored the Soviet encrypted
messages for over a decade.

There are many historical examples of poor key management break-
ing otherwise strong encryption. John Walker was in the U.S. Navy,
but he had a second career photocopying U.S. Navy key material before
it was used and then mailing it to the russians—and he was a security
officer entrusted with keeping the keys secure. The Japanese death cult
Aum Shinrikyo encrypted their computer records, but they were careless
enough to leave a copy of the key on a floppy disk for the police to find.
And this was in 1995; you’d think death cults would have learned a thing
or two by then.

T Y P E S O F C rY P T O G r A P H I C AT TA C K S

What does it mean to break an algorithm? Obviously, it means that
someone can read the message without the key. But it’s more compli-
cated than that.

If an attacker can take a ciphertext message and recover the plaintext,
this is called a ciphertext-only attack. This almost never occurs anymore;
modern algorithms are just too good to fall to this kind of attack.

A known-plaintext attack is more likely: The analyst has a copy of
the plaintext and the ciphertext, and can then recover the key. This
might sound useless, but it in fact can be very useful. If other texts are
encrypted with the same key, the attacker can take the key and read
more plaintext encrypted with it. For example, almost all computer files
have known headers. All Microsoft Word files, for example, start with
the same hundreds of bytes. (These are not the characters you see; these

90 C H A P T E r S I X

c06.indd 90 2/16/15 10:42 AM

bytes are internal to the program and are not displayed on the screen.) If
an analyst can use that known plaintext to recover the key, then she can
read the entire Word file. Known-plaintext attacks were used to great
effect against the German Enigma. Analysts would have a single known
plaintext: Sometimes it was the daily weather report; for a while, one
German outpost in Norway would dutifully send the same message every
day: “Nothing to report.” (Probable known plaintexts are also called cribs.)
They would use that to break the day’s key, and then use the key to read
the rest of the day’s encrypted messages.

Even more powerful is a chosen-plaintext attack. Here the analyst gets
to choose the message that will be encrypted. Then she gets the encrypted
message and recovers the key. This kind of attack worked against the
German codes: Allies would deliberately introduce certain messages into
the system in order to learn the ciphertext, or create events in cities with
obscure names that are particularly useful cribs. It also works well against
some smart card systems, where the attacker can feed arbitrary messages
onto the card. It works in a lot of instances.

The one thing that is constant in all of these attacks is that the analyst
knows the details of the algorithm. (The only modern exception I know
of is the Japanese PUrPLE code.) This is not just an academic shortcut;
this is good design. If an algorithm is used in products, it will be reverse
engineered. Once-secret algorithms that have been reverse engineered
include rC4, all the digital cellular encryption algorithms, the DVD and
DIVX video-encryption algorithms, and the Firewire encryption algo-
rithm. Even algorithms buried deep in military hardware will be cap-
tured and reverse engineered: the Enigma during World War II, and just
about every NATO and Warsaw Pact algorithm during the Cold War.
(We don’t know those, but the respective militaries do.) It is good
design to assume the enemy knows the details of your algorithm, because
eventually they will. Auguste Kerckhoffs first stated this thesis in 1883:
There is no secrecy in the algorithm, it’s all in the key.

r E C O G N I Z I N G P L A I N T E X T

One question that often comes up about attacks is: How does the
cryptanalyst recognize plaintext? The answer is simple: Because it looks
like plaintext. It’s an English-language message, or a data file from a

 Cryptography 91

c06.indd 91 2/16/15 10:42 AM

computer application, a JPEG movie, or a database in a reasonable format.
When you look at a decrypted file, it looks like something understand-
able. When you look at a ciphertext file, or a file decrypted with the
wrong key, it looks like gibberish. A person, or a computer, can see the
difference.

In the 1940s, Claude Shannon invented a concept called the unicity
distance. Among other things, the unicity distance measures the amount
of ciphertext required such that there is only one reasonable plaintext.
This number depends both on the characteristics of the plaintext and the
key length of the encryption algorithm.

For example, the rC4 algorithm encrypts data in bytes. Imagine a
single ASCII letter as the plaintext. There are 26 possible plaintexts out
of 256 possible decryptions. Any random key, when used to decrypt
the ciphertext, has a 26/256 chance of producing a valid plaintext. The
analyst has no way to tell the wrong plaintext from the correct plaintext.

Now imagine a 1K e-mail message. The analyst tries random keys,
and eventually a plaintext emerges that looks like an e-mail message:
words, phrases, sentences, grammar. The odds are infinitesimal that this is
not the correct plaintext.

For a standard English message, the unicity distance is K/6.8 charac-
ters, where K is the key length in bits. (The 6.8 is a measure of the natural
redundancy of English. For other plaintexts, it will be more or less, but
not that much more or less.) For DES-encrypted ASCII, the unicity dis-
tance is 8.2 bytes. For 128-bit ciphers, it is about 19 bytes. This means
that for English messages longer than 19 bytes, a decryption that looks like
English is most likely the correct plaintext. It’s about the same for spread-
sheet files, word processor files, and database files. (Actually, it can be a lot
less because the file formats have standardized beginnings.) Compressed
files might have unicity distance two or three times as large (but again,
standardized beginnings can reduce it considerably).

The moral here is that it is easy to recognize plaintext, and it doesn’t
take much data to do so.

M E S S A G E AU T H E N T I C AT I O N C O D E S

Message authentication codes, or MACs, are the next primitive we’ll
talk about. They don’t protect privacy; they ensure authentication and

92 C H A P T E r S I X

c06.indd 92 2/16/15 10:42 AM

integrity. They ensure that the message came from the person from
whom it purports to have come from (authentication), and that the
message was not altered in transit (integrity).

You can think of a MAC as a tamperproof coating on a message.
Anyone can read the message; the coating doesn’t provide privacy. But
someone who knows the MAC key can verify that the message has not
been altered. More specifically, a MAC is a number that is appended to a
digital message.

MACs use a shared secret key, just like symmetric encryption algo-
rithms. First, Alice shares a key with Bob. Then, when she wants to send
a message to Bob, she computes the MAC of the message (using the secret
key) and appends it to the message. Every message has a unique MAC for
each possible key.

When Bob receives the message, he computes its MAC (again, using
the same shared secret key) and compares it with the MAC he received
from Alice. If they match, then he knows two things: The message really
does come from Alice (or someone who knows the secret of the shared
key), because only that key could be used to compute the MAC; and
that the message is complete and unaltered, because the MAC could
only be computed from the entire and exact message. If Eve (remember
our eavesdropper?) was listening in on the communications, she could
read the message. However, if she tried to modify either the message or
the MAC, then Bob’s calculated MAC would not equal the MAC he
received. Eve would have to modify the message and then modify the
MAC to be correct for the new message, but she can’t do that because
she doesn’t know the key. Banks have used this simple authentication
system for decades.

Alice can use this same trick to authenticate information stored in
a database. When she adds the information to the database, she calcu-
lates the MAC and stores it with the information. When she retrieves
the information, she again calculates the MAC and compares it with the
MAC stored in the database. If they match, she knows that no one has
modified the information.

MACs are used on the Internet all the time. They’re used in the
IPsec protocol, for example, to ensure that IP packets have not been
modified between when they are sent and when they reach their final
destination. They’re used in all sorts of interbank transfer protocols to
authenticate messages. Most MACs are constructed using symmetric

 Cryptography 93

c06.indd 93 2/16/15 10:42 AM

algorithms or one-way hash functions. CBC-MAC, for example, uses a
symmetric algorithm. HMAC and NMAC use hash functions.

O N E - WAY H A S H F U N C T I O N S

One-way hash functions are like digital fingerprints: small pieces of data
that can serve to identify much larger digital objects. They are public
functions; no secret keys are involved.

They are called one-way because of their mathematical nature. Any-
one can compute the one-way hash of anything (a text representation
of this book, for example). However, given the hash of this book, it is
computationally unfeasible to create another book that hashes to the same
value or to derive the book’s original text.

Hash functions can also provide a measure of authentication and
integrity. If you were to download this book over the Internet, you would
have no way of knowing if these are my words or if some other party
changed them. However, if I handed you the hash value of this book
(typically just a 20-byte code), you could hash the book and compare the
result with the hash I gave you. If they match, it’s my book, unaltered.

Hash functions have an enormous range of applications in cryptog-
raphy and computer security. Almost every Internet protocol uses them
to process keys, chain a sequence of events together, or authenticate
events. They are essential for digital signature algorithms (more about
that later). They are probably the single most useful tool in a cryptogra-
pher’s toolbox.

A bunch of one-way hash functions are in use today. SHA-1 is the
U.S. government’s standard hash function. The acronym stands for Secure
Hash Algorithm, and is specified in the Secure Hash Standard (SHS).
rIPEMD-160 is a European algorithm. MD4 is obsolete (although you
still see it used occasionally), and MD5 is showing some cracks and is not
used for anything new.

P U B L I C - K E Y E N C rY P T I O N

remember the key-distribution problem I talked about with symmetric
encryption? How do two people make sure that they have the same key,

94 C H A P T E r S I X

c06.indd 94 2/16/15 10:42 AM

so they can use a symmetric encryption algorithm or a MAC function?
Public-key cryptography (a.k.a. asymmetric encryption) solves this. It allows
you to send secret messages to people you haven’t met yet, and with
whom you haven’t agreed on a secret key. It allows two people to
engage in a publicly visible data exchange and, at the end of that
exchange, compute a shared secret that someone listening in on the dis-
cussion can’t learn. In real-world terms, it allows you and a friend to
shout numbers at each other across a crowded coffeehouse filled with
mathematicians so that when you are done, both you and your friend
know the same random number, and everyone else in the coffeehouse is
completely clueless.

If this sounds ridiculous, it should. It sounds impossible. If you were
to survey the world’s cryptographers in 1975, they would all have told
you it was impossible. So you can imagine the surprise in 1976, when
Whitfield Diffie and Martin Hellman explained how to do it. Or the
surprise in the British intelligence community when James Ellis, Clif-
ford Cocks, and M.J. Williamson figured out the same thing a few years
before.

The basic idea is to use a mathematical function that is easy to com-
pute in one direction and hard to compute in the other. Integer factoriza-
tion is one. Given two prime numbers, it’s easy to multiply them together
to find the product. But given a single product, it can be impracticable to
factor the number and recover the two factors. This is the kind of math
that can be used to create public-key cryptography; it involves modular
arithmetic, exponentiation, and large prime numbers thousands of bits
long, but you can elide the details. Today, there are a good half-dozen
algorithms, with names like rSA, ElGamal, and elliptic curves. (Algo-
rithms based on something called the knapsack problem were another
early contender, but over the course of about 20 years they were broken
every which way.) The mathematicals are different for each algorithm,
but conceptually they are all the same.

Instead of a single key that Alice and Bob share, there are two keys:
one for encryption and the other for decryption. The keys are different,
and it is not possible to compute one key from the other. That is, if you
have the encryption key, you can’t figure out what the decryption key is.

Now, here’s the cool part. Bob can create a pair of these keys. He can
take the encryption key and publish it. He can send it to his friends, post
it on his Web site, publish it in a phone book, whatever. Alice can find

 Cryptography 95

c06.indd 95 2/16/15 10:42 AM

this key. She can take it and encrypt a message to Bob. Then, she can send
the message to him. Bob can use his decryption key (which he astutely
did not post on his Web site) to decrypt and read Alice’s message. Notice
that Alice did not have to meet Bob in some dark alley and agree on
a shared secret. Bob doesn’t even have to know Alice. Actually, Alice
 doesn’t even have to know Bob. If Alice can find Bob’s public key, she
can send him a secret message that can’t be read by anyone but Bob.
This happens to PGP users all the time; one of their keys is uploaded to a
server somewhere, and then a perfect stranger sends them an encrypted
message. Even if you understand the mathematics, it can be startling.

The particulars are a whole lot more subtle. For example, I left out
how Bob creates his public and private keys, and how Bob keeps his
private key secret. (He can’t remember it; it’s over a thousand random
digits long.) And I skipped over the incredibly complicated problem of
how Alice knows that she has Bob’s key and not some old key or, worse
yet, some impostor’s key. We’ll get back to this later.

For now, I just want to point out that no one uses public key encryp-
tion to encrypt messages. All operational systems use a hybrid approach
that uses both kinds of cryptography. The reason is performance. What
Alice really does, when she wants to send a message to Bob, is to use a
symmetric algorithm to encrypt the message with a random key that she
creates out of thin air (called a session key). She encrypts that random key
with Bob’s public key, and then sends both the encrypted key and the
encrypted message to Bob. When Bob receives the encrypted message
and key, he does the reverse. He uses his private key to decrypt the ran-
dom symmetric key, and then uses the random symmetric key to decrypt
the message.

This might sound weird, but it isn’t. It’s perfectly normal. Nobody
uses public-key cryptography to directly encrypt messages. Everyone uses
this hybrid approach. It’s in every e-mail security program: PGP, PEM, S/
MIME, whatever. It’s how encryption works with Web security, TCP/
IP security, secure telephones, and everything else.

D I G I TA L S I G N AT U r E S C H E M E S

Public-key encryption was amazing enough, but digital signatures
are even more splendiferous—and more important. Digital signatures

96 C H A P T E r S I X

c06.indd 96 2/16/15 10:42 AM

provide a level of authentication for messages, similar to MACs. And in
modern business, authentication is far more important than secrecy.

Like public-key encryption, digital signatures use a pair of keys, the
public key and the private key. You still can’t derive one key from the
other. But this time we’re going to reverse them.

Alice has a plaintext message. Using her private key, she encrypts the
message. Because her private key is only hers, only Alice’s key can encrypt
the message in precisely this way. Thus, the encrypted message becomes
Alice’s signature on the message. Alice’s public key is public. Anyone can
get Alice’s public key and decrypt the message, thereby verifying that
Alice signed (i.e., encrypted) it. The signature is a function of the message,
so it is unique to the message: A malicious forger can’t lift Alice’s signa-
ture from one document and paste it onto another. And it’s a function of
Alice’s private key, so it is unique to Alice.

Of course, real systems are more complicated. Just as Alice doesn’t
encrypt messages with public-key encryption algorithms (she encrypts a
message key), she also doesn’t sign messages directly. Instead, she takes a
one-way hash of a message and then signs the hash. Again, signing the
hash is a few orders of magnitude faster, and there are mathematical secu-
rity problems with signing messages directly.

Also, most digital signature algorithms don’t actually encrypt the
messages that are signed. The idea is the same, but the mathematics is dif-
ferent. Alice makes some calculation based on the message and her private
key to generate the signature. This signature is appended to the message.
Bob makes another calculation based on the message, the signature, and
Alice’s public key to verify the signature. Eve, who doesn’t know Alice’s
private key, can verify the signature but cannot forge the message and a
valid signature.

Several digital signature algorithms are currently in use. rSA is
the most popular. The U.S. government’s Digital Signature Algorithm
(DSA), used in the Digital Signature Standard (DSS), sees a lot of use, too.
ElGamal signatures are another you’ll see occasionally. And there are sig-
nature algorithms based on elliptic curve cryptography, which are similar
to all the others but are more efficient in some situations.

Although public-key digital signature algorithms are similar to
MACs, they are better in one important respect. With a MAC, Alice
and Bob share a secret key that they use to authenticate messages. If
Alice receives a message that she verifies, she knows it came from Bob.

 Cryptography 97

c06.indd 97 2/16/15 10:42 AM

But she cannot convince a judge of that fact. All a judge can be convinced
of is that the message came from either Bob or Alice; after all, both of
them knew the MAC key. MACs can be used to convince the receiver
that the message came from the sender, but it cannot be used to convince
a third party. Digital signatures can be used to convince a third party,
which solves the nonrepudiation problem: Alice cannot send a message
to Bob, and then later deny ever sending it.

The unfortunate reality is that this stuff about signatures is not as black
and white as the math implies. Digital signature laws are on the books in
many states and countries, but I worry that they won’t survive litigation.
Digital signatures are not analogues of handwritten signatures. I will talk
more about this in Chapter 15.

r A N D O M N U M B E r G E N E r AT O r S

random numbers are the least-talked-about cryptographic primitive, but
are no less important than the others. Almost every computer security
system that uses cryptography needs random numbers—for keys, unique
values in protocols, and so on—and the security of those systems is often
dependent on the randomness of those random numbers. If the random
number generator is insecure, the entire system breaks.

Depending on who you talk to, generating random numbers from
a computer is either trivial or impossible. Theoretically, it’s impossible.
John von Neumann, the father of computers, said: “Anyone who con-
siders arithmetic methods of producing random digits is, of course, in a
state of sin.” What he means is that it is impossible to get something truly
random out of a deterministic beast like a computer. This is true, but
luckily we can get by anyway. What we really need out of a random
number generator is not that the numbers be truly random, but that they
be unpredictable and irreproducible. If we can get those two things, we
can get security.

On the other hand, if we mess those two things up, we get insecu-
rity. In 1994, the Casino Montreal used a computer’s random number
generator for its keno drawings. One observant gambler who spent way
too much time in the casino noticed that the winning numbers were
the same every day. He successfully picked three successive jackpots and
won $600,000. (After much wringing of hands, gnashing of teeth, and
investigations, the casino paid up.)

98 C H A P T E r S I X

c06.indd 98 2/16/15 10:42 AM

Several broad classes of random number generators are out there. Some
random number generators make use of physical processes that seem pretty
random. The NSA likes to use electrically noisy diodes in its hardware
circuits to create random numbers. Other possibilities are Geiger coun-
ters and radio-noise receivers. One system on the Internet uses a digital
camera focused on a choir of lava lamps. Other systems use the air tur-
bulence in disk drives, or the seemingly random arrival time of successive
network packets.

Some random number generators use random movements from the
user. A program might ask the user to type a large string of random char-
acters on the keyboard; it might use the sequence of characters, or even
the timing between successive keystrokes, to create random numbers.
Another program might ask the user to make random mouse movements,
or to gargle into a microphone.

Some random number generators use these inputs directly. Others
use them as seeds for mathematical random number generators. This pro-
cess works best when the system needs more random numbers than the
input provides. Whatever the source of randomness, the generator will
then generate a series of random bits. These can then be used as crypto-
graphic keys, and for whatever else the system needs.

K E Y L E N G T H

One of the easiest ways to compare cryptographic algorithms is key
length. The press likes to focus on this because it’s easy to describe and
compare. Like most of security, the reality is more complicated. A short
key is bad, but a long key is not automatically good. In the next chapter
I discuss why, but it’s worth explaining key length and its importance.

Let’s start at the beginning. A cryptographic key is a secret value that
makes a cryptographic algorithm unique for those who share the key. If
Alice and Bob share a key, they can use the algorithm to communicate
securely. If Eve, an eavesdropper, does not know the key, she is forced to
try and break the algorithm.

One obvious thing she can do is try every possible key. This is called
a brute-force attack. If the key is n bits long, then there are 2n possible keys.
So, if the key is 40 bits long, there are about a trillion possible keys. This
would be impossibly boring for Eve, but computers are indefatigable;
they excel at impossibly boring tasks. On the average, a computer would

 Cryptography 99

c06.indd 99 2/16/15 10:42 AM

have to try about half the possible keys before finding the correct one,
so a computer capable of trying a billion keys per second would average
18 minutes to find the correct 40-bit key. In 1998, the Electronic Fron tier
Foundation built a machine that could brute-force the DES algorithm.
The machine, called DES Deep Crack, tried 90 billion keys per sec-
ond; it could find a 56-bit DES key in an average of 4.5 days. In 1999,
a distributed Internet keysearch project to break a DES key, called dis-
tributed.net (which included Deep Crack), was able to test 250 billion
keys per second.

All of these brute-force cracks scale linearly; twice the computers can
try twice the number of keys. But the difficulty of a brute-force crack is
exponential with respect to the key length: Add one key bit, and a brute-
force crack is twice as hard. Add two bits, and it’s four times as hard. Add
ten bits, and it’s a thousand times as hard.

The nice thing about brute-force attacks is that they work against
any algorithm. Since the attack doesn’t involve the inner workings of the
mathematics, the attack doesn’t care what they are. Some algorithms may
be faster than others, and hence the brute-force attacks might be faster;
but this is more than overshadowed by the key length. It’s easy to com-
pare the key lengths of different algorithms, and to figure out which ones
are more vulnerable to brute-force attacks.

In 1996, a clutch of cryptographers (including me) researched the
various technologies one could use to build brute-force cryptanalytic
machines, and recommended a minimal key length of 90 bits to provide
security through 2016. Triple-DES has a 112-bit key, and most mod-
ern algorithms have at least a 128-bit key. (The U.S. government’s new
Advanced Encryption Standard supports key lengths of 128 bits, 192 bits,
and 256 bits.) Even a machine a billion times as fast as Deep Crack would
take a million years to try all 2112 keys and recover the plaintext; over a
thousand times longer for a 128-bit key. This will be secure for a millen-
nium.

These numbers should be looked at with some skepticism. I’m not
prescient; I have no idea how future advances in computing will affect
things. And the real security depends on several things: how valuable
your data is, how long you need to keep it secure, and so forth. But these
are meant to be conservative numbers. The key lengths are for symmet-
ric algorithms and MACs. Hash functions should have a length equal to
twice the key length in the table.

100 C H A P T E r S I X

c06.indd 100 2/16/15 10:42 AM

Key lengths for public-key algorithms are more complicated. The
most efficient attack against rSA, for example, is to factor the large num-
ber. The most efficient attack against ElGamal, Diffie-Hellman, DSA, and
the others, is to compute something called the discrete logarithm. (They’re
basically the same problem.) Elliptic-curve algorithms are even more
complicated.

These days experts are recommending 1,024-bit keys, or longer,
for public-key algorithms. Paranoids use longer keys. Systems that don’t
care too much about long-term secrecy use 768-bit keys. (Elliptic-curve
algorithms have different key lengths.)

Estimates of future difficulty of factoring and calculating discrete log-
arithms are harder to make, since there is no mathematical proof that
these problems have a set degree of difficulty. (On the other hand, we
know how difficult trying every possible key is.) So again, treat all these
recommendations as intelligent guesses, nothing more.

 Cryptography 101

c06.indd 101 2/16/15 10:42 AM

102

7

Cryptography in Context

If cryptography is so powerful, why do security breaches occur? Why
are there electronic theft, fraud, privacy violations, and all of the other
security problems discussed in the previous chapters? Why isn’t cryp-

tography the perfect answer to all our security needs? Why am I bother-
ing with the rest of this book?

Surprisingly enough, it’s not because of bad cryptography. (Enough
of that is out there, but the problems are even more serious.) The answer
lies in the difference between theory and practice.

Cryptography is a branch of mathematics. Mathematics is theoretical;
mathematics is logical. Good mathematics starts with sound premises, fol-
lows a single road—proof after proof—over complex terrain, and ends
with unassailable conclusions. By its nature, it looks good on paper.

Security is rooted in the physical world. The physical world is not
logical. It is not orderly. There is no single road. There are theories and
conclusions, but in order to accept the conclusions you have to accept the
premises, the models, and the relationship between the theories and the
world. And that’s not easy. People don’t play along. They do the unex-
pected; they break the rules. Hardware is the same way: It breaks down, it
misbehaves once in a while. Software, too. Software should be logical and
orderly—it’s only ones and zeros, after all—but it is often so complex that
it behaves more like an organism than a piece of mathematics. No matter
how good the cryptographic theory is, when it is used in a system, it
intersects with practice.

I often talk about products being “buzzword compliant.” Their

c07.indd 102 2/16/15 10:42 AM

marketing literature proclaims that “We use RSA,” or triple-DES, or
whatever cryptographic algorithms are in vogue. It’s like advertising a
house as completely safe just because it has a certain brand of door lock.
It’s just not enough.

K E y L E N G T H A N D S E C u R I T y

Despite what I said last chapter, key length has almost nothing to do
with security.

The lock on the front door of your house has a series of pins in it.
Each of the pins has multiple possible positions. When someone inserts
a key into the lock, the pins are each moved to specific positions. If the
positions dictated by the key are the ones that the lock needs to open, it
does. Otherwise, it doesn’t.

Most residential locks have five pins, each of which can be in one of
ten different positions. That means that there are 100,000 possible keys.
A burglar with a gargantuan key ring can try every possible key, one after
the other, and eventually he will get in. He had better be patient, because
even if he can try a new key every five seconds, it will take him an
average of 69 hours to find the correct key—and that doesn’t include
bathroom, meal, or sleep breaks.

One day a salesman knocks on your door, and offers to sell you
a new lock. His lock has seven pins with twelve positions each. A burglar,
he tells you, will have to try different keys for almost three years, non-
stop, before he will be able to open your door. Do you feel more secure
with this lock?

Probably not. No burglar would ever stand at your doorstep for 69
hours anyway. He’s more likely to pick the lock, drill it out, kick the door
down, break a window, or just hide in the bushes until you saunter up the
front walk. A lock with more pins and positions won’t make your house
more secure, because the specific attack it makes more difficult—trying
every possible key—isn’t one you’re particularly worried about. As long
as there are enough pins to make that attack infeasible, you don’t have to
worry about it.

The same is true for cryptographic keys. If they are long enough,
brute-force attacks are simply beyond the capabilities of human engi-
neering. But there are two worries. The first is the quality of the

 Cryptography in Context 103

c07.indd 103 2/16/15 10:42 AM

encryption algorithm, and the second is the quality of the keys. How long
is “long enough” is more complicated than a simple number; it depends
on both of these things.

But first I need to explain about entropy.
Entropy is a measure of disorder; or, more specifically in the context

of cryptography, it is a measure of uncertainty. The more uncertain some-
thing is, the more entropy in that thing. For example, if a random per-
son from the general population is either male or female, the variable
“gender” has one bit of entropy. If a random person prefers one of the
four Beatles, and each is equally likely, that corresponds to two bits of
entropy. The sex of someone on a women’s Olympic running team has
no entropy; everyone is female. The entropy of the Beatle-preference at
a John Lennon fan club meeting has much less than two bits, because it is
more likely that a random person will prefer John. The more certainty in
the variable, the less the entropy.

The same is true for cryptographic keys. Just because an algorithm
accepts 128-bit keys does not mean it has 128 bits of entropy in the key.
Or, more exactly, the best way to break a given implementation of a
128-bit encryption algorithm might not be to try every possible key. The
“128 bits” is simply a measure of the maximum amount of work required
to break the algorithm and recover the key; it says nothing about the
minimum.

The first worry is the source of the keys. All the key-length calcula-
tions I just made assume that each key has maximum entropy when it is
generated. In other words, I assumed that each key is equally likely: that
the random number generator that created the keys was perfect. This just
isn’t true.

Many keys are generated from passwords or passphrases. A system that
accepts 10-character ASCII passwords might require 80 bits to represent,
but has much less than 80 bits of entropy. High-order ASCII bits won’t
appear at all, and passwords that are real words (or close to real words) are
much more likely than random character strings. I’ve seen entropy esti-
mates of standard English at less than 1.3 bits per character; passwords have
less than 4 bits of entropy per character. This means that an 8-character
password is about the same as a 32-bit key, and if you want a 128-bit key,
you are going to need a 98-character English passphrase.

you see, a smart brute-force password-cracking engine isn’t going to
try every possible key in order. It’s going to try the most likely ones first,

104 C H A P T E R S E V E N

c07.indd 104 2/16/15 10:42 AM

and then try the rest in some likelihood order. It will try common passwords
like “password” and “1234,” then the entire English dictionary, and then
varied capitalization and extra numbers, and so on. This is called a diction-
ary attack. L0phtcrack is a password-cracking program that does this; on a
400-MHz Quad Pentium II, it can test an encrypted password against an
8-megabyte dictionary of popular passwords in seconds.

This is why it is laughable when companies like Microsoft tout
128-bit encryption and then base t he key on the password. (This de scribes
pretty much all of Windows NT security.) The algorithms they use might
accept a 128-bit key, but the entropy in the password is far, far less. In fact,
it doesn’t matter how good the cryptography is or what the key length is;
weak passwords will break this system. (The obvious solution, preventing
people from trying lots of passwords, doesn’t work. I talk about this more
in Chapter 9.)

This is a big deal. I see complex systems where the private key is pro-
tected with a password. Almost every hard-disk encryption product bases
its security on a user-remembered key. Almost all the security of Windows
NT collapses because it is all built on user-remembered passwords. Even
PGP falls apart if the user chooses a bad passphrase. It doesn’t matter
what the algorithms are or how large the keys they use; user-remembered
secrets are not secure by themselves.

Randomly generated keys are much better, but problems remain.
Now the random number generator must produce keys with maximum
entropy. A flaw in the random number generator is what broke the
encryption in Netscape Navigator 1.1. While the random number gener-
ator was used to generate 128-bit keys, the maximum entropy was around
20 bits. So the algorithm was no better than if it had a 20-bit key.

The second worry is the quality of the encryption algorithm. All of
the preceding calculations assumed that the algorithms took the keys they
were given and used them perfectly. If flaws in the algorithm allow for
attacks, this effectively reduces the entropy in the keys. For example, the
A5/1 algorithm, used in European GSM cell phones, has a 64-bit key, but
can be broken in the time it takes to brute-force a 30-bit key. This means
that even though the algorithm is given a cryptographic
key with 64 bits of entropy, it only makes use of 30 bits of entropy in the
key. you might as well use a good algorithm with a 30-bit key.

This is the reason why it takes so long before cryptographers are
willing to trust a new algorithm. When someone proposes a new algo-

 Cryptography in Context 105

c07.indd 105 2/16/15 10:42 AM

rithm, it has a particular key length. But does the algorithm actually deliver
the entropy that it claims to? It might take years of analysis before we
trust that it does. And even then we could easily be wrong; new
mathematics could be invented that reduce the algorithm’s entropy and
break it. This is also why products that advertise thousand-bit keys are
hard to take seriously; their promoters don’t understand how keys and
entropy work.

A similar issue exists with physical keys and locks. I used to know a
locksmith who would carry large key rings around in his truck. It might
require 10,000 keys to open all the locks, but in reality a few dozen keys
would open all the locks of a particular manufacturer. Sometimes he
would have to slide the keys around a bit—note the combination of
analysis and a brute-force attack—but it would work. Tedious yes, but
nowhere near as tedious as trying all 10,000 possible keys (older cars have
four-pin locks). The actual security of door locks was nowhere near the
theoretical maximum.

It’s the same with combination locks. you can try every possible
combination—and there are brute-force safecracking machines that do
that—or you can be smarter about it. Modern safecracking machines use
a microphone to listen to the dials as they turn, and can open a safe much
faster than brute force.

This makes choosing an encryption algorithm very important. I
discuss this in more detail at the end of the chapter.

O N E - T I M E PA D S

One-time pads are the simplest of all algorithms, and were invented early
on in the 20th century. The basic idea is that you have a pad of key letters.
you add one key letter to each plaintext letter, and never repeat the key
letters. (That’s the “one-time” part.) For example, you add B (2) to C (3)
to get E (5), or T (20) to L (12) to get F (6). 20 + 12 = 6 mod 26. This
system works with any alphabet, including a binary one. And it’s the only
provably secure algorithm we’ve got.

Recall the concept of unicity distance. The unicity distance grows
with the length of the key. As the key length approaches the length of
the message, the unicity distance approaches infinity. This means that it

106 C H A P T E R S E V E N

c07.indd 106 2/16/15 10:42 AM

is impossible to recognize plaintext, and why a one-time pad is provably
secure.

It’s also pretty much useless. Because the key has to be as long as the
message, it doesn’t solve the security problem. One way to look at
encryption is that it takes very long secrets—the message—and turns
them into very short secrets: the key. With a one-time pad, you haven’t
shrunk the secret any. It’s just as hard to courier the pad to the recipi-
ent as it is to courier the message itself. Modern cryptography encrypts
large things—for example, digital movies, Internet connections, and
telephone conversations—dealing with one-time pads that large is just
impracticable.

One-time pads have been used in the physical world, in specialized
circumstances. Russian spies used pencil and paper one-time pads to
communicate. The NSA broke the system because the Russians reused
the same one-time pads. An early Teletype hotline between Washington
and Moscow was encrypted using a one-time pad system.

Any product that claims to use a one-time pad is almost certainly
lying. And if they’re not, the product is almost certainly unusable and/or
insecure.

P RO T O C O L S

The six tools I discussed in the previous chapter—symmetric encryption,
message authentication codes, public-key encryption, one-way hash
functions, digital signature schemes, and random number generators—
comprise the cryptographer’s toolbox. This is what we use to build crypto-
graphic solutions to actual problems: How can I send anonymous e-mail?
How can I prevent cell phone fraud? How can I implement a secure
Internet voting system? By combining these tools into things called pro-
tocols, we can solve these security problems. There are other minor tools
that we have to use, but essentially those six primitives are at the core of
any cryptographic protocol.

For example, assume that Alice wants to keep some data files private.
Here’s a protocol that does this. Alice chooses a password, or better yet,
a passphrase. The cryptography software hashes that passphrase to obtain
a secret key, and then uses a symmetric algorithm to encrypt the data

 Cryptography in Context 107

c07.indd 107 2/16/15 10:42 AM

file. The result is a file that can only be accessed by Alice, or someone else
who knows the password.

Want to build a secure telephone? use public-key cryptography to
generate a random session key, and then use symmetric cryptography
and that session key to encrypt the conversation. A hash function provides
added security against man-in-the-middle attacks. (More about those
later.) To secure e-mail, use public-key cryptography for privacy and
digital signature schemes for authentication. Electronic commerce? usu-
ally nothing more than digital signatures and sometimes encryption for
privacy. A secure audit log: combine a hash function, encryption, maybe a
MAC, and stir.

What we’re doing here is building protocols. A protocol is nothing
more than a dance. It’s a series of predetermined steps, completed by two
or more people, designed to complete a task. Think of the protocol used
by a merchant and a customer for purchasing a tangerine. Here are the
steps:

 1. The customer asks the merchant for a tangerine.
 2. The merchant gives the customer a tangerine.
 3. The customer gives the merchant money.
 4. The merchant gives the customer change.

Everyone involved in the protocol must know the steps. For
 example, the customer knows he has to pay for the tangerine. All steps
must be unambiguous; neither the merchant nor the customer can reach a
step where they don’t know what to do. And the protocol has to termi-
nate; there can be no endless loops.

There’s also a certain amount of processing by the parties. For
example, step 2 won’t work properly unless the merchant understands the
semantic content of step 1. The merchant won’t complete step 4 unless
she recognizes the money as real in step 3. Try buying a tangerine in the
united States with Polish zlotny and see how far you get.

The particular protocols we’re concerned about are secure proto-
cols. In addition to the preceding requirements, we don’t want either the
customer or the merchant to be able to cheat (whatever “cheat” means
in this context). We don’t want the merchant to be able to peek into
thecustomer’s wallet in step 3. We don’t want the merchant to be able to
not give the customer change in step 4. We don’t want the customer

108 C H A P T E R S E V E N

c07.indd 108 2/16/15 10:42 AM

to be able to shoot the merchant dead in step 3 and walk away with a
stolen tangerine. These cheats are possible in the physical world, and the
anonymity of cyberspace exacerbates the risks.

Even in the physical world, more complex protocols have been
designed to mitigate the risks of different types of fraud. Think of the
basic car-purchase protocol:

 1. Alice gives the title and keys to Bob.
 2. Bob gives a check for the purchase price to Alice.
 3. Alice deposits the check.

In this protocol, Bob can easily cheat. He can give Alice a bad
check. She won’t know the check is bad, and won’t find out until the
bank tells her that the check bounced. By then, Bob is long gone with
Alice’s car.

When I sold my car a few years ago, I used this modified
protocol to prevent that attack:

 1. Bob writes a check and gives it to the bank.
 2. After putting enough of Bob’s money on hold to cover the

check, the bank “certifies” the check and gives it back to Bob.
 3. Alice gives the title and keys to Bob.
 4. Bob gives the certified check for the purchase price to Alice.
 5. Alice deposits the check.

What’s going on here? The bank is acting as a trusted third party in
this scrap of street commerce. Alice trusts the certification on the check,
that the bank will honor the check for its full amount. Bob trusts that
the bank will keep the money for the check on hand, and not spend it
on risky loans in Third World countries. Alice and Bob can complete
their transaction, even though they don’t trust each other, because they
both trust the bank.

This system works not because the bank is a solid institution backed
by impressive-looking buildings and a solid advertising campaign, but
because the bank has no interest in Alice and Bob’s transaction and has
a reputation to uphold. It will follow the protocol for a certified check
no matter what. If Bob has enough money in his account, the bank will
issue the check. If Alice presents the check for payment, the bank will

 Cryptography in Context 109

c07.indd 109 2/16/15 10:42 AM

pay. If it did abscond with the money, there wouldn’t be much of a bank
left. (This is the essence of reputation.)

This protocol works to protect Alice, but the bank does not protect
Bob against buying a forged title and a stolen car. For that, we need
another protocol:

 1. Alice gives the title and keys to a lawyer.
 2. Bob gives the check to the lawyer.
 3. The lawyer deposits the check.
 4. After waiting a specified time period for the check to clear and for Bob to

register the car, the lawyer gives the title to Bob. If the check does not clear
within a specified time period, the lawyer returns the title to Alice. If Bob
cannot get a clean title for the car (because Alice gave him a bad title), Bob
shows proof of this to the lawyer and gets his money back.

As in the previous protocol, a trusted third party gets involved. In
this case, the trusted third party is a lawyer. Alice does not trust Bob and
Bob does not trust Alice, but both trust the lawyer to act fairly in the final
step. The lawyer is completely disinterested in the transaction; he does not
care whether he gives the title to Bob or Alice. He will keep the money
in escrow and do whatever is required, based on the agreement between
Alice and Bob.

Other protocols are more mundane, and might not involve compli-
cated exchanges. For example, here’s a protocol a bank can use to verify
that a check was signed by Alice:

 1. Alice signs the check.
 2. The bank compares the signature on the check with the sig-

nature it has on file for Alice.
 3. If they match, the bank gives Alice her money. If they don’t

match, the bank doesn’t.

In theory, the protocol is secure against Bob cheating and getting
Alice’s money, but of course reality is more complicated. Bob could learn
forgery. The bank could make risky loans in Paraguay and go under. Alice
could pull a gun. There are probably hundreds of ways to break this pro-
tocol, but given a reasonable set of assumptions on people’s behavior, the
protocol works.

Protocols in the digital world are much the same as the preceding

110 C H A P T E R S E V E N

c07.indd 110 2/16/15 10:42 AM

examples. Digital protocols use cryptography to do the same sorts of
things: keep secrets, authenticate things, enforce fairness, provide audit,
whatever.

The Internet is full of security protocols, which I discuss in the next
section. Other digital networks have their own security protocols. The
cell phone industry uses a bunch of protocols, both for privacy and fraud
prevention, with varying degrees of success. Set-top television boxes have
security protocols. Smart cards do, too.

Protocols involving digital signatures can be particularly useful in
different authentication situations. For example, digital signature schemes
can produce signatures that only the designated recipient can authenti-
cate. This is useful for informants or whistle-blowers, since the receiver
of the message can verify who sent it, but cannot prove this fact to a third
party. (Think of a secret whispered in your ear. you know who said it,
but there’s nothing you can do to prove to someone else who said it.)
Digital signature protocols can be used to sign software so that only a per-
son who buys the software package legitimately can verify the signature
and know that it is authentic; anyone who pirates a copy can’t be sure of
this. We can create group signatures, so that outside the group each sig-
nature appears to come from the group as a whole, but people inside the
group can determine who signed what.

More complex protocols can make cryptography jump through all
sorts of hoops. We can do something called zero-knowledge proofs, where
Alice can prove to Bob that she knows something without revealing to
him what it is. Cryptographic protocols can also support a system for
simultaneous contract signing over the Internet, such that neither party
is bound by the contract unless the other is. We can create the digital
equivalent of certified mail, where Alice can’t read the mail unless she
sends back a receipt.

using a protocol called secret sharing, we can enforce requirements
for collusion in access: secrets that cannot be revealed unless multiple people
act in concert. This is a really neat notion. Think of a nuclear missile
silo. In order to launch the missile, two people have to simultaneously
turn keys and unlock the system. And the keyholes (or in this case, the
digital equivalent) are far enough apart that a single rogue soldier can’t
kill everyone else and turn all the keys himself: At least two people must
act inconcert to launch the missile. Or think of a corporate checking
account that requires two signatures on high-value checks: Any two of

 Cryptography in Context 111

c07.indd 111 2/16/15 10:42 AM

the five corporate officers need to sign the check. We can do this kind of
thing with cryptography.

It gets even better. We can create protocols for secure voting over the
Internet, such that only registered voters can vote, no one can vote more
than once, no one can learn anyone else’s vote, and everyone can be sure
that the election is fair. We can even create digital cash: digital money
that is completely anonymous, unless someone copies the bits and tries to
spend the same money twice.

Honestly . . . if you want it, we can do it.
The “but” is most of the rest of this book.

I N T E R N E T C Ry P T O G R A P H I C P RO T O C O L S

Cryptography is relatively new to the Internet, and is only here because
of the Net’s commercialization. The Internet is insecure, so cryptogra-
phy is needed to secure it. Hence, you’re seeing cryptographic protocols
stapled onto almost every Internet protocol. These examples are current
in 2000; they will definitely change in the future.

E-mail was the first use of cryptography on the Internet. There are
two competing protocols: S/MIME and OpenPGP. OpenPGP is the
protocol in PGP (Pretty Good Privacy) and variants; S/MIME is the
Internet standard protocol in just about everything else.

Netscape invented SSL during the early days of the Web, as people
wanted to do secure electronic commerce with their Web browsers. SSL
has gone through a few incarnations (it was a battleground during the
Netscape/Microsoft browser wars, and will eventually be called TLS).
(SSL stands for “Secure Sockets Layer” and TLS stands for “Transport
Layer Security” . . . if anyone asks.) These protocols are embedded in
browsers, and allow people to encrypt sensitive information being sent to
various Web sites.

Newer cryptographic protocols have been developed to secure IP
packets. These include Microsoft Point-to-Point Tunneling Protocol
(PPTP, which is badly flawed), Layer Two Tunneling Protocol (L2TP),
and IPsec (which is a lot better, although too complicated). IKE is Inter-
net Key Exchange, which is the key-exchange protocol for IPsec. Today
these protocols are being used primarily to implement another Internet

112 C H A P T E R S E V E N

c07.indd 112 2/16/15 10:42 AM

buzzword called a virtual private network (VPN). IP security protocols
can do a lot more than VPNs, though. They have the potential to secure
most of the traffic on the Internet. Eventually, maybe they will.

There are other Internet protocols, too. SET is a protocol designed
by Visa and MasterCard for securing credit card transactions on the Web.
(This protocol never really saw significant public use.) SSH is the “Secure
Shell” protocol, and is used to encrypt and authenticate remote com-
mand-line connections. Other protocols deal with public-key certificates
and certificate infrastructure: PKIX, SPKI, and their relatives. Microsoft
has several protocols used to secure Windows NT.

Much of this work is done under the auspices of the Internet Engi-
neering Task Force (IETF), the standards body that deals with much of
the Internet’s infrastructure. The process works more or less by consen-
sus, which means that things take longer than they ought to, and end
up being more complicated than they ought to. As we’ll see later, this
complexity isn’t a good thing.

T y P E S O F P RO T O C O L AT TA C K S

Just as there are different attacks against algorithms, there are different
attacks against protocols. The simplest are passive attacks: Just listen to the
protocol going by, and see what you can learn. Often, you can learn a lot
by eavesdropping.

There are many Web-based e-mail sites. To use one, you point your
browser at that site, and type your username and password. In general, this
protocol is vulnerable to an eavesdropping attack. Another set of pro-
tocols vulnerable to an eavesdropping attack are the protocols that pre-
vent analog cell phone fraud. Someone with a scanner can eavesdrop on
the communications between the cell phone and the base station and
then make calls on that cell phone’s account. (This is called phone cloning.
Digital cell phones are better, but not much.)

What’s tricky with eavesdropping attacks is that it is not always clear
what information is valuable. you could imagine an encrypted tele-
phone network, where it is impossible (assuming the security of the
cryptography) to eavesdrop on the phone conversations. However, the
switching information is still sent in the clear. This information, basically

 Cryptography in Context 113

c07.indd 113 2/16/15 10:42 AM

a record of who calls whom and how long they talk, is often just as valu-
able. In a military setting, for example, you can learn a lot from traffic
analysis: who talks to whom, at what time, and for how long.

More complex attacks are known as active attacks: inserting, deleting,
and changing messages. These can be much more powerful.

Consider a smart card digital cash system. People put money onto the
cards, and then use the cards to buy things. This system will have a lot of
different protocols: protocols for adding money onto the card, protocols
for transferring money from the card to another device, protocols for
querying the card, and so on.

Active attacks can do a lot of damage here. Maybe you can manipu-
late the protocol between the bank and the card that adds money onto the
card. If you can replay old messages, you can add more money onto the
card. Or maybe you can delete a message in the protocol for transferring
money out of the card when you buy something, so that the money never
gets decremented from the card.

One powerful attack is the man-in-the-middle attack. Alice wants to
talk securely with Bob, using some public-key algorithm to establish
a key. Eve, the eavesdropper, intercepts Alice’s communication. She
pretends to be someone named Bob to Alice, completing the key-
exchange protocol. Then she contacts Bob and pretends to be Alice,
completing a second key-exchange protocol with Bob. Now she can
eavesdrop on the communications. When Alice sends a message to
Bob, Eve intercepts it, decrypts it, re-encrypts it, and sends it on to
Bob. When Bob sends a message to Alice, Eve performs a similar proce-
dure. This is a powerful attack.

Of course, good protocol designers take these attacks into account
and try to prevent them. Better communications protocols don’t permit
man-in-the-middle attacks, and certainly don’t allow eavesdropping of
passwords. Better electronic commerce protocols don’t allow malicious
users to arbitrarily add cash to smart cards. But people make mistakes, and
lots of protocols have problems.

And again, it’s not always apparent what kinds of attacks need to
be prevented. There was a public-key authentication protocol that
appeared in the literature, designed so users could authenticate them-
selves to hosts. The protocol was made secure against passive eavesdrop-
ping attacks and against active insertion/deletion attacks. As it turned
out, the protocol was not secure against a malicious host. Alice could

114 C H A P T E R S E V E N

c07.indd 114 2/16/15 10:42 AM

authenticate herself to a host, and no eavesdropper could masquerade as
Alice. But the host could.

This is an interesting attack. In some circumstances, the host is
assumed to be trusted and this is not a problem. In others, it is. We can
certainly imagine malicious hosts on the Web. If an online bank used this
protocol (as far as I know, none does), a criminal could set up a phony
bank Web site with a slightly different uRL. An unsuspecting user could
authenticate himself to this phony site, which could then masquerade as
the user to the bank.

A lot of this has been formalized. There are automatic tools for ana-
lyzing protocols: formal logics, computer programs that examine the
details of protocols, and others. These tools are useful, and regularly find
security problems in existing protocols, but cannot be used to “prove” the
security of a protocol.

C H O O S I N G A N A L G O R I T H M O R P RO T O C O L

Choosing a cryptographic algorithm or protocol is difficult because
there are no absolutes. We can’t compare encryption algorithms the
way we can compare compression algorithms. Compression is easy: you
can demonstrate that one algorithm compresses better—faster, smaller,
 whatever—than another. Security is hard; while you can show that a par-
ticular algorithm is weak, you can’t show that one algorithm you don’t
know how to break is more secure than another. In the absence of abso-
lutes, we use the evidence we have: expert consensus.

The problem can be best illustrated with a story. Suppose your doc-
tor said, “I realize we have antibiotics that are good at treating your kind
of infection without harmful side effects, and that decades of research
support this treatment. But I’m going to give you a pulverized pretzel
instead, because, um, it might work.” you’d get a new doctor.

Practicing medicine is difficult. The profession doesn’t rush to
embrace new drugs; it takes years of testing before benefits can be proven,
dosages established, and side effects cataloged. A good doctor won’t treat a
bacterial infection with a medicine she just invented when proven antibi-
otics are available. And a smart patient wants the same drug that cured the
last person, not something different.

Cryptography is difficult, too. It combines several branches of

 Cryptography in Context 115

c07.indd 115 2/16/15 10:42 AM

 mathematics with computer science. It requires years of practice. Even
smart, knowledgeable, experienced people invent bad cryptography. In
the cryptographic community, people aren’t even all that embarrassed
when their algorithms and protocols are broken. That’s how hard it is.

The problem is this: Anyone, no matter how unskilled, can design a
cryptographic primitive that he himself cannot break. This is an important
point. What this means is that anyone can sit down and create a crypto-
graphic primitive, try to break it and fail, and then announce: “I have
invented a secure algorithm/protocol/whatever.” What he is really saying
is: “I cannot break this; therefore it is secure.” The first question to ask
in response is: “Well, who the hell are you?” Or in more detail: “Why
should I believe something is secure because you can’t break it? What
credentials do you have to support the belief that your inability to break
something means that no one else can break it either?”

What the cryptographic community has found is that no one person
has those sorts of credentials. (Maybe there’s someone inside the NSA,
but that person’s not talking.) There’s no way to prove the security of
a primitive; it’s only possible to either demonstrate insecurity or fail trying.
This is called proving the null hypothesis. The best any security com pany
can say is: “I don’t know how to break this algorithm/protocol/
whatever, and neither does anyone else.” Peer review, long periods of
peer review, are the only evidence of security that we have.

Even worse, it doesn’t do any good to have a bunch of random peo-
ple review the primitive; the only way to tell good cryptography from bad
cryptography is to have it examined by experts. Analyzing cryptography is
hard, and there is a paucity of people who can do it competently. Before a
primitive can really be considered secure, it needs to be examined by many
experts over the course of years.

This is why cryptographers prefer the old and public over the new and
proprietary. Public cryptography is what cryptographers study, and write
papers about. Older primitives have more papers written about them. If
there were flaws there, they would have been found already (or so the rea-
soning goes). The new is riskier precisely because it is new, and not enough
people have studied it.

Look at these three alternatives for IP security:

IPsec. Beginning in 1992, it was designed in the open by committee and
was the subject of considerable public scrutiny from the start. Everyone
knew it was an important protocol and people spent a lot of effort trying

116 C H A P T E R S E V E N

c07.indd 116 2/16/15 10:42 AM

to get it right. Security technologies were proposed, broken, and then
modified. Versions were codified and analyzed. The first draft of the stan-
dard was published in 1995. Aspects were debated on security merits and on
performance, ease of implementation, upgradability, and use. In 1998, the
committee published a revised version of the protocol. And anyone and
everyone interested are still studying it, in public.

PPTP. Microsoft developed its own Point-to-Point Tunneling Protocol
(PPTP) to do much the same thing. They invented their own authentication
protocol, their own hash functions, and their own key-generation algorithm.
Every one of these items turned out to be badly flawed. They used a known
encryption algorithm, but they used it in such a way as to dilute its security.
They made implementation mistakes that weakened the system even further.
But since they did all this work internally, no one noticed that their PPTP
was weak. Microsoft fielded PPTP in Windows NT, 95, and 98, and used it
in their virtual private network (VPN) products. It wasn’t until 1998 that a
paper describing the flaws was published. Microsoft quickly posted a series
of fixes, which have since been evaluated and still found wanting.

Proprietary. Some companies claim their own security solutions to this
problem. They don’t reveal details, either because they’re proprietary or
patent pending. you have to trust them. They may claim a new algorithm
or a new protocol that is much better than any that exist today. They may
claim mathematical breakthroughs. They may claim all sorts of things. The
odds of them being true are slim. And even if they make their systems
public, the fact that they’ve patented them and retain proprietary control
means that many cryptographers won’t bother analyzing their claims. The
companies certainly won’t wait the requisite years even if the cryptographers
did bother.

you can choose any of these three systems to secure your virtual
private network. Although it’s possible for any of them to be flawed,
you want to minimize your risk. If you go with IPsec, you have a much
greater assurance that the algorithms and protocols are strong. Of course,
this is no guarantee of security—the implementation could be flawed (see
Chapter 13), or a new attack could be discovered—but at least you know
that the algorithms and protocols have withstood a level of analysis and
review that the other options have not.

Another example: consider symmetric encryption algorithms. There
are literally hundreds to choose from, but let’s limit it to five:

•	Triple-DES,	which	has	been	analyzed	by	pretty	much	everyone	in	the
cryptographic community since the mid-1970s.

 Cryptography in Context 117

c07.indd 117 2/16/15 10:42 AM

•	AES,	which	(when	it	is	chosen)	will	be	the	result	of	a	three-year	public	
selection process that involved pretty much everyone in the cryptographic
community.

•	Algorithm	X, which was published at an academic conference two years
ago; there’s been one analysis paper published that seems to imply that it is
strong.

•	Algorithm	Y,	which	someone	recently	posted	on	the	Internet	and	assures	
you is strong.

•	Algorithm	Z,	which	a	company	is	keeping	secret	until	the	patent	issues;	
maybe they paid a couple of cryptographers to analyze it for three weeks.

This isn’t a hard choice. There may be performance constraints that
prevent you from choosing the algorithm you want (the primary reason
AES exists is that triple-DES is too slow for many environments), but the
choice is acutely clear.

It continuously amazes me how often people don’t make the obvi-
ous choice. Instead of using public algorithms, the digital cellular com-
panies decided to create their own proprietary ones. Over the past few
years, all the algorithms have become public. And once they became
public, they have been broken. Every one of them. The same thing
has happened to the DVD encryption algorithm, the Firewire encryp-
tion algorithm, various Microsoft encryption algorithms, and countless
others. Anyone who creates his or her own cryptographic primitive is
either a genius or a fool. Given the genius/fool ratio for our species, the
odds aren’t very good.

The counter-argument you sometimes hear is that secret cryptog-
raphy is stronger because it is secret, and public cryptography is riskier
because it is public. This sounds plausible, but when you think about it for
a minute, the dissonance becomes obvious. Public primitives are designed
to be secure even though they are public; that’s how they’re made. So
there’s no risk in making them public. If a primitive is only secure if it
remains secret, then it will only be secure until someone reverse engineers
and publishes it. Proprietary primitives that have been “outed” include all
the algorithms in the preceding paragraph, various smart card electronic-
commerce protocols, the secret hash function in SecurID cards, and the
protocol protecting Motorola’s mobile MDC-4800 Police Data Terminal.

This doesn’t mean that everything new is lousy. What it does mean
is that everything new is suspect. New cryptography belongs in academic

118 C H A P T E R S E V E N

c07.indd 118 2/16/15 10:42 AM

papers, and then in demonstration systems. If it is truly better, then eventually
cryptographers will come to trust it. And only then does it make sense
to use it in real products. This process can take five to ten years for an
 algorithm, less for protocols or source-code libraries.

Choosing a proprietary system is like going to a doctor who has no
medical degree and whose novel treatments (which he refuses to explain)
have no support by the American Medical Association. Sure, it’s possible
(although highly unlikely) that he’s discovered a totally new branch of
medicine, but do you want to be the guinea pig? The best security meth-
ods leverage the collective analytical ability of the cryptographic commu-
nity. No single company (outside the military) has the financial resources
necessary to evaluate a new cryptographic algorithm or shake the design
flaws out of a complex protocol.

In cryptography, security comes from following the crowd. A home-
grown algorithm can’t possibly be subjected to the hundreds of thousands
of hours of cryptanalysis that DES and RSA have seen. A company, or
even an industry association, can’t begin to mobilize the resources that
have been brought to bear against the Kerberos authentication protocol
or IPsec. No proprietary e-mail encryption protocol can duplicate the
confidence that PGP or S/MIME offers. By following the crowd, you
can leverage the cryptanalytic expertise of the worldwide community, not
just a few weeks of some unnoteworthy analyst’s time.

It’s hard enough making strong cryptography work in a new system;
it’s just plain lunacy to use new cryptography when viable, long-studied
alternatives exist. yet most security companies, and even otherwise smart
and sensible people, exhibit acute neophilia and are easily blinded by
shiny new pieces of cryptography.

And beware the doctor who says, “I invented and patented this totally
new treatment that consists of pulverized pretzels. It has never been tried
before, but I’m sure it is much better.” There’s a good reason new cryp-
tography is often called snake oil.

 Cryptography in Context 119

c07.indd 119 2/16/15 10:42 AM

120

8

Computer Security

Computer security is different from cryptography. It often uses
cryptography, but its scope is much broader. General computer
security includes such diverse things as controlling authorized

(and unauthorized) computer access, managing computer accounts and
user privileges, copy protection, virus protection, software metering,
and database security. More generally, it also includes defenses against
computers across network connections, password sniffers, and network
worms, but we’ll discuss those sorts of things in the chapters on network
security. In the age of the Internet, computer security and network secu-
rity have blurred considerably; but for the purposes of this book, I’ll draw
the somewhat arbitrary line between computer and network security as
“whether or not the security problem affects any computer, as opposed to
just a computer attached to networks.” General computer security, which
can be defined as the prevention and/or detection of unauthorized actions
by users of a computer system, seems a whole lot harder than the simple
mathematics of cryptography. And it is.

Philosophically, the problem is that the defender doesn’t have mathe-
matics on his side. The mathematics of cryptography gives the defender an
enormous advantage over the attacker. Add one bit to the key, double the
work to break the algorithm. Add ten bits, multiply the work by a
thousand. Computer security is more balanced: attackers and defenders
can get similar advantages from technology. What this means is that if
you can rely on cryptography for security, you’re in great shape.
Unfortunately, most of the time you can’t.

c08.indd 120 2/16/15 10:41 AM

Most of the early computer security research was devoted to private
access in shared systems. How could Alice and Bob use the same com-
puter—and the same computer programs—such that Alice couldn’t see
what Bob was doing and Bob couldn’t see what Alice was doing? Or,
more generally: If lots of users share a system, each of whom has cer-
tain permissions—permissions to use certain programs and permissions to
view certain data—how can we enforce those access control rules? This
isn’t really a problem that cryptography can solve, although cryptog raphy
might help here and there. It’s a new problem.

There’s a plethora of other new problems in computer security:
How can a company maintain a large database where people have dif-
ferent access privileges? This problem can quickly get overly compli-
cated. Only some people can view salary data, even fewer people can
change salary data, other people can view health benefit data, and some
people can only view aggregate data: average salary, health statistics, and
so forth.

How can users be sure that the computer programs they use are
correct, and have not been modified? How can they be sure that their
data have not been modified? How can a company enforce its licensing
rules: Software cannot be copied from machine to machine, the soft-
ware can run only on five computers at any one time, only ten users
can use the software at any one time, the software can only run for one
thousand hours?

These are all complex requirements, and computer security provides
complex solutions for them.

D e f I n I T I O n S

A surprising amount of effort has gone into trying to define computer
security. Historically, computer security has three aspects: confidentiality,
integrity, and availability.

Confidentiality is not much more than the privacy we talked about
in Chapter 5. Computer security has to stop unauthorized users from
reading sensitive information. This has changed somewhat with the
advent of electronic commerce and business processes on the net—
integrity is much more important—but this bias remains in most
 computer-security products. The bulk of computer-security research

 Computer Security 121

c08.indd 121 2/16/15 10:41 AM

has centered around confidentiality, primarily because the military
funded much of the early research. In fact, I’ve seen confidentiality and
security used as synonyms.

Integrity is harder to precisely define. The best definition I’ve seen
is: “every piece of data is as the last authorized modifier left it.” Within
the context of computer security, integrity is about the security of writing
data. Data integrity: ensuring that the data has not been deleted or altered
by someone without permission. Software integrity: ensuring that the
software programs have not been altered, whether by an error, a malicious
user, or a virus.

This definition of integrity illustrates how closely it is related to
confidentiality. The latter is about unauthorized reading of data (and
programs); the former is about unauthorized writing. And, in fact, the
same sorts of security techniques (cryptographic and otherwise) achieve
both goals.

Availability is the third traditional pillar of computer security, but in
reality it is much broader than computer security. Availability has been
defined by various security standards as “the property that a product’s
services are accessible when needed and without undue delay,” or “the
property of being accessible and usable upon demand by an authorized
entity.” These definitions have always struck me as being somewhat cir-
cular. We know intuitively what we mean by availability with respect to
computers: We want the computer to work when we expect it to as we
expect it to.

Lots of software doesn’t work when and as we expect it to, and
there are entire areas of computer science research in reliability and fault-
tolerant computing and software quality . . . none of which has anything
to do with security. In the context of security, availability is about ensur-
ing that an attacker can’t prevent legitimate users from having reasonable
access to their systems. for example, availability is about ensuring that
denial-of-service attacks are not possible.

A C C e S S C O n T rO L

Confidentiality, availability, and integrity all boil down to access control.
We want to make sure that authorized people are able to do whatever
they are authorized to do, and that everyone else is not.

122 C H A P T e r e I G H T

c08.indd 122 2/16/15 10:41 AM

Access control is really a problem much bigger than computers:
How do I limit access to something? How do I control access to a shared
resource? How do I limit the type of access that different people have? It’s
a hard problem to solve in a large building—locks on outside doors and
inside offices and keys given to specific people, badges worn by everyone
and guards to check the badges, and so forth—and it’s a hard problem to
solve on a computer system.

It’s also a problem that’s waxed and waned over the years. In the
beginning, computers didn’t need access control because everyone trusted
each other. As more people started using the large mainframes, access
control was required both to protect privacy and to audit usage for billing.
Access control was easy in a batch-processing world.

When personal computers appeared, they didn’t need to provide
access control: every person had his own computer. If someone wanted
to prevent others from accessing his files, he just locked his office door.
now we’re back using shared systems, shared network resources, remote
systems, and the like. Access control is a big deal for almost everyone,
whether they’re using a shared computer at work or an account on a Web
site. And access control is difficult to do properly.

Before talking about different types of access control, we need a
couple of definitions. first, there is some “subject” that has access to
some “object.” Often the subject is a user and the object is a com-
puter file, but not always. The subject could be a computer program or
process, and the object another computer program: a plug-in, for exam-
ple. The object could be a database record. The object could be a cer-
tain resource, maybe a piece of computer hardware, or a printer, or a
chunk of computer memory. Depending on the circumstance, the same
computer program can be a subject in one access-control relationship
and an object in another.

There are two ways to define access control. You can define what
different subjects are allowed to do, or you can define what can be done
to different objects. really these are two ways of looking at the same
thing, but they have their pluses and minuses. Traditionally, operating
systems managed resources and files, so access control was defined in
terms of these objects. More modern systems are application-oriented.
These offer services to end users, like large database management sys-
tems. Often these systems have access-control mechanisms that control
subjects.

 Computer Security 123

c08.indd 123 2/16/15 10:41 AM

Access isn’t all or nothing; there are different types of access permis-
sions. UnIX, for example, has three possible access permissions: read,
write, and execute. These permissions are all independent. Someone who
has only read permission for a file, for example, cannot modify that file.
Someone who has only write permission can change the file but cannot
read it; think of a “drop box” directory. Someone who has both read and
write permission can do both.

“execute” is an interesting permission. It makes sense only for com-
puter programs: executable files. Someone who has only execute permis-
sion for a certain file can run the program, but cannot read the code nor
modify the file. This is an odd permission—how is it possible for a com-
puter to execute a program without first reading it?—and for most file
systems it is not a real security distinction. But in some circumstances
this makes sense: imagine a program stored in secure memory—a digital
signature engine in a tamperproof module—where it is indeed possible to
execute a command without reading the code.

These permissions make the implicit assumption that someone is
there to decree who has access. In UnIX, this person is known as the
owner of the file. Someone who owns a file is allowed to set the per-
missions: who is allowed to read, write, and execute that file. In UnIX,
ownership is per file, and is usually determined by which directory the
file is in.

Windows nT has a more complicated set of permissions: There’s
read, write, and execute, and also delete, change permission, and change
ownership. The owner of a file can determine who is allowed to change
the permissions on the file, and who is allowed to change the ownership.

You can think of the complete set of access controls on a computer
as a matrix. On one axis is the list of all possible users; on the other is the
list of all possible files. The entries in the matrix are the different permis-
sions. Alice might have read permission for fileA, read/write permission
for fileB, and no access to fileC. Bob might have a similarly complicated
set of permissions.

for any reasonable-sized computer system, this matrix gets compli-
cated very quickly. So most systems have a shorthand. It’s possible to set
up permissions so that only the file’s owner can read, write, and execute.
It’s possible to set up permissions so that the file’s owner can write, but
that anyone can read. It’s possible to set up something called a “group,”
which is a bunch of people with the same set of permissions. So, for

124 C H A P T e r e I G H T

c08.indd 124 2/16/15 10:41 AM

example, if a group of people are all working on the same project and
need access to a particular set of files, permissions can be set to give them
access and no one else. UnIX implements these kinds of things pretty
efficiently; a single user can belong to many groups.

One way to manage the complexity of the access control matrix is
to split it up. In some systems, the list of who has access to a particular
object is stored with the object itself. This is often called an access control list
(ACL). This is a common way of doing things, and many secure operat-
ing systems implement ACLs. There are problems, though. They work
well in simple environments where users define their own access permis-
sions, but less well in environments where management defines access
permissions. There’s no easy way, for example, for someone to delegate
access authority for a period of time. Also, these kinds of systems don’t
deal well with run-time permission checking. And because access is tied
to objects and not to subjects, it can be hard to turn off access for a par-
ticular subject. If someone working for a company gets fired, the system
has to go through every object and take that person off each ACL. finally,
considerable work is required to manage an ACL-based system. Many
products are sold specifically to manage ACLs.

S e C U r I T Y M O D e L S

There’s a plethora of theoretical models to explain security, many of them
funded by the Department of Defense in the 1970s and 1980s. Since
these were military systems, they formalized the military’s system of clas-
sification discussed in Chapter 5. They’re called multilevel security (MLS)
systems, since they were designed to handle multiple levels of classification
in a single system. (The alternatives are clunky. One computer system for
Unclassified data, another completely separate one for Confidential data,
a third for Secret data, and so forth. Or system high, where the entire com-
puter is classified at the highest level of information.)

The most famous is the Bell-LaPadula model, which defined most of
the access control concepts in the previous section. This model defined
subjects, objects, and access operations, and a mathematics for talking
about them. It was a failure in leading to the development of useful and
cost-effective systems, but the theory has had lasting effects on system
design.

 Computer Security 125

c08.indd 125 2/16/15 10:41 AM

Bell-LaPadula has two main security rules: one regarding the read-
ing of data and the other regarding the writing of data. If users have
Secret clearance, they can read Unclassified, Confidential, and Secret
documents, but not Top Secret documents. If users are working with
Secret data, they can create Secret or Top Secret documents, but not
Confidential or Unclassified ones. (This is important. Imagine someone—
a person or maybe a computer virus—trying to steal documents. His
computer, of course, prevents him from e-mailing Confidential docu-
ments outside the computer. But if he can take a Confidential document
and copy the text into an Unclassified document, he can then e-mail the
new document. Controls were put in place to prevent this kind of thing.)
Basically, users cannot read documents higher than their clearance, nor
can they write documents lower than the clearance of their sessions. And
yes, it is theoretically possible for users to write documents that they can-
not read.

These are mandatory access controls in the language of Bell-LaPadula,
because they are required by the system. This is in contrast to the “dis-
cretionary access controls” in operating systems like UnIX or nT,
described in the previous section, that allow the users to make their own
decisions about who can read or write to what file. (Although most
UnIX versions can have some mandatory access controls: Someone
with root access has mandatory read, write, and execute access to all files
on the computer.)

The Bell-LaPadula model was a big deal, but it had limitations.
One, it concentrates on confidentiality at the expense of pretty much
everything else, and that confidentiality is based on a military model of
security classifications. Two, it ignores the problem of how to manage
classifications. The model assumes that someone, magically, gives every
piece of data a classification, and that classification never changes. In the
physical world, classifications change: Someone notices that it is impor-
tant and classifies it, then someone else declassifies it. Data sometimes
have a higher classification in aggregate than each datum does individu-
ally: An individual telephone number at the nSA is Unclassified, but the
entire nSA phone book is classified Confidential. What this means is
that data naturally migrates up toward higher classifications, requiring
trusted downgrades. And three, sometimes users need to work with data
that they are not authorized to see. The fact that an aircraft is carrying a

126 C H A P T e r e I G H T

c08.indd 126 2/16/15 10:41 AM

cargo of Q bombs might be classified at a level above a dispatcher, but the
dispatcher still needs to know the weight of the cargo.

Many other security models were proposed in the academic litera-
ture. The Chinese Wall model, for example, explicitly looked at com-
puter systems with data from mutually distrustful users and how to ensure
separation. (Think of a computerized brokerage system, with customers
able to access their accounts. The broker wants to prevent Customer A
from seeing Customer B’s portfolio, even though both portfolios might be
classified at the same level.)

The Clark-Wilson model was designed more for commercial applica-
tions and less for military hierarchies. Commercial security requirements
are predominantly about data integrity, and their model formalizes that.
They defined two types of integrity: internal consistency, which refers to
properties of the internal state of the system and can be enforced by the
system, and external consistency, which refers to properties of the system
in relation to the outside world and which can only be enforced through
audit. Then they built a formal security model that codified these prin-
ciples, as well as principles about confidentiality.

The Clark-Wilson model centers around the notion of “constrained”
data: data that can only be operated on in prescribed ways. for example,
the model can enforce double-entry bookkeeping requirements: every
credit must be matched with an equal debit, and everything must be
written to a specific audit file. The model prohibits any of these actions
from occurring on its own; it is forbidden to credit an account without
posting a debit.

S e C U r I T Y K e r n e L S A n D T rU S T e D
C O M P U T I n G B A S e S

Many operating systems have some built-in security. This makes sense;
often the best place to put security is at the lower system layers: the hard-
ware layer or the operating system layer. This is a good idea for several
reasons.

One, it is often possible to compromise security at a given layer by
attacking a layer below. for example, the built-in encryption functions
in a word processor don’t matter if an attacker can compromise the

 Computer Security 127

c08.indd 127 2/16/15 10:42 AM

underlying operating system. So putting security at the lowest software
level is more secure.

Two, it’s simpler. At the core of a system, it’s often easier to add
security measures. This makes these measures easier to implement and to
analyze. And, it is hoped, results in a more secure system.

Three, it’s often faster. everything has better performance when
it is embedded into the operating system, and security is no different.
Cryptography can eat up a lot of cycles, for example; it makes sense to
make it as efficient as possible.

Hence, operating system security has been a research topic for decades.
As such, it has developed its own set of concepts:

Reference monitor. A piece of software that mediates all accesses to
objects by subjects. When some process makes an operating system call, the
reference monitor halts the process and figures out whether the call should
be allowed or forbidden. for example, it will not permit a user with a
Confidential login account to read a Secret document or write to an
Unclassified document.

Trusted computing base. All the protection mechanisms inside the com-
puter—hardware, firmware, operating system, software applications, every-
thing—that are responsible for enforcing the security policy. That is, some
administrator somewhere tells the computer what is supposed to be secured
from whom in what way (that’s the security policy), and the trusted com-
puting base enforces it.

Secure kernel. The hardware, firmware, operating system, software applica-
tions, and everything else of the trusted computing base that implements the
reference monitor concept.

The reference monitor is an abstract machine that is secure; it handles
things like file management and memory management. The security ker-
nel implements the reference monitor. The trusted computing base con-
tains all the security measures, including the secure kernel. And the whole
thing implements some security model—perhaps Bell LaPadula, perhaps
something else—and enforces security. All the while being as simple as
possible, and as efficient as possible. And, of course, the trusted computing
base is by definition trusted—you don’t want users able to modify it, or
you can lose security.

Implementing these concepts in a real operating system is difficult.
Computers are complex beasts, and everything has to be secure. Zil-

128 C H A P T e r e I G H T

c08.indd 128 2/16/15 10:42 AM

lions of little things can go wrong. If everyone has read/write access to
the hard disk, how do we prevent one user reading what another user
writes? What if one user wants another user to read what she writes?
Is it possible for a user to use interrupts to do something he shouldn’t?
How can we secure access to the printer? Can one person eavesdrop on
another via the keyboard? What if the trusted computing base crashes?
How do you implement a disk defragmenter if you can only access your
own files?

The historical example that got this the most nearly correct is an
operating system called Multics, developed in the late 1960s by MIT,
Bell Labs, and Honeywell. Multics implemented the Bell-LaPadula
model from the ground up. (In fact, the Multics project was the impe-
tus for the Bell-LaPadula model.) The designers used the mathematical
formalism of the model to show the security of the system, and then
mapped the concepts of the model into the operating system. no
code was ever written until specifications had been approved. Mul-
tics worked, although the security was way too cumbersome. By now,
almost everyone has forgotten Multics and the lessons learned from
that project.

One of the lessons people have forgotten is that the kernel needs
to be simple. (even the Multics kernel, with only 56,000 lines of code,
was felt to be too complex.) The kernel is defined as the software that is
trusted. Chapter 13 talks about software reliability, the moral being that it
is unreasonable to expect software not to have security bugs. The simpler
the software is, the fewer bugs it will have.

Unfortunately, modern operating systems are infected with a disease
known as “kernel bloat.” This means that a lot of code is inside the ker-
nel instead of outside. When UnIX was first written, it made a point
of pushing nonessential code outside the kernel. Since then, everyone
has forgotten this lesson. All current flavors of UnIX have some degree
of kernel bloat: more commands inside the kernel, inexplicable utilities
running with root permissions, and so forth.

Windows nT is much worse. The operating system is an example of
completely ignoring security lessons from history. Things that are in the
kernel are defined as secure, so smart engineering says to make the kernel
as small as possible, and make sure everything in it is secure. Windows
seems to take the position that since things in the kernel are defined as
secure, than you should put everything in the kernel. When they can’t

 Computer Security 129

c08.indd 129 2/16/15 10:42 AM

figure out how to secure something, they just put it into the kernel and
define it as secure. Obviously, this doesn’t work in the long run.

In Windows, the printer drivers are part of the kernel. Users down-
load printer drivers all the time and install them, probably not realizing
that a rogue (or faulty) printer driver can completely compromise the
security of their systems. It would be a lot smarter to put the printer driver
outside the kernel, so it wouldn’t have to be trusted, but it would also
be harder. And the Windows nT philosophy always chooses ease—both
ease of use and ease of development—over security.

Windows 2000 is worse yet.

C O v e rT C H A n n e L S

Covert channels are a way to mess with the minds of people working in
security-model research. remember that one of the two main security
rules was that a user or process could not write data to a lower clearance.
Covert channels are a way to bypass those controls.

A covert channel is a way for a subject at a higher-level clearance to
send a message to a lower-level clearance, generally through some shared
resource. So the rogue Top Secret program could send a message by
manipulating network packet transmission—two packets in quick succes-
sion indicates a one and two packets with a space between them indicates
a zero—CPU usage, memory allocation, hard-drive access, print queuing,
or just about anything else. The white space in a document could be a
covert channel, as could “random” padding at the end of database entries.
It’s not fast, but messages can be sent from a high-clearance process to a
low-clearance process, defeating the security model.

Creating covert channels is easy, and fun. The threat is not users
copying Top Secret data off the screen and mailing it to China, it’s users
writing programs to surreptitiously collect the data in the background
while they’re not around.

System designers spent a lot of time on this: closing off specific covert
channels, or at least minimizing the amount of information that could be
sent across them. Maybe CPU cycles were shared at fixed rates, making
that particular covert channel unusable. Or maybe a system of random
noise was added to the packet-transmission program, making that covert
channel much less useful. But it is virtually impossible to close all covert

130 C H A P T e r e I G H T

c08.indd 130 2/16/15 10:42 AM

channels, and many systems got by with severely limiting their band-
width. Still, if the piece of information you want to leak is a tiny 128-bit
cryptographic key, you will find a covert channel that can do it.

e vA L UAT I O n C r I T e r I A

If you’re going to purchase a computer system with a certain security
model, or with a certain kernel type, you are going to need some kind of
assurance that the model was adhered to. Or, more generally, some assur-
ance that the system provides adequate security.

There are two basic ways you can do this. The first is Ivv, which
stands for “independent verification and validation.” The basic idea is that
one team designs and builds the system and another team evaluates that
design, sometimes going so far as to build an identical system to compare
it with. This is an expensive way of doing things, and you see it in things
like nuclear command and control systems and computers on the Space
Shuttle.

The cheaper way is to evaluate the system against some independent
set of criteria, and give it a security rating of some sort.

The Orange Book was the first set of evaluation criteria to gain accep-
tance. It’s more or less obsolete, but it did have a major effect on com-
puter security in the 1980s, and you still hear Orange Book terms like
“C2-level security” bandied about.

The Orange Book is really called U.S. Department of Defense Trusted
Computer System Evaluation Criteria, but that was a mouthful to say and
the book had an orange cover. It was published in 1985 by the national
Computer Security Center, which is more or less a branch of the nSA.
The point of the Orange Book was to define security requirements and
standardize government procurement requirements. It gave computer
manufacturers a way to measure the security of their systems, and told
them what to build into their secure products. It also offered a system of
classifying different levels of computer security, and ways of testing if a
certain system met any given level.

The levels ranged from low to high: D (minimal security), C (discre-
tionary protection), B (mandatory protection), and A (verified design).
Within some of the levels were sublevels. There’s C1 and C2, for exam-
ple: discretionary security protection and controlled access protection,

 Computer Security 131

c08.indd 131 2/16/15 10:42 AM

with the latter being more secure. C1 isn’t secure; it’s basically what you
get with out-of-the-box UnIX. (You don’t see many systems boasting
about their C1 security rating.) C2 is better; this is probably the most
reasonable security level for commercial products. Much of the access
control procedures were based on the Bell-LaPadula model, which starts
at the B1 level. B1, B2, B3, and A were thought to be more suited to
military systems.

The main problem with these levels was that they did not mean that
the system was secure. Purchasing a B1 system, for example, did not guar-
antee a secure computer. All it meant was that the manufacturer put in the
mandatory access controls, and had the required documentation, to get
a B1 security rating. Certainly mandatory access controls makes B1 a lot
better than C2, but security bugs are just as likely in either system. What
it did mean was that the designers tried harder.

Also, the Orange Book only applied to stand-alone systems, and
completely ignored what could happen when computers were networked
together. Several years ago Microsoft made a big deal about Windows
nT getting a C2 security rating. They were much less forthcoming with
the fact that this rating only applied if the computer was not attached to
a network and had no network card, had its floppy drive epoxied shut,
and was running on a Compaq 386. Solaris’s C2 rating was just as silly.
recent modifications to the Orange Book tried to deal with networked
computers, with mixed success.

And the ratings were notoriously restricted. Systems would get rat-
ings only in particular configurations, with only certain types of software
installed. If version 1.0 of an operating system had a certain security level,
there was no guarantee that version 1.1 had the same level. If a comput-
er’s security rating applied to a particular configuration—with a particular
set of installed software—that said nothing about the computer’s security
with a different configuration.

In today’s world of everything interconnected all the time, the Orange
Book has fallen into disuse. There have been some attempts, by different
national and international organizations, to modernize it. The Canadians
came up with something called the Canadian Trusted Computer Prod-
ucts evaluation Criteria. The eU came up with the Information Tech-
nology Security evaluation Criteria, ITSeC, formerly endorsed in 1995.
Another U.S. proposal was called the federal Criteria.

recently everyone has gotten together to try to stop this madness.

132 C H A P T e r e I G H T

c08.indd 132 2/16/15 10:42 AM

The Common Criteria is designed to satisfy everyone, and to combine
the good ideas of the various other criteria. It’s an ISO standard (15408,
version 2.1). The general idea is that the Common Criteria provides a
catalog of security concepts that users can include in a protection profile,
which is basically a statement of users’ security needs. Then individual
products can be tested against that protection profile. The government is
supposed to oversee that the Common Criteria methodology is executed
properly, but commercial laboratories are supposed to provide the actual
testing and certification.

The Common Criteria has a Mutual recognition Agreement, which
means that different countries agree to recognize each other’s certifica-
tions. So far Australia, Canada, france, Germany, new Zealand, the
United Kingdom, and the United States have signed on.

This is a giant step in the right direction. The Common Criteria
is designed to provide common security (not functional) evaluation of
commercially available products against different requirements. The smart
card industry has spent a lot of time developing their own protection
profile under the Common Criteria. I have high hopes for this program.

f U T U r e O f S e C U r e C O M P U T e r S

formal models make for nice theory, but are much less useful in practice.
They have theoretical limits; just because there’s a security model doesn’t
mean that you can prove the system has certain security properties. They
can result in unusable systems; forcing a system to adhere to a model can
result in some bizarre designs. They can take forever to design and build.
And even worse, they don’t even prove security. If a system conforms to
a formal security model, the best it can prove is that it is secure against an
attacker who follows the model. The best attackers think of something
new; they cheat. And again and again, attackers who don’t follow the
designers’ model break security.

Almost nothing in use today is built on a formal security model. Sys-
tems have cribbed ideas from formal security—all operating systems have
a trusted computing base, for example—but in order to be useful and
usable, they make compromises. This only makes sense.

A secure operating system, and hence a secure computer, has several
key components. One is a strong mandatory security mechanism of a

 Computer Security 133

c08.indd 133 2/16/15 10:42 AM

more general type than the formal models discuss. This mandatory secu-
rity mechanism enforces a policy that is controlled by a policy administra-
tor, who is not necessarily the user. Moreover, this policy must control
the use of both access and encryption. That is, the policy must enforce
who (person or process) is allowed to access what data (or other process),
and what kinds of encryption controls must be placed on that data. This
kind of policy cannot prevent covert channels (nothing can), but will go a
long way toward stopping the kinds of abuses we’re seeing today.

The second key component is a trusted path. This is a mechanism
by which a user (or a process) can interact with a piece of trusted soft-
ware, which can be initiated by either the user or the trusted software,
and cannot be impersonated by another piece of software. for example,
wouldn’t it be nice if when a user saw a login screen he could be sure
that it was a real login screen, and not a Trojan horse trying to capture his
password? Mechanisms for implementing a trusted path will also go a long
way toward limiting the damage malicious software can do.

There are secure oeprating systems on the market that implement
some of these components, but they are still niche products. I would like
to see more of these ideas flow into mainstream operating systems such
as Microsoft Windows. It doesn’t look like it will happen anytime soon.

134 C H A P T e r e I G H T

c08.indd 134 2/16/15 10:42 AM

9

Identification
and Authentication

No matter what kind of computer security system you’re using,
the first step is often identification and authentication: Who are
you, and can you prove it? Once a computer knows that, it can

figure out what you are and are not allowed to do. In other words, access
control can’t start until identification and authentication is finished.

Let’s talk about the problem. Alice has some ability on a computer,
and we want to make sure that only she has that ability. Sometimes the
ability is access to some information: files, account balances, and so forth.
Sometimes the ability is access to the entire computer; no one else can
turn the computer on and use her data or programs. Sometimes the abil-
ity is more explicit: withdraw money from an ATM, use a cell phone,
stop a burglar alarm from ringing. Sometimes the ability is on a Web site:
access to her calendar or her brokerage account, for example. Sometimes
the ability is access to a cryptographic key that is just too large for her to
remember. (PGP uses access control measures to protect private keys.)
It doesn’t matter what the ability is; what’s important is that some access
control measure is required to identify Alice.

Actually, the access control measure has to do two things. One, it has
to allow Alice in. And two, it has to keep others out. Doing only one is
easy—an open door will let Alice, and everyone else, in; a bricked-over
door will keep others, as well as Alice, out—but doing both is harder.

135

c09.indd 135 2/16/15 10:43 AM

We need something that will recognize Alice and let her in, but will be
hard for others to duplicate. We need to be able to identify Alice and then
authenticate that identification. (Actually, the access control measure has
to do a third thing: keep a good audit record of what happened.)

Traditionally, identification and authentication measures have cen-
tered on one of three things: something you know, something you are,
or something you have. These roughly translate to “passwords,” “bio-
metrics,” and “access tokens.” Sometimes systems use two of these things
together. Paranoid systems use all three.

PA S S WO r D S

The traditional approach to authentication is a password. You see it
everywhere. When you log on to a computer system, you type in a user-
name and password. To make a telephone call using a calling card, you
type in your account number and password (often, it is given as a single
string). To withdraw money from an ATM, you put your card in the slot
and type in your PIN (a password).

The two steps in each of those examples mirror the title of this chap-
ter. The first step is called identification: You tell the computer who you
are (the username). The second step is called authentication: You prove
to the computer that you are who you say you are (the password).

The computer at the other end of these transactions has a list of
usernames and passwords. Once you have entered in your username and
password (or your account number and PIN), the computer compares
your input against the entries stored on the list. If you enter a valid user-
name and the correct corresponding password, you’re in. If you don’t,
you’re out. Sometimes the system will again prompt you for a username
and password. Sometimes the system will lock up after a certain number
of bad attempts. (You wouldn’t want someone to be able to steal an
ATM card and then try all 10,000 possible PINs, one after another, in
an attempt to find the correct one.)

Unfortunately the system of username and password works less well
than people believe.

The whole notion of passwords is based on an oxymoron. The idea
is to have a random string that is easy to remember. Unfortunately, if it’s
easy to remember, it’s something nonrandom like “Susan.” And if it’s
random, like “r7U2*Qnp,” then it’s not easy to remember.

136 C H A P T E r N I N E

c09.indd 136 2/16/15 10:43 AM

In Chapter 7, where I talked about key length and security, I dis-
cussed the problems of user-generated and user-remembered keys. A
password is a form of user-remembered key, and dictionary attacks
against passwords are surprisingly effective.

How does this attack work? Think about an access control system
for a computer or Web site. The computer has a file of usernames and
passwords. If an attacker got her hands on that file, she would learn
every password. In the mid-1970s, computer security experts came up
with a better solution: Instead of storing all the passwords in a file, they
would store a cryptographic hash of the password. Now, when Alice
types her password into the computer or Web site, the software com-
putes the hash of the password and compares that hash with the hash
stored in a file. If they match, Alice is allowed in. Now there is no file
of passwords to steal; there is only a file of hashed passwords to steal.
And since a hash function prevents someone from going backward, the
attacker can’t recover the passwords from the hashed passwords.

Here’s where dictionary attacks come in. Assume that an attacker
has a copy of the hashed password file. He takes a dictionary, and com-
putes the hash of every word in the dictionary. If the hashed word
matches any of the password entries, then he has found a password. After
he tries all words, he tries reversed dictionary words, dictionary words
with some letters capitalized, and so forth. Eventually he tries all char-
acter combinations shorter than some length.

Dictionary attacks used to be hard, because computers were slow.
They’re much easier now, because computers are a lot faster. L0phtcrack
is an example of a password recovery hacker tool that is optimized for
Windows NT passwords. Windows NT contains two password func-
tions: a stronger one designed for NT, and a weaker one that is backward-
compatible with older networking login protocols. The weaker one is
case-insensitive, and passwords can’t be much stronger than seven char-
acters (even though they may be longer). L0phtcrack makes easy work of
this password space. On a 400-MHz Quad Pentium II, L0phtcrack can
try every alphanumeric password in 5.5 hours, every alphanumeric pass-
word with some common symbols in 45 hours, and every possible key-
board password in 480 hours. This is not good.

Some have dealt with this problem by requiring stronger and
stronger passwords. What this means is that the password is harder to
guess, and less likely to appear in a password dictionary. The old rACF
mainframe system required users to change passwords monthly, and

 Identification and Authentication 137

c09.indd 137 2/16/15 10:43 AM

wouldn’t permit words. (Microsoft Windows has no such controls, and
helpfully offers to remember your passwords for you.) Some systems
generate passwords randomly for users, by concatenating random sylla-
bles to create pronounceable passwords (e.g., “talpudmox”) or mixing in
numbers or symbols and changing case: for example, “FOT78hif#elf.”
PGP uses passphrases, which are recommended to be complex sentences
with nonsense thrown in: for example, “33333Telephone,, it must be
YOU speaking sweetly to me1958???!telephone.” (Admittedly, that’s
not as easy to remember and type as you might want.)

These techniques are becoming less and less effective. Over the past
several decades, Moore’s law has made it possible to brute-force larger
and larger entropy keys. At the same time, there is a maximum to the
entropy that the average computer user (or even the above-average com-
puter user) is willing to remember. You can’t expect him to memorize
a 32-character random hexadecimal string, but that’s what has to happen
if he is to memorize a 128-bit key. You can’t really expect him to type
the PGP passphrase in the previous paragraph. These two numbers have
crossed; password crackers can now break anything that you can reason-
ably expect a user to memorize.

There are exceptions to this, of course. You could imagine high-
security applications—nuclear launch computers, secure diplomatic
channels, systems that communicate with spies living deep in enemy
territory—where users will take the time to memorize long and com-
plicated passphrases. These applications have nothing to do with mod-
ern computer networks and passwords for commodity e-commerce
applications. The problem is that the average user can’t, and won’t
even try to, remember complex enough passwords to prevent diction-
ary attacks. Attacking a basic password-protected system is often easier
than attacking a cryptographic algorithm with a 40-bit key. Passwords
are insecure, unless you can stop dictionary attacks.

As bad as passwords are, users will go out of the way to make it
worse. If you ask them to choose a password, they’ll choose a lousy
one. If you force them to choose a good one, they’ll write it on a Post-
it and stick it on their computer monitor. If you ask them to change it,
they’ll change it back to the password they changed it from last month.
One study of actual passwords found that 16 percent of them were three
characters or less, and 86 percent of them were easily crackable. Other
studies have confirmed these statistics.

138 C H A P T E r N I N E

c09.indd 138 2/16/15 10:43 AM

And they’ll choose the same password for multiple applications.
Want to steal a bunch of passwords? Put up a Web site with some-
thing interesting on it: porn, hockey scores, stock tips, or whatever will
appeal to the demographic you’re after. Don’t charge for it, but make
people register a username and password in order to see the informa-
tion. Then, sit back and collect usernames and passwords. Most of the
time you’ll get the same username and password that the user chose last
time, maybe the one that lets you into his bank or brokerage accounts.
Save incorrect passwords as well; people sometimes enter the password
for System A into System B by mistake. Make the user fill out a little
questionnaire during registration: “What other systems do you use reg-
ularly? Bank X? Brokerage FirmY? News Service Z?” A researcher I
know did something like this in 1985; he got dozens of system admin-
istrator passwords.

And even when they choose good passwords and change them reg-
ularly, people are much too willing to share their passwords with others
in and out of the organization, especially when they need help to get the
work done. Clearly this represents one of the greatest security risks of
all, but, in people’s minds, the risk is minimal and the need to get work
done imperative.

This is not to say that there are not better or worse passwords. The
preceding example PGP passphrase is still secure against dictionary
attacks. Generally, the easier a password is to remember, the worse it is.
Dictionary attacks generally try common passwords before uncommon
ones: dictionary words, reversed dictionary words, dictionary words
with some letters capitalized, dictionary words with minor modifica-
tions—like the number “1” instead of the letter “l”—and so forth.

Unfortunately, many systems are only as secure as the weakest pass-
word. When an attacker wants to gain entry into a particular system, she
might not care which account she gets access to. In operational tests,
L0phtcrack recovers about 90 percent of all passwords in less than a
day, and 20 percent of all passwords in a few minutes. If there are 1,000
accounts, and 999 users choose amazingly complicated passwords that
L0phtcrack just can’t possibly recover, it will break the system by recov-
ering that last weak ordinary password.

On the other hand, from the user’s point of view this can be an
example of “not having to outrun the bear; only having to outrun the
people you’re with.” Any dictionary attack will succeed against so many

 Identification and Authentication 139

c09.indd 139 2/16/15 10:43 AM

accounts whose passwords are “Susan” that if your password is “ham-
merbutterfly,” while it’s pretty vulnerable to dictionary attacks, it’s not
likely to actually succumb to one.

Depending on the type of attacker you’re worried about, a system
with long and strong passwords can be secure. But this is changing all
the time; Moore’s law means that today’s strong password is tomorrow’s
weak password. In general, if a system is based on passwords and an
attacker can mount a dictionary attack, then the system is vulnerable.
Period.

There are fixes. This is all predicated on the attacker stealing the file
of hashed passwords. Prevent dictionary attacks, and passwords are again
good. This is possible, although not easy, for general-access machines.
The UNIX password file, for example, is world readable. These days,
UNIX has something called a shadow password file; it contains the actual
hashed passwords, and the world-readable password file contains nothing
useful. The hashed password file in NT is well-protected and difficult to
steal; you either need administrator access to sniff the hashed passwords
across the network (although the latest NT version and Windows 2000
prevent this); or you need to pick up the passwords when they are used
by other network applications.

Systems can also lock up after some number of bad passwords, for
example, ten. What this means is that after someone fails to log in ten
times, the system freezes the account. So if someone tries to log in to
Alice’s account and starts guessing passwords, he only gets ten guesses
before the system freezes. This will, of course, annoy Alice, but it’s
better than compromising Alice’s account. And the exact definition of
“freeze” can depend on the circumstance. Maybe it will freeze Alice’s
account for five minutes, or 24 hours. Maybe it will freeze Alice’s
account until she talks with some administrator. High-security devices
might freeze permanently, destroying the information inside, after a cer-
tain number of incorrect passwords.

Another solution is to require a noncomputer interface. Your ATM
cash card is protected by a four-digit PIN. That would be trivial for a
computer to break—it would take a few milliseconds to try all 10,000
possible PINs—but it’s hard for a computer to attach itself to the user
interface. A person has to stand at the ATM and try PINs, one after the
other. At a brisk ten seconds per attempt it would take 28 hours, non-
stop, to try 10,000 PINs.

140 C H A P T E r N I N E

c09.indd 140 2/16/15 10:43 AM

There are people sufficiently desperate to try this attack, so ATMs
will swallow cards if you enter in too many bad passwords. Still, this
security measure works for a lot of systems: physical combination locks,
deactivation codes for burglar alarms (sure, you can try all 10,000 pos-
sible codes, but you’ve only got 30 seconds), electronic door locks, tele-
phone calling cards, and so on. These systems work because the attack
cannot be automated; if you can figure out how to have a computer
brute-force all the PINs (or passwords) for these systems, you can break
them.

The majority of systems designers don’t realize the difference
between a system with a manual interface, which can be secure with a
four-digit PIN, and a system that has a computer interface. This is why
we see weak PIN-like passwords on so many Web systems (including,
at the time of writing, several Internet brokerage sites).

What’s the solution if you can’t prevent dictionary attacks? One trick
is to find a bigger dictionary. Another is to add random numbers to the
passwords, a trick known as salting. There has been some work on differ-
ent types of visual and graphical passwords; the idea being that there are
a lot more possible passwords, and hence it is much harder to mount a
dictionary attack. Still, these are limited by the memory of the user.

Passwords are something the user knows. Other authentication
techniques are based on something the user is—a biometric—or some-
thing the user has—an access token.

B I O M E T r I C S

It’s a simple idea: You are your authenticator. Your voiceprint unlocks
the door of your house. Your retinal scan lets you in the corporate offices.
Your thumbprint logs you on to your computer. It’s even used in Star
Trek; Captain Picard “signs” those electronic memo pads with his thumb-
print.

Biometrics are the oldest form of identification. Physical recogni-
tion is a biometric; our ancestors used that even before they evolved into
humans. Cats spray to mark their territory. Dolphins have individual “sig-
nature” calls.

Biometrics are also used for identification in communications sys-
tems. On the telephone, your voice identifies you to the person on the

 Identification and Authentication 141

c09.indd 141 2/16/15 10:43 AM

other end of the line. On a contract, your signature identifies you as
the person who signed it. Your photograph identifies you as the person
who owns a particular passport.

For most applications, biometrics need to be stored in a database like
passwords. Alice’s voice only works as a biometric identification on the
telephone if you already know who she is; if she is a stranger, it doesn’t
help. It’s the same with Alice’s handwriting; you can recognize it only if
you already know it. To solve this problem, banks keep signature cards
on file. Alice signs her name on a card when she opens her account, and
it is stored in the bank (the bank needs to maintain its secure perimeter
in order for this to work right). When Alice signs a check, the bank
verifies Alice’s signature against the stored signature to ensure that the
check is valid. (In practice, that rarely happens. Manual signature check-
ing is so costly that the bank doesn’t bother checking for amounts less
than about $1,000. If there is a problem, they assume, someone will
complain. And making good on the occasional problem is cheaper than
paying someone to do the checking.) You could do the same thing with
Alice’s voice—compare her voiceprint to the one stored in some central
database.

The exceptions are situations where the biometric is only verified as
part of an involved and uncommon protocol. When Alice signs a con-
tract, for example, Bob does not have a copy of her signature on file.
The protocol still works because Bob knows that he can verify the sig-
nature at some later time, if necessary.

There are many different types of biometrics. I’ve mentioned hand-
writing, voiceprints, face recognition, and fingerprints. There is also
hand geometry, typing patterns, retinal scans, iris scans, signature geom-
etry (not just the look of the signature, but the pen pressure, signature
speed, and so forth), and others. The technologies behind some of them
are more reliable than others—fingerprints are much more reliable than
face recognition—but that may change as technology improves. Some
are more intrusive than others; one failed technology was based on lip
pattern, and required the user to kiss the computer. As a whole, bio-
metrics will only get better and better.

“Better and better” means two different things. First, it means that it
will not incorrectly identify an impostor as Alice. The whole point of the
biometric is to prove that the claimant Alice is the actual Alice, so if an
impostor can successfully fool the system, it isn’t working very well. This

142 C H A P T E r N I N E

c09.indd 142 2/16/15 10:43 AM

is called a false positive. Second, it means that the system will not incorrectly
identify Alice as an impostor. Again, the point of the biometric is to prove
that Alice is Alice, and if Alice can’t persuade the system that she is her-
self, then it’s not working very well, either. This is called a false negative.

Over the years, biometric identification systems have gotten better
at detecting both false positives and false negatives. For example, they
include checks for liveness, so that neither a plastic finger nor a severed
real finger fools the fingerprint reader. They do a better job of correct-
ing for day-to-day variations in an individual’s biometric better. They’re
just easier to use.

In general, you can tune a biometric system to err on the side of a
false positive or a false negative. This is all shades of gray here; if the sys-
tem gets a fingerprint that it is pretty sure belongs to Alice, does it let the
finger in? It depends on whether the system is more concerned with false
positives or false negatives. If the system is authorizing Alice to take pen-
cils out of a stockroom, then it should err on the side of false negatives;
it’s much worse to annoy a legitimate user than to lose a few pencils.
If the system is protecting large amounts of money, then false positives
are preferable: Keeping unauthorized users out is more important than
occasionally denying access to a legitimate user. If the system initiates a
launch sequence for nuclear missiles, both are dire.

Biometrics are great because they are really hard to forge: It’s hard
to put a false fingerprint on your finger, or make your retina look like
someone else’s. Some people can do others’ voices (performers who do
imitations, for example), and Hollywood can make people’s faces look
like someone else, but in general those biometrics are hard to forge, too.

On the other hand, biometrics are lousy because they are so easy to
forge: It’s easy to steal a biometric after the measurement is taken. In all
of the applications discussed previously, the verifier needs to verify not
only that the biometric is accurate but that it has been input correctly.
Imagine a remote system that uses face recognition as a biometric. “In
order to gain authorization, take a Polaroid picture of yourself and mail
it in. We’ll compare the picture with the one we have in file.” What are
the attacks here?

Easy. To masquerade as Alice, take a Polaroid picture of her when
she’s not looking. Then, at some later date, use it to fool the system.
This attack works because while it is hard to make your face look like
Alice’s, it’s easy to get a picture of Alice’s face. And since the system

 Identification and Authentication 143

c09.indd 143 2/16/15 10:43 AM

does not verify that the picture is of your face, only that it matches the
picture of Alice’s face on file, we can fool it.

Similarly, we can fool a signature biometric using a photocopier or
a fax machine. It’s hard to forge the vice president’s signature on a letter
giving you a promotion, but it’s easy to cut his signature out of another
letter, paste it on the letter giving you a promotion, and fax it to the
human resources department. They won’t be able to tell that the signature
was cut from another document.

The moral is that biometrics work great only if the verifier can verify
two things: one, that the biometric came from the person at the time of
verification, and two, that the biometric matches the master biometric on
file. If the system can’t do both, it is insecure.

Here’s another possible biometric system: thumbprints for remote
login authorizations. Alice puts her thumbprint on a reader embedded
into the keyboard (don’t laugh, a lot of companies want to make this hap-
pen, and the technology already exists). The computer sends the digital
thumbprint to the host. The host verifies the thumbprint and lets Alice in
if it matches the thumbprint on file. This won’t work because it’s so easy
to steal Alice’s digital thumbprint, and once you have it, it’s easy to fool
the host, again and again.

Tamper-resistant hardware helps (within the limitations of Chapter
14), as long as the tamper-resistant hardware includes both the biometric
reader and the verification engine. It doesn’t work if a tamper-resistant
fingerprint reader sends the fingerprint data across an insecure network.
Encryption can help, too, though.

Anyway, this brings us to the second major problem with biometrics:
It doesn’t handle failure well. Imagine that Alice is using her thumbprint
as a biometric, and someone steals it. Now what? This isn’t a digital cer-
tificate (we’ll get to those in Chapter 15), where some trusted third party
can issue her another one. This is her thumb. She only has two. Once
someone steals your biometric, it remains stolen for life; there’s no getting
it back.

This is why biometrics don’t work as cryptographic keys (even if
you could solve the fuzzy biometric logic versus absolute mathematical
logic problem). Occasionally I see systems that use cryptographic keys
 generated from biometrics. This works great, until the biometric is
 stolen. And I don’t mean that the person’s finger is physically cut off, or
the fingerprint is mimicked on someone else’s finger; I mean that someone

144 C H A P T E r N I N E

c09.indd 144 2/16/15 10:43 AM

else steals the digital fingerprint. Once that happens, the system does
not work anymore. (Well, maybe it will work until all ten fingers are
stolen. . . .)

Biometrics can be good authentication mechanisms, but they need to
be used properly.

A C C E S S T O K E N S

The third solution to proving identity is to use something you have:
a physical token of some sort. This is an old form of access control: a
physical key restricted access to a chest, a room, a building. Possession
of the king’s seal authorized someone to act on his behalf. More modern
systems can be automated—electronic hotel room keys—or manual—
corporate badges that allow access into buildings. The basic idea is the
same; a physical token serves to authenticate the holder of it.

There are several basic ways this can be done. Most simply, the
holder can simply prove that he is holding the token. Computers that
require a physical key to turn them on work in this manner; so do
computers that require a smart card. The basic idea is that you insert the
token into some slot somewhere, and then the computer verifies that it
is really there. If it is, you’re in.

The most serious problem with this system is that tokens can be sto-
len. If someone steals your house keys, for example, she can unlock your
house. So the system doesn’t really authenticate the person; it authen-
ticates the token. Most computer systems combine access tokens with
passwords—sometimes called PINs—to overcome this vulnerability. You
can think of bank ATM cards. The ATM authenticates the card, and also
asks for a PIN to authenticate the user. The PIN is useless without the
access token. Some cellular phone systems work the same way: You need
the physical phone and an access code to make calls on a particular cel-
lular account.

In addition to stealing a token, someone can copy it. Some tokens
can be easily copied—physical keys, for example—so they can be stolen,
copied, and replaced without the owner knowing about it.

Another problem is that there needs to be some authenticated way
of determining that the token is really there. Think of a token as a
removable, changeable biometric, and you’ve got all the problems of a

 Identification and Authentication 145

c09.indd 145 2/16/15 10:43 AM

secure verification path from the previous section. At least the token can
be changed if necessary.

This problem can be illustrated using credit cards. It’s difficult to forge
a physical credit card, which makes it risky to use a forged credit card to
purchase things at a store. The clerk might notice that the card is forged.
It’s far easier to use a forged credit card over the telephone, however. At
the store, the clerk authenticates both the account number on the credit
card and the credit card itself—the token. Over the phone, the operator
cannot authenticate the physical token, only the account number.

There’s another, relatively minor, problem that shows up with some
tokens. If users can leave the token in the slot, they often do. If the users
need to have a smart card inserted in a slot before it will boot, they’re likely
to leave the smart card there all day and night . . . even when they’re not
there. So much for authentication.

All of this discussion assumes that there’s some kind of reader asso-
ciated with the token, and the user can insert the token into the reader.
This often isn’t the case: Most computers don’t have the required
reader, or the system might have to work for mobile users who could
be sitting somewhere other than at their normal computers. Two dif-
ferent technologies deal with this situation.

The first is challenge/reply. The token is a pocket calculator, with
a numeric keypad and small screen. When the user wants to log in, the
remote host presents him with a challenge. He types that challenge into
his token. The token calculates the appropriate reply, which he types
into the computer and sends to the host. The host does the same cal-
culation; if they match, he is authenticated. The second technology is
time-based. This token is the same pocket calculator, with just a screen.
The numbers on the screen change regularly, generally once per min-
ute. The host asks the user to type in what is showing on his screen. If it
matches what the host expects, he is authenticated. The SecurID token
works this way.

Of course, the full system also includes a password—the challenge/
reply token might even require a second password to get it working—
and there are other, ancillary, security measures. The basic idea, though,
is that some secret calculation is going on inside the token that can’t be
impersonated. An attacker can’t pretend to have the token, because she
doesn’t know how to calculate replies based on challenges, or doesn’t

146 C H A P T E r N I N E

c09.indd 146 2/16/15 10:43 AM

know how to calculate values based on the time. The only way to do
this is to actually have the token.

This works, more or less. Cryptographic techniques, encrypting or
hashing, provide the security. The host knows how to do the calculations,
so the system is only as secure as the host’s source code. Anyone who can
reverse engineer the token can figure out how to do the calculations, so
the system is only as secure as the tokens (see Chapter 14). But it’s pretty
good, and certainly a lot better than passwords alone. The security prob-
lems arise in the network, and the authenticating computer.

One last token needs discussion: the password, written down. There
is a knee-jerk reaction to writing passwords down in the security com-
munity, but if done properly this can improve security considerably.
Someone who writes his password down turns something he knows (the
password) into something he has (the piece of paper). This trick does
allow him to use longer passwords, which can make passwords actually
secure again. It does have all the problems of a simple token: It can be
copied or stolen. It doesn’t work if Alice writes her password on a yel-
low sticky attached to her monitor. Much better is for her to put her
passwords in her wallet; this can be secure. Probably the best solution is
to have two parts to the password: one part remembered by Alice, and
the other part written down in her wallet.

Similarly, there are systems of one-time passwords. The user has a list
of passwords, written down, and uses each one once. This is certainly a
good authentication system—the list of passwords is the token—as long
as the list is stored securely.

AU T H E N T I C AT I O N P rO T O C O L S

Authentication protocols are cryptographic ways for Alice to authenti-
cate herself across a network. The basic authentication protocol is pretty
simple:

 1. Alice types in her username and password on the client. The client sends
this information to the server.

 2. The server looks up Alice’s username in a database and retrieves the cor-
responding password. If that password matches the password Alice typed,
Alice is allowed in.

 Identification and Authentication 147

c09.indd 147 2/16/15 10:43 AM

The problem with this is that the password database has to be pro-
tected. The solution is to not store the passwords, but to store hashes of
the passwords:

 1. Alice types in her username and password on the client. The client sends
this information to the server.

 2. The server hashes Alice’s typed-in password.
 3. The server looks up Alice’s username in a database and retrieves the cor-

responding password hash. If that password hash matches the hash of the
password Alice typed, Alice is allowed in.

Better. The main problem with the second protocol is that passwords
are sent over the network in the clear. Anyone sniffing the network can
collect usernames and passwords. Solutions involved hashing passwords
before sending them (older versions of Windows NT did this), but dic-
tionary attacks can deal with that as well.

As dictionary attacks became more powerful, systems started
 adding salt to their passwords. (Actually, they did this very early, a good
example of designer foresight.) A salt is a known random constant
hashed with the password. The effect is to make dictionary attacks
harder; instead of a single hash for the password “cat,” there would be
4,096 different hashes for “cat” plus 12 bits of random salt. Diction
aries of prehashed passwords would have to be four thousand times
larger. But the ability to do fast dictionary attacks in real time makes this
 countermeasure obsolete; the dictionary simply includes all possible salt
values.

Kerberos is a more complicated authentication protocol. To make
this work, Alice has to share a long-term key with a secure server on the
network, called a Kerberos server. To log on to a random server on the
network, which we’ll call the Bob server, the following procedure is car-
ried out:

 1. Alice requests permission from the Kerberos server to log on to the Bob
server.

 2. The Kerberos server checks to make sure Alice is allowed to log on to the
Bob server. (Note that the Kerberos server does not need to know that
Alice is who she says she is. If she isn’t, the protocol will fail in step 6.)

 3. The Kerberos server sends Alice a “ticket” that she is supposed to give to
the Bob server, and a session key she can use to prove to Bob that she is
Alice.

148 C H A P T E r N I N E

c09.indd 148 2/16/15 10:43 AM

 4. Alice uses the session key from the Kerberos server to create an “authenti-
cator” that she will use to prove to Bob that she is Alice.

 5. Alice sends Bob both the ticket and the authenticator.
 6. Bob validates everything. If it all checks out, he lets Alice in. (Bob also

shares a long-term key with the Kerberos server. The ticket is a message
from the server encrypted in Bob’s long-term key.)

This protocol is secure in the same way that physical ticket protocols are
secure. The Kerberos server prints tickets. It gives Alice a ticket that she
can present to Bob. Bob can validate the ticket, so he knows that Alice
received it from the Kerberos server.

This protocol has some nice properties. The long-term secrets of
Alice and Bob, which are kind of like passwords, are never sent through
the network. On the minus side, this system needs a Kerberos server to
operate; the Kerberos server is a trusted third party. This can mean a
bottleneck in the system at 9:00 in the morning, when everyone is trying
to log on to their computer.

Kerberos was invented at MIT in 1988, and has been used in the
UNIX world ever since. Kerberos is part of Windows 2000, but Micro-
soft’s implementation differs from the standard and is incompatible with
the rest of the Kerberos world. I can only assume this was done for delib-
erate marketing reasons (at this writing, Microsoft only allowed you to
open the file with the modification details if you first clicked on a screen
agreeing to treat the information as proprietary, so third-party developers
can’t build interoperable systems), but it makes for bad security. You can’t
just modify a security protocol and assume that the modified protocol is
also secure.

Other, more Byzantine, login authentication protocols use public-
key cryptography. IPsec and SSL, for example, use public-key authenti-
cation protocols. Some systems use simple, but esoteric, protocols. The
protocol by which a cell phone proves that it should be allowed to make
telephone calls in a particular network is one of these.

S I N G L E S I G N - O N

One thing that has annoyed computer users in large secure environ-
ments is the large number of passwords. Users might have to type in one
 password to log on to their computers, another to log on to the network,
a third to log on to a particular server on the network, and so on and on

 Identification and Authentication 149

c09.indd 149 2/16/15 10:43 AM

and on. Wouldn’t it be better, people asked, if users could sign on once,
with one password, and then have the computers handle all of that other
logging in?

Single sign-on is the solution to this usability problem: the Holy
Grail of network security. Unfortunately, it doesn’t work very well.
First, there’s the morass of legacy applications and security measures that
just don’t play well with each other. It’s not a matter of choosing the
same password for everything—that’s a bad idea—it involves a lot of
interface programming. Second, there’s the additional security risk of a
single point of failure. It’s the difference between losing a single credit
card and losing your entire wallet.

There are single sign-on products out there, and they work in some
situations. But it will never be the panacea vendors claim.

150 C H A P T E r N I N E

c09.indd 150 2/16/15 10:43 AM

10

Networked-Computer
Security

In this chapter I want to talk about attacks on computers on the
 Internet. You could think of these attacks as attacks against comput-
ers, which should be part of Chapter 8. You could also think of

these attacks as network attacks, which should be part of Chapter 11. I
think they are a different kind of attack, and am separating them in their
own chapter.

M a l I C I o u s s o f t wa r e

Malicious software is probably the first interaction most of us had with
computer security. even if no one has access to your computer but you,
and it is not attached to a network, you have to worry about viruses. the
reason is that you don’t really know what is going on in your computer,
and trust the software you are running to behave itself. If you run an
untrusted piece of software, you are taking a risk.

Malicious software includes viruses, trojan horses, and worms.
together these are called malware. Malware generally has two com-
ponents: a payload and a propagation mechanism. the payload is the
part that does damage. traditionally, payloads have been boring; a

151

c10.indd 151 2/16/15 10:41 AM

prototypical virus might display an annoying message on the screen,
reformat the victim’s hard drive, or do absolutely nothing. It could also
do much sneakier things: modify the access control permissions on the
computer, steal a secret key and send it via e-mail to someone, and so
on. Payloads can be malign, and I expect that we’ll see more devious
payloads over the next few years. More interesting for this book are the
propagation mechanisms, and this is how we classify malware.

Computer Viruses

a biological virus is a simple submicroscopic infectious agent that often
causes disease in plants, animals, and bacteria. It consists essentially of a
core of rNa or DNa surrounded by a protein coat. Viruses are unable
to replicate without a host cell, and are typically not considered living
organisms. for once, the metaphor is accurate. a computer virus is a
string of computer code that attaches itself to another computer program
(it can’t live on its own). once attached, it replicates by co-opting the
program’s resources to make copies of itself and attach them to other
programs. and so on.

In 1983, usC student fred Cohen wrote the first computer virus.
He did it to demonstrate the concept (a surprising number of people
didn’t believe it was possible). Gaggles of people copied him, many just
to annoy the world. today there are anywhere from 10,000 to 60,000
different viruses (depending on how you count), most of them written
for IBM-compatible PCs. I’ve seen estimates that six more are created
daily, although that’s mendacious and alarmist. only a few hundred are
ever seen “in the wild”—meaning “on the hard drive of someone not
actively engaged in computer-virus research”—but those that are can be
particularly devastating.

there are three primary categories of viruses: file infectors, boot-sec-
tor viruses, and macro (interpreted) viruses.

for a long time file infectors were the most common. they work by
attaching themselves to program files, such as word processors and com-
puter games. when a user runs an infected application, the virus installs
itself in memory so that it can infect other applications the user runs. It
spreads on the user’s machine, and if the user gives someone else a disk
with an infected application (or sends it across the network), another user
gets infected.

152 C H a P t e r t e N

c10.indd 152 2/16/15 10:41 AM

Most file infectors are extinct in the wild. Changes in the under-
lying computers can make viruses not able to run, just as commercial
software often needs to be updated for new operating systems and proces-
sors. Many file infectors died out around 1992 when windows 3.1 was
released; they simply crashed the operating system and could not spread.

Boot-sector viruses are less common. they reside in a special part of
a disk (either diskette or hard disk) that is loaded into memory when the
computer first boots up. once loaded, a boot-sector virus can infect all
hard disks and any diskette that is placed in the drive, and then can spread
to other systems. Boot-sector viruses are particularly effective, and even
though there are far fewer strains, they were, for a time, far more preva-
lent than file infectors.

Boot-sector viruses can coexist peacefully with windows 3.1, but they
saw a major die-off when windows 95 became popular. Boot incom-
patibilities and alerts made it much harder for them to spread. we’ve
seen viruses specifically designed for windows 95, although none have
become widespread since no one boots from a floppy anymore.

the final virus category is macro viruses. these are written in script-
ing languages and infect data files rather than programs. Many word pro-
cessors, spreadsheets, and database programs have scripting languages.
these scripts, sometimes called macros, are used to automate tasks and
are stored with the data. People have written viruses using these scripting
languages. the first Microsoft word macro virus, “Concept,” was first
observed in the wild in 1995; they existed in the emacs text editor as
early as 1992.

these viruses can spread much more quickly than the others can,
because people exchange data more often than they exchange programs.
and as e-mail, collaboration, and file transfer software become easier
to use, they will spread even faster. Macro viruses can also exist cross-
platform: some Microsoft office macro viruses can infect both windows
and Macintosh machines.

Macro viruses are the future. all the fast-spreading Internet viruses
are macro viruses. the good ones even have a social-engineering compo-
nent; they try to trick the user into installing, running, or spreading them.

antivirus software is a bigger business than writing viruses. (I guess
that’s obvious; no one pays for viruses.) Most antivirus programs scan
files looking for viruses. they keep a database of virus footprints—bits
of code that are known to be parts of viruses—and when they find the

 Networked-Computer Security 153

c10.indd 153 2/16/15 10:41 AM

same footprint on a file, they know it has been infected. these programs
can then disinfect the file by removing the viral code. fingerprint scan-
ning only works after the antivirus company has isolated the virus in its
lab and updated its software to include the new fingerprint: hence the
brisk business in antiviral software updates.

In some ways we’ve been fortuitous with respect to computer
viruses; all the ones we’ve seen are targeted against large computers,
not peripherals or embedded systems. It’s possible to write a virus in
the Postscript printing language. It could propagate from document
to doc ument. It could affect printers. It’s possible to write a virus that
infects cell phones, and propagates via the cellular network. It’s possible
to write a virus that affects almost any computerized system; we’ve seen
one that’s specific to webtV devices. If we haven’t seen it yet, it’s
be cause no one with the requisite knowledge and lack of morals has
bothered making one.

to catch unknown viruses, polymorphic viruses (which mutate with
every infection), and encrypted viruses (which use cryptography to hide
their footprints), some antiviral products monitor the computer system
looking for “suspicious” virus-like behavior. (Normal virus checkers are
pretty brain-dead; sometimes just changing variable names is enough to
fool them.) these systems work moderately well, although they rely on
users to make security decisions: Is this a virus or a false alarm?

Viruses have no “cure.” It’s been mathematically proven that it is
always possible to write a virus that any existing antivirus program can’t
stop. (even the Bell-laPadula model does not prevent virus attacks.) I’ll
elide the details, but the basic idea is that if the virus writer knows what
the antivirus program is looking for, he can always design his virus not
to be noticed. of course, the antivirus programmers can always create an
update to their software to detect the new virus after the fact.

Worms

a worm is a piece of malware particular to networked computers. It’s
a self-replicating program that does not hide in another program, like a
virus does. Instead it exists on its own, meandering through computer
networks as best it can, doing whatever damage it is programmed to do.

robert t. Morris released the most famous worm in 1988. It was an
Internet worm, and crashed about 6,000 computers: 10 percent of the

154 C H a P t e r t e N

c10.indd 154 2/16/15 10:41 AM

Internet’s computers. the worm started out on one machine. then it
tried breaking into other machines on the network, using a couple of
basic techniques. when it was successful, it sent a copy of itself to the
new machine. and then the copy replicated the process, trying to break
into yet more machines. this is the way a worm works. the worm
would have been more devastating had it not been for a lucky bug. It
was not supposed to crash 6,000 computers; it was supposed to quietly
infect them. a bug in the worm program caused it to crash computers it
infected. I’ll talk more about the details of how it infected and the bug
in Chapter 13.

PrettyPark is another worm. It’s a windows executable that arrives
as an attachment to an e-mail message. (Its name comes from the fact
that the program’s icon is a south Park character named Kyle.) If you
run the program, it sends itself to everyone in your outlook express
address book. It also attempts to connect to an Internet relay chat (IrC)
server and send messages to chat users. the author of the worm can
then use the connection to collect information from your computer.
IloVeYou and all its variants are worms, too.

Trojan Horses

a trojan horse is a piece of malware embedded in some “normal” piece
of software, designed to fool the user into thinking that it is benign.
remember the original trojan horse? the Greeks besieged troy for
ten years, and it was showing no sign of falling. out of desperation—
and probably boredom—odysseus had the Greek soldiers build a large
wooden horse and put some of them inside. He left it for the trojans as
an admission of defeat and then told his army to pretend to sail away, try-
ing not to giggle as they did. the trojans took the wooden horse inside
the walls—every artist’s rendition puts the horse on a wheeled platform—
despite the better judgment of one of their priests. that night, the Greeks
crept out of the horse, opened the gates, and let the rest of the Greek army
inside. the Greeks then massacred the trojans, looted their wealth, and
burned the city. (at least, that’s the story. No one knows if it’s true or not.
troy itself was considered a myth until Heinrich schliemann discovered
it in the late 1800s.)

following that analogy, a digital trojan horse is code deliberately
placed in your system, that does things you don’t expect or want while

 Networked-Computer Security 155

c10.indd 155 2/16/15 10:41 AM

pretending to do something useful. (technically, a trojan horse is code
that you deliberately place on your system, while a logic bomb is code that
someone else places on your system.) It’s a piece of code that a program-
mer writes into a large software application that starts misbehaving if, for
example, the programmer is ever deleted from the payroll file. timothy
lloyd, a network manager at omega engineering, set a logic bomb in
1996 that crippled his former employers’ manufacturing capabilities and
cost them more than $12 million in damages.

a trojan horse, on the other hand, is a program that secretly installs
itself in your machine, watches your keyboard buffer until it detects
what appears to be a credit card number—right number of digits,
checksum matches—and sends that number via tCP/IP to someone.
It’s a Java application that disconnects your modem connection and
connects you to a 900 number in Moldavia (this trojan horse actually
happened).

a trojan horse is a particularly insidious attack because you may
not know what it’s doing. Back orifice is a popular trojan horse for
Microsoft windows. If it is installed on your computer, a remote user
can effectively take it over across the Internet. He can upload and down-
load files, delete files, run programs, change configurations, take control
of the keyboard and mouse, see whatever is on the server’s screen. He
can also do more subversive things: reboot the computer, display arbi-
trary dialog boxes, turn the microphone or camera on and off, capture
keystrokes (and passwords). and there is an extensible plug-in language
for others to write modules. (I’m waiting for someone to disseminate a
module that automatically sniffs for, and records, PGP private keys or
web login sequences.)

In addition to Back orifice and other hacker-written tools, many
remote administration programs can serve as trojan horses. DIrt (Data
Interception by remote transmission) is a trojan horse developed by
the u.s. government and available to police.

these are the swiss army knives of trojan horses, but others are
much subtler. several trojan horses collect usernames and passwords,
and send them back to the creator. trojans can also subtly modify your
encryption program to choose keys from a small random pool, effec-
tively weakening the keyspace. (I have seen trojaned versions of PGP
that do this.) they can drop a fake certificate into your computer and
fool you into trusting someone. (lab demonstrations of attacks against

156 C H a P t e r t e N

c10.indd 156 2/16/15 10:41 AM

Microsoft’s code-signing system have used this idea.) they can do just
about anything you can think of, and a lot of things you’d never think
of. the distributed denial-of-service attacks on the Internet first use
trojan horses to infect intermediate computers.

the hard part of these attacks is getting the trojan horse onto the
computer of some unsuspecting victim. You can break into the victim’s
office and install it on her computer; in the next chapter, we’ll talk about
some defenses against that sort of attack. You can cajole her to install the
trojan herself; we’ll talk about social engineering in Chapter 17. You
can attack the victim’s computer via the network; we’ll talk about that
in Chapter 11. or you can use the malicious software itself to attack the
computer, creating a virus.

Modern Malicious Code

the year 1999 was a pivotal year for malicious software. the different
strains—viruses, worms, and trojan horses—blurred and amalgamated.
and malware has gotten nastier. Malware that automatically propagates
over e-mail is not new—Christma.exec in 1987 (through the Prof s
e-mail system) and sharefun in 1997—but 1999 was the first year that
e-mail-propagating malware infected large swaths of the Internet. this
strain of malware ignores corporate defenses and tunnels right through
firewalls. this is a really big deal.

Viruses survive by reproducing on new computers. Before the Inter-
net, computers communicated mostly through floppy disks. Hence, most
viruses propagated on floppy disks, and occasionally on computer bulletin
board systems.

there are some ramifications of floppies as a vector. first, malware
propagates relatively slowly. one computer shares a disk with another,
which shares a disk with five more, and over the course of weeks or
months a virus turns into an epidemic. or maybe someone puts a virus-
infected program on a bulletin board, and thousands get infected in a
week or two.

second, it’s easy to block disk-borne malware. Most antivirus pro-
grams can automatically scan all floppy disks. Malware is blocked at the
gate. Bulletin boards can still be a problem, but many computer users are
trained never to download software from an untrusted bulletin board.
even so, antivirus software can automatically scan new files for malware.

 Networked-Computer Security 157

c10.indd 157 2/16/15 10:41 AM

and third, antiviral software can easily deal with the problem. It’s
easy to write software to block malware you know about. You simply
have the antivirus scanner search for bit strings that signify the virus
(called a “signature”) and then execute the automatic program to delete
the virus and restore normalcy. this deletion routine is unique per virus,
but it is not hard to develop. antiviral software has tens of thousands of
 signatures, each tuned to a particular virus. Companies release them
within days of learning of a new virus. and as long as viruses propagate
slowly, this is good enough. Most antivirus software automatically
updates itself once a month. until 1999, that was good enough.

e-mail propagation changed everything. the year 1999 gave us the
Melissa Microsoft word macro virus and the worm.exploreZip worm,
and 2000 gave us the IloVeYou worm and its dozens of variants, but
there are many others. this type of malware arrives via e-mail and uses
automatic e-mail features in software to replicate itself across the network.
they mail themselves to people known to the infected host, enticing
the recipients to open or run them. they don’t propagate over weeks and
months; they propagate in seconds.

the antivirus companies release updates that catch particular
viruses as soon as they can, but if a virus can infect 10 million comput-
ers (one estimate of IloVeYou infections) in the hours before a fix
is released, that’s a lot of damage. what if the code took pains to hide
itself, so that a virus wasn’t discovered for a couple of days? what if a
worm just targeted an individual, and deleted itself off any computer
whose userID didn’t match a certain reference? How long would it
take before that one is discovered? what if it e-mailed a copy of the
user’s login script (most contain passwords) to an anonymous e-mail
box before self-erasing? what if it could automatically update itself in
the field? what if it automatically encrypted outgoing copies of itself
with PGP? what if it mutated, frustrating antivirus software? or hid
for weeks on systems? even a few minutes of thinking about this yields
some pretty scary possibilities.

and because e-mail is everywhere, e-mail-borne malware can get
everywhere. It can get over Internet connections that block everything
else. It cannot be stopped at the firewall; it tunnels through and then
pops up on the inside and does damage. the effectiveness of firewalls
will diminish as we open up more services (e-mail, web, etc.), as we
add increasingly complex applications on the internal net, and as

158 C H a P t e r t e N

c10.indd 158 2/16/15 10:41 AM

 malware writers catch on. this “tunnel-inside-and-play” technique
will only get worse.

Current research on malware protection tries to mimic the biologi-
cal approach to fighting viruses. I’m skeptical, though, for two reasons.
the first is that biological viruses evolve slowly: a lucky mutation here
and there, and eventually they are a problem. and then they propagate
through a species slowly. Biological immune systems are designed to
deal with that kind of random threat. Computer viruses, by contrast, are
created deadly on purpose.

the second reason is that biological immune systems are designed to
protect the species at the expense of the individual. this is a great strategy
for a gene pool, but is less effectual if you are trying to protect your own
computer from malware.

More interesting solutions involve connecting computers to auto-
matic virus-detection centers. when a computer notices something
fishy, it sends the code off to be analyzed. this has some promise, but
also a bunch of new security risks. and it still won’t be fast enough.
any large, distributed system that communicates is going to have to
accept the reality of viral infections. unless security is designed into
the system from the bottom up, we’re constantly going to be fighting
a holding action.

It’s easy to excoriate Microsoft for exacerbating the problem. Micro-
soft scripting languages are very powerful, and basically assume that
everything is trusted. these languages allow access to all operating-system
resources (compare with the Java security model). they allow malware
to use features in Microsoft outlook to automatically e-mail themselves
to friends of the user. Microsoft is certainly to blame for creating the
powerful macro capabilities of word and excel, blurring the distinction
between executable files (which can be dangerous) and data files (which,
before now, were safe). they will be to blame when outlook 2000’s
integrated HtMl support makes it possible for users to be attacked by
HtMl-based malware simply by downloading an e-mail (it automatically
opens in preview mode). or when malware takes advantage of Internet
explorer 5.0’s activeX integration to spread without the user having to
open an attachment. they built an operating environment where it is easy
to write malware, where malware can spread easily, and where malware
can do a lot of damage. But the fundamental problem—the inability to
trust mobile code—is subtler.

 Networked-Computer Security 159

c10.indd 159 2/16/15 10:41 AM

M o D u l a r C o D e

In the old days (the 1970s), computer programs were large hulking
things: difficult to write, and even more difficult to maintain. then
someone got the idea of dividing large programs into smaller, easier-to-
understand, components. object-oriented programming, C++, mod-
ules, plug-ins: these are all examples of that idea. the problem is that
modern component-based software is a lot harder to secure.

figure 10.1 shows the old paradigm: large applications on top of a
small operating system. today’s software looks more like app 1 in fig-
ure 10.2—applications with components—or app 2—applications with
components that have components. think of your browser. one com-
ponent is the Java Virtual Machine. Java applets run on top of that. some

160 C H a P t e r t e N

Operating System

Application 1 Application 2 Application 3

7252 Schneier Fig. 10.01 mm 5-31-00

Figure 10.1 the old software paradigm.

Operating System

Application 1 Application 2

Application 3

7252 Schneier Fig. 10.02 mm 5-31-00

Figure 10.2 today’s component-based software paradigm.

c10.indd 160 2/16/15 10:41 AM

Java applets even have plug-ins. all sorts of macros exist for your word
processor and spreadsheet. You can download a PGP plug-in for eudora.
It seems like every other week you’re downloading some plug-in or
another for your browser.

and actually, even though your browser is sold as one program, it
actually consists of many different components working together. Your
word processor and spreadsheet are also like this; over one thousand
components are in Microsoft word 97. what you really have is app 3: a
small base application with components upon components. even your
operating system looks like this; figure 10.3 is a picture of windows
Nt: components on top of components.

Making matters worse is the practice of dynamic linking. In the old
paradigm, pieces of the program were glued together—called linking, in
programming-speak—by the manufacturer before you bought it. Pro-
grammers would link the program together, and would test it to make
sure everything was operating properly. today components are often
linked dynamically, when you launch the application. windows users
will have heard of dynamic linked libraries (Dlls); uNIX and Macin-
tosh users know them as shared libraries.

the security problems come from several directions. first, you can’t
assume that all the modules are trustworthy. In the previous section

 Networked-Computer Security 161

7252 Schneier Fig. 10.03 mm 5-31-00

Logon
Process

(Winlogon)

Security
Subsystem

(LSA)

Object
ManagerI/O

Manager

K
er

ne
l

M
od

e
(0

–2
 G

B
)

U
se

r
M

od
e

(2
–4

 G
B

)

Security
Reference
Monitor

Executive Subsystem

Process
Manager

Micro Kernel
Hardware Abstraction Layer (HAL)

Hardware

LPC VMM

Win16
Client

Win32
Subsystem

Other
Subsystem

(OS/2, POSIX,
RAS)

Other Client
(OS/2, POSIX,

RAS)
Win32
Client

WOW

VDM

DOS
Client

GDI

Figure 10.3 the windows Nt software architecture.

c10.indd 161 2/16/15 10:41 AM

I talked about malicious software; it is possible that one or more of
the modules are malicious or simply inept. second, you can’t assume
that all the modules are written well enough to work in every possible
configuration. the nice thing about big hulking computer programs is
that they were tested as one piece. the browser running on your com-
puter, with all the particular plug-ins you downloaded in the particular
order you did, might be unique. It is unlikely that it has ever been
tested before.

and third, the operating system isn’t there to deal with the other two
problems. In the old paradigm, different pieces of software communicated
through the operating system. the operating system, if it was designed
well, would mediate these communications and prevent one program
from damaging another. Modern components talk to each other directly,
not through the operating system, so those built-in safety features just
don’t apply.

several general methods for dealing with this security problem have
been tried, some with more success than others. they all look better in
theory than they work in practice:

Isolation and memory safety. the problem is that a component can,
either maliciously or accidentally, affect the rest of the system. It could
read, or change, the memory of another component. It could step out-
side its own memory and cause the system to crash, or do any number
of annoying things. By isolating a component’s use of memory, the hope
is to avoid all these problems. the component is given its own area of
memory, and is not allowed to read or write anywhere else. sometimes
program checkers on the user’s machine go through the component’s
code to verify that it doesn’t do anything noisome. the Java sandbox is an
example of this idea: Components get to play in their own sandbox where
they can’t hurt one another. this works fine when it does, but this kind
of model doesn’t catch some things, and there’s a price paid in speed.

Access control at the interfaces. It’s not enough to have a component
completely isolated; it has to communicate with other components (and
the screen, keyboard, mouse, etc.) In figure 10.2, many of the components
touch each other. this indicates communications paths between compo-
nents. By enforcing access control rules at those communication points, the
hope is to ensure that the components play nicely with each other. the
problem is that you have to set some kind of access control policy, which
tends to be too inflexible to be really useful. the Java sandbox also does
this, but its policy ends up being either too restrictive or overly permissive;

162 C H a P t e r t e N

c10.indd 162 2/16/15 10:41 AM

there’s no real middle ground. (Java 2 has fine-grained control, but it isn’t
used very well.)

Code signing. think of a private party. the host decides who to let in
and who to keep out, based only on some unforgeable document they
have (a driver’s license, for example). that way, only friends of the host
are allowed in his home. Code signing is the same thing. the program-
mer signs components. the user decides, based on the signatures, which
components to allow on his computer and which not to. (activeX uses
code signing as its primary security against hostile code.) Code signing,
as it is currently done, sucks. there are all sorts of problems. first, users
have no idea how to decide if a particular signer is trusted or not. second,
just because a component is signed doesn’t mean that it is safe. third,
just because two components are individually signed does not mean that
using them together is safe; lots of accidental harmful interactions can be
exploited. fourth, “safe” is not an all-or-nothing thing; there are degrees
of safety. and fifth, the fact that the evidence of attack (the signature on
the code) is stored on the computer under attack is mostly useless: the
attacker could delete or modify the signature during the attack, or simply
reformat the drive where the signature is stored. Code signing makes less
and less sense the more you think about it.

Nascent technologies gestating in university laboratories may someday
result in better solutions, but they are some years away. In the meantime,
modular code is likely to become an even bigger security problem. More
and more software packages are building in live update features, allowing
them to download new modules regularly. for example, Internet explorer
4.0 and later versions have a “subscription” feature that, if the user turns
it on, will automatically update itself with new modules from Microsoft’s
web page. this is a fine feature, unless you turn it on accidentally. then,
in the middle of the night, you can find your computer automatically dial-
ing the Internet. one reaction from a news report:

“I had my head in the refrigerator very early in the morning and discovered
my computer had connected itself to the Internet,” said one beta tester who
requested anonymity for fear that his working relationship with Microsoft
would be damaged. “I was completely freaking out. I pulled the phone plug
right out of the wall.”

there was nothing nefarious here; the user just didn’t realize what was
going on. But most computer users have no idea what is going on inside

 Networked-Computer Security 163

c10.indd 163 2/16/15 10:41 AM

their computers. If they get used to their computer making telephone
calls in the middle of the night, they may be surprised when some rogue
application has been running up their phone bill by calling 900 numbers
or computers in Moldavia.

M o B I l e C o D e

If you think about it, using programs written by someone else is always
a risky thing to do. You’re trusting that the programmer isn’t malicious,
and that the programs you’re running do what they are supposed to do
and nothing else. (I talk about this human problem again in Chapter 17.)
In the earliest days of computing, users just didn’t do that. they wrote, or
at least compiled, programs specifically for each new computer.

the advent of personal computers and programs like VisiCalc took
computers out of the hands of engineers and onto the desks of users.
these users came to trust shrink-wrapped software, and wouldn’t think
twice about running programs even though they had no understanding
of the internals; they didn’t have the expertise to understand the inter-
nals anyway.

I’ve already talked about viruses and trojan horses; these became
popular because people traded copies of shrink-wrapped software (some-
times illegally) without wondering whether they should trust the copies.
But antivirus software took care of that problem, and people have spent
the last 20 years implicitly trusting software.

with the rise of the Internet, this ingrained trust is suddenly a major
problem.

In a previous section, I talked about how networks make malicious
code more dangerous. those are both examples of mobile code and
their problems. unfortunately, there are even more serious problems.

with the rise of modular code, more program fragments are being
delivered over the Internet. whether it is a new plug-in for your
browser, a new printer driver, a slick utility program, or a Java applet
that does some small cool thing, you’re more likely than not to get this
code from a web site. Important questions to ask include the following:
Is this code trusted, is this web site trusted, can this code be trusted to
interact safely with the rest of my computer, and what defenses do I have
in case this code turns out to be malicious? finding users who ask those

164 C H a P t e r t e N

c10.indd 164 2/16/15 10:41 AM

questions is rare, and finding people who can answer those questions is
even more rare.

JavaScript, Java, and ActiveX

Javascript, Java, activeX, and downloadable plug-ins all have different
models for securing themselves. I’ll talk about them each in turn.

Javascript is Netscape’s scripting language that allows bits of code
to be embedded in web pages, and all major browsers support it. It is
similar to Java only in its first four letters. Javascript code can be used for
simple things: opening and closing windows, manipulating forms on
web pages, adjusting browser settings, and so forth. all of those annoying
things that some web sites do when you try to close their pages: that’s
Javascript.

Javascript is basically pretty tame, but all sorts of Javascript-based
attacks have appeared over the past few years. these bugs have all been
fixed. a few random examples: 1997, monitor what sites the user visits;
1998, read arbitrary files on the user’s machine; 1998, intercept the user’s
e-mail address. a lot of these attacks depend on fooling the user into
doing something marginally stupid, but that’s not hard. these sorts of
security flaws show up in browsers, and are fixed pretty quickly. But new
ones are regularly discovered.

activeX uses a code-signing defense. Basically, every piece of activeX
code, called a “control,” is checked for a digital signature. (Microsoft has
defined something called authenticode to do this.) then the browser
puts up a dialog box, and shows the user the name of the programmer or
company that signed the control. If the user agrees to accept the control,
it is downloaded to the browser. otherwise, it is not.

any teenager who’s let the wrong sorts of guests into his party knows
the problem: the system is only as good as the judgment of the user.
once an activeX control is on a user’s machine, it can do anything it
wants: reformat your hard drive, change all your $1 spreadsheet entries to
$100, collect all your steamy love letters and send them to a movie pro-
ducer in los angeles, whatever.

Microsoft has countered that the signatures will identify authors,
but knowing who wrote the malicious control is little consolation to
someone who just had his computer trashed. It’s like forcing criminals
to wear name badges and then not bothering to put locks on people’s

 Networked-Computer Security 165

c10.indd 165 2/16/15 10:41 AM

doors: “I’m sorry they came into your house, ate all your food, broke all
your furniture, and stole all your valuables. But at least we know who
they are.” except that on the web you can add: “they’re two teenagers
from a country that has no extradition treaty with the united states.
feel better now?” and this assumes you can isolate the particular mali-
cious control among the dozens on your hard drive. one researcher
showed how two benign activeX controls could combine to become
malicious; whom do you blame there?

this idea has even more serious problems. Chapter 17 talks all about
how ridiculous it is to expect users to make good security decisions, but
for now, suffice it to say that most people aren’t going to have a clue about
which activeX controls to trust and which not to. and this assumes the
existence of a public-key infrastructure to support the signatures, some-
thing I will complain bitterly about in Chapter 15. lots of opportunities
exist to trick the infrastructure into believing a control is signed when it
is not.

activeX is really an extension of an old Microsoft system of com-
ponents (it used to be called DCoM). this is what allows Internet
explorer to open up and display excel spreadsheets (for example). Most
of the Dlls that programs use are actually just vehicles for DCoM
objects. explorer is just picking up excel’s guts through DCoM and
activeX. this is an incredibly powerful system, which is way more flex-
ible, way more accessible, way more architecturally interesting, and just
unimaginably more dangerous than anything similar in any other oper-
ating system.

Java uses a completely different model. It’s the only programming
language specially designed for mobile code, and with security in mind.
Java programs run by a web browser are called applets, and run within a
sandbox that tries to limit the damage it can do. three mechanisms protect
the sandbox.

first, there is something called a byte code verifier. whenever a browser
downloads a Java applet, the byte code verifier checks over the code first.
the verifier ensures that the byte code is correctly formatted, and doesn’t
have any of several common problems.

second, there is the class loader. this component determines how and
when an applet can add itself to the Java environment, and makes sure
that the applet doesn’t replace anything important that already exists.

and third, there is the security manager. the security manager is like

166 C H a P t e r t e N

c10.indd 166 2/16/15 10:41 AM

the reference monitor discussed in Chapter 8; it is consulted whenever
the Java applet tries to do something questionable: opening a file, opening
a network connection, and so forth. Depending on how the applet was
installed, these operations will either be allowed or denied. (for example,
applets downloaded over the network have more restrictions than applets
loaded onto your computer at purchase.)

the sandbox model is too complex, but it’s the best we’ve got so
far. later versions of Java had two modifications, one good and one bad.
Java 1.1 implemented a code-signing feature similar to activeX. applets
trusted by the users can leave the sandbox and run unrestricted on the
user’s machine. Needless to say, this opens up all the security problems of
the activeX model.

Java 2 improved on the sandbox model. Instead of making it all or
nothing—in the sandbox or out of it—Java 2 provides more flexibility
in the security model. applets only get the privileges they need to do
their jobs. for example, one applet might have access to the computer’s
file system but not network access. another might have network access
but no access to the file system. a third applet might only have access
to certain parts of the file system. It’s as if each applet has its own cus-
tomized sandbox. this works much better, but has proven too compli-
cated to use.

Plug-ins are the worst because they are automatically trusted. these
are code modules that you can add to your browser to give it additional
functionality: PDf file viewers, media players, and others. these have
no security. when you download them and install them, you’re trusting
them. Period.

w e B s e C u r I t Y

like most information moving across the Internet, HttP (that’s the pro-
tocol used for web pages) is unencrypted and unauthenticated. Many
people are afraid to send their credit card numbers across an unencrypted
web connection. (I don’t think this is a big deal, but some things I
wouldn’t send unencrypted across the web.) to solve this problem, early
versions of Netscape Navigator included a protocol called ssl. this pro-
tocol, which will eventually be renamed tls, provides encryption and
authentication of web connections. ssl is pretty good, and its problems

 Networked-Computer Security 167

c10.indd 167 2/16/15 10:41 AM

all revolve around the certificates and how they are used (see Chapter
15 for an explanation). Basically, some web sites give you the option of
setting up an ssl-secured browsing session. (the web page has to have
the option; the browser cannot demand to use ssl if the server is not set
up for it.) the browser and the web server use public-key cryptography
to exchange a key and then symmetric cryptography to encrypt the data
going back and forth. a green key or a yellow padlock appears on the
bottom of the browser, and the user feels much better.

the main problem is that unless the user manually checks the cer-
tificate the server sent, he has no idea whom he went secure with. let
me repeat this. ssl establishes a secure connection between the browser
and whomever is at the other end of the connection. If the user does not
verify who is at the other end of the connection, he has no idea who he is
speaking securely with. It’s as if two strangers enter a pitch-black sound-
proof room. the two people know that their conversation is secure, that
no one is eavesdropping. But who would tell his secrets to the stranger?
this is only one problem with ssl certificates as they are used.

also, ssl does nothing to protect the data at the server. In early
2000, there were many cases of hackers breaking into web sites and steal-
ing information: credit card numbers, personal account information, and
more. ssl does nothing to prevent this.

URL Hacking

a bunch of attacks target urls, some relying on user error and some
just on user ignorance. the first class of attacks consists of ways differ-
ent servers steal traffic from each other. You might not think this is a big
deal—why would a web site that sells plumbing supplies want to steal
traffic from a financial news web site—but some sites, like porn sites, just
want people to look at their home pages.

one of the ways to try to get traffic is to try to fool the search
engines. search engines are mostly pretty stupid: ask for sites on plumb-
ing supplies, and they respond with all the web pages that have the
words “plumbing supplies” somewhere in the text. (actually, the newer
search engines are a smidge smarter, but that’s the general idea.) what
some sites do is to put text on the pages to act as bait for the search
engines. this text is not shown on the screen—sometimes it’s hidden
by other things (white text on a white background, for example) and

168 C H a P t e r t e N

c10.indd 168 2/16/15 10:41 AM

 sometimes it’s in the form of keywords or meta tags in a nonprintable
area of the page—but it is looked at by the search engines. so, a parti-
cular porn site might embed the words “stock quotes Beanie Babies
weather presidential election Grover Cleveland cooking gardening head
lice,” just to show up on people’s searches.

some web sites take this kind of thing to an extreme. Called page-
jacking, they carefully tune their keywords and meta tags (embedded com-
mands in web pages that tell search engines what the pages are about)
so that to a search engine they look exactly like a popular web site, and
then show up on the search engine results just above that popular site.
unsuspecting users click on this faked site instead of the real site. Mostly,
this has been used by porn sites to get traffic, but you could imagine a
page-jacking hack where the faked site also looks like the real site. this
could be a nasty problem.

these attacks are not limited to web pages and search engines. Press
releases for small companies will sometimes include the name and stock
symbol of a larger company, so that people searching on that larger com-
pany will find the press release. Called ticker symbol smashing, it looks like
this: “smallCompany.com has announced that its new product has noth-
ing do with Microsoft (Msft).” even eBay auction descriptions include
words to attract their search function: “this cheap sweater (not Prada, not
armani) is red.”

Back on the web, similar attacks are possible by registering sites that
are close in name to popular sites. People who do this are known as
typo pirates. for example, “wwwpainewebber.com” (without the period,
as opposed to “www.painewebber.com”) once pointed to a porn site.
People who mistyped the name of the insurance company “Geico” as
“Geigo” ended up at a site owned by Progressive Insurance. (these typo-
pirate attacks probably don’t work anymore; at the time of writing, sev-
eral court cases involve this sort of thing.)

similar incidents arise more or less by chance. the company etoys
tried suing the artist group etoy, even though etoy.com had its domain
name two years before etoys.com existed. (although their domain name
was indeed a coincidence, etoy did practice page-jacking on sites like
Playboy.)

Neither of these attacks are what’s known as cyber-squatting. (aren’t
there cool names for all this web-related stuff?) this is the practice of
sneaking in and registering domain names that may be valuable to someone

 Networked-Computer Security 169

c10.indd 169 2/16/15 10:41 AM

else. for example, someone other than me owns applied-cryptography.
com and applied-cryptography.com, the title of my first book.

Web spoofing is kind of an Internet con game. By manipulating the
url addresses on a client’s site, an attacker can force a victim to do all
its browsing through a particular site. this site, owned by the attacker,
can eavesdrop on the victim’s entire browsing session. the attacker can
keep records of where the victim visits, what his different account names
and passwords are, anything. the attacker can also subtly modify dif-
ferent pages—maybe change the “ship to” address for products that the
victim buys.

this attack works even if the victim has an ssl connection. as I
mentioned previously, ssl only guarantees that the user is secure with
someone. In the case of this attack, the user has a secure connection
with the attacker—not very helpful. several other tricks facilitate the
attack; turning off Javascript provides some defense. some web sites—
askJeeves is an example—exacerbate the problem by putting other peo-
ple’s web pages in their own frames, and present that information as
their own. at the time of writing, this attack has not been reported in
the wild.

Cookies

Cookies are an inventive programming trick built into www browsers.
Basically, a cookie is a scrap of data that a web server gives to a browser.
the browser stores the data on the user’s computer, and returns it to the
server whenever the browser returns to the server. Cookies can do all
sorts of useful and good things. unfortunately, they can also do all sorts
of useful and bad things. first, I’ll explain how they work; then I’ll talk
about the problems.

HttP is basically a stateless protocol. this means that the server
doesn’t know who you are from one click to the next. all the server does
is serve up web pages. a browser asks for a web page; the server gives
it to it. the server has no idea if this is the same browser as before or a
different browser, nor does it care. this works great for simple, static,
web sites that just contain informational pages.

Complex web sites are dynamic. retail web sites have shopping
carts, which travel with you as you browse the site. Paid-access informa-
tional sites have usernames and passwords, which travel with you as you

170 C H a P t e r t e N

c10.indd 170 2/16/15 10:41 AM

go from page to page. (I would find it annoying to have to type my user-
name and password in every time I wanted to see another article from the
New York Times web site.) Cookies are a way to handle this.

By giving the browser a cookie and then asking for it back, the
server can remember who you are. “oh, yes, you’re user 12345657; this
is your shopping cart.” Cookies allow the browser to add state to the
www protocols. You can think of them as a large distributed database,
with pieces stored on millions of browsers throughout userland.

so far, so good. and mostly, cookies are good, if the server placing
the cookie plays by the rules. the server can set how long the cookie
lasts before it expires: a few days seems like a good number. a server
can set restrictions on who can access the cookie. the server can limit
access to other servers in the same domain; this means that if your cookie
comes from inchoate-merchant.com, then only inchoate-merchant.com
can access the cookie.

the problems come when they are abused. some servers use cook-
ies to track users from site to site, and some use them to uncover the
identity of the user. Here’s an easy example: some companies resell
advertising space on popular sites. DoubleClick is a company that does
that; DoubleClick places many of the ads you see on commercial sites.
If you’re browsing on sex-site.com, you’re going to see a portion of
that window that comes from DoubleClick.com. DoubleClick.com
gives you a cookie. later (that day, or maybe another day), when you’re
browsing on CDnow.com, there might be another DoubleClick-placed
ad. DoubleClick can request the cookie from your browser and, because
the cookie says that it was created while you were visiting a sex site, send
you targeted ads while you’re browsing CDnow. Because DoubleClick
is on a bunch of commerce sites, its cookies can be used to track you
across all of those sites.

even worse, if you type your e-mail address in at any of those sites
and they pass that information to DoubleClick, DoubleClick can now
attach an e-mail address to your browsing habits. all it needs is for you
to type that address in once—that’s ordering only one thing—and it has
it forever. (or, for as long as that cookie has not expired, which can be
years.)

this isn’t a big secret. DoubleClick freely admits they collect data,
and use that data to target ads to particular users. until 2000, they
denied building an identity database, but finally admitted it when a USA

 Networked-Computer Security 171

c10.indd 171 2/16/15 10:41 AM

Today story outed them. since then, they backed down on their plan to
link cookies to names and addresses. (this will probably change again by
publication.) the implications for private web browsing are profound.

there’s more. sites can send you a cookie in e-mail which they
can use to identify you if you later visit that site with your browser.
Here’s how it works: the site sends you a piece of HtMl e-mail.
(this implies you’re using an e-mail program that supports HtMl
messages; those include Microsoft’s outlook and outlook express,
Netscape Messenger, and eudora.) the message contains a unique url
to a graphic, which the site can use to send you a cookie. If the url
is something like www.gotcha.com/track-cgi=schneier@counterpane
.com/pixels.gif, then they have your e-mail address in a cookie. Now,
when you browse the site at some later date, the site can use the cookie
to link the browsing with the e-mail, and hence the e-mail address.
supposedly this has been used by some sites to track web surfers.

Cookies cannot do anything. Cookies cannot steal information from
your computer. a cookie is simply some data that the server gives the
browser, and the browser later returns. a cookie cannot grab your pass-
words or files. (activeX, Java, and Javascript are much more dangerous
in this regard.) Cookies cannot steal your credit card numbers, although a
really dumb site may put your credit card number in a cookie.

the lesson here is that cookies are not bad, but they have malevolent
uses. they are a lazy way for web programmers to manage relationships.
Most browsers provide ways to turn cookies off completely, and you can
buy third-party programs to help you manage them better. But some
sites—Hotmail and schwab online, for example—refuse to connect with
browsers that don’t accept cookies.

Web Scripts

the preceding attacks are targeted against the client; this attack victimizes
the server.

the common gateway interface (CGI) is the standard way for a web
server to pass a user’s request to some back-end application, and send it
back to the user. for example, when you send a search query to a web
site—at an online retailer, for example—the web server passes the request
to a database application and then formats the result to display to the user.
or when a user fills out a web page form, this information is passed to an

172 C H a P t e r t e N

c10.indd 172 2/16/15 10:41 AM

application for processing. sometimes CGI commands are those weird
commands and numbers at the end of a url; other times they’re invis-
ible to the user. It’s part of HttP; everyone uses it. CGI scripts are the
little computer programs on the web server that deal with CGI data. It’s
how the web page forms get processed, for example.

the problem with CGI scripts is that each one is potentially a security
hole. and over the past few years, CGI hacking has resulted in quite a
few public security breaches. By manipulating CGI scripts, it is possible
to do all sorts of unanticipated things. examples (these are all real) include
downloading files from the web server, viewing the entire contents of
databases, downloading customer lists and their personal records, stealing
money from customers at an online bank, trading someone else’s stock
portfolio, and viewing log files from a web server showing customer
transactions. and bizarrely enough, you can query Internet search engines
with different vulnerability signatures and get a list of web sites vulnerable
to certain attacks.

other similar attacks work by putting executable code (actually, Perl
scripts, Javascript code, or shell commands) in text fields. these can cause
the web server to modify its own homepage, display the ssl private key,
or do all sorts of other interesting things from the previous paragraph.
these techniques can also be used to exploit buffer overflows and other
programming errors (see Chapter 13) to crash the web server or, better
yet, to take it over.

one example: a 1998 attack against Hotmail allowed people to see
other people’s e-mail accounts. eBay was also attacked; the attackers put a
Javascript trojan horse in the description field of a product. this descrip-
tion field was viewed by anyone looking at the product up for auction,
and resulted in the attackers collecting login information for thousands of
accounts.

one CGI vulnerability allowed attackers to download secret personal
information from various sites. other popular CGI scripts have been used
to break into the computer the web server is running on. two from late
1999: the Poison Null attack that allowed hackers to see and modify files
on web servers, and the Upload Bombing attack that filled web servers
with useless files, crashing them. these, of course, were quickly turned
into attack scripts so that anyone could use them.

server side Includes (ssIs) are directives to the web server embed-
ded in the HtMl pages. right before sending a page, the web server

 Networked-Computer Security 173

c10.indd 173 2/16/15 10:41 AM

executes all ssIs on a page and puts the results back in the page. these
can be attacked just as profitably as everything else can.

other attacks target vulnerabilities in third-party software: the spe-
cific web servers and applications running on them. this includes data-
base applications, shopping cart software, transaction servers, and others.
these attacks don’t depend on how the site is using the application, but
on the application itself (the oracle database, for example). attackers
have been able to download source code from the web server, crash the
server, get root login privileges on the server, run an arbitrary program
on the server, and so forth. unlike problems with the CGI scripts, fix-
ing these vulnerabilities is not under the site’s control; it’s the job of the
third-party software vendors.

there are many similar attacks. By making changes in the hidden
fields on some web pages (you can view these fields by viewing a page’s
source), it is possible to hack CGI scripts and force some shopping cart
software to change the prices of items sold. (this is “name your own
price” at its best.) some attacks target cookies: cookie poisoning. attackers
log in to a server, and then manually change their authentication cookie
to that of another user. sometimes these cookies are encrypted, but
often not very well.

some of these attacks are called cross-site scripting. It’s a lousy name:
It’s not just about scripting, and there’s nothing cross-site about it. the
name is a historical accident that stuck. the gist of the problem is that
the web hides multitudes of security subtleties; when you mix CGI
scripts, Javascript, frames, cookies, and ssl, bad things can happen. It
is an issue that is truly cross-platform and is the result of unforeseen and
unexpected interactions between various components of a set of inter-
connected complex systems.

these attacks are prevalent against CGI scripts for several reasons.
Most CGI scripts are hastily written, and they are commonly shared
among users. You get a pile of scripts with your hosting software, or
from your IsP. often the people writing these scripts have no other
experience with programming. they don’t appreciate the potential
security problems with scripts, or with the ways the scripts can interact
with other parts of the web server software. and a web server can’t
control how a CGI script is run. sometimes it is created for one pur-
pose, but breaks security when used for another.

174 C H a P t e r t e N

c10.indd 174 2/16/15 10:41 AM

CGI attacks are powerful, and the vulnerabilities are common. sure it
is possible to write secure CGI scripts, but hardly anyone does. one com-
pany that audits web sites for application-level bugs like this has never
found a web site they could not hack. that’s 100 percent vulnerabilities.

Web Privacy

Nominally, web browsing is anonymous. In reality, there are a lot of
ways to learn the identity of the user. I’ve already talked about cookies
and how they can track users from site to site, and even attach an e-mail
address or identity to a cookie (if the user enters the information in a form
or responds to an e-mail).

additionally, most web servers log every access. this log usually
includes the IP address of the user, the time of the web request, the web
page requested, and the user’s name (if known by some login protocol).
Most web sites just throw these logs away, though.

of course, the IP address of the user is not the same as the name
of the user, but many web browsers come from single-user machines
directly connected to the web. People dialing in are more anonymous
than users on cable modems or Dsl connections, but often just know-
ing the IsP is enough. for example, in 1999 someone sent a bomb threat
from a Hotmail account. e-mail from Hotmail includes the IP address of
the web browser that sent the mail. the IP address was owned by amer-
ica online, and the police were able to correlate Hotmail’s records with
america online’s records, and trace the e-mail to a particular aol user.

that is an example of extreme measures to breach privacy, but
most of it can be done automatically. and most commercial web sites
do little to protect users’ privacy. In fact, many of them make money
on an advertising model. other sites deliberately invade users’ privacy
to sell targeted advertising: many of the digital wallets or shopping
assistants, the web-based mailing list software companies, and others.
Many companies see targeted advertising as the way to make money
on the Internet.

 Networked-Computer Security 175

c10.indd 175 2/16/15 10:41 AM

176

11

Network Security

Network security goes hand in hand with computer security,
and these days it’s hard to separate the two. Everything, from
electronic hotel door locks to cellular telephones to desktop

computers, is attached to networks. As difficult as it is to build a secure
stand-alone computer, it is much more difficult to build a computer that
is secure when attached to a network. And networked computers are
even more pregnable; instead of an attacker needing to be in front of the
computer he is attacking, he can be halfway across the planet and attack
the computer using the network. A networked world may be more con-
venient, but it is also much more insecure.

These days it’s pretty much impossible to talk about computer secu-
rity without talking about network security. Even something as special-
ized as the credit card clearing system works using computer networks.
So do cellular telephones and burglar alarm systems. Slot machines in
casinos are networked, as are some vending machines. The computers in
your kitchen appliances will soon be networked, as will the ones in your
car. All computers will eventually be networked.

Lots of different types of networks are out there, but I’m going to
spend the most time talking about the Internet protocol: TCP/IP. Net-
working protocols seem to be converging on the Internet, so it makes
the most sense to talk about the Internet. This is not to imply that the
Internet protocols are more insecure than others—although certainly
they were never designed with security in mind—only that there are
more good examples. Later in the book, I talk about the fundamental

c11.indd 176 2/16/15 10:41 AM

dilemma of choosing a common protocol that is widely attacked by
hackers, and hence whose security is constantly improving, or one that
is obscure and little-known, and is possibly even less secure. Keep that
question in mind while reading this chapter.

H o w N E T w o r K S w o r K

Computer networks are bunches of computers connected to each other.
That is, either physical wires run between computers—wires in an office
LAN, dedicated phone lines (possibly ISDN or DSL), dial-up connec-
tions, fiber optic, or whatever—or there is an electromagnetic connec-
tion: radio links, microwaves, and so forth.

Simply, when one computer wants to talk to another, it creates a
message, called a packet, with the destination computer’s name on it and
sends it to the computer over this network. This is fundamentally unlike
telephone conversations. when Alice wants to call Bob, she tells the phone
company’s computer network Bob’s network name (commonly known
as his telephone number) and the network hooks up different communi-
cations circuits—copper wire, satellite, cellular, fiber, whatever—to make
an unbroken connection. Alice and Bob talk through this circuit until
one of them hangs up. Then, the telephone network disassembles this
connection and lets other people use the same pieces for other phone
calls. The next time Alice calls Bob, they will be connected through a
completely different set of links. (well, mostly different; the line between
the telephones and the first switches will be the same.)

Computers don’t use circuits to talk to each other. They don’t have
conversations like people do—they send short data packets back and
forth. These packets are broken-up pieces of anything: e-mail messages,
GIFs of naked ladies, streaming audio or video, Internet telephone calls.
Computers divide large files into packets for easier transmission. (Think
of a ten-page letter being divided up and mailed in ten different
envelopes. At the recipient’s end, someone opens all the envelopes and
reassembles the letter in its proper order. The packets don’t have to
arrive in order, and they don’t have to travel along the same route to
their destination.)

These packets are sent through the network by routers. There are
bunches of protocols—Ethernet, TCP, whatever—but they all work

 Network Security 177

c11.indd 177 2/16/15 10:41 AM

basically (for large values of “basically”) the same way. routers look at
the addresses on packets, and then send them toward their destination.
They may not know where the destination is, but they know something
about where it should go. It’s sort of like the postal system. A letter carrier
visits your house, takes all of your outgoing mail, and brings it to the local
post office. The post office might not know where 173 Pitterpat Lane,
Fingerbone, ID, is, but it knows that it should put the envelope on the
truck to the airport. The airport postal workers don’t know either, but
they know to put the letter on a plane to Chicago. The Chicago post
office knows to put the letter on a plane to Boise. The Boise post office
knows to put the letter on a train to Fingerbone. And finally, the local
Fingerbone post office knows where the address is, and a letter carrier
delivers it.

I P S E C u r I T y

It’s not hard to see that any network built on this model is terribly inse-
cure. Consider the Internet. As those packets pass from router to router,
their data, sometimes called their payload, is open to anyone who wants
to read it. The routers are only supposed to look at the destination address
in the packet header, but there’s nothing to stop them from peeking at
the contents. Most IP packets in the world go over just a handful of high-
speed connections between lightning-fast routers, known as the Inter-
net backbone. All packets between distant points, the united States and
Japan, for example, go through only a few routers.

It’s hard for an individual hacker to monitor the entire Internet, but
it’s easy for him to monitor a small piece of it. All he has to do is to gain
access to some computer on the network. Then he can watch all the
packets going through, looking for interesting ones. If he gets access to
a machine close to Company A, he will probably be able to monitor all
the traffic in and out of that company. (of course, by “close to” I mean
“near on the network,” and not necessarily physically near.) If he gets a
machine nowhere near Company A, he might see little (or none) of that
company’s traffic. If he’s a quintessential hacker and doesn’t care what
company he eavesdrops on, then it doesn’t really matter.

Packets with passwords in them are particularly interesting. Password
sniffing is easy, and a common Internet attack. An attacker installs a packet

178 C H A P T E r E L E V E N

c11.indd 178 2/16/15 10:41 AM

sniffer designed to steal usernames and passwords. All the program does is
collect the first two dozen (or so) characters of every session that requires
a login and save them for the attacker. These characters almost certainly
contain the username and password (usually the unencrypted password).
Then the attacker runs a password cracker on the encrypted passwords,
and uses those passwords to break into other computers. It’s difficult to
spot because password sniffers are small and inconspicuous. And it can
snowball. once you’ve broken into one machine, you can install a pass-
word sniffer on it and get even more passwords. Maybe you can use those
passwords to break into other machines. And so on.

Not only is eavesdropping possible, but active attacks are also pos-
sible . . . easier, actually. In most communications systems, it is far eas-
ier to passively eavesdrop on a network than it is to actively insert and
delete messages. on the Internet, it is reversed. It’s difficult to eaves-
drop. However, it’s easy to send messages; any self-respecting hacker
can do that. Because communications are packet-based, and they travel
along many different paths and are reassembled at the destination, it’s
easy to slip another packet in with the rest of them. Many, many attacks
are based on blindly inserting packets into existing communications
channels.

It’s called IP spoofing, and it’s easy. Packets have source and destination
information, but an attacker can modify them at will. An attacker can cre-
ate packets that seem to come from one site, but don’t really. Computers
on the Internet assume that the “from” and “to” information is accurate,
so if a computer sees a packet from a computer it trusts, it assumes that
the packet is trusted. An attacker can take advantage of this trusting rela-
tionship to break into a machine: He sends a packet purporting to come
from a trusted computer in the hope that the target computer will trust
the packet.

There are routing attacks, where an attacker tells two points on the
Internet that the shortest route between them goes through his comput-
ers. This makes eavesdropping on a particular node easier. This section
could go on and on; whole books have been written about attacks against
the Internet.

The solutions to these problems are obvious in theory, but harder in
practice. If you encrypt packets, no one can read them in transit. If you
authenticate packets, no one can insert packets that pretend to come
from somewhere else, and deleted packets will be noticed and reacted to.

 Network Security 179

c11.indd 179 2/16/15 10:41 AM

In fact, several solutions encrypt packets on the Internet. Programs
like SSH encrypt and authenticate shell connections from a user on
one machine to a computer across the network. Protocols like SSL can
encrypt and authenticate web traffic across the Internet. Protocols like
IPsec promise to be able to encrypt and authenticate everything.

D N S S E C u r I T y

The Domain Name Service (DNS) is basically a large distributed database.
Most computers on the Internet—nodes, routers, and hosts—have a
domain name like “brokenmouse.com” or “anon.penet.fi”. These names
are designed to be remembered by people, and are used to build things
like urLs and e-mail addresses. Computers don’t understand domain
names; they understand IP addresses like 208.25.68.64. IP addresses are
then used to route packets around the network.

Among other things, the DNS converts domain names to IP addresses.
when a computer is handed a domain name, it queries a DNS server to
translate that domain name into an IP address. Then it knows where to
send the packet.

The problem with this system is that there’s no security in the DNS
system. So when a computer sends a query to a DNS server and gets
a reply, it assumes that the reply is accurate and that the DNS server is
honest. In fact, the DNS server does not have to be honest; it could have
been hacked. And the reply that the computer gets from the DNS server
might not have even come from the DNS server; it could have been a
faked reply from somewhere else. If an attacker makes changes in the
DNS tables (the actual data that translates domains to IP addresses and vice
versa), computers will implicitly trust the modified tables.

It’s not hard to imagine the kinds of attacks that could result. An
attacker can convince a computer that he is coming from a trusted com-
puter (change the DNS tables to make it look like the attacker’s com-
puter is a trusted IP address). An attacker can hijack a network connection
(change the DNS tables so that someone wanting to connect to legiti-
mate.company.com actually makes a connection with evil.hacker.com).
An attacker can do all sorts of things. And DNS servers have a viral update
procedure; if one DNS server records a change, it tells the other DNS

180 C H A P T E r E L E V E N

c11.indd 180 2/16/15 10:41 AM

servers and they believe it. So if an attacker can make a change at a few
certain points, that change can propagate across the Internet.

In one attack in 1999, someone hacked the DNS system so that
traffic to Network Solutions—they’re one of the companies that register
domain names—was redirected to other domain-name registration com-
panies. A similar attack, from 1997, was a publicity attack. This was before
domain registration was opened up for competition. Eugene Kashpureff,
owner of the alternative AlterNIC, redirected Network Solutions traffic
to his site as a protest. He was arrested and convicted, and received two
years’ probation.

In 2000, rSA Security’s homepage was hijacked by spoofing the
DNS tables. This is not the same as breaking into the web site and defac-
ing the page. The attacker created a fake home page, and then redirected
legitimate traffic to that faked page by manipulating the DNS records.
The hacker did this not by cracking rSA’s DNS server, but the DNS
server upstream in the network. Clever, and very easy. DNS record
spoofing is a trivial way to spoof a real web site crack. And to make
matters worse for the hijacked site, the hijacking misleads people into
thinking intruders cracked the web site at Company A, when intruders
actually cracked the DNS server at Company B.

These problems are serious, and cannot easily be fixed. Cryptographic
authentication will eventually solve this problem, because no longer will
computers implicitly trust messages that claim to come from a DNS
server. Currently people are working on a secure version of the DNS
system that will deal with these issues, but it’s going to be a long wait.

D E N I A L - o F - S E r V I C E A T T A C K S

In September 1996, an unknown hacker or group of hackers attacked
the computers of Public Access Networks Corporation (a.k.a. Panix), a
New york ISP. what they did was to send hello messages (SyN pack-
ets) to the Panix computers. what’s supposed to happen is for a remote
computer to send Panix this hello message, for Panix to respond, and
then for the remote computer to continue the conversation. what the
attackers did was to manipulate the return address of the remote com-
puters, so Panix ended up trying to synchronize with computers that

 Network Security 181

c11.indd 181 2/16/15 10:41 AM

essentially did not exist. The Panix computers waited 75 seconds after
responding for the remote computer to acknowledge the response
before abandoning the attempt. The hackers flooded Panix with as many
as 50 of these wake-up messages per second. This was too much for the
Panix computers to handle, and they caused the computers to crash. This
is called SYN flooding.

This was the first publicized example of a denial-of-service attack
against an Internet host. Since then, there have been many others. Denial
of service is a particularly noxious attack against communication systems,
because communications systems are designed for communications. on
the Net, flooding a computer with requests to communicate is a good
way to bring it crashing down. And often the technology doesn’t exist to
trace who originated the attack.

Here’s a denial-of-service attack against someone’s paper mail: An
attacker signs the victim up for every mail-order catalog, credit card
solicitation, and everything else he can think of. The victim gets so
much mail, maybe 200 pieces a day, that the real mail gets lost among
the junk mail. Theoretically, this attack will work. The only thing pre-
venting this attack is the limit of the amount of junk mail in the world.
on the Internet, though, the mail system always delivers the mail. In
1995, the Internet Liberation Front (it’s just a made up name; they’ve
never been heard from since) sent a flood of e-mail messages to author
Joshua Quittner and Wired magazine. The flood was so great the com-
puters just crashed.

This is known as mail bombing, and is an effective attack. Send enough
mail to someone and that person’s system will fill until the computer
crashes. The easiest way to do this is to subscribe the victim to thousands
of mailing lists. Victims’ disks might run out of space, their network con-
nections might go down, or their computers might crash. And if you
disguise the origin of the e-mail, no one will catch you.

There are other denial-of-service attacks. Some target computers, like
the preceding mail-server attack. Some target routers. Some target web
servers. The basic idea is the same: flood the target with so much stuff that
it shuts down. winNuke can crash older windows 95 computers; some-
one, in a single attack, brought down 6,000 windows 95 computers on
the Internet in April 1999. Denial-of-service attacks against web sites are
common, and remote-cache services like Akamai will make them easier
to mount and harder to detect.

182 C H A P T E r E L E V E N

c11.indd 182 2/16/15 10:41 AM

Sometimes it can be hard to tell a denial-of-service attack from
abnormal operations. Think about highways around a city. During nor-
mal hours, they run well. During the rush hours, they clog up. During
a demonstration, they don’t run at all. In 1999, demonstrations against
the world Trade organization tied up traffic in downtown Seattle; that
was unambiguously a denial-of-service attack. Earlier that year, when
American Airlines pilots started calling in sick more often than usual and
finding more maintenance problems with the planes than usual, that was
less obviously a denial-of-service attack. After the television special Who
Wants to Marry a Multimillionaire aired in 2000, their web site crashed due
to the volume of people logging on and trying to sign up to be on the
show. Is that a denial-of-service attack?

Some researchers have proposed defenses that force the client to per-
form an expensive calculation to make a connection. The idea is that if
the client has to spend computation time to make a connection, then
it can’t flood the target with as many connections. This is a good idea,
but won’t work against the distributed denial-of-service attacks we’ll talk
about in the next section.

I’ve seen suggestions that a lack of authentication on the Internet is
to blame. This makes no sense. Denial-of-service attacks do harm just
by the attempt to deliver packets; whether or not the packets would
authenticate properly is completely irrelevant. Mandatory authentica-
tion would do nothing to prevent these attacks, or to track down the
attackers. It would help if the authentication could be checked at every
point in the network. This would be a change in the way the Internet
works, and would reduce network bandwidth considerably: Instead of
merely routing packets, all switches and routers would have to authen-
ticate them.

Large-scale filtering at the ISPs can help; if the network can block the
denial-of-service attack, it will never reach the target. Here, authentica-
tion can do some good. But ISP filtering requires a lot of effort and will
reduce network bandwidth noticeably. Similarly, widespread modifica-
tions to how the Internet’s switches and routers work could alleviate this
problem; they could refuse to forward packets that are apparently forged.
Again, it’s a major change.

In the end, though, denial-of-service attacks that simply flood the
target with traffic can’t be dealt with. Some particular attacks combine
flooding with exploiting a specific vulnerability; these can be prevented

 Network Security 183

c11.indd 183 2/16/15 10:41 AM

by closing the vulnerability. But if the attacker has a bigger fire hose than
you do, he can flood your connection.

Denial-of-service attacks are not intrusions. They do not affect the
data on the web sites. These attacks cannot steal credit card numbers
or proprietary information. They cannot transfer money out of bank
accounts or trade stocks in someone else’s name. Attackers cannot directly
profit from these attacks. (They can sell the stock short and then attack
the company.)

This is not to say that denial-of-service attacks are not real, or not
important. For most big corporations, the biggest risk of a security
breach is loss of income or loss of reputation, either of which is achieved
elegantly by a conspicuous denial-of-service attack. And for companies
with more mission- or life-critical data online, a denial-of-service attack
can literally put a person’s life at risk.

D I S T r I B u T E D D E N I A L - o F - S E r V I C E A T T A C K S

Distributed denial-of-service attacks are just a virulent strain of denial-
of-service attacks. The first automatic tools for these attacks were
released in 1999—the university of Minnesota was the first public tar-
get in August 1999—but the spate of high-profile attacks in early 2000
put them on the front pages of newspapers everywhere.

These attacks are the same as traditional denial-of-service attacks,
only this time there is no single source of the attack. The attacker first
breaks into hundreds or thousands of insecure computers, called zom-
bies, on the Internet and installs an attack program. Then he coordinates
them all to attack the target at the same time. The target is attacked from
many places at once; its traditional defenses just don’t work, and it falls
over dead.

It’s much like the pizza delivery attack: Alice doesn’t like Bob, so
she calls a hundred pizza delivery parlors and, from each one, has a pizza
delivered to Bob’s house at 11:00 p.m. At 11, Bob’s front porch is filled
with 100 pizza deliverers all demanding their money. It looks to Bob
like the pizza Mafia is out to get him, but the pizza parlors are victims,
too. The real attacker is nowhere to be seen.

These attacks are incredibly difficult, if not impossible, to defend
against. In a traditional denial-of-service attack, the victim computer

184 C H A P T E r E L E V E N

c11.indd 184 2/16/15 10:41 AM

might be able to figure out where the attack is coming from and shut
down those connections. But in a distributed attack, there is no single
source. The computer should shut down all connections except for the
ones it knows to be trusted, but that doesn’t work for a public Inter-
net site.

There have been several academic conferences on distributed denial-
of-service attacks in recent years, and the consensus is that no general
defense exists. Continuously monitoring your network connections helps,
as does the ability to switch to backup servers and routers. Sometimes the
particular bugs exploited in the attacks can be patched, but many cannot.
The Internet was not designed to withstand this class of attacks.

These attacks are likely to get worse. Current distributed denial-of-
service tools require the attacker to break into a large number of machines,
install the zombie programs, keep those zombie programs from being dis-
covered, and coordinate the attack . . . all without getting caught. Neo-
teric tools are likely to use a virus, worm, or Trojan horse program to
propagate the zombie tools, and then to automatically launch the attack
with some code word from a public forum.

There has already been one denial-of-service attack that worked
this way. In 1999, someone posted a fake Internet Explorer update from
Microsoft. It was really a Trojan horse that caused the infected computer
to send packets to hosts belonging to the Bulgarian Telecommunications
Company, causing denial-of-service problems for them for a long time.

Tracing the attacker is also incredibly difficult. returning to the
pizza delivery example, the only thing the victim could do is to ask the
pizza parlors to help him catch the attacker. If everyone coordinated their
phone logs, maybe they could figure out who ordered all the pizzas in the
first place. Something similar is possible on the Internet, but it is unlikely
that the intermediate sites kept good logs. Additionally, it is easy to dis-
guise your location on the Internet. And if the attacker is in some Eastern
European country with minimal computer crime laws, a bribable police,
and no extradition treaties, there’s nothing you can do anyway.

The real problem is the hundreds of thousands, possibly millions, of
nescient computer users who are vulnerable to attack. They’re using DSL
or cable modems, they’re always on the Internet with static IP addresses,
and they can be taken over and used as launching pads for these (and
other) attacks. The media is focusing on the mega e-corporations that are
under attack, but the real story is the individual systems.

 Network Security 185

c11.indd 185 2/16/15 10:41 AM

Similarly, the real solutions are of the “civic hygiene” variety. Just as
malaria was defeated in washington, D.C., by draining all the swamps,
the only real way to prevent these attacks is to protect those millions
of individual computers on the Internet. unfortunately, we are building
swampland at an incredible rate, and securing everything is impracticable.
Even if personal firewalls had a 99 percent market penetration, and even if
they were all installed and operated perfectly, there would still be enough
insecure computers on the Internet to use for these attacks.

T H E F u T u r E o F N E T w o r K S E C u r I T y

Back in the 1960s, people figured out that you can whistle, click, belch,
or whatever into a telephone and make the phone switches do things.
This was the era of phone phreaking: black boxes, blue boxes, Captain
Crunch whistles. The phone company did their best to defend against
these attacks—they blocked certain tones, traced attackers, and started
keeping their design specifications secret—but the basic problem was that
the phone system was built with in-band signaling: The control signal and
the data signal traveled along the same wires. This meant that the switches
within the phone system were listening to the voice channel for control
codes, and this is what the phone phreakers exploited.

The solution was to completely redesign the phone system. Modern
phone switching protocols—for example, SS7, or Signaling System 7—
were designed with out-of-band signaling. The voice path and data path
were separated, and traveled along separate paths along the network.
Now it doesn’t matter how hard you whistle into the phone system:
The switch isn’t listening. Entire classes of attacks simply don’t work,
because attackers at the end points don’t have access to the switches in
the middle.

(This isn’t entirely true. red boxes still work against payphones.
These boxes mimic the tones that record the coins deposited in the
phones. Note that this is the remaining in-band signaling portion in the
phone system: The tones are sent from the payphones to the switches
in band.)

In the long term, out-of-band signaling is the best way to deal with
many of the vulnerabilities of the Internet. It’s not a panacea—insecure
nodes will still cause problems—but it will go a long way.

186 C H A P T E r E L E V E N

c11.indd 186 2/16/15 10:41 AM

unfortunately, there are several problems. The Internet is designed
as an egalitarian network: Anyone can get on the Internet simply by
connecting with another Internet computer. An out-of-band system will
have to be centrally managed, like the phone system. There will be end
points and there will be internal routers, and they will be different. It will
be nothing like the Internet is today.

At this point there are no plans to redesign the Internet in this way,
and any such undertaking might be just too complicated to even consider.

 Network Security 187

c11.indd 187 2/16/15 10:41 AM

188

12

Network Defenses

F i r e w a l l s

The first firewalls were on trains. Coal-powered trains had a large furnace
in the engine room, along with a pile of coal. The engineer would shovel
coal into the engine. This process created coal dust, which was highly
flammable. Occasionally the coal dust would catch fire, causing an engine
fire that sometimes spread into the passenger cars. since dead passengers
reduced revenue, train engines were built with iron walls right behind
the engine compartment. This stopped fires from spreading into the pas-
senger cars, but didn’t protect the engineer between the coal pile and the
furnace. (There’s a lesson for sysadmins in this somewhere.)

in the digital world, a firewall is a machine that protects a company’s
internal network from the malicious hackers, ravenous criminals, and
desultory evildoers who lurk throughout the internet. it keeps intrud-
ers out.

The definitions don’t parallel well, and that’s because the term “fire-
wall” has changed meaning since it was first used in computer networks.
The original networks were buggy and would inveterately crash. Fire-
walls were installed to prevent bad networking software in one part of the
network from taking the rest of the network down with it. They were,
like physical firewalls, machines designed to contain problems within a
small area of a network.

c12.indd 188 2/16/15 10:41 AM

Today’s firewalls act as boundaries between private networks and
the vast public network. They keep intruders out, and only allow autho-
rized users in. They might be more accurately called “castle walls,” but
the term “firewall” has already become established.

i’m not going to talk about the details of firewalls and how they
work; shelvesful of books do that. instead, i am going to talk about the
general philosophies of firewalls, how good they are at countering the
threats, and what the future of firewalls is likely to be.

First point: recognize that a firewall is a boundary, a perimeter
defense. like a castle wall, it serves to repel invaders. also like a castle
wall, it is useless against an armed insurrection inside the castle. Bill Ches-
wick describes a firewall as a “hard crunchy shell around a soft chewy
center.” Once the attacker is inside the firewall, the firewall is useless.
and since about 70 percent of all computer attacks come from the inside
(according to a Computer security institute study in 1998), this is defi-
nitely something worth thinking about. Of course, it is possible to install
internal firewalls to further protect sections of the network. Think of
castles with outer baileys and inner baileys.

second point: Until the invention of cannon, a good castle was
pretty much invulnerable; there was no way to scale, breach, or tun-
nel under the walls. However, a patient general could always besiege a
castle. By denying the inhabitants food, water, and anyone interesting
to talk to, the general hoped that the defenders would give up. some-
times this worked quickly, but some sieges lasted years. if the castle had
a well inside, it helped. if the castle had a secret tunnel to the outside, it
helped a lot. if the inhabitants of the castle caught the plague or some-
thing, it didn’t help. (Poor sanitation defeated many a valiant defender.)
similarly, it is possible to starve a network by severing its connections
to the outside.

Third point: a castle needs to be secure on all sides. it makes no
sense to put up a freestanding wall; attackers will go around it. remem-
ber the Maginot line? The French built it in the 1930s to prevent Ger-
man invasion. against the trench-warfare fighting of world war i, it was
thought to be impregnable. But the technology of tanks improved sig-
nificantly in the ensuing years, and the Germans invented blitzkrieg as a
style of warfare. They simply went around the Maginot line, invading
France through Belgium. and by the same token, a firewall has to act as
a barrier between the internal network and all external access points.

 Network Defenses 189

c12.indd 189 2/16/15 10:41 AM

Otherwise, an attacker will just go around the firewall and attack some
undefendedconnection.

and fourth point: Castles need gates. it’s futile and absurd to build a
castle that can’t be penetrated by anyone under any circumstances: even
kings need to go outside and perambulate sometimes. Merchants, mes-
sengers, even common townsfolk need to be able to go in and out regu-
larly. Hence, castles had gatekeepers whose job it was to admit or turn
away people who wanted to enter the castle.

The Great wall of China didn’t impress Genghis Khan. “The
strength of a wall depends on the courage of those who defend it,” he
supposedly said. letting the good stuff in while keeping the bad stuff
out is the central problem that any computer firewall needs to solve. it
has to act as gatekeeper. it has to figure out which bits are harmful and
deny them entry. it has to do this without unreasonably delaying traffic.
(and to your average internet user, an unreasonable delay is defined as
one that is noticeable.) it has to do this without irritating legitimate
users. (Your average internet user will not tolerate not being able to
do something, like downloading a new internet game from suspicious
software™ or connecting remotely and reading e-mail from an untrusted
machine.) But if the firewall’s gatekeeper makes a mistake, some hacker
can sneak in and own the network.

There are three basic ways to defeat a firewall. The first i talked about:
go around it. a large network has lots of connections. large photocopi-
ers often come with internet connections, and some network equipment
comes with dial-up maintenance ports. Companies often hook their net-
works to the networks of suppliers, customers, and so forth; sometimes
those networks are much less protected. employees will hook personal
modems up to their computers so they can work at home. There’s a
story of a married couple in silicon Valley who occasionally worked from
home. He was checking his e-mail while his wife was doing some pro-
gramming, both of them on their small home network. suddenly, his
company’s computers started showing up on her company’s network and
vice versa.

The second, and more complicated attack, is to sneak something
through the firewall. To do this, you have to fool the firewall into think-
ing you are good, honorable, and authorized. Depending on how good
the firewall is and how well it has been installed, this is either easy, diffi-
cult, or next to impossible.

190 C H a P T e r T w e l V e

c12.indd 190 2/16/15 10:41 AM

The basic idea is to create a piece of code that the firewall lets inside
the network. The code is designed to exploit some kind of bug in the
computer system that will open a connection between the hacker outside
the firewall and the computer inside the firewall. if it all works, the hacker
gets inside.

The third attack is to take over the firewall. This is akin to bribing
or blackmailing the gatekeeper. since he is now in your employ, he’ll do
what you want. again, how easy this is depends on the firewall. some
firewalls run buggy software, which helps. some run on top of insecure
operating systems, which helps a lot.

anyway, firewall design today is all about designing smart gatekeep-
ers. at the simplest level, a firewall is a router with a consistent rule set
that it tests network traffic against, and then passes traffic that meets the
rules and drops all other traffic. examples might be to restrict traffic based
on source or destination address or protocol type.

This was relatively easy in early networks, but today’s firewalls have
to deal with multimedia traffic, downloadable programs, Java applets, and
all sorts of weird things. a firewall has to make decisions with only par-
tial information: it might have to decide whether or not to let a packet
through before seeing all the packets in a transmission.

early firewalls were something called packet filters. The firewall
would look at each packet and either admit or drop it, depending on
a bunch of rules about the packet header. The first packet filters were
pretty dumb, and let a whole lot of things in that were better left out.
eventually they got smarter. Today they are stateful: instead of look-
ing at each packet individually, the firewall keeps information about
the state of the network and what types of packets are expected. still,
firewalls only have so long a memory, and slow attacks can often get
through.

some good packet-filtering firewalls are out there, but they still
display a number of weaknesses. First and foremost, they are a pain to
configure properly, and improper configuration often leads to security
vulnerabilities. lots of things are allowed in by default that should be
blocked. and the firewall doesn’t modify packets, so if a packet gets
through, it can do whatever it wants. and there are a bunch of more
esoteric attacks against packet filters; just imagine fooling a guard who
tries to stop the flow of dangerous letters into a castle by looking at the
envelopes.

 Network Defenses 191

c12.indd 191 2/16/15 10:41 AM

another type of firewall is a proxy, or application gateway. Think of two
guards, one inside the walls and the other outside the walls. The guard
outside knows nothing about the insides of the castle. The guard inside
knows nothing about the world outside the castle. But the guards pass
packets to each other. Proxy firewalls try to implement this “two guard”
metaphor. some proxy firewalls just act as go-betweens: someone inside
the firewall wants a document, the client software asks the firewall (inside
guard) for it, and the firewall (outside guard) connects to the web site and
gets it. Other proxy firewalls understand the applications and what kinds
of protocols they use. still other proxy firewalls are store-and-forward
proxies; they store data chunks before passing them on, and can filter data
based on a bunch of rules. and the better proxy firewalls are becoming
aware of their environment, and are therefore able to make smarter deci-
sions about packets.

The weaknesses of proxy firewalls are mostly too subtle to talk about
here. They also have a longer latency, and lower throughput, than packet
filters. (actually, since firewalls have to examine every packet, they all
slow down fast network connections.) Proxy firewalls have to be config-
ured securely to work correctly, just as packet filters do, and proxies are
much harder to configure and maintain than packet filters; the tendency
is to just stop bothering with them.

about 100 different firewall products are on the market, and more
show up every month. Most are iP only, and don’t secure other proto-
cols. Most of them don’t implement just one approach, but are hybrids
to some degree. advances in firewall technology are happening all the
time, and it’s hard to compare and evaluate them. some organizations
give firewalls seals of approval, but most hackers regard this as laughable;
 firewalls that pass are secure against only the most basic attacks. (still,
many fail testing the first time through.) in general, the best firewall is
one that has been configured correctly, and has all the current patches
and updates.

i’ve heard firewalls referred to as “a router with an attitude.” That’s
a true statement. some of the best firewall professionals i know don’t
even bother with firewalls; they believe that a well-configured router
with strong security at the end points is more secure than a firewall. They
may have a point. Certainly firewalls have given the corporate world a
false sense of security on the internet.

Firewalls are an important part of any company’s network security,

192 C H a P T e r T w e l V e

c12.indd 192 2/16/15 10:41 AM

but they can’t do it all. Their security model reflects an earlier time in
network security, when organizations needed to keep their assets inside
and the bad guys outside. Today, with organizations needing to open
their networks up to customers, partners, sales prospects—the public—
they seem anachronistic. important, yes. a panacea, no.

D e M i l i T a r i z e D z O n e s

a DMz is a demilitarized zone. it’s the no-man’s-land between north
Korea and south Korea that neither side is supposed to be in.

in firewall talk, a DMz is a place on your network where you put
your public services. in Chapter 10 i talked about all the attacks against
web servers. You don’t want to put the web servers inside the firewall,
because they are vulnerable to attack. You can’t put the web servers out-
side the firewall, because then they’re vulnerable to even more attacks.
The solution is to put them in a DMz.

This idea is a good one, and one with a lot of historical precedent.
Castles were often built with inner walls and outer walls. inside the
outer walls were the stables, the servants’ quarters: things that you could
afford to lose in an assault. inside the inner walls were the noble resi-
dences: the important stuff. in the event of attack, soldiers would try
to defend the outer walls but would retreat to the inner walls if their
defense failed.

To build a DMz, you need two logical firewalls. One firewall pro-
tects the DMz from the outside world. another firewall, configured
with more restrictions, protects the internal network from the DMz.
The result is a semipublic part of the network and a more private part of
the network. This kind of idea works.

V i r T U a l P r i V a T e n e T w O r K s

a virtual private network (VPn) is simply a secure connection over a
public network. in the old days, if alice and Bob wanted to commu-
nicate, they had to lease an expensive private line and run their own
private network. Today, the cheaper solution is for alice and Bob to use
the public network. But the internet is insecure; for alice and Bob to

 Network Defenses 193

c12.indd 193 2/16/15 10:41 AM

 communicate securely on the internet, they need to secure that connec-
tion. They need to create a virtual private network on top of the physical
public network. a VPn does that.

VPns have two main uses. The first is to connect disjoint pieces of
the same network. a corporation might have two offices on different
sides of the planet. each office has its own physical network, and the two
networks are connected by a VPn running over the internet. a VPn is
more private than a “private line” provided by the telephone company.

The second use is to connect mobile users: users working from home
and users working out of hotel rooms. The old way to bring these users
into the large network was to have them dial in directly, often long
distance. This is expensive, and forces the company to maintain a large
bank of modems. The modern way is to have the users dial in locally to
an isP, and then connect from the isP to the company over the internet.
To secure this connection, a VPn runs from the user’s computer to the
network.

Different VPns provide security through different cryptographic
protocols. The most common protocol is iPsec, although you’ll still find
protocols that implement PPTP and l2TP. some VPns don’t have any
cryptography at all.

One way to think of a VPn is as a hole in the firewall. someone with
a VPn is allowed to tunnel through the firewall into the network. For
this reason, a lot of security permeates the ways in which VPn connec-
tions are authenticated and allowed in. and a lot of hacker attacks exploit
holes in this security.

i n T r U s i O n D e T e C T i O n s Y s T e M s

Intrusion detection systems (iDss) are network monitors. They watch
your network, looking for suspicious behavior. Think of them as
autonomous police detectives wandering around town: They know
what suspicious behavior looks like—probing a system for access, pok-
ing around for bugs to exploit, or whatever—and they keep an eye out
for it. They know what an attack looks like. They know what a crime
looks like. Marcus ranum describes a firewall as the helmet and flak
jacket you wear into battle, and an iDs as the medic who looks over
your bleeding body, saying: “That looks like a sucking chest wound. i’d

194 C H a P T e r T w e l V e

c12.indd 194 2/16/15 10:41 AM

get that checked if i were you.” an iDs is not a substitute for good
proactive security.

Okay then, what do iDss do? They alert you of a successful attack,
or maybe even an attack in progress. The good ones are accurate in both
senses: They don’t cry wolf and claim an attack where there is none, and
they don’t miss real attacks. The good ones are timely: They alert you
of the attack while it is still going on. The good ones give some kind of
diagnosis—what the attack is and where it is coming from—and suggest
some kind of remedial action.

Current product offerings fall far short in every dimension, but they’re
trying. The hardest problem is the false alarms. To explain it, i’m going to
have to digress into statistics and explain the base rate fallacy.

suppose a doctor had a disease test that was 99 percent accurate.
That is, if someone has the disease, there is a 99 percent chance that
the test would signify “disease,” and if someone does not have the dis-
ease, there is a 99 percent chance that the test would signify “healthy.”
assume that one in ten thousand people, on average, have the disease. is
the test any good?

no. if the doctor administers the test to a random person and she
tests positive, there is only a one percent chance she actually has the dis-
ease. Because the population of healthy people is so much larger than
the number of diseased, the test is useless. (it’s not as simple as retesting
the person. assume false positives are consistent for a particular person.)
This result is counterintuitive and surprising, but it is correct.

what this means is that if you assume that network attacks are com-
paratively rare, the base rate fallacy implies that your tests have to be really
good to screen out all of the false positives. an iDs that habitually pages
you at 3:00 a.m. with a problem that turns out not to be a problem—
an all-night Quake game, or a new internet application, or whatnot—is
going to get turned off pretty quickly.

There are other problems. Timely notification is one. i mentioned
slow attacks in the previous section. when does an iDs decide that it’s
an attack and notify you? what if the iDs thinks something looks like
an attack, sort of? Does it notify you? when? again, remember the false
positive problem. if it guesses wrong too often, you’re going to stop lis-
tening to it.

and will you even know what to do when the alarm goes off? Hor-
tatory messages of the general form “you’re under attack” are useless

 Network Defenses 195

c12.indd 195 2/16/15 10:41 AM

unless you have some way to respond, and the time to deal with it.
Dur ing the 22-hour eBay outage of 1999, the iDs system set off alarms
con stantly, but everyone was too busy to respond. This is the biggest
problem with iDss: intelligently reacting to their output.

iDss are still really in their infancy, and different ideas are vying for
supremacy. i’m just going to touch on some of them; many books out
there go into detail.

There are two basic ways to build an iDs. The easiest is misuse detec-
tion. The iDs knows what an attack looks like, and looks for it. Think
of a virus detector for network packets. Just as the virus detector scans
every file looking for particular bit strings indicating a virus, the iDs
scans every packet looking for bit strings that signify a certain attack.
They’re easy to implement and deploy, they have low false positives,
and they can be relatively fast (considering that they have to touch each
packet).

On the other hand, they miss more. Just as a virus detector can’t find
viruses it has never seen before, a misuse-detection iDs can’t find attacks
it isn’t programmed to find. This makes them easy to fool. sometimes
it’s as easy as taking an existing attack and mixing up the order of com-
mands. sometimes it’s taking the attack and breaking up the packets dif-
ferently. Just as antivirus software needs to be constantly updated with
new signatures, this type of iDs needs a constantly updated database of
attack signatures. it’s unclear whether such a database can ever keep up
with the hacker tools.

The other iDs paradigm is anomaly detection. The iDs does some
statistical modeling of your network and figures out what is normal.
Then, if anything abnormal happens, it sounds an alarm. This kind of
thing can be done with rules (the system knows what’s normal and flags
anything else), statistics (the system figures out statistically what’s normal
and flags anything else), or with artificial-intelligence techniques.

This has a plethora of problems. what if you’re being hacked as you
train the system? Then, being hacked is considered normal. new things
happen on computer networks all the time. Does the iDs know the
difference between a normal abnormality, and an abnormality indicat-
ing an attack? and if all it knows is what is normal, how is it going to
categorize attacks? The false positives for this kind of system are much
higher, and attacking these kinds of iDss involves figuring out how to
sneak past them.

196 C H a P T e r T w e l V e

c12.indd 196 2/16/15 10:41 AM

some early virus detectors used this sort of paradigm, and they would
generate all kinds of alarms if you did something like install a new piece
of software. They fell out of favor as the misuse-detection-based virus
checkers got better signature dictionaries; i expect the same thing to
happen with iDss.

Other iDs ideas can work with either of the preceding paradigms.
inline iDs works on network data in real time, while audit-based iDs
looks at audit information after the fact. There’s also host-based iDss
versus network-based iDss.

This latter distinction has been the subject of a raging debate in the
iDs community. Basically, network-based iDs products are built on the
wiretapping concept: sensors sit on the network and examine packets
as they go by. These systems have the advantages of stealth—they can
be deployed without affecting the rest of the network—and operating-
system independence. Host-based iDss look at system, audit, and event
logs from individual systems. These systems have a different set of pluses
and minuses, the most apparent being that they are product-specific.

what you’re eventually going to find in the marketplace are hybrid
systems: a combination of host-based and network-based iDss, doing
some expert-system-based anomaly detection and some signature-
based misuse detection. You’re also going to find managed security
monitoring companies, who actually watch the output of these things
and respond to their alarms. like firewalls, iDss will get better and
better as developers get more experience building them. and also like
firewalls, their security will eventually depend on how well they are
configured and how up-to-date the versions are. and there will always
be attacks that get through them.

H O n e Y P O T s a n D B U r G l a r a l a r M s

network burglar alarms and honey pots are a form of intrusion detection,
but they deserve a separate section. Burglar alarms are specific things on
your network designed to go off if an attacker touches them. Honey pots
are burglar alarms dressed up to look particularly attractive to attackers.
Burglar alarms are easy to understand: a particular network command
that no one is supposed to use sounds an alarm if used; a dummy network
account sounds an alarm if activated; and so forth. Marcus ranum has

 Network Defenses 197

c12.indd 197 2/16/15 10:41 AM

taken this idea even further, and suggested that when a security vulner-
ability is patched in a product, it should also be alarmed.

Honey pots are more involved: entire dummy computers and sub-
networks designed to look inviting to attackers. You can have fun with
these; name the computers something like transactions.bigcompany.
com or accounting.bank.com, dress them up with impressive-sounding
accounts and files, and protect them on your network. when an attacker
breaks into the network, he gravitates toward the honey pot because it
looks like an interesting place to explore. Then an alarm goes off, and the
honey pot monitors the hacking activity and gathers data for prosecution.
some companies sell premade honey pots; just add enticing names.

what’s interesting about both of these measures is that they exploit
the one advantage the network administrator has over an attacker:
knowledge of the network. The administrator knows how the network is
supposed to look and what is supposed to happen. He can set burglar
alarms—just as a homeowner can set window alarms because he knows
that no one is supposed to open the windows, and motion sensors
because he knows that no one is supposed to be walking around in the
living room—using that knowledge. He can deploy honey pots with
the knowledge that no legitimate user will ever access those systems.
He can set up all sort of burglar alarms, turn them on and off at differ-
ent times of the day, move them around once in a while, do anything
he wants. These measures are effective precisely because the attacker
doesn’t know if they are there or where they would be. Unlike a fire-
wall or iDs—an attacker often knows what brand firewall is installed—
burglar alarms and honey pots are tailored specifically for the network
being alarmed.

V U l n e r a B i l i T Y s C a n n e r s

The intent of vulnerability scanning is to have an automated program
scan your network (or computer) for a huge laundry list of known
weaknesses. it does the work, and then you get a tidy report of which
weaknesses the network has. Then it’s up to you to fix them (or, i sup-
pose, exploit them).

The reality of vulnerability scanners is not nearly so clean, and all
vulnerability scanners on the market are massively flawed. if they

198 C H a P T e r T w e l V e

c12.indd 198 2/16/15 10:41 AM

worked the way you expect them to work, they would all crash your
computers and damage your network. no one would use such a tool, so
they all fake it.

imagine a vulnerability scanner for your house. One of the things it
checks is whether your windows are vulnerable to attack by a rock. The
obvious way to test this is to throw a rock against the window and watch
the results. But this would cause damage to the house, so the scanner fakes
it. it looks at the glass to see if it is single pane or double pane. Maybe it
taps on it, to see if it is actually glass or a stronger plastic. Maybe it tries
to read the part number on the window, and makes some assumptions
about the glass based on that. This is the same sort of thing that network
vulnerability scanners have to do.

it gets worse. sometimes it’s hard to tell whether or not a par-
ticular attack is successful. The same home vulnerability scanner now
tests the power reliability by trying to cut the power lines into the
house. it cuts the power line, and the lights stay on. Does this mean
that the scanner failed to cut the power line, and the house is not vul-
nerable, or does it mean that the house has a backup power system? Or
maybe the scanner cuts the power lines and the power goes off. Does
this mean that the scanner cut the power line, or that it did something
else that, through some contorted chain of events, resulted in the
power being shut off? The scanner doesn’t know, and most of the time
has no way of figuring it out. networks are unreliable; they don’t fail
in neat ways.

even though vulnerability scanners can’t actually scan for vulnerabili-
ties, nor can they accurately measure the effects of their actions when they
can scan for vulnerabilities, they are not useless. They can scan for, or at
least fake scanning for, some vulnerabilities. They do produce a list of
vulnerabilities that a conscientious system administrator will close (and a
nefarious attacker will exploit). They work okay.

saTan (security administrator Tool for analyzing networks)
made a big press splash when it was released in 1995. it was portrayed in
the media as worse than its namesake, and its author was fired from his
job at sGi. since then vulnerability scanners have achieved respect-
ability as a component of a security administrator’s toolkit. several
com mercial products, with respectable names, are in the marketplace.
Think of these tools as another audit technique: a private investigator that
reports on your security vulnerabilities. You can hire the P.i. to examine

 Network Defenses 199

c12.indd 199 2/16/15 10:41 AM

your ownsystem, but an attacker can hire the same P.i. to examine a tar-
get system. But understand the limitations of the technology.

e - M a i l s e C U r i T Y

These days, e-mail is everywhere. anyone who has any presence at all
in cyberspace has an e-mail address, and probably receives far too many
e-mail messages every day. e-mail has no built-in security.

like any network packet, any machine between the source and the
destination can read e-mail. (You can even see the names of some of those
machines in the headers of your received mail.) The common metaphor
used for internet e-mail is postcards: anyone—letter carriers, mail sort-
ers, nosy delivery truck drivers—who can touch the postcard can read
what’s on the back. and there’s no way of verifying the signature on a
letter or the return address (you do know that the “From” field in your
mail header can easily be forged?), so there’s no way of knowing where a
message really came from. (spammers use this feature to hide the origin
of their mass mailings.) if an attacker wants to be subtle, he can actually
connect (without an account) to the forged machine of origin and send
the mail from there. if he doesn’t care, he can just forge the “from” line.

we want two things for e-mail. One, we want to make sure that no
one other than the intended recipient can read the message. Two, we
want to make sure that an e-mail message came from the person itpur-
ports to have come from, and that no one can forge e-mail messages.

The cryptography to protect e-mail is simple and straightforward,
and dozens of products on the market deal with the problem. Here’s the
basic protocol:

 1. alice gets Bob’s public key.
 2. alice signs her message with her private key.
 3. alice encrypts her message with Bob’s public key.
 4. alice sends the encrypted and signed message to Bob.
 5. Bob decrypts the message using his private key.
 6. Bob verifies alice’s signature using her public key.

where you’re going to see difficulties is in the public keys: how
you get them, store them, verify them. i’ll talk about this a lot more in
Chapter 15.

200 C H a P T e r T w e l V e

c12.indd 200 2/16/15 10:41 AM

e n C r Y P T i O n a n D n e T w O r K D e F e n s e s

Defending against network attacks isn’t as simple as incorporating cryp-
tography into the systems. Often the realities of the systems prevent
cryptography from being used. For example, one part of the Dns
record constantly changes, so it is impractical to use digital signatures
with Dns records. Cryptographic authentication just won’t work.

Or imagine a world where every packet is encrypted with iPsec.
since the packets are encrypted, they can’t be analyzed. network engi-
neers can no longer perform traffic analysis. address-translation systems
can’t deal with the packets. Performance-optimizing systems—for exam-
ple, a system that tinkers with packet size to optimize traffic for satellite
transmission—no longer work.

another example: a lot of network defenses rely on examining
packets and making sure they’re not malicious. encryption can deny a
defender access to the packets, and to the defenses.

Consider antivirus software that sits at the firewall, automatically
scanning all incoming e-mail looking for malware. in large corpora-
tions these programs can find over 1,000 viruses a day infecting e-mail
attachments. if that corporation encrypted all of its e-mail, the anti-
virus software would not be able to find anything at the firewall (unless
it had the keys).

Consider firewalls that scan incoming packets, looking for network
attacks. if that network employed iPsec throughout, the firewall couldn’t
examine anything.

There are no good solutions to this problem. One solution is to
give the firewall the decryption keys. This has lots of potential security
problems. another solution is a distributed firewall: pushing the network
defenses away from the perimeter of the network and onto every host in
the network. This has its own set of problems, but is probably the future
of firewalls.

The internet boffins are hard at work on this problem; i don’t have
an answer for you.

 Network Defenses 201

c12.indd 201 2/16/15 10:41 AM

202

13

Software Reliability

Between system security measures (security kernels, access control
measures, strong cryptography, etc.) and good network secu
rity measures (firewalls, intrusion detection systems, auditing

mechanisms), it seems as if computer security is pretty much done. Why
then, are computers and networks so insecure? Why are we seeing more
computer security vulnerabilities in the media, and not less? Why aren’t
things getting better?

The problem is that security measures such as cryptography, secure
kernels, firewalls, and everything else work much better in theory than
they do in practice. In other words: Security flaws in the implementation
are much more common, and much more serious, than security flaws in
the design. So far, Part 2 has talked about design. This chapter is about
implementation.

F a u l T y C o d e

In June 1996, the european Space agency’s Ariane 5 rocket exploded
after launch because of a software error: The program tried to stick a
64bit number into a 16bit space, causing an overflow. Its lessons are
 particularly relevant to computer security.

Basically, there was a piece of code written for the Ariane 4 rocket that
dealt with the rocket’s sideways velocity. at 36.7 seconds after launch, the
guidance system’s computer tried to convert this velocity measurement

c13.indd 202 2/16/15 10:41 AM

from a 64bit format to a 16bit format. The number was too big, which
caused an error. Normally, there would be extra code that watches for
these sorts of errors and recovers gracefully. But the original programmers
decided not to bother with the code in this case, since the velocity figure
would never be large enough to cause trouble. That may have been true
in the Ariane 4, but the Ariane 5 was a faster rocket. even worse, the cal
culation containing the bug served no purpose once the rocket was in the
air. Its only function was to align the system before launch. So it should
have been turned off. But engineers chose long ago, in an even earlier ver
sion of the Ariane, to leave this function running for the first 40 seconds
of flight—a “special feature” meant to make it easy to restart the system in
the event of a brief hold in the countdown. There was a backup system
designed to take over in case of failure, but it was running the same soft
ware and suffered the same error.

The resulting chain of events shut down the guidance system, which
completely confused the onboard steering computer, which caused the
rocket to make an unneeded course correction, which forced the rocket
to selfdestruct.

Three years later, NaSa’s Mars planet orbiter disappeared during
a tricky maneuver not because of Martian air defense, but because of
a data conversion bug. The NaSa engineers failed to convert english
 measures of rocket thrusts (in pounds) to newtons, a metric unit.
There’s a 4.45 times difference between the units; and that was enough
to send the probe 50 miles lower into the Martian atmosphere, where it
burned up.

These two disasters are not related to computer security, but they
serve to illustrate how hard it is to design and implement bugfree code.
Both the european Space agency and NaSa had a strong incentive, and
a suitably large budget, to ensure quality software. and they still failed.

others don’t do any better. In 1999, eBay went down for 22 hours
due to softwarerelated errors in code supplied by Sun Microsystems.
Bug chasing delayed the release of the Visor palm computer. and in
1998, a bug in Cisco switches knocked out aT&T’s Interspan frame
relay network, affecting 6,600 customers.

The unfortunate reality is that software bugs like these are every
where. Most don’t have such efficiently devastating consequences (re
booting a spreadsheet after it crashes is just a minor annoyance), but as
complex software moves into more critical systems (e.g., automobile

 Software Reliability 203

c13.indd 203 2/16/15 10:41 AM

crash avoidance, aircraft takeoff and landing, nuclear power plant con
trol), we’re likely to see more of these kinds of failures. a lot of work
is going into error recovery, failure avoidance, and what is called a fail
safe strategy: For example, if the crashavoidance system fails in a car, it
is supposed to behave more or less like a precomputer car, instead of
deciding to swerve into the nearest tree. The idea is to make sure that
little failures don’t get out of hand, like what happened on Ariane 5.

Squashing software bugs that affect performance is hard; finding
software flaws that affect security is even harder.

Reliability means that the computer—generally, the software, but any
specialized hardware as well—has to work even in the presence of ran
dom faults. These faults could be design faults (running identical software
on both the primary and backup systems), implementation faults (not
doing error checking on a data conversion), programming faults (remem
ber the mathematics bug in the Intel Pentium chip?), or usage faults.
These faults happen occasionally, randomly. Think of it as programming
Murphy’s Computer: a computer where things go wrong . . . rarely but
consistently. a computer where mistakes happen once in a while, but
rarely become severe enough for any user to notice.

The underlying problem is that in any complex system—rocketry
software, a large database, an operating system, networking software, a
complex microprocessor—many, many things could possibly go wrong.
and complexity is going through the roof. It is just impracticable to design
or test for everything. Inevitably, something goes wrong.

Computer security is more like programming Satan’s computer.
(Ross anderson is responsible for that beautiful turn of phrase.) In order
to be secure, software has to work in the presence of subtle and mali
cious faults deliberately introduced by an intelligent attacker bent on
defeating the security of the system. Secure software has to survive the
same random faults when exploited by an intelligent hacker trying to
defeat the security of the system. (Think of a hacker forcing the Ariane
5 software to make the overflow error occur at the worst possible time.)
Mistakes occur randomly, and most mistakes will never be encountered
under normal use. But attackers will seek potential mistakes out and
deliberately use them to their advantage.

The general strategy used to find random faults is beta testing: give
the software to a large group of users and let them bang on it. The peo
ple will use the software in all sorts of configurations, on various types of
hardware, and do different things with it (some of which the designers

204 C H a P T e R T H I R T e e N

c13.indd 204 2/16/15 10:41 AM

never even thought of). If they can’t crash the system, it’s probably
mistakefree. It’s hard to beta test rocketry software in anything but a
simulated environment, but any large commercial software application
you buy has (hopefully) been put through thousands of hours of beta
testing designed to find and fix programming mistakes.

The previous paragraph should give you pause. Given how buggy
most commercial software is, you might not trust that beta testing, or
any testing for that matter, works. Testing does work, but complications
remain. one, the rush to market means that some companies are push
ing poorly tested software on the populace. (Most Internet software is
released in beta; some even argue that the Internet itself is still in beta.)
Two, the same rush to market means that some companies are pushing
software on the populace before fixing the long list of bugs that they have
already identified. (and while they fix bugs found in beta, they don’t do
a second beta cycle to test the fixed code.)

a T T a C k S o N F a u l T y C o d e

Most of the computer security problems we see are the result of faulty
code. Here are some examples:

•	 In	1988,	the	Morris	worm	used	a	bug	in	the	UNIX	fingered	program	to	
gain root access to computers running the program. This is a buffer
overflow, explained in the next section.

•	 In	1999,	someone	discovered	a	bug	in	a	Hotmail	CGI	script	that	allowed	
one user to access the email account of another user. This kind of flaw was
discussed in Chapter 10.

Traditionally, faulty code has been the wedge used to break into
computers. Flaws in the sendmail program, for example, have been
responsible	for	a	huge	number	of	break-ins	to	UNIX	computers.	The	
goal of these attacks is to exploit the flaws so that the attacker can take
control of the system. The specific attacks are obscure—exploiting the
debug option to get root access, or using a loophole in the error mes
sage header in order to read password files—but there are a lot of them.
For a while it seemed like every month a new attack against sendmail
was discovered and patched. (Whether the patches ever got out to the
commercial users is another question.)

 Software Reliability 205

c13.indd 205 2/16/15 10:41 AM

a more recent example is the Java security model. Java has a com
plex security model to shield computers from malicious Java applets. a
programming error anywhere in the protection mechanisms can poten
tially render them all useless, and since its inception, a steady stream of
implementationspecific Java attacks have exploited a variety of differ
ent flaws.

What makes all these examples more troublesome than the Ariane
flaw (although less incandescent) is that the bugs that were used to break
security did not affect performance. They were there, undetected, until
they were found and exploited. This is a big deal, and why security is
harder than reliability. The Ariane bug is one that affects performance.
once a performance bug is found—and beta testing can find them—it
can be fixed. Security bugs don’t affect performance, and don’t show up
in beta test results. I’ll talk more about testing security in Chapter 22,
but the moral is that while people can sometimes stumble onto security
flaws, only experienced experts can reliably discover them.

This kind of thing happens all the time. When someone skilled per
forms a security analysis of a piece of security software, he always finds
random flaws that compromise security. always. The more complex the
code, the more security flaws.

Security problems, once discovered, will be exploited until they are
fixed. assume an attacker finds a security flaw in a commerce protocol
that allows him to steal credit card numbers or, even worse, money. If
he’s in it for the publicity, he’ll announce his exploit to the press and it
will be fixed. (Hopefully, he’ll alert the company first.) If he’s in it for
the money, he will make use of the flaw, again and again. He’ll steal as
much as he can until someone else notices the flaw and fixes it. This
is an important difference: Flaws that affect performance are noticed,
while security flaws can remain invisible for a long time.

These flaws are not necessarily in the security portion of the code,
either. They can be anywhere in the code: the user interface, the error
handling routines, anything. and as we saw in Chapter 10, even pro
grams that don’t have anything to do with computer security can affect
the security of networked computers. Flaws in your word processor,
your printer driver, or your multimedia player can all compromise the
security of your computer.

The other moral is that software bugs (and therefore, security flaws)
are inevitable. Just as it is inconceivable that the Ariane 5 software could

206 C H a P T e R T H I R T e e N

c13.indd 206 2/16/15 10:41 AM

be completely bugfree—the unfortunate accident is that the bug had
such catastrophic effects—it is inconceivable that a large Internet appli
cation will be bugfree.

We’ve seen this kind of thing with Windows NT. Hardly a day goes
by without some new announcement about a security hole in this pro
gram. We’re already seeing the same trend with Windows 2000.

B u F F e R o V e R F l o W S

Buffer overflows (sometimes called stack smashing) are the most common
form of security vulnerability in the last ten years. They’re also the easi
est to exploit; more attacks are the result of buffer overflows than any
other problem. and they can be devastating; attacks that exploit this
vulnerability often result in the complete takeover of the host. Many
highprofile attacks exploit buffer overflows. Since they show no sign
of abating, it’s worth explaining in some detail what they are and how
they work.

let’s start with an analogy. In order to steal something from your
local 711, you’re going to have to get past the sales clerk. This clerk isn’t
a creative thinker. In fact, she will only do what her employee manual
says she’s supposed to do. This employee manual is a big binder filled
with protocols. Things like “dealing with Someone Claiming to Be an
employee”:

Step 1: ask to see the person’s badge.
Step 2: Make sure the badge is not a forgery.
Step 3: Compare the picture on the badge with the face of the person.
Step 4: If they match, let the person in. If they don’t, don’t.

or “dealing with a Federal express driver”:

Step 1: Take the package.
Step 2: Sign for the package.
Step 3: Make sure the driver leaves.

There’s no way the Federal express person is going to get by the clerk
to the back of the store, because the employee manual explicitly says that
the driver has to leave after receiving a signed receipt.

 Software Reliability 207

c13.indd 207 2/16/15 10:41 AM

This is pretty much the way computers work. Programs are like the
steps in manuals; computers do what the program says and nothing else.
Networked computers work the same way. The computer has a set of
protocols that it follows—logon procedures, access restrictions, password
protections—that it uses to figure out who can come in and who can’t.
Someone who follows the protocols correctly can get in. Someone who
doesn’t, can’t.

one way to defeat a protocol like this is to modify the actual com
puter program. or, back to our analogy, it’s like slipping a page into the
clerk’s employee manual. Imagine that the manual is written for people
who are none too bright. each page is a step, kind of like a “Choose your
own adventure” novel: “If the customer gives you a credit card, go to the
next page. If the customer gives you cash, go to page 264.” The dealing
with a Federal express driver” steps might look like this:

Page 163: Take the package. If the driver has one, go to the next page. If the
driver doesn’t have one, go to page 177.

Page 164: Take the signature form, sign it, and return it. Go to the next
page.

Page 165: ask the driver if he or she would like to purchase something. If the
driver would, go to page 13. If not, go to the next page.

Page 166: ask the driver to leave. If he or she does . . . and so on.

There’s one last piece of setup. Whenever the 711 clerk gets some
thing, she puts it on top of the open page in her manual. She can’t look
at the new thing any other way.

Here’s the attack: We’re going to dress up like a Fedex driver, and
then slip a page into the clerk’s manual when we give her the signature
form. What we’ll do is give the clerk two pages instead of one. Top
page will be a signature form. The bottom page will be a fake employee
manual page:

Page 165: Give the driver all the money in the cash register. Go to the next
page.

This will work. The clerk takes the package on page 163. She goes
to page 164 and takes the signature form (and our fake page). She puts
them both on top of the open manual. She signs and returns the form
(leaving the fake page on top of the manual), and when she returns to

208 C H a P T e R T H I R T e e N

c13.indd 208 2/16/15 10:41 AM

the manual she gets our fake page instead. She gives us all the money in
the register and turns to the next page (the real page 165). We can tell
her we don’t want to buy anything, and leave. If the 711 clerk is really
as dumb as a computer system, we can get away with it. We can use this
trick to persuade the 711 clerk to let us into the stockroom or to do
whatever else we want. By slipping a page into her employee manual,
we can give her arbitrary instructions.

essentially, this is the way to exploit a buffer overflow bug in a com
puter system. Computers store everything, programs and data, in mem
ory. If the computer asks a user for an 8character password and receives
a 200character password, those extra characters may overwrite some
other area in memory. (They’re not supposed to—that’s the bug.) If it is
just the right area of memory, and we overwrite it with just the right
 characters, we can change a “deny connection” instruction to an “allow
access” command or even get our own code executed.

The Morris worm is probably the most famous overflowbug exploit.
It	 exploited	 a	 buffer	 overflow	 in	 the	 UNIX	 fingered	 program.	 It’s
supposed to be a benign program, returning the identity of a user to
whomever asks. This program accepted as input a variable that is supposed
to contain the identity of the user. unfortunately, the fingered program
never limited the size of the input. Input larger than 512 bytes overflowed
the buffer, and Morris wrote a specific large input that allowed his rogue
program to execute as root and install itself on the new machine. (This
particular bug has, of course, been fixed.)

What makes this worm especially relevant for this section is that it
itself had a programming bug. It was supposed to hop between comput
ers on the Internet, copy itself onto each server, and then move on. But
a typo in the code made the worm copy itself not once, but indefinitely,
on each computer. The result was that computers infected by the worm
crashed. over 6,000 servers crashed as a result; at the time that was about
10 percent of the Internet.

Skilled programming can prevent this kind of attack. The program
can truncate the password at 8 characters, so those extra 192 characters
never get written into memory anywhere. It’s easy to do, but it’s hard
to do everywhere. The problem is that with any piece of modern, large,
complex code, there are just too many places where buffer overflows
are possible (and they’re not all as simple as this example) that it is diffi
cult to squash them all. It’s very difficult to guarantee that there are no

 Software Reliability 209

c13.indd 209 2/16/15 10:41 AM

overflow problems, even if you take the time to check. The larger and
more complex the code is, the more likely the attack.

Windows 2000 has somewhere between 35 and 60 million lines of
code, and no one outside the programming team has ever seen them.

T H e u B I q u I T y o F F a u l T y C o d e

This chapter has centered on the Internet, and security bugs there. This
is not to imply that the Internet somehow has more security flaws than
other networks. Internet flaws make the news more often simply because
more people are looking at the software, and more people are finding
bugs. Software in other areas of cyberspace—the phone network, the
electronic banking network—is just as buggy.

estimates from Carnegie Mellon university show that a thousand
lines of code typically has five to fifteen bugs. Most of these bugs are
minor and do not affect performance, and are never noticed. all have the
potential of compromising security.

In the short run, Internet code seems to be getting better. Security
bugs are found all the time. Several computer magazines have weekly
email security newsletters, and they will contain a dozen or so security
related bugs a week. Manufacturers are usually pretty good about fixing
these bugs once they become public, although most won’t bother until
then. If dozens of flaws are being reported and fixed per week, the reason
ing goes, then there are always fewer security flaws to worry about.

This, of course, assumes you always implement the latest patches.
What usually happens is that a vulnerability is reported and a patch is
issued. If you believe the news reports, that’s the end of the story. But in
most cases patches never get installed. a major problem on the Internet is
that these bug fixes don’t necessarily flow downstream to the software in
the field. “Internet time” affects system administrators, too.

So, even though the patches are available, the vulnerability remains.
I’ve seen estimates that over 99 percent of all Internet attacks could be
prevented if the system administrators would just use the most current
versions of their system software. This is one reason vulnerability scanners
are such good security tools: for both the good guys and the bad guys.

even assuming everyone always runs the latest versions of all soft
ware, things are getting worse in the long run. all of these bugs are

210 C H a P T e R T H I R T e e N

c13.indd 210 2/16/15 10:41 AM

implementationspecific, and recidivism is high among software ven
dors. If version 1.0 is released and then over the years dozens, or hun
dreds, of security bugs are found and fixed, this says nothing about the
security of version 2.0. Version 2.0 is probably larger and has more
features; version 2.0 has all sorts of new code. Not only are all of those
bug fixes for version 1.0 irrelevant, but version 2.0 probably has even
more bugs.

 Software Reliability 211

c13.indd 211 2/16/15 10:41 AM

212

14

Secure Hardware

This is an ancient idea. It began when the first person drew a line
across his cave entrance, proclaimed that what was on one side
of the line was his, and then proceeded to defend his cave

against all who disagreed with him. The notion covers a lot of different
things: computer rooms behind locked doors and armed guards, tamper-
resistant set-top boxes for pay-TV, secure tokens for access control,
smart card chips for electronic commerce applications, and a bomb that
blows up if you try to defuse it. The physical instantiation of the secure
perimeter is different in each of these cases, but the fundamental ben-
efit of the idea is the same: “It’s a whole lot easier to design a com-
puter security system if we can leverage the innate physical security of a
device, and assume that parts of the system cannot be accessed by large
classes of people.”

And that’s true. It’s easier to design a secure pay-for-parking system
if you assume that crooks can’t empty the parking meters into their
pockets. It’s easier to design a secure library if you assume that people
can’t sneak books out of the building inside their overcoats. And it’s
easier to design an electronic wallet if you assume that people can’t
arbitrarily modify the amount of money they have.

Here’s a perfect cashless monetary system: Everyone carries around
a piece of paper with a number on it representing the number of ducats
in his wallet. When someone spends money, he crosses out the number
and writes the lower number. When he receives money, he does the
opposite. If everyone is honest, this system works. As soon as someone

c14.indd 212 2/16/15 10:40 AM

notices that he can write whatever number he wants on the paper, the
system falls apart.

However, this was almost exactly the system that precomputer
banks used to keep track of depositors’ accounts. Each depositor had
a bankbook stored in a file cabinet in the bank, and another in his
possession. The bankbooks had a number that represented the amount
of money the person had stored in the bank. When he deposited or
withdrew money, the bank wrote a new number in both books. The
system didn’t fall apart, because one of the books was kept within the
secure perimeter of the bank. And that was the real book; the book the
depositor got was just a copy for his mollification. If a depositor forged
a line in his bankbook, it would not match with the book stored in
the bank. The bank teller would notice the discrepancy, presumably
check other records to make sure there actually was attempted fraud,
and prosecute accordingly. The customer could not modify the book in
the bank because he could not get through the secure perimeter. (The
teller, of course, had many more opportunities to commit fraud.)

This example illustrates the benefit of a secure perimeter; the secu-
rity wouldn’t work without one.

We can build an anonymous cash card system the same way. Cus-
tomers walk around with smart cards in their wallets. The smart card
contains a memory location with a dollar amount stored in it, much the
same as the bankbook. Smart cards talk to each other through some kind
of point-of-sale terminal. When a customer buys something, her smart
card subtracts the amount of purchase from the amount in memory and
writes the lower number back into memory. When a merchant sells
something, his smart card adds the amount of purchase into the memory
location. The cards only do this in pairs (secret keys in the cards can
easily enforce this), so that everything balances out at the end. And to
stop someone from just going into the card and changing his balance,
the cards are tamperproof.

Wasn’t that easy? The secure perimeter around the card—secrets
within the card stay within the card, and people outside the card can’t
affect those secrets—makes a lot of security problems go away. Without
it, the only way to make a system like this work is through a tedious
back-end processing system.

Checks work rather like the first example I talked about: people
keeping a paper in their wallet listing their current account balance.

 Secure Hardware 213

c14.indd 213 2/16/15 10:40 AM

 People keep a paper tally of their current account balances, if they bother
to balance their checkbooks at all. People can write checks for any arbi-
trary amount: No system forces them to write checks for less than their
balance. Merchants accept these checks pretty much on faith; they have
no idea if the person has enough money in the account to cover the
check. But since there is no secure perimeter to enforce honesty, there is a
complicated interbank check-clearing system: The merchant deposits the
check, but doesn’t get credit for the money yet. The merchant’s bank uses
identification information on the bank—account number, bank name,
and so forth—to figure out which account is liable for the amount of
payment. Then it goes to the customer’s bank and requests payment. The
customer’s bank checks the person’s account. It deducts the money
from its “secure” record of the customer’s account and gives it to the
merchant’s bank. Finally, the merchant’s bank credits the merchant’s
account.

Of course, the actual check-clearing system works a little differ-
ently—optimizations have been made for speed and efficiency—but the
basic idea is the same. Checking account holders—and anyone else, for
that matter—can’t be trusted not to write bad checks, so the banks have
to enforce honesty.

T A M P E r r E S I S T A N C E

Tamperproofing would help solve a plethora of computer security prob-
lems. Think how much easier it would be to enforce copy protection
if there were a tamperproof processor in your computer that accepted
encrypted instructions. (Not that this is a good idea, mind you.) Or how
much easier it would be to design a key escrow system (see Chapter
16) if tamperproof hardware could enforce the police eavesdropping
requirements. With tamperproof hardware, I could build an Internet
“meter” that can charge for data access much like an electric meter
charges for power access.

In general, tamperproof hardware is perfect for complex trust rela-
tionships, where one party wants to put a secure device in the hands
of another, with the assurance that the second party can’t modify the
innards of the secure device. For example, when a bank wants to keep
a secure account balance on a device in the hands of its customers. Or

214 C H A P T E r F O U r T E E N

c14.indd 214 2/16/15 10:40 AM

when the police want to keep copies of encryption keys, so that they
can eavesdrop on private conversations even when people use encryp-
tion devices. Or for a cable TV decoder.

The basic problem is that tamperproof hardware does not exist. You
can’t make a device that cannot be tampered with. You can make a
device that most people can’t tamper with. You might possibly even
make a device that can’t be tampered with given a level of technology.
But you can’t make a device that’s absolutely tamperproof.

I could spend an entire book on the details, but they change so
regularly that it would be pointless. Suffice it to say that there are several
dedicated laboratories in the United States that can defeat any tamper-
proof technology that they’ve ever seen. Many more laboratories in var-
ious corporations can be used to defeat tamper resistance, even though
the labs were created for other purposes. The chip laboratories at Intel,
for example, have equipment that could be used to reverse engineer
pretty much any tamperproof chip on the market.

In response to this reality, many companies implemented the seman-
tic fix of calling their technology tamper resistant, which is something
like “tamperproof for almost everybody.” I suppose this is reasonable:
A letter sealed in an envelope could be viewed as tamper resistant, even
though the CIA and others have a surprising amount of expertise in
tampering with the mail.

The problem with tamper-resistant hardware is figuring out exactly
how tamper resistant it really is. Imagine that you are implementing
a smart card commerce system that uses a tamper-resistant chip for its
security. And it’s an anonymous system, so the tamper resistance is all
the protection you have against widespread counterfeiting. How much
tamper resistance do you need? How do you know when you’ve gotten
that? What do you do when technology marches on?

Figuring out how much tamper resistance you need might be doable.
Maybe you can estimate the value of a break: how much money someone
could counterfeit if she were able to defeat the tamper resistance. If you’ve
designed a good system, maybe you can cap the amount of money that
can be stolen from a single smart card: let’s say $100. The next problem is
harder: How do you know when you’ve implemented enough tamper-
resistance measures so that the cost to defeat them is more than $100?

Nobody really knows how effective different tamper-resistance
measures are. Sure, a laboratory can tell you how much time they spent

 Secure Hardware 215

c14.indd 215 2/16/15 10:40 AM

defeating it or how much money it would cost to buy the equipment
they used, but someone at a lab across town could use different tech-
niques and come up with a different figure. And remember the public-
ity attack: Some grad student somewhere could borrow equipment and
defeat your tamper resistance just for fun. Or maybe a criminal could
buy the equipment and expertise. This is nowhere near as straightfor-
ward as estimating the time and money it would cost to implement a
brute-force attack against a cryptographic algorithm.

And even if it were possible to figure out how effective a tamper-
resistance technique is today, that says nothing about how effective it
would be tomorrow, or next year, or five years from now. Advances
in this field happen all the time. Advances come from a variety of tech-
nologies, and they interact in really interesting ways. What was difficult
to defeat one year might be trivial to defeat the next. It’s naïve to rely
on tamper resistance for any long-term security.

Another option is to make the system tamper evident. This is easier
to do than making it tamper resistant: We don’t care if someone can
tamper with the system, we just care that he can’t do it undetectably.
Imagine a tamper-evident hand-held gambling device. A player can
take it home with him and win or lose money. Because we are going to
let the player take the device home with him, and we know that he can
potentially win thousands of dollars, we do our best to make it tamper
resistant. But because we know that true tamper resistance is impossible,
we actually rely on tamper evidence. When he returns the gambling
device to collect his winnings, we are going to inspect it up one side
and down the other. We’re going to install seals that have to be broken,
coatings that have to be removed, wires that have to be cut. Sure, the
best attackers can do all of that, but they can’t do it all and then undo it
all after they’re done.

Better, but still not good enough. I believe that no system can be
absolutely tamper evident, although there are different degrees. relying
on it as a sole security measure is a mistake.

None of this stops the physical world from using these concepts.
Many systems make use of antitampering devices, from aspirin bottles to
NSA-designed cryptographic chips. This is not necessarily a bad thing:
Tamper resistance protects systems from most people and most attacks.
I worry when systems rely on tamper resistance for security, instead of
using it as just one aspect of a more comprehensive security system.

216 C H A P T E r F O U r T E E N

c14.indd 216 2/16/15 10:40 AM

One system that uses tamper resistance effectively as part of a larger
control mechanism is the U.S. system for controlling nuclear weapons.
The risk is real: Some rogue commander could launch weapons with-
out permission, or tactical nuclear weapons could be stolen or (if they
were stored at an American base overseas) seized by an ally during a
crisis. There was a need to ensure that nuclear weapons could only be
launched in the event of a directive from Washington. The solution
uses something called a PAL, a permissive action link, details of which
are still secret. We do know that PALs are only considered useful if they
are buried deep within a large and complex weapon system. Simpler
weapons are stored in special containers, PAPS (prescribed action pro-
tective systems), that provide an extra tamper-resistant barrier.

The tamper resistance in nuclear weapons includes various booby
traps: chemicals that render the nuclear material useless, small explo-
sives that destroy critical components of the weapon and the attacker,
and so forth. Only cryptographic codes transmitted from Washington
will disarm these tamper-resistance mechanisms and arm the nuclear
weapon itself.

These protection mechanisms are extreme, but this is an extreme
situation. There are extreme situations in the commercial world—root
CA keys (see Chapter 15), keys used by banks to secure interbank wire
transfers—but the security measures come from carefully crafted sys-
tems, not mass-produced products. In the normal commercial world,
the protection measures are much more pedestrian.

And there is a fundamental difference of control. The nuclear
weapon is under extreme physical control; this makes tamper-resistance
measures more effective.

Think of a slot machine. A slot machine has a secure perimeter. If you
can open up the slot machine, you can take all the money out or, more
 dangerously, modify the rOMs so that it pays a jackpot. But that slot
machine is on a casino floor. There are lights, cameras, guards, people . . .
if someone goes anywhere near that slot machine with a drill or a screw-
driver, he is going to get arrested. Now imagine the casino says something
like this: “Here’s a slot machine. Take it home. Play all you want. Bring it
back in a few months. Whatever is on the pay line, we’ll pay.”

This is now a different situation. The attacker can take the slot
machine home to his basement lab. He can study the machine all he
wants. He can X-ray it. He can even buy several identical machines from

 Secure Hardware 217

c14.indd 217 2/16/15 10:40 AM

the manufacturer and take them apart. In the end, he is much more likely
to be able to attack the system in his basement than the one sitting on the
casino floor. And this holds true not only for slot machines, but ATMs,
bank safe deposit boxes, and anything with a similar security model.

(This is not to say that slot machines on a casino floor are invulner-
able. Dennis Nikrasch made a good living—about $16 million total—
ripping off slot machines. He practiced on slot machines at home, and
learned how to open a machine up on the casino floor—without setting
off the alarms—and swap firmware chips. Blockers stood between him
and the cameras. Then he would leave, and an accomplice would play
the rigged machines for the jackpot.)

The morals of this section are simple. One, tamper resistance is
largely a myth, but it does provide a barrier to entry. Two, tamper resis-
tance should be augmented by other countermeasures. And three, any
system where the device and the secrets within the device are under the
control of different people has a fundamental security flaw. It’s possible
to design a secure system that includes this flaw, but it must be recog-
nized as a flaw.

S I D E - C H A N N E L A T T A C k S

In the last few years, new kinds of cryptanalytic attacks have begun
to appear in the literature: attacks that target specific implementation
details. The timing attack made a big press splash in 1995: rSA private
keys could be recovered by measuring the relative times cryptographic
operations took. This attack has been successfully implemented against
smart cards and other security tokens, and against electronic commerce
servers across the Internet.

researchers have generalized these methods to include attacks on
a system by measuring power consumption, radiation emissions, and
other side channels, and have implemented them against a variety of pub-
lic-key and symmetric algorithms in tamper-resistant tokens. related
research has looked at fault analysis: deliberately introducing faults into
cryptographic processors in order to determine the secret keys. The
effects of this attack can be devastating.

Let’s assume that an attacker wants to learn the secret keys inside a
tamperproof module: a smart card, a PCMCIA card, or something like

218 C H A P T E r F O U r T E E N

c14.indd 218 2/16/15 10:40 AM

that. He can’t cryptanalyze the algorithms or protocols (they’re too
good), and he can’t defeat the tamper resistance. But the attacker is
clever; instead of just looking at the inputs and outputs, he’s going
to look at the speed in which the module does things. The criti-
cal observation in the timing attack is that many implementations of
cryptography do things at different speeds for different keys. knowing
what speed a certain operation takes yields information about the key.
knowing a lot of different speeds for different operations can yield the
entire key.

Imagine the attack working against a stockroom; you want to know
about its contents. You can’t look in the stockroom to see how things
are arranged. However, you can ask the clerk to get stuff for you. By
timing how long it takes him to get different things, you can learn a lot
about the stockroom. Does he always take a long time to get toner car-
tridges? Then they must be in the back of the room. Does he take lon-
ger to get reams of paper every ten requests? Then they must come in
boxes of ten. Does he take longer to get pencils if you’ve just asked him
to get erasers? That tells you something about what boxes get stacked
on top of each other.

Here’s a timing attack against a password checker. Try a random
password, but vary the first character. So if there are 26 letters, capital
and lowercase, ten numbers, and a handful of punctuation marks, try
about 70 passwords. Just possibly, one will take longer to be rejected
than the others. Just possibly, this is the first correct character. repeat
with the rest of the characters. If you are attempting to attack an eight-
character password, you only have to try 560 passwords and measure
their timings.

The attacker doesn’t have to limit himself to timing. He can look
at how much power is dissipated for different operations. (The module
can use different amounts of power to do the same operation, depend-
ing on the key.) He can look at how much heat is radiated, and even
where on the module it radiates from. For example, power attacks have
been used to pry secrets out of almost all smart cards on the market.

These attacks are possible because the module is in the attacker’s
hands. If the module were sitting in a locked vault, he couldn’t perform
these kinds of attacks. (Although he might be able to attack another copy
of the same product, which might provide some interesting informa-
tion.) But precisely because the system’s designers relied on tamperproof

 Secure Hardware 219

c14.indd 219 2/16/15 10:40 AM

hardware and were willing to give the attacker a copy of the module, he
can perform these systemic attacks.

Sometimes it is possible to perform some of these attacks remotely,
over a network. You can’t look at heat dissipation or power consump-
tion, but you can look at timing. Sure, there will be some noise created
by the network, but you can factor it out mathematically. Or you can
look at radiation (the military calls this TEMPEST).

TEMPEST is worth explaining more thoroughly, if for no other
reason than various militaries spend a lot of money defending against it.
It turns out that electronic equipment radiates information, and that a
sensitive radio receiver tuned to just the right channel can pick up that
information. (This is also called van Eck radiation.) Video monitors are
probably the worst offenders—with the right equipment you can read
someone else’s computer screen from down the block—but everything
leaks to some degree. Cell phones, fax machines, and computer switches
leak information. It doesn’t matter if these devices encrypt the data;
both the encrypted and the unencrypted data radiates, and a resourceful
attacker can separate the two. Cables act as antennas and leak informa-
tion. Power lines act as conduits for leaked information. This is a non-
trivial attack, and can require a lot of special equipment. Sometimes it’s
easy—reading someone else’s computer monitor—but other times, it is
complicated and laborious.

The government solution to this problem is shielding. The military
buys computer equipment that is TEMPEST shielded. When they build
cryptographic equipment, they spend extra money to ensure that the
plaintext doesn’t leak over to the ciphertext data lines, or out of the box.
They buy shielded cables for both power and data. They’ll even build
rooms that are TEMPEST shielded or, in extreme cases, entire build-
ings: These are called Secure Compartmented Information Facilities, or
SCIFs.

There are other side-channel attacks. Sometimes heating or cooling
the module can have interesting results; other times varying the input
voltage does the trick. One security processor, for example, unlocks
secret data if the input voltage drops for an instant. Another has a ran-
dom number generator that produces all ones if the voltage is slightly
lowered. Other modules fail when you tweak the clock input.

Think of all of this as noninvasive biological experimentation. You
can learn a lot about an organism by just watching it: what it eats, what

220 C H A P T E r F O U r T E E N

c14.indd 220 2/16/15 10:40 AM

it excretes, when it sleeps, how long it takes to do certain tasks at differ-
ent times, whether it is warm or cold, wet or dry. There’s no reason to
cut it open; there’s a lot to be learned while it is still working properly.

Cutting it open is always interesting, though, especially if you can
cut it open without killing it. If we defeat the tamper resistance and do
this to the module, we can learn a lot about its security.

Fault analysis is another powerful attack, because cryptography is
sensitive to small changes. In Chapter 7, I talked about how easy it is
to incorrectly implement cryptography, destroying its security in the
process. In fault analysis, an analyst purposely introduces flaws into the
cryptographic implementation—in specific places designed to maximize
the amount of information leaked. Combining this with defeating the
tamper resistance—cutting a lead here and a lead there (not at random,
but specific ones)—is a devastating attack against secure modules.

Systemic attacks are not low-budget attacks. You aren’t likely to
see them carried out by lone criminals or common terrorists. They are
attacks for well-funded adversaries: organized crime, some industrial
competitors, military intelligence organizations, and academic laborato-
ries. They work, and work well. Systems such as smart cards would do
well to assume that systemic attacks are possible, and ensure that even if
successful they cannot defeat the security of the system.

Side-channel attacks don’t necessarily generalize to other systems.
A fault-analysis attack just isn’t possible against an implementation that
doesn’t permit an attacker to create and exploit the required faults. But
these attacks can be much more powerful than standard cryptanalytic
attacks against algorithms. For example, a published differential-fault-
analysis attack against DES requires between 50 and 200 ciphertext
blocks (no plaintext) to recover a key. It only works on certain tokens
implementing DES in a certain way. Contrast this with the best non-
side-channel attack against DES, which requires just under 64 terabytes
of plaintext and ciphertext encrypted under a single key.

Some researchers have claimed that this is cheating. True, but in real-
world systems, attackers cheat. Their job is to recover the key, not to fol-
low some arbitrary rules of conduct. Prudent engineers of secure systems
anticipate this and adapt to it. It is our belief that most operational crypt-
analysis makes use of side-channel information. Sound as a side chan-
nel—listening to the rotation of electromechanical rotor machines—was
alluded to in David kahn’s book The Codebreakers. The U.S. military has

 Secure Hardware 221

c14.indd 221 2/16/15 10:40 AM

long made a big deal about TEMPEST. And in his book Spycatcher, Peter
Wright discussed secret data leaking onto a transmission line as a side
channel (the vulnerability is known by the military as HIJACk) used to
break a French cryptographic device.

Defenses are hard. You can either reduce the amount of side-chan-
nel information that leaks, or make the leakage irrelevant. Both have
problems, although researchers are working on them. More expensive
devices have sensors that detect tampering with the inputs—regulators
that detect drops in voltage, thermometers that detect attempts to freeze
the device, clocks that are immune to glitches from outside—and erase
their secrets. Other devices sense when they are being dissected and do
the same thing. But these kinds of defensive measures tend only to be in
devices that the military buys, and often can’t be implemented in low-
end secure devices such as smart cards.

Side-channel attacks are very powerful, and it will be a while before
there is a good defensive theory. In the meantime, any system in which
a device is held by one person, and the secrets within the device are held
by another, is at risk.

A T T A C k S A g A I N S T S M A r T C A r D S

Smart cards are viewed by some as the magic bullets of computer secu-
rity—multipurpose tools that can be used for access control, e-com-
merce, authentication, privacy protection, and a variety of other
applications. Basically, designers use their properties as a secure perim-
eter: The processor and memory inside is (supposedly) invulnerable
against attack. They’re also small, portable, cheap, and flexible. This
makes them attractive, but the lack of direct input and output on a smart
card makes them more vulnerable to attack.

What’s most interesting about smart cards is that there are often a
large number of parties involved in any smart card–based system. This
means smart cards are susceptible to many classes of attacks. Most of
these attacks are not possible in conventional, self-contained computer
systems, since they would take place within a traditional computer’s
secure perimeter. But in the smart card world, the following attacks all
pose a legitimate threat. And this is an example of looking at smart cards
from a systems point of view:

222 C H A P T E r F O U r T E E N

c14.indd 222 2/16/15 10:40 AM

Attacks by the terminal against the cardholder or data owner. These
are the easiest attacks to understand. When a cardholder puts her card into
a terminal, she trusts the terminal to relay any input and output from the
card accurately. Security in most smart card systems centers around the
fact that the terminal only has access to a card for a short period of time.
The real security, though, has nothing to do with the smart card/terminal
exchange; it is the back-end processing systems that monitor the cards and
terminals and flag suspicious behavior.

Attacks by the cardholder against the terminal. More subtle are attacks
by the cardholder against the terminal. These involve fake or modified
cards running rogue software with the intent of subverting the protocol
between the card and the terminal. good protocol design mitigates the
risk of these kinds of attacks. The threat is further reduced when the card
contains hard-to-forge physical characteristics (e.g., the hologram on a
Visa card) that can be manually checked by the terminal owner.

Attacks by the cardholder against the data owner. In many smart
card–based commerce systems, data stored on a card must be protected
from the cardholder. In some cases, the cardholder is not allowed to know
that data. If the card is a stored-value card, and the user can change the
value, she can effectively mint money. There have been many successful
attacks against the data inside a card.

Attacks by the cardholder against the issuer. Many financial attacks appear
to be targeting the issuer, but in fact are targeting the integrity and authentic-
ity of data or programs stored on the card. If card issuers choose to put bits
that authorize use of the system in a card, they should not be surprised when
those bits are attacked. These systems rest on the questionable assumption that
the security perimeter of a smart card is sufficient for their purposes.

Attacks by the cardholder against the software manufacturer. gen-
erally, in systems where the card is issued to an assumed hostile user, the
assumption is that the user will not load new software onto the card. This
turns out not to be the case.

Attacks by the terminal owner against the issuer. In some systems, the
terminal owner and card issuer are different parties. This split introduces
several new attack possibilities. The terminal controls all communication
between the card and card issuer, and can always falsify records or fail
to complete one or more steps of a transaction in an attempt to facilitate
fraud or create customer service difficulties for the issuer.

Attacks by the issuer against the cardholder. In general, most systems
presuppose that the card issuer has the best interests of the cardholder at
heart. But this is not necessarily the case. These attacks are typically pri-
vacy invasions of one kind or another. Smart card systems that serve as
a substitute for cash must be carefully designed to maintain the essential
properties of cash money: anonymity and unlinkability.

 Secure Hardware 223

c14.indd 223 2/16/15 10:40 AM

Attacks perpetuated by the manufacturer against the data owner.
Certain designs by manufacturers may have substantial and detrimental
effects on the data owners in a system. If the manufacturer provides an
operating system that allows (or even encourages) multiple users to run
programs on the same card, a number of new security issues are opened
up, such as subversion of the operating system, intentionally poor random
number
generators, or one application on a smart card subverting another applica-
tion running on the same card.

This is not to say that smart cards are useless as a security device. A
smart card that accesses a credit or debit financial system, for example, is
very different than a smart card that accesses a stored value system. Smart
card systems that allow for identification and auditability are also safer.
Smart cards are useful, but they come with new risks. Securing smart card
systems means recognizing these attacks and designing them into a system.
In the best systems, it doesn’t matter if (for example) the user can hack the
card. It’s very Zen: Work with the security model, not against it.

224 C H A P T E r F O U r T E E N

c14.indd 224 2/16/15 10:40 AM

15

Certificates
and Credentials

The notions of a public-key certificate and a public-key infrastructure
are central to much of modern Internet cryptography. Before
getting into that, though, it is worth recalling what a digital

signature is. A digital signature is a mathematical operation on a bucket
of bits that only a certain key can do. This operation can be verified
with another, corresponding, key. The signing key is only known by
Alice. Hence, the argument goes, only Alice could have performed the
mathematical operation and therefore Alice “signed” the bucket of bits.

The problem with this model is that it assumes that the signing key
is a secret only known by Alice. All we can really stipulate by verifying
the signature is that Alice’s key signed the message; we cannot say any-
thing about whether or not Alice did. We don’t know if Alice’s key was
stolen by someone else. We don’t know if a Trojan horse snuck into
Alice’s computer and fooled her into signing something else. We don’t
know anything about Alice’s intentions. When we see Alice’s handwrit-
ten signature on a paper document, we can make statements about her
volition: She read and signed the document, she understood the terms.
When we get a document signed with Alice’s private key, we don’t
even know if Alice ever saw the document in the first place. “Digital
signature” is a terrible name for what is going on, because it is not a
signature.

225

c15.indd 225 2/16/15 10:40 AM

This will become important later in this chapter. But first, let’s talk
about trusted third parties.

T r u S T e D T H I r D P A r T I e S

Cryptographers define a trusted third party as someone trusted by every-
one involved in a protocol to help complete the protocol fairly and
securely. A friend at the NSA once said (with remarkable perspicuity):
“Someone whom you know can violate your security policy without
getting caught.” Oddly enough, these definitions are basically the same.

remember the various trusted third party protocols from Chapter
7? All commerce, with the exception of direct barter, uses trusted third
parties in some way. even cash transactions: The seller is trusting the
government to back the currency he is accepting. When the transaction
involves an interesting financial instrument—a check, a credit card, a
debit card, a traveler’s check—both the buyer and the seller are relying
on the bank or financial company to behave properly. The merchant
and the customer don’t necessarily trust each other, but the trusted third
party is able to successfully mediate a transaction between them. Things
would fall apart pretty quickly if a credit card company started capri-
ciously refusing to accept merchant slips for certain cardholders.

Lawyers act as trusted third parties in more personal roles: executors
of wills, that sort of thing. When someone announces to her captors,
“If you kill me, my lawyer will mail a copy of the evidence to the FBI,
CNN, and the New York Times,” she is using her attorney as a trusted
third party. Lawyer jokes aside, the profession makes a pretty good
trusted third party.

The entire civil court system can be viewed as a trusted third party,
ensuring that contracts are fulfilled and that business is conducted
 properly. Here’s the fair contract protocol: Alice and Bob negotiate
and sign a contract. If one of them feels that the other is not uphold-
ing his or her end of the contract, he or she calls in the trusted third
party: the judge. The judge listens to the evidence from both sides, and
then makes a ruling.

This works because both Alice and Bob believe that the judge will
be fair. In jurisdictions where the legal system is corrupt or incompe-
tent, you see a much smaller reliance on contracts and a radically differ-
ent set of rules for conducting commerce.

226 C H A P T e r F I F T e e N

c15.indd 226 2/16/15 10:40 AM

Many other trusted third parties populate everyday life. Consign-
ment shops, either storefront or over the Net, are trusted third parties.
So are auction houses. ever buy something to be delivered COD? The
delivery service is acting as a trusted third party. They do the same thing
for certified mail. Notary publics act as trusted record keepers, verify-
ing the identities of people signing legal documents and providing audit
evidence in the event of a dispute. The uN sends “observers” to act
as trusted third parties in parts of the world where the parties involved
don’t trust each other (and have way too many guns). On the Net,
auction escrow services have appeared, acting as trusted third parties
between buyers and sellers for high-priced items.

In the united States, an entire industry of trusted third parties medi-
ates real estate transactions: title companies. These companies act as
trusted third parties between the various parties involved in buying and
selling a house: the buyer, the seller, the buyer’s bank, the seller’s bank,
the buyer’s real estate agent, and the seller’s real estate agent. All of these
parties rely on the title company to complete the transaction fairly.

Trusted third parties will become more important in the electronic
world. In a world without face-to-face (or even voice-to-voice) trans-
actions, in one of mediocre cryptography and horrible computer secu-
rity, they are the only real certification anyone is likely to have.

remember the whole system of public keys that I talked about in
Chapter 6? Alice wants to send an encrypted message using Bob’s pub-
lic key, so she goes to a public-key database to find it. She gets Bob’s
 public-key certificate. This is a message, signed by someone else, that
 certifies that the particular key belongs to Bob. The person who signed that
certificate: That’s a trusted third party.

Secure systems leverage the trusted third parties that are inherent
in the systems that they are securing. Badly designed systems introduce
trusted third parties without understanding the security ramifications.
Awfully designed systems mandate trusted third parties by law.

C r e D e N T I A L S

Open up your wallet. Inside you will see all sorts of credentials. You
have a bank card. This is a credential issued to you by your bank; you use
it to prove your identity to an ATM so that it dispenses cash. You have
credit cards, credentials issued to you by a bank so that you can borrow

 Certificates and Credentials 227

c15.indd 227 2/16/15 10:40 AM

money through one of the credit card systems. You have a driver’s
license, issued to you by the government. It proves that you possess the
privilege to drive. rental car companies in foreign countries use that
credential as proof that you have the ability to drive, but police usu-
ally just use it as a handy way of getting your name and address: They
verify your license in a police database. (Some stores use a driver’s license
as a credential before they let you pay by check, a trusted third-party
relationship based on the premise that accurate identification informa-
tion aids prosecution.) You also have airline frequent-flyer cards, library
cards, membership cards to places like gyms, and whatnot. If you have a
passport, that’s another credential.

each of these credentials is issued by a different third party, and each
of them operates in transactions where that third party is trusted. Cre-
dentials are not interchangeable. The bank is trusted to issue ATM cards
to those people with accounts. The card, together with a PIN and a
real-time database lookup to your account balance, allows you to with-
draw money from your account. The driver’s license, because it is a cre-
dential issued by the government, is often used as proof of age in bars.
The bar is treating the state as a trusted third party for age verification.
(I’ve seen bars that accept driver’s licenses, state ID cards, and foreign
passports as proof of age, but not u.S. passports. This makes no sense.) If
you wanted to run a tab at the bar, a driver’s license wouldn’t be a use-
ful credential. The bar might trust the state to certify your date of birth,
but not your fiscal solvency.

each trusted third party has its own rules that it follows before it
issues a credential. To get a passport, you must provide proof of citizen-
ship and proof of identity. To get a driver’s license, you have to pass
an exam and provide proof that you live in the state in which you’re
applying for the license. A credit card company collects a lot of personal
information about you, runs a background check in some large database
somewhere, and then issues you the credential. The credential might
have a low credit limit at first, but as you build up your relationship as
a customer, it might go up.

These physical credentials also illustrate the problem with revoca-
tion. What happens when your credential is revoked? When Master-
Card revokes your credit card, they can’t reach into your wallet and
cut it in half. So they “revoke” it in a database somewhere; they simply
record the card number as invalid. This works, as long as anyone who

228 C H A P T e r F I F T e e N

c15.indd 228 2/16/15 10:40 AM

might accept the credential checks the database. If you are in a remote
jungle retreat with no phones, there might be no way to verify the
validity of the credential.

The other way to deal with revoked credentials is to limit the
amount of time they can be used without being reissued. Almost all
credentials have an expiration date, even pretty dorky ones like library
cards. (The only counterexample I can think of is corporate identity
badges. This, I think, is just plain dumb. It’s much more likely that
you’ll change jobs than you’ll forget how to drive.) A credential is no
good after the expiration date, as anyone who has inadvertently tried
to pay for something with an expired credit card, or (oops) to get back
into the united States with an expired passport, knows. If you have an
expired credential, you have to get a new one. Sometimes you have to
get it yourself, like a new passport, and sometimes a new one is sent to
you automatically, like a new credit card.

expirations provide a safety net. A bad credential can be out there
for only so long, because it will expire eventually. A credit card com-
pany has to keep a record of a bad credit card number for only so long,
because after it expires, it’s obviously no good. The third parties that
issue these credentials can tune their expiration dates to suit the applica-
tions. Your first credit card might expire after six months or a year, just
in case you don’t prove reliable. After a while, your credit card might
expire every three years. Driver’s licenses (at least in Illinois) expire after
four years. u.S. passports are good for ten years. We can imagine a cre-
dential in an application where fraud is rampant that would expire every
week, or every day, or every hour. It would be a royal pain to deal with
in the pen-and-paper world, but it works just fine in cyberspace.

And we want credentials to work in cyberspace. We want the digi-
tal equivalent of credit cards, age-verification cards, corporate identity
badges, library cards, membership cards, and the like.

C e r T I F I C A T e S

A certificate is a credential . . . sort of. It’s sort of your identity, but not
really. And it’s signed by someone everyone trusts . . . maybe. It’s defi-
nitely not the same as a public key.

I think I should start at the beginning.

 Certificates and Credentials 229

c15.indd 229 2/16/15 10:40 AM

remember Chapter 6 and public-key cryptography? Alice uses
public-key cryptography to digitally sign things. She signs documents
with her private key, and sends the signed document to Bob. Now Bob
needs Alice’s public key to verify the signature. Where does he get it
and how is he sure it’s Alice’s?

In the early days of public-key cryptography, people envisioned vast
databases of public keys, kind of like telephone books. Bob could look
Alice’s name up in the online database of public keys, and then retrieve
the public key associated with that name.

Well, if everyone’s public key is going to be stored in a vast data-
base somewhere, what about the security of that database? An attacker
can do lots of malicious things if he can substitute one public key for
another. He can create a new public key, sign a bunch of checks with
it, and then slip it in the database next to Alice’s name. Suddenly, Alice
signed all of those checks. If Bob is using Alice’s public key to encrypt
a message to her, the attacker can swap his public key for Alice’s; now
Bob’s secret message to Alice can be decrypted by the attacker, and not
by Alice.

We might be able to secure the public-key database, but the whole
idea was to have public keys freely and widely available. This just isn’t
going to work.

Certificates were the solution. A certificate is a binding between a
public key and an identity. A mutually trusted entity—call him God for
now—takes Alice’s name and Alice’s public key, sticks them together,
and then signs the whole mess. Now Bob has no worries. He gets Alice’s
public-key certificate from somewhere—he doesn’t much care where—
and verifies God’s signature on it. Bob trusts God, so if the signature is
valid he knows that the public key belongs to Alice and not to some
imposter. Problem solved; the world is now safe for electronic commerce.

Well, not exactly. Note that we haven’t actually solved the prob-
lem. All we’ve done is taken the original problem, “How does Bob
know that Alice’s public key is really hers?” And changed it to: “How
does Bob know that God’s public key is really his?” Bob has to verify
God’s signature on the certificate before he can use Alice’s key, so he
needs God’s public key. And where is he going to get that?

But we did solve something. Bob presumably wants to communi-
cate with a lot of people, not just with Alice. And if God has signed
everyone’s certificate, we’ve reduced Bob’s problem from verifying

230 C H A P T e r F I F T e e N

c15.indd 230 2/16/15 10:40 AM

everyone’s public key to verifying just one public key: God’s. But let’s
save that problem for later.

A real certificate is a little more complicated. It contains informa-
tion about the person (his name, possibly his job title, possibly his e-mail
address, and other things about him), information about the certificate
(when it was issued, when it expires), information about the issuer or
signer (who he is, what algorithm he used to sign the certificate), and
information about the public key (what algorithm it is for) . . . as well
as the public key itself.

The basic idea is that Alice gets a public key certificate signed by God
somehow. either she generates her own public-key/private-key key pair
and sends the public key to God, who returns the public-key certificate,
or God generates a public-key/private-key key pair for Alice and sends
her both the private key and the public-key certificate. (Now we have the
problem of securing this exchange, but never mind that for now.)

This all works great, until Alice loses her private key. Maybe someone
stole it. Maybe she just forgot it. (Or, more likely, her computer crashed
and didn’t have a backup.) Bob is going to try to send her encrypted
e-mail in that lost key. Or, worse yet, Bob is going to try to verify sig-
natures created after someone stole the key. What do we do now?

We tell God, and he revokes Alice’s certificate. He declares it no
longer valid, no longer good, no longer correct. How does he do this?
He can’t go through every nook and cranny of the Net and erase every
copy of the certificate. (Well, maybe God can, but this is only an anal-
ogy.) He probably doesn’t even know Bob has a copy of it.

So, God puts Alice’s certificate on the certificate revocation list, or
CrL. The CrL is a list of revoked certificates. (remember 20 years
ago when merchants had newsprint books listing bad credit card num-
bers? That’s a CrL.) God issues a CrL at regular intervals (the credit
card companies did it once a week), and it is Bob’s job to make sure
that Alice’s certificate is not on the current CrL before he uses it. He
should also make sure that it hasn’t expired, and that the certificate really
does belong to Alice.

How does he do that last one? He compares Alice’s name with the
name on the certificate. If they match, then the certificate is hers. It
sounds simple, except that it doesn’t work.

This idea has several problems. First, there is no one to act as God.
Or, more properly, there is no one organization or entity that everyone

 Certificates and Credentials 231

c15.indd 231 2/16/15 10:40 AM

can agree on and whose judgment is unassailable. The second is that
Alice has no single name that everyone can agree on.

First problem first. remember, for this whole system to work, Alice
has to have her certificate issued by someone that both she and Bob
trust. In reality, we use hierarchies of trust to establish the validity of
certificates. A military organization is probably the best example of this.
The platoon leader signs the certificates of everyone in his platoon. The
division commander signs the certificate of every platoon leader under
him. The army general signs the certificates of his divisional command-
ers. And so on, up to the commander-in-chief.

Alice now has a chain of certificates, from the commander-in-chief
to the army general to the divisional commander to the platoon leader
to her. She keeps them all, and presents them to Bob. If she and Bob are
in the same platoon, then Bob also has the platoon leader’s certificate.
He knows that it is valid, so he can verify Alice’s certificate directly.
If Bob is in the same division as Alice but in a different platoon, they
share the same divisional commander certificate. Bob can use it to verify
Alice’s platoon leader’s certificate, and then Alice’s certificate. Since
Alice and Bob are in the same military, someone is in both of their
chains of command. It might even be the commander-in-chief, who is
“God” in this example.

This system works great in the military, but less well in the civilian
world. The Internet uses certificates to fuel a lot of protocols: IPsec and
various VPN systems, SSL, a few electronic commerce protocols, some
login protocols. These certificates are issued to users by someone called
a certificate authority (CA). A CA can be a corporate security office. It can
be a government. It can be a private company that is in the business of
issuing certificates to Internet users.

These CAs also need certificates. (remember, there’s a hierarchy
here.) These CA certificates are issued by other CAs (probably VeriSign).
eventually you get to the God in this system, or in reality a pantheon of
Gods. The highest-level CAs have what are known as root certificates;
they are not signed by anyone else. These certificates are embedded in the
software you buy: your browser, your VPN software, and so forth. This is
all called a public-key infrastructure (PKI). It works, but only sort of.

Second problem: Alice’s name.
Back in ancient times (the mid-1980s), someone dreamed about a

world where every individual, every process, every computer, every

232 C H A P T e r F I F T e e N

c15.indd 232 2/16/15 10:40 AM

communications device—anything connected to digital communica-
tions—had a unique name. These names would be held in a vast dis-
tributed database, held by multiple people in multiple locations. This
was called X.500.

Certificates generally associate a public key with a unique name
(called a distinguished name in X.500 talk), but few people talk about
how useful that association is. Imagine that you receive the certificate
belonging to Joan robinson. You may know only one Joan robinson
personally, but how many does the CA know? How do you find out
if the particular Joan robinson certificate you received is your friend’s
certificate? You could have received her public key in person or verified
it in person (PGP allows this), but more likely you received a certificate
in e-mail and are simply trusting that it is the correct Joan robinson.
The certificate’s Common Name will probably be extended with some
other information, in order to make it unique among names issued by
that one CA.

Do you know that other information about your friend? Do you
know what CA her certificate should come from?

remember the phone directory metaphor for public keys. If you
wanted to find Joan robinson’s public key you would look her up in
the directory, get her public key, and send her a message for her eyes
only using that public key. This might have worked with the Stan-
ford Computer Science Department phone directory in 1976, but how
many Joan robinsons are in the New York City phone book, much
less in a hypothetical phone book for the global Internet?

We grow up in small families where names work as identifiers. By the
time we’re five years old, we know that lesson. Names work. That is false
in the bigger world, but things we learn as toddlers we never forget. In
this case, we need to think carefully about names and not blindly accept
their value by the five-year-old’s lessons locked into our memories.

The idea also assumes that Alice and Bob have an existing rela-
tionship in the physical world, and want to transfer that relationship
into cyberspace. remember back when “cyberspace” was just a science
 fiction term, and any relationship worth talking about—business, social,
banking, commercial—was formed in the flesh-and-blood world?
Today, people are meeting on the Net and forming relationships all the
time. Sometimes they meet in person long after they’ve become friends;
sometimes they never meet in person. In this brave new world, a system

 Certificates and Credentials 233

c15.indd 233 2/16/15 10:40 AM

designed to map relationships from the physical world into cyberspace
seems limiting.

P r O B L e M S W I T H T r A D I T I O N A L P K I S

PKIs and CAs have a raft of other problems. For example, what does
it mean when a CA claims that it is trusted? In the cryptographic lit-
erature, this only means that it handles its own private keys well. This
 doesn’t mean you can necessarily trust a certificate from that CA for a
particular purpose: making a small payment or signing a million-dollar
purchase order.

Who gave the CA the authority to grant such authorizations? Who
made it trusted? Many CAs sidestep the question of having no authority
to delegate authorizations by issuing identity certificates. Anyone can
assign names. We each do that all the time. This leaves the risk in the
hands of the verifier of the certificate, if he uses an identity certificate
as if it implied some kind of authorization. Basically, certificates only
protect you from those that the PKI vendor refuses to do business with.

And “authority” has several meanings. The CA may be an author-
ity on making certificates, but is it an authority on what the certificate
contains? For example, an SSL server certificate contains two pieces of
data of potential security interest: the name of the keyholder (usually a
corporate name) and the DNS name for the server. There are authori-
ties on DNS name assignments, but none of the SSL CAs listed in the
popular browsers is such an authority. That means that the DNS name
in the certificate is not an authoritative statement. There are authorities
on corporate names. These names need to be registered when one gets
a business license. However, none of the SSL CAs listed in the browsers
is such an authority. In addition, when some server holds an SSL server
certificate, it has permission to do SSL. Who granted the authority to
an SSL CA to control that permission? Is the control of that permission
even necessary? What harm would be done if an uncertified server were
allowed to use encryption? None.

Some CAs, in response to the fact that they are not authorities on
the certificate contents, have created a two-part certification structure:
a Registration Authority (rA), run by the authority on the contents. The
idea is that the rA is responsible for validating what’s in the certificate,
and the CA is responsible for issuing it.

234 C H A P T e r F I F T e e N

c15.indd 234 2/16/15 10:40 AM

The rA+CA model is categorically less secure than a system with a
CA at the authority’s (i.e., the rA’s) desk. The rA+CA model allows
some entity (the CA) that is not an authority on the contents to forge
a certificate with those contents. Of course, the CA would sign a con-
tract promising not to do so, but that does not remove the capability.
Meanwhile, since security of this model depends on the security of both
pieces and the interaction between them (they have to communicate
somehow), the rA+CA is less secure than either the rA or the CA, no
matter how strong the CA or how good the contract with the CA. Of
course, the model with a CA at the authority’s desk (not at the vendor’s
site) violates some PKI vendors’ business models.

Another problem involves the protection of the private key.
re member, for the whole digital-signature system to work, you have to be
sure that only you know your private key. Okay then, how do you pro-
tect it? You almost certainly don’t own a secure computing system with
physical access controls, TeMPeST shielding, “air wall” network secu-
rity, and other protections; you store your private key on a conventional
computer. There, it’s subject to attack by viruses and other malicious
programs. even if your private key is safe on your computer, is your
computer in a locked room, with video surveillance, so that you know
no one but you ever uses it? If it’s protected by a password, how hard
is it to guess that password? If your key is stored on a smart card, how
attack-resistant is the card? If it is stored in a truly attack-resistant device,
can an infected computer convince the trustworthy device to sign
 something you didn’t intend to sign?

This matters mostly because of the term nonrepudiation. Like “trusted,”
this term is taken from the literature of academic cryptography. There it
has a specific meaning: that the digital-signature algorithm is not break-
able, so a third party cannot forge your signature. PKI vendors have
latched onto the term and used it in a legal sense, lobbying for laws to
the effect that if someone uses your private signing key, then you are not
allowed to repudiate the signature. In other words, under some digital
signature laws (e.g., utah’s and Washington’s), if your signing key has
been certified by an approved CA, then you are responsible for whatever
that private key does. It does not matter who was at the computer key-
board or what virus did the signing; you are legally responsible.

The way it’s supposed to work is that when you know your key
is compromised, you put it on a CrL. Anything signed after that time
is automatically repudiated. This sounds plausible, but the system is

 Certificates and Credentials 235

c15.indd 235 2/16/15 10:40 AM

 funda mentally flawed. Bob wants to know that Alice’s key hasn’t been
compromised before he accepts her digital signature. The attacker is not
going to announce the compromise to Alice. So, Alice’s first clue that
her key was compromised will come when she gets some notice from
Bob showing evidence of the fraudulent signature. In most schemes,
this will happen only after Bob accepts the signature.

Contrast this with the practice regarding credit cards. under mail-
order/telephone-order (MOTO) rules, if you object to a line item on
your credit card bill, you have the right to repudiate it—to say you
 didn’t buy that—and the merchant is required to prove that you did.

There are similar vulnerabilities in the computer that does the veri-
fication. Certificate verification does not use a secret key, only public
keys. But to verify a certificate, you need one or more “root” public
keys: the public keys of the CAs. If the attacker can add his own pub-
lic key to that list, then he can issue his own certificates, which will
be treated exactly like the legitimate certificates. They can even match
legitimate certificates in every other field except that they would con-
tain a public key of the attacker instead of the correct one.

Some PKI vendors claim that these keys are in root certificates, and
hence secure. Such a certificate is self-signed and offers no increased
security. The only answer is to do all certificate verification on a com-
puter system that is invulnerable to penetration by hostile code or to
physical tampering.

And finally, how did the CA identify the certificate holder? Whether
a certificate holds just an identifier or some specific authorization, the
CA needs to identify the applicant before issuing the certificate.

Several credit bureaus thought they would get into the CA business.
After all, they had a vast database on people, so, the thinking ran, they
should be able to establish someone’s identity online with ease. If you
want to establish identity online, you can do that provided you have a
shared secret with the subject and a secure channel over which to reveal
that secret. SSL provides the secure channel.

The trouble with a credit bureau serving this role is that they don’t
have a secret shared only with the subject. In other words, there isn’t
a secure offline ID that can be used to bootstrap the process. This is
because credit bureaus are in the business of selling their information to
people other than the subject. Worse, because credit bureaus do such a
good job at collecting and selling facts about people, others who might
have information about a subject are probably hard pressed to find any

236 C H A P T e r F I F T e e N

c15.indd 236 2/16/15 10:40 AM

datum shared with the subject that is not already available through some
credit bureau. This puts at risk commercial CAs that use credit bureau
information to verify identity online; the model just doesn’t work.

Meanwhile, having identified the applicant somehow, how did the
CA verify that the applicant really controlled the private key corre-
sponding to the public key being certified? Some CAs don’t even con-
sider that to be part of the application process. Others might demand
that the applicant sign some challenge right there on the spot, while the
CA watches.

Certificates aren’t like some magic security elixir, where you can
just add a drop to your system and it will become secure. Certificates
must be used properly if you want security. Are these practices designed
with solid security reasons, or are they just rituals or imitations of the
behavior of someone else? Many such practices and even parts of some
standards are just imitations which, when carefully traced back, started
out as arbitrary choices by people who didn’t try to get a real answer.

How is key lifetime computed? Does the vendor use one year, just
because that’s common? A key has a cryptographic lifetime. It also has a
theft lifetime, as a function of the vulnerability of the subsystem storing
it, the rate of physical and network exposure, attractiveness of the key
to an attacker, and so forth. From these, one can compute the prob-
ability of loss of key as a function of time and usage. Does the vendor
do that computation? What probability threshold is used to consider a
key invalid?

Does the vendor support certificate or key revocation? CrLs are
built into some certificate standards, but many implementations avoid
them. But if CrLs are not used, how is revocation handled? If revo-
cation is supported, how is compromise of a key detected in order to
trigger that revocation? Can revocation be retroactive? That is, can a
certificate holder deny having made some signature in the past? If so, are
signatures dated so that one knows good signatures from suspect ones?
Is that dating done by a secure timestamp service?

How long are the generated public keys and why was that length
chosen? Does the vendor support shorter, and weaker, rSA keys just
because they’re fast or longer keys because someone over there in the
corner said he thought it was secure?

Does the proper use of these certificates require user actions? Do
users perform those actions? For example, when you establish an SSL
connection with your browser, there’s a visual indication that the SSL

 Certificates and Credentials 237

c15.indd 237 2/16/15 10:40 AM

protocol worked and the link is encrypted. But who are you talking
securely with? unless you take the time to read the certificate that you
received, you don’t know.

P K I S O N T H e I N T e r N e T

Most people’s only interaction with a PKI is using SSL. SSL secures
Web transactions, and sometimes PKI vendors point to it as enabling
technology for electronic commerce. This argument is disingenuous; no
one is turned away at an online merchant for not using SSL.

SSL does encrypt credit card transactions on the Internet, but it
is not the source of security for the participants. That security comes
from credit card company procedures, allowing a consumer to repudiate
any line item charge before paying the bill. SSL protects the consumer
from eavesdroppers, it does not protect against someone breaking into
the Web site and stealing a file full of credit card numbers, nor does it
protect against a rogue employee at the merchant harvesting credit card
numbers. Credit card company procedures protect against those threats.

PKIs are supposed to provide authentication, but they don’t even
do that.

example one: The company F-Secure (formerly Data Fellows) sells
software from its Web site at www.datafellows.com. If you click to buy
software, you are redirected to the Web site www.netsales.net, which
makes an SSL connection with you. The SSL certificate was issued to
“NetSales, Inc., Software review LLC” in Kansas. F-Secure is head-
quartered in Helsinki and San Jose. By any PKI rules, no one should
do business with this site. The certificate received is not from the same
company that sells the software. This is exactly what a man-in-the-
middle attack looks like, and exactly what PKI is supposed to prevent.

example two: I visited www.palm.com to purchase something for
my PalmPilot. When I went to the online checkout, I was redirected to
https://palmorder.modusmedia.com/asp/store.asp. The SSL certificate
was registered to Modus Media International; clearly a flagrant attempt
to defraud Web customers, which I deftly uncovered because I carefully
checked the SSL certificate. Not.

Has anyone ever sounded the alarm in these cases? Has anyone not
bought online products because the name of the certificate didn’t match
the name on the Web site? Has anyone but me even noticed?

238 C H A P T e r F I F T e e N

c15.indd 238 2/16/15 10:40 AM

I doubt it. It’s true that VeriSign has certified this man-in-the-
middle attack, but no one cares. I made my purchases anyway, because
the security comes from credit card rules, not from the SSL. My maxi-
mum liability from a stolen card is $50, and I can repudiate a transac-
tion if a fraudulent merchant tries to cheat me. As it is used, with the
average user not bothering to verify the certificates exchanged and no
revocation mechanism, SSL is just simply a (very slow) Diffie-Hellman
key-exchange method. Digital certificates provide no actual security for
electronic commerce; it’s a complete sham.

 Certificates and Credentials 239

c15.indd 239 2/16/15 10:40 AM

240

16

Security Tricks

This chapter is an orderless collection of computer security tricks
and techniques that don’t really fit anywhere else.

G o v e r n m e n T A c c e s s T o K e y s

“All right; here’s the deal: We’re the government, and we’re here to
prevent crime. It’s not easy, criminals being as devious as they are.
These criminals, scary criminals like drug dealers, terrorists, child por-
nographers, and money launderers, are using cryptography to protect
their communications. We’re worried that all of our court-authorized
wiretaps won’t be effective anymore; all of these scary criminals will get
away. so we want to be able to decrypt everyone’s stuff, just in case
they turn out to be criminals. We want you, all of you, to make copies
of all of your encryption keys and send them to the police (or someone
the police trusts), just in case you turn out to be a criminal. And no, we
don’t trust you to do that—so we’re going to make it automatic in the
cryptography products you buy.”

Admittedly, that’s not a kind picture of the FBI’s position on key
escrow, but it’s accurate. since 1993, the clinton administration and
the FBI have tried to force the American public to accept the idea
that they should give some government-approved party access to their
privacy. They’ve tried to cajole corporations into putting it in their

c16.indd 240 2/16/15 10:40 AM

 products, persuade users that it is in their best interest, and, when they
met resistance in the United states, obdurately pressured other countries
to adopt the same policies. They’ve even threatened to make secure
cryptography illegal. It’s a very contentious issue.

on the surface, the FBI has a legitimate complaint. criminals are
using cryptography to hide evidence that could be used against them in
a court of law: They encrypt computer files, they use encrypted tele-
phones and radios to communicate. But the positive uses of cryptogra-
phy far outweigh the negative uses, and pervasive cryptography does a
lot more to prevent crime than it does to aid it. ron rivest once com-
pared cryptography to gloves. It’s true, by making gloves legal society
has made it easier for criminals to hide their fingerprints. But no one has
ever suggested outlawing gloves.

There have been a lot of names for this idea. The government’s
first euphemism was key escrow, since a master key in the clipper chip
would hold the session key “in escrow” for later release to law enforce-
ment. When people didn’t buy escrowed encryption, they changed the
name to make it more palatable. Today, the terms include “key recov-
ery,” “trusted third-party encryption,” “exceptional access,” “message
recovery,” and “data recovery.” I like GAK: government access to keys.

GAK systems have a back door. In other words, they provide some
form of access to encrypted data aside from the normal process of decryp-
tion. The clipper proposal called this back door the Law enforcement
Access Field (LeAF). (It was originally called the Law enforcement
exploitation Field, until someone pointed out that the name wasn’t
 exactly mellifluous.)

The GAK back door is for government agencies (such as police) to
use. They work in a variety of ways: early GAK systems relied on the
storage of private keys by the U.s. government or, more recently, by
designated private entities with proper clearances. other systems have
escrow agents or key recovery agents, sometimes employees of large cor-
porations, that maintain the ability to recover the keys for a particular
encrypted communication session or stored file. some systems split the
ability to recover keys among several agents. There are variations, but all
GAK systems share two essential elements. First, a mechanism, external
to the primary system, by which a third party can obtain covert access
to the plaintext of encrypted data. And second, the existence of a highly
sensitive secret recovery key (or collection of keys) that must be secured

 Security Tricks 241

c16.indd 241 2/16/15 10:40 AM

for an extended period of time. on the policy side, GAK systems need to
give police timely access to plaintext, without notifying the user. systems
of this type, according to the clinton administration and the FBI, solve
the problem of criminals encrypting their incriminating evidence.

Unfortunately, the solution is worse than the problem. Data recov-
ery is easy to do, because it is in the best interest of the user. Users
like automatic backup; they don’t have to remember to make backups.
(Pause while I back up this manuscript.) But GAK is also often tied to
communications—phone conversations and e-mail—that have no cor-
responding data backup requirement. Data in storage have enormous
value; if lose you it, there’s no way to replace it. Data in communica-
tions have no value; if you lose it, you can always retransmit.

GAK is different, and much more difficult, because it has to work
in spite of a hostile user. The requirements stated by the FBI for
access—speed of access, surreptitiousness of access, comprehensiveness
of access—force users to give up a lot of security. If I encrypt an e-mail
message, I have to trust the cryptography on my end and that on the
receiver’s end. Adding GAK in the middle means that I would also
have to trust the entire key escrow infrastructure: the cryptography, the
databases, the policies, the people. The cost to build this infrastructure
would be enormous, as would the risks.

These risks are intrinsic to the idea of GAK, and are not dependent
on the particular technology. All GAK systems require the existence of a
highly sensitive and highly available secret key or collection of keys that
must be maintained in a secure manner over an extended time period.
These systems must make decryption information quickly accessible to
law enforcement agencies without notice to the key owners. These
basic requirements make the problem of general key recovery difficult
and expensive—and potentially too insecure and too costly for many
applications and many users.

With many GAK alternatives, you can choose between higher cost
and higher risk. While it may be possible to field a particular GAK system
in a relatively secure way, this often results in tremendous costs to the
user. on the other hand, simple and inexpensive GAK systems can jeop-
ardize security. For example, a poorly run key recovery agent, employing
untrained and low-paid personnel, with a low level of physical security,
and without liability insurance, could be expected to be less expensive to
operate than a well-run center. It will also be sloppier with the keys.

242 c H A P T e r s I X T e e n

c16.indd 242 2/16/15 10:40 AM

Interestingly, security and cost can also be traded off with respect to
the design itself. For example, imagine a design in which session keys
are sent to the recovery center by encrypting them with the center’s
globally known public key. such a system is relatively simple to design
and implement, but it is about the worst possible design from a security
point of view. It has a single point of failure, the key of the recovery
agent, with which all keys are encrypted. If this key is compromised
(or a corrupt version distributed), all the recoverable keys in the system
could be compromised. of course, several commercial systems are based
on almost exactly this design.

essentially, GAK systems are inherently less secure, more costly, and
more difficult to use than similar systems without a recovery feature.
making them work requires the criminalization of non-GAK security
products. Furthermore, building a secure infrastructure of the breath-
taking scale and complexity that would be required for such a scheme
is beyond the experience and current competency of the field, and may
well introduce ultimately unacceptable risks and costs.

D A T A B A s e s e c U r I T y

Database security is harder than you might think. The simple stuff is
easy: Alice has access to the personnel database, and Bob doesn’t. The
harder stuff is harder—Alice has access to the parts of the personnel
database pertaining to health insurance, and Bob has access to the parts
of the personnel database pertaining to salary—but commercial data-
base products manage that pretty well. The difficult stuff—enforcing
anonymity in databases while allowing people to use summary informa-
tion—is surprisingly difficult.

The harder stuff first. Databases can be set to only show certain
fields to certain users. All users might be allowed to see a set of common
fields (employee name, employee number), whereas only certain users
might be allowed to see specific fields (health insurance information,
salary). This is all a conventional computer security problem, solved by
authentication protocols and access control lists.

much more difficult is dealing with the situation where Alice is
allowed to make queries and see aggregate information, but is not
allowed to see individual entries. The problem is one of “inference;”

 Security Tricks 243

c16.indd 243 2/16/15 10:40 AM

Alice can often infer information about individuals by making queries
about groups.

one example: Alice queries the database for summary information
on detailed groups. If she can ask the database queries like this—sum-
mary information on every narcoleptic female, between ages 35 and 45,
with one diabetic parent, and living in a particular zip code—then Alice
is likely to be able to isolate individuals.

A possible solution to this problem is to scrub the data beforehand.
Data from the 1960 U.s. census, for example, was secured in this man-
ner. only one record in a thousand was made available for statistical
analysis, and those records had names, addresses, and other sensitive
data deleted. The census Bureau also used a bunch of other tricks: data
with extreme values were suppressed, and noise was added to the sys-
tem. These sorts of protections are complicated, and subtle attacks often
remain. If you want to know the income of the one wealthy family in
a neighborhood, it might still be possible to infer it from the data if you
make some reasonable assumptions.

The other possible solution is to limit the types of queries that
someone can make to the database. This is also difficult to get right. In
one famous research paper, the author calculated her boss’s salary based
on legitimate queries to the 1970 census database, despite controls that
were put in place precisely to stop this kind of thing. The new Zea-
land national Health Information system tries to defeat these kinds of
attacks by not providing summary information on groups smaller than
six people. (A technique known to be insufficient.)

Attacks are still possible. Alice is going to know the kinds of queries
that are allowed, and will do her best to figure out some mathematical
way of inferring the information she wants from the information she’s
allowed to get. And things are exacerbated further if Alice is allowed
to add and delete data from the database. If she wants to learn about a
particular person, she might be able to add a couple hundred records
into the database and then make general queries about the population
she added plus her target. since she knows all the data she added, she
can infer data about her target. A whole set of related attacks follow
from this idea.

This was an active research area in the 1980s, but less so today.
(Although the new medical privacy regulations may bring about a resur-
gence.) The problems are not solved, though.

244 c H A P T e r s I X T e e n

c16.indd 244 2/16/15 10:40 AM

s T e G A n o G r A P H y

steganography is the science of hiding messages in messages. Herodotus
talks of the ancient Greek practice of tattooing a secret message on the
shaved head of a messenger, and letting his hair grow back before send-
ing him through enemy territory. (The latency of this communications
system was measured in months.) Invisible ink is a more modern tech-
nique. microdots were invented by the Germans during World War I,
and stayed in vogue for many years. spies would photograph an image
such that the image on the negative was small enough to cut out and
place over a period of a book. The spy would carry the book around,
secure that no one would find the microdot hidden on one of its many
pages.

In the computer world, steganography has come to mean hiding
secret messages in graphics, pictures, movies, or sound. The sender
hides the message in the low-order bits of one of these file types—the
quality degrades slightly, but if you do it right it will hardly be notice-
able—and the receiver extracts it at the other end. several commercial
and freeware programs offer steganography, either by themselves or as
part of a complete communications security package.

steganography offers a measure of privacy beyond that provided by
encryption. If Alice wants to send Bob an e-mail message securely, she
can use any of several popular e-mail encryption programs. However,
an eavesdropper can intercept the message and, while she might not be
able to read it, she will know that Alice is sending Bob a secret message.
steganography allows Alice to communicate with Bob secretly; she can
take her message and hide it in a GIF file of a pair of giraffes. When
the eavesdropper intercepts the message, all she sees is a picture of two
giraffes. she has no idea that Alice is sending Bob a secret message. Alice
can even encrypt it before hiding it, for extra protection.

so far, so good. But that’s not how the system really works. The
eavesdropper isn’t stupid; as soon as she sees the giraffe picture she’s
going to get suspicious. Why would Alice send Bob a picture of two
giraffes? Does Bob collect giraffes? Is he a graphics artist? Have Alice and
Bob been passing this same giraffe picture back and forth for weeks on
end? Do they even mention the picture in their other correspondence?

The point here is that steganography isn’t enough. Alice and Bob
must hide the fact that they are communicating anything other than

 Security Tricks 245

c16.indd 245 2/16/15 10:40 AM

innocuous photographs. This only works when steganography can
be used within existing communications patterns. I’ve never sent or
received a GIF in my life. If someone suddenly sends me one, it won’t
take a rocket scientist to realize that there might be a steganographic
message hidden somewhere in it. If Alice and Bob already regularly
exchange suitable files, then an eavesdropper won’t know which mes-
sages—if any—contain the messages. If Alice and Bob change their
communications patterns to hide the messages, it won’t work. An
eavesdropper will figure it out.

This is important. I’ve seen steganography recommended for secret
communications in oppressive regimes, where the simple act of sending
an encrypted e-mail could be considered subversive. This is bad advice.
The threat model assumes that you are under suspicion and want to look
innocent in the face of an investigation. This is hard. you are going to
be using a steganography program that is available to your eavesdropper.
she will have a copy. she will be on the alert for steganographic mes-
sages. Don’t use the sample image that came with the program when
you downloaded it; your eavesdropper will quickly recognize that one.
Don’t use the same image over and over again; your eavesdropper will
look for the differences that indicate the hidden message. Don’t use an
image that you’ve downloaded from the net; your eavesdropper can
easily compare the image you’re sending with the reference image you
downloaded. (you can assume she monitored the download, or that she
searched the net and found the same image.) And you’d better have a
damn good cover story to explain why you’re sending giraffes back and
forth. And that cover story should exist before you start sending steg-
anographic messages, or you haven’t really gained anything.

steganography programs exist to hide files on your hard drive. This
can work, but you still need a good cover story. still, there’s some
advantage here over straight encryption—at least in free countries you
can argue that the police have no real evidence—but you have to think
it out carefully.

s U B L I m I n A L c H A n n e L s

one issue with steganography is bandwidth. It’s easy to hide a few bits
of information; hiding an entire e-mail message is a lot harder. Here, for

246 c H A P T e r s I X T e e n

c16.indd 246 2/16/15 10:40 AM

example, is a perfectly reasonable stenographic data channel: Alice and
Bob need to tell each other whether a particular action is either “safe”
or “dangerous.” That’s one bit of information. They regularly exchange
recipes over e-mail, and agree that the key phrase “double the recipe”
will be the message indicator. If the e-mail says that the recipe can be
doubled, then the action is safe. If the e-mail says that the recipe cannot
be doubled, then the action is dangerous. Any recipe without the phrase
does not contain a message.

This kind of system works because the secret message is much, much
smaller than the overt message, and is generally called a subliminal channel
(similar to a covert channel from chapter 8). subliminal channels are
as old as computers, and have been used by unscrupulous programmers
to leak information without the user’s consent. Imagine that you’re a
programmer designing a report on banking customers, and you want to
get your hands on the customers’ PIns. you’re not authorized to exam-
ine the real data, but you’ve been trusted to write the code to produce
the report from the database that contains the PIns. And you can see
the real reports after they are produced. Program the report generator
to add spaces after each customer’s entry, 0 through 9, corresponding
to one digit of the customer’s PIn. Have the report generator use the
first digit one day, the second digit the second day, and so forth until it
is done, and then cycle back to the first digit. That’s it. If the program-
mer can get his hands on the electronic report for four consecutive days,
he can recover everyone’s PIn. (Actually, he has four possibilities for
each PIn, depending on which digit the report generator used when,
but that’s easy to deal with.) no one else reading the reports will see
anything unusual, and unless they examine the code that generates the
reports (and how often will that happen?) they will never know that the
PIns are being leaked.

There is the story of a soldier who was not allowed to say where he
was stationed. He didn’t have a middle initial, and sent a series of let-
ters to his girlfriend with a different middle initial in each; over time he
spelled out where he was stationed.

once you get the general idea, you can think of all sorts of ways to
embed subliminal channels in documents: the choice of fonts and font
sizes, the placement of data and graphics on a page, the use of different
synonyms in text, and so on. many cryptographic protocols allow for
subliminal channels in the choice of parameters, in the random bits used

 Security Tricks 247

c16.indd 247 2/16/15 10:40 AM

for padding, and in unused bit fields. As long as you’re not too greedy,
and are willing to leak the information a teaspoon at a time, it’s not hard
to add a subliminal channel to a system.

you can leak all sorts of things. PIns are a good example. crypto-
graphic keys are another. Building a cryptographic device that leaks key
bits through a subliminal channel is a pretty duplicitous way to attack
someone.

subliminal channels have been discovered in all sorts of software over
the years, put in by unscrupulous programmers. Intelligence age n cies like
the nsA have long been suspected of embedding subliminal channels to
leak key bits in cryptographic hardware sold to foreign gov ernments. A
recent scandal involving the swiss cryptographic company crypto AG
involved this very allegation. side channels, discussed in the context of
tamper-resistant hardware in chapter 14, can be viewed as accidental
subliminal channels.

note that subliminal channels have the same problem as steganogra-
phy in that someone who examines the underlying software will notice
the subliminal channel. But embedded in a complex piece of software
or, better yet, a piece of embedded hardware, it can go unnoticed for a
long time.

D I G I T A L W A T e r m A r K I n G

We talked about intellectual property in chapter 3. To review, com-
panies like Disney are going to want to peddle their intellectual prop-
erty—music, videos, still images, whatever—in digital form. They don’t
want people copying The Little Mermaid and distributing it free over the
Internet. They don’t want people stealing pieces of images—even a sin-
gle image of mickey mouse—and using them without paying royalties.
They want to keep control over their property.

Digital watermarks are one way of accomplishing this goal. Think
of it as a subliminal channel or an application of steganography. The
idea is to embed secret information in the stuff to identify who the legal
owner is. Kind of like a paper watermark: The watermarked paper can
be passed around from person to person, but someone can always hold
it up to the light and see the watermark.

There are actually two related terms, here. Watermarking identifies
unchanging information, while fingerprinting identifies a particular buyer.

248 c H A P T e r s I X T e e n

c16.indd 248 2/16/15 10:40 AM

For example, a watermark on The Little Mermaid would say something
like “Property of Disney,” while a fingerprint on the same digital movie
would say something like: “Purchased by Alice, 1/1/01.”

Digital watermarks (and fingerprints) go one better, though. copy
the paper, and the watermark disappears. copy the digital file, and the
watermark goes with the copy. maybe we can’t stop copying, Disney
reasons, but we can at least point the finger at whoever copied it in the
first place. And I’ve seen watermarks proposed for a lot of things: graphics,
images, video, audio . . . even stock ticker data and computer programs.

so, depending on what data you put into the watermark, they can do
one of two things. First, they can identify the original copyright holder.
second, they can identify both the original copyright holder and the
person who bought the copy: If every copy of The Little Mermaid is
watermarked with the name and address of the person who bought it,
then when a copy appears on the Internet, Disney can identify the cul-
pable party.

Great idea, but it just won’t work.
The problem is that in order for Disney to be able to take a copy of

The Little Mermaid and find the embedded watermark, it has to be find-
able. And if Disney can find it, a pirate can find it, too. companies that
market this stuff try to tell you that their watermarking schemes can’t be
removed for this or that technobabble reason.

It just isn’t true. As with a subliminal channel, it is virtually impos-
sible to find a good watermark unless you know exactly where to look.
But unlike a subliminal channel, the detection mechanism will eventu-
ally be made public. either it will leak into the hacking community like
everything else does, or it will be made public the first time a court case
turns on watermarking evidence. The mechanisms for watermarking
will eventually become public, and when they do, they can be reverse
engineered and removed from the image.

reversal might not be easy. Ingenious tricks can make it difficult,
but they can’t make it impossible. And a sagacious hacker can write an
automatic tool to strip the watermark, once he knows how it works.

Another vulnerability is that watermarking doesn’t solve the under-
lying problem. What watermarking does is allow a company to point
to its unaltered digital property and say: “That’s mine.” This is hardly
enough to be useful because digital property is so easy to alter, and water-
marking doesn’t prevent someone from altering the digital property. It
also doesn’t guarantee that the person identified by the watermark is the

 Security Tricks 249

c16.indd 249 2/16/15 10:40 AM

culprit. Imagine that every copy of The Little Mermaid is watermarked
with the identity of the buyer. How does the merchant verify the buyer’s
identity? Unless we have hard-to-forge identity documents—either real
or virtual—this system won’t work. And there’s nothing to stop a coun-
terfeiter from paying $10 to a homeless drunk to walk into the video
store and buy the movie for him. He now has a movie with the embed-
ded watermark of someone who probably doesn’t care if Disney knows
his identity, and who doesn’t have any assets if Disney tries to sue.

Watermarking can help convict grandma when she duplicates a sin-
gle copy of The Little Mermaid for all her grandchildren, but it can’t stop
the Taiwanese pirates from ripping out the watermarks and selling half a
million pirate copies on the black market. or someone using a fictitious
identity to purchase the legitimate copy and then not worrying about it.

c o P y P r o T e c T I o n

This problem is easy to describe, and much more difficult to solve.
software companies want people to buy their products; they hate it
when someone makes a copy of a business program that costs hun-
dreds of dollars and gives it to a friend. (Actually, these days they kind
of like it. They realize that the friend probably wouldn’t have bought
it anyway, that he’ll use the software and get “hooked,” and when he
eventually goes legit, either he or his boss will buy a legal copy of the
same program—and not a competitor’s. WordPerfect used this scheme
to increase its popularity.) This is especially important with computer
games and in countries with little respect for intellectual property: In
these cases, lots of users will pirate rather than buy a legitimate copy.
(This same problem applies to people who want to distribute content—
books, movies, videos, and so forth—that they don’t want copied.)

There are all sorts of solutions—embedded code in the software
that disables copying, code that makes use of non-copyable aspects of
the original disk, hardware devices that the software needs to run—and
I’m not going to talk about them in detail. They all suffer from the same
basic conceptual flaw: It is impossible to copy-protect software on a
 general-purpose computer.

In the hands of Joe Average computer user, any copy protection sys-
tem works. He can copy ordinary files by following the directions, but

250 c H A P T e r s I X T e e n

c16.indd 250 2/16/15 10:40 AM

has no idea how to defeat a reasonably sophisticated copy protection
scheme. In the hands of Jane Hacker, no copy protection system works.

The problem is that Jane controls her computer. she can run debug-
gers, reverse engineer code, analyze the protected program. If she’s
smart enough, she can go into the software and disable the copy protec-
tion code. The manufacturer can’t do a thing to stop her; all it can do is
make her task harder. But to Jane, the challenge entices her even more.

There are a bunch of Janes out there who break copy protection
schemes as a hobby. They hang out on the net, trading illegal software.
There are also those who do it for profit. They work in china, Taiwan,
and elsewhere, removing copy protection code and reselling the soft-
ware on cD-rom for less than a tenth of the retail price. They can
disable the most sophisticated copy protection mechanisms. The lesson
from these people is that any copy protection scheme can be broken.

The dongle is the current state of the art in copy protection. It’s a
piece of hardware that plugs into the computer, usually into the parallel
port. (conflicts with other devices using the port, and other dongles,
are only problems occasionally.) The protected software calls the dongle
at various points during execution; for example, every thousand key-
presses or mouseclicks, when a user tries to save, or every time he selects
the nail gun as his weapon. If the dongle doesn’t respond to a call, or
responds incorrectly, the software stops running. or, more effectively,
it keeps running but gives subtly wrong answers. (A 1992 version of
Autodesk’s 3D studio used the dongle to create a table in memory that
was required to correctly mirror three-dimensional geometry. remov-
ing the dongle caused the program to fail over the course of a few hours,
imperceptibly at first, but eventually dramatically. Autodesk had to field
a lot of calls from unregistered users complaining about a strange bug in
their version of 3D studio.)

calls to the dongle are all encrypted, and the dongle itself is pro-
tected from hardware reverse engineering by a variety of tricks. still, pro-
grams that use dongles are routinely broken without attacking either the
cryptography or the tamper resistance.

How? Instead of defeating the dongle, hackers go through the code
and remove all calls to it. It’s painstaking work: Hackers have to go
through the code line by line, function by function, call by call. They
may have to hook a logic analyzer up to the dongle and correlate execu-
tion addresses to dongle accesses. A sophisticated program could contain

 Security Tricks 251

c16.indd 251 2/16/15 10:40 AM

tens of megabytes of code. But remember chapter 2 and my first reason
why the Internet is different from the physical world: only one smart
pirate has to succeed; everyone else can just use that person’s unprotected
version of the software.

The success of software pirates doesn’t stop companies from try-
ing to copy-protect their programs. The 1996 Quake release came on
an encrypted cD-rom: you could try it for free, but had to call the
company and buy the password to unlock the entire game. It was even-
tually cracked, along with every other popular copy-protected program
ever released.

Hacked programs are called warez, and you can amass a collection
of the stuff yourself just by looking around the Internet. you won’t
find manuals, but that’s what all the computer books are for. Just about
everything is available, usually for trade.

copy protection gurus like to point to new technologies to save
their industry. They call for a unique serial number on the computer’s
microprocessor, so that every legitimate copy of a program could be
programmed to work only on one particular computer. They talk about
encryption capabilities on the motherboard. none of this will work. All
of it will keep Joe Average from copying his software, but none will
stop Jane Hacker from dismantling the program and posting a cracked
warez version for everyone to download.

This duality of risks is no different from the watermarking problem.
Look at the videotape industry: Piracy is much lower than when vcrs
were new because of two reasons. one, the dinky copy protection is
respected by all vcrs, thwarting Joe Average. And two, the retail price
of videotapes is so cheap that the economic incentive to Jane Hacker
has lessened.

What’s really interesting about the problem of copy protection and
software piracy is that the solution is to pretend that there’s not a prob-
lem: There is little to no copy protection in business software. In the
competitive software application industry, market share and product
loyalty—however they are achieved—are crucial. many companies rea-
son as follows: People who pirate my software cost my company next
to nothing, since my marginal cost of goods is zero. It’s not like they are
stealing televisions off my assembly line. Almost all people who pirate
my software can’t afford to pay for it, so I’m not losing many sales. And
when these pirates eventually get into a situation where they need to

252 c H A P T e r s I X T e e n

c16.indd 252 2/16/15 10:40 AM

buy the software legitimately, they will already be hooked on my soft-
ware, not my competitors’. Piracy is just another way of boosting mar-
ket share.

microsoft had exactly this in mind when they made a big push to
get their products translated into chinese and distributed across that
country. They knew they would be pirated; they knew that they would
make less than one sale for every ten copies used. microsoft’s steve
Ballmer has been quoted as saying: “If you’re going to get pirated, you
want them to pirate your stuff, not your competitors’ stuff. In devel-
oping countries, it is important to have a high share of the piracy
software.” When china enters the free world, they will already be
microsoft compatible. Until then, microsoft isn’t losing anything. It’s a
perceptive business strategy.

e r A s I n G D I G I T A L I n F o r m A T I o n

There are lots of times when we want to completely erase digital infor-
mation. If you have a confidential file on your computer and you erase
it, you want to make sure that no one can come by later and recover
that file. If you are using a secret key to encrypt a communications
line—a phone call, for example—you want to be able to erase that key
at the end of the phone call and be sure that no one can recover it later.

erasing digital information turns out to be harder than you might
think.

on a normal computer system, when you delete a file on a magnetic
disk (hard disk, floppy, or anything in between), the data isn’t really
erased. (This is why unerase utilities work.) The file is simply marked
as deleted, and then the bits are overwritten with new data eventually.
The way to truly erase a file from a magnetic disk is to overwrite it with
a new file. And some file erasure utilities do this.

What is less well known is that technologies can recover erased data
even after it has been overwritten. I’ll spare you the science, but you
can think of overwriting a bit as simply writing on top of it. some of
the data underneath remains. And when you overwrite again, some of
the previous two data bits remain. And so on. There’s a technique called
magnetic force microscopy that can be used to recover data even after it
has been overwritten multiple times. exactly how many is not known;

 Security Tricks 253

c16.indd 253 2/16/15 10:40 AM

I’ve heard estimates as high as ten. (The U.s. government specs on this
kind of thing are classified, which itself should tell you something.)

These microscopes are expensive (although amateur versions are
getting cheaper), and these attacks are probably only feasible for gov-
ernments. If you are worried about a government, the only real way to
erase a magnetic disk is to shred or burn it.

Data is also hard to erase in hardware. Both srAm and DrAm
retain some remnants of the data after losing power. Bits in rAm can
be recovered by electronically detecting changes in cell thresholds based
on previous cell content. modifying the temperature and voltage can
affect a chip’s ability to erase data. There’s a lot of physics that can be
applied to the problem of recovering data after it has been erased.

U.s. military cryptography equipment is built to erase, or zeroize,
all keys if tampered with. This is hard for two reasons: It is hard to
erase data, and it is hard to know when to erase data. There has to be
some set of sensors that determines when a box is being tampered with.
There are obvious sensors: voltage, current, light, temperature. But if an
attacker knows what the sensors are, he can probably defeat all of them.
(He can work in a room lit by a wavelength that the sensor misses, or
can vary the temperature slowly enough as to fool the sensor, or what-
ever.) Again, this is a problem mostly for government systems and gov-
ernment attackers, but it is a very difficult one.

Part of the difficulty is that the device needs to reliably retain the
key under normal circumstances, and entirely obliterate it under abnor-
mal circumstances. The very technology used to reliably retain key bits
makes it difficult to obliterate the key bits. conflicting goals are hard to
handle well.

Where this problem affects commercial systems is in things like
smart cards, pay-Tv boxes, and any other device with secrets inside
that the device owner should not know. I talked about tamper resis-
tance and ways to defeat it. Zeroization techniques are a way to defend
against those sorts of attacks. But there are ways to attack zeroization.
Basically, commercial systems don’t get this right—I only know of one
commercial device with the government FIPs 140-3 zeroization certi-
fication—because it’s just too expensive to do so.

254 c H A P T e r s I X T e e n

c16.indd 254 2/16/15 10:40 AM

17

The Human Factor

Computer security is difficult (maybe even impossible), but
imagine for a moment that we’ve achieved it. Strong cryptog-
raphy is where required; secure protocols are doing whatever

needs to be done. The hardware is secure; the software is secure. Even
the network is secure. It’s a miracle.

Unfortunately, this still isn’t enough. For this miraculous computer
system to do anything useful, it is going to have to interact with users in
some way, at some time, for some reason. And this interaction is the big-
gest security risk of them all. People often represent the weakest link in
the security chain and are chronically responsible for the failure of security
systems.

When I started doing cryptographic consulting for companies, I
would tell prospective clients that I could secure their digital data more
or less perfectly, but that securing the interaction between the data and
the people would be a problem. Now I am more cynical. Now I tell pro-
spective clients that the mathematics are impeccable, the computers are
vincible, the networks are lousy, and the people are abysmal. I’ve learned
a lot about the problems of securing computers and networks, but none
of that really helps solve the people problem. Securing the interaction
between people and just about anything is a big problem.

People don’t understand computers. Computers are magical boxes
that do things. People believe what computers tell them. People just want
to get their jobs done.

People don’t understand risks. They may, in a general sense, when

255

c17.indd 255 2/16/15 10:40 AM

the risk is immediate. People lock their doors and latch their windows.
They check to make sure no one is following them when they walk down
a darkened alley. People don’t understand subtle threats. They don’t think
that a package could be a bomb, or that the nice convenience store clerk
might be selling credit card numbers to the mob on the side. And why
should they? It almost never happens.

Computer security works in the digital realm. Moving informa-
tion into the digital realm is problematic; keeping it there is downright
impossible. Remember the “paperless office” of yesteryear? Information
never stays in computers; it moves onto paper all the time. Information
is information and, for an attacker, information in paper files is just as
good as information in computer files. Many times paper in trash is
more valuable than the same data in a computer: It’s easier to steal and
less likely to be missed. A company that encrypts all of its data on com-
puters, but doesn’t lock its file cabinets or shred its trash is leaving itself
open to attack.

I am going to look at six aspects of the human problem:

How people perceive risks.
How people deal with things that happen very rarely.
The problem of users trusting computers, and why that can be so dangerous.
The futility of asking people to make intelligent security decisions.
The dangers of malicious insiders.
Social engineering, and why it is so easy for an attacker to simply ask for secret

information.

It’s not going to be pretty.

R I S k

People do not know how to analyze risk. They can’t look at a vulner-
ability and make an intelligent decision about how bad it is. They can’t
look at an attack and make an intelligent decision about how likely it is.
They can’t look at a security situation and make an intelligent decision
about what to do.

The problem is not just one of not having enough informa-
tion; people have trouble evaluating risks even with adequate infor-
mation. Study after study shows that people misestimate the risks of
 earthquakes, airplane disasters, automobile disasters, food poisoning,

256 C H A P T E R S E V E N T E E N

c17.indd 256 2/16/15 10:40 AM

skydiving accidents, etc., etc., etc. They overestimate risks for things
that are (1) out of their control (getting poisoned in restaurants), and
(2) sensationalized in the media (being the victim of a terrorist attack).
They underestimate risks for things that are mundane and ordinary (fall-
ing off a ladder, being in a car accident). Certainly not having enough
information exacerbates the problem.

Probabilities permeate cryptography, computer security, risk assess-
ment, countermeasures . . . everything this book is about. Risk is a
probability. Security is a probability.

To illustrate probability, let’s play a gambling game with Alice. It’s a
simple game: heads she wins, and tails you win. But you’d like to check
out the coin first, just to make sure that it is fair. Sure, she says, look at it
all you want.

You flip the coin once, and it comes out tails. This is a single event,
so it gives you no real information except that “tails” is on at least one
of the faces. So, you flip it ten times. The coin comes up heads on six of
them. Does this mean the coin is unfair? Maybe. Alice is quick to point
out that flipping a fair coin ten times would result in at least six heads 38
percent of the time. This means that if you took 100 fair coins, flipped
them each ten times, then 38 of them would come up heads six or more
times. Hardly evidence of fraud.

So you flip the coin 100 times and get 60 heads. Alice reminds you
that a fair coin will show at least 60 heads in 100 flips 2.3 percent of the
time. The coin could still be fair.

So you flip the coin 1,000 times. The most likely outcome would be
500,000 heads and 500,000 tails, but you come up with 600,000 heads
and 400,000 tails. Despite Alice’s assertion that there is a 1 in 10 bil-
lion chance that a fair coin would produce this biased an outcome, you
choose to believe that the coin is weighted. But your belief is based on
probability; the likelihood that the coin is fair is de minimis.

At this point you probably decide not to use this coin to bet with
Alice, despite Alice’s protests that the coin is fair. Your decision is wise,
even though technically she is right. In fact, you can never prove that the
coin is not fair without cutting it into pieces and weighing them. All
you can do is collect evidence that the coin is not fair that is more and
more convincing.

A lot of beliefs work this way. You believe that the sun rises in the
east because it has done so for the last few trillion mornings. The odds
of this happening without some explanation other than random chance

 The Human Factor 257

c17.indd 257 2/16/15 10:40 AM

are infinitesimal. (Now we have solid astronomical evidence, but people
believed in the sun’s daily eastern rise well before the Copernican model
replaced the Ptolemaic one.) You believe that the water you drink is not
poisonous, because you probably can’t think of a time when it was. (In
some Third World countries, however, this is not a normal belief.) You
believe that the waiter will bring back your credit card without ringing
up any phony charges because that’s what has happened every other time
you’ve given a waiter your card. And you believe a piece of e-mail came
from the person whose name is on the “From” line because that’s been
your experience.

And a lot of cryptography works this way, too. Much of the math
is probabilistic. Public-key cryptography uses numbers that are probably
prime; there is a one in a billion chance that the number is not really
prime. One-way hash functions are only probably unique; there is a 1
in 280 chance that two random documents will have the same SHA hash
value. The AES encryption algorithm has 2128 different keys; there is a 1
in 2128 chance that an attacker will correctly guess the key on the first try.
Some people get worried seeing these numbers, but that’s only because
they think they live in a world of absolute certainty. But something that
happens 1 in 280 times is less likely to occur than walking up to a roulette
wheel, putting your money on a number, and winning 15 times in a row,
or being dealt two perfect bridge hands in a row, or being dealt four royal
flushes in a row.

Security works this way, too. Most burglar alarms have a four-digit
access code; there is a 1 in 10,000 chance that a burglar will guess it cor-
rectly and stop the alarm. One brand of combination lock has 3 times 36
different combinations; there is a 1 in 47,000 chance that someone can
guess the combination on the first try. Fingerprints are not necessarily
unique: Biometric identification systems might have a 0.1 percent chance
that an unauthorized person will be recognized as having an authorized
fingerprint. It’s all about probabilities.

E x C E P T I O N H A N D l I N g

One danger of computerized systems is that they make mistakes so
rarely that people don’t know how to deal with them. It’s the “this
computer never makes a mistake, so you must be lying” mentality. The

258 C H A P T E R S E V E N T E E N

c17.indd 258 2/16/15 10:40 AM

fact is that computers make all sorts of mistakes all the time, and malicious
hackers are happy to lead computers down a mistake-riddled garden path,
and to take advantage of those mistakes.

A friend installed a burglar alarm system in his home. The alarm was
wired into the burglar alarm company’s switchboard; when it went off,
the company was automatically alerted, and then they would call the
police. My friend had a secret code that he could use to call the alarm
company and register a false alarm (the police didn’t want to send a squad
car out whenever someone accidentally tripped the alarm). He also had a
second secret code, a duress code. This code meant: “There is a gun being
held to my head, and I am being forced to call you and claim that this is
a false alarm. It isn’t. Help!”

One day my friend accidentally tripped the burglar alarm, and he
dutifully called the alarm company to register it as a false alarm. Acciden-
tally, he gave them the duress code instead of the false alarm code. Almost
immediately he realized his mistake and corrected it. The woman on the
other end gave a huge sigh of relief and said: “Thank god. I had no idea
what I was supposed to do.”

When an alarm condition, or even an error condition, appears a
few times a week, people know what to do. If it only happens once
every few years, there could be an entire office that has never seen the
alarm, and hence has no idea what to do. Many attacks target complacent
users. During the attack, those involved can’t imagine that the system is
failing, and attribute the problem to something else. Remember Cher-
nobyl? “I’ve never seen that red blinking light before. I wonder what it
means. . . .”

This is why we all went through fire drills in primary school. We
had to practice the failure conditions, less so we would be prepared for
what happened—drills can only prepare someone so well for a panic situ-
ation—but as a constant reminder that the failure could occur. I’ve never
been in a real fire, but I’ve been drilled so often in what to do, I’ll prob-
ably be all right. It’s the same with airplanes. When oxygen masks drop
from the ceiling, you don’t want the passengers glancing up from their
novels, wondering what those silly things are, and then going back to
their reading. Nor do you want bank tellers ignoring warning signs. “The
bank computer said that I should give him one million dollars in cash.
Who am I to second-guess the computer?” Or a nuclear power plant
operator wondering what that flashing red light means.

 The Human Factor 259

c17.indd 259 2/16/15 10:40 AM

Unfortunately, if there are too many aleatory alarms, the operators will
learn to ignore them. “I’ve never seen that flashing red light before. . . . I
wonder what it means.” Or, even worse: “That red light is always flashing
and there’s never a problem. I’ll just ignore it again.” (Read “The Boy
Who Cried Wolf.”) Or even worse, they’ll unplug the flashing light. It’s
an effective form of denial-of-service attack, and I gave some scenarios in
Chapter 3.

If an attacker can take down a firewall and deny network access to
legitimate users—a denial-of-service attack—they will complain and
demand that the firewall be taken away until it is fixed. If someone is
using a secure telephone, and an attacker can make that phone drop the
connection repeatedly, eventually the conversers will give up on the
secure phone and have the conversation on an open line.

This is just human nature. People want to communicate, and the
security system is at best something that doesn’t hinder that want. It’s
hard to imagine people not having a phone conversation just because the
encrypted phone doesn’t work. Even the military doesn’t have the disci-
pline not to communicate if they cannot communicate securely; if they
can’t do it, you can’t expect anyone else to.

H U M A N – C O M P U T E R I N T E R F A C E

It has been said that the most insecure system is the one that isn’t used.
And more often than not, a security system isn’t used because it’s just
too irritating.

Recently I did some work for the security group in a major multina-
tional corporation. They were concerned that their senior management
was doing business on insecure phones—land lines and cellular—some-
times in a foreign country. Could I help? There were several secure-voice
products, and we talked about them and how they worked. The voice
quality was not as good as normal phones. There was a several-second
delay at the start of the call while the encryption algorithm was initial-
ized. The phones were a little larger than the smallest and sexiest cellular
phones. But their conversations would be encrypted.

Not good enough, said the senior executives. They wanted a secure
phone, but they were unwilling to live with inferior voice quality, or
longer call setup time. And in the end, they continued talking over
insecure phones.

260 C H A P T E R S E V E N T E E N

c17.indd 260 2/16/15 10:40 AM

People want security, but they don’t want to see it working. It is
instructive to talk with people who remember when a front door lock
was first installed on their house. There are some of these people still
alive, usually in rural areas. (City houses have had door locks for centuries;
rural areas went without them for a long time.) These people talk about
what an imposition a front door lock was. They didn’t think it was right
that they had to fish around for a key, put it in a lock, and then turn the
key . . . just to get into their own home. And the first time they forgot or
lost their key—the shame of it all. Sure, crime was a problem and front
door locks were a good thing, but people fought the change. I still know
people who leave their doors unlocked. (Note the flawed “it’s never hap-
pened to me” reasoning in a lot of these cases.)

Computer security is no different. Find someone who used comput-
ers before there were passwords and permissions and limitations. Ask
them how much they liked it when security measures were added. Ask
them if they tried to get around the security, just because it was easier.
Even today, when the deadline approaches and you have to get the job
done, people don’t even think twice about bypassing security. They’ll
prop the fire door open so that someone can get into the building more
easily, and they’ll give out their password or take down a firewall because
work has to get done. John Deutch, the former director of the CIA,
brought classified files home with him on his insecure laptop—because
it was easier.

It’s a trade-off. Security is easiest when it is visible to the user, when
the user has to interact with the security and make decisions based on
it: that is, checking the name on a digital certificate. On the other hand,
users don’t want to see security. And a smart security designer doesn’t
want users to see security. A smart security designer knows that users find
security measures intrusive, that they will work around them whenever
possible, that that they will screw with the system at every turn. People
can’t be trusted to implement computer security policies, just as they can’t
be trusted to lock their car doors, not lose their wallets, and not tell any-
one their mother’s maiden name.

They can’t be trusted to do things properly. In a 1999 usability study
at Carnegie Mellon University, researchers found that most people could
not use the PgP e-mail encryption program correctly. Of the 12 peo-
ple who participated in a CMU experiment, eight never managed to
figure out how PgP 5.0 worked. Four of them accidentally sent out
 unencrypted messages that revealed confidential information. And this

 The Human Factor 261

c17.indd 261 2/16/15 10:40 AM

is with the program’s easy-to-use graphical interface (although, to be fair,
the PgP versions 6.0 or later have a better user interface).

And they can’t be trusted to make intelligent security decisions. After
the Melissa and Worm.ExploreZip scares of 1999, you might think people
learned not to open attachments they weren’t expecting. But the infec-
tion rate from the IlOVEYOU worm (and its dozens of variants) taught
us that no, people cannot be trained not to open attachments . . . espe-
cially when so many companies are trying to make a business getting users
to send each other interesting attachments.

Browsers use digital certificates in order to make secure SSl con-
nections. When they accept the certificates, they optionally display the
identification of the certificate on the other end. This is essential to the
security; it makes no sense to have a secure connection unless you are
sure who is on the other end of that connection. Most people don’t
bother looking at the certificates, and don’t even know they should (or
how to).

The same browsers have an option to display warnings when down-
loading Java applets. The user is asked whether he trusts the particular
Web site that is sending the applet. The user has no idea whether or
not he trusts the Web site. Nor does he care. If J. Random Websurfer
clicks on a button that promises dancing pigs on his computer monitor,
and instead gets a hortatory message describing the potential dangers
of the applet—he’s going to choose dancing pigs over computer secu-
rity any day. If the computer prompts him with a warning screen like:
“The applet DANCINg PIgS could contain malicious code that might
do permanent damage to your computer, steal your life’s savings, and
impair your ability to have children,” he’ll click “Ok” without even
reading it. Thirty seconds later he won’t even remember that the warn-
ing screen even existed.

H U M A N – C O M P U T E R T R A N S F E R E N C E

When I introduced cryptography in Chapter 6, I wrote about Alice and
Bob encrypting, decrypting, signing, and verifying messages and docu-
ments. I wrote, for example, that Alice could use public-key cryptography
to send a message to Bob by finding Bob’s key in a phone book, and then
encrypting a message to Bob using this key. This is actually a complete lie.

262 C H A P T E R S E V E N T E E N

c17.indd 262 2/16/15 10:40 AM

Alice never encrypts messages to Bob. She never decrypts messages, or
signs messages. She never does any cryptography at all. What Alice does is
click a button on her computer, and the computer signs or encrypts or does
whatever Alice wants. This is a critical distinction.

Imagine the future, when we all habitually sign digital documents.
How might this work? Alice will write a digital document in some appli-
cation—a word processor, an e-mail program, or whatever—and click
on some icon to indicate that she is ready to sign it. The application will
call whatever signature software program is standard business practice,
and that software will create the signature. Alice will type in her password
(or passphrase), put her finger down on some fingerprint reader, and do
whatever else is required to prove to the software that she is Alice. The
signature software will calculate the digital signature on the document,
and hand the application a signature string to append to the document.
Voilà—it will appear. Alice can probably even verify the signature herself
(again, using the computer), just to make sure it is genuine.

This is what I call human–computer transference. Alice knows what
she wants to do: sign a particular document. She has to securely transfer
this volition to the computer with some assurance that the computer will
actually do what Alice wants it to do. But secure human–computer trans-
ference is not so easy to do.

Our goal is to get Alice to sign something she doesn’t want to sign.
Since Alice is accepting the computer’s word that she is actually signing
the document on the screen, this should be easy. All we have to do is get
the computer to lie to Alice.

We write a Trojan horse to sit inside the digital signature software.
This Trojan horse will contain the document that we want Alice to
sign—something either embarrassing or profitable, no doubt—and code
to sign it. The only thing the Trojan horse needs is Alice’s key. When
Alice types in her passphrase to sign a different message to us—the Tro-
jan horse feeds the digital signature software the embarrassing document
instead. The digital signature software returns a signature, and the orig-
inal application places that signature on the document Alice thinks she is
signing. If Alice tries to verify the signature, the Trojan horse feeds the
embarrassing document to the digital signature software. The signature
software returns the fact that the signature is correct; that is, the Trojan
horse forces the computer to lie to her. Then, Alice sends us her docu-
ment with the wrong signature; that is, the signature calculated for the

 The Human Factor 263

c17.indd 263 2/16/15 10:40 AM

other document. We take the signature, attach it to a copy of the embar-
rassing document, and call the Washington Post. Meanwhile, the Trojan
horse erases itself and everything is back to normal.

There’s an easy implementation in Windows: A malicious macro
could simply watch for PgP’s “open file” dialog, see what file Alice is
about to sign, and copy its own file to that filename, then restore the old
file afterward. Word’s macro language can do this, so it could easily be a
payload for a Word macro virus.

And that’s just one example. The Trojan horse could sign both docu-
ments and transmit the embarrassing signature at some opportune time.
Or it could just steal Alice’s private key.

Nothing here is difficult; the programming is easy. In any case, if we
are successful we could have possession of a damaging document, signed
by Alice. We could wave it around in court or pass it to a reporter, cor-
rectly claiming that Alice’s valid digital signature is on the bottom of the
document. What is more likely to happen is the reverse. As soon as some-
one writes a fake signature Trojan horse, it will be assumed to be every-
where. Whenever a document appears in court, one side or the other will
find an expert witness that will testify as to the existence of the Trojan
horse and how easy it would be to get someone to unknowingly sign
just about anything. Can the court trust this digital signature? It doesn’t
depend on the mathematics; it depends on the circumstances.

The fundamental problem is that you have no idea what the com-
puter is actually doing when you tell it to do something. When you tell
the computer to save a document, or encrypt a file, or calculate the sum
of a column of numbers, you really have no assurance that the computer
did it correctly, or even at all. You’re making a leap of faith. Just as it is
hard to catch a thieving employee, it’s hard to catch a malicious computer
program. Actually, it’s worse. Think of it as a malicious employee who
works alone, with no one watching. All of the monitoring equipment
you might install to catch the employee—hidden cameras, hidden micro-
phones—are controlled by the malicious employee. All you can do is
look at what inputs the employee accepts and what outputs he produces.
And even then you can’t be sure.

If Alice can’t trust the computer she is working on, then she can’t
trust it to do what she asks. Just because she asked it to sign a particular
document doesn’t mean that it can’t sign another document. The meta-
solution is for Alice to only sign documents on a trusted computer, but

264 C H A P T E R S E V E N T E E N

c17.indd 264 2/16/15 10:40 AM

that’s hard to do. If Alice is working on a general-purpose computer, I do
not believe it can ever be trusted enough to avoid this problem.

If Alice is using a small, single-purpose, digital signature computer,
then there is hope. I can imagine a hand-held device with a small key-
board and screen. The document can be downloaded into this device by a
general-purpose computer. Alice will be able to view the document from
the small screen—there’s no guarantee that the computer will download
what you ask it to—and enter her passphrase on the small keyboard. The
device will sign the document and upload the signature back to the gen-
eral-purpose computer. We have a prayer of making that system secure.
We can design it so that only factory software is ever installed on the
computer, and we can have some independent auditing company certify
that the software is correct and behaves well.

But if you are working on an insecure computer—which will be
almost all of the time—there is no assurance that what you see is what you
get, or that what you get actually works as you expect.

M A l I C I O U S I N S I D E R S

In Chapter 4 I talked about malicious insiders. It’s worth recalling the
problems with them. The main problem is that they are often implicitly
trusted. They can steal money out of the cash register, mess with the audit
logs to cover their tracks, photocopy military secrets and send them to
the Chinese, steal stacks of blank credit cards, pocket casino chips, look
the other way when the crooks drive off with the truck full of goods, and
anything else they can think of. Often, no amount of computer secu-
rity can prevent these attacks (although good audit mechanisms can often
determine the guilty parties after the fact).

Cyberspace is particularly susceptible to insiders, because it is rife with
insider knowledge. The person who writes a security program can put a
back door in it. The person who installs a firewall can leave a secret open-
ing. The person whose job it is to audit a security system can deliberately
overlook a few things.

One example: Chicago’s transit system used both tokens and passes.
Riders would either give the clerk a token or show their pass, and the
clerk would let them onto the subway platform. For years, clerks would
take tokens from riders, and ring them up as passholders. Eventually

 The Human Factor 265

c17.indd 265 2/16/15 10:40 AM

management figured this out and arrested the clerks (1991); low estimates
were that hundreds of thousands of dollars was stolen. Once honest clerks
started working at some stations, daily receipts doubled. This problem
remained unfixed for years.

Companies try to reduce the risk of malicious insiders in many ways.
“Hire honest people” is the best solution, although it’s easier said than
done. Some companies go so far as to conduct integrity screening—pre-
employment honesty tests—for some positions. Others try to diffuse trust,
to limit the amount of damage one person can do. Think of public code
reviews. Audit is vital: for being able to determine what damage an insider
did, and for being able to convict him in court. In the end, though, an
organization is at the mercy of its people.

S O C I A l E N g I N E E R I N g

In 1994, a French hacker named Anthony Zboralski called the FBI office
in Washington, pretending to be an FBI representative working at the
U.S. embassy in Paris. He persuaded the person at the other end of the
phone to explain how to connect to the FBI’s phone-conferencing sys-
tem. Then he ran up a $250,000 phone bill in seven months.

Similarly, it’s a common hacker trick to telephone unsuspecting
em ployees and pretend to be a network system administrator or security
manager. If the hacker knows enough about the company’s network to
sound convincing, he can get passwords, account names, and other sen-
sitive information from the employee. In one instance a hacker posted
flyers on a company bulletin board announcing a new help-desk phone
number: his own. Employees would call him regularly, and he would col-
lect their passwords and account data in exchange for help.

Social engineering is the hacker term for a con game: persuade the
other person to do what you want. It’s very effective. Social engineering
bypasses cryptography, computer security, network security, and every-
thing else technological. It goes straight to the weakest link in any security
system: the poor human being trying to get his job done, and wanting to
help out if he can.

Sadly, this is easier than you think. Showing up at a computer room
with some hardware in hand and an appropriate vendor’s badge is often
enough to give someone free rein. Wandering around and asking if

266 C H A P T E R S E V E N T E E N

c17.indd 266 2/16/15 10:40 AM

there is a place to “park and work” for a while will often result in a desk
and a network connection; that person is obviously a corporate visitor.

Most social engineering is done on the telephone, which makes the
perpetrator harder to catch. One attacker called people and said, “This is
the operator. I have a collect call from <insert name> in <insert city>.”
If the victim accepted the call, the operator continued: “Your collect call
option is blocked. Please give me your calling card number and I will con-
nect the call.” This really happened. The attacker found people on Usenet
newsgroups and invented collect calls from people they corresponded
with in the newsgroup, an extra touch of verisimilitude.

When kevin Mitnick testified before Congress in 2000 he talked
about social engineering: “I was so successful in that line of attack that I
rarely had to resort to a technical attack,” he said. “Companies can spend
millions of dollars toward technological protections and that’s wasted if
somebody can basically call someone on the telephone and either con-
vince them to do something on the computer that lowers the computer’s
defenses or reveals the information they were seeking.”

Another social-engineering attack, this one against credit cards: Alice
steals Bob’s credit card number. She could charge purchases to Bob’s
account, but she’s wilier than that. She advertises merchandise—cameras,
computers, whatever—at a very cheap price. Carol sees the advertisement
and buys a product from Alice. Alice orders the product from a legitimate
retailer, using Bob’s credit card number. The retailer ships the product
to Carol—there’s so much drop-shipping going on that the packing slip
doesn’t have the price—and is stuck when Bob notices the charge. Even
worse: Carol is inculpated, not Alice.

Automated social engineering can work against large groups; you can
fool some of the people all the time. In 1993, subscribers to the New
York ISP Phantom Access received this portentous, forged, e-mail mes-
sage: “It has been brought to my attention that your account has been
‘hacked’ by an outside source. The charges added were significant, which
is how the error was caught. Please temporarily change your password to
‘DPH7’ so that we can judge the severity of the intrusion. I will notify you
when the problem has been taken care of. Thank you for your help in this
matter. —System Administrator.” And in 1999, AOl users were persis-
tently receiving messages like: “A database error has deleted the informa-
tion for over 25,000 accounts, and yours is one. In order for us to access
the backup data, we do need your password. Without your password, we

 The Human Factor 267

c17.indd 267 2/16/15 10:40 AM

will NOT be able to allow you to sign onto America Online within the
next 24 hours after your opening of this letter.”

Plausibility plus dread plus novelty equals compromise.
Modern e-mail-borne viruses and worms use automatic social engi-

neering to entice people to open them. The IlOVEYOU worm cloaked
itself in e-mail from people the recipient knew. It had a plausible subject
line and message body, enticing the recipient to open the attachment. It
hid the fact that it was a VBScript file, and pretended to be a harmless text
file. I talked about this in Chapter 10; people don’t stand a chance against
these social-engineered viruses.

In some of these instances, technology can help. If the helpful employ-
ees had access tokens (or biometric readers) in addition to passwords,
they couldn’t give everything away to the nice man on the telephone.
If the computers had biometric fingerprint readers, there would be no
passwords to give away. If the computer system were smart enough to
recognize that someone was logging in from a remote location when the
job description states that he only works in the office, maybe someone
could have been alerted.

Sometimes simple procedures can prevent social engineering. The
U.S. Navy has safes with two locks (with different combinations, of
course); each combination is known by a different person. It’s much
harder to social engineer those combinations. There are probably other
tricks that the computers could have done, all designed to limit what a
duped legitimate user could give to a social engineer. Technology can
certainly make the job of the social engineer harder, in some cases a lot
harder.

In the end, social engineering will probably always work. look at it
from the view of the victim, Bob. Bob is a good guy. He works at this
company, doing whatever low-level or mid-level job he was hired to
do. He’s not a corporate security officer. Sure, he’s gotten some security
training, and might even know to be on the watch for those churlish
hackers. But Bob is basically clueless. He doesn’t understand the security
of the system. He doesn’t understand the subtleties of an attack. He just
wants to get his job done. And he wants to be helpful.

The social engineer, Alice, comes to Bob with a problem. Alice is
just like Bob, a cog in the big company machine. She needs to get her
job done, too. All she wants is for Bob to tell her his username and pass-
word, or give her information about a phone number, let her install this

268 C H A P T E R S E V E N T E E N

c17.indd 268 2/16/15 10:40 AM

hardware box, or do one of any number of perfectly reasonable things.
Sure, it might not be technically allowed, but Alice has her butt on the
line and just has to do this one thing. Everyone bypasses security pro-
cedures once in a while in order to get the job done. Won’t Bob help?
Isn’t he a team player? Doesn’t he know what it’s like to have to get
something done and for there to be a stupid corporate rule in the way?
Of course he does. He’s human.

And this is why social engineering works. People are basically helpful.
And they are easily duped. By appealing to Bob’s natural tendencies, Alice
will always be able to cozen what she wants. She can persuade Bob that
she is just like him. She can telephone Bob when he least expects it. She
knows that security just gets in the way of Bob doing the job he was hired
for, and she can play to that. And if she gets it wrong, and Bob doesn’t fall
for it, she can call on the tens or hundreds of other Bobs in the organiza-
tion that can give her what she wants.

 The Human Factor 269

c17.indd 269 2/16/15 10:40 AM

c17.indd 270 2/16/15 10:40 AM

Part 3

StrategieS

p03.indd 271 2/16/15 10:39 AM

Up to now, we’ve only looked at pieces of the problem. We’ve looked
at general threats. We’ve looked at different types of attacks and different
types of attackers. We’ve looked at different technologies and how they
prevent attacks (and how they don’t). it’s time to put all of these things
together to try to solve some security problems.

Upper-management security perspectives usually fall into one of three
categories. Category 1: “it’s too scary out there.” this is the perspective
that security is so bad that we can’t possibly trade stocks with our PDas,
bank over the internet, or play the lottery on our cell phones. Category
2 is “i’ve bought security.” this is the perspective that security is just a
check box on a purchase order, and if you have a firewall you’re auto-
matically safe. Both of these categories are extreme positions, and both are
simplistic. Category 3 is even stranger: “We’re too small to be attacked.”
this perspective is no less simplistic.

We can do better. Business can be conducted securely in the digital
world, just as it is conducted in the real world. at first blush, the way to
provide this security is to pile on defenses: adding more locks to a door,
or heaping more encryption, firewalls, intrusion detection systems, and
PKi systems onto a computer network. Unfortunately, things don’t often
work out that way. First, security budgets are limited. and second, some-
times the pile is not very secure.

the problem is that you have to look at the entire system, and how
security affects the system. You can’t just look at technologies.

Security is a chain; the weakest link breaks it. if you’re building an
encrypted telephone, you have to worry about the encryption algo-
rithm that secures the voice conversation, the key-exchange mechanism
that allows the phones to communicate, the key-generation process, the
software security of the firmware in the phone, the physical security of
the phone, and so forth. a flaw in any of those pieces breaks the secu-
rity of the phone.

it’s the same with computer systems. if you have a network with a

272

p03.indd 272 2/16/15 10:39 AM

firewall, then you have to worry about the security of that firewall. if
you have a network with a firewall and a VPN, then you have to worry
about the security of both those devices . . . and a flaw in either one can
compromise your network.

Security is a process, not a product. this section talks about the
process of security: attacks, defenses, and the relationships between
them. it talks about how attacks work in the real world, and how to
design systems to deal with those attacks. this section talks about the
current state of security products, the future of security products, and
the need for security processes.

 Strategies 273

p03.indd 273 2/16/15 10:39 AM

274

18

Vulnerabilities and the
Vulnerability Landscape

In Part 1 we looked at attacks in theory: what kinds of attacks there
are and what kinds of attackers there are. But as I have said else-
where, there is a difference between theory and practice. As anyone

who reads mystery novels or newspaper crime reports knows, there is a
lot more to an attack than simply finding a vulnerability. In order to suc-
cessfully make use of that vulnerability, the attacker has to find a target,
plan the attack, do the deed, and get away. A vulnerability in a safe’s
locking mechanism, if that safe is hidden in a secret location, is not as
serious as the same vulnerability in a bank’s night-deposit box.

It’s no different in the digital world. It’s not enough for a potential
criminal to find a flaw in the encryption algorithm for the ATM net-
work. He has to get access to the communications line, know enough
about the protocols to create a bogus message letting him steal money,
actually steal the money, and get away with the crime. Without those
other steps, the encryption flaw is just of theoretical value.

Similarly, there is a lot more to a countermeasure than simply
 throwing a piece of technology at the problem. That vulnerability in the
safe could be fixed by installing a stronger lock, or putting alarms on the
doors and windows of the room the safe is in and keeping a phalanx of
guards nearby. The encryption vulnerability could be fixed with a better
encryption algorithm, or by keeping the protocols secret, encapsulating
the messages in a private network, or simply changing the keys every
five minutes.

c18.indd 274 2/16/15 10:40 AM

A T T A c k M e T H o d o l o g y

generally, there are five steps to a successful attack:

 1. Identify the specific target that will be attacked and collect information
about that target.

 2. Analyze the information and identify a vulnerability in the target that will
accomplish the attack objectives.

 3. gain the appropriate level of access to the target.
 4. Perform the attack on the target.
 5. complete the attack, which may include erasing the evidence of the attack,

and avoid retaliation.

you can think of this as figuring out what to attack, figuring out
how to attack it, getting in, performing the attack, and getting out. The
first two steps are research. you can do them in the safety of your own
lab; you can often do them on simulations of the actual target. If you’re
an academic, you can stop after the second step and publish. The last
three steps carry the risk; it’s where the actual or virtual breaking and
entering happens. It’s where people either get away with the attack or
get caught.

Remember Star Wars? In order to blow up the death Star, the reb-
els first had to get the information that Princess leia stuffed into R2-d2.
That was the whole reason luke had to get the droids off Tatooine in
the first place. Rescuing the princess was just a Macguffin. That was
step one.

Step two was off-camera. We see the result when the rebel engineer
announces that he’s studied the information from the droid and found a
weakness in the station’s defense systems: The janitorial system designers
never bothered having their system designs audited by security profes-
sionals, and now the death Star’s multi-billion-credit defense systems
can be breached through a ventilation shaft.

Step three was the special-effects laden space dogfight between the
rebel X-wing fighters (you have to admire rebels with their own defense
contractors) and the station’s TIe fighters. The job of the X-wing fight-
ers was to distract everyone so that the y-wing pilots could fly along the
trench and shoot down the ventilation shaft. Access to the target was the
whole point.

It took young master luke to complete step four, after Han Solo

 Vulnerabilities and the Vulnerability Landscape 275

c18.indd 275 2/16/15 10:40 AM

got darth Vader off his tail, and Alec guiness’s disembodied voice
cajoled him to turn off his targeting computer (probably still in beta)
and use the Force.

Blowing the death Star to bits (step five) effectively eliminated any
chance of retaliation, at least until the sequel. After that, getting away was
easy. our heroes get medals from a rebel alliance whose cash balance was
high enough to afford new uniforms, and the universe is saved for a new
series of themed PeZ dispensers. Roll credits.

It’s not much different to attack a company’s computers via the Inter-
net. Step 1 is to identify the target and gather information. This is sur-
prisingly easy. The target’s Web site will contain all sorts of information,
as do various Internet databases like the one run by Network Solutions.
War dialers can find dial-up connections. There are many techniques
an attacker can use to figure out what is running on the target network:
ping scans, port scans, service listings, and others. Network sniffers can
find more information, as can vulnerability assessment tools. A lot of this
is the Internet equivalent of door rattling, although computers often tell
perfect strangers a lot about what kind of hardware they are, what kind of
software they are running, and what kind of services they allow. All this is
information an attacker can use.

Step 2 is to find a vulnerability. Here, the attacker goes through all
the information he collected looking for a place to attack. Maybe one of
the computers is running a particular version of sendmail, or the Solaris
operating system, or Windows NT, with a known bug. Maybe he can
exploit FTP, or rlogin, or something else. Maybe the target has left a
maintenance port on some piece of equipment unsecured. Maybe the
attacker could exploit the target’s PBX. The more the attacker knows
about different vulnerabilities of different systems, the better he can plan
his attack.

Step 3 is to gain some kind of access to the computer. on the Internet
this is trivial, since every computer is on the network and therefore acces-
sible. (of course, some computers are behind a firewall and inaccessible,
but the firewall will be accessible.)

Step 4 is to perform the attack. This can be either complicated or
easy. If the attacker is good, this step is surprisingly easy.

Note that some attacks involve multiple iterations of this process. An
attacker might perform Steps 1 through 4 many times: breaking into the
Web server, gaining root access on the Web server, using that access to

276 c H A P T e R e I g H T e e N

c18.indd 276 2/16/15 10:40 AM

break into another server inside the corporate firewall, gaining root access
on that server, and so forth. each step involves its own information gath-
ering, target and method identification, access, and execution.

Step 5 is to complete the attack. If he is looking for a particular file,
get it and leave. He can erase audit logs and otherwise obscure his trail.
He can also leave modified system files so that he can more easily gain
access next time. And if he is looking to do a particular piece of dam-
age, do it and leave. But get out quickly. Hanging around is the sign of
an amateur.

In his “FAQ and guide to cracking,” Mixter describes the same
steps. Here’s what he says are the first things to do after you get root.
(getting root privileges on the target computer constitutes a completion
of Step 4.):

“1. discretely [sic] remove traces of the root compromise
2. gather some general info about the system
3. Make sure you can get back in
4. disable or patch the vulnerable daemon(s)”

Specifically, he suggests turning off logging and deleting log records
of the compromise, and figuring out how often the system is maintained
and administered, and how often the log files are analyzed.

Hacker tools can automate a lot of the process. They’re not nearly
as good as a virtuoso hacker, but they can turn an inept teenager into a
formidable adversary.

Another example: an attack against a smart card payment system.
Step 1 is to gather whatever information is available on the payment
system: design specifications, public interface documents, public infor-
mation on the various algorithms and protocols used, and so forth.
There is probably a lot of information out there, if you know where
to look.

Step 2 is to study the documentation, looking for a weakness. Part 2
of this book talks about all sorts of weaknesses that can affect a system
like this. Maybe there’s a weakness in the cryptographic algorithms and
protocols. Maybe there’s a weakness in the smart card, and it’s not as
 tamper-resistant as the designers thought it was. Maybe there’s a weak-
ness in how the card is used that you can exploit. Whatever it is, you need
to find a weakness in order to attack this system.

 Vulnerabilities and the Vulnerability Landscape 277

c18.indd 277 2/16/15 10:40 AM

Step 3 is to gain whatever access is needed for the attack. you might
have to become a registered user of this smart card payment system (per-
haps under an assumed name). you might have to steal someone’s card.
you might have to collude with a merchant who accepts the smart card
as payment. getting access is not always easy.

Step 4 is to perform the attack: clone the smart card and use the clone,
alter the smart card’s memory and use it to make purchases, change the
balance and demand a cash refund, whatever. The point here is that it’s
not enough to break the smart card payment system, you need to convert
that break into cash.

Step 5 is cleaning up. you may want to destroy physical evidence of
your attack. If you have equipment at home you used to complete the
attack, throw it away. If you have computer evidence of your attack,
delete the files. Maybe you can break into the payment system’s com-
puters and destroy audit-log entries that could be damaging. Whatever
it is, try to cover your tracks.

Some attacks short-circuit these steps. For some publicity attacks,
there are no Steps 2, 3, or 5. Here’s a publicity attack against the encryp-
tion algorithms used in digital cell phones: Step 1, get information on
the cell phones’ cryptographic algorithms. Steps 2 and 3, not appli-
cable. (you already know the target, and all the access you need are the
algorithm descriptions.) Step 4, perform the cryptanalysis and alert the
media. Step 5, not applicable—you’ve done nothing illegal. This attack
has been successfully done against every digital cellular encryption algo-
rithm used to date, with amazing success.

Throughout this book, I argue that security is a chain, and a sys-
tem is only as secure as the weakest link. Vulnerabilities are these weak
links. Finding a security vulnerability is only one step toward exploiting
it, though. getting in a position to exploit the vulnerability, actually
exploiting that vulnerability, and then making a getaway are also impor-
tant—you can’t have a successful attack without them.

c o u N T e R M e A S u R e S

countermeasures are methods to reduce vulnerabilities. They can be
simple, such as building a wall around a city to reduce the vulnerability
to an enemy army marching in and taking control, or complex: devising

278 c H A P T e R e I g H T e e N

c18.indd 278 2/16/15 10:40 AM

a secure back-end auditing system to detect attempted fraud by credit
card merchants and identify the culprits.

Basically, countermeasures can be implemented to thwart any of the
five steps of a successful attack.

Most of Part 2 discusses technical countermeasures applicable to
 computers and computer networks. I tried to talk about these in con-
text: what they do, what they don’t do, how they work in relation to
each other, and so forth. No technology is a security panacea; the trick
is using each of them effectively.

The security of a system may be no better than its weakest link, but
that generally refers to the individual technologies. In a smart system, these
technologies can be layered in depth, and the overall security is the sum of
the links. cryptography can be defeated by brute-forcing the key, crypt-
analyzing the algorithm, or (the weak link) social-engineering the pass-
word from an oblivious secretary. But protecting the computer behind
a locked door, or a well-configured firewall, provides defense in depth.

Remember the opening scenes of Raiders of the Lost Ark? Indiana
Jones had to get past the spiders, the wall-of-spikes trap, the pit, the poi-
son darts released by stepping on the wrong floor stones, and the self-
destruct mechanism tied to moving the statue. This is defense in depth.
He bypassed the wall-of-spikes trap by avoiding the triggering mecha-
nism, but he might have dodged the wall, jammed the mechanism, or
done half a dozen other things. The security of the trap depends on the
easiest way to avoid it.

But just as attacking a system is more complicated than simply finding
a vulnerability, defending a system is more complicated than dropping
in a countermeasure. There are three parts to an effective set of counter-
measures:

•	Protection	
•	Detection	
•	Reaction	

In a military office, classified documents are stored in a safe. The safe
provides protection against attack, but so does the system of alarms and
guards. Assume the attacker is an outsider: someone who does not work
in the office. If he is going to steal the documents inside the safe, he is
not only going to have to break into the safe, he is also going to have to

 Vulnerabilities and the Vulnerability Landscape 279

c18.indd 279 2/16/15 10:40 AM

defeat the system of alarms and guards. The safe—both the lock and the
walls—are protective countermeasures, the alarms are detection counter-
measures, and the guards are reactive countermeasures.

If guards patrol the offices every 15 minutes, then the safe only
has to withstand attack for a maximum of 15 minutes. If the safe is in
an obscure office that is only staffed during the day, then the safe has
to withstand 16 hours of attack: from 5 p.m. until 9 a.m. the next day
(much longer if the office is closed during holiday weekends). If the safe
has an alarm on it, and the guards come running as soon as the safe is
jostled, then the safe only has to survive attack for as long as it takes for
the guards to respond.

What this all means is that the strength of the safe is based on the
detection and reaction mechanisms in place. And safes are sold this way.
one safe might be rated as Tl-15; this means that it can resist a profes-
sional safecracker, with tools, for at least 15 minutes. Another might be
rated TRTl-60, meaning that it can resist the same safecracker, with tools
and an oxyacetylene torch, for 60 minutes. These time ratings are for a
sustained attack, meaning that the clock was running only when the safe
was being attacked: rest and planning time is not counted. And the tests
are conducted by professionals with access to the safe’s engineering draw-
ings: no security by obscurity allowed. (Sounds a lot like cryptographic
attacks, doesn’t it?)

Protection, detection, and reaction countermeasures work in tandem.
Strong protection mechanisms mean that you don’t need good detec-
tion and reaction mechanisms. Weak protection mechanisms—or even
no protection mechanisms—mean that you need better protection and
detection mechanisms.

The safe ratings show this clearly. What a safe buys you is time: 15
minutes, 30 minutes, 24 hours. This time is for the various alarms to sound
(detection) and for the guards to come arrest the safecrackers (response).
Without detection and response, it actually doesn’t matter whether your
safe is rated Tl-30 or TRTl-60.

Most computer-security countermeasures are prophylactic: cryptog-
raphy, firewalls, passwords. Some are detection mechanisms: intrusion
detection systems. even rarer are reaction mechanisms—a login system
that locks users out after three failed login attempts is an example—even
though detection mechanisms are useless without them. Think about an
intrusion detection system that has just detected an attack. It alerts a sys-

280 c H A P T e R e I g H T e e N

c18.indd 280 2/16/15 10:40 AM

tem administrator, maybe by e-mailing his pager. If that administrator
won’t respond for hours—maybe he’s at lunch—then it really doesn’t
matter what the IdS detected. There’s no reaction to deal with the
problem.

Similarly, burglar alarms are detection countermeasures. If an attacker
trips the alarm, it only makes a difference if there’s someone to respond.
If the attacker knows that the alarm is being ignored, it might as well not
be there in the first place.

Sometimes, detection and reaction mechanisms are impossible to
deploy. Think of a traditional eavesdropping attack: Alice and Bob are
communicating over an insecure channel, and eve is listening. Neither
Alice nor Bob has any way to detect the eavesdropping, and hence no
way to react. The protection mechanism—encryption—has to be secure
enough to protect the communications until they are no longer valuable
to eve.

contrast this with a system that encrypts access codes for ATMs.
Assume that the only way for an attacker to get these codes would be
to break into an ATM. If there is an alarm on all ATMs (detection),
and the access codes can be changed in 15 seconds (reaction), then the
encryption algorithm can be weak. of course, there are probably lots
of ways for an attacker to get the encrypted access codes that don’t
sound alarms. Still, if the codes are changed every week regardless of any
detection mechanism (automatic reaction), then the encryption algo-
rithm only has to secure the codes for a week.

digital security’s singular reliance on protection mechanisms is
wrong, and is the primary reason we see attack after attack against digi-
tal systems today. Protection mechanisms alone can only work if the
technologies are perfect. The Platonic ideal of a tamperproof smart card
is perfect; there would be no need for detection and reaction counter-
measures. A real-world tamper-resistant smart card fails occasionally,
and a well-designed system has detection and reaction mechanisms
in place to deal with those failures. one of the theses of this book,
however, is that no technology is perfect. detection and reaction are
essential.

Think of a computer network. If the firewalls, operating systems,
server software packages, and so forth were perfectly secure, then there
would be no need for any alarm services. No one could ever break in, so
there would be no alarms. In the real world, we’ve never fielded any of

 Vulnerabilities and the Vulnerability Landscape 281

c18.indd 281 2/16/15 10:40 AM

those products without vulnerabilities. There is always a way to break
through the firewall, subvert the operating system, and attack the server
software. The only countermeasures that can work in the face of imper-
fect security barriers are detection and reaction: detection to notice when
security has been breached, and reaction to do something about it.

T H e V u l N e R A B I l I T y l A N d S c A P e

Real systems have many different vulnerabilities, and there are many dif-
ferent ways to launch an attack. A terrorist wanting to blow up an aircraft
could smuggle a bomb onboard, shoot it down with a missile, or sneak
onboard, hijack the controls, and fly it into a mountain. A computer
hacker intent on penetrating a corporate network could attack the fire-
wall, attack the Web server, exploit a dial-up modem, and so forth.

Real systems can also have many different countermeasures. Airlines
have metal detectors, chemical analyzers, and X-ray machines to detect
bombs, and bag-matching systems to ensure that someone doesn’t stay
on the ground while his bag flies alone. (This system of countermea-
sures assumes that fewer terrorists are willing to blow themselves up on
an aircraft than are willing to stay on the ground while an aircraft blows
up.) Military aircraft also have assorted antimissile defenses. corporate
networks can have firewalls, intrusion detection systems, procedures for
routinely updating passwords, and encrypted file servers.

This can get tortuous pretty fast.
I use the term vulnerability landscape to limn this imaginary, com-

plicated world of attacks and countermeasures. The metaphor is sup-
posed to evoke a vast expanse of possible attacks—pulling a gun on a
bank teller, blackmailing a programmer to put a Trojan horse in a piece
of software, drilling through the bank wall, calling up an unsuspecting
clerk and asking for his password—and countermeasures: bulletproof
glass protecting the tellers, running background checks on all employ-
ees, cameras watching the outside of the building, biometric verifica-
tion. different parts of the landscape represent different types of attacks.
computer attacks are, of course, only a small area of the landscape.

each system has its own vulnerability landscape, although different
systems will have common landscape features. (every computerized
system has to deal with the threat of a power shutdown, for example.

282 c H A P T e R e I g H T e e N

c18.indd 282 2/16/15 10:40 AM

And almost every system uses threat of arrest as a countermeasure.) A
filled vulnerability landscape is rough terrain, made up of peaks and
 valleys of varying heights and depths. The higher the peak, the better
the countermeasure: the “use passwords” peak is pretty low, but the
“turn the computer off and bury it in a smelly bog” peak is much
higher. The valleys, on the other hand, represent the vulnerabilities:
the adversaries’ opportunities for attack. The lower the valley, the more
serious the vulnerability.

Vulnerabilities are not the same as goals. goals are what I talked
about in chapter 3: criminal goals of stealing money, marketer goals of
violating privacy, bored grad student goals of gaining notoriety. Vul-
nerabilities can be used to achieve goals. Stealing money is a goal; an
unguarded cash register is a vulnerability. Besmirching someone’s repu-
tation is a goal; his unencrypted hard drive is a vulnerability. Some
vulnerabilities are irrelevant with respect to certain goals. In an anony-
mous newsgroup, an attacker’s goal might be to learn the identity of
the posters. A lack of authentication wouldn’t be a vulnerability. If the
newsgroup were based on a paid subscription model, then another goal
of an attacker might be to post without paying. Then, vulnerabilities in
the authentication system would be germane.

The vulnerability landscape can be organized in several ways. I break
it down into four broad categories: the physical world, the virtual world,
the trust model, and the system’s life cycle. They’re related. An adver-
sary may choose to attack in the physical world—breaking and entering,
setting off bombs, taking human life, and so on. using the Internet, the
same adversary could choose to attack virtually—shutting down com-
puter and phone systems, hacking the police computers and putting out
fake arrest warrants against the entire board of directors, and the like.
Attacks against a physical infrastructure from the virtual world can often
be conducted instantaneously and remotely, without warning. They are
often much nastier than attacks in the physical world.

Physical Security

Physical security is a problem the world has been trying to solve since
the beginning of time: the notion of ownership. Walls, locks, and armed
guards are all tools of physical security. Vulnerabilities are things like
unalarmed skylights, guards that fall asleep at night, and locks that can

 Vulnerabilities and the Vulnerability Landscape 283

c18.indd 283 2/16/15 10:40 AM

be broken open with a crowbar. organizations have been dealing with
this stuff for a long time; most of them have learned how to install physi-
cal security measures commensurate with the physical threat. They know,
more or less, who their adversaries are and what kinds of countermeasures
are sufficient to protect their assets.

When building digital security systems, designers often forget physi-
cal security. laptop computers with corporate secrets are stolen all the
time. In a particularly bad month in 2000, MI5 and MI6 (both British
intelligence organizations) had laptops with classified information sto-
len. Maybe the thieves didn’t care about the data, and maybe the data
was encrypted, but no one knows. (The British military seems to have
a lot of problems keeping hold of their laptops. In 1991, a computer
containing a secret briefing on the gulf War was stolen from a car
belonging to the Royal Air Force. After a very public police manhunt,
the computer was returned with the message: “I’m a thief. Not a bloody
traitor.”) A surprising number of laptop computers are stolen at airport
metal detectors, by teams of thieves working in concert.

Physical countermeasures are often layered to reinforce each other
and, in general, the sum is greater than the parts. Behind the fence, guards
patrol the perimeter of a locked building. A bank has guards, alarms, cam-
era, and a time-lock safe.

When everything works together, no single solution has to bear the
total responsibility for deterring an attacker. And the required strength of
each individual countermeasure depends on the others. A $5 door lock
may be sufficient given the fence and guards. A $50 door lock may be
wasteful given the open window nearby. Poisoned punji sticks might be
superfluous given the whirling steel blades.

Virtual Security

countermeasures have also been developed against virtual threats to
computer targets. Installing a firewall is analogous to building walls and
locking doors. Putting in authentication systems is analogous to hiring
guards and checking badges. encryption creates a “private room” in
cyberspace for a confidential conversation or an electronic safe for stored
information.

Again, a good system uses several different countermeasures in

284 c H A P T e R e I g H T e e N

c18.indd 284 2/16/15 10:40 AM

 concert: firewalls protecting outsiders from accessing the systems, strong
authentication to make sure only authorized users log on, and end-to-end
data encryption.

The Trust Model

The trust model represents how an organization determines who to trust
with its assets or pieces of its assets. For instance, applicants might have
their résumés verified, their references interviewed, and their criminal
records checked. once they’ve been hired, picture identifications and
parking stickers might be issued. only certain people are given per-
mission to enter certain rooms, open certain file cabinets, or attend cer-
tain meetings. only certain people have the ability to sign checks, enter
into contracts, or perform other financial dealings. In extreme circum-
stances, additional security comes from segregation of duties; for exam-
ple, the person who has the physical possession of the checks doesn’t
have the machine that embosses the signatures. This trust is often a
complex relationship. Someone might be trusted to make changes in
the personnel records but not the engineering specifications. Another
per son might be trusted to change the engineering specs but wouldn’t
be allowed anywhere near the personnel records.

In the physical world, it is relatively easy to identify those individu-
als who are trusted and those who are not. you know what someone
looks like. If a stranger walks into an office and starts taking out petty
cash, someone will get suspicious. As long as the organization is small
enough so that everyone knows everyone, physical penetration attacks
aren’t really possible. It’s the larger organizations that get infiltrated by
spies; employees are used to seeing people they don’t recognize, so they
think nothing of yet another one. (People in any size organization, of
course, are vulnerable to threats, bribery, blackmail, seduction, and other
kinds of unsavory persuasion.)

The challenge is how to extend the same level of trust in individu-
als from the physical world to the virtual world—without the physical
presence of the individual to draw upon. For example, in the physical
world, an adversary who wishes to masquerade as a trusted member of a
community takes the personal risk of being found out and apprehended.
In the virtual world, a spy can come across the border and impersonate

 Vulnerabilities and the Vulnerability Landscape 285

c18.indd 285 2/16/15 10:40 AM

a trusted member of the organization with less risk of being detected or
physically apprehended.

The Life Cycle of a System

An industrial spy might choose to bug the telephones in his competitor’s
offices. He then must choose when and where to conduct this attack. The
office equipment is vulnerable during its entire life cycle: on the drawing
board, in the manufacturing plant, on the loading dock, in the competi-
tor’s offices, or even after disposal. depending on access afforded to him,
the adversary may choose to alter or swap the equipment during produc-
tion, shipment, installation, normal operations, or maintenance. At some
point during the equipment’s life cycle, Soviet spies bugged typewriters
in the u.S. embassy in Moscow. did they install the bugs at the factory
in the u.S., while the typewriters were being shipped to the embassy, or
after they were sitting on desks inside the embassy? We don’t know, but
each option represents a possible point of attack. And depending on how
good the audit systems were, they may have been able to figure it out.

Similarly, a criminal who wants to steal money from a slot machine
has the same array of choices: He can introduce a flaw into the design,
modify it during installation, or break into it when it is on the casino
floor. each of these attacks has different characteristics—difficulty, success
probability, profitability—but they are all possible.

The work environment of the virtual world is software running on
network computers. Attackers can attack this software anywhere during
its life cycle. A malicious software developer could intentionally leave a
back door in the latest release of the operating system. An adversary could
put a Trojan horse in an already popular Net browser and distribute it
for free over the Internet. He could write a virus that attacks accounting
software and delivers it in an executable attachment to an
e-mail message. He could analyze the software and exploit an accidental
vulnerability. The possibilities are staggering.

R A T I o N A l l y A P P l y I N g c o u N T e R M e A S u R e S

The vulnerability landscape is a vast expanse of potential attacks, and
it makes the most sense to apply countermeasures evenly across the

286 c H A P T e R e I g H T e e N

c18.indd 286 2/16/15 10:40 AM

 landscape. The idea is to protect against those threats that pose the greatest
risk, instead of protecting against the most manifest threats while ignoring
all the others.

The idea is also to make rational investment decisions in applying
countermeasures. That is, it doesn’t make sense to spend more money
improving the locks on the front door when the adversary is apt to break
through the glass window. It also doesn’t make sense to spend $100 on
bulletproof glass to protect $10 worth of assets. The cable TV indus-
try described adding strong cryptography to their analog set-top boxes as
“putting a yale lock on a paper bag.”

Value is often dependent on context, and is not always the same for
attackers and defenders. In the days before hard drives, teenagers would
sometimes walk into offices and steal floppy disks . . . for the value of the
disks. Some companies lost some pretty important data that way. And at
the other extreme, shopping carts worth over $100 are much less likely to
be stolen if there’s a $0.25 deposit. Smart cost analysis means more ratio-
nal countermeasures for phone fraud and software piracy.

Also remember that some adversaries don’t even see value in mon-
etary terms. How else can you explain a hacker spending hundreds of
hours breaking into a useless computer system? Some attackers are look-
ing for publicity, revenge, or some other intangible; remember that when
you look at values.

Also, keep in mind that blocking just one of the first four attack steps
is enough to block an attack. Simple countermeasures, education, policy,
and procedures are often rational, cost-effective means of mitigating the
risks posed by the vulnerability landscape. These simple steps can signifi-
cantly raise the risk and sophistication needed by the adversary to conduct
a successful attack.

The next several chapters deal with this process of modeling threats,
assessing risk, and determining which countermeasures to implement.

 Vulnerabilities and the Vulnerability Landscape 287

c18.indd 287 2/16/15 10:40 AM

288

19

Threat Modeling and
Risk Assessment

Threat modeling is the first step in any security solution. It’s a way
to start making sense of the vulnerability landscape. What are
the real threats against the system? If you don’t know that, how

do you know what kind of countermeasures to employ?
Threat modeling is hard to do, and a skill that only comes with expe-

rience. It involves thinking about a system and imagining the vast vul-
nerability landscape. Just how can you attack this system? I find that true
hackers are masterful at this kind of thing, which is probably why they’re
drawn to computers in the first place. Hackers enjoy thinking about sys-
tems and their limitations: how they fail, when they fail, what happens
when they fail. They delight in making systems do things they weren’t
intended to. It’s the same whether the hacker is modifying the engine in
his car to work how he wants it to and not how the manufacturer wants it
to, or whether he is poking at an Internet firewall to see if he can “own”
the computer it is running on.

I find that the best security analysts are people who go through life
finding the limitations of systems; they can’t help it. They can’t walk into
a polling place without thinking about the security measures and figuring
out ways that they can vote twice. They can’t use a telephone calling card
without thinking about the possible antifraud mechanisms and how to get
around them. These people don’t necessarily act on these thoughts—just

c19.indd 288 2/16/15 10:40 AM

because they found the blind spot in the store’s video surveillance system
doesn’t mean they start shoplifting—but they can’t help looking.

Threat modeling is a lot like this, and the only way to learn it is to do
it. So let’s start by stealing some pancakes.

Our goal is to eat, without paying, at the local restaurant. And we’ve
got a lot of options. We can eat and run. We can pay with a fake credit
card, a fake check, or counterfeit cash. We can persuade another patron to
leave the restaurant without eating and eat his food. We can impersonate
(or actually become) a cook, a waiter, a manager, or the restaurant owner
(who might be someone that few workers have ever met). We could
snatch a plate off someone’s table before he eats it, or from under the heat
lamps before the waiters can get to it. We can wait at the Dumpster for the
busboy to throw away the leftovers. We can pull the fire alarm and sneak
in after everyone evacuates. We can even try to persuade the manager that
we’re some kind of celebrity who deserves a free breakfast, or maybe we
can find a gullible patron and talk her into paying for our food. We could
mug someone, nowhere near the restaurant, and buy the pancakes. We
can forge a coupon for free pancakes. And there’s always the time-honored
tradition of pulling a gun and shouting, “Give me all your pancakes.”

There are probably even more possibilities, but you get the idea.
Looking at this list, most of the attacks have nothing to do with the point
where money changes hands. This is interesting, because it means that
securing the payment system does not prevent illicit pancake stealing.

It’s similar in the digital world. If this were a Web-based digital
pancake store, most of the attacks would have nothing to do with the
electronic payment scheme. There are many other areas of vulnerability.
(Remember the beautiful Web page hack against shopping cart software
from Chapter 10, where an attacker could change the price of an item to
an arbitrary amount. This brings up another possible attack: change the
menu so the pancakes cost $0.00.) The most fruitful attacks are rarely the
physical ones.

F A I R E L E C T I O n S

Let’s move on to bigger and better things. Let’s rig an election. It’s a
local election—mayor of a town. Cheating in elections is almost as old
as elections themselves. How hard could it be?

 Threat Modeling and Risk Assessment 289

c19.indd 289 2/16/15 10:40 AM

Assume a dozen different voting precincts, each with its own polling
place. Each polling place has three election judges who monitor the
 process. Voters get paper ballots from these judges, blacken a circle cor-
responding to the candidate of their choice, and then drop the ballot into
a large box. At the end of the day, all the ballots are fed into an auto-
matic vote-counting machine. The judges at each of the 12 polling places
phone their results in to a central office. Then the results are summed
together, and the winner gets to declare victory over the sound of a noisy
band while dodging confetti.

The system has many attack points. We can attack the voters, the
election judges, the ballot boxes, the vote-counting machines, the phone
calls, or the central office. Let’s examine each in turn.

Bribing voters is a time-honored way of rigging an election. This
isn’t just something that happened in the dim history of the developed
world, or in Third World countries. In Dodge County, Georgia (popu-
lation 17,000), 21 people were indicted for a variety of illegal voting
practices, vote buying included; the election was in 1996. In most juris-
dictions (including Georgia) it’s illegal to pay cash for votes, so politi-
cians are usually forced to resort to other bribes: tax breaks, public works
projects, friendly legislation, and White House sleepovers. We can do
this, but it’s expensive.

And we can’t rely on it. The whole point of having private voting
booths is so that people can’t reliably buy and sell votes. We can pay vot-
ers $100 each to vote for a particular candidate, but when they go into the
polling place, they can mark their ballots however they please. (Tax breaks
work better in this regard, especially for incumbents; the voters think that
by voting a certain way they can get more of them.) There’s an old Chi-
cago story about a politician who bought votes. He had his henchmen
smear black gunk on the mechanical voting pulls associated with a vote for
him, and was then able to confirm if the bribed voter delivered the goods.

This avenue of fraud is returning due to the prevalence of mail-in
ballots. Somewhere between a third and a half of all ballots cast in Silicon
Valley elections are mail-in. In Oregon today every election (except pres-
idential) is mail-in only. Arizona experimented with an Internet voting
scheme for the 2000 Democratic primary. The risk is there—someone
could walk into a poor section of town and buy a pile of blank ballots for
$10 each (Arizona used PIns, equally fungible)—but the locals feel that
it is worth it.

290 C H A P T E R n I n E T E E n

c19.indd 290 2/16/15 10:40 AM

The Singapore ruling party subverts the privacy of ballots by hav-
ing small election districts, maybe a single apartment block. They can’t
identify voters individually, but they are very public about denying gov-
ernment money to districts that voted for the opposition. Think of it as
group bribery.

Anyway, let’s assume that bribery is beyond our financial means, and
even more worrisome, that someone will call the newspaper and expose
our scheme. How about intimidation? A trick of Mexico’s Institutional
Revolutionary Party was to ensure that voting booths in remote places,
supposedly impervious to prying eyes, were placed under a tree—with a
hired thug hiding in the branches making sure voters voted “properly.”

We can try fooling the election judges. We could hire a bunch of
actors to pretend to be eligible voters. We could make it so that selected
people vote more than once. These are good attacks, but there are
defenses. In the United States the election judges keep a list of eligible
voters; they check identification and keep records. In the first multira-
cial South African elections (1994), voters had their hands stamped with
indelible ink to prevent them from voting twice. In Latvia’s first post-
USSR election (1990), people’s identity papers were checked and then
stamped. During Indonesia’s 1999 elections, voters dipped their fingers
in ink to prevent double voting. (The ink was supposed to last for the
three-day election period, but some people noticed that some of the ink
was washable.)

We could attack the election judges themselves. With the coop-
eration of the judges, we can do what we want. We can slip ineligible
voters onto the list—in the early 1900s, dead Chicagoans voted in many
elections—or simply invent eligible voters. During the 1960 presiden-
tial election, the Chicago Democratic machine, led by Mayor Richard
Daley (the scary one), is widely believed to have initiated enough voter
fraud to tip the Illinois vote to Kennedy and cost nixon the election.
(When the Republicans demanded a recount in the state, the Democrats
demanded a similar recount in a few other states and then both sides
capitulated.) This kind of thing is still going on: In the 1996 Louisiana
Senate election, the Democratic political organization was accused of
buying votes, getting people to vote multiple times, and even tampering
with voting machines.

Aside from widespread corruption of election judges, attacks get
harder. We could try to bribe judges to look the other way, but three of

 Threat Modeling and Risk Assessment 291

c19.indd 291 2/16/15 10:40 AM

them are at each polling place. We can probably bribe one random judge,
but it is really hard to also bribe the two other judges at the same precinct.
Election judges are more expensive than voters, and more likely to alert
the media.

How about the ballot boxes? We can fill them with already-
completed ballots, the original ballot-stuffing idea. We’ll have to make
sure we don’t overdo it; the last thing we want is for a precinct to reg-
ister a 130 percent voter turnout. And we have to make sure nobody
notices; some Third World elections use transparent ballot boxes to foil
this attack.

Attacking the vote-counting machine is easier. It’s a computerized
device, so chances are no one will notice if a malicious vote-counting
program inflates one candidate’s votes. We could try to get a Trojan
horse into the machine while the software is being written (assum-
ing software is involved, and it is not simply a mechanical counting
machine). Or maybe we have to intercept the machine when it is deliv-
ered and slip the bogus code in. Maybe we could cajole the election
judges to install our software “upgrade.” There are a lot of avenues for
attack here.

Maybe we can misprint the paper ballots so that the machines some-
times just don’t register a vote for the opposition; move the box a fraction
of an inch to the side and no one would notice. Or we can somehow
force the machines to jam, forcing the judges to count manually. Then
one bribed election judge could possibly slip a fake result past the other
two. In the 1988 Mexican presidential election, the computers “failed”
when the challenger was ahead. When they were working again, the
incumbent had won . . . and the ballot papers were swiftly burned. I don’t
want to cast aspersions on the Mexican electoral system, but it all sounded
fishy.

The central tabulating office is the hardest place to attack, because it’s
so public. Maybe we could get away with misreporting precincts, but one
of the judges is likely to notice. The phone calls between the precincts
and the office . . . possibly.

So, how did we do? It looks as though our best avenue of attack
is to persuade the vast majority of election judges to do our bidding.
They can add or delete votes, swap ballot boxes in transit, and do lots of
other underhanded things. We might be able to rig the vote-counting
machines, and getting fake voters past the judges and fake ballots into

292 C H A P T E R n I n E T E E n

c19.indd 292 2/16/15 10:40 AM

the boxes might work. The moral is that this is hard. Unless the people
running the election are in the back pocket of one of the candidates—
which is sometimes true in Third World elections, but rarer in the
United States—it’s just not going to happen.

The point of this thought experiment was to show the many avenues
of attack against a system, and how few of them involve the computer-
ized portion of the process. We can attack the tabulation software, and
we can mount a denial-of-service attack by making the automatic system
fail and forcing the election judges to fall back on an older, more insecure,
procedure for accomplishing the same task. In the end, elections are about
trust. If the election judges are trustworthy and competent, the election
will be fair. If the election judges are not trustworthy, there are so many
ways to rig the election that it isn’t even worth worrying about which
one is most likely.

The Internet adds new twists to this already tangled skein, and the
risks increase significantly. All the old attacks remain, and there are all
the new attacks against the voting computers, the network, and the
voters’ computers (which are not trusted in any way). And denial-of-
service attacks that don’t exist against centralized systems. Even worse,
modern elections have no graceful way to fail. The 2000 Democratic pri-
mary in Arizona allowed Internet voting. If there was a problem, or even
suspicion of a problem, what could Arizona do? Reboot the election and
try again the following week? This reason alone is enough to convince
any psephologist to eschew Internet voting.

S E C U R E T E L E P H O n E S

This one should be easy. An organization—government, corporation,
human rights advocacy group—needs to make phone calls that can’t be
overheard. The solution is an encrypted telephone, of course. But what
are the threats?

The adversary could be a corporate competitor or a government,
someone with both the resources and access to carry out highly sophis-
ticated attacks. To solve this problem, the organization will build or buy
encrypted phones.

How can we attack this system? We might be able to break the
encryption, but let’s assume that we can’t.

 Threat Modeling and Risk Assessment 293

c19.indd 293 2/16/15 10:40 AM

We could modify the phones so that they don’t work properly.
There are lots of options: We can force the encryption algorithm to be
weak, we can mess with the key generation system, we can make the
phones radiate the unencrypted phone call, or we can add a subliminal
channel to make the phones leak the keys onto the voice circuit (this
is known as “Clipper” when it is done openly). All of these attacks
could be put into place during product design and development, while
the phones are being shipped to the organization, or during mainte-
nance. They could be done by sneaking into the manufacturing facility
at night, bribing someone who works there, or simply designing the
surreptitious feature in from the start.

This might seem far-fetched, but if we have the resources of a
national intelligence organization, they’re perfectly reasonable methods
of attack. Crypto AG, a Swiss company, sells encryption hardware to a
lot of Third World governments. In 1994, one of their senior executives
was arrested by the Iranian government for selling bad cryptographic
hardware. When he was released from jail a few years later, he went pub-
lic with the news that his company had been modifying their equipment
for years at the request of the U.S. intelligence community. In the 1950s,
Xerox modified photocopiers sold to the Russians so that they also had
a little camera inside; copier repairmen would periodically remove and
replace the film.

The Soviets weren’t any less wily; they modified all sorts of office
equipment, including IBM Selectric typewriters, in the American
embassy in Moscow to broadcast data. British encryption companies are
rumored to add exploitable features into products they sell to foreign
governments. Even if they didn’t hear the rumor, you’d think that the
Argentine government would think twice before using British-supplied
encryption devices during the Falklands War.

There are a lot of things we can do that don’t directly involve the
secure telephone: installing bugs inside the secure phones (or the rooms
where the phones are), bribing the people making and receiving the calls,
and so forth. But the organization can’t reasonably expect the phones to
be able to deal with that.

One of the best attacks is to simply force the phones not to work.
This is easier if the attacker owns the phone system: for example, the
phones are being used by a human rights organization in a questionable
Third World country, or by a multinational corporation calling a field

294 C H A P T E R n I n E T E E n

c19.indd 294 2/16/15 10:40 AM

office in an industrial country known for economic espionage. The
attack is to eavesdrop on the phone line, and when the secure telephones
try to work, force enough errors that they fail. What will happen, more
likely than not, is that the two parties will just stop trying to use the
secure phone and say what they were going to say over the unprotected
phone line.

S E C U R E E - M A I L

Secure e-mail is a little more interesting. In Chapter 12, I briefly out-
lined how secure e-mail programs work. The cryptography does two
things: provides a digital signature for authenticity, and encryption for
privacy. (The envelope is a curious security device. The Babylonians
first thought of protecting clay tablets by enclosing them in clay “enve-
lopes” baked hard around their contents. The Chinese were the first
to use paper envelopes—often with wax seals to make them tamper-
evident—and they eventually hit Europe. Louis XIV of France popular-
ized them.)

In any case, there are lots of ways to attack this system. There’s the
cryptography: Do the algorithms and protocols work like the design-
ers think they do? There’s the implementation: Are there any software
bugs that can be exploited? There are all the same back doors that work
against the secure telephones: Can we modify the program in design,
development, or on the user’s desktop? What about the passwords that
users use to read their encrypted mail or to sign their outgoing mail?
E-mail programs use certificates to validate public keys; Chapter 15
talks about the potential vulnerabilities in the trust model of certificate
systems. And don’t forget about all the other vulnerabilities that have
nothing to do with the e-mail system: monitor the computer and read
the e-mail either before it is sent or after it is received, get a copy of a
printout, attack whatever key escrow mechanism the government (or
corporation) was dumb enough to enforce.

Encrypting e-mail is riskier than encrypting phone calls. For
phones, the information is at risk only for the duration of the call. For
e-mail, which may be stored at both ends for considerable lengths of
time, the information is at risk also while at rest. Moreover, the adver-
sary can subvert the operating system of the underlying computers to

 Threat Modeling and Risk Assessment 295

c19.indd 295 2/16/15 10:40 AM

attack the information, while phone calls are made on dedicated hard-
ware, which is much harder to attack. The adversary can introduce the
attack at a distance, with little physical risk, and can possibly obtain all
of the target’s information, not just a single message. Finally, the attack
can be automated to rapidly exploit a wide range of targets or to just
bide its time waiting.

I’ll return to this example in Chapter 21.

S T O R E D - V A L U E S M A R T C A R D S

next, a more complicated example: an electronic payment system based
on smart cards that store a balance on them. (These are often called
stored-value cards.) There are several of these being tested: Mondex’s
(and MasterCard’s) system, VisaCash (tested during the 1996 Summer
Olympics in Atlanta), Banksys’s Proton. The analysis here is general, and
doesn’t necessarily reflect the details of any of these systems. We’ll call
our hypothetical system Plasticash.

The basic idea behind Plasticash is that people are issued smart cards
to use for cash transactions. Terminals litter the commercial landscape:
in banks, in stores, attached to computers attached to the World Wide
Web. When a customer wants to buy something from a merchant (or,
more generally, transfer money to someone else), they both put their
Plasticash cards into a reader/writer and transfer the money. (Merchants
will probably have special cards that always remain in the readers.) People
can also take cards to banks or ATMs to either load them up with more
Plasticash, or deposit Plasticash into their bank accounts. note that the
two cards don’t have to be right next to each other; they can be separated
by phone lines or modem.

In general, stored-value cards have the advantage that they don’t
have to be online—in contact with some central server somewhere—in
order to work. (For debit cards to work, the ATM has to connect to a
bank computer in real time.) They have the disadvantage that loss or
destruction of the card means losing the money.

Plasticash, like any electronic payment system, will have all sorts of
security features: cryptography, computer security, tamper resistance,
audit, and whatever. It could provide varying degrees of integrity, privacy,

296 C H A P T E R n I n E T E E n

c19.indd 296 2/16/15 10:40 AM

anonymity, and so forth. We’re not going to get detailed. Let’s just look
at possible attacks against the most general formulation of the system.

There are three different parties involved in the Plasticash system: the
customer, the merchant, and the bank. And there are three protocols:

Bank/customer. The customer loads Plasticash onto his card.
Customer/merchant. The customer transfers Plasticash from his

card to the merchant’s card.
Bank/merchant. The merchant deposits Plasticash from his card

into his bank account.

Part 1 of this book talks about the possible attacks: monetary theft,
framing, privacy violations, vandalism and terrorism, or publicity. Plas-
ticash might also have to worry about ancillary crimes: An attacker may
wish to use the system to carry out some other crime, such as money
laundering. Ancillary crimes are hard to define clearly, since they can
change at each border crossing, and even at each election. It’s also not
clear to what extent different countries’ laws and customs may be in
conflict. For example, in an international arena, U.S. financial reporting
requirements may run afoul of Swiss banking secrecy laws.

When we talk about attacks by the bank, we are not necessarily
postulating a malefic banking empire. These attacks can be mounted
by rogue employees of venerable banks. In general, we are more con-
cerned with attacks by customers and merchants (rogue employees of
merchants), on the theory that banks can afford better security mecha-
nisms and measures, and have greater potential losses to reputation if they
attack their own systems. Still, it’s prudent to be careful.

The first type of attack is theft. There are several ways to mount an
attack to steal money from Plasticash. These attacks can be mounted by
customers or merchants:

Modify the card so that is has more value than it should. This can be done in
several ways; the most obvious is to find the data register inside the card that
records the value of the card and change it.

Alter records to reflect either a larger or smaller payment amount.
Learn to create or emulate new cards. This attack is creating a fake Plasticash

card that can act like a real card. The fake card doesn’t have to look like a
real card; an attacker can use it only for purchases over the Internet, or he

 Threat Modeling and Risk Assessment 297

c19.indd 297 2/16/15 10:40 AM

can transfer money from his fake card to a real card and then spend with
the real card.

Learn how to clone cards. The attacker would need to steal a legitimate card,
make a clone, and then return it. (This attack succeeded against Canadian
bank cards; several arrests were made in 1999. A rogue merchant could
clone a card in seconds, while a customer used the card to make a legiti-
mate purchase.)

These are customer attacks:

Repudiate a set of valid card transactions. This is the old “buy an expensive
something with your card, and then report the card stolen and deny the
transaction.” There’s a new variant—using stupidity as an excuse—for
example: “Visa forced me to lose all my money gambling online; it’s not
my fault.” This attack should be dealt with at an administrative and legal
level. Whether you’re dealing with checks, credit cards, traveler’s checks,
or whatever, some people will decide they wish they hadn’t spent all that
money and try to avoid paying the charges.

Report another user’s card stolen and arrange to intercept his replacement
card. Again, this attack is bigger than the Plasticash system.

And attacks that can only be mounted by merchants:

Accept a transaction and refuse to deliver the goods. This is outside the
scope of what the card can resist, but administrative and legal procedures
need to exist to handle it.

Get access to some stolen customer cards, and alter data. Or generate a bunch
of apparently valid checks to deposit. This is an obvious attack. The attacker
will probably try to deposit the money and then quickly withdraw it all.

Replay valid transactions. A merchant could somehow charge a
customer twice for the same transaction.

Finally, these attacks can be mounted by banks:

Refuse to load value into a Plasticash card that a customer has paid for. This
can be resisted only by administrative procedures and logging. The cus-
tomer will have evidence enough to prove to a neutral third party what
has happened if the protocol is designed competently.

Pocket the cash and never credit the customer’s account, when someone tries
to deposit money from his Plasticash card into his account. Again, this can
be defended against only through administrative procedures.

298 C H A P T E R n I n E T E E n

c19.indd 298 2/16/15 10:40 AM

All of these attacks can be mounted by pairs (or the trio) as well. I
can’t think of any different sort of attack that a merchant and customer
can mount, but depending on the security characteristics of the system,
the pair could be successful where either one acting alone might not be.
Additionally, think about attacks by people pretending to service the ter-
minal. Or repair the phone lines.

The second type of attack is framing. First, customer or merchant
attacks:

A customer can claim that a merchant has an invalid Plasticash card (or ter-
minal). A merchant can claim the same thing about a customer card. This
has to be resolved by administrative means.

Then, bank attacks:

Forge customer cards (or merchant cards, for that matter) and frame the
customer. Presumably, if the bank can issue Plasticash cards, it could
also forge them. Wouldn’t a customer hate to see his itemized Plasticash
record include a prostitute visit?

The third type of attack is a privacy violation. Privacy violations
happen whenever some user’s personal information is given without
that person’s consent to some third party. Depending on the jurisdic-
tion, a privacy violation may be legal. Since the developers of Plasticash
want to their product to propagate worldwide, it makes sense to list the
attacks and then later ignore them if they are legal (and harmless).

Unless the system is specifically designed to prevent this, the
bank is in a position to collect unlimited information about customer
spending. (“I know what you bought last summer.”) It is possible to
avoid some of this (but only some) by having users buy precharged
stored-value cards in fixed denominations, like some prepaid tele-
phone cards.

The merchant can’t directly get the customer’s name and such data,
but it can collect and share information about this card’s ID with other
merchants, and try to link this back to the user’s identity.

And we also have to worry about eavesdroppers: people not
involved in the protocol at all listening in on transactions and collecting
information.

 Threat Modeling and Risk Assessment 299

c19.indd 299 2/16/15 10:40 AM

The fourth category of attack we have to worry about includes
vandalism and terrorism. These attacks are prevalently aimed at the sys-
tem as a whole, though they could be aimed at users, merchants, or
banks. The general idea behind all such attacks, though, is that they
are intended to prevent the system from working properly. Denial-of-
service attacks can be so much fun. Watch.

First, denial-of-service attacks on a merchant:

Interfere with communications with bank or customers.
Report the merchant’s card as stolen or compromised.
Physically damage or destroy the merchant’s card.
Tamper with the power to the terminal, or the phone connection to the

terminal.

Denial-of-service attacks on a customer:

Interfere with communications with bank or merchants.
Report the customer’s card as stolen or compromised.
Physically damage or destroy the customer’s card.

Denial-of-service attacks on a bank:

Interfere with communications with customers or merchants.
Physically damage or destroy the bank’s secure hardware.

And systemwide denial-of-service attacks:

Somehow force the system to upgrade itself, before anyone knows how to
deal with it. (You can think of this attack as Y2K.)

Deny service to many or all banks.
Interfere with communications with customers or merchants.
Destroy top-level certifying public key in PKI-based systems.

We can also use criminal attacks to destabilize the system:

Start mass-producing counterfeit cards.
Use massive, widespread fraud to bring down system.

Finally, let’s talk about using the system to commit a crime. In the
context of this system, crime means violating the laws by using the system.

300 C H A P T E R n I n E T E E n

c19.indd 300 2/16/15 10:40 AM

For now, we’ll only consider money-laundering laws, since other laws
are too plentiful and variable to discuss here. (note that most crimes
involve a transfer of money somewhere along the line. nothing a
stored-value card can do will get rid of the drug trade, illegal gambling,
prostitution, and so forth.)

Some people get cards under false names, or even under their own
names if they can be convinced to do so. (There are no doubt many
people in the world who will go open a bank account that they know
will be used for money laundering, and hand over control to someone
else, if they are offered a few thousand dollars, or in some cases, a few
days’ or weeks’ worth of alcohol or drugs.) If these cards are charged up
once and used as compact currency, then there isn’t an obvious way to
stop this.

note that some ethical and legal issues here are not obviously fixable.
Providing financial data to the U.S. or U.K. governments about their
citizens raises some potential problems, but this data will probably not be
abused too often. Providing the same kind of data to many other govern-
ments, such as China, Turkey, Mexico, or Syria, seems like a rather dif-
ferent matter. The latter could cause political and legal problems for the
companies that provide that data, and is also likely to lead to much higher
levels of fraud in those countries.

R I S K A S S E S S M E n T

It’s not enough to simply list a bunch of threats, you need to know how
much to worry about each of them. This is where risk assessment comes
in. The basic idea is to take all the threats, estimate the expected loss per
incident and the expected number of incidents per year, and then cal-
culate the annual loss expectancy (ALE).

For example, if the risk is a network intrusion by hackers looking
for something to do, the expected loss per incident might be $10,000
(cost of hiring someone to figure out what happened, restore things to
their normal state, etc.) and the number of incidents per year might be
three per day, or 1,000. This means that the ALE is 10 million. (You can
see where this is heading. If the ALE is $10 million, then buying,
 installing, and maintaining a firewall for $25,000 a year is a bargain. Buy-

 Threat Modeling and Risk Assessment 301

c19.indd 301 2/16/15 10:40 AM

ing a $40 million super whiz-bang whatever is a waste of money. This
analysis implies that both the firewall and the super whiz-bang whatever
actually counter the threat. We’ll come back to that point later.)

Some risks have a very low probability of incidence. If the risk is a
network intrusion by an industrial competitor out to steal the new design
plans, the expected loss per incident might be $10,000,000, but the num-
ber of incidents per year might be 0.001: there’s a 0.1 percent chance of
this happening per year. This means that the ALE is $10,000, and a coun-
termeasure costing $25,000 isn’t such a bargain anymore.

The insurance industry does this kind of thing all the time; it’s how
they calculate premiums. They figure out the ALE for a given risk, tack
on some extra for their operational costs plus some profit, and use the
result as the cost of an insurance premium against that risk.

Of course there’s going to be a lot of guesswork in any of these;
the particular risks we’re talking about are just too new and too poorly
understood to be better quantized. For one thing, it might take a really
sharp eye to spot the potential for a cascade failure: a small error that could
eventually result in the loss of millions of dollars.

For computer-related risk analysis, a bunch of commercial tools pro-
vide templates and methodologies for doing risk analysis. They tend to
look at large risks, like industrial espionage, rather than small risks, such as
someone recovering the private key used to secure your e-mail.

Risk analysis is important because it gives perspective to this whole
exercise. Large gaping security holes are okay if the probability of attack
is zero. (Tokyo is still vulnerable to attacks by giant fire-breathing lizards,
for example.) Tiny holes need to be closed if they’re the target of 10 mil-
lion attacks a day.

T H E P O I n T O F T H R E A T M O D E L I n G

When designing a security system, it is vital to do this kind of threat
modeling and risk assessment. Too many system designers think of secu-
rity design as a cookbook thing: mix in particular countermeasures—
encryption and firewalls are good examples—and magically you’re
secure.

This never happens. Yogi Berra said: “You’ve got to be careful if you
don’t know where you’re going ’cause you might not get there.” Often

302 C H A P T E R n I n E T E E n

c19.indd 302 2/16/15 10:40 AM

security systems don’t protect against the threats that matter. Encrypting
e-mail may protect the contents from eavesdropping, but does nothing
to hide the fact that two people are communicating. In some threat
models, that traffic-analysis data is more important than the contents
of the message. In other threat models, the fact that someone is using
encryption is something to keep secret.

Good engineering proceeds seriatim from requirement to solu-
tion, not from cool technology to product. In security engineering, this
means that you first need to define the threat model, then create a secu-
rity policy, and only then choose security technologies that suit. The
threats are what determine the policy, and the policy is what determines
the design. In detail:

Understand the real threats to the system and assess the risk of
these threats. It’s easiest to understand this if you can draw on real-world
 experience with actual attacks against similar systems.

Describe the security policy required to defend against the threats.
This will be a series of statements like: “only authorized banks are allowed
to modify the balance on Plasticash cards,” or “all Plasticash transactions
must be auditable.”

Design the countermeasures that enforce the previously described
policy. These countermeasures will be a mixture of protection, detection,
and reaction mechanisms.

Of course, this “waterfall” model is ideal, and the real world doesn’t
often cooperate. More likely your engineering path is going to look
more like a spiral, where you iterate the preceding three steps multiple
times, each time getting closer and closer to real security. This happens
most often with new systems and with new technologies, where the real
threats remain abstruse until you field the system and see who attacks
what. This is why all good systems have contingency plans and disaster
recovery plans.

G E T T I n G T H E T H R E A T W R O n G

Looking at the goals and methodologies of attackers seems obvious, but
many otherwise smart organizations have been blindsided for failing to
do just this. The nSA has spent many good years defending the U.S.

 Threat Modeling and Risk Assessment 303

c19.indd 303 2/16/15 10:40 AM

military communications systems against a well-funded organization
with a single goal: “eavesdrop on U.S. communications systems of mili-
tary importance.” They were good at this, but completely missed the
hacker threat. Hackers aren’t interested in eavesdropping. They aren’t
particularly well funded. They aren’t even organized. They don’t want
to collect military intelligence; they want to poke at systems for fun and
see how they fall over. They want to brag to their friends and maybe
even get their names in the newspaper. An AT&T Bell Labs researcher
found a flaw in the nSA’s Clipper Chip implementation and caused all
sorts of bad publicity for the nSA. Why? The frisson at catching the
nSA in a mistake.

If you do enough threat modeling, you start noticing all kinds of
instances where people get the threat profoundly wrong:

The cell phone industry spent a lot of money designing their systems to detect
fraud, but they misunderstood the threat. They thought the criminals would
steal cell phone service to avoid paying the charges. Actually, what the
criminals wanted was anonymity; they didn’t want cell phone calls traced
back to them. Cell phone identities are stolen off the air, used a few times,
and then thrown away. The antifraud system wasn’t designed to catch this
kind of fraud.

The same cell phone industry, back in the analog days, didn’t bother securing
the connection because (as they said): “scanners are expensive, and rare.”
Over the years, scanners became cheap and plentiful. Then, in a remarkable
display of not getting it, the same industry didn’t bother securing digital cell
phone connections because “digital scanners are expensive, and rare.” Guess
what? They’re getting cheaper, and more plentiful.

Hackers often trade hacking tools on Web sites and bulletin boards. Some of
those hacking tools are themselves infected with Back Orifice, giving the
tool writer access to the hacker’s computer. Aristotle called this kind of
thing “poetic justice.”

When a vulnerability is found in an Internet security protocol, the vendor
generally revises the protocol to eliminate the vulnerability. But, because
backwards compatibility is so important, the vendor often makes the new
protocol compatible with the old, insecure, protocol. Smart attackers simply
force the old protocol and then exploit the vulnerability. This is called a
version-rollback attack.

Some years ago, the coin slots in many Japanese pachinko machines were
replaced with magnetic card readers. Many anticounterfeiting measures
were included in the system, but the designers made the mistaken assump-
tion that the pachinko parlor owners were the good guys. In fact, some of

304 C H A P T E R n I n E T E E n

c19.indd 304 2/16/15 10:40 AM

them are involved in organized crime. And the trust model was designed
badly: The pachinko parlors were reimbursed whether or not the cards were
real, so they had no incentive to police for forgeries. (The designers also
thought that a $100 limit per card would cap their losses.) The attack was
subtle—it involved reconditioning real cards, a bunch of pachinko machines
that “disappeared” after the Kobe earthquake, and multiple pachinko par-
lors—but the total amount of fraud was about $600 million. Rumor is that
the money was funneled into north Korea.

Manufacturers of slot machines have long anticipated attacks by players manip-
ulating physical devices. Cheating attempts have included holes drilled into
the machine so as to manipulate the reel mechanisms, and devices used to
interfere with the sensors that track the number of coins that have been paid
out. Years ago, one video poker machine manufacturer was surprised by a
completely unanticipated attack: static electricity. Some payers discovered,
probably by accident, that after building up a large static charge from the
plush casino carpets they could shock the machine, causing it to empty its
hopper of all stored coins.

In late 1999, the encryption used to encrypt DVDs was broken. Even though
the discs were encrypted, the decryption key had to be in the players.
There’s no way around it. This worked fine as long as the players were tam-
per-resistant hardware, but as soon as someone built a software player, the
decryption keys were in software. Someone simply reverse engineered the
software and recovered the key, allowing them to freely copy and distribute
DVD data over the Internet.

In 1980, the host of the Pennsylvania lottery drawing, an official with the
Pennsylvania lottery, and some assorted stagehands rigged the ping-pong
balls used in the drawing and won a $1.2 million jackpot. no one expected
that complex a collusion. These days, KPMG audits the drawings much
more carefully. (A similar flaw—this time a random error—occurred in the
Arizona lottery. In 1998, someone noticed that no winning number in its
Pick 3 game had ever included a single numeral 9. It turned out that the
pseudorandom number generator algorithm had an elementary program-
ming error. Ping-pong balls are safer than computers, it seems.)

Most European countries enforce trucking regulations with something called
a tachograph: a device attached to the truck’s speedometer that logs the
vehicle’s speed, distance, and other information. These devices would
record this data on a waxed paper tape that the driver had to sign and date,
and keep with him for a period of time. These were hard to forge, and
attacks tended to exploit procedural weaknesses instead of technological
weaknesses. Recently the EU funded the Tachosmart project, designed to
build an all-digital replacement. Any such system will open itself to all the
attacks described in this book (even worse, it is likely to be based on smart
cards), and will be much less secure.

 Threat Modeling and Risk Assessment 305

c19.indd 305 2/16/15 10:40 AM

These attacks are interesting not because of flaws in the countermea-
sures, but because of flaws in the threat model. In all of these cases, there
were countermeasures in place; they just didn’t solve the correct prob-
lem. Instead, they solved some problem near the correct problem. And in
some cases, the solutions created worse problems than they solved.

306 C H A P T E R n I n E T E E n

c19.indd 306 2/16/15 10:40 AM

20

Security Policies and
Countermeasures

Spend enough time doing threat modeling, and it becomes plain
that the phrase “secure system” has different meanings depending
on context. Some examples:

Business computers need to be secure against hackers, criminals, and industrial
competitors. Military computers need to be secure against all those threats
plus enemy militaries. Some business computers, those that run the tele-
phone service are a good example, need to be secure against military threats
as well.

Many urban transportation systems use prepaid farecards instead of cash. Simi-
lar prepaid phone card systems are used throughout Europe and Asia. These
 systems need to be secure against forgery in all of its forms. Of course,
forgeries that cost the forgers more than legitimate use are not a problem.

E-mail security programs need to ensure that e-mail is secure against eaves-
dropping and alteration by any type of attacker. Of course, the program
cannot protect against manipulation at the end points: a Trojan horse in
the computer, a TEMPEST attack against the computer, a video camera
that can read the screen, and so forth. Encrypted telephones are the same;
they can secure the voice conversation in transit, but can do nothing about
room bugs.

The trick is to design systems that are secure against the real threats, and
not to haphazardly use security technologies with the belief that something

307

c20.indd 307 2/16/15 10:40 AM

good will come of it. The way to do that is to build a security policy
(sometimes called a trust model) based on the threat analysis, and then to
design protection mechanisms that implement the security policy and
deal with the threats.

S E c u r i T y P O l i c i E S

A security policy for a system is like a foreign policy for a government:
it defines the aims and goals. When a government is accused of not hav-
ing a coherent foreign policy, it’s because there is no consistency in its
actions: no overall strategy. Similarly, a digital system without a security
policy is likely to have a hodge-podge of countermeasures. The policy
is what ties everything together.

Good policies talk to the threats. if there were no threats, there
would be no policy: Everyone could do everything. The united States
needs a foreign policy because of threats from other nations. Pennsyl-
vania does not need a foreign policy, because there are no threats from
other states. it’s the same with security policies; they’re needed because
threat modeling didn’t result in an empty page. The security policy
provides a framework for selecting and implementing countermeasures
against the threats.

Most of this book is about tactics; policy is about strategy. you can’t
decide what kinds of antifraud countermeasures you need for your cell
phone unless you have a policy you want those countermeasures to
enforce. Or, more realistically, you can’t expect the dozen or so engi-
neers, each of whom is in charge of security for a small portion of the
system, to behave coherently unless there is a unified policy that they are
all trying to implement. Everyone has a security policy in mind when
they define and implement countermeasures. A single policy written
down forces everyone to follow the same one.

it’s common wisdom that every organization needs a security policy
for its computer network. The policy should outline who is responsible
for what (implementation, enforcement, audit, review), what the basic
network security policies are, and why they are the way they are. The last
one is important; arbitrary policies brought down from on high with no
explanation are likely to be ignored. A clear, concise, coherent, and con-
sistent policy is more likely to be followed.

308 c H A P T E r T W E N T y

c20.indd 308 2/16/15 10:40 AM

The security policy is how you determine what countermeasures
to use. Do you need a firewall? How should you configure your fire-
wall? Do you need access tokens, or are passwords good enough? Should
users be allowed to access streaming video from their Web browsers?
if there’s no policy, there’s no basis for consistently answering these
questions.

unfortunately, most organizations don’t have a network security
policy. Or they do, but no one follows it. i know of one network audit
where there was a firewall protecting a boundary between two halves of
an internal network. “Which side is inside the firewall and which is out-
side?” the auditor asked. No one knew. That’s an example of an organiza-
tion without a useful security policy.

in any case, the security policy needs to outline “why” and not
“how.” The hows are tactics: the countermeasures. As hard as it is to fig-
ure out what the policy should be, it’s even harder to find a set of coun-
termeasures that implement the policy.

T ru S T E D c l i E N T S O f T WA r E

We’ve touched on various aspects of this problem in the sections on soft-
ware copy protection, intellectual property theft, and digital watermark-
ing. Some companies sell rights-management software: audio and video
files that can’t be copied or redistributed, data that can be read but cannot
be printed, software that can’t be copied. Other companies market e-mail
security solutions where the e-mail cannot be read after a certain date,
effectively “deleting” it. Still other companies have software e-commerce
technologies that enforces rights of various kinds.

The common thread in all of these “solutions” is that they postu-
late a situation where Alice can send Bob a file, and then can control
what happens to that file after Bob receives it. in the e-mail product,
Alice wants to control when the file is deleted on Bob’s computer. in
the various rights-management products, Alice wants to send Bob a
file but limit when and if Bob can view, copy, modify, and retransmit
the file.

This doesn’t work. controlling what Bob can do with a piece of
data assumes a trusted (by Alice) piece of software running on Bob’s
 computer. There’s no such thing, so these solutions don’t work.

 Security Policies and Countermeasures 309

c20.indd 309 2/16/15 10:40 AM

As an example, look at the online gaming community. Many games
allow for multiplayer interaction over the internet, and some even have
tournaments for cash prizes. Hackers have written computer bots that assist
play for some of these games, particularly Quake and NetTrek. The idea
is that the bots can react much quicker than a human, so that the player
becomes much more effective when using these bots. An arms race has
ensued, as game designers try to disable these bots and force fairer play,
and the hackers make the bots cleverer and harder to disable.

These games are trying to rely on trusted client software, and the
hacker community has managed to break every trick the game designers
have thrown at them. i am continuously amazed by the efforts hackers
will go through to break the security. The lessons are twofold: not only
is there no reasonable way to trust a client-side program in real usage, but
there’s no possible way to ever achieve that level of protection.

Against all of these systems—disappearing e-mail, rights manage-
ment for music and videos, fair game playing—there are two types of
attackers: the average user and the skilled attacker. Against the average
user, anything works. This is uncle Steve, who just wants a single copy
of Norton utilities, The Lion King, or robin Hitchcock’s latest cD, and
doesn’t want to pay for it. There’s no analogue for him in the physical
world; uncle Steve couldn’t make a single copy of a chanel handbag,
even if he wanted one. On the one hand, he’s more elusive; on the
other hand, he’s much less of a financial threat. uncle Steve isn’t an
organized criminal; he’s not going to have a criminal network and he’s
not going to leave much in the way of a trail. He might not even have
bought the software, video, or cD if he couldn’t get a free pirated copy.
Against uncle Steve, almost any countermeasure works; there’s no need
for complex security software.

Against the skilled user, no countermeasure works. in chapter 16,
i talked about the heroic lengths some hackers go to to disable copy
protection schemes. Earlier in this section i talked about the specially
designed bots to subvert the user interface in computer games. Because
breaking the countermeasure can have so much value, building a system
that is secure against these attackers is futile. And even worse, most sys-
tems need to be secure against the smartest attacker. if one person hacks
Quake (or intertrust or Disappearing inc.), he can write a point-and-
click software tool that anyone can use. Suddenly a security system that
is secure against almost everyone can now be compromised by everyone.

310 c H A P T E r T W E N T y

c20.indd 310 2/16/15 10:40 AM

The only possible solution is to put the decryption mechanism in
secure hardware, and then hope that this slows the professionals down
by a few years. But as soon as someone wants a software player, it will be
broken within weeks. This is what the DVD industry learned in 1999.
This is what Glassbook learned in 2000, when unprotected copies of Ste-
phen King’s “riding the Bullet” materialized two days after the eBook
version (supposedly secured against this kind of thing) was released.

Any rational security policy will recognize that the professional pirates
cannot be defended against with technology. Professional digital pirates
are no different than people who counterfeit chanel handbags, and soci-
ety has ways of catching these people (noncomputer detection and reac-
tion mechanisms). They may or may not be effective ways, but that has
nothing to do with the digital nature of the forgery. The same security
policy would recognize that uncle Steve is an amateur, and that almost any
countermeasure—as long as it could not be broken completely or trivi-
ally—will work in this case.

Note that this analysis implies that content providers would be smart
to find alternate ways to make money. Selling physical copies of a book
doesn’t work as well in the digital world. Better is to sell real-time updates,
subscriptions, and additional reasons to buy a paper copy. i like buying
cDs instead of copying them because i get the liner notes. i like buying
a physical book instead of printing a digital copy because i want the por-
tability and the binding. i’m willing to pay for stock information because
i want its timeliness.

you can see alternate models in the public financing of good works:
public television, public art, and street performers. The performance is
free, but individual contributions make it happen. instead of charging
each of you $29.99 for this book, maybe i should have put up a Web page
asking for contributions. i would write the book and put it in the public
domain, but only after i received $30,000 in contributions. (This idea was
used to fund some anti-Bush campaign ads in 2000. People would pledge
contributions on their credit card, but would only be charged if the target
total was reached. Notice that the credit card company acted as the trusted
third party in this transaction.)

Other industries have different solutions. The smarter game compa-
nies dealt with this by specifically allowing bots in some tournaments, and
having final rounds of other tournaments live at trade shows, where the
computer is trusted by the game company. The smarter self-distrusting

 Security Policies and Countermeasures 311

c20.indd 311 2/16/15 10:40 AM

e-mail companies emphasize the liability reduction installing such a sys-
tem brings, rather than the absolute reliability of the software. There the
threat is not malicious users copying and distributing e-mail, but honest
employees accidentally leaving e-mail undeleted and malicious lawyers
subpoenaing the e-mail years later. But trying to limit the abilities of a
user on a general purpose computer is doomed to failure. it keeps the
honest honest, and provides a nice false sense of security. But sometimes
that’s good enough.

Au T O M AT i c T E l l E r M A c H i N E S

ATMs are an interesting example, because the trust and security models
are more convoluted than it seems at first. The ATM is basically a safe
that dispenses money when told to do so by some external device. The
machine takes data from the user (both the information on the magnetic
stripe and the PiN the user types in), sends it to some central server some-
where, and gets a message in return (dispense cash, don’t dispense cash,
don’t return the card, etc.). The ATM needs to be secure against someone
spoofing the communications link, and from someone either cutting the
safe open or hauling it away. it also needs audit records in the event of
disputes (those bill counters are not perfect).

lots of people need access to the ATM. Guards in armored cars come
around routinely to fill the thing with cash. Maintenance personnel need
to have access, both at defined times for scheduled maintenance and ad
hoc in the event of a problem. And remember that maintenance and
guard contracts can change; the bank that owns the ATM needs to be
able to turn off access for one set of maintenance personnel and turn on
access for another.

Also, there’s an easy financial equation. An ATM is only worth the
cost of replacement plus the cash inside. Spending $10 million on defenses
just doesn’t make sense.

The cryptography is pretty easy. The communications link does not
need to be encrypted, only authenticated. This can be done with either
MAcs or digital signatures. Audit logs, secured with hash functions,
should be stored both at the ATM and at the server.

The computer security is straightforward. The machine should
strive for auditability above all. in the event of failure it should shut
down rather than heedlessly hand out money. The software should be

312 c H A P T E r T W E N T y

c20.indd 312 2/16/15 10:40 AM

hard to change, to avoid the problem of maintenance personnel inject-
ing Trojan horses into the system. And so on.

The physical security is also straightforward. The money should be
kept in a safe. There should be audit records of anyone opening the safe
(perhaps each person can have his own combination, or a unique token).
Any long-term cryptographic keys should be erased at the first sign of
tampering.

it’s interesting to note that ATM owners only recently got the physi-
cal countermeasures correct. until a few years ago, ATMs were built into
bank walls and other secure locations. Elsewhere in this book i men-
tioned attackers who stole entire machines; that was the concern. Then,
someone reached the conclusion that these attacks were rare, and that
there was a lot more money to be made by putting ATMs in every bus
terminal, bar, shopping mall, and gas station. These are small, freestand-
ing ATMs: much less secure, but that doesn’t matter. These ATMs are
in public places, so there’s some basic detection and reaction. There’s less
cash in them, so the risk is less. And the fees are high, so they’re profitable.
if the occasional ATM disappears, it’s still worth it.

Even more recently there was another change in the security policy.
Someone finally realized that an ATM has two parts: a physical vault with
money in it, and a networked computer that tells the vault how much
to dispense and when. There’s no reason for these two parts to be in the
same physical housing. A retail store already has a secure money vault:
the cash register. Now some ATMs have no money in them; they’re
just a computer. The computer goes through the authentication process
and prints a slip of paper. The user takes the slip of paper to the cash
register and gets his money. These are only good for small amounts, but
they work. This is a beautiful example of thinking about security cor-
rectly . . . until someone successfully forges the paper slips.

c O M P u T E r i z E D l O T T E ry T E r M i N A l S

computerized lottery terminals are used in most keno-style lotteries.
Basically, lottery vendors get a secure computer/printer that prints out
and validates lottery picks. This “validation” consists of a printed ticket
with the chosen numbers plus some authenticating information. Once
or twice a week there is a public drawing. There are small winners and
large jackpot winners.

 Security Policies and Countermeasures 313

c20.indd 313 2/16/15 10:40 AM

The threats are obvious. Attackers are most likely the lottery vendors
themselves, possibly in cahoots with people working inside the lottery
system. They can attack the system in one of two ways: “buying” tickets
after the results are known, or altering already-purchased tickets after the
results are known. More subtle, but also damaging, is operating a phony
terminal that collects money but doesn’t pay out any prizes (actually, they
would be smarter to pay out small prizes and disappear if any of their
phony tickets won a large prize).

These threats imply a straightforward security policy. The lottery ter-
minals should be online, and register all picks with a central server. This
server keeps good audit logs, with timestamps, and sends the terminals
audit information that is printed on the ticket. This server needs to be
secured prior to the drawing. And there needs to be some way of iden-
tifying bogus vendors: The obvious one is to allow low-value tickets to
be redeemed at any vendor, not just the one the ticket was purchased at.
regular audits also help.

There are still a lot of details to work out, but you get the idea.

S M A rT c A r D S V S . M E M O ry c A r D S

As a final example, let’s look at two different protection mechanisms:
smart cards and magnetic stripe memory cards. in chapter 14, i talked
about tamper resistance, secure perimeters, and attacks against smart
cards. in chapter 19, i did a basic threat model of a hypothetical digital
cash system based on smart cards. Now let’s apply all that knowledge
and ask the following question: is it more secure to have a smart card
(a card with a microprocessor on it) than a memory card (either a card
with just a memory chip on it, or a magnetic stripe card) for a given
application.

To someone who can reverse engineer the smart card, there’s no dif-
ference. He can recover the data from both types of cards, and both types
of cards can encrypt their secrets to protect against this. To someone who
cannot reverse engineer the smart card, there is a big difference. That
someone can read the magnetic stripe card, but he cannot read the mem-
ory on the smart card. On the other hand, if the information is encrypted
anyway, what does it matter if he can read the magnetic stripe? Maybe
there’s less of a difference than we thought.

314 c H A P T E r T W E N T y

c20.indd 314 2/16/15 10:40 AM

let’s look at the process of using the two different cards.

Magnetic stripe cards. The user puts his card into a reader, and then types
a PiN or password or code into the reader. The reader reads the data off
the magnetic stripe and uses the PiN to decrypt the data. This data is then
used by the reader to do whatever the system is supposed to do: log in to
the system, sign an electronic check, pay for parking, or whatever.

Smart cards. The user puts his card into a different reader, and types the
same PiN into this reader. The reader sends the PiN into the smart card,
which decrypts the data. The data is then used by the card, not the reader,
to do whatever the system is supposed to do. The reader just acts as the
input/output device for the system.

What’s the difference? in both cases, a malicious reader can subvert
the system. The reader is the only contact the card has with the outside
world. Once the magnetic stripe card gives up its secrets, the reader can
do whatever it wants. Once the smart card has been fed the correct PiN
by the reader, the reader can make the smart card believe any reality that
it wants.

The primary difference between the two cards is that the smart
card can exert some control, because it is secure within itself. if some-
one steals a magnetic stripe card, for example, he can do a brute-force
search against the secrets stored on the card. He can do this brute-force
search offline, on a computer, without the user even knowing. (A canny
attacker can steal the card, read the data off the magnetic stripe, and
then slip it back into the victim’s wallet.) Smart cards can’t be attacked
this way. Smart cards can be programmed to shut down after ten (or so)
invalid password attempts in a row. So if someone steals a smart card, he
won’t be able to brute-force the password. He’s only got ten guesses.
(Again, this assumes that he can’t just reverse engineer the card. if he
can, he can do an offline attack just like a magnetic stripe card.)

Another major difference is that the smart card doesn’t have to give
up its secrets. if, for example, the cards are used to sign documents, the
smart card may be more secure than a magnetic stripe card. The mag-
netic stripe card has to rely on the reader to do the actual signing; it gives
up its secret to the reader and hopes for the best. A malicious reader can
steal the signing key. The smart card does the signing itself. A malicious
reader can feed the card bogus things to sign, but the reader cannot learn
the signing key.

 Security Policies and Countermeasures 315

c20.indd 315 2/16/15 10:40 AM

And there are other, more subtle, differences. The smart card might
have some basic rules that it follows with regards to its actions. Generally,
these can be mirrored by a back-end system and magnetic stripe cards, but
the implementation is cleaner with smart cards.

you see smart cards used as credit cards all over Europe, but not in the
united States. Why? Because of the phone system. To combat fraud, u.S.
credit cards went to an online verification system. When you buy some-
thing, the merchant checks the validity of your card (and the availability
of your credit) via modem. in Europe 15 years ago that type of system
would not have worked in every country. Phones were expensive; many
stores didn’t even have one, and the average wait time for installation in
italy was one or two years. Phone calls were expensive, and the connec-
tions were unreliable. fielding an online system in Europe was expensive,
so the credit card industry went with smart cards to give some measure of
security for the transaction. it wasn’t that smart cards were more secure
than magnetic stripe cards, it was that the u.S. solution to the problem of
fraud—online verification—was less practical. Some intense lobbying by
the European smart card vendors (Bull SA, Gemplus, and Schlumberger)
didn’t hurt, either.

in summary, there is some difference between magnetic stripe cards
and smart cards, but how important it is depends on the application.
The smart card’s tamper resistance is always breakable, given enough
time and money, so systems should not be built whose security relies on
the tamper resistance. Most people can’t reverse engineer a smart card,
so they are secure enough against most attackers. Both cards assume that
the reader is trusted, and can be defeated by a malicious reader. The
smart card, though, is more secure against offline attacks. And, as long as
the tamper resistance is not broken, a smart card can keep secrets inside
itself.

r AT i O N A l c O u N T E r M E A S u r E S

Good countermeasures not only protect against the threats, but protect
against unforeseen problems. Given that it’s so hard to get security right,
isn’t it smart to make sure it’s not a disaster if you get it wrong?

Too many security systems are brittle: They fall apart at the slightest
mistake. Some examples:

316 c H A P T E r T W E N T y

c20.indd 316 2/16/15 10:40 AM

Most of the systems used to secure European pay-TV systems over the past
decade have put a global secret in the customer set-top boxes. This means
that as soon as one person defeats the tamper-resistance and recovers the
key, the entire system is compromised.

The New york Metrocard, the magnetic stripe farecard that lets you purchase
rides on subways and buses, could (this was back in 1998) be bypassed sim-
ply by folding the card at precisely the right point.

DVD security.

compare this with credit cards. The cards are hard to forge, and
include things like holograms, microprinting, and uV watermarks. you
can steal a credit card number, but as soon as it’s reported as stolen, the
card number is put on a hot list. Even if the card isn’t registered as stolen,
computer programs scan the transaction database, looking for anomalous
spending patterns. Even if the attacker manages to bypass all of those
countermeasures, the card has a credit limit that triggers automatically.
And as a final countermeasure, the card eventually expires.

Other security systems have unforeseen consequences. Expensive cars
now come with ignitions that can’t be hotwired; it’s an antitheft device.
While they reduce car theft somewhat, they also change the threat model
from one threat (stealing a car from a parking lot) to a more dangerous
one (carjacking). Ouch. it turns out that the preventive countermeasures
aren’t the most effective ones; detection and reaction countermeasures
like lojack are simply better at countering the threat.

Or another example: A version of Trend Micro’s OfficeScan (it’s
probably fixed by now), a product that scans for viruses and denial-of-
service vulnerabilities, actually contains new security (denial-of-service
and other) vulnerabilities.

The NSA is really good at this sort of thing. They build counter-
measures on top of countermeasures, and constantly ask “what would
happen if this fails?” What if the cryptography fails at the same time the
secure perimeter fails, leaving the alarm system as the only countermea-
sure? What if the guards who should be alerted by the alarm are busy
with other things, or what if the machine that generates the keys for the
cryptography fails? What if the backup machine fails as well? What if
the person in charge of fixing the backup machine is successfully bribed?
Okay, maybe you can do too much of this kind of thing.

 Security Policies and Countermeasures 317

c20.indd 317 2/16/15 10:40 AM

318

21

Attack Trees

Danaë was the daughter of Acrisius. An oracle warned Acrisius
that Danaë’s son would someday kill him, so Acrisius shut
Danaë in a bronze room, away from anything even remotely

masculine. Zeus had the hots for Danaë, so he penetrated the bronze
room through the roof, in the form of a shower of gold that poured down
into her lap. Danaë gave birth to Perseus, and you can probably guess the
end of the story.

Threat modeling is, for the most part, ad hoc. You think about
the threats until you can’t think of any more, then you stop. And then
you’re annoyed and surprised when some attacker thinks of an attack
you didn’t. My favorite example is a band of California art thieves
that would break into people’s houses by cutting a hole in their walls
with a chainsaw. The attacker completely bypassed the threat model of
the defender. The countermeasures that the homeowner put in place
were door and window alarms; they didn’t make a difference to this
attack.

To help the process, I invented something called an attack tree. Attack
trees provide a methodical way of describing threats against, and coun-
termeasures protecting, a system. By extension, attack trees provide a
methodical way of representing the security of systems. They allow you
to make calculations about security, compare the security of different sys-
tems, and do a whole bunch of other cool things.

Basically, you represent attacks against a system in a tree structure,
with the goal as the root node and different ways of achieving that goal

c21.indd 318 2/16/15 1:51 PM

as leaf nodes. By assigning values to the nodes, you can do some basic
calculations with the tree (it’s called an and/or tree, if you’re interested)
to make statements about different attacks against the goal.

I’ll start with a simple attack tree for a noncomputer security system,
and build the concepts up slowly.

B A s I C AT TA C k T r e e s

Figure 21.1 is a simple attack tree against a physical safe. each attack
tree has a goal, represented by the root node in the tree. The goal in
this example is opening the safe. That’s the root node; trees in com-
puter science grow upside down. To open the safe, an attacker can
pick the lock, learn the combination, cut open the safe, or install the
safe improperly so that he can easily open it later. To learn the combi-
nation, the attacker either has to find the combination written down
or get the combination from the safe owner. And so on. each node
becomes a subgoal, and children of that node are ways to achieve that
subgoal. (Of course, this is just a sample attack tree, and an incomplete
one at that.)

 Attack Trees 319

7252 Schneier Fig. 21.01 mm 5-31-00

Open Safe

Pick Lock
I

Learn Combo Cut Open Safe
P

Install
Improperly

I

Get Combo
From Target

Find Written
Combo

I

Get Target to
State Combo

I

Listen to
Conversation

P

P = Possible
I = Impossible

Threaten
I

Eavesdrop Bribe
P

Blackmail
I

and

Figure 21.1 Attack nodes.

c21.indd 319 2/16/15 1:51 PM

Note the AND nodes and Or nodes (in the figures, everything that
isn’t explicitly an AND node is an Or node). Or nodes are alterna-
tives: the four different ways to open a safe, for example. AND nodes
represent different steps toward achieving the same goal. To eavesdrop
on someone saying the safe combination, attackers have to eavesdrop on
the conversation AND get safe owners to say the combination. Attack-
ers can’t achieve the goal unless both subgoals are satisfied.

That’s the basic attack tree. Once you have it completed, you can
assign values—I (impossible) and P (possible) in Figure 21.1—to the var-
ious leaf nodes. (Again, this is only an illustrative example; do not take
the values as an indication of how secure my office safe really is.) Once
you assign these values—presumably this assignment will be the result of
painstaking research on the safe itself—you can calculate the security of
the goal. The value of an Or node is possible if any of its children are
possible, and impossible if all of its children are. The value of an AND
node is possible only if all children are possible, and impossible other-
wise; see Figure 21.2.

The dotted lines in Figure 21.2 show all possible attacks: a hierarchy
of possible nodes, from a leaf to the goal. This sample system has two pos-
sible attacks: cutting open the safe, or learning the combination by bribing
the owner of the safe. With this knowledge, you know exactly how to
defend this system against attack.

Assigning values like “possible” and “impossible” to the nodes is just
one way to look at the tree. Any yes/no value can be assigned to the leaf
nodes and then propagated up the tree structure in the same manner: easy
versus difficult, expensive versus inexpensive, intrusive versus nonintru-
sive, legal versus illegal, special equipment required versus no special
 equipment. Figure 21.3 shows the same tree with “no special equip-
ment” and “special equipment required” node values.

Assigning “expensive” and “not expensive” to nodes is useful, but it
would be better to show exactly how expensive. You can assign numer-
ical values to nodes. Figure 21.4 shows the tree with different costs
assigned to the leaf nodes. Like yes/no node values, these can propagate
up the tree as well. Or nodes have the value of their cheapest child;
AND nodes have the value of the sum of their children. In Figure 21.4,
the costs have propagated up the tree, and the cheapest attack has been
highlighted.

320 C H A P T e r T W e N T Y - O N e

c21.indd 320 2/16/15 1:51 PM

7252 Schneier Fig. 21.02 mm 6-01-00

Open Safe
P

Get Combo
From Target

P

Find Written
Combo

I

Get Target to
State Combo

I

Listen to
Conversation

P

P = Possible
I = Impossible

Threaten
I

Eavesdrop
I

Bribe
P

Blackmail
I

and

Pick Lock
I

Learn Combo
P

Cut Open Safe
P

Install
Improperly

I

Figure 21.2 Possible attacks.

7252 Schneier Fig. 21.03 mm 6-01-00

Open Safe

Get Combo
From Target

Find Written
Combo

NSE

Get Target to
State Combo

NSE

Listen to
Conversation

SE

NSE = No special
 equipment
SE = Special equipment

Threaten
NSE Eavesdrop

Bribe
NSE

Blackmail
NSE

and

Pick Lock
SE

Learn Combo Cut Open Safe
SE

Install
Improperly

NSE

required

Figure 21.3 special equipment versus no special equipment attacks.

321

c21.indd 321 2/16/15 1:51 PM

7252 Schneier Fig. 21.04 mm 6-01-00

Open Safe
$10K

Get Combo
From Target

$20K

Find Written
Combo
$75K

Get Target to
State Combo

$40K

Listen to
Conversation

$20K

$ = Cost of attack

Threaten
$60K

Eavesdrop
$60K

Bribe
$20K

Blackmail
$100K

and

Pick Lock
$30K

Learn Combo
$20K

Cut Open Safe
$10K

Install
Improperly

$100K

Figure 21.4 Cost of attack.

Figure 21.5 All attacks less than $100,000.

322

7252 Schneier Fig. 21.05 mm 6-01-00

Open Safe
$10K

Get Combo
From Target

$20K

Find Written
Combo
$75K

Get Target to
State Combo

$40K

Listen to
Conversation

$20K

$ = Cost of attack

Threaten
$60K

Eavesdrop
$60K

Bribe
$20K

Blackmail
$100K

and

Pick Lock
$30K

Learn Combo
$20K

Cut Open Safe
$10K

Install
Improperly

$100K

c21.indd 322 2/16/15 1:51 PM

 Attack Trees 323

Again, this tree can be used to determine where a system is vulner-
able. Figure 21.5 shows all attacks that cost less than $100,000. If you are
only concerned with attacks that are less expensive (maybe the contents of
the safe are only worth $100,000), then you should only concern yourself
with those attacks.

There are many other possible continuous node values, including
probability of success of a given attack, likelihood that an attacker will try
a given attack, and so on.

In any real attack tree, nodes will have many different values cor-
responding to many different variables, both Boolean and continuous.
Different node values can be combined to learn more about a system’s
vulnerabilities. Figure 21.6, for instance, determines the cheapest
attack requiring no special equipment. You can also find the cheapest
low-risk attack, most likely nonintrusive attack, best low-skill attack,
cheapest attack with the highest probability of success, most likely
legal attack, and so on. every time you query the attack tree about
a certain characteristic of attack, you learn more about the system’s
security.

7252 Schneier Fig. 21.06 mm 6-01-00

Open Safe
NSE/$20K

Get Combo
From Target
NSE/$20K

Find Written
Combo

NSE/$75K

Get Target to
State Combo
NSE/$40K

Listen to
Conversation

SE/$20K

NSE = No special
 equipment
SE = Special equipment
 required
$ = Cost of attack

Threaten
NSE/$60K

Eavesdrop
SE/$60K

Bribe
NSE/$20K

Blackmail
NSE/$100K

and

Pick Lock
SE/$30K

Learn Combo
NSE/$20K

Cut Open Safe
SE/$10K

Install
Improperly
NSE/$100K

Figure 21.6 Cheapest attack requiring no special equipment.

c21.indd 323 2/16/15 1:51 PM

To make this work, you must marry attack trees with knowledge
about attackers. Different attackers have different levels of skill, access,
risk aversion, money, and so on. If you’re worried about organized crime,
you have to worry about expensive attacks and attackers who are willing
to go to jail. If you are worried about terrorists, you also have to worry
about attackers who are willing to die to achieve their goal. If you’re wor-
ried about bored graduate students studying the security of your system,
you usually don’t have to worry about illegal attacks such as bribery and
blackmail. The characteristics of your attacker determine which parts of
the attack tree you have to worry about.

Attack trees also let you play “what if” games with potential coun-
termeasures. In Figure 21.6, for example, the goal has a cost of $20,000.
This is because the cheapest attack requiring no special equipment is brib-
ing the person who knows the combination. What if you implemented
a countermeasure—paying that person more so that he or she is less sus-
ceptible to bribes? If you assume that the cost to bribe that person is now
$80,000 (again, this is an example; in the real world you’d be expected to
research exactly how a countermeasure affects the node value), then the
cost increases to $60,000 (presumably to hire the thugs to do the threat-
ening).

P G P AT TA C k T r e e

Figure 21.7 is an attack tree for the PGP e-mail security program. since
PGP is a complex program, this is a complex tree, and it’s easier to write
it in outline form than graphically. PGP has several security features, so
this is only one of several attack trees for PGP. This particular attack tree
has “read a message encrypted with PGP” as its goal. Other goals might
be: “forge someone else’s signature on a message,” “change the signature
on a message,” “undetectably modify a PGP-signed or PGP-encrypted
message,” and so on.

If software can be modified (Trojan horse) or corrupted (virus), it can
be used to have PGP generate an insecure public/private key pair (e.g.,
with a modulus whose factorization is known to the attacker).

What immediately becomes apparent from the attack tree is that
breaking the rsA or IDeA encryption algorithms is not the most
 profitable attack against PGP. There are many ways to read someone’s

324 C H A P T e r T W e N T Y - O N e

c21.indd 324 2/16/15 1:51 PM

 Attack Trees 325

Figure 21.7 PGP attack tree

Goal: read a message encrypted with PGP (Or)
1. read a message encrypted with PGP
 1.1. Decrypt the message itself (Or)
 1.1.1. Break asymmetric encryption (Or)
 1.1.1.1. Brute-force break asymmetric encryption (Or)

 It is possible to encrypt all possible keys with the recipient’s
(known) public key, until a match is found. The effective-
ness of this attack is greatly reduced by the random padding
introduced in the encryption of the symmetric key.

 1.1.1.2. Mathematically break asymmetric encryption (Or)
 1.1.1.2.1 Break rsA (Or)

 It is not currently known whether breaking rsA is
equivalent to factoring the modulus.

 1.1. 1.2.2 Factor rsA modulus/calculate elGamal dis-
crete log

 either of these would require solving number theoretic
problems currently conjectured to be very difficult.

 1.1.1.3. Cryptanalyze asymmetric encryption
 1.1.1.3.1. General cryptanalysis of rsA/elGamal (Or)

 No techniques are currently known for general crypt-
analysis of rsA or elGamal. Cryptanalysis of one
cipher text would imply a general method to break
rsA/elGamal.

 1.1.1.3.2. exploiting weaknesses in rsA/elGamal (Or)

 There are a few weaknesses known to exist in rsA;
however, PGP implementation has mostly eliminated
these threats.

continues

c21.indd 325 2/16/15 1:51 PM

326 C H A P T e r T W e N T Y - O N e

 1.1.1.3.3. Timing attacks on rsA/elGamal

 Timing attacks have been reported on rsA; they
should also be feasible on elGamal. such an attack,
however, requires low-level monitoring of the recipi-
ent’s computer while he is decrypting the message.

 1.1.2. Break symmetric-key encryption
 1.1.2.1. Brute-force break symmetric-key encryption (Or)

 All symmetric-key algorithms supported for use by PGP
have key sizes of at least 128 bits. This is currently infeasi-
ble for brute-force searching.

 Brute-force searching is made somewhat easier by the
redundancy included at the beginning of all encrypted
messages. see the OpenPGP rFC.

 1.1.2.2. Cryptanalysis of symmetric-key encryption

 The symmetric-key algorithms supported by PGP 5.x are
IDeA, 3-Des, CAsT-5, Blowfish, and sAFer-sk128.
No efficient methods are currently known for general crypt-
analysis of these algorithms.

 1.2. Determine symmetric key used to encrypt the message via other
means

 1.2. 1. Fool sender into encrypting message using public key
whose private key is known (Or)

 1.2. 1.1. Convince sender that a fake key (with known pri-
vate key) is the key of the intended recipient

 1.2. 1.2. Convince sender to encrypt using more than one
key—the real key of the recipient, one a key whose pri-
vate key is known

 1.2. 1.3. Have the message encrypted with a different public
key in the background, unknown to the sender

 This could be done by running a program that fools the
user into believing that the correct key is being used, while
actually encrypting with a different key.

Figure 21.7 (Continued)

c21.indd 326 2/16/15 1:51 PM

 Attack Trees 327

 1.2.2. Have the recipient sign the encrypted symmetric key (Or)

 If the recipient blindly signs the encrypted key, he unwittingly
reveals the unencrypted key. The key is short enough so that
hashing should not be necessary before signing. Or, if a mes-
sage can be found that hashes to the value of the encrypted key,
the recipient can be asked to sign the (hash of the) message.

 1.2.3. Monitor sender’s computer memory (Or)
 1.2.4. Monitor receiver’s computer memory (Or)

 The (unencrypted) symmetric key must be stored somewhere
in memory at some point during the encryption and decryp-
tion. If memory can be accessed, this gives a way to capture the
key and get at the message.

 1.2.5. Determine key from random number generator (Or)
 1.2. 5.1. Determine state of the random number generator

when message was encrypted (Or)
 1.2. 5.2. Implant software (virus) that deterministically alters

the state of random number generator (Or)
 1.2. 5.3. Implant software that directly affects the choice of

symmetric key
 1.2.6. Implant virus that exposes the symmetric key
 1.3. Get recipient to (help) decrypt message (Or)
 1.3.1. Chosen ciphertext attack on symmetric key (Or)

 The cipher feedback mode used by PGP is completely inse-
cure under a chosen ciphertext attack. By sending the (encryp-
tion of the) same key to the recipient, along with a modified
body of the message, the entire contents of the message can be
obtained.

 1.3.2. Chosen ciphertext attack on public key (Or)

 since rsA and elGamal are malleable, known changes can be
made to the symmetric key which is encrypted. This modified

continues

Figure 21.7 (Continued)

c21.indd 327 2/16/15 1:51 PM

328 C H A P T e r T W e N T Y - O N e

 (encrypted) key can then be sent along with the original message.
This opens up the possibility of related-key attacks on the sym-
metric algorithms. Or, a weak ciphertext can be found whose
decryption under the symmetric key algorithm reveals informa-
tion about the modified key, which then leads directly to infor-
mation about the original key.

 1.3.3. send the original message to the recipient (Or)

 If the recipient decrypts and replies to this message automati-
cally, the plaintext message is immediately revealed.

 1.3.4. Monitor outgoing mail of recipient (Or)

 If the receiver replies to the original message in a nonencrypted
manner, information about the original message may be gleaned

 1.3.5. spoof reply to: or from: field of original message (Or)

 In this case, the receiver may reply directly to the forged e-mail
address, and even if the reply is encrypted, it will be with a key
whose private key is known.

 1.3.6. read message after it has been decrypted by recipient
 1.3.6.1. Copy message off user’s hard drive or virtual memory

(Or)
 1.3.6.2. Copy message off backup tapes (Or)
 1.3.6.3. Monitor network traffic (Or)
 1.3. 6.4. Use electromagnetic snooping techniques to read

message as it is displayed on the screen (Or)
 1.3.6.5. recover message from printout
 1.3.6.5.1 recover message from a paper printout
 1.3.6.5.2 recover message from the photo-sensitive

drum in the printer
 1.3.6.5.3 eavesdrop on the communications between

the computer and the printer
 1.3.6.5.4 recover message from the printer’s memory
 1.4. Obtain private key of recipient
 1.4.1. Factor rsA modulus/calculate elGamal discrete log (Or)

Figure 21.7 (Continued)

c21.indd 328 2/16/15 1:51 PM

 Attack Trees 329

 either of these would require solving number theoretic prob-
lems currently conjectured to be very difficult.

 1.4.2. Get private key from recipient’s key ring (Or)
 1.4.2.1. Obtain encrypted private key ring (AND)
 1.4.2.1.1. Copy it from user’s hard drive (Or)
 1.4.2.1.2. Copy it from disk backups (Or)
 1.4.2.1.3. Monitor network traffic (Or)
 1.4.2 .1.4. Implant virus/worm to expose copy of the

encrypted private key

 Given the recent Melissa virus incident, something
like this is feasible. Other options include making the
file publicly readable, or posting it to the Web.

 1.4.2.2. Decrypt private key
 1.4.2.2.1. Break IDeA encryption (Or)
 1.4.2.2.1.1. Brute-force break IDeA (Or)

 IDeA uses 128-bit keys. This is currently infeasible
for brute-force searching.

 1.4.2.2.1.2. Cryptanalysis of IDeA

 No efficient methods are currently known for general
cryptanalysis of IDeA.

 1.4.2.2.2. Learn passphrase
 1.4. 2.2.2.1. Monitor keyboard when user types

passphrase (Or)
 1.4.2.2.2.2. Convince user to reveal passphrase (Or)
 1.4. 2.2.2.3. Use keyboard-logging software to

record passphrase when typed by user (Or)
 1.4.2.2.2.4. Guess passphrase
 1.4.3. Monitor recipient’s memory (Or)

 The private key must be stored somewhere in memory when
the user decrypts any messages sent to him.

continues

Figure 21.7 (Continued)

c21.indd 329 2/16/15 1:51 PM

PGP-encrypted messages without breaking the cryptography. You can
capture the person’s screen when he decrypts and reads the messages
(using a Trojan horse like Back Orifice, a TeMPesT receiver, or a
secret camera), grab the person’s private key after he enters a passphrase
(Back Orifice, or a dedicated computer virus), recover the person’s pass-
phrase (a keyboard sniffer that simply captures user keystrokes, TeMPesT
receiver, or Back Orifice again), or simply try to brute-force the person’s
passphrase (it will have much less entropy than the 128-bit IDeA keys
that it generates). In the scheme of things, the choice of algorithm and
the key length is probably the least important thing that affects PGP’s
overall security. PGP not only has to be secure, but it has to be used in
an environment that leverages that security without creating any new
insecurities.

Figure 21.8 is a more general attack tree: reading a specific message,
either in transit or on one of two computers.

330 C H A P T e r T W e N T Y - O N e

Goal: read a specific message that has been sent from one Windows
98 computer to another.

 1. Convince sender to reveal message (Or)
 1.1. Bribe user
 1.2. Blackmail user
 1.3. Threaten user
 1.4. Fool user
 2. read message when it is being entered into the computer (Or)
 2.1. Monitor electromagnetic emanations from computer screen

(Countermeasure: use a TeMPesT computer)

Figure 21.8 Attack tree for reading a specific e-mail message.

 1.4.4. Implant virus to expose private key

 really a more sophisticated version of 1.4.2.1.4. in which the
virus waits for the private key to be decrypted before exposing it.

 1.4.5. Generate insecure public/private key pair for recipient.

Figure 21.7 (Continued)

c21.indd 330 2/16/15 1:51 PM

 Attack Trees 331

Figure 21.8 (Continued)

 2.2. Visually monitor computer screen
 2.3. Monitor video memory
 2.4. Monitor video cables
 3. read message when it is being stored on sender’s disk (Counter-

measure: use sFs to encrypt hard drive) (AND)
 3.1. Get access to hard drive (Countermeasure: Put physical locks on

all doors and windows)
 3.2. read a file protected with sFs
 4. read message when it is being sent from sender to recipient (Coun-

termeasure: use PGP) (AND)
 4.1. Intercept message in transit (Countermeasure: Use transport-

layer encryption program)
 4.2. read message encrypted with PGP
 5. Convince recipient to reveal message (Or)
 5.1. Bribe user
 5.2. Blackmail user
 5.3. Threaten user
 5.4. Fool user
 6. read message when it is being read (Or)
 6.1. Monitor electromagnetic emanations from computer screen

(Countermeasure: use a TeMPesT computer)
 6.2. Visually monitor computer screen
 7. read message when it is being stored on receiver’s disk (Or)
 7.1. Get stored message from user’s hard drive after decryption

(Countermeasure: use sFs to encrypt hard drive) (AND)
 7.1.1. Get access to hard drive. (Countermeasure: Put physical

locks on all doors and windows)
 7.1.2. read a file protected with sFs
 7.2. Get stored message from backup media after decryption
 8. Get paper printout of message (Countermeasure: store paper copies

in safe) (AND)
 8.1. Get physical access to safe
 8.2. Open the safe
 9. steal sender’s computer and try to recover message
10. steal recipient’s computer and try to recover message

c21.indd 331 2/16/15 1:51 PM

332 C H A P T e r T W e N T Y - O N e

C r e AT I N G A N D U s I N G AT TA C k T r e e s

How do you create an attack tree? First, you identify the possible attack
goals. each goal forms a separate tree, although they might share sub-
trees and nodes. Then, think of all attacks against each goal. Add them
to the tree. repeat this process down the tree until you are done. Give
the tree to someone else, and have him think about the process and add
any nodes he thinks of. repeat as necessary, possibly over the course of
several months.

The process still requires creativity, but the structure takes an ad hoc
brainstorming process and replaces it with a repeatable methodology.
remember to look for attacks throughout the vulnerability landscape,
and at every step of the attack process. Of course there’s always the
chance that you forgot about an attack, but you’ll get better with time.
Like any security analysis, creating attack trees requires a certain mind-
set and takes practice.

Once you have the attack tree, and have researched all the node val-
ues (these values will change over time, both as attacks become easier and
as you get more exact information on the values), you can use the attack
tree to make security decisions. You can look at the values of the root
node to see if the system’s goal is vulnerable to attack. You can deter-
mine if the system is vulnerable to a particular kind of attack; distributed
denial-of-service, for instance. You can use the attack tree to delineate
the security assumptions of a system; for example, the security of PGP
might assume that no one could successfully bribe the programmers. You
can determine the impact of a system modification or a new vulnerability
discovery; recalculate the nodes based on the new information and see
how the goal node is affected. And you can compare and rank attacks:
which are cheaper, which are more likely to succeed, and so on.

One of the surprising things that comes out of this kind of analysis
is that the areas people think of as vulnerable usually aren’t. With PGP,
for example, people generally worry about key length. should they use
1024-bit rsA or 2048-bit rsA? The attack tree shows that the rsA
key length doesn’t really matter. There are all sorts of other attacks—
installing a keyboard sniffer, modifying the program on the victim’s hard
drive—that are much easier than breaking the public key. Increasing the
key length from 1024 bits to 2048 bits doesn’t affect any of the overall
difficulty of the attack tree; it’s the computer-security attacks that are

c21.indd 332 2/16/15 1:51 PM

much more troublesome. Attack trees give you perspective on the
whole system.

Another thing that makes attack trees valuable is that they capture
knowledge in a reusable form. Once you’ve completed the PGP attack
tree, you can use it in any situation that uses PGP. The attack tree against
PGP becomes part of a larger attack tree. For example, Figure 21.8
shows an attack tree whose goal is to read a specific message that has been
sent from one Windows 98 computer to another. If you look at the leaf
nodes of the tree, the entire attack trees for PGP and for opening a safe
fit into this attack tree.

This scalability means that you don’t have to be an expert in every-
thing. If you’re using PGP in a system, you don’t have to know the
details of the PGP attack tree; all you need to know are the values of
the root node. If you’re a computer-security expert, you don’t have
to know the details about how difficult a particular model of safe is to
crack; you just need to know the values of the root node. Once you
build up a library of attack trees against particular computer programs,
door and window locks, network security protocols, or whatever, you
can reuse them whenever you need to. For a national security agency
concerned about compartmentalizing attack expertise, this kind of sys-
tem is very useful.

 Attack Trees 333

c21.indd 333 2/16/15 1:51 PM

22

Product Testing
and Verification

We’ve touched on security testing repeatedly in this book. In
Chapter 7 we talked about choosing a cryptographic primi-
tive, and how the best way to test cryptography is years

of public cryptanalysis. In Chapter 8 we talked about assurance levels
for secure computers—the Orange Book, the Common Criteria—and
testing to verify compliance. Chapter 13 discussed software reliability,
and how bugs turn into security vulnerabilities. Testing is where the
rubber meets the road: It’s one thing to model the threats, design the
security policy, and build the countermeasures, but do those countermea-
sures actually work? Sure, you’ve got a pretty firewall/antivirus package/
VPN/pay-TV antifraud system/biometric authentication system/smart
card–based digital cash system/e-mail encryption product, but is it actu-
ally secure? Most security products on the market are not, and the reason
is a failure of testing.

Normal security testing fails for several reasons. First, security flaws
can appear anywhere. They can be in the trust model, the system design,
the algorithms and protocols, the implementation, the source code, the
human–computer interface, the procedures, or the underlying computer
system (hardware, operating system, or other software). Second, a single
flaw can break the security of the entire product. Remember that security
is a chain, and only as secure as the weakest link. Real products have a lot

334

c22.indd 334 2/16/15 10:40 AM

of links. Third and most important, these flaws cannot be found through
normal beta testing. Security has nothing to do with functionality. A
cryptography product can function normally and be completely insecure.
Flaws remain undiscovered until someone looks for them explicitly.

Throughout this book I have maintained that security is difficult to
get right. It’s one thing to design a secure system, another to implement
it properly, and quite another to implement it without iatrogenic
effects . . . but it’s a completely different thing to test and verify that you
got it right.

In a previous life I was president of Counterpane Systems, a cryp-
tography and security consulting company. Much of my time was spent
evaluating computer security products. Generally, I was called in at
the end of product development to verify that the product was indeed
secure. Smarter companies called me in earlier—during the design
phase—to make sure that the design was secure; sometimes I evaluated
the actual product built to the design I previously analyzed. This chap-
ter is the distillation of that experience.

T h e F A I l u R e O F T e S T I N G

Reread Chapter 13 on software reliability. Recall the phrase “Satan’s
computer,” and how security products need to work in the presence of a
malicious adversary. Now think about functional testing.

Functional testing won’t find security flaws. unlike almost all other
design criteria, security is independent of functionality. If you’re coding
a word processor, and you want to test the print functionality, you can
hook up a printer and see if it prints. If you’re smart, you hook up several
kinds of printers and print different kinds of documents. That’s easy; if the
software functions as specified, then you know it works.

Security is different. Imagine that you are building an encryption
function into that same word processor. You test it the same way: You
encrypt a series of documents, and you decrypt them again. The decryp-
tion recovers the plaintext; the ciphertext looks like gibberish. It all works
great. unfortunately, the test indicates nothing about the security of the
encryption.

Functional testing is good at finding random flaws that, when they
happen, will cause the computer program to behave weirdly (generally,

 Product Testing and Verification 335

c22.indd 335 2/16/15 10:40 AM

to crash). Security flaws have much less spectacular effects; unless they
fall into the wrong hands, they’re usually invisible. Security testing is not
about randomly using the software and seeing if it works. Security testing
is about deliberately searching out problems that compromise security.
Functional testing would never figure out that an attacker can create a
Web page that, when viewed with certain versions of Microsoft Internet
explorer 3.0 and 3.0.1, can run an arbitrary program on the viewer’s
machine. That’s just not something a beta tester can look for.

Imagine a vendor shipping a software product without any func-
tional testing at all: no in-house testing, no outside beta testing. All the
vendor does is ensure that the program compiles, and then they ship.
The odds of this software not having any bugs is zero. even if it is a simple
product, it will have thousands of bugs. It will crash all the time, and
fail in unimaginably bizarre ways. It won’t work.

Now imagine the same vendor shipping a software security product
without any security testing at all: no in-house security testing, no outside
analysis. All the vendor does is go through their normal functional test
program, and then they ship. The odds of this software not having any
security bugs is zero.

unfortunately, far too much software, even security software, has
exactly this problem.

even a moderately comprehensive security analysis won’t help
much. I’ve already used the figure of 5 to 15 bugs per thousand lines
of code. And that’s in final products, after all testing. We’ve all seen the
enormous number of bugs in Microsoft operating systems, and that’s
after hundreds of man-years of testing. Similarly, a few days, weeks, or
even months of security analysis will not do any better.

Another problem is that security can only be analyzed by experi-
enced security testers. Remember that the best thing you can say about
security products is: “I can’t break it, and all these other smart people
can’t break it either.” Only experienced security experts can reliably
 discover security flaws, so the quality of any security test effort depends
on the quality of the testers.

Sometimes security flaws are discovered by accident. A good example
is the password protection flaw in Microsoft Bob: It let you reset the
 password if you entered the wrong one three times. These are the
exceptions, though. The probability of stumbling on a security flaw ran-
domly is very low, sometimes approaching zero. explicitly checking for
them is much more efficient.

336 C h A P T e R T W e N T Y - T W O

c22.indd 336 2/16/15 10:40 AM

unfortunately, there is no such thing as a comprehensive security
checklist. Those of us who do this kind of thing frequently have devel-
oped our own security checklists: lists of attacks and potential vulner-
abilities that we’ve either seen in commercial products, read about in
academic papers, or thought of on our own. These lists are huge—a
 couple of years ago I had 759 separate attacks on my list—but they are
not comprehensive.

It is easy to test for any given weakness. Some are easier to test for
than others. Testing for every weakness on my list is time-consuming,
but straightforward. Testing for every known weakness is harder still;
it means that I have to keep my list up to date. It takes time, but I can do
it. But here’s the rub: Testing for all possible weaknesses is impossible.

Note that I didn’t say “very hard” or “incredibly difficult.” I said
“impossible.”

Testing for all possible weaknesses means testing for weaknesses that
you haven’t thought of yet. It means testing for weaknesses that no one
has thought of yet: weaknesses that haven’t even been invented yet. It’s
like building a bridge. You might be able to say that the bridge cannot
collapse as a result of natural causes. More likely, you will be able list the
conditions that cannot be the proximal cause of a collapse. You might
even be able to delineate the sorts of terrorist attacks that the bridge can
withstand. But you can never say that the bridge will stand in the face of
technology that hasn’t been invented yet.

Nothing here is meant to imply that this holds true for mass-market
software only. This discussion applies equally to security hardware, large
proprietary systems, military hardware and software, and everything else.
It even applies to security technologies having nothing to do with com-
puters. The problems are there regardless.

So what is a system developer to do? Ideally, he has to stop relying on
his in-house developers and beta testers. he has to hire security experts
to do his security testing. he has to spend a lot of money on this; assume
it takes the same level of effort to test the security of a system as it did to
design and implement it in the first place.

No one is going to do that, with the exception of the military. And
even the military is probably not even going to do that, with the excep-
tion of things like nuclear command and control systems.

What companies are going to do is what they’ve done all along.
They’re going to release insecure products and fix security problems that
are discovered, and published, after the fact. They’re going to make

 Product Testing and Verification 337

c22.indd 337 2/16/15 10:40 AM

outlandish claims and hope nobody calls them on it. They’re going to hold
cracking contests and other publicity stunts. They’ll issue new versions
so fast that by the time someone bothers to complete a security analysis,
they’ll say “but that was three versions ago.” But the products will be
insecure nonetheless.

D I S C O V e R I N G S e C u R I T Y F l AW S A F T e R T h e F A C T

every day, new security flaws are discovered in shipping software prod-
ucts. They’re discovered by customers, researchers (academics and hack-
ers), and criminals. how frequently depends on the prominence of the
product, the doggedness of the researchers, the complexity of the prod-
uct, and the quality of the company’s own internal security testing. In
the case of a popular operating system, it might happen several times per
week. In the case of an obscure encryption program that no one’s heard
of, it might happen once a lifetime.

Anyway, someone finds a security vulnerability. Now what?
There are several things he can do. he can keep quiet and tell no one.

he can tell his confidants. he can alert the product vendor. he can just
tell his customers, trying to keep the bug obscure so that only his products
protect the user. (I’ve seen companies do this.) Or he can tell the world.
(Of course he can always try to commit a crime using the vulnerability,
but let’s assume that he is an honest bloke.) The practice of telling the
world is known as full disclosure, and it has become popular over the past
several years. And it is the subject of a violent debate.

But first a soupçon of history.
In 1988, after the Morris worm illustrated how susceptible the Internet

is to attack, the Defense Advanced Research Projects Agency (DARPA)
funded a group that was supposed to coordinate security response, increase
security awareness, and generally do good things. The group is known as
CeRT—more formally, the Computer emergency Response Team—
and its response center is in Pittsburgh at Carnegie Mellon university.

Over the years CeRT has acted as kind of a clearinghouse for secu-
rity vulnerabilities. People are supposed to send vulnerabilities they find
to CeRT. CeRT then verifies that the vulnerability is real, quietly alerts
the vendor, and publishes the details (and the fix) once the vendor fixes
the vulnerability.

338 C h A P T e R T W e N T Y - T W O

c22.indd 338 2/16/15 10:40 AM

This sounds good in theory, but worked less well in practice. There
were three main complaints. First, CeRT was slow about confirming
vulnerabilities. CeRT got a lot of vulnerabilities reported to it, and they
had a backlog of vulnerabilities to deal with. Second, the vendors were
slow about fixing the vulnerabilities once CeRT told them. CeRT
wouldn’t publish until there was a fix, so there was no real urgency to
fix anything. And third, CeRT was slow about publishing reports even
after the fixes were implemented.

The full-disclosure movement was born out of frustration with this
process. Internet mailing lists like Bugtraq (begun in 1993) and NT
 Bugtraq (begun in 1997) became forums for people who believed that
quietly alerting the vendor was futile, and the only way to improve secu-
rity is to publicize bad security. It was a backlash against the academic
ivory tower and its secret knowledge. As one hacker wrote: “No more
would the details of security problems be limited to closed mailing lists
of so-called security experts or detailed in long, overwrought papers
from academia. Instead, the information would be made available to the
masses to do with as they saw fit.”

Today, many researchers publish vulnerabilities they discover on
these mailing lists, sometimes accompanied by press releases. The press
troll these mailing lists and write about the vulnerabilities, augmented by
the usual flurry of factoids, in both the computer and mainstream press.
(This is why there have been so many more press stories about computer
vulnerabilities over the past few years.) The vendors scramble to patch
these vulnerabilities as soon as they are publicized, so they can write their
own press releases about how quickly and thoroughly they fixed things.
Security is getting better a lot faster because of full disclosure.

At the same time, hackers use these mailing lists to learn about vul-
nerabilities and write attack programs. Some attacks are complicated,
but those that can understand them can write point-and-click programs
that allow those who don’t to exploit the vulnerability. Those opposing
full disclosure argue that publishing vulnerability details does more harm
than good by arming the criminal hackers with tools they can use to
break into systems. Security is much better served, they counter, by not
publishing vulnerabilities in all their gory details.

Full-disclosure proponents retort that this assumes that the
researcher who publicizes the vulnerability is always the first one to dis-
cover it, which simply isn’t true. Sometimes, vulnerabilities have been

 Product Testing and Verification 339

c22.indd 339 2/16/15 10:40 AM

known by attackers (sometimes passed about quietly in the hacker
underground) for months or years before the vendor ever found out.
The exploits are didactic, they say. The sooner a vulnerability is publi-
cized and fixed, the better it is for everyone.

Muddying the waters is the sobering reality that patching a vulner-
ability does not equal fixing the problem; many system administrators
don’t implement the patches from the vendors. Companies finesse this,
saying things like: “We issued a patch. What else can we do?” In the real
world, defective products are often recalled. This never happens in the
computer world. So even after the vendor releases the vulnerability fix
and the press furor dies down, many systems are still vulnerable.

An example might make this clearer. In April 1999, someone dis-
covered a vulnerability in Microsoft Data Access Components that could
let an attacker take control of a remote Windows NT system. This vul-
nerability was initially reported on a public mailing list. Although the list
moderator withheld the details of that risk from the public for more than
a week, some hacker reverse engineered the available details to create an
exploit based on the vulnerability.

At about the same time, Microsoft issued a patch to prevent attackers
from exploiting the vulnerability on users’ systems. Microsoft also pub-
lished a security bulletin on the topic, as did several other security news
outlets.

But Microsoft’s patch didn’t magically fix the vulnerability. Over
halloween weekend of that same year, hackers used the vulnerability to
attack and deface more than 25 NT-based Web sites, all owned by secu-
rity administrators who didn’t bother (or didn’t even know to bother)
updating their configurations in the intervening six months.

That’s the debate in a nutshell.
Microsoft would never have fixed the vulnerability if the exploit script

hadn’t existed. In other instances, they have gone so far as to completely
ignore the problem, dismiss the vulnerability as “completely theoretical”
and therefore not worth worrying about, or claim the researcher was
lying. Microsoft treats security vulnerabilities as public relations problems.
When an exploit exists, they do something, but usually not before. So
publicizing the vulnerability caused it to be fixed.

Publishing also caused the exploit script to be written, enabling a
bunch of criminal hackers to take advantage of the vulnerability (1) dur-
ing the window between when the vulnerability was announced and

340 C h A P T e R T W e N T Y - T W O

c22.indd 340 2/16/15 10:40 AM

when Microsoft published the patch, and (2) afterward, because many
system administrators didn’t implement Microsoft’s patch.

Was publishing better, or would it have been better to keep quiet?
Sometimes it depends on the vendor. Most companies react well to

attacks against their systems. They acknowledge and fix the problem, post
the fix on their Web sites, and everything goes back to normal. Some
vendors react less well; the various digital cellular companies responded
with all sorts of lies, insults, and misdirection in response to the pub-
lished breaks of their encryption algorithms. The entertainment industry
responded by initiating legal action against the people who exposed the
DVD player’s lousy security (and the people who subsequently talked
about it). Generally, exposed vulnerabilities that can’t be fixed easily—it’s
a lot harder to modify 10 million fielded cellular telephones than it is to
post a software fix on the Internet—aggravate companies more.

Sometimes the researcher has no choice. One NSA employee,
speaking off the record, claimed that his colleagues have discovered
several new Internet attacks but have been prohibited from publishing
them. Some have been later discovered by other researchers; others
remain secret. Sometimes he has a choice, but chooses to remain silent.
Steve Bellovin suppressed a paper he wrote on attacks against the DNS
system for several years. Bellovin and Cheswick purposely didn’t talk
about the SYN flood attack in their firewalls book.

Netscape used to offer $1,000 (and a free T-shirt) rewards to anyone
who found a security bug in their software. They wrote quite a few
checks, except for a 1997 incident when Danish hacker found a security
hole and demanded more money. As it turned out, he didn’t get his
money: his description of the effects of the bug enabled Netscape
engineers to reproduce and fix it without his help. In 2000, a French
researcher figured out how to break the security in the CB (Groupement
des Cartes Bancaires) smart card system. Then, depending on whom you
believe, he offered his services to Groupement or tried to blackmail
them. he was arrested, and eventually received a suspended sentence.

Security is by nature adversarial, even in the ivory towers of aca-
demia. Someone proposes a new scheme: an algorithm, a protocol, a
technique. Someone else breaks it. A third person repairs it. And so on.
It’s all part of the fun. But when it comes to fielded systems, it can get
a lot trickier. Is the benefit of publicizing an attack worth the increased
threat of the enemy learning about it? (In NSA’s language, this is known

 Product Testing and Verification 341

c22.indd 341 2/16/15 10:40 AM

as the equities issue.) Why should the company profit from the work of the
researcher? Will the company ignore the problem unless the researcher
calls the press? Does the researcher even care about the public’s reaction?
What’s the researcher’s agenda anyway?

This last question isn’t discussed as much as it should be. Publish-
ing a security vulnerability is a publicity attack; the researcher is looking
to get his own name in the newspaper by successfully bagging his prey.
Sometimes the publicizer is a security consultant, or an employee of a
company that offers vulnerability assessments or defensive network secu-
rity products. This is especially true if the vulnerability is publicized in a
press release; sending something out on PR Newswire or Business Wire
is expensive, and no one would do it unless he thought he was getting
something in return.

In general, I am in favor of the full-disclosure movement, and think
it has done a lot more to increase security than it has to decrease it. The
act of writing this book, which can be read by both the good guys and
the bad guys, does not cause the insecurities I talk about. Similarly, pub-
licizing a vulnerability doesn’t cause it to come into existence. Given
that vendors don’t bother fixing vulnerabilities that are not published—
this is not just a jeremiad against Microsoft, we’ve seen this from almost
every major software company—publicizing is the first step toward clos-
ing that vulnerability. Punishing the publicizer feels a lot like shooting
the messenger; the real blame belongs to the vendor that released soft-
ware with the vulnerability in the first place.

There are exceptions to this rule.
First, I am opposed to publicity that primarily sows fear. Pub-

lishing vulnerabilities for which there’s no real evidence is bad. (An
example of this is when someone found a variable containing the three
letters “NSA” in Microsoft’s cryptography API and announced that
the National Security Agency had installed a trap door in Microsoft
products, solely on the basis of the variable name.) Publishing security
vulnerabilities in critical systems that cannot be easily fixed and whose
exploitation will cause serious harm (the air traffic control software, for
example) is bad. I believe it is the researchers’ responsibility to balance
disclosing the vulnerability versus endangering the public.

Second, I believe in giving the vendor advance notice. CeRT
took this to an extreme, sometimes giving the vendor years to fix the
problem. The result is that many vendors didn’t take the notifications

342 C h A P T e R T W e N T Y - T W O

c22.indd 342 2/16/15 10:40 AM

 seriously. But if the researcher tells the vendor that the vulnerability will
be published in a month, then the vulnerability announcement can occur
at the same time as the patch announcement. This benefits everybody.

And third, I believe that disseminating exploits is often going too
far. Writing research papers on vulnerabilities benefits research, and
makes us smarter at designing secure systems. Writing demonstration
code is often a necessary part of research. Distributing attack tools to
the masses, on the other hand, is a bad idea. It serves no good to create
attack tools with point-and-click interfaces that any novice hacker can
use. They assist criminals. They make networks less secure. They are
part of the problem, not part of the solution.

There is a large gray area here between what is good and what is
bad. Vulnerability assessment tools can be used both to increase security
and to break into systems. Remote administration tools look a lot like
Back Orifice. If a company like Microsoft lies to the press and denies
that a published vulnerability is real, is it then okay for the researcher to
publish an attack script? I try to follow the “be part of the solution, not
part of the problem” rule. Full disclosure is part of the solution. Fixing
problems and improving network security is part of the solution. I’m
willing to live with tools that have both good and bad uses, but I don’t
like tools that have only bad uses.

There’s a quotation etched in stone in the CIA lobby: “And ye shall
know the truth, and the truth shall set ye free.” (It’s from the New Testa-
ment: John 8:32.) Those who know the truth are able to use that knowl-
edge to win out over those who do not know it (or who refuse to believe
it). Full disclosure gets us closer to the truth than anything else.

O P e N S TA N DA R D S A N D O P e N
S O u R C e S O l u T I O N S

In Chapter 7, I talked about the security benefits of public cryptography
over proprietary cryptography. Since the only evidence we have that a
cryptographic primitive is secure is for many experts to evaluate it over
a long period of time, making a cryptographic primitive public is the
most cost-effective way of doing that. The exact same reasoning leads a
ny smart security engineer to demand public solutions for anything
related to security, including open source software.

 Product Testing and Verification 343

c22.indd 343 2/16/15 10:40 AM

let’s review: Security has nothing to do with functionality. There-
fore, no amount of beta testing can ever uncover a security flaw. The
only way to have any confidence in the security of a system is over time,
through expert evaluation. And the only way to get that expert evaluation
is if the details of a system are public.

A good security design has no secrets in its details. In other words,
all of the security is in the product itself and its changeable secret:
the cryptographic keys, the passwords, the tokens, and so forth. The
an tith esis is security by obscurity: The details of the system are part of the
security. If a system is designed with security by obscurity, then that
security is delicate. As the designers of the once-proprietary digital cel-
lular security systems, the DVD encryption scheme, and the Firewire
interface learned, sooner or later the details will be released. A bad
system design is secure as long as the details remain secret, but quickly
breaks once they are released. A good system design is secure even if
the details are public.

So, given that good security design does not use obscurity, and that
so much can be gained by publishing the details of the security system, it
makes a lot of sense to do so. And systems that are public are likely to be
better scrutinized, and more secure, than systems that are not.

This reasoning applies directly to software. The only way to find
security flaws in a piece of code is to evaluate it. This is true for all
code, whether it is open source or proprietary. And you can’t just have
anyone evaluate the code, you need experts in security software evalu-
ating the code. You need them evaluating it multiple times and from
different angles, over the course of years. It’s possible to hire this kind
of expertise, but it is much cheaper and more effective to let the com-
munity at large do this. And the best way to facilitate that is to publish
the source code.

The counter argument is that publishing source code only gives
attackers the information they need to find and exploit vulnerabilities.
Keeping the source code secret, they say, denies attackers this intelligence.

Other than croggle at its naïveté, I’m not sure how to respond to
this. Making source code public does not increase the number of vul-
nerabilities, only the awareness of them by the general public. Vendors
who keep their source code secret are more likely to be sloppy. Vendors
who make their source code public are more likely to have their vulner-
abilities discovered, so they can fix them. Secret software is fragile;

344 C h A P T e R T W e N T Y - T W O

c22.indd 344 2/16/15 10:40 AM

it’s like steganography. Publishing source code provides a much more
robust security than keeping it secret ever can.

however, open source software does not guarantee security. There
are two caveats to keep in mind.

First, simply publishing the code does not automatically mean that
people will examine it for security flaws, and it certainly doesn’t mean
that experts will examine it for security flaws. Researchers found buffer
 overflows in the MIT code for Kerberos ten years after the code was
released. Another open-source package, the Mailman program for
man aging mailing lists, had glaring security problems for over three
years . . . until the original author looked at the code again and found
them.

Security researchers are fickle and busy people. They do not have the
time, nor the inclination, to examine every piece of source code that is
published. So while opening up source code is a good thing, it is not a
guarantee of security. I could name a dozen open source security librar-
ies that no one has ever heard of, and no one has ever evaluated. On the
other hand, the security code in the various open source secure uNIX
flavors has been looked at by a lot of crackerjack security engineers.

Second, simply publishing the code does not automatically mean that
security problems are fixed promptly when found. There’s no reason to
believe that a two-year-old piece of open source code has fewer security
flaws than a two-year-old piece of proprietary code. If the open source
code has been well examined, this is likely to be true. But just because a
piece of source code has been open source for several years does not, by
itself, mean anything.

I’m a fan of open source, and believe it has the potential to improve
security. But software isn’t automatically secure because it is open source,
just as it isn’t automatically insecure because it is proprietary. Others have
pointed out that open source code is believed to be more secure, and this
unfounded belief causes people to trust open source code more than they
should. This is a bad thing.

Also note that this analysis completely sidesteps the relevant ques-
tion of which process is more likely to produce secure software, by
design, in the first place. Open source is a business model first, and a
security strategy second. unfortunately, the traditional proprietary soft-
ware methodologies are probably more likely to produce high-quality
large software. Maybe the best thing for security is to create proprietary

 Product Testing and Verification 345

c22.indd 345 2/16/15 10:40 AM

software and then, after the fact, turn it into open source (which is what
Netscape did with its browser code).

R e V e R S e e N G I N e e R I N G A N D T h e l AW

In a perverse twist on the full-disclosure and open source movements,
some companies have attempted to defend themselves by making it ille-
gal to reverse engineer their software. In the united States, the Digital
Millennium Copyright Act (DMCA) criminalizes reverse engineering,
and there are similar provisions in the uniform Computer Information
Transactions Act (uCITA)—currently becoming law in several states.

We’ve already seen some effects of this. The DVD Copy Control
Association has loosed a barrage of legal proceedings against those who
reverse engineered their DVD security scheme, and against those who
wrote public-domain tools that exploit the miserable security. People
have been arrested. Mattel successfully sued the hackers who reverse
engineered the poor security in CyberPatrol, their surf-blocking software.

This sets a dangerous precedent. The laws don’t increase the secu-
rity of systems, or prevent attackers from finding flaws. What they do is
allow product vendors to hide behind lousy security, blaming others for
their own ineptitude. It’s certainly easier to implement bad security and
make it illegal for anyone to notice than it is to implement good security.
While these laws have the side effect of helping stem the dissemination
of hacked software—both the DVD and Mattel cases are examples—the
laws will reduce security in the long run.

C R A C K I N G A N D h A C K I N G C O N T e S T S

You see them all the time: “Company X offers $10,000 to anyone who
can break through their firewall/crack their algorithm/make a fraudu-
lent transaction using their protocol/do whatever.” These are cracking
contests, and they’re supposed to show how strong and secure the tar-
gets of the contests are. The logic goes something like this: “We offered
a prize to break the target, and no one did. This means that the target
is secure.”

It doesn’t.

346 C h A P T e R T W e N T Y - T W O

c22.indd 346 2/16/15 10:40 AM

Contests are a terrible way to demonstrate security. A product (or
system, protocol, or algorithm) that has survived a contest unbroken is
not obviously more trustworthy than one that has not been the subject
of a contest. Contests generally don’t produce useful data. There are four
basic reasons why this is so.

One, the contests are generally unfair. Cryptanalysis assumes that the
attacker knows everything except the secret. he has access to the algo-
rithms and protocols, the source code, everything. he knows the cipher-
text and the plaintext. he may even know something about the key. And
a cryptanalytic result can be anything. It can be a complete break: a result
that breaks the security in a reasonable amount of time. It can be a theo-
retical break: a result that doesn’t work “operationally,” but still shows
that the security isn’t as good as advertised. It can be anything in between.
Most cracking contests have arbitrary rules. They define what the attacker
has to work with, and how a successful break looks. Some don’t disclose
the algorithms.

Computer-security hacking contests are generally no better. They
don’t disclose how the products are being used, so that you can’t tell
whether a particular attack is a result of a product failure or an implemen-
tation failure. They don’t clearly delineate between the various pieces of
the system: If the contest is to test a firewall, what about vulnerabilities of
the operating system that compromise the firewall?

These tests have arbitrary rules of winning. In 1999, Microsoft set
up a Windows 2000 Web server and dared hackers to try and break in.
The server soon disappeared from the Internet, only to reappear later
with Microsoft claiming a power failure as the reason for the disappear-
ance. (Oddly enough, this power failure only affected the test system,
and they seemed to have forgotten to install an uninterruptible power
supply.)

unfair contests aren’t new. Back in the mid-1980s, the authors of
an encryption algorithm called FeAl issued a contest. They provided a
ciphertext file, and offered a prize to the first person to recover the plain-
text. Since then, the algorithm has been repeatedly broken by cryptogra-
phers. everyone agrees that the algorithm is fundamentally flawed. Still,
no one won the contest.

Two, the analysis is not controlled. Contests are random tests. Do ten
people, each working 100 hours to win the contest, count as 1,000 hours
of analysis? Or did they all try the same dozen attacks? Are they even

 Product Testing and Verification 347

c22.indd 347 2/16/15 10:40 AM

competent analysts, or are they just random people who heard about the
contest and wanted to try their luck? Just because no one wins a contest
doesn’t mean the target is secure . . . it just means that no one won.

In 1999, PC Magazine set up both a Windows NT and a linux
box, and announced a hacking contest. The linux box was the first one
hacked. Does that mean that linux is less secure? Of course not; it just
means that the people who bothered playing the game broke into the
linux box first.

Three, contest prizes are rarely good incentives. Security analysis is a
lot of work. People who are good at it are going to do the work for a vari-
ety of reasons—money, prestige, boredom—but trying to win a contest
is rarely one of them. Security professionals are much better off analyzing
systems where they are being paid for their analysis work, or systems for
which they can publish a paper explaining their results.

Just look at the economics. Taken at a conservative $200 an hour for
a competent cryptanalyst or computer-security guru, a $10K prize pays
for just over a week of work—not enough time to even dig through
the code. A $100K prize sounds impressive, but reverse engineering the
product is boring and that still might not be enough time to do a thor-
ough job. A prize of $1 million starts to become interesting, but most
companies can’t afford to offer that. And the analyst has no guarantee of
getting paid: he may not find anything, he may get beaten to the attack
and lose out to someone else, or the company might change the rules and
not pay. Why should someone donate his time (and good name) to the
company’s publicity campaign?

And four, contents can never end with a positive security result. If
something is broken in a contest, you know that it is insecure. But if
something isn’t broken in a contest, it doesn’t mean that it is secure.

The preceding four reasons are generalizations. There are exceptions,
but they are few and far between. The RSA challenges, both their fac-
toring challenges and their symmetric brute-force challenges, are fair and
good contests. These contests are successful not because the prize money
is an incentive to factor numbers or build brute-force cracking machines,
but because researchers are already interested in factoring and brute-force
cracking. The contests simply provide a spotlight for what was already
an interesting endeavor. The AeS contest, although more a competition
than a cryptanalysis contest, was also fair.

348 C h A P T e R T W e N T Y - T W O

c22.indd 348 2/16/15 10:40 AM

Contests, if implemented correctly, can provide useful information
and reward particular areas of research. They can help find flaws and cor-
rect them. But they are not useful metrics to judge security. A home-
owner can offer $10,000 to the first person who successfully breaks in and
steals a book on a certain shelf. If no one does so before the contest ends,
that doesn’t mean the home is secure. Maybe no one with any burgling
ability heard about the contest. Maybe they were too busy doing other
things. Maybe they weren’t able to break into the home, but they figured
out how to forge the real estate title to put the property in their name.
Maybe they did break into the home, but took a look around and decided
to come back when there was something more valuable than a $10,000
prize at stake. The contest proved nothing.

Cryptanalysis contests are generally nothing more than a publicity
tool. Sponsoring a contest, even a fair one, is no guarantee that people
will analyze the target. Surviving a contest is no guarantee of no flaws in
the target.

e VA l uAT I N G A N D C h O O S I N G S e C u R I T Y
P RO D u C T S

It’s generally not possible for average people—or the average company,
or the average government, for that matter—to create their own security
products. Most often they’re forced to choose between an array of off-
the-shelf solutions and hope for the best. The lessons of this book, that it’s
practically impossible to design secure products and that most commer-
cial products are insecure, aren’t heartening. What can the harried sys-
tem administrator, charged with securing his embassy’s e-mail system or
his company’s network, do? What about the average citizen, concerned
about the security of different electronic commerce systems or the privacy
of her personal medical information?

The first question to ask is whether or not it really matters. Or, more
exactly, whose security problem is this anyway? I care about my personal
privacy. I don’t really care about Visa’s credit card fraud problems. They
limit my liability to $50, and will even waive that if I complain. I do care
about the PIN on my ATM card; if someone cleans out my account, it’s
my problem and not the bank’s.

 Product Testing and Verification 349

c22.indd 349 2/16/15 10:40 AM

Similarly, some systems matter but are not within my control. I can’t
control what kind of firewalls and database security measures the IRS
uses to protect my tax information, or my medical insurer uses to protect
my health records. Maybe I can change insurers, but generally I don’t
have that kind of freedom. (I suppose that if I were wealthy enough,
I could choose banks in better regulatory environments—Switzer land,
for example—but that option is out of reach of most people.) even if
laws demand a certain amount of security—privacy, authentication, ano-
nym ity, integrity, whatever—there’s no guarantee that those in charge
of implementing the security measures did a good job. I can’t audit my
government’s security practices just because I want to make sure they are
good. The sad truth is that most security problems are just not under the
control of most people.

For the purposes of making this section interesting, let’s assume a
security system under your control. Moreover, you have a financial lia-
bility for the system’s security: You will lose money if the authentica-
tion scheme is broken, you will get sued if the privacy protections are
breached, and so forth. You have gone through the threat modeling and
risk assessment, and have decided that you need a certain type of product.
how do you go about choosing one? how do you go about evaluating
the options?

The problem with bad security is that it looks exactly the same as
good security. I can hold two products up: a pair of VPNs, for example.
They have the same capabilities and the same features. They use the same
buzzwords: triple-DeS, IPsec, and so on. They make the same security
claims. One is secure and one is broken. The average user has absolutely
no way to tell the difference. A security expert can, but it might take him
half a man-year of work to give you a useful opinion. It’s just not worth
the user’s money.

I’m continuously amazed by magazine comparison articles evaluat-
ing security products. I saw one on firewalls recently. They tried to
compare security: Their labs installed the various firewalls and exposed
them to a barrage of 300 attacks. Interesting, yes, but only marginally
related to how secure the firewall is, against real-world adversaries, in
real-world configurations. All the article talked about was whether the
firewall, as configured in the laboratory, could withstand attack X, not
whether the firewall increased the security of the network inside. Func-
tional comparisons are easy; security problems are hard. I’ve seen even

350 C h A P T e R T W e N T Y - T W O

c22.indd 350 2/16/15 10:40 AM

scarier reviews, where security products were rated only on the user
interface. Presumably the reviewers had to measure something, and the
user interface was the only thing they could see.

But even if they did rate security, does the rating match to the way
you use the product? For example, I don’t care how secure you can make
a particular operating system. I care how secure it is 90 percent of the
time, in real-world situations. I care how secure it is when you buy it,
with the default out-of-the-box settings. Or how secure it is after the
average sysadmin installs it. That’s what matters.

It can be easy to spot products that are obviously bad. Products
that make obviously wrong claims—“guaranteed unhackable security,”
“impossible-to-break encryption”—are almost certainly insecure. Prod-
ucts that make bizarre pseudoscientific claims of amazing new break-
throughs in technology (generally you see this applied to encryption
technology) are almost certainly snake oil. Other warning signs include
appealing to nebulous “security experts,” using ludicrous key lengths,
bucking conventional wisdom without good reason (in security, a lot
of benefit comes from following the crowd), and staging weird security
contests. In this book I outline a number of good security practices: using
known and published cryptography, using public protocols, recognizing
the limitations of different technologies. Companies that display igno-
rance of these principles in their marketing literature should be immedi-
ately suspect. It is possible, of course, that a product that exhibits some of
these warning signs is good; it’s just not likely. Just remember that there
are far fewer geniuses than fools.

But those are the easy ones. Once you’ve eliminated the products
from companies who evidently have no clue what they’re doing, it gets
a lot harder. All the remaining products are buzzword compliant; they
all say the right things. One might be older than the other; does that
mean it’s more secure? One might have more published vulnerabilities
than the other. Does that mean that it is less secure because more vulner-
abilities have been found and even more are likely still to be found, or is
it more secure because more vulnerabilities have been found and fixed?
There’s no way to know. (This is why so many security companies
use ambulance-chasing-like advertising: sowing fear, uncertainty, and
doubt.)

unfortunately, it’s not good enough to simply throw up your hands
and refuse to make a decision. There are security products out there that

 Product Testing and Verification 351

c22.indd 351 2/16/15 10:40 AM

claim to protect against threats, and consumers have to choose between
them. It makes no sense to not install a firewall because you don’t know
which is the best. The internal network exists. It has to connect to the
outside world. You can either choose a firewall, or not have one at all.
There’s a saying: “Mediocre security now is better than perfect security
never.”

While it’s true that security testing can only show the presence of
flaws and not their absence, it’s also true that nothing can establish the
absence of flaws: not provable security, not formal security models, not
detailed attack trees. We’re back to where we were when choosing a
cryptographic algorithm or protocol: Testing, by many people over the
course of time, is how we come to trust a security product.

The only thing left to do is to implement a process that assumes the
fallibility of the products, and provides security anyway. I’ll return to this
point in Chapter 24.

352 C h A P T e R T W e N T Y - T W O

c22.indd 352 2/16/15 10:40 AM

23

The Future of Products

One question to ask is what future technologies are likely to help
security products. Surely cryptography is always getting better.
Surely we’re always building better and better firewalls. Won’t

that help? The answer is both yes and no. Yes, specific technologies are
getting better. But no, the fundamental problems aren’t being solved.

Technologies improve. CPUs are much faster than they were ten
years ago, making it possible to add cryptography almost everywhere.
Digital cell phones, for example, could encrypt everything with strong
algorithms without perceptibly reducing performance.

The technologies of computer and network security are getting bet-
ter. Today’s firewalls are much better than the ones designed ten years
ago. Intrusion detection systems are still in their infancy, but they are
getting better.

And the same is true for almost every technology discussed in Part
2. Tamper-resistance technologies are improving; biometric technologies
are improving. We’re even getting smarter digital copy protection mech-
anisms (the DVD debacle notwithstanding).

What aren’t changing are the fundamentals of the technologies and
the people using them. Cryptography will always be nothing more than
mathematics. Security flaws will always litter software. People will (in
general) never be willing to remember passwords longer than a certain
length. People will always be vulnerable to social engineering.

It’s worse yet. Things are getting more complex, and that complex-
ity more than makes up for improvements in any other area. The future

353

c23.indd 353 2/16/15 1:56 PM

of digital systems is complexity, and complexity is the worst enemy of
security. Security is not getting better; it’s getting worse.

S O f T WA r e C O m P l e x I T Y A n D S e C U r I T Y

Digital technology has been an unending series of innovations, unin-
tended consequences, and surprises, and there’s no reason to believe that
will stop anytime soon. But one thing has held constant through it all, and
it’s that digital systems have gotten more complicated.

We’ve seen it over the past several years. microprocessors have got-
ten more complex. Operating systems and programs have gotten more
complex. (Sometimes for no good reason: There’s an entire flight simu-
lator hidden in every copy of microsoft excel 97.) Computers have got-
ten more complex. networks have gotten more complex. There are
complex network services, downloadable modules, intelligent agents,
and distributed computing. Individual networks have combined, further
increasing the complexity. The Internet is probably the most complex
machine humanity has ever built. And it’s not getting any simpler any-
time soon.

The global financial system has gotten more complex. The digital
systems in your car, dishwasher, and toaster have gotten more complex.
The smart cards in your wallet have gotten more complex, as have the
networks they talk with. The locks on your hotel room doors have got-
ten more complex, as have your burglar alarms, cell phones, and build-
ing environmental control systems. Buckingham fountain in Chicago is
remotely controlled by a computer in Atlanta.

As a consumer, I think this complexity is great. There are more
choices, more options, more things I can do. As a security professional,
I think it’s terrifying. Complexity is the worst enemy of security. This
has been true since the beginning of computers, and is likely to be true
for the foreseeable future. And as cyberspace continues to get more
complex, it will continue to get less secure. There are several reasons
why this is true.

The first reason is the number of security bugs. In Chapter 13, I
talked about software reliability and how it affects security. Just as the
number of performance bugs goes up with complexity, so does the
number of security flaws. This is uniformly true. As the complexity of

354 C H A P T e r T W e n T Y - T H r e e

c23.indd 354 2/16/15 1:56 PM

the software goes up, the number of bugs goes up. And a percentage of
these bugs will affect security, and not always in tangible ways.

The second reason is the modularity of complex systems. In Chapter
10, I talked about modular code and the security problems associated
with it. Complex systems are necessarily modular; there’s no other way
to handle the complexity than breaking it up into manageable pieces.
We could never have made the Internet as complex and interesting as it
is today without modularity. But increased modularity means increased
security flaws, because security often fails where two modules interact.

The third reason is the interconnectedness of complex systems. Dis-
tributed and networked systems are inherently risky. Complexity leads
to the coupling of systems, which can lead to butterfly effects (minor
problems getting out of hand). We’ve already seen examples of this as
everything becomes Internet-aware. for years we knew that Internet
applications like sendmail and rlogin had to be secure, but the recent
epidemic of macro viruses shows that microsoft Word and excel need
to be secure. Java applets not only need to be secure for the uses they
are intended for, but they also need to be secure for any other use an
attacker might think of. Cross-site scripting exploits subtle interactions
among CGI scripts, HTml, frames, Web server software, and cookies. In
2000, a bug in Internet explorer 5.0 locked up Windows 2000 when it
was installed with 128-bit cryptography. Photocopiers, maintenance ports
on routers, mass storage units: These can all be made Internet-aware,
with the associated security risks. rogue printer drivers can compromise
Windows nT; PostScript files can have viruses. malicious e-mail attach-
ments can tunnel through firewalls. remember the version of Windows
nT that had a C2 security rating, but only if it was unconnected to a
network and had no floppy drive? remember the WebTV virus? How
long before someone writes a virus that infects cell phones?

The fourth reason is that the more complex a system is, the more
recondite it is. In Chapter 17, I talked about social engineering and
the poor interactions between people and security. These problems are
exacerbated by complex systems. The people running the actual system
typically do not have a thorough understanding of the system and the
security issues involved. And if someone doesn’t understand a system,
he is more likely to be taken advantage of by someone who does. Com-
plexity not only makes it virtually impossible to create a secure system,
it also makes the system extremely hard to manage.

 The Future of Products 355

c23.indd 355 2/16/15 1:56 PM

The fifth reason is the difficulty of analysis. In Chapters 18 through
21, I outlined a procedure for designing and analyzing secure systems:
understanding the threat model, defining the protection mechanisms,
and designing the security. The more complex a system is, the harder it
is to do this kind of analysis. everything is more tortuous: the specifica-
tion, the design, the implementation, the use. The attack tree for any
complex system is gargantuan. And, as we’ve seen again and again in
this book, everything is relevant to security analysis.

The sixth (and final) reason is the increased testing requirements
for complex systems. In Chapter 22, I talked about security and failure
testing. I argued that the only reasonable way to test the security of a
system is to perform security evaluations on it. However, the more
complex the system is, the harder a security evaluation becomes. A
more complex system will have more security-related errors in the
specification, design, and implementation. And unfortunately, the
number of errors and difficulty of the evaluation does not grow in step
with the complexity, but in fact grows much faster.

for the sake of simplicity, let’s assume the system has ten different set-
tings, each with two possible choices. Then, 45 different pairs of choices
could interact in unexpected ways, and there are 1,024 different configu-
rations altogether. each possible interaction can lead to a security weak-
ness, and should be explicitly tested. now, assume that the system has 20
different settings. This means 190 different pairs of choices, and about a
million different configurations. Thirty different settings means 435 dif-
ferent pairs and a billion different configurations. even slight increases in
the complexity of systems means an explosion in the number of different
configurations . . . any one of which could hide a security weakness.

The increased number of possible interactions creates more work
during the security evaluation. for a system with a moderate number
of options, checking all the two-option interactions becomes a huge
amount of work. Checking every possible configuration is a Herculean
task. Thus, the difficulty of performing security evaluations also grows
very rapidly with increasing complexity. The combination of additional
(potential) weaknesses and a more difficult security analysis unavoidably
results in insecure systems.

In actual systems, the situation is not quite so bad; often options
are orthogonal, in that they have no relation to or interaction with
each other. (Of course, as systems get more complex you get more

356 C H A P T e r T W e n T Y - T H r e e

c23.indd 356 2/16/15 1:56 PM

couplings.) This occurs, for example, if the options are on different
layers in the communication system and the layers are separated by a
well-defined interface. for this reason, such a separation of a system into
relatively independent modules with clearly defined interfaces is a hall-
mark of good design. Good modularization can dramatically reduce the
effective complexity of a system without the need to eliminate impor-
tant features. Options within a single module can, of course, still have
interactions that need to be analyzed, so the number of options per
module should be minimized. modularization works well when used
properly, but most actual systems still include cross-dependencies that
allow options in different modules to affect each other.

A more complex system is less secure on all fronts. It contains more
weaknesses to start with, its modularity exacerbates those weaknesses, it’s
harder to test, it’s harder to understand, and it’s harder to analyze.

It gets worse. This increase in the number of security weaknesses
interacts destructively with the weakest-link property of security: The
security of the overall system is limited by the security of its weakest link.
Any single weakness can destroy the security of the entire system.

real systems show no signs of becoming less complex. In fact, they
are becoming more complex faster and faster. microsoft Windows is a
poster child for this trend to complexity. Windows 3.1, released in 1992,
has 3 million lines of code. In 1998, Windows nT 5.0 was estimated to
have 20 million lines of code; by the time it was renamed Windows 2000
(in 1999), it had between 35 million and 60 million lines of code, depend-
ing on whom you believe. See Table 23.1.

 Trend to Complexity in Source Code

Operating System Year lines of Code

Windows 3.1 1992 3 million
Windows nT 1992 4 million
Windows 95 1995 15 million
Windows nT 4.0 1996 16.5 million
Windows 98 1998 18 million
Windows 2000 2000 35–60 million (estimate)

The size of Windows 2000 is absolutely amazing, and it will have even
more security bugs than Windows nT 4.0 and Windows 98 combined.

 The Future of Products 357

c23.indd 357 2/16/15 1:56 PM

In its defense, microsoft has claimed that it spent 500 people-years to
make Windows 2000 reliable. I only reprint this number because it serves
to illustrate how inadequate 500 people-years are.

You can also see this complexity increase in the number of system
calls an operating system has. The 1971 version of UnIx had 33. By the
early 1990s, operating systems had about 150. Windows nT 4.0 SP3 has
3,433. See Table 23.2.

 Trend to Complexity in Operating Systems

Operating System Year System Calls

UnIx 1ed 1971 33
UnIx 2ed 1979 47
SunOS 4.1 1989 171
4.3 BSD net 2 1991 136
Sun OS 4.5 1992 219
HP Ux 9.05 1994 163
line 1.2 1996 211
Sun OS 5.6 1997 190
linux 2.0 1998 229
Windows nT 4.0 SP3 1999 3,433

early firewalls had to deal with fTP, telnet, SmTP, nnTP, and
DnS. That’s all. modern firewalls have to handle hundreds of protocols,
and a labyrinthine set of network-access rules. Some neoteric protocols
are designed to look like HTTP, in order to “work with” (i.e., avoid)
firewalls. And dial-in users didn’t used to have to be concerned with
 firewalls; now home broadband users, on DSl and cable modems, do.
even worse, there’s software available that lets home users set themselves
up as Web servers. more features, more complexity, more insecurity.

Public-key certificates in x.509 version 1 were specified in 20 lines
of ASn.1 notation. x.509 version 3 certificates took about 600 lines.
SeT certificates: about 3,000 lines.

The entire SeT standard is 254 pages long. And that’s just the for-
mal protocol specification; there’s also a 619-page programmer’s guide
and a 72-page business description. for various reasons it seems that
SeT will never see widespread use, but in any case I believe that we
are not capable of implementing something this labyrinthine without
bugs. The performance bugs will be (for the most part) fixed during beta

358 C H A P T e r T W e n T Y - T H r e e

c23.indd 358 2/16/15 1:56 PM

 testing; the security bugs will lie dormant. But they will be there. If the
right person finds one, he will announce his findings to the press. If the
wrong person finds one, he will use it to attack the online credit card
system: maybe to mint money, maybe to create valid-looking but phan-
tom credit card accounts, maybe just to screw with credit card processing
and bring the system to its knees.

Complexity is creeping into everything. The 2000 mercedes 500
has more computing power than a 747-200. my old thermostat had one
dial; it was easy to set the temperature. my new thermostat has a digital
interface and a programming manual. I guarantee that most people will
have no idea how to set it. Thermostats based on Sun microsystems’s
“Home Gateway” system come with an Internet connection, so you
can conveniently contract with some environmental control company
to operate your too-complicated thermostat. Sun is envisioning Internet
connections for all your appliances and your door locks. Do you think
anyone will have checked the refrigerator software for security bugs?
I’ve talked about modern malicious code, and the interactions among
Java, HTml, CGI scripts, and Web browsers. Isn’t anyone else worried
that the new cell phones, equipped with the Wireless Access Protocol,
will be able to download Java applets? It’s only a matter of time before
we have a cell phone virus.

Computer games used to be simple. now they’re networked. Any-
one can go to a Web site and set himself up for multiplayer play. now
anyone else can log in to his machine across the Internet. Presto, he’s a
server. mom and Dad might keep some proprietary information on their
computer—work secrets, financial information—and suddenly Junior
has invited the world to log on. Has anyone checked these games for
security bugs? A vulnerability in the automatic update feature in the
game Quake3Arena allows an attacker to update any file on the user’s
computer. napster also opens your computer up as a server, and over-
flow bugs have already been found in the software.

It gets worse. The current generation of video game machines—
the Sega Dreamcast, Sony PlayStation 2—comes with features like 56K
modems, IP stacks, and Web browsers. millions of these have been sold.
maybe the browsers and operating systems will be secure; if they are,
they’ll be the first ever. It’ll be big fun; you’re playing Sonic over modem
with some other kid, and he’ll get root on your game machine and win.
If it’s just a game console: woo hoo! It doesn’t matter. But remember that

 The Future of Products 359

c23.indd 359 2/16/15 1:56 PM

the game companies are going to want you to do all your e-shopping
with your game console. There’ll be credit card numbers, electronic wal-
lets, who knows what. Welcome to a world where a buffer overflow in
Tekken 3 can compromise your financial security.

This kind of function creep happens everywhere: Today’s toys are
tomorrow’s critical applications. mass-market software is good at add-
ing features and functionality, but much less good at reliability. Despite
this, and despite the fact that the software and networks have not been
designed for critical applications, they’re being used for such anyway.
We’ve become dependent on systems of unknown trustworthiness.
Quick-and-dirty “ship the damn thing already” solutions have become
part of our critical infrastructure. The Internet is probably the biggest
example of this; PC operating systems are another.

Sure, security bugs are found and fixed, but the process is Sisyphean.
A software product is released. Over time, security bugs are found and
fixed; security is improving. Then the manufacturer comes out with ver-
sion 2.0—with new code, added features, more complexity—and we’re
back where we started from. maybe even worse.

In the military, this is called a “target-rich environment.”
The networked systems of the future, necessarily more complex,

will be less secure. The technology industry is driven by demand for fea-
tures, for options, for speed. There are no standards for quality or secu-
rity, and there is no liability for insecure software. Hence, there is no
economic incentive to create high quality. Instead, there is an economic
incentive to create the lowest quality the market will bear. And unless
customers demand higher quality and better security, this will never
change.

I see two alternatives. The first is to slow down, to simplify, and to try
to add security. Customers won’t demand this—the issues are too com-
plex for them to understand—so a consumer advocacy group is required.
I can easily imagine an fDA-like organization for the Internet, but in an
environment where it can take a decade to approve a new prescription
drug, this solution is not economically viable.

The other choice is to recognize that the digital world will be one
of ever-expanding features and options, of ever-faster product releases,
of ever-increasing complexity, and of ever-decreasing security. If we can
accept this reality, we can try to work with it instead of sticking our
heads in the sand and denying it.

360 C H A P T e r T W e n T Y - T H r e e

c23.indd 360 2/16/15 1:56 PM

I repeat: Complexity is the worst enemy of security. Secure systems
should be cut to the bone and made as simple as possible. There is no
substitute for simplicity. Unfortunately, simplicity goes against every-
thing our digital future stands for.

T e C H n O l O G I e S T O WAT C H

There are technologies on the horizon that may profoundly change
security products, both for good and for bad. Since this isn’t supposed
to be a book that predicts the future, I will just mention a few of the
more interesting ones.

Cryptographic breakthroughs. Pretty much no cryptography is based on
mathematical proofs; the best that we can say is that we can’t break it, and
all the other smart people who tried can’t break it either. There is always
the pos sibility that someday we will learn new techniques that allow us to
break what we can’t break today. (There’s a saying inside the nSA: “Attacks
always get better; they never get worse.”) We’ve seen this in the past, where
once-secure algorithms fell to new techniques, and we’re likely to see it in
the future. Some people even assume that the nSA already knows much of
this new mathematics, and is quietly and profitably breaking even our stron-
gest encryption algorithms. I just don’t think so; they may have some secret
 techniques, but not many.

Factoring breakthroughs. One worry is that all of the different public-key
algorithms are fundamentally based on the same two mathematical prob-
lems: the problem of factoring large numbers or the discrete logarithm
problem. factoring is getting easier, and it’s getting easier faster than any-
one ever thought it would. These problems are not mathematically proven
to be hard, and it is certainly possible (although mathematicians don’t think
it likely) that within our lifetime someone will come up with a way to
 efficiently solve these problems. If this happens, we could be in a world
where public-key cryptography does not work and parts of this book are a
quaint historical oddity. This won’t be terrible; authentication infrastruc-
ture schemes based on symmetric cryptography can do much of the same
job. even so, I don’t think it’s likely.

Quantum computers. Someday, quantum mechanics may fundamentally
change the way computers work. right now people can barely figure out
how to make quantum computers add two 1-bit numbers, but who knows
what will happen? Quantum computation techniques will render most public-
key algorithms obsolete (see the preceding item), but will only force us to
double the key lengths for symmetric ciphers, hash functions, and mACs.

 The Future of Products 361

c23.indd 361 2/16/15 1:56 PM

Tamperproof hardware. A lot of security problems magically get a lot eas-
ier if you assume tamperproof hardware and put things inside of it. Break-
throughs in tamper-resistance technologies, especially breakthroughs in the
cost of different tamper-resistance measures, could make a lot of security
problems easier.

Artificial intelligence. many computer-security countermeasures can
be reduced to a simple problem: letting the good stuff in while keeping
the bad stuff out. This is the way antivirus software, firewalls, intrusion
detection systems, VPns, credit card antifraud systems, digital cell phone
authentication, and a whole lot of other things work. There are two
ways to do this. You can be dumb about it—if you see any of these ten
thousand bit patterns in the file, that means the file has a virus—or smart
about it: If the program starts doing suspicious things to the computer, it’s
probably a virus and you should investigate further. The latter sounds an
awful lot like AI. This kind of thing was tried as an antivirus mechanism,
and ended up being less effective than the dumb pattern checkers. Simi-
lar ideas are in some intrusion detection products, and it is still unclear
whether they do a better job than methodically looking for bit patterns
that signify an attack. Still, this could someday be a big deal: If fundamen-
tal advances ever occur in the field of AI (a big “if”), it has the potential to
revolutionize computer security.

Automatic program checkers. many security bugs, such as buffer over-
flows, are the result of sloppy programming. Good automatic tools that
can scan computer code for potential security-related bugs would go a
long way to making software more secure. Good language compilers, and
good syntax checkers, would go a long way to preventing programmers
from making security-related mistakes in the first place. We’d have to per-
suade programmers to use them, which is probably another matter entirely.
(There are a bunch of good tools out there, and almost no one uses them.)
And they’re never going to catch all problems.

Secure networking infrastructures. The Internet is not secure because
security was never designed into the system. People who are working on
the Internet-II (and whatever follows that) should be thinking about secu-
rity first. These new networks should assume that people will be eavesdrop-
ping, that they will attempt to hijack sessions, and that packet headers lie.
They should assume mutually distrustful users, and all sorts of business and
personal applications. There are a lot of problems that can’t be solved with
better network protocols, but a lot can.

Traffic analysis. The science of traffic analysis is still in its infancy, and I
expect interesting new technologies in the coming decade. Good ways of
preventing traffic analysis will go a long way to improving privacy on any
public network.

362 C H A P T e r T W e n T Y - T H r e e

c23.indd 362 2/16/15 1:56 PM

Assurance. Assurance means that a system does what it is supposed to do,
and doesn’t do anything else. A technology that could somehow provide
strong assurance in software would do amazing things for computer
 security.

most of these technologies are being worked on today. Practical
advances in most of them are far in the future, some of them on the
lunatic horizon. I wouldn’t discount any of them, though. If there’s
anything the twentieth century has taught us, it’s to be parsimonious
with the word “impossible.”

W I l l W e e V e r l e A r n ?

Consider buffer overflow attacks. These were first talked about in the
security community as early as the 1960s—time-sharing systems suffered
from that problem—and were probably known by the security literati
even earlier. early networked computers in the 1970s had the problem,
and it was often used as a point of attack against systems. The mor-
ris worm, in 1988, exploited a buffer overflow in the UnIx fingerd
command: a public use of this type of attack. now, over a decade after
morris and about 35 years after they were first discovered, you’d think
the security community would have solved the problem of security vul-
nerabilities based on buffer overflows. Think again. In 1998, over two-
thirds of all CerT advisories were for vulnerabilities caused by buffer
overflows. During a particularly bad fortnight in 1999, 18 separate
security flaws, all caused by buffer overflows, were reported in Win-
dows nT–based applications. During the first-week-of-march stretch I
opened this book with, there were three buffer overflows reported. And
buffer overflows are just the low-hanging fruit. If we ever manage to
eradicate the problem, others—just as bad—will replace them.

Consider encryption algorithms. Proprietary secret algorithms are
regularly exposed and then trivially broken. Again and again, the mar-
ketplace learns that proprietary secret algorithms are a bad idea. But
companies and industries continue to choose proprietary algorithms
over public, free alternatives.

Or look at fixable problems. One particular security hole in
microsoft’s Internet Information Server was used by hackers to steal

 The Future of Products 363

c23.indd 363 2/16/15 1:56 PM

thousands of credit card numbers from a variety of e-commerce sites in
early 2000. microsoft issued a patch that fixed the vulnerability in July
1998, and reissued a warning in July 1999 when it became clear that
many users never bothered installing the patch.

Isn’t anyone paying attention?
not really. Or, at least, far fewer people are paying attention than

should be. And the enormous need for digital security products neces-
sitates experts to design, develop, and implement them. This resultant
dearth of experts means that the percentage of people paying attention
will get even smaller.

Here is a paradigmatic scenario for the design of most products with
security in them. The manager finds some guy who thinks security is
cool and designates him as the person in charge of that part of the sys-
tem. This person might know something about security, or he might
not. He might read a book or two on the subject, or he might not.
Designing security is fun—cat and mouse, Spy vs. Spy, just like in the
movies—so he does. Implementing it is just like implementing anything
else in the product: make it work and meet your deadline. everything
works great—after all, security has nothing to do with functionality—so
the manager is happy.

However, due to the general lack of security expertise, the security
features are completely ineffective. no one has any reason to believe that
this is so, so no one knows.

It’s a little better if the product being designed is a security product.
It’s more likely that the designers will understand security. But they can’t
do everything. Someone who designed a firewall product once told me
about buffer overflows in his code. He said that he did all he could to
ensure that there were none—and I believe that he was thorough—but
he said that he couldn’t control the rest of the programmers on the team.
He tried, but he couldn’t. Several serious vulnerabilities due to buffer
overflows in the code have been discovered, and fixed, over the years. no
one believes there aren’t more, waiting to be discovered.

I’ve been constantly amazed by the kinds of things that break secu-
rity products. I’ve seen a file encryption product with a user interface
that accidentally saves the key in the clear. I’ve seen VPns where the
telephone configuration file accidentally allows untrusted persons to
authenticate themselves to the server, or where one VPn client can see
the files of all other VPn clients. There are a zillion ways to make a

364 C H A P T e r T W e n T Y - T H r e e

c23.indd 364 2/16/15 1:56 PM

product insecure, and manufacturers manage to stumble on a lot of
those ways again and again.

They don’t learn because they don’t have to.
Computer security products, like software in general, have an odd

product quality model. It’s unlike an automobile, a skyscraper, or a box
of fried chicken. If you buy a physical product, and get harmed because
of a manufacturer’s defect, you can sue . . . and you’ll win. Car mak-
ers can’t get away with building cars that explode on impact; lunch
counters can’t get away with selling strawberry tarts with the odd rat
mixed in. It just wouldn’t do for building contractors to say things like:
“Whoops. There goes another one. But just wait for Skyscraper 1.1;
it’ll be 100 percent collapse-free.” These companies are liable for their
actions.

Software is different. It is sold without any liability whatsoever. for
example, here’s the language in the Windows 98 licensing agreement:
“In no event shall manufacturer or its suppliers be liable for any damages
whatsoever—arising out of the use or of inability to use this product,
even if manufacturer has been advised of the possibility of such dam-
ages.”

Your accounts receivable database could crash, taking your company
down with it, and you have no claim against the software company. Your
word processor could corrupt your entire book manuscript (something I
spend way too much time worrying about while writing), wasting years
of work, and you have no recourse. Your firewall could turn out to be
completely ineffectual, hardly better than having nothing . . . and it’s your
fault. microsoft could field Hotmail with a bug that allowed anyone to
read the accounts of 40 or so million subscribers, password or no pass-
word, and not even bother to apologize.

Software manufacturers don’t have to produce a quality product
because they face no consequences if they don’t. (Actually, product
liability does exist, but it is limited to replacing a physically defective
 diskette or CD-rOm.) And the effect of this for security products is
that manufacturers don’t have to produce products that are actually
secure, because no one can sue them if they make a bunch of false claims
of security.

The upshot of this is that the marketplace does not reward real secu-
rity. real security is harder, slower, and more expensive to design and
implement. The buying public has no way to differentiate real security

 The Future of Products 365

c23.indd 365 2/16/15 1:56 PM

from bad security. The way to win in this marketplace is to design soft-
ware as insecure as you can possibly get away with.

Smart software companies know this, and that reliable software is not
cost-effective. According to studies, 90 to 95 percent of all bugs are harm-
less; they’re never found by users and they don’t affect performance. It’s
much cheaper for a company to release buggy software and fix the 5 to 10
percent of bugs after people complain.

They also know that real security is not cost-effective. They get
whacked with a new security vulnerability several times a week. They fix
the ones they can, write deceptive press releases about the ones they can’t;
then they wait for the press furor to die down (which it always does).
Then they issue a new version of their software with new features that add
all sorts of new insecurities, because users prefer cool features to security.

And users always will. Until companies have some legal incentive to
produce secure products, they won’t bother.

366 C H A P T e r T W e n T Y - T H r e e

c23.indd 366 2/16/15 1:56 PM

24

Security Processes

In 1996, a lab full of researchers cloned a Scottish sheep named Dolly.
In the media circus that followed, both Time and Newsweek opined
that since cloning humans is immoral we need laws to prevent it. They

missed the point completely. Someone will attempt to clone humans,
somewhere on the planet, law or no law. What we need is to accept this
inevitability, and then figure out how to deal with the inevitable.

Computer insecurity is inevitable. Technology can foil most of the
casual attackers. Laws can deter, or at least prosecute, most criminals. But
attacks will fall through the cracks. Networks will be hacked. Fraud will
be committed. Money will be lost. People will die.

Technology alone cannot save us. Products have problems, and they
are getting worse. The only thing reasonable to do is to create processes
that accept this reality, and allow us to go about our lives the best we can.
It’s no different from any other aspect of our society. No technological
security measures can protect us from terrorist attacks. We use products
as best as we can, and implement processes—security checkpoints at
borders, intelligence gathering on known terrorist groups, counterter-
rorist activities, vigilant prosecution—to get as much safety as possible.

P r I N C I P L e S

Compartmentalize

Smart travelers put some money in their wallet, and the rest of their
money in a pouch hidden under their clothing. That way, if they’re

367

c24.indd 367 2/16/15 10:39 AM

 pickpocketed, the thief doesn’t get everything. Smart espionage or
terrorist organizations divide themselves up into small cells; people
know others in their own cell, but not those in other cells. That way,
if someone is captured or turned in, he can only damage those in his
own cell. Compartmentalization is smart security, because it limits the
damage from a successful attack. It’s common sense, and there are lots
of examples: Users get individual accounts, office doors are locked
with different keys, access is based on clearance plus need to know,
individual files are encrypted with unique keys. Security is not all-or-
nothing; security breaches should not be, either.

A similar precept is the one of least privilege. Basically, this means that
you should only give someone (or, by extension, some computer pro-
cesses) the privileges needed to accomplish the task. You see this all the
time in everyday life: You have the key to your office, but not every
office in the building. Only authorized armored-car delivery people can
unlock ATMs and put money inside. even if you have a particular secu-
rity clearance, you are only told things that you “need to know.”

Computers offer many more examples. Users only have access to the
servers they need to do their job. Only the system administrator has the
root password to the entire computer; users have individual passwords
to their own files. Sometimes group passwords protect shared files; only
those who need access to those files know the group password. Certainly
it’s easier to give everyone the root password, but it’s more secure to only
give people the privileges they need. The whole UNIX and NT permis-
sions system is based on this idea.

Many Internet attacks can be traced to breaking this principle
of least privilege. Once an attacker gets access to a user account—by
breaking a password or something—he tries a bunch of attacks in order
to get root privileges. Many of the attacks against Java try to break out
of the Java sandbox—a way of enforcing minimal privileges—and into
a mode where the attacker can get privileged status. Attacks against the
DVD security system, security systems in some transit farecard systems,
and many pay-TV security systems can all be traced to the system hav-
ing a global secret in each of the consumer devices: a violation of least
privilege.

Compartmentalization is also important because a system’s security
degrades in proportion to its use. The larger, more popular, more integral
a computer is, the less secure it is. This is one reason why the Internet—

368 C H A P T e r T W e N T Y - F O U r

c24.indd 368 2/16/15 10:39 AM

the most widely used network ever—is so insecure. A computer, pow-
ered down, in a locked bomb shelter, and surrounded by guards, is more
secure than a Web server is. Compartmentalization moves systems closer
to the former.

Secure the Weakest Link

The best place to direct countermeasures is at the weakest link. This is
obvious, but again and again I see systems that ignore it. You can’t just
plant a mile-high pole in front of your castle and hope the enemy runs
right into it; you have to look at the whole landscape and build earth-
works and a palisade. Similarly, just because you’re using an encryption
algorithm with a 256-bit key doesn’t mean you’re secure; the enemy is
likely to find some avenue of attack that ignores the encryption algo-
rithm completely.

I’m continually amazed by the number of commercial security sys-
tems with gaping holes that the designers never noticed, because they
spent all their efforts securing the pieces they understood well. Look at
the entire vulnerability landscape, create an attack tree: find the weakest
link and secure it. Then worry about the next weakest link. You’ll end up
with a much more secure system that way.

Use Choke Points

A choke point forces users into a narrow channel, one that you can more
easily monitor and control. Think of turnstiles at a train station, check-
out lanes at a supermarket, and doors to your house. Think of firewalls,
routers, login screens, and Web sites that force you go to the homepage
first. Think of the single back-end processing system that credit card sys-
tems use to detect fraud. Choke points make good security sense.

Choke points only work if there’s no way to get around them. One
of the common ways to defeat a firewall is to go around it: find an unse-
cured dial-up connection into the network, for example. People some-
times leave dial-up connections running on their computers. Sometimes
routers, large storage devices, and even printers can have unsecured main-
tenance dial-up ports. These all allow attackers to bypass choke points.

Networks have more subtle breaches of this type. Sometimes a com-
pany has strong network security in place, and for whatever reason links

 Security Processes 369

c24.indd 369 2/16/15 10:39 AM

its network to that of another company. That other company may not
be as secure. This both violates the choke points, and means that the net-
work has a new weakest link that needs securing.

Provide Defense in Depth

Defense in depth is another universal security principle that applies to
computers just as it applies to everything else.

A good perimeter defense—door locks and window alarms—is
more effective when combined with motion sensors inside the house.
Forgery-resistant credit cards work better when combined with online
verification and a back-end expert system that looks for suspicious
spending patterns. A firewall, combined with an intrusion detection sys-
tem and strong cryptography protecting the applications, is more secure
than a firewall alone.

Throughout this book, I’ve inculcated you with the principle that
security is only as strong as the weakest link, and this seems to go against
that philosophy. In reality, it depends on the implementation. recall the
attack trees: a series of Or nodes are only as secure as the weakest, while
a series of AND nodes are as strong as their combination. In general, the
security of a particular technology depends on the easiest way to break
that technology: the weakest link. The security of several security coun-
termeasures depends on the easiest way to defeat all those countermea-
sures: defense in depth.

For example, a network protected by two firewalls, one each at two
different network ingresses, is not defense in depth. This system is only
as secure as the weakest link: An attacker can attack either firewall. A
network protected by two firewalls, one behind the other, is defense in
depth: An attacker has to penetrate one firewall and then the other in
order to attack the network. (It always amazes me when I see complex
networks with different brands of firewalls protecting different access
points, or even the same brand of firewall with different configurations.
It just makes no sense.)

Fail Securely

Many systems have a property that I call default to insecure. This means
that if the system fails, then the user reverts to a less-secure backup

370 C H A P T e r T W e N T Y - F O U r

c24.indd 370 2/16/15 10:39 AM

 system. For example, in the United States, VeriFone processes credit card
transactions using a live database terminal. When the clerk takes your card
and swipes it through the VeriFone terminal, that terminal calls back to a
database and confirms that the card is not stolen, that you have available
credit, and so forth. Think back to a time when, for whatever reason, the
terminal didn’t work: it was broken, the phone line was down, whatever.
Did the merchant tell you that he wouldn’t accept your credit card?
Of course not. He pulled out the old system of paper slips and did the
transaction manually.

This cavalier approach to security is pervasive, and it’s the reason
denial-of-service attacks can become invasive attacks. I already talked
about attackers tripping burglar alarms until they are turned off. Other
attacks are subtler. Few people have the discipline not to communicate if
they cannot communicate securely. even the military, which you think
would take this seriously, has screwed this up again and again.

What you want is for systems to fail securely; that is, fail in such a
way as to be more secure, not less. If an ATM’s PIN verification system
does not work, it should fail in such a way as to not spit money out the
slot. If a firewall crashes, it should crash in such a way as to not let any
packets in. If a slot machine fails, it should not send coins pouring into
the payout tray.

This same principle is used in safety engineering, and is called fail-safe.
If a microprocessor in an automobile fails, you don’t want it failing by
forcing maximum throttle. If a nuclear missile fails, you don’t want it fail-
ing by launching. Fail-safe is a good design principle.

Leverage Unpredictability

Again and again in this book I rail against security by obscurity: proprietary
cryptography, closed source code, secret operating systems. Obscurity
has its uses: not in products, but in how products are used. I call this
unpredictability.

One of the strengths a defender has against an attacker is knowl-
edge of the terrain. Just as an army doesn’t broadcast the location of its
tanks, antiaircraft batteries, and battalions to the enemy, there’s no reason
to broadcast your network topology to everyone that asks. Too many
computers respond to any query with their operating system and ver-
sion number; there’s no reason to give out this information. Much better

 Security Processes 371

c24.indd 371 2/16/15 10:39 AM

would be a login screen that reads: “Warning: Proprietary Computer.
Use of this system constitutes consent to security monitoring. All user
activity is logged, including the hostname and IP address.” Let attackers
wonder if you can trace them.

If you’re building a proprietary security system—for an electronic
banking application, for example—it’s important to use a strong, public,
trusted encryption algorithm. Assuming you’ve chosen one, there’s no
real benefit in announcing its name.

This is one of the principles behind proxy firewalls; there’s no point
in broadcasting to the world valid hostnames and usernames. This is
also the principle behind bespoke network countermeasures—network
burglar alarms, honey pots, and similar countermeasures—the network
administrator knows how the network works, and what people should
be doing. When someone pokes around in a fake dormant account,
for example, the administrator should know that it is an attacker. An
attacker shouldn’t know what types of equipment are running where,
what protocols are allowed under what conditions, and what ports are
open under what conditions. I am amazed by the number of servers,
applications, and protocols that announce themselves to the world:
“Hello! I am randomserviceV2.05.” Many hacking tools scan for partic-
ular versions of software running on particular machines . . . known to
have particular vulnerabilities. If networks are unpredictable, attackers
won’t be able to wander around so freely. Without this kind of informa-
tion, it’s much harder to profile a target and determine what attacks to
try. It’s the difference between walking in a sunny meadow at midday
and a briar patch at midnight.

This unpredictability also extends to response. The Patriot missile
actually wasn’t that good at knocking incoming Iraqi Scuds out of the sky,
but you would never know that from the official Pentagon reports. Just
because the United States knew how ineffective its antimissile defenses
were, that was no reason to let the enemy know.

Unpredictability is a powerful tool, used by terrorists, authoritarian
brainwashers, and those who just want to dominate others. It works well
in digital security, too.

Embrace Simplicity

I said this a chapter ago: Complexity is the worst enemy of security. A
system is only as secure as the weakest link, so a system with fewer links

372 C H A P T e r T W e N T Y - F O U r

c24.indd 372 2/16/15 10:39 AM

is easier to secure. Complex systems are less secure than simple ones,
guaranteed. To quote einstein: “everything should be as simple as pos-
sible, but no simpler.”

Folk sayings often disagree, and contrarians could easily reply with:
“Don’t put all your eggs in one basket.” This is true, and the defense
in depth principle supports this. But remember that guarding several
baskets is harder than guarding one. Where security is concerned, it is
smarter to follow Mark Twain’s advice in Pudd’nhead Wilson: “Put all
your eggs in the one basket and—WATCH THAT BASKeT.”

Enlist the Users

Security is a lot easier if you assume trusted and intelligent users, and a lot
harder if you assume malicious and ignorant users. Security measures that
aren’t understood and agreed to by everyone don’t work. remember that
the hardest security problems to solve are the ones that involve people;
the easiest are the ones that involve bits. Sure, you have to protect against
insider attacks, but for the most part, insiders are your allies. enlist their
support as much as possible and as often as possible.

Assure

What we really need is assurance: assurance that our systems work prop-
erly, that they possess the properties we want and only those properties.
Most attacks in the real world result in failures of assurance—the prod-
ucts doing something unintended—rather than function: the products
failing to do what they were intended to do.

Assurance is hard, something that we don’t really know how to
provide in complex systems. It involves a structured design process,
detailed documentation, and extensive testing. The NSA has detailed
assurance projects; similar processes would make our systems more
secure as well.

Question

Constantly question security. Question your assumptions. Question your
decisions. Question your trust and threat models. Keep looking at your
attack trees. Trust no one, especially yourself.

It’s amazing what you’ll find.

 Security Processes 373

c24.indd 373 2/16/15 10:39 AM

D e T e C T I O N A N D r e S P O N S e

Detection is much more important than prevention. As I have said
repeatedly in this book, it is fundamentally impossible to prevent attacks.
We can do demonstrably better than we are, but everything we know
about complex systems tells us that we cannot find and fix every vulner-
ability. There will always be attackers; we just have to catch and punish
them.

I’m continuously amazed by how many computer-security vendors
are oblivious to this. You never see a door lock with the advertising
slogan: “This lock prevents burglaries.” But computer-security vendors
make those kinds of claims all the time: “Firewalls prevent unauthorized
traffic from entering your internal network.” “Authentication mecha-
nisms prevent unauthorized people from logging on to your comput-
ers.” “encryption prevents unauthorized people from reading files.”
All of these claims are spurious. Prevention mechanisms are good, but
prevention is only one part of a security solution—and the most fragile
part. effective security also includes detection and response.

In the real world, people understand this. Banks don’t say: “We have
a vault, so we don’t need an alarm system.” Museums don’t fire their
night guards because they have door and window locks. In the best of
worlds, all prevention buys you is time. In the real world, prevention can
often be bypassed completely.

In a few isolated cases, all you can rely on is prevention. Against
eavesdropping attacks against a radio circuit, encryption (a prevention
countermeasure) has to work perfectly. There’s no way to detect the
eavesdropping, so no response is possible. Most of the time, though,
detection and reaction are possible.

And they provide much more security. Most home-security sys-
tems—door locks—can be defeated by a brick through a window. Why
are more houses not robbed, then? Why isn’t the public clamoring for
polycarbonate windows? Because of detection and response.

Detect Attacks

Modern society doesn’t prevent crime. It’s a myth. If Alice wanted to
kill Bob, she could. The police couldn’t stop her (unless she were a
complete idiot, I suppose). They can’t protect every Bob in the world;

374 C H A P T e r T W e N T Y - F O U r

c24.indd 374 2/16/15 10:39 AM

they don’t have the manpower. He’s on his own. He can hire a body-
guard if he can afford it, but that doesn’t guarantee anything either.

What society does is detect crime after the fact. “Hmm, officer, we
just found Bob’s bullet-riddled body buried in the end zone at Giants Sta-
dium. I think I detect a crime here.” We investigate crimes that we have
detected, collect evidence that can be used (here’s the critical piece) to
convince a group of neutral parties that the defendant is guilty, and then
punish that person. This punishment process is supposed to act as some
kind of back channel into society at large and have a preventive effect on
copycat criminals. (Yes, the point of sentencing is to punish the guilty, but
the real benefit to society is in preventing more crime.) even better, the
mere threat of the whole process is supposed to have a preventive effect.

And it’s a good thing that the whole complicated system works,
more or less, because preventing crime is a whole lot harder than detect-
ing crime. In the digital world, the same truth holds. Credit card compa-
nies do what they can to prevent criminals from committing fraud, but
mostly they rely on detection and, in extreme cases, prosecution. Cell
phones can be cloned, but detection mechanisms limit financial losses.

Think of antishoplifting technologies. You can make things hard to
steal by bolting them down, attaching cables to them, locking them in
glass cases, or putting them behind the counter. This works, but reduces
sales because the consumer likes to touch the merchandise. In response,
industry has developed many theft detection technologies: tags attached
to the merchandise that cause an alarm to sound if they are removed
from the building. (There’s another interesting antishoplifting technol-
ogy used for garments: tags attached to the garment that spread colored
dye if removed improperly. This is known as benefit denial.)

On the Internet, detection can be a lot of work. It’s not enough to
put up a firewall and be done with it; you need to detect attacks against
the network. This means reading, understanding, and interpreting the
reams of audit logs that the firewall produces. This means reading, under-
standing, and interpreting the reams of audit logs that the routers, servers,
and other devices on the networks produce—we have to assume that
some attacks will bypass the firewall. These bypass attacks always leave
footprints somewhere; detection means finding them.

Good detection means finding intruders in something approach-
ing real time, while they are still engaged in the attack. (responding after
the attack appears in the morning newspapers is often too late.) This

 Security Processes 375

c24.indd 375 2/16/15 10:39 AM

 necessarily means a real-time monitoring system, whether it is a security-
conscious network operations center monitoring your computer network,
an AI program looking for anomalous Visa spending patterns or phone
calling card usage patterns, or the NOrAD ballistic missile tracking sys-
tems. The sooner you detect something, the sooner you can respond.

Analyze Attacks

Simple detection isn’t enough; you need to understand the attack and
what it means. Traditionally, the military breaks the process down into
four generic steps:

Detection. Perceiving that you’re under attack. Imagine that three key servers
on your network crash at the same time. Is that an attack, or just a prob-
lem with your networking software? Or maybe a freak coincidence? If you
don’t even know you’re under attack, it’s impossible to respond.

Localization. Determining where the attack is. Just because you know that
your network is under attack, it doesn’t necessarily mean that you know
which computers or ports are under attack. You might know that the server
crashes are the result of an attack, but have no idea what the attacker has
done to cause the crashes, and what other things he is doing.

Identification. Determining who the attacker is and where he is working
from. each attacker has different strengths and weaknesses, depending on
who he is and where he is working from. An attacker in the United States,
for example, can be dealt with differently than an attacker in Moldavia.
(This step is more important in a traditional military process than in net-
work security.)

Assessment. Understanding the attacker, his strategy and tactics, his capabili-
ties, and maybe even his vulnerabilities. This information is critical to
determining a suitable response. A script kiddie deserves a very different
reaction than an industrial spy. The kiddie is likely to just go away if you
respond at all; a more tenacious attacker won’t be dissuaded so easily.

each of these steps is more difficult than the previous one, and each
requires more detailed information and expertise of analysis. And often
this analysis requires human expertise; a computer alone is going to fail
sooner or later (although an automatic program may do a pretty good job
most of the time).

each step also gives you more information about the situation, and
the more information you have (and the sooner you have it), the better

376 C H A P T e r T W e N T Y - F O U r

c24.indd 376 2/16/15 10:39 AM

armed you are. Unfortunately, most network administrators never know
they’re under attack, or if they do, they don’t understand where the attack
is coming from. Identification and assessment is particularly hard on the
Internet, where it is easy for an attacker to disguise his location.

Speed is of the essence. The faster you can analyze an attack, the faster
you can respond.

Respond to Attacks

It’s all about response. A burglar alarm that rings and rings, with no one
to respond to it, is no better than no burglar alarm at all. It’s like a car
alarm sounding in a bad neighborhood; no one pays attention. response
is what makes detection valuable.

Sometimes the response is easy: An attacker has stolen someone’s
phone calling card number, so don’t allow that number to be used any-
more. Sometimes it’s more complicated: “Someone has broken into our
electronic commerce server. We can shut the server down, but we’ll lose
$10 million for every hour we’re down. Now what?”

response is complicated, and often involves intelligent people mak-
ing split-second decisions without a lot of time to fully think things
through. “He’s over the wall and approaching the skylight. What do we
do now?” It depends a lot on the situation. You can do nothing. You
can shoo him away. You can shoo him away and try to make sure he can
never get back. You can shoo him away, try to figure out how he got in,
and close the vulnerability.

That’s only one half of response: making the problem go away.
equally important is the other half: tracking down and finding the
attackers. This can be very difficult on some systems; on the Internet an
attacker can engage in what is called connection laundering: hopping from
one computer to another to disguise the origin of a connection. The
police don’t have a lot of investigative time for this, unless lives or a lot of
money is involved, and I expect private companies to offer this kind
of forensic service. A company that has a broad view of the entire Inter-
net can even start collecting dossiers on particular attackers.

Prosecution opens a can of worms that is completely foreign to most
computer people: the legal system. Identifying an attacker isn’t enough;
you also need to be able to prove it in court. There have been cases in
england where people have been accused of this or that ATM fraud.

 Security Processes 377

c24.indd 377 2/16/15 10:39 AM

The defense attorney requests details about the bank’s security mecha-
nisms: the technologies, the audit logs, the procedures . . . everything
he can think of. The bank turns to the judge and says: “We can’t show
them that, it would compromise security.” The judge throws out the
case. The security system might be the paragon of detection—it might
correctly finger the criminals—but if it can’t survive the discovery pro-
cess, it’s not sufficiently useful.

When John Walker was put on trial for spying, the NSA carefully
weighed the risks of making information about the cryptography
devices he compromised public versus keeping the full extent of the
damage he caused secret. Good detective security measures need to
be able to go through the legal process—including inquisitional cross-
examinations with the help of expert witnesses—without losing their
effectiveness in the process. And good detection and audit mechanisms
should produce audit logs that are admissible in court, and that prove
guilt. And it should be possible to make these logs public without reveal-
ing any organizational secrets: something called knowledge partitioning.
A legal discovery process should not result in any security violations.

Be Vigilant

Vigilance means continuous. For detection and response to be effective, it
needs to work all the time: 24 hours a day, 365 days a year. Guard services
offer 24-hour protection. Security-alarm monitoring companies don’t go
home for the weekends. It can’t be any different in the digital world. You
can’t put a splash screen on your network connections saying: “Please
restrict all hacking attempts to within the hours of nine in the morning
and five in the evening, Monday through Friday, excepting holidays.”
Attackers follow their own schedules.

Attacks often happen at inconvenient times. Criminal hacking fol-
lows the academic year. All sorts of commerce fraud—ATMs, credit
cards—goes up during the Christmas season as people find themselves in
need of money. Smart criminals attack banking systems Friday afternoon,
after they’ve closed for the weekend. In 1973, the Arab countries attacked
Israel during Yom Kippur: the holiest Jewish holiday of the year. If some-
one were going to launch a serious attack against a system, he would pick
an equally inconvenient time.

378 C H A P T e r T W e N T Y - F O U r

c24.indd 378 2/16/15 10:39 AM

Vigilance means immediateness. In any aspect of security, timeliness
is next to godliness. It’s much more useful to detect an attack in progress
than a week, or even an hour, after it has happened. It’s far better to
upgrade your systems in response to a vulnerability now, and not next
month. Sometimes reacting late is no better than not reacting at all.

Vigilance also means preparedness. Any detection and response team
needs to know what to do when an attack occurs. When Yahoo! got
whacked with a denial-of-service attack in 2000, it took them three hours
to get back up and running. Partly this was because Yahoo! had never
seen this kind of attack before. Whenever processes are automated, and
exceptions become rarer, people forget how to react. A monitoring and
response service is only useful if it regularly sees attacks, and continuously
practices how to respond.

Watch the Watchers

The banking industry has long known that layers of audit provide good
security. Managers audit the tellers. Internal auditors audit the man-
agers. Outside auditors reaudit things, but with different methods—
effectively auditing the internal auditors. The outside auditors act as a
trusted third party does in a protocol; they are paid to audit the system
and don’t care whether they find problems or not; they get paid regard-
less. The casino industry likes to call this process “people watching peo-
ple watching people.” Dealers watch the players, floormen watch the
dealers, pit bosses watch the floormen, and surveillance watches the pit
bosses.

In the banking industry, this process is enhanced by mandatory vaca-
tions. The idea is that if someone else is doing your job, then maybe
he’ll notice evidence of your crimes. One example is Lloyd Benjamin
Lewis, an assistant operations office at a large bank. He engaged in large-
scale fraud over two years, and during that time never took a single vaca-
tion day, sick day, or was late to work. He had to be there, otherwise the
fraud might be discovered.

It’s not enough to have a good system administration staff who
knows all about computer and network security, monitors the systems,
and responds to attacks 24 hours a day. Someone has to watch them. It’s
not just because they might be malicious, although this has happened.

 Security Processes 379

c24.indd 379 2/16/15 10:39 AM

(There is a long history of crimes committed by senior bank officials,
since they’re the ones most likely to get away with it. Someone who was
charged with auditing slot machines, making sure they were not rigged
by the house, was caught modifying the rOMs so he could force them
to produce a jackpot at will.) The real reason is that people are people;
they make mistakes. even processes have security flaws, and there has to
be another process in place to catch and fix them. It’s a lesson that has
long needed to be applied to cyberspace.

Recover from Attacks

When a French banking smart card was broken in 2000, they had a
problem. There was nothing they could do about it except turn the sys-
tem off or live with the problem. We saw similar problems in the New
York City transit farecards, a Canadian cash card, and the DVD encryp-
tion scheme. If you spend all your time thinking about preventive coun-
termeasures, you can forget to plan what to do if those countermeasures
fail.

Preventive countermeasures fail all the time. Fixing the problem and
tracking down the bad guys are part of a good response, but so is recover-
ing from a compromise. This can mean designing systems so that they can
be upgraded in the field, and building processes to facilitate that upgrade.
This can mean building systems with emergency cryptography, emer-
gency protocols, or emergency procedures. This can mean cutting your
losses and returning your system to a secure state.

I’ve seen too many security systems with the implicit assumption: “If
someone breaks the security, we all go home and get new jobs.” That
just doesn’t cut it. Compromise recovery should be a core element of
any security system.

C O U N T e r AT TA C K

In the war for security, it sometimes looks pretty bleak. Attackers have
it easier. They can cheat. They can invent new science and new tech-
nology to attack systems already in place. They can use techniques the
defenders never considered. They don’t have to follow the defender’s
threat model.

380 C H A P T e r T W e N T Y - F O U r

c24.indd 380 2/16/15 10:39 AM

And the odds are in their favor. The defender occupies what Karl
von Clausewitz calls “the position of the interior.” An attacker needs
to find one successful attack: one minor vulnerability that the defender
forgot to close. A defender, on the other hand, needs to protect against
every possible attack. He needs to think of everything; he can’t afford to
miss one.

And the defenders are in disarray. They make stupid mistakes. They
write buggy code. They don’t install security upgrades and patches.
They have near theological beliefs about the security of products. They
don’t understand the real threats against themselves, and they don’t pro-
tect themselves accordingly.

Time is on the attackers’ side. Systems have to go on working, day
in and day out. Attackers can sit and wait, looking for a vulnerability,
waiting for the defenders to drop their guard, changing strategies and
tactics to suit the situation.

One solution is to go on the offensive.
We don’t fight crime by making our banks 100 percent immune to

attack; we fight crime by catching criminals. Luckily, criminals are pretty
stupid. And given the kind of salary a good computer security expert can
command, computer crime doesn’t pay nearly as well.

If the United States was ever the target of a nuclear attack by the
USSr, the planned response was to counterattack. Mutual assured
destruction is about as surreal as a security defense gets, but it worked.

The Pinkerton Detective Agency was established in 1852. One of
their early services was to protect trains from robbers in the American
West. early on, they realized that it was expensive to put a Pinkerton
guard on every train. They also realized that robbing a train was a com-
plicated operation—you needed an insider who knew the schedule, a
dozen or so people, horses, pack animals, and so forth—and that only a
few criminals were capable of pulling it off. So they decided to go after
the train robbers directly. It didn’t matter if the railroad paid for the pur-
suit; the Pinkertons did it because catching train robbers made all of their
customers more secure.

The Pinkertons were known for not giving up. If you robbed a
Pinkerton-protected train, they would hunt you down. And they were
serious; there were gun battles against the Hole in the Wall Gang that
involved hundreds of Pinkerton men. There’s a scene in Butch Cassidy
and the Sundance Kid where they’re being chased after a train robbery by

 Security Processes 381

c24.indd 381 2/16/15 10:39 AM

a group who just will not give up. “Who are these guys?” Butch says to
Sundance. They were the Pinkertons.

Cyberspace needs a few good counterattacks like this. Today’s situa-
tion is a kind of Prisoner’s Dilemma for hacking: If you don’t face con-
sequences for your actions, it’s in your best interest to beat the system.
Breaking into networks is not a game; it’s a crime. Stealing money by
hacking a digital payment system is a crime. Distributing copyrighted
material on the Internet is a crime. And criminals should be prosecuted.
This prosecution does two things. One, the convicted criminal is less
likely to do it again. And two, everyone else is less likely to do it in the
first place.

This is not meant to be a call for the vigilante-like “justice” we’ve
seen out of the FBI and others over the past decade. In the 1980s, they
knew little about computers and networks and computer crimes. every-
thing was potentially dangerous, and everything was investigated hap-
hazardly. In 1989, when the Macintosh rOM source code was stolen
and broadcast on the Internet by the NuPrometheus League, the FBI
investigated dozens of completely random computer people. In 1990,
the Secret Service raided the headquarters of a role-playing game com-
pany, Steve Jackson Games, because the company was working on a
role-playing game (not even a computer program) that had something
to do with “cyberpunks” and hackers, and because they believed an
employee, Loyd Blankenship, was a member of the “Legion of Doom”
hacker group. In 1999, the DVD Copy Control Association tried to gag
500 Web sites whose only crime was writing about the DVD encryption
break. And in 2000, Microsoft tried to force Slashdot to delete postings
about its proprietary extensions to the Kerberos protocol.

This is also not meant to be a call for overreaction, which we saw a
lot of in the 1990s. David Smith, the author of the Melissa virus, faces
five to ten years in prison. Kevin Mitnick got (and served) almost five
years, and was prohibited from using a computer for another three. (All
his skills are related to computers, and he has been prohibited from lec-
turing on the subject. Supposedly, his parole officer suggested he get a
job at Arby’s.) Kevin Poulson received almost the same sentence. The
Chinese government sentenced a hacker to death for hacking a bank
computer and stealing $87,000. (To be fair, all bank robbers get the
death penalty in China.) I am reminded that in the American West
in the 1800s, horse thieving was often punished by hanging. This is

382 C H A P T e r T W e N T Y - F O U r

c24.indd 382 2/16/15 10:39 AM

because the society wanted to send a clear message that stealing horses
was not to be tolerated. Various european governments sent a similar
message in the 1970s when they started gunning terrorists down in the
streets. The message was a very clear: “We’re not playing games any-
more.” Some of the overreactions we’re seeing in hacker prosecution
reflect this same sort of moral panic.

This is also not meant as a call to extinguish legitimate researchers
or hackers, full disclosure mailing lists, or the right to evaluate secu-
rity products. In the United States, laws have been passed that prohibit
reverse engineering of copy protection systems. The entertainment
industry lobbied hard for these draconian laws, using them in an attempt
to hide their incompetent security countermeasures. No other industry
tries to prohibit someone who purchases a product from taking it apart
to see how it works. No other industry tries to prevent Consumer
Reports–style evaluations of its products’ effectiveness. Shooting the
 messenger is simply another overreaction to the situation.

What this is a call for is an increase in prosecution of people who
engage in criminal activity and for the issuance of fair sentences. There’s
a pervasive mentality of: “If I just stay still and don’t make any noise,
no one will bother me.” Companies are reluctant to prosecute computer
criminals because they fear retaliation. The reality is that until we pros-
ecute the criminals, they will continue to disseminate attack tools and
break into computer networks. Once we start prosecuting criminals,
hacking into other people’s networks will be much less cool. This isn’t
a perfect solution—hacking tools are likely to go underground—but it
will make a difference. There were two positive effects from the terrorist
crackdown of the 1970s: The real terrorists trod a lot more carefully, and
all the wannabes took off their armbands.

M A N A G e r I S K

There’s no such thing as perfect security, but that’s not necessarily a
problem. In the United States alone, the credit card industry loses $10
billion to fraud per year; neither Visa nor MasterCard are showing any
signs of going out of business. Shoplifting estimates in the United States
are currently at $10 to $26 billion per year; but rarely is shrinkage (as it
is called) the cause when a store closes its doors. recently, I needed to

 Security Processes 383

c24.indd 383 2/16/15 10:39 AM

notarize a document; that is about the lamest security protocol I’ve seen
in a long time. Still, it works fine for what it is.

After you’ve identified a risk, you can do one of three things with it:
You can accept it, you can reduce it, or you can insure yourself against
it. Security does not have to be perfect, but the risks have to be man-
ageable. The credit card industry understands this. They know the losses
due to fraud. They also know that losses from phone credit card transac-
tions are about five times the losses from face-to-face transactions (when
the card is present), and that losses from Internet transactions are about
twice again that amount. (Much of the cost of card-not-present fraud is
borne by the merchants, who have little or no recourse when they are
stuck with the bill.) They’re pushing Internet alternatives like SeT pre-
cisely because the risks are getting worse.

A closed system like this is an exception. My primary fear about
cyberspace is that people don’t understand the risks, and they are put-
ting too much faith in technology’s ability to obviate them. Compared
to the physical world, cyberspace is both exactly the same and very
different (see Chapter 2). And products alone cannot solve security
problems.

The digital security industry is in desperate need of perceptual shift.
Countermeasures are sold as prophylactics: ways to counter threats.
Good encryption prevents eavesdropping. A good firewall prevents net-
work attacks. PKI is sold as trust management, so you can avoid mistak-
enly trusting people you really don’t. And so on.

This paradigm is better suited to national security than to the com-
mercial world. Business is about taking risks, which is why in the real
world much more focus is put on detection and reaction than on pre-
vention. Web sites don’t need unhackable passwords, they just need
them strong enough to prevent attacks most of the time. The credit card
industry doesn’t need foolproof smart cards; they just need them strong
enough to limit attacks so that the detection and response mechanisms
can kick in. (It’s actually worth noting that the credit card industry has
built a multi-billion-dollar business based on a very insecure combina-
tion of magnetic stripe cards and merchant-run terminals.)

Once you start thinking of security this way, everything else falls
into place. If security is about avoiding threats, then it is a cost center.
Security has to be justified, and a central IT department approves security
budgets. If security is about managing risk, it becomes a way to create

384 C H A P T e r T W e N T Y - F O U r

c24.indd 384 2/16/15 10:39 AM

revenue. If a company can figure out how to manage the risk of put-
ting their ordering system online, then they can grab more market
share. If a credit card company can figure out how to manage the risk
of a certain class of customers, then they can sell more credit cards. All
business is risk, and those who are better at managing that risk are more
profitable.

Security is old, older than computers. And the old-guard security
industry thinks of countermeasures as ways to manage risk. This dis-
tinction is enormous. Avoiding threats is black and white: either you
avoid the threat or you don’t. Managing risk is continuous: You either
accept it, reduce it, or insure against it.

A secure computer is one you’ve insured.
I believe that insurance is the future of digital security. You can buy

insurance against almost any other security risk: theft, vandalism, rogue
employees shooting the executive team, or whatever. Why not digital
security risks?

It’s a good question, and one that the big insurance companies have
not ignored. every one of them is working on insurance for computer-
security risks: insurance for corporate intranets, insurance against denial-
of-service attacks, insurance against Web site defacement, whatever.
This is hard to do correctly, since no one knows what the risks are, but
there’s so much demand that the insurance companies aren’t waiting.

A standard joke in insurance circles goes something like this: A
company goes to an insurance company, trying to get some bizarre risk
insured. The insurance company asks a series of questions:

“How big is the potential loss?”
“We don’t know.”
“How likely is a loss to occur?”
“We don’t know.”
“How much is your company worth?”
“This much.”
“That’s the premium; send it in.”

right now, insurance companies are offering antihacking insurance, but
I don’t believe that they fully understand the risks. Most of the policies
are complicated and unwieldy, and contain so many provisions, that I
wonder if they’ll ever pay off. The point of standardizing security
processes is that the risks can be quantified. If a thousand companies use

 Security Processes 385

c24.indd 385 2/16/15 10:39 AM

the same security countermeasures, an insurance company can amortize
the risks and write policies. This is how ADT Security Services works.
Companies don’t buy the service because it makes their warehouses
more secure; they buy it because they can get a better deal on their
insurance.

eventually there will be two types of network insurance. The first
type is the obvious one: Someone breaks into your network and causes
damage, and you want the insurance company to compensate you for
your loss. But the second type is even more important: Someone breaks
into your network and wreaks havoc with your customers, their propri-
etary information, and their reputations. The third-party liability can be
huge. Not only is it a breach of fiduciary responsibility, but the resulting
lawsuits could easily exceed the net worth of the attacked company. A
warranty-type of insurance to deal with this kind of threat is critical.

risk management is the future of digital security. Whoever learns
how to best manage risk is the one who will win. Insurance is one criti-
cal component of this. Technical solutions to mitigate risk to the point
where it is insurable is another.

O U T S O U r C I N G S e C U r I T Y P rO C e S S e S

Security processes are a way of mitigating the risks. Network security
products will have flaws; a process is necessary both to catch attackers
exploiting those flaws, and fixing the flaws once they become known.
Insider attacks will occur; a process is necessary to detect the attack,
repair the damage, and prosecute the attacker. Large systemwide flaws
will compromise entire products and services (think cell phones, think
DVD); a process is necessary to recover from the compromise and stay in
business. Counterintelligence is the only way to stay abreast of what’s
really going on. Insurance will handle the residual risk.

None of this is easy, and it all requires experts. And as more and more
aspects of our lives move into cyberspace, the demand for cyberspace
security (and hence the demand for these experts) increases. The only
workable solution is to leverage these experts as much as possible. Out-
sourcing is the only way to do this efficiently.

Think about a security-monitoring center for a large network. It
takes five trained security analysts to man a single 24x7 seat; a concerted

386 C H A P T e r T W e N T Y - F O U r

c24.indd 386 2/16/15 10:39 AM

attack can require the attention of half a dozen analysts. A single orga-
nization can’t afford to hire all those people for the few events they’re
needed; an outsourced service can deploy those people when needed.
An outsourced service can train those analysts, both in the classroom
and through experience. An outsourced service can actively test new
security countermeasures, analyze new intrusion tools, and stay abreast
of hacking techniques and product vulnerabilities. And an outsourced
service can see large swaths of the Internet, and not just one organiza-
tion’s network.

In the near term I see the rise of a variety of cyberspace outsourced
security services, similar to what we see in the physical world from
private security guard companies like Allied Security and alarm service
companies like ADT. There’s too much specialized knowledge required
to secure cyberspace; only a specialized company can provide it. My
consulting company, Counterpane Systems, offered outsourced cryp-
tography and security design and analysis. Other companies are offering
risk assessments, policy development, installation, testing, update man-
agement, and so forth.

We’re also seeing a more intimate service: Managed Security Mon-
itoring. Someone has to monitor security products in real time and
respond to events as they occur. They (a single person won’t be there 24
hours) have to be versed in attackers and their tools. They have to be
able to maintain the security products in the face of the ever-changing
networks and ever-changing services running on those networks.
Companies just can’t do this for themselves. They’re in the business
of making cars, selling books, or doing whatever, not of securing their
networks. Just as they outsourced the management of their networks
to an ISP and the hosting of their Web sites to an ASP (Application
Service Provider), they will outsource the security of their network to a
company that specializes in that. (Of course there will always be specialized
networks—banking, cellular telephone, credit card—that require pro-
prietary systems, and there will be security consultants that specialize in
that, too.) This is what my new company, Counterpane Internet Secu-
rity, Inc., does.

This is the normal evolution of security services. No one hires their
own guards; they outsource. No one hires their own security auditors;
they outsource. even something as mundane as document shredding is
best outsourced to a company that specializes in that sort of thing.

 Security Processes 387

c24.indd 387 2/16/15 10:39 AM

Aside from access to expertise and availability, other benefits of out-
sourcing come from the aggregation of security expertise. These out-
sourced security companies will be able to engage in active intelligence
gathering among hackers to learn about new attacks, and potentially even
counterintelligence activities to stop criminals. They can spot patterns
across multiple customers. And they will be able to respond to attacks
across a variety of customers: They could see an attack in New Delhi and
protect their clients in New York.

In the real world, organizations outsource security. No company
directly hires its own security guards; everyone uses a guard company.
Banks outsource cash transport to armored car companies. Companies
hire outside auditors to secure their business practices. Computer and
network security is no different. It’s complex, important, and distasteful.
It requires vigilance. In the digital world, outsourced services are the only
ones that can supply that vigilance.

388 C H A P T e r T W e N T Y - F O U r

c24.indd 388 2/16/15 10:39 AM

25

Conclusion

Mark Loizeaux is president of Controlled Demolitions; he blows
up buildings for a living. Complaining about the ineptitude of
modern terrorists, he’s quoted in the July 1997 Harper’s Magazine

as saying: “We could drop every bridge in the United States in a couple
of days. . . . I could drive a truck on the Verrazano Narrows Bridge and
have a dirt bike on the back, drop that bridge, and I would get away. They
would never stop me.”

As technology becomes more complicated, society’s experts become
more specialized. And in almost every area, those with the expertise to
build society’s infrastructure also have the expertise to destroy it.

Ask any doctor how to poison someone untraceably, and he can tell
you. Ask someone who works in aircraft maintenance how to drop a
747 out of the sky without getting caught, and he’ll know. Now ask
any Internet security professional how to take down the Internet, perma-
nently. I’ve heard about half a dozen different ways, and I know I haven’t
exhausted the possibilities.

The knowledge is there; the systems are vulnerable. All it takes is
someone with just the right combination of skill and morals. Sometimes it
doesn’t even take that much skill. Timothy McVeigh did quite a number
on the Oklahoma City federal building, even though his banausic use of
explosives probably disgusted a professional like Loizeaux. Dr. Harold
Shipman murdered possibly as many as 150 of his patients, using artless
techniques like injecting them with morphine.

At first glance cyberspace is no different from any other piece of our

389

c25.indd 389 2/16/15 10:39 AM

society’s infrastructure: fragile and vulnerable. But as I argued in Chap-
ter 2, the nature of the attacks is very different. McVeigh had to acquire
the knowledge, go to a private farm and practice, rent the truck, fill it
with explosives, drive to the federal building, set the fuse, and get away.
Dr. Shipman had to build a medical practice and meet his patients; our
hypothetical aircraft maintainer had to work on the planes. They all had
to get close to their target, put themselves at risk, get in, get away, make
mistakes. And they had to know what they were doing.

Or think of nuclear proliferation. When the knowledge for manu-
facturing nuclear bombs became accessible by the public, there was
still no large-scale proliferation of nuclear munitions. Why? Because
the knowledge about how wasn’t the critical barrier, it was the vast
resources and unwieldy engineering programs that only a handful of
countries could assemble.

Cyberspace is different. You can be elsewhere, far away from the site
you are attacking. You can have no skill, nothing more than a software
package you downloaded from some Web site somewhere. And you
don’t even have to put yourself at risk. An ethical hacker could describe
a vulnerability on the Internet, a criminal hacker with fewer ethics
could write an exploit that demonstrates the vulnerability, and then
someone with no skill or ethics could use it to break into computers.
A Philippine student could write a worm that infects ten million com-
puters, and costs $10 billion in damage, time, and lost productivity. Or
maybe there’s a Web site in some badly policed Third World country
that includes a Java application: “Click here to bring down the Inter-
net.” It’s not a pretty thought.

In the late nineteenth century, French sociologist Emile Durkheim
postulated that anomie led people to become criminals. You can extend
his arguments to the hacker psychology we’re seeing now: No one is
connected to anyone else, people feel anonymous behind their handles,
and there are no repercussions to actions; this leads some people to do
antisocial things. The miasma of the Internet virtually guarantees it.

Technology alone cannot prevent this, just as it could not prevent
McVeigh or Shipman. Both of them were captured (and others were
dissuaded) by security processes: detection and response. (In the case of
Shipman, the detection and response processes were egregious, and he
got away with his massacre for decades.) Forensics techniques figured

390 C H A P T E R T W E N T Y - F I V E

c25.indd 390 2/16/15 10:39 AM

out what happened, investigative techniques figured out who did it,
and laws punished the guilty.

There are no technical solutions for social problems. Laws are vital
for security.

If someone invented the unpickable door and window lock or the
perfect burglar alarm system, no one would turn around and say: “We
don’t need police or those obsolete breaking and entry laws.” If the his-
tory of criminal activity has shown anything, it is the limits of the tech-
nology. We need guards to watch the products and police to investigate
crimes. We need laws to prosecute people who engage in electronic
commerce fraud, computer trespassing, and theft, or people who write
the tools that facilitate these crimes. We can deploy the best technology
we can in order to prevent them from doing it in the first place. We can
deploy the best technology we can in order to detect their crime after
the fact. But we are going to have to rely on guards to catch them and
the judicial system to convict them. We can make it as hard as possible
for a marketing research firm to illegally collect data on people, but we
need laws to prosecute the infractions.

In short, we need to ensure that people put themselves at risk when
committing crimes in cyberspace.

We also need to learn from our mistakes.
When a DC-10 falls out of the sky, everyone knows it. There are

investigations and reports, and eventually people learn from these acci-
dents. You can go to the Air Safety Reporting System and read the
detailed reports of tens of thousands of accidents and near-accidents
since 1975.

Security debacles are different; there’s often no fireball and no
immediate repercussions. Most successful attacks—against banks, against
corporations, against governments—go unmentioned in the media.
Some of them even go unnoticed by the victims. We know all about
the metallurgy of MD-80 jackscrew gimbal nuts, but little about how
attackers have been stealing credit card numbers off Web sites. It’s like
the Soviet Union’s Aeroflot; officially there were never any crashes, but
everyone knew that occasionally planes would mysteriously never reach
their destinations.

And those that go public are not rewarded. When Citibank lost $12
million to a Russian hacker in 1995, it announced that the bank had

 Conclusion 391

c25.indd 391 2/16/15 10:39 AM

been hacked into and instituted new and more profound security mea-
sures to prevent such attacks from occurring in the future. Even so, mil-
lions of dollars were withdrawn by people who believed their funds
were vulnerable immediately after Citibank’s announcement. Ulti-
mately Citibank recovered, but the lesson to Citibank was clear and
unambiguous: “Don’t publicize.”

We need to publicize attacks. We need to publicly understand why
systems fail. We need to share information about security breaches:
causes, vulnerabilities, effects, methodologies. Secrecy only aids the
attackers.

The myopic view of those who seek to ban reverse engineering just
makes things worse. Why should people who buy software be prohibited
from figuring out how it works, unlike purchasers of, for example, auto-
mobiles? Why should software be exempt from Consumer Reports–style
analysis and testing? Again, secrecy only aids the attackers.

And we need real product liabilities. This one seems obvious: Ven-
dors won’t produce secure software until it is in their best interest to
do so.

The blend of no liabilities/no reverse engineering is particularly dam-
aging. If researchers are prohibited from analyzing product security, how
does it make sense to shield product vendors from liability? And if vendors
have no liability for producing lousy products, how can it be illegal to
point the flaws out?

Throughout this book I argued that security technologies have their
limitations. I do not mean to imply that they’re useless. Countermea-
sures like cryptography, tamper resistance, and intrusion detection make
a system more secure than otherwise. The technologies stop the script
kiddies, the ankle biters, the desultory attackers who don’t really know
what they’re doing. But they’re like the X-ray machines and metal
detectors at airports: They do nothing to stop professionals, but they
keep all the amateurs from hijacking planes.

The average person cannot tell good security from bad security. It
works the same. It costs the same. (Bad security might even look better
and cost less; a company that doesn’t worry too much about security can
devote more engineering resources to nifty features.) The advertising is
the same; the product literature is the same. It’s not different until you
look under the hood: examine the source code, pick apart the hardware.

392 C H A P T E R T W E N T Y - F I V E

c25.indd 392 2/16/15 10:39 AM

And then only if you’re an expert. The average person still won’t be able
to tell a quality product from snake oil.

The world is filled with specialties that are critical to public safety
and security, and yet are beyond the comprehension of the general popu-
lation. People can’t tell a safe airline from an unsafe airline—that is,
until one airline’s 737s start plowing into mountainsides—yet 1.6 mil-
lion people in the United States fly every day. People can’t possibly
differentiate between a quality drug and a worthless one, yet the U.S.
market for prescription drugs is $60 billion per year. People ride roller
coasters, trust their money to bizarre financial derivatives, and eat
 processed meats—all without really worrying if they’re safe.

Commerce works the same way. When was the last time you per-
sonally checked the accuracy of a gas station’s pumps, or a taxicab’s
meter, or the weight and volume information on packaged foods?
When was the last time you went into a building’s office and demanded
to see the current elevator inspection certificate? Or examined a phar-
macist’s license?

We have often relied on the government to step in as a consumer
advocate in areas where most people don’t have the skill or expertise to
properly assess the risk and make intelligent buying decisions. The FAA
regulates aircraft safety; the DOT regulates automobile safety. States regu-
late weights and measures at merchants. You can’t expect a family on
its way to Walt Disney World to make an intelligent decision about
whether their particular aircraft is safe to fly, whether their rental car is
safe to drive, or whether their hotel’s second floor balcony will drop
into the atrium below. You can argue about whether or not the govern-
ment does a good job at this role—since voters don’t understand how to
evaluate risks, they don’t reward government for good risk evaluation—
but it is not unreasonable to give them this role.

But while an FDA for Internet security and reliability is worth con-
sidering, government regulation’s chilling effect would probably take
away everything that makes the Internet what it is. Regulation is often
misdirected (how much money has been spent making sure that airplane
seat cushions float, and how many people have successfully paddled
away from a crash as a result?) and slow. It took three and a half years to
approve Interleukin-2; that’s forever in the world of the Internet. On
the other hand, the FDA’s slowness has been a good thing at times: It’s

 Conclusion 393

c25.indd 393 2/16/15 10:39 AM

why the United States didn’t have a thalidomide disaster on the scale
of Britain’s. And why Laetrile was never approved for sale in the U.S.
 market.

Also possible is an Underwriters Laboratory model for cyberspace
security. Underwriters Laboratory is a private lab that tests and certi-
fies electrical equipment. (They also provide ratings for safes.) Consumer
Reports does a similar service for other products. A private company can
do the same for computer and network security, but the costs quickly
become exorbitant. And new laws in the United States are moving in
the opposite direction, making it illegal for companies and individuals to
evaluate the security of products.

Still another model is licensing, like Medical Doctors and Regis-
tered Nurses. Engineers who are certified and have liability insurance
can put “PE” after their name. But certifications are local, and the Inter-
net is global. And still there is no guarantee.

All this seems to leave us in a quandary. We need technological solu-
tions, but they’re not perfect. We need experts to build, configure, and
manage these technological solutions, but there aren’t enough experts to
go around. We need strong laws to prosecute criminals and a willingness
to do so, but most companies who are attacked don’t want to go public.

In Chapter 24, I argued that the only way to maintain security in the
face of the technological limitations is to build security processes. And
that these security processes are not reasonable to build inside an org-
anization, and will most likely be outsourced to cyberspace security pro-
fessionals. This seems to be the only way out of the previous paragraph’s
bind as well.

Assuming you can trust the outsourcing organization.
In my first book, Applied Cryptography, I wrote: “Encryption is

too important to be left solely to the government.” I still believe that,
but in a more general sense. Security is too important to be left solely
to any organization. And it is too personal to be left to an arbitrary
organization.

Trust is personal. One person might trust the government com-
pletely, while another might not trust the government at all. Different
people might trust different governments. Some people might trust
different corporations, but no governments. It is impossible to design
a security system (product or process) that is devoid of trust; even the

394 C H A P T E R T W E N T Y - F I V E

c25.indd 394 2/16/15 10:39 AM

person who writes his own security software has to trust his compiler
and computer.

Unfortunately, most organizations don’t realize whom they trust.
Some might blindly trust companies for no good reason. (Witness the
blind faith some people have in a particular operating system, or firewall
manufacturer, or encryption algorithm.) Others might blindly trust
their employees. (I’ve heard it said that the real question is not how
much your firewall costs, but how much it costs to buy your sysadmin.)

Given that security is all about limiting risk, organizations need to
trust entities that limit their risk. This means entities that come with
insurance. Trusted entities will also have things like a proven track
record, a good reputation, and independent certifications and audits.
None of this counts as proof, but all of it counts as evidence.

The decision is not whether to trust an organization, but which
organization to trust. A company’s own MIS department is probably
less trustworthy than an outsourced organization that takes security
seriously.

Security is not a product; it’s a process. You can’t just add it to a
system after the fact. It is vital to understand the real threats to a system,
design a security policy commensurate with those threats, and build in
appropriate security countermeasures from the beginning. Remember
that perfect solutions are not required, but systems that can be com-
pletely broken are unacceptable. And good security processes are essen-
tial to make products work.

It is prudent to prepare for the worst. Attacks and attackers always
get better, and systems fielded today could be in place 20 years from
now. The real lesson of Y2K was the amount of ancient computer
code out there: code that was updated for Y2K compliance rather than
replaced. We’re still stuck with mistakes made in analog cellular systems
decades ago, and digital cellular systems years ago. We’re still stuck with
an insecure Internet, and insecure password-protected systems.

But by the same token, we’re still stuck with insecure door locks,
assailable financial systems, and an imperfect legal system. None of this has
caused the downfall of civilization yet, and it is unlikely to. And neither
will our digital security systems, if we refocus on the processes instead of
the technologies.

 Conclusion 395

c25.indd 395 2/16/15 10:39 AM

396

Afterword

I started writing this book in 1997; it was originally due to the pub-
lisher by April 1998. I eventually delivered it in April 2000, two
years late. I have never before missed a publication deadline: books,

articles, or essays. I pride myself on timeliness: A piece of writing is fin-
ished when it’s due, not when it’s done.

This book was different. I got two-thirds of the way through the
book without giving the reader any hope at all. And it was about then I
realized that I didn’t have the hope to give. I had reached the limitations of
what I thought security technology could do. I had to hide the manu-
script away for over a year; it was too depressing to work on.

During the early months of 1999, I also became disillusioned by my
consulting practice. Counterpane Systems had been providing cryptog-
raphy and computer-security consulting for several years, and business
was booming. Most of our work was design and analysis. A company
would come to us with a security problem, and we would design a sys-
tem that was secure given the threats. Or a company would come to us
with an already designed system that purported to be secure against a list
of threats, and we would poke holes in the solution and then fix them.
We could invoice as many hours as we could stay awake. The only
pro b lem was that our beautiful designs were being broken in the real
world. Beautiful cryptography was regularly compromised through bad
implementations. Carefully tested implementations were being broken
through human errors. We would do all this work, and systems were still
insecure.

bafterword.indd 396 2/16/15 10:43 AM

I came to security from cryptography, and thought of the problem
in a military-like fashion. Most writings about security come from this
perspective, and it can be summed up pretty easily: Security threats are to
be avoided using preventive countermeasures.

This is how encryption works. The threat is eavesdropping, and
encryption provides the prophylactic. This could all be explained with
block diagrams. Alice is communicating with Bob; both are identified by
boxes, and there is a line between them signifying the communication.
Eve is the eavesdropper; she also is a box and has a dotted line attached
to the communications line. She is able to intercept the communica-
tion. The only way to prevent Eve from learning what Alice and Bob
are talking about is through a preventive countermeasure: encryption.
There’s no detection. There’s no response. There’s no risk management;
you have to avoid the threat.

For decades we have used this approach to computer security. We
draw boxes around the different players and lines between them. We
define different attackers—eavesdroppers, impersonators, thieves—and
their capabilities. We use preventive countermeasures like encryption and
access control to avoid different threats. If we can avoid the threats, we’ve
won. If we can’t, we’ve lost.

Imagine my surprise when I learned that the world doesn’t work this
way. I had my epiphany in April 1999: that security was about risk man-
agement, that the process of security was paramount, that detection and
response was the real way to improve security, and that outsourcing was
the only way to make this happen effectively. It suddenly all made sense.
So I rewrote this book and reformed my company. Counterpane Systems
is now Counterpane Internet Security, Inc. We provide Managed Secu-
rity Monitoring services—detection and response—for networks.

In the world of Alice and Bob and Eve, that answer made no sense.
When the model was invented, communication was over radio or long
wires. Detection isn’t possible. Response isn’t possible. But in today’s
electronic world, it’s a lot more complicated. An attacker doesn’t pas-
sively monitor a communication. He breaks into a firewall. He tries to
steal money using a forged smart card. He manipulates a digital network.
Today’s world is much more like the physical world, with all its potential
for rich interaction.

And it’s not all or nothing. If Eve could eavesdrop, she could eaves-
drop on everything. If she could not eavesdrop, she could not eavesdrop

 Afterword 397

bafterword.indd 397 2/16/15 10:43 AM

on anything. Today’s electronic world is more complicated. Someone
could steal some money, but not a lot. A particular counterfeiter might
want to make a few copies of a DVD, but not ten thousand. An attacker
might break into a network and poke around for ten minutes, then be
discovered and shut out. Just like in the real world.

And in the real world, security threats are everywhere. They’re not
things to be avoided, they’re opportunities to make money. The prize
doesn’t go to the company that best avoids the threats, it goes to the
company that best manages the risks. (Just look at the credit card
industry.)

At Counterpane Internet Security, we believe that computers alone
cannot defend against a human attacker, so our service is centered
around trained security analysts. Probes on customer networks collect
information from a variety of devices—security and networking—and
sift through them looking for footprints of attacks. Then we forward
anything suspicious to trained analysts. These analysts know about
attacks, can separate real attacks from false positives, and know how to
respond.

I’ve realized that the fundamental problems in security are no
longer about technology; they’re about how to use the technology.
There’s no way to turn what we do into a product. At Counterpane,
we’ve built a human–computer cyborg. People are critical in every
other aspect of security; we believe they’re a critical component of
computer security as well.

So, if this book seems a little self-serving, that’s why. Both the book
and the new company grew from the same epiphany, that expert human
detection and response provides the best possible security. The book
tracks my thinking in reforming my company, and explains the service
that we offer.

You can learn more about us at www.counterpane.com.
Thanks for reading.

398 Afterword

bafterword.indd 398 2/16/15 10:43 AM

Resources

The ideas in this book have been heavily influenced by the ideas
and writings of others. I deliberately did not disrupt the flow of
text with footnotes or citations. What follows is a list of some of

my more useful sources.
All URLs are guaranteed accurate as of 1 July 2000. Some Internet

pundits have decried the Web as useless for scholarly archives, claiming
that URLs move or disappear regularly. Consider this list to be an ongo-
ing experiment to prove or disprove that thesis.

Ross Anderson’s writing are always interesting and worth reading.
His Web site is www.cl.cam.ac.uk/users/rja14/. Look for his new book,
coming out next year: Security Engineering: A Comprehensive Guide to
Building Dependable Distributed Systems (John Wiley & Sons, 2001).

Dorothy Denning has written about cryptography, computer and
database security, and (more recently) information warfare. I used her most
recent book, Information Warfare and Security (Addison-Wesley, 1999), as
well has her classic Cryptography and Data Security (Addison-Wesley, 1982).

Whit Diffie’s writings and speeches have affected my thinking. I
recommend the book he co-wrote with Susan Landau: Privacy on the
Line (MIT Press, 1998).

Carl Ellison has continued to write common-sense essays and papers
on public-key infrastructure. Much of his writing can be found on his
Web site, world.std.com/~cme/.

Ed Felton has spoken on the insecurities inherent in software modu-
larity, and on Java security. I always learn something when I hear him.
I first saw the figures on page 160 in one of his talks.

Dan Geer’s speeches have been similarly educational.

399

bresources.indd 399 2/16/15 10:42 AM

Dieter Gollmann’s excellent text, Computer Security (John Wiley &
Sons, 1999), was a very useful resource.

David Kahn’s classic book The Codebreakers provided invaluable his-
toric background on the subject of cryptography.

Stuart McClure, Joel Scrambray, and George Kurtz wrote Hacking
Exposed (Osborne/McGraw-Hill, 1999), which I strongly recommend.
I wrote the Foreword to the second edition, which should be available
by the time this book is published.

Gary McGraw has written extensively about secure software engi-
neering, as well as the pros and cons of open source software. I used his
book, Securing Java (John Wiley & Sons, 1999), written with Ed Felton.

Peter Neumann’s observations on computer security are so pro-
found and obvious that I often forget that I didn’t always believe him.
His back-page column, “Inside Risks,” running for the past ten years in
Communications of the ACM, is always interesting. I strongly recommend
his book Computer-Related Risks (Addison-Wesley, 1995) and the Inter-
net RISKS Forum mailing list he moderates.

Marcus Ranum’s essays, speeches, and dinnertime banter have long been
a source of inspiration and common sense. I strongly recommend reading
everything he’s written. His Web site is at http://pubweb.nfr.net/~mir/.

Avi Ruvin, Dan Geer, and Marcus Ranum co-wrote the Web Secu-
rity Sourcebook (John Wiley & Sons, 1997), which I recommend highly.

Winn Schwartau’s Time Based Security (Interpact Press, 1999), con-
tains ideas very similar to my own on the importance of detection and
response in computer security.

Diomidis Spinellis provided the data on complexity of operating sys-
tems and programming languages on pages 357 and 358 in his article “Soft-
ware Reliability: Modern Challenges” (in G. I. Schuëller and P. Kafka,
editors, Proceedings ESREL ’99—The Tenth European Conference on Safety and
Reliability, pages 589–592, Munich-Garching, Germany, September 1999).

Richard Thieme’s musings on hacking and the epistemology of the
Internet have long been a source of inspiration. The comment about the
dead Marine and Mogadishu was from one of his stories. You can find
his writings at www.thiemeworks.com.

Hundreds of essays, articles, and papers are published each year on
computer security. I feel as if I’ve read them all, and undoubtedly
thoughts, ideas, ruminations, nuances, and clever one-liners from my
readings have crept into this book. I apologize for not giving everyone
the credit they deserve.

400 Resources

bresources.indd 400 2/16/15 10:42 AM

Acknowledgments

Oodles of people read this book in various stages of completion.
I would like to thank Steve Bass, Susan Greenspan, Chris Hall,
John Kelsey, and Mudge, who read an early draft of this book.

Their comments helped me shape its final tone and scope. I would
also like to thank Beth Friedman, who helped with a major edit about
halfway through the completion of this book and minor edits through-
out the process, and helped keep both the copyeditor and proofreader in
line; Karen Cooper, who helped proofread the book; and Raphael
Carter, who helped with a major edit toward the end of the process.
And I would like to thank Michael Angelo, Ken Ayer, Steve Bass, David
Dyer-Bennet, Ed Bennett, Russell Brand, Karen Cooper, David
Cowan, Walt Curtis, Dorothy Denning, Carl Ellison, Andrew Fernan-
dez, Gordon Force, Amy Forsyth, Dean Gahlon, Drew Gross, Greg-
ory Guerin, Peter Gutmann, Mark Hardy, Dave Ihnat, Chris Johnston,
James Jorasch, Arjen Lenstra, Stuart McClure, Gary McGraw, Doug
Merrill, Jeff Moss, Simona Nass, Artimage Nelson, Peter Neumann,
Andrew Odlyzko, Doug Price, James Riordan, Bernard Roussely, Tom
Rowley, Avi Rubin, Ryan Russell, Adam Shostack, Simon Singh, Jim
Wallner, and Elizabeth Zwicky, who read and commented on all or part
of the book in its almost-final form. These people did a lot to make the
book complete, accurate, and interesting. Any remaining omissions, lin-
gering errors, or residual prolixity are solely my own fault. Open source
pundit Eric Raymond has said: “Given enough eyeballs, all bugs are
shallow.” We’ll see if this holds true for books, too.

401

back.indd 401 2/16/15 10:43 AM

back.indd 402 2/16/15 10:43 AM

Index

403

Page references followed by italic t indicate

material in tables.

A5/1 algorithm, 105

Access Control Lists (ACLs), 125

access controls, 122–125

mandatory, 126

access tokens, 145–147

active cryptographic protocol attacks, 114

ActiveX, 165–166

malware susceptibility, 159

Acxiom, 19

ADT Security Services, 386

Advanced Encryption Standard, See AES

adversaries. See also each term as a main

index heading

hackers, 43–46

industrial espionage, 49–50

infowarriors, 56–58

lone criminals, 46–47

malicious insiders, 47–49, 265–266

national intelligence organizations,

54–56

organized crime, 50–51

police, 51–53

press, 50

risk tolerance, 42–43

terrorists, 53–54

AES, 118

described, 89, 100

as hacking contest, 348

Alberti, Leon Battista, 88

airline accidents, greater visibility of relative

security debacles, 391

Air Safety Reporting System, 391

AirTran, Web site hack in 1997, 37

Alibris, 49

AlterNIC, Network Solutions traffic redi-

rect attack/protest, 181

American military, See United States military

analysis

of attacks, 376–377

fault, 218, 221

traffic, 34–35, 362

AND nodes, 320

and defense in depth, 370

annual loss expectancy, 301–302

anomaly detection, 196–197

anonymity, 63–67

antitampering devices, 216

antivirus software, 153–154, 157–158

at firewall, 201

application gateways, 192

Applied Cryptography, xxii, 394

Ariane 5 rocket mishap, 202–203

artificial intelligence, 362

assessment, of attacks, 376

assurance, 363, 373

asymmetric key encryption, 95. See also

public-key encryption

and PGP attack tree, 325–326

ATBASH cipher, 86

bindex.indd 403bindex.indd 403 18/02/15 9:35 PM18/02/15 9:35 PM

ATM fraud, 23, 40

card retention after PIN timeout,

140–141

difficulty of prosecuting in England,

377–378

Hartford Connecticut fraud of 1993,

46–47

increasing sophistication of, 16

proactive solutions, 80–81

and secure failure, 371

security policies and countermeasures,

312–313

vulnerabilities, 281

AT&T, 1-800-C0LLECT, 28

attacks, 14–15. See also specific kinds of

attacks such as denial-of-service

attacks, and specific attacks by

perpetrator(s) and/or target(s)

action at a distance: global nature of

Internet, 19–21

analyzing, 376–377

automation, 18–19, 21

changing nature of, 17–22

counterattacks, 380–383

criminal, 23–29

cryptographic protocols, 90–91,

113–115

detection, 374–376

inside origin: 70% of all attacks, 189

legal attacks, 40–41

need for vigilance, 378–379

need to prepare for worst, 395

need to publicize, 392

privacy violations, 29–36

proaction over reaction, 22

propagation of successful techniques,

21–22

publicity attacks, 36–39

recovery, 380

response, 377–378

steps to successful, 274–278

unchanging aspects of, 15–17

attack trees, 318–324

creating and using, 332–333

Pretty Good Privacy (PGP), 324–331

auction escrow services, 227

auditing, 9, 379–380

security needs, 77–78

Aum Shinrikyo, 90

authentication, 135–150, 283

and denial-of-service attacks, 183

security needs, 68–73

authentication protocols, 147–149

Authenticode, 165

automated social engineering, 267–268

automatic program checkers, 362

automatic toll-collection systems, 32

automatic virus-detection centers,

159

automation, 18–19, 21

availability, 122

Avant!, 49

back doors, 241

Back Orifice, 156, 330

hacking tools infected with, 304

banking industry, 379–380

base rate fallacy, 195

Bell-LaPadula model, 125–126, 129

benefit denial, 375

beta testing, 204–205, 206

biometrics, 141–145

black boxes, 186

Blankenship, Lloyd, 382

Blowfish, 89

blue boxes, 186

boot-sector viruses, 152, 153

bots, 310

brand theft, 27–28

British military

laptop theft from, 284

security classifications, 63

brute-force attacks, 99–100

buffer overflows, 207–210, 363

bugs

harmlessness of most software, 366

software faulty code, 202–207,

210–211

Bugtraq list, 330

Bulgarian Telecommunications Company,

distributed denial-of-service attack

against, 185

burglar alarms, 197–198, 281

business privacy, 61

buzzword-compliant products, 102–103

byte code verifier, Java, 166

404 Index

bindex.indd 404bindex.indd 404 18/02/15 9:35 PM18/02/15 9:35 PM

Cadence Design Systems, 49

Canadian cash card, 380

Canadian Trusted Computer Products

Evaluation Criteria, 132

Captain Crunch whistles, 186

car alarms, denial-of-service attacks against,

39

cash card systems, 213

casino industry, 379

CD Universe, hacker credit card attack

against, 37

cell phones, 386

A5/1 algorithm, 105

future improvements in digital, 353

organized crime applications, 51

pinpointing, 31

threat modeling, 304

CERT, 338–339

certificate authorities, 232–233

certificate revocation list (CRL), 231

certificates, 229–238

public-key, 225

CGI (common gateway interface),

172–174

CGI scripts, 172–174

check clearing, 213–214

check fraud, 23

Chinese Wall model, 127

choke points, 369–370

choosing, of security products,

349–352

chosen-plaintext attack, 91

Christma.exec, 157

CIA, 54, 343

ciphertext only attack, 90

Cisco Systems, bug in switches, 203

Citibank, Russian hacker theft, 20,

391–392

Clark-Wilson model, 127

class loader, Java, 166

Clipper Chip, 241, 294, 304

code signing, 163, 165

Cohen, Fred, 152

collusion in access, 111

Comité Liquidant ou Détournant les

Ordinateurs (Computer Liquidation

and Deterrence Committee), 24

commercial anonymity, 65–66

compartmentalization, 367–369

complexity

and faulty code, 204

and function creep, 359–360

as hindrance of security, 1–2

and security, 354–361

trend to in operating systems, 358t

trend to in source code, 357t

as worst enemy of security, 361

component-based software, 160–164

computer games, 310, 359

computerized lottery terminals, 313–314

Computer Liquidation and Deterrence

Committee, 24

computer security, 120–131

computer viruses, 151–154

fingerprints, 153–154

technique propagation, 22

Confidential classification, United States

military, 62

connection laundering, 377

Consumer Reports model, 394

cookie poisoning, 174

cookies, 170–172

copy protection, 250–253

counterattacks, 380–383

counterfeiting, 23

of $100 bills by Iran, 21

countermeasures, 307–308, 316–317

inability to defend against skilled

attacker, 310

and vulnerabilities, 278–282

Counterpane Internet Security, 7,

396–398

covert channels, 130–131

cracking contests, 346–349

credentials, 227–229

credit card databases, 19

credit card fraud, 23, 32

risk management, 383, 398

cribs, 91

criminal attacks, 23–29. See also organized

crime

lone criminals, 46–47

speculations about causes of, 390

criminal investigation, and global nature of

Internet, 20–21

critical infrastructure, 57

cross-site scripting, 174

cryptanalysis contests, 346–349

 Index 405

bindex.indd 405bindex.indd 405 18/02/15 9:35 PM18/02/15 9:35 PM

Crypto-gram, 9

cryptographic algorithms, choosing, 115–119

cryptographic keys, 88

government access to, 240–243

key escrow, 240–241

key management, 90

cryptographic protocols, 107–112

attacks, 90–91, 113–115

choosing, 115–119

Internet, 112–113

proprietary, 117, 118

cryptography, 85–101. See also encryption;

MACs

as branch of mathematics, 102

buzzword-compliant products, 102–103

digital signatures, 96–98

future advances in, 353–354

future technologies, 361

key length, 99–101, 103–106

one-time pads, 106–107

one-way hash functions, 94

recognizing plaintext, 91–92

resources on, 8–9

cyberinsurance, 5–6

CyberPatrol, reverse engineering, 346

cyberspace crime, 15–16

ability to execute from anywhere, 19–21,

390

technique propagation, 22

cyber-squatting, 169–170

cyberstalking, 15

databases, 18–19, 33–34

database security, 18–19

Data Encryption Standard, See DES

data harvesting, 29, 30

Data Interception by Remote Transmission

(DIRT), 156

data mining, 19

Data Protection Act of 1998 (EU), 60

Deep Crack, 100

default to insecure, 370–371

defense in depth, 370

Defense Intelligence Agency, 54

denial-of-service attacks, 38–39, 260. See

also distributed denial-of-service

attacks

lack of skill needed, 22

and network security, 181–184

DES, 119

differential-fault-analysis attack, 221

destructive attacks, 24

detection

and effective countermeasures, 279

dictionary attacks, 105, 137

differential-fault-analysis attack, 221

Diffie-Hellman keys, 101

digital embezzlement, 15

digital information erasure, 253–254

Digital Millennium Copyright Act

(DMCA), 346

Digital Signature Algorithm (DSA), 97

Digital Signature Standard (DSS), 97

digital signatures, 96–98, 225

Digital Telephony Bill, 67

digital threats, 14–22. See also attacks

digital watermarking, 248–250

directional microphones, 30

DIRT (Data Interception by Remote

Transmission), 156

discrete logarithm, 101

distinguished name, 233

distributed denial-of-service attacks, 24,

184–186

lack of skill needed, 22

Trojan horse use, 157

distributed firewalls, 201

distributed.net, 100

DNS security, 180–181

Domain Name Service (DNS), 180–181

dongle, 251

DoubleClick, 19

identity database, 33, 171–172

double-entry bookkeeping, 77

DSA, 97

Dudayev, Dzholar, killing by Russians after

cell phone pinpointing, 31

duress code, 259

DVD attacks, 305, 311, 368, 386

and Sony product launch delay, 37

DVD Copy Control Association, 346,

382

dynamic linked libraries (DLLs), 161, 166

eBay

CGI script attack, 173

22–hour outage in 1999, 196

software bugs, 203

406 Index

bindex.indd 406bindex.indd 406 18/02/15 9:35 PM18/02/15 9:35 PM

ECHELON, 35–36, 55–56

electronic currency, 78–79

ElGamal algorithm, 95

key length, 101

and PGP attack tree, 325–326, 327

elliptic-curve algorithms, 95, 101

e-mail bombing, 182

e-mail-propagating malware, 157

e-mail security, 200

policies, 307

threat modeling, 295–296

encrypted viruses, 154

encryption, 86–90, 397. See also asymmet-

ric key encryption; cryptography;

 symmetric key encryption

and network defenses, 201

packets, 179–180, 201

and virtual security, 284–285

Enigma, 91

entropy, 104

equities issue, 342

erasing digital information, 253–254

Europe, smart cards vs. credit cards, 316

evaluation

criteria for computer systems, 131–133

of security products, 349–352

Excel macroviruses, 355

exception handling, 258–260

exploits, 45, 340

export laws, 67–68

face recognition, 31

factoring, future breakthroughs in, 361

fail-safe strategies, 204, 371

default to insecure, 370–371

fair elections, 289–293

fault analysis, 218, 221

faulty code, 202–205, 210–211

attacks on, 205–207

FBI, 55

Florida wiretaps, 52

NuPrometheus League investigation, 382

pinpointing of Oklahoma City bombing

truck, 31

position on key escrow, 240–241, 242

pushes for stronger antiprivacy measures,

67–68

social engineering attack of D.C. office,

266

FEAL algorithm, hacking contest, 347

file infector viruses, 152–153

fingerd program (UNIX), Morris Worm

attack, 205, 209

fingerprinting, 248–249

FIPS 140–3 zeroization certificate, 254

firewalls, 188–193, 273

business use of, 3–4

distributed, 201

and e-mail-propagating viruses,

158–159

ineffectiveness of, 3

Flooz.com, specialized currency, 79

FOUO classification (For Official Use

Only), British military, 63

fraud, 23

and privacy violations, 17

full-disclosure movement, 338–340

functional testing, 335–336

function creep, 359–360

GAK back door, 241–243

GPS, surveillance applications, 32

hackers, 43–46

activity follows academic year, 378

prosecutions, 382–383

Hackers, Web site hack in 1995, 37

hacking contests, 346–349

hacking tools, 45, 277

technique propagation, 22

Trading on Web, 304

hardware security, 212–214

side-channel attacks, 218–222, 248

smart card attacks, 222–224

tamper-proof hardware, future break-

throughs in, 362

tamper resistance, 214–218

hash functions

key length, 100

one-way, 94

heartbeats, 39

HIJACK, 222

honey pots, 197–198

host-based intrusion detection systems,

197

Hotmail CGI script bug, 173, 205

human–computer interface, 260–262

human–computer transference, 262–265

 Index 407

bindex.indd 407bindex.indd 407 18/02/15 9:35 PM18/02/15 9:35 PM

human factors, 255–256

exception handling, 258–260

risk analysis, 256–258

social engineering, 266–269

IDEA, 89

identification, 135–150

of attacks, 376

identity theft, 26–27

as growth area for organized crime, 51

IKE (Internet Key Exchange), 112

ILOVEYOU worm, 155, 158, 262

social engineering aspects, 268

in-band signaling, 186

industrial espionage, 49–50

laptop theft, 284

infowarriors, 56–58

terroristic, 53

insurance, 385–386

insurance companies

and cyberinsurance, 5–6

demand for improved security, 6

integrity, 73–77, 122

intellectual property theft, 24–26

interconnectedness, of complex systems,

174, 355

Internet. See also World Wide Web; specific

Internet-related attacks

complexity, 354

FDA-type organization, 393

future secure networking infrastructures,

362

lack of borders, 19–21

and least privilege, 368

and mobile code, 164

out-of-band signaling as defensive mea-

sure, 186–187

public-key infrastructures, 238–239

Internet backbone, 178

Internet cryptographic protocols, 112–113

Internet Explorer

fake update-based denial-of-service

attack, 185

subscription feature, 163

Internet Information Server, 363–364

Internet Key Exchange (IKE), 112

Internet Liberation Front, 182

Internet protocols, 176–177

Internet viruses, 153

Internet worms, 22

interpreted viruses, See macro viruses

intrusion detection systems, 194–197

IP addresses, 180

IPsec, 86, 112, 116–117, 201

IP security, 178–180

IP spoofing, 179

ISP filtering, 183

ITSEC, 132

Java, 166–167

Java 2, 163, 167

Java applets, 166

Java sandbox, 162, 166

attacks against, 368

JavaScript, 165

Java security manager, 166–167

Java security model, 159, 206

Jurassic Park: The Lost World, Web site self-

hack as publicity stunt, 37–38

Kashpureff, Eugene, 181

Kerberos, 148–149, 345, 382

Kerckhoffs, Auguste, 91

kernel bloat, 129

keyboard sniffer, 330

key escrow, 240–241

key freaks, 44

keys, See cryptographic keys

keywords, 169

King, Steven, 311

knowledge partitioning, 378

known-plaintext attack, 90

lamers, 44

laptop theft, 284

Law Enforcement Access Field, 241

Layer Two Tunneling Protocol (L2TP),

112

least privilege, 368

legal attacks, 40–41

liability

for businesses’ product security, 4–5

software sold without, 365

transfer of, 5–6

licensing, 394

408 Index

bindex.indd 408bindex.indd 408 18/02/15 9:35 PM18/02/15 9:35 PM

linking, 161

localization, of attacks, 376

locks, 103

logic bombs, 156

lone criminals, 46–47

lotteries, 305

lottery terminals, 313–314

L0phtcrack, 137

macro viruses, 152, 153

MACs, 92–94

and digital signatures, 97–98

magnetic stripe cards, 315

mail bombing, 182

mailing lists, 330

malicious insiders, 47–49, 265–266

malicious software, 151–159

malware, 151, 157–160

Managed Security Monitoring, 387

mandatory access controls, 126

man-in-the-middle attacks, 114

Mars planet orbiter mishap, 203

MCI, 1–800–0PERATOR, 28

MD4, 94

medical anonymity, 66–67

Melissa virus, 32, 158, 262, 329, 382

memory cards, 314–316

Message Authentication Codes, See MACs

meta tags, 169

Microsoft Data Access Components, secu-

rity flaw discovered in, 340

Microsoft Excel macroviruses, 355

Microsoft Outlook, 159, 172

Microsoft Outlook 2000, HTML-based

malware susceptibility, 159

Microsoft scripting languages, 159

Microsoft Word

known-plaintext attacks, 90–91

macroviruses, 153, 355

military, See British military; United States

military

misuse detection, 196

Mitnick, Kevin, 267, 382

mobile code, 164–167

modular code, 160–164

and complexity, 355

money laundering, 17, 51

Moore’s Law, 31

Morris worm, 154–155, 205, 209, 363

CERT founded after, 338

Multics, 129

multilevel security, 62–63, 125

NASA, Mars planet orbiter mishap, 203

national intelligence organizations, 54–56

National Reconnaissance Office, 54

National Security Agency, See NSA

Navajo code talkers, 87

Nazis, traffic analysis application against

French, 34

NetCoalition.com, 60–61

Netscape Navigator, 341

random number generator flaw, 36, 105

SSL, 86, 112, 167–168, 170

network-based intrusion detection systems,

197

network defenses

burglar alarms, 197–198, 281

demilitarized zones, 193

e-mail security, 200

and encryption, 201

firewalls, 188–193

honey pots, 197–198

intrusion detection systems, 194–197

virtual private networks, 193–194

vulnerability scanners, 198–200

networked-computer security

malicious software, 151–159

mobile code, 164–167

modular code, 160–164

Web security, 167–175

network security, 176–178. See also denial-

of-service attacks

as business problem, 2–4

and complexity, 354

DNS security, 180–181

enforcement of, 4–8

future developments, 186–187

insurance companies’ role in, 6–7

IP security, 178–180

monitoring center, 386–387

resources on, 8–10

Network Solutions

sex.com domain name stolen, 27

traffic redirect attack, 181

Nikrasch, Dennis, 218

 Index 409

bindex.indd 409bindex.indd 409 18/02/15 9:35 PM18/02/15 9:35 PM

nonrepudiation, 235

NSA, 54–55, 87. See also United States

Military

countermeasures, 317

ECHELON, 35–36, 55–56

equities issue, 342

random number generators, 99

Russian spy one-time pads, 107

Russian Venona traffic, 90

scholarships for hackers, 46

Soviet car phone eavesdropping, 55

subliminal channels in hardware, 248

Walker spy case, 378

null hypothesis, 116

Omnibus Counterterrorism Bill, 67

one-time pads, 106–107

one-way hash functions, 94

OpenPGP, 112

open source solutions, 343–346

open standards, 343–346

opt-out, of data collection, 60

Orange Book, 131–132

organized crime, 16, 50–51

Japanese pachinko machines, 304–305

merging with governments, 58

OR nodes, 321

and defense in depth, 370

out-of-band signaling, 186

outsourcing, of security processes, 386–388

pachinko machines, 304–305

Pacioli, Luca, 77

packet filters, 191

packets, 177–178

encryption, 179–180, 201

page jacking, 28, 169

PAL (permissive action link), 217

Panix, denial-of-service attack against,

181–182

paperless office, 256

PAPS (prescribed action protective system),

217

passive cryptographic protocol attacks,

113–114

password checker, timing attack, 219

passwords, 104–105, 136–141

truncating to avoid buffer overflow

attacks, 209

password sniffing, 178–179

patches, need to use latest, 210–211

payload, of IP packets, 178

permissive action link (PAL), 217

personal information, 16–17

PGP (Pretty Good Privacy), 86, 135, 138

attack trees, 324–331

confidence in, 119

key length, 332

OpenPGP, 112

phone cloning, 113

phone phreaks, 18, 44, 186

physical security, 283–284

pinhole cameras, 31

Pinkerton Detective Agency, 381–382

pinpointing, 31

PKI, 225, 232

on Internet, 238–239

problems with traditional, 234–238

PKIX protocol, 113

plaintext

known-plaintext attack, 90

recognizing, 91–92

Plasticash (hypothetical stored-value smart

card), 295–300

plug-ins, 167

Point-to-Point Tunneling Protocol (PPTP),

112, 117

police, 51–53

legal attacks by, 41

MDC-4800 Police Data Terminal, 118

personal information database use, 17

privacy violations by, 29

polymorphic viruses, 154

power attacks, 219–220

Practical Cryptography, 8–9

prescribed action protective system (PAPS),

217

press, 50

Pretty Good Privacy, See PGP

PrettyPark worm, 155

privacy

and government, 67–68

security needs, 59–62, 67–68

privacy violations, 16, 29–36

smart cards, 223

private investigators, 29

private keys, 96, 97

proaction, and reaction, 22

410 Index

bindex.indd 410bindex.indd 410 18/02/15 9:35 PM18/02/15 9:35 PM

proactive solutions, 79–81

product testing and verification, 334–335

after-the-fact security flaw discovery,

338–343

evaluation and selection, 349–352

failure of, 335–338

hacking contests, 346–349

open source solutions, 343–346

reverse engineering, 346, 383

proprietary cryptography protocols,

116–119, 343–346, 363

prosecution, 377–378

of criminal attacks, 28–29

and global nature of Internet, 20–21

hackers, 382–383

honey pots to gather information for,

198

protection, and effective countermeasures,

279

protection profile, 133

proxy firewalls, 192

pseudonymity, 64

publicity attacks, 36–39

and tamper resistance efforts, 216

publicity seekers, 42

public-key certificates, 225

public-key encryption, 94–96

key length, 101

risk analysis, 258

public-key infrastructures, See PKI

public keys, 94–96, 97

PURPLE code, 91

quantum computers, 361–362

random number generators, 98–99

rational adversary, 43

rational countermeasures, 286, 316–317

reaction

and effective countermeasures, 279

proaction preferred to, 22

recovery, 380

red boxes, 186

reference monitors, 128

Registration Authority (RA), 234–235

remote-cache services, 182

response, to attacks, 377–378

reverse engineering, 346, 383

Riding the Bullet (Steven King), unprotected

copies on Web, 311

risk analysis, 256–258

risk assessment, 301–302

risk management, 383–386

credit card industry as model, 398

risk tolerance, 42–43

root certificates, 236

routers, 177–178

well-configured, vs. firewalls, 192

routing attacks, 179

RSA, 95, 97, 119

and PGP attack tree, 325–326, 327

timing attack, 218

RSA Security

hacking contests, 348

home page hijacking, 181

safes, 279–280

salami attack, 18

salting, 141

Sanders, Thompson, 70

SATAN (Secure Administrator Tool for

Analyzing Networks), 199–200

scams, 24

script kiddies, 44, 46

search engines, and URL hacking, 168–169

Secret classification, United States military,

62

secret cryptography, 118

Secure Compartmented Information Facili-

ties (SCIFs), 220

Secure Hash Standard (SHS), 94

secure networking infrastructures, 362

SecurID cards, 118, 146

security. See also adversaries; attacks; Internet;

network security; World Wide Web

after the fact flaw discovery, 338–343

complexity as worst enemy of, 361

context matters more than technology,

12–13

enlisting users, 373

erasing digital information, 253–254

future of products, 353–366

human factors in, 255–269

implementation flaws more common than

design flaws, 202

improvement of, 2

 Index 411

bindex.indd 411bindex.indd 411 18/02/15 9:35 PM18/02/15 9:35 PM

security (Continued)

and key length, 103–106

layers, 84

need for cost effectiveness of, 365–366

need to question constantly, 373

problem of complexity for, 1–2

process not a product, 273, 395

and software complexity, 354–361

technologies to watch, 361–363

upper-management perspectives on, 272

weakest link, 369

security by obscurity, 344, 371

security kernels, 127–130

security manager, Java, 166–167

security models, 125–127

future of, 133

security needs

anonymity, 63–67

audits, 77–78

authentication, 68–73

electronic currency, 78–79

integrity, 73–77

multilevel security, 62–63

privacy, 59–62, 67–68

proactive solutions, 79–81

security policies, 307–309

security processes

detection and response, 374–380

outsourcing, 386–388

principles of, 367–373

risk management, 383–386

security tactics, 308

security tools

ineffectiveness of, 1

security tricks, 240–254

seeds, 99

Sendmail, UNIX breakins via, 205

Server Side Includes (SSIs), 173–174

session keys, 96

SET protocol, 78, 113

shadow password file, 140

Shannon, Claude, 92

shared libraries, 161

ShareFun, 157

shrinkage, 383–384

side-channel attacks, 218–222, 248

signature, viruses, 158

simplicity, 372–373

single sign-on, 149–150

slot machines

secure perimeter, 217–218

threat modeling, 305

smart card attacks, 218, 219, 222–224

active cryptographic protocol attacks,

114

French card attack, 341

recovery from, 380

smart cards, 213, 224

and memory cards, 314–316

stored-value, 296–301

S/MIME protocol, 86, 112, 119

Smith, David, 32, 382

snake oil, 119, 351

social engineering, 266–269

software piracy, 25, 252–253

software reliability, 202

buffer overflows, 207–210

faulty code, 202–207, 210–211

software vendors

firewall use by, 3

lack of security investments by, 3

SORM-2, 56

sound-based side-channel attack, 221

spam, 200

SPKI protocol, 113

SSL (Netscape Navigator), 86, 112,

167–168, 170

stack smashing (buffer overflows), 207

steganography, 245–246

Steve Jackson Games, 382

stored-value smart cards, 296–301

Stowger, Almon, 27

subliminal channels, 246–248

supernotes, Iranian counterfeit $100 bills, 21

surveillance, 30–33

ECHELON, 35–36, 55–56

Swisher stock price integrity incident,

73–74

symmetric encryption algorithms, 89,

117–118

symmetric key encryption, 86–90

and PGP attack tree, 326

SYN flooding, 38, 182, 341

SYN packets, 181

system high, 125

systems

interconnectedness of complex, 355

life cycle, 286

412 Index

bindex.indd 412bindex.indd 412 18/02/15 9:35 PM18/02/15 9:35 PM

tamper-evident systems, 216

tamperproof hardware, 213, 214–215, 281,

362

tamper resistance, 214–218, 316, 353

targeted privacy attacks, 29–30

TCP/IP, 176

technique propagation, 21–22

telephone security threat modeling, 293–295

TEMPEST, 220, 222, 235, 330

terrorists, 24, 53–54

threat modeling, 288–289, 302–303, 318

fair elections, 289–293

secure e-mail, 295–296

secure telephones, 293–295

stored-value smart cards, 296–301

wrong threat, 303–306

threats, 14–22. See also attacks

ticker symbol smashing, 169

timing attacks, 218, 220, 326

TLS (Transport Layer Security), 112, 167

Top Secret classification, United States mil-

itary, 62

trade secrets, 61

traffic analysis, 34–35, 362

Transport Layer Security (TLS), 112, 167

Trin00 distributed denial-of-service attack,

45–46

Triple-DES, 89, 100, 117, 118

Trojan horses, 151, 155–157

trust, 394–395

trusted client software, 309–312

trusted computing bases, 128

trusted third parties, 226–227

trust model, 308

typo pirates, 28, 169

Unclassified classification, United States

military, 62

Underwriters Laboratory model, 393–394

unicity distance, 92

Uniform Computer Information Transac-

tions Act (UCITA), 346

United States military. See also NSA

counterattack plan after potential

Russian nuclear strikes, 381

intercepts Japanese message discussing

Pearl Harbor, 35

micro air vehicles, 31

Navajo code talkers, 87

Navy NSA-distributed keys, 89

Navy procedures to prevent social

 engineering, 268

nuclear weapons control system: tamper

resistance, 217

Patriot missile unpredictability, 372

pizza deliveries preceding Iraq bombing,

34

security levels, 62–63

Serbian hackers attack, 57

Soviet Embassy denial-of-service attack in

D.C., 39

TEMPEST shielding, 220, 222

U.S. Embassy in Moscow bugged,

286

University of Minnesota, distributed denial-

of-service attack against,

184

UNIX

and C1 security, 131–132

kernel bloat, 129

password files, 140

permission system, 124, 368

unpredictability, leveraging, 371–372

URL hacking, 168–170

Usenet postings, 19

users, enlisting security processes, 373

van Eck radiation, 31, 220

VeriFone, 69–70

VeriSign, 232

version-rollback attack, 304

video piracy, 25–26

Video Privacy Protection Act, 25–26

vigilance, against attacks, 378–379

virtual private networks (VPNs), 193–194,

364

cryptography, 86, 113

virtual security, 284–285

viruses, See computer viruses

Visa

brand theft attempt against, 27

SET protocol, 78

voice recognition, 31

von Neumann, John, 98

vulnerability landscape, 282–286

vulnerability scanners, 198–200, 210, 342

 Index 413

bindex.indd 413bindex.indd 413 18/02/15 9:35 PM18/02/15 9:35 PM

Walker, John, 378

warez, 25, 252

watermarking, 248–250

Web privacy, 172–175

Web scripts, 172–175

Web spoofing, 170

Windows 2000, 210

hacking contest, 347

kernel bloat, 130

security holes, 207

Windows NT

kernel bloat, 129–130

L0phtcrack, 137

permission system, 124, 368

security flaw discovered in Microsoft

Data Access Components, 340

security holes, 207

software architecture, 161

user-remembered passwords, 105

World Wide Web

publicity attack site defacings, 37–38

security, 167–175

Worm.ExploreZip worm, 158, 262

worms, 151, 154–155

Morris worm, 154–155, 205, 209, 363

Y2K, 395

zeroization, 254

zombies, 184–185

414 Index

bindex.indd 414bindex.indd 414 18/02/15 9:35 PM18/02/15 9:35 PM

bindex.indd 415bindex.indd 415 18/02/15 9:35 PM18/02/15 9:35 PM

bindex.indd 416bindex.indd 416 18/02/15 9:35 PM18/02/15 9:35 PM

bindex.indd 417bindex.indd 417 18/02/15 9:35 PM18/02/15 9:35 PM

bindex.indd 418bindex.indd 418 18/02/15 9:35 PM18/02/15 9:35 PM

bindex.indd 419bindex.indd 419 18/02/15 9:35 PM18/02/15 9:35 PM

bindex.indd 420bindex.indd 420 18/02/15 9:35 PM18/02/15 9:35 PM

Crypto-Gram

Written and published by Bruce Schneier.

A free monthly e-mail newsletter that provides news, sum-

maries, analyses, insights, and commentaries on computer and

network security.

Written in the same style as this book, Crypto-Gram provides

timely punditry on security issues, a list of interesting URLs,

straight talk on breaking news, and general clueful commentary.

Join the over 100,000 readers who get their security information

from Crypto-Gram.

To subscribe, send a blank message to:

crypto-gram-subscribe@counterpane.com

Or visit:

http://www.schneier.com/crypto-gram.html

Back issues of Crypto-Gram are available at http://www.

schneier.com

Privacy policy: Bruce Schneier, Counterpane Internet Security,

Inc., and Counterpane Labs will not use the Crypto-Gram

mailing list for any other purpose than e-mailing Crypto-Gram.

We will not use the mailing list for company marketing, nor will

we sell the list to any third parties.

both01.indd 421both01.indd 421 18/02/15 9:35 PM18/02/15 9:35 PM

both01.indd 422both01.indd 422 18/02/15 9:35 PM18/02/15 9:35 PM

	Blank Page

