

1.1

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.3

1.3.1

1.3.2

1.3.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

Table	of	Contents
Introduction

History

The	Framework

Downloading	radare2

Compilation	and	Portability

Compilation	on	Windows

User	Interfaces

First	Steps

Command-line	Flags

Command	Format

Expressions

Basic	Debugger	Session

Contributing	to	radare2

Configuration

Colors

Configuration	Variables

Files

Basic	Commands

Seeking

Block	Size

Sections

Mapping	Files

Print	Modes

Flags

Write

Zoom

2

1.4.9

1.4.10

1.4.11

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.7

1.7.1

1.7.2

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.8.7

1.8.8

1.8.9

1.8.10

Yank/Paste

Comparing	Bytes

SDB

Visual	mode

Visual	Disassembly

Visual	Assembler

Visual	Configuration	Editor

Visual	Panels

Searching	bytes

Basic	Searches

Configurating	the	Search

Pattern	Search

Automation

Backward	Search

Search	in	Assembly

Searching	for	AES	Keys

Disassembling

Adding	Metadata

ESIL

Analysis

Code	Analysis

Variables

Types

Calling	Conventions

Virtual	Tables

Syscalls

Emulation

Symbols	information

Signatures

Graph	commands
3

1.9

1.9.1

1.9.2

1.9.3

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.10.7

1.11

1.11.1

1.11.2

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.12.4.1

1.12.4.2

1.12.4.3

1.12.4.4

1.12.4.5

1.12.4.6

1.12.4.7

1.12.4.8

1.12.5

1.12.5.1

Scripting

Loops

Macros

R2pipe

Debugger

Getting	Started

Migration	from	ida,	GDB	or	WinDBG

Registers

Memory	Maps

Heap

Files

Reverse	Debugging

Remote	Access

Remote	GDB

Remote	WinDbg

Command	Line	Tools

Rax2

Rafind2

Rarun2

Rabin2

File	Identification

Entrypoint

Imports

Exports

Symbols	(exports)

Libraries

Strings

Program	Sections

Radiff2

Binary	Diffing
4

1.12.6

1.12.6.1

1.12.6.2

1.12.6.3

1.12.7

1.12.7.1

1.12.8

1.12.8.1

1.13

1.13.1

1.13.2

1.13.3

1.13.4

1.13.5

1.13.6

1.13.7

1.13.8

1.13.9

1.14

1.14.1

1.14.1.1

1.14.1.2

1.14.2

1.14.2.1

1.14.2.2

1.14.2.3

1.14.2.4

1.14.2.5

1.14.2.6

1.14.2.7

Rasm2

Assemble

Disassemble

Configuration

Ragg2

Language

Rahash2

Rahash	Tool

Plugins

IO	plugins

Asm	plugins

Analysis	plugins

Bin	plugins

Other	plugins

Python	plugins

Debugging

Testing

Packaging

Crackmes

IOLI

IOLI	0x00

IOLI	0x01

Avatao	R3v3rs3	4

.radare2

.first_steps

.main

.vmloop

.instructionset

.bytecode

.outro
5

1.15

1.16

Reference	Card

Acknowledgments

6

Introduction
This	book	is	an	updated	version	(started	by	maijin)	of	the	original	radare1	book	(written	by	pancake).
Which	is	actively	maintained	and	updated	by	many	contributors	over	the	Internet.

Check	the	Github	site	to	add	new	contents	or	fix	typos:

Github:	https://github.com/radare/radare2book
Gitbook:	https://www.gitbook.com/book/radare/radare2book/details

Gitbook	autogenerates	HTML/PDF/EPUB/MOBIL	versions	in	here:

Online:	http://radare.gitbooks.io/radare2book/content/
PDF:	https://www.gitbook.com/download/pdf/book/radare/radare2book
Epub:	https://www.gitbook.com/download/epub/book/radare/radare2book
Mobi:	https://www.gitbook.com/download/mobi/book/radare/radare2book

Introduction

7

https://github.com/radare/radare2book
https://www.gitbook.com/book/radare/radare2book/details
http://radare.gitbooks.io/radare2book/content/
https://www.gitbook.com/download/pdf/book/radare/radare2book
https://www.gitbook.com/download/epub/book/radare/radare2book
https://www.gitbook.com/download/mobi/book/radare/radare2book

History
In	2006,	Sergi	Àlvarez	(aka	pancake)	was	working	as	a	forensic	analyst.	Since	he	wasn't	allowed	to	use
private	software	for	his	personal	needs,	he	decided	to	write	a	small	tool-a	hexadecimal	editor-with	very
basic	characteristics:

be	extremely	portable	(unix	friendly,	command	line,	c,	small)
open	disk	devices,	this	is	using	64bit	offsets
search	for	a	string	or	hexpair
review	and	dump	the	results	to	disk

The	editor	was	originally	designed	to	recover	a	deleted	file	from	an	HFS+	partition.

After	that,	pancake	decided	to	extend	the	tool	to	have	a	pluggable	io	to	be	able	to	attach	to	processes
and	implemented	the	debugger	functionalities,	support	for	multiple	architectures,	and	code	analysis.

Since	 then,	 the	 project	 has	 evolved	 to	 provide	 a	 complete	 framework	 for	 analyzing	 binaries,	 while
making	use	of	basic	UNIX	concepts.	Those	concepts	include	the	famous	"everything	is	a	file",	"small
programs	that	interact	using	stdin/stdout",	and	"keep	it	simple"	paradigms.

The	need	for	scripting	showed	the	fragility	of	the	initial	design:	a	monolithic	tool	made	the	API	hard	to
use,	 and	 so	 a	 deep	 refactoring	was	needed.	 In	 2009	 radare2	 (r2)	was	born	 as	 a	 fork	 of	 radare1.	The
refactor	added	flexibility	and	dynamic	features.	This	enabled	much	better	integration,	paving	the	way	to
use	r2	from	different	programming	languages.	Later	on,	the	r2pipe	API	allowed	access	 to	 radare2	via
pipes	from	any	language.

What	 started	 as	 a	 one-man	 project,	 with	 some	 eventual	 contributions,	 gradually	 evolved	 into	 a	 big
community-based	project	around	2014.	The	number	of	users	was	growing	fast,	and	the	author-and	main
developer-had	 to	 switch	 roles	 from	 coder	 to	manager	 in	 order	 to	 integrate	 the	work	 of	 the	 different
developers	that	were	joining	the	project.

Instructing	 users	 to	 report	 their	 issues	 allows	 the	 project	 to	 define	 new	 directions	 to	 evolve	 in.
Everything	is	managed	in	radare2's	GitHub	and	discussed	in	the	Telegram	channel.

The	 project	 remains	 active	 at	 the	 time	 of	 writing	 this	 book,	 and	 there	 are	 several	 side	 projects	 that
provide,	 among	 other	 things,	 a	 graphical	 user	 interface	 (Cutter),	 a	 decompiler	 (r2dec,	 radeco),	 Frida
integration	 (r2frida),	 Yara,	 Unicorn,	 Keystone,	 and	 many	 other	 projects	 indexed	 in	 the	 r2pm	 (the
radare2	package	manager).

History

8

https://github.com/radare/radare2-bindings
https://github.com/radare/radare2-r2pipe
https://github.com/radare/radare2
https://github.com/radareorg/cutter
https://github.com/wargio/r2dec-js
https://github.com/radareorg/radeco
https://github.com/nowsecure/r2frida
https://github.com/radare/radare2-pm

Since	2016,	the	community	gathers	once	a	year	in	r2con,	a	congress	around	radare2	that	takes	place	in
Barcelona.

History

9

https://www.radare.org/con/

The	Framework
The	Radare2	project	is	a	set	of	small	command-line	utilities	that	can	be	used	together	or	independently.

This	chapter	will	give	you	a	quick	understanding	of	them,	but	you	can	check	the	dedicated	sections	for
each	tool	at	the	end	of	this	book.

radare2

The	main	tool	of	the	whole	framework.	It	uses	the	core	of	the	hexadecimal	editor	and	debugger.	radare2
allows	you	to	open	a	number	of	input/output	sources	as	if	they	were	simple,	plain	files,	including	disks,
network	connections,	kernel	drivers,	processes	under	debugging,	and	so	on.

It	 implements	 an	 advanced	 command	 line	 interface	 for	 moving	 around	 a	 file,	 analyzing	 data,
disassembling,	 binary	 patching,	 data	 comparison,	 searching,	 replacing,	 and	 visualizing.	 It	 can	 be
scripted	with	a	variety	of	languages,	including	Python,	Ruby,	JavaScript,	Lua,	and	Perl.

rabin2
A	program	 to	extract	 information	 from	executable	binaries,	 such	as	ELF,	PE,	 Java	CLASS,	Mach-O,
plus	any	format	supported	by	r2	plugins.	rabin2	is	used	by	the	core	to	get	data	like	exported	symbols,
imports,	file	information,	cross	references	(xrefs),	library	dependencies,	and	sections.

rasm2
A	command	line	assembler	and	disassembler	for	multiple	architectures	(including	Intel	x86	and	x86-64,
MIPS,	ARM,	PowerPC,	Java,	and	myriad	of	others).

Examples

$	rasm2	-a	java	'nop'

00

$	rasm2	-a	x86	-d	'90'

nop

The	Framework

10

$	rasm2	-a	x86	-b	32	'mov	eax,	33'

b821000000

$	echo	'push	eax;nop;nop'	|	rasm2	-f	-

509090

rahash2
An	implementation	of	a	block-based	hash	tool.	From	small	text	strings	to	large	disks,	rahash2	supports
multiple	algorithms,	including	MD4,	MD5,	CRC16,	CRC32,	SHA1,	SHA256,	and	others.	rahash2	can
be	used	to	check	the	integrity	or	track	changes	of	big	files,	memory	dumps,	or	disks.

Examples

$	rahash2	file

file:	0x00000000-0x00000007	sha256:	887cfbd0d44aaff69f7bdbedebd282ec96191cce9d7fa7336298

a18efc3c7a5a

$	rahash2	file	-a	md5

file:	0x00000000-0x00000007	md5:	d1833805515fc34b46c2b9de553f599d

radiff2
A	binary	diffing	utility	 that	 implements	multiple	algorithms.	It	supports	byte-level	or	delta	diffing	for
binary	 files,	 and	 code-analysis	 diffing	 to	 find	 changes	 in	basic	 code	blocks	obtained	 from	 the	 radare
code	analysis.

rafind2
A	program	to	find	byte	patterns	in	files.

ragg2
A	 frontend	 for	 r_egg.	 ragg2	 compiles	 programs	 written	 in	 a	 simple	 high-level	 language	 into	 tiny
binaries	for	x86,	x86-64,	and	ARM.

The	Framework

11

Examples

$	cat	hi.r

/*	hello	world	in	r_egg	*/

write@syscall(4);	//x64	write@syscall(1);

exit@syscall(1);	//x64	exit@syscall(60);

main@global(128)	{

	.var0	=	"hi!\n";

	write(1,.var0,	4);

	exit(0);

}

$	ragg2	-O	-F	hi.r

$./hi

hi!

$	cat	hi.c

main@global(0,6)	{

	write(1,	"Hello0",	6);

	exit(0);

}

$	ragg2	hi.c

$./hi.c.bin

Hello

rarun2

A	launcher	for	running	programs	within	different	environments,	with	different	arguments,	permissions,
directories,	and	overridden	default	file	descriptors.	rarun2	is	useful	for:

Solving	crackmes
Fuzzing
Test	suites

Sample	rarun2	script

$	cat	foo.rr2

#!/usr/bin/rarun2

program=./pp400

arg0=10

stdin=foo.txt

chdir=/tmp

#chroot=.

./foo.rr2

The	Framework

12

Connecting	a	Program	with	a	Socket

$	nc	-l	9999

$	rarun2	program=/bin/ls	connect=localhost:9999

Debugging	a	Program	Redirecting	the	stdio	into	Another
Terminal

1	-	open	a	new	terminal	and	type	'tty'	to	get	a	terminal	name:

$	tty	;	clear	;	sleep	999999

/dev/ttyS010

2	-	Create	a	new	file	containing	the	following	rarun2	profile	named	foo.rr2:

#!/usr/bin/rarun2

program=/bin/ls

stdio=/dev/ttys010

3	-	Launch	the	following	radare2	command:

r2	-r	foo.rr2	-d	/bin/ls

rax2

A	 minimalistic	 mathematical	 expression	 evaluator	 for	 the	 shell	 that	 is	 useful	 for	 making	 base
conversions	between	floating	point	values,	hexadecimal	representations,	hexpair	strings	to	ASCII,	octal
to	integer,	and	more.	It	also	supports	endianness	settings	and	can	be	used	as	an	interactive	shell	 if	no
arguments	are	given.

Examples

The	Framework

13

$	rax2	1337

0x539

$	rax2	0x400000

4194304

$	rax2	-b	01111001

y

$	rax2	-S	radare2

72616461726532

$	rax2	-s	617765736f6d65

awesome

The	Framework

14

Downloading	radare2
You	 can	 get	 radare	 from	 the	 website,	 http://radare.org,	 or	 the	 GitHub	 repository:
https://github.com/radare/radare2

Binary	packages	are	available	for	a	number	of	operating	systems	(Ubuntu,	Maemo,	Gentoo,	Windows,
iPhone,	and	so	on).	Yet,	you	are	highly	encouraged	to	get	the	source	and	compile	it	yourself	to	better
understand	the	dependencies,	to	make	examples	more	accessible	and	of	course	to	have	the	most	recent
version.

A	 new	 stable	 release	 is	 typically	 published	 every	month.	Nightly	 tarballs	 are	 sometimes	 available	 at
http://bin.rada.re/.

The	 radare	development	 repository	 is	often	more	 stable	 than	 the	 'stable'	 releases.	To	obtain	 the	 latest
version:

$	git	clone	https://github.com/radare/radare2.git

This	will	probably	take	a	while,	so	take	a	coffee	break	and	continue	reading	this	book.

To	update	your	local	copy	of	the	repository,	use		git	pull		anywhere	in	the	radare2	source	code	tree:

$	git	pull

If	you	have	local	modifications	of	the	source,	you	can	revert	them	(and	lose	them!)	with:

$	git	reset	--hard	HEAD

Or	send	us	a	patch:

$	git	diff	>	radare-foo.patch

The	most	common	way	to	get	r2	updated	and	installed	system	wide	is	by	using:

$	sys/install.sh

Build	with	meson	+	ninja

Downloading	radare2

15

http://radare.org
https://github.com/radare/radare2
http://bin.rada.re/

There	is	also	a	work-in-progress	support	for	Meson.

Using	clang	and	ld.gold	makes	the	build	faster:

CC=clang	LDFLAGS=-fuse-ld=gold	meson	.	release	--buildtype=release	--prefix	~/.local/sto

w/radare2/release

ninja	-C	release

#	ninja	-C	release	install

Helper	Scripts

Take	a	 look	at	 the	 	sys/*		 scripts,	 those	 are	 used	 to	 automate	 stuff	 related	 to	 syncing,	 building	 and
installing	r2	and	its	bindings.

The	most	important	one	is		sys/install.sh	.	It	will	pull,	clean,	build	and	symstall	r2	system	wide.

Symstalling	 is	 the	process	of	 installing	all	 the	programs,	 libraries,	documentation	and	data	files	using
symlinks	instead	of	copying	the	files.

By	default	it	will	be	installed	in	/usr,	but	you	can	define	a	new	prefix	as	argument.

This	is	useful	for	developers,	because	it	permits	them	to	just	run	'make'	and	try	changes	without	having
to	run	make	install	again.

Cleaning	Up

Cleaning	 up	 the	 source	 tree	 is	 important	 to	 avoid	 problems	 like	 linking	 to	 old	 objects	 files	 or	 not
updating	objects	after	an	ABI	change.

The	following	commands	may	help	you	to	get	your	git	clone	up	to	date:

$	git	clean	-xdf

$	git	reset	--hard	@~10

$	git	pull

If	you	want	to	remove	previous	installations	from	your	system,	you	must	run	the	following	commands:

$./configure	--prefix=/usr/local

$	make	purge

Downloading	radare2

16

Downloading	radare2

17

Compilation	and	Portability
Currently	 the	 core	 of	 radare2	 can	 be	 compiled	 on	 many	 systems	 and	 architectures,	 but	 the	 main
development	is	done	on	GNU/Linux	with	GCC,	and	on	MacOS	X	with	clang.	Radare	is	also	known	to
compile	on	many	different	systems	and	architectures	(including	TCC	and	SunStudio).

People	often	want	to	use	radare	as	a	debugger	for	reverse	engineering.	Currently,	the	debugger	layer	can
be	used	on	Windows,	GNU/Linux	(Intel	x86	and	x86_64,	MIPS,	and	ARM),	OS	X,	FreeBSD,	NetBSD,
and	OpenBSD	(Intel	x86	and	x86_64)..

Compared	to	core,	the	debugger	feature	is	more	restrictive	portability-wise.	If	the	debugger	has	not	been
ported	 to	 your	 favorite	 platform,	 you	 can	 disable	 the	 debugger	 layer	 with	 the	 --without-debugger
	configure		script	option	when	compiling	radare2.

Note	that	there	are	I/O	plugins	that	use	GDB,	GDB,	WinDbg,	or	Wine	as	back-ends,	and	therefore	rely
on	 presence	 of	 corresponding	 third-party	 tools	 (in	 case	 of	 remote	 debugging	 -	 just	 on	 the	 target
machine).

To	build	on	a	system	using		acr		and		GNU	Make		(e.g.	on	*BSD	systems):

$./configure	--prefix=/usr

$	gmake

$	sudo	gmake	install

There	is	also	a	simple	script	to	do	this	automatically:

$	sys/install.sh

Static	Build

You	can	build	radare2	statically	along	with	all	other	tools	with	the	command:

$	sys/static.sh

Docker

Radare2	repository	ships	a	Dockerfile	that	you	can	use	with	Docker.

Compilation	and	Portability

18

https://github.com/radare/radare2/blob/master/Dockerfile

This	 dockerfile	 is	 also	 used	 by	 Remnux	 distribution	 from	 SANS,	 and	 is	 available	 on	 the	 docker
registryhub.

Cleaning	Up	Old	Radare2	Installations

./configure	--prefix=/old/r2/prefix/installation

make	purge

Compilation	and	Portability

19

https://registry.hub.docker.com/u/remnux/radare2/

Windows
Radare2	relies	on	the	Meson	build	system	generator	to	support	compilation	on	all	platforms,	including
Windows.	Meson	will	generate	a	Visual	Studio	Solution,	all	the	necessary	project	files,	and	wire	up	the
Microsoft	Visual	C++	compiler	for	you.

You	can	download	nightly	binaries	from	https://bin.rada.re.

Prerequisites
Visual	Studio	2015	(or	higher)
Python	3
Meson
Git

Step-by-Step

Install	Visual	Studio	2015	(or	higher)

Visual	 Studio	 must	 be	 installed	 with	 a	 Visual	 C++	 compiler,	 supporting	 C++	 libraries,	 and	 the
appropriate	Windows	SDK	for	the	target	platform	version.

In	the	Visual	Studio	2015	installer,	ensure		Programming	Languages	>	Visual	C++		is	selected
In	 the	Visual	Studio	2017+	 installers,	 ensure	 the	 	Desktop	 development	 with	 C++	 	 workload	 is
selected

If	you	need	a	copy	of	Visual	Studio,	the	Community	versions	are	free	and	work	great.

Download	Visual	Studio	2015	Community	(registration	required)
Download	Visual	Studio	2017	Community

Install	Python	3	and	Meson	via	Conda
It	is	strongly	recommended	you	install	Conda	—	a	Python	environment	management	system	—	when
working	with	Python	on	the	Windows	platform.	This	will	isolate	the	Radare2	build	environment	from
other	installed	Python	versions	and	minimize	potential	conflicts.

Compilation	on	Windows

20

https://bin.rada.re
https://my.visualstudio.com/Downloads?q=Visual%20Studio%202015%20with%20Update%203
https://visualstudio.microsoft.com/downloads/

Set	Up	Conda:

1.	 Download	the	appropriate	Conda	(Python	3.x)	for	your	platform	(https://conda.io/miniconda.html)
2.	 Install	Conda	with	the	recommended	defaults

Create	a	Python	Environment	for	Radare2

Follow	 these	 steps	 to	 create	 and	 activate	 a	Conda	 environment	 named	 r2.	 All	 instructions	 from	 this
point	on	will	assume	this	name	matches	your	environment,	but	you	may	change	this	if	desired.

1.	 Start	>	Anaconda	Prompt
2.	 	conda	create	-n	r2	python=3	
3.	 	activate	r2	

Any	time	you	wish	to	enter	this	environment,	open	the	Anaconda	Prompt	and	re-issue	 	activate	r2	.
Conversely,		deactivate		will	leave	the	environment.

Install	Meson

All	 versions	 of	 Meson	 at	 or	 below	 0.47.1	 have	 a	 bug	 that	 prevent	 normal	 use	 on	Windows.
Because	 there's	 no	official	 release	with	 the	 fixes	 available,	 you	must	 install	 from	 sources.	The
following	steps	will	walk	you	through	this.	We	will	update	this	documentation	as	soon	as	0.48	is
officially	released.

1.	 Enter	the	Radare2	Conda	environment,	if	needed	(activate	r2)
2.	 Download	https://github.com/mesonbuild/meson/archive/master.zip
3.	 	pip	install	\path\to\downloaded\master.zip	
4.	 Verify	Meson	is	version	0.48	or	higher	(meson	-v)

Install	Git	for	Windows
All	Radare2	code	is	managed	via	the	Git	version	control	system	and	hosted	on	GitHub.

Follow	these	steps	to	install	Git	for	Windows.

1.	 Download	Git	for	Windows	(https://git-scm.com/download/win)

As	you	navigate	the	install	wizard,	we	recommend	you	set	these	options	when	they	appear:

Use	a	TrueType	font	in	all	console	windows

Compilation	on	Windows

21

https://conda.io/miniconda.html
https://github.com/mesonbuild/meson/archive/master.zip
https://github.com/radare
https://git-scm.com/download/win

Use	Git	from	the	Windows	Command	Prompt
Use	the	native	Windows	Secure	Channel	library	(instead	of	OpenSSL)
Checkout	Windows-style,	commit	Unix-style	line	endings	(core.autocrlf=true)
Use	Windows'	default	console	window	(instead	of	Mintty)

2.	 Close	 any	 previously	 open	 console	 windows	 and	 re-open	 them	 to	 ensure	 they	 receive	 the	 new
PATH

3.	 Ensure		git	--version		works

Get	Radare2	Code

Follow	these	steps	to	clone	the	Radare2	git	repository.

1.	 In	 your	 Radare2	 Conda	 environment,	 navigate	 to	 a	 location	 where	 the	 code	 will	 be	 saved	 and
compiled.	This	location	needs	approximately	3-4GiB	of	space

2.	 Clone	the	repository	with		git	clone	https://github.com/radare/radare2.git	

Compile	Radare2	Code
Follow	these	steps	to	compile	a	debug	32-bit	(x86)	version	of	Radare2.	(If	you	want	to	build	a	64-bit
(x64)	version	of	Radare2,	replace	all	 instances	of	 	x86		with	 	x64	.	Similarly,	 if	 you	want	 to	build	 a
release	version,	replace	all	instances	of		debug		with		release	.)

Compiled	binaries	will	be	installed	into	the		dest		folder.

1.	 Enter	the	Radare2	Conda	environment
2.	 Navigate	to	the	root	of	the	Radare2	sources	(cd	radare2)
3.	 Initialize	 Visual	 Studio	 tooling	 by	 executing	 the	 command	 that	 matches	 the	 version	 of	 Visual

Studio	installed	on	your	machine:

Visual	 Studio	 2015:	 	 "%ProgramFiles(x86)%\Microsoft	 Visual	 Studio

14.0\VC\vcvarsall.bat"	x86	

Visual	 Studio	 2017:	 	 "%ProgramFiles(x86)%\Microsoft	 Visual

Studio\2017\Enterprise\VC\Auxiliary\Build\vcvars32.bat"	

Visual	 Studio	 Preview:	 	 "%ProgramFiles(x86)%\Microsoft	 Visual

Studio\Preview\Enterprise\VC\Auxiliary\Build\vcvars32.bat"	

4.	 Generate	 the	build	system	with	Meson:	 	meson	build	--buildtype	debug	--backend	vs2015	--
prefix	%cd%\dest	

Compilation	on	Windows

22

Meson	 currently	 requires	 	--prefix		 to	 point	 to	 an	 absolute	 path.	We	 use	 the	%CD%	 pseudo-
variable	to	get	the	absolute	path	to	the	current	working	directory.

5.	 Start	a	build:		msbuild	build\radare2.sln	/p:Configuration=Debug	/m	

The	 	/m[axcpucount]		switch	creates	one	MSBuild	worker	process	per	logical	processor	on	your
machine.	You	can	specify	a	numeric	value	(e.g.		/m:2)	to	limit	the	number	of	worker	processes	if
needed.	(This	should	not	be	confused	with	the	Visual	C++	Compiler	switch		/MP	.)

6.	 Install	into	your	destination	folder:		meson	install	-C	build	--no-rebuild	

7.	 Check	your	Radare2	version:		dest\bin\radare2.exe	-v	

Compilation	on	Windows

23

User	Interfaces
Radare2	has	seen	many	different	user	interfaces	being	developed	over	the	years.

Maintaining	 a	GUI	 is	 far	 from	 the	 scope	 of	 developing	 the	 core	machinery	 of	 a	 reverse	 engineering
toolkit:	 it	 is	preferred	to	have	a	separate	project	and	community,	allowing	both	projects	to	collaborate
and	to	improve	together	-	rather	than	forcing	cli	developers	to	think	in	gui	problems	and	having	to	jump
back	and	forth	between	the	graphic	aspect	and	the	low	level	logic	of	the	implementations.

In	 the	 past,	 there	 have	 been	 at	 least	 5	 different	 native	 user	 interfaces	 (ragui,	 r2gui,	 gradare,	 r2net,
bokken)	but	none	of	them	got	enough	maintenance	power	to	take	off	and	they	all	died.

In	addition,	r2	has	an	embedded	webserver	and	ships	some	basic	user	interfaces	written	in	html/js.	You
can	start	them	like	this:

$	r2	-c=H	/bin/ls

After	3	years	of	private	development,	Hugo	Teso;	the	author	of	Bokken	(python-gtk	gui	of	r2)	released
to	the	public	another	frontend	of	r2,	this	time	written	in	c++	and	qt,	which	has	been	very	welcomed	by
the	community.

This	GUI	was	named	Iaito,	but	as	long	as	he	prefered	not	to	keep	maintaining	it,	Xarkes	decided	to	fork
it	under	the	name	of	Cutter	(name	voted	by	the	community),	and	lead	the	project.	This	is	how	it	looks:

https://github.com/radareorg/cutter.

User	Interfaces

24

https://github.com/radareorg/cutter

User	Interfaces

25

Basic	Radare2	Usage
The	learning	curve	is	usually	somewhat	steep	at	the	beginning.	Although	after	an	hour	of	using	it	you
should	easily	understand	how	most	 things	work,	and	how	 to	combine	 the	various	 tools	 radare	offers.
You	are	encouraged	to	read	the	rest	of	this	book	to	understand	how	some	non-trivial	things	work,	and	to
ultimately	improve	your	skills.

Navigation,	inspection	and	modification	of	a	loaded	binary	file	is	performed	using	three	simple	actions:
seek	(to	position),	print	(buffer),	and	alternate	(write,	append).

The	'seek'	command	is	abbreviated	as		s		and	accepts	an	expression	as	its	argument.	The	expression	can
be	something	like	 	10	,	 	+0x25	,	or	 	[0x100+ptr_table]	.	 If	 you	 are	working	with	 block-based	 files,
you	 may	 prefer	 to	 set	 the	 block	 size	 to	 a	 required	 value	 with	 	b	 	 command,	 and	 seek	 forward	 or
backwards	with	positions	aligned	to	it.	Use		s++		and		s--		commands	to	navigate	this	way.

If	radare2	opens	an	executable	file,	by	default	it	will	open	the	file	in	Virtual	Addressing	(VA)	mode	and
the	 sections	will	 be	mapped	 to	 their	 virtual	 addresses.	 In	VA	mode,	 seeking	 is	 based	 on	 the	 virtual
address	and	the	starting	position	is	set	to	the	entry	point	of	the	executable.	Using	 	-n		option	you	can
suppress	 this	 default	 behavior	 and	 ask	 radare2	 to	 open	 the	 file	 in	 non-VA	mode	 for	 you.	 In	 non-VA
mode,	seeking	is	based	on	the	offset	from	the	beginning	of	the	file.

First	Steps

26

The	 'print'	 command	 is	 abbreviated	 as	 	p	 	 and	 has	 a	 number	 of	 submodes	 —	 the	 second	 letter
specifying	a	desired	print	mode.	Frequent	variants	 include	 	px		 to	print	 in	hexadecimal,	and	 	pd		 for
disassembling.

To	be	allowed	to	write	files,	specify	the		-w		option	to	radare2	when	opening	a	file.	The	 	w		command
can	be	used	to	write	strings,	hexpairs	(x		subcommand),	or	even	assembly	opcodes	(a		subcommand).
Examples:

>	w	hello	world									;	string

>	wx	90	90	90	90								;	hexpairs

>	wa	jmp	0x8048140						;	assemble

>	wf	inline.bin									;	write	contents	of	file

Appending	a	 	?		 to	a	command	will	show	its	help	message,	 for	example,	 	p?	.	Appending	 	?*		 will
show	commands	starting	with	the	given	string,	e.g.		p?*	.

To	enter	visual	mode,	press		V<enter>	.	Use		q		to	quit	visual	mode	and	return	to	the	prompt.

In	visual	mode	you	can	use	HJKL	keys	to	navigate	(left,	down,	up,	and	right,	respectively).	You	can	use
these	keys	in	cursor	mode	toggled	by		c		key.	To	select	a	byte	range	in	cursor	mode,	hold	down		SHIFT	
key,	and	press	navigation	keys	HJKL	to	mark	your	selection.

While	 in	visual	mode,	 you	 can	 also	overwrite	bytes	by	pressing	 	i	.	You	 can	press	 	TAB	 	 to	 switch
between	the	hex	(middle)	and	string	(right)	columns.	Pressing	 	q		 inside	the	hex	panel	returns	you	to
visual	mode.	By	pressing	 	p		or	 	P		 you	 can	 scroll	 different	 visual	mode	 representations.	There	 is	 a
second	most	important	visual	mode	-	curses-like	panels	interface,	accessible	with		V!		command.

First	Steps

27

Command-line	Options
The	radare	core	accepts	many	flags	from	the	command	line.

This	is	an	excerpt	from	the	usage	help	message:

$	radare2	-h

Usage:	r2	[-ACdfLMnNqStuvwzX]	[-P	patch]	[-p	prj]	[-a	arch]	[-b	bits]	[-i	file]

										[-s	addr]	[-B	baddr]	[-m	maddr]	[-c	cmd]	[-e	k=v]	file|pid|-|--|=

	--											run	radare2	without	opening	any	file

	-												same	as	'r2	malloc://512'

	=												read	file	from	stdin	(use	-i	and	-c	to	run	cmds)

	-=											perform	!=!	command	to	run	all	commands	remotely

	-0											print	\x00	after	init	and	every	command

	-2											close	stderr	file	descriptor	(silent	warning	messages)

	-a	[arch]				set	asm.arch

	-A											run	'aaa'	command	to	analyze	all	referenced	code

	-b	[bits]				set	asm.bits

	-B	[baddr]			set	base	address	for	PIE	binaries

	-c	'cmd..'			execute	radare	command

	-C											file	is	host:port	(alias	for	-c+=http://%s/cmd/)

	-d											debug	the	executable	'file'	or	running	process	'pid'

	-D	[backend]	enable	debug	mode	(e	cfg.debug=true)

	-e	k=v							evaluate	config	var

	-f											block	size	=	file	size

	-F	[binplug]	force	to	use	that	rbin	plugin

	-h,	-hh						show	help	message,	-hh	for	long

	-H	([var])			display	variable

	-i	[file]				run	script	file

	-I	[file]				run	script	file	before	the	file	is	opened

	-k	[OS/kern]	set	asm.os	(linux,	macos,	w32,	netbsd,	...)

	-l	[lib]					load	plugin	file

	-L											list	supported	IO	plugins

Command-line	Flags

28

	-m	[addr]				map	file	at	given	address	(loadaddr)

	-M											do	not	demangle	symbol	names

	-n,	-nn						do	not	load	RBin	info	(-nn	only	load	bin	structures)

	-N											do	not	load	user	settings	and	scripts

	-q											quiet	mode	(no	prompt)	and	quit	after	-i

	-Q											quiet	mode	(no	prompt)	and	quit	faster	(quickLeak=true)

	-p	[prj]					use	project,	list	if	no	arg,	load	if	no	file

	-P	[file]				apply	rapatch	file	and	quit

	-r	[rarun2]		specify	rarun2	profile	to	load	(same	as	-e	dbg.profile=X)

	-R	[rr2rule]	specify	custom	rarun2	directive

	-s	[addr]				initial	seek

	-S											start	r2	in	sandbox	mode

	-t											load	rabin2	info	in	thread

	-u											set	bin.filter=false	to	get	raw	sym/sec/cls	names

	-v,	-V							show	radare2	version	(-V	show	lib	versions)

	-w											open	file	in	write	mode

	-x											open	without	exec-flag	(asm.emu	will	not	work),	See	io.exec

	-X											same	as	-e	bin.usextr=false	(useful	for	dyldcache)

	-z,	-zz						do	not	load	strings	or	load	them	even	in	raw

Common	usage	patterns
Open	a	file	in	write	mode	without	parsing	the	file	format	headers.

$	r2	-nw	file

Quickly	get	into	an	r2	shell	without	opening	any	file.

$	r2	-

Specify	which	sub-binary	you	want	to	select	when	opening	a	fatbin	file:

$	r2	-a	ppc	-b	32	ls.fat

Run	a	script	before	showing	interactive	command-line	prompt:

$	r2	-i	patch.r2	target.bin

Execute	a	command	and	quit	without	entering	the	interactive	mode:

$	r2	-qc	ij	hi.bin	>	imports.json

Command-line	Flags

29

Set	the	configuration	variable:

$	r2	-e	scr.color=0	blah.bin

Debug	a	program:

$	r2	-d	ls

Use	an	existing	project	file:

$	r2	-p	test

Command-line	Flags

30

Command	Format
A	general	format	for	radare2	commands	is	as	follows:

[.][times][cmd][~grep][@[@iter]addr!size][|>pipe]	;

People	who	use	Vim	daily	and	are	familiar	with	its	commands	will	find	themselves	at	home.	You	will
see	this	format	used	throughout	the	book.	Commands	are	identified	by	a	single	case-sensitive	character
[a-zA-Z].

To	repeatedly	execute	a	command,	prefix	the	command	with	a	number:

px				#	run	px

3px			#	run	px	3	times

The		!		prefix	is	used	to	execute	a	command	in	shell	context.	If	you	want	to	use	the	cmd	callback	from
the	I/O	plugin	you	must	prefix	with		=!	.

Note	that	a	single	exclamation	mark	will	run	the	command	and	print	the	output	through	the	RCons	API.
This	means	 that	 the	execution	will	be	blocking	and	not	 interactive.	Use	double	exclamation	marks	 --
	!!		--	to	run	a	standard	system	call.

All	 the	socket,	 filesystem	and	execution	APIs	can	be	 restricted	with	 the	 	cfg.sandbox		 configuration
variable.

A	few	examples:

ds																				;	call	the	debugger's	'step'	command

px	200	@	esp										;	show	200	hex	bytes	at	esp

pc	>	file.c											;	dump	buffer	as	a	C	byte	array	to	file.c

wx	90	@@	sym.*								;	write	a	nop	on	every	symbol

pd	2000	|	grep	eax				;	grep	opcodes	that	use	the	'eax'	register

px	20	;	pd	3	;	px	40		;	multiple	commands	in	a	single	line

The	standard	UNIX	pipe		|		is	also	available	in	the	radare2	shell.	You	can	use	it	to	filter	the	output	of
an	r2	command	with	any	shell	program	that	reads	from	stdin,	such	as		grep	,		less	,		wc	.	If	you	do	not
want	to	spawn	anything,	or	you	can't,	or	the	target	system	does	not	have	the	basic	UNIX	tools	you	need
(Windows	or	embedded	users),	you	can	also	use	the	built-in	grep	(~).

Command	Format

31

See		?~?		for	help.

The		~		character	enables	internal	grep-like	function	used	to	filter	output	of	any	command:

pd	20~call												;	disassemble	20	instructions	and	grep	output	for	'call'

Additionally,	you	can	grep	either	for	columns	or	for	rows:

pd	20~call:0										;	get	first	row

pd	20~call:1										;	get	second	row

pd	20~call[0]									;	get	first	column

pd	20~call[1]									;	get	second	column

Or	even	combine	them:

pd	20~call:0[0]							;	grep	the	first	column	of	the	first	row	matching	'call'

This	internal	grep	function	is	a	key	feature	for	scripting	radare2,	because	it	can	be	used	to	iterate	over	a
list	 of	 offsets	 or	 data	 generated	 by	 disassembler,	 ranges,	 or	 any	 other	 command.	 Refer	 to	 the	 loops
section	(iterators)	for	more	information.

The	 	@	 	 character	 is	 used	 to	 specify	 a	 temporary	 offset	 at	 which	 the	 command	 to	 its	 left	 will	 be
executed.	The	original	seek	position	in	a	file	is	then	restored.

For	example,		pd	5	@	0x100000fce		to	disassemble	5	instructions	at	address	0x100000fce.

Most	of	the	commands	offer	autocompletion	support	using	 	<TAB>		key,	for	example	 	s	eek	or	 	f	lags
commands.	It	offers	autocompletion	using	all	possible	values,	taking	flag	names	in	this	case.	Note	that	it
is	possible	to	see	the	history	of	the	commands	using	the	 	!~...		command	-	it	offers	a	visual	mode	to
scroll	through	the	radare2	command	history.

To	extend	the	autocompletion	support	to	handle	more	commands	or	enable	autocompletion	to	your	own
commands	defined	in	core,	I/O	plugins	you	must	use	the		!!!		command.

Command	Format

32

Expressions
Expressions	 are	 mathematical	 representations	 of	 64-bit	 numerical	 values.	 They	 can	 be	 displayed	 in
different	formats,	be	compared	or	used	with	all	commands	accepting	numeric	arguments.	Expressions
can	use	traditional	arithmetic	operations,	as	well	as	binary	and	boolean	ones.	To	evaluate	mathematical
expressions	prepend	them	with	command		?	:

[0xb7f9d810]>	?vi	0x8048000

134512640

[0xv7f9d810]>	?vi	0x8048000+34

134512674

[0xb7f9d810]>	?vi	0x8048000+0x34

134512692

[0xb7f9d810]>	?	1+2+3-4*3

hex					0xfffffffffffffffa

octal			01777777777777777777772

unit				17179869184.0G

segment	fffff000:0ffa

int64			-6

string		"\xfa\xff\xff\xff\xff\xff\xff\xff"

binary		0b111010

fvalue:	-6.0

float:		nanf

double:	nan

trits			0t11112220022122120101211020120210210211201

Supported	arithmetic	operations	are:

+	:	addition
-	:	subtraction
*	:	multiplication
/	:	division
%	:	modulus
>	:	shift	right
<	:	shift	left

[0x00000000]>	?vi	1+2+3

6

To	use	of	logical	OR	should	quote	the	whole	command	to	avoid	executing	the		|		pipe:

Expressions

33

[0x00000000]>	"?	1	|	2"

hex					0x3

octal			03

unit				3

segment	0000:0003

int32			3

string		"\x03"

binary		0b00000011

fvalue:	2.0

float:		0.000000f

double:	0.000000

trits			0t10

Numbers	can	be	displayed	in	several	formats:

0x033			:	hexadecimal	can	be	displayed

3334				:	decimal

sym.fo		:	resolve	flag	offset

10K					:	KBytes		10*1024

10M					:	MBytes		10*1024*1024

You	can	also	use	variables	and	seek	positions	to	build	complex	expressions.

Use	the		?$?		command	to	list	all	the	available	commands	or	read	the	refcard	chapter	of	this	book.

$$				here	(the	current	virtual	seek)

$l				opcode	length

$s				file	size

$j				jump	address	(e.g.	jmp	0x10,	jz	0x10	=>	0x10)

$f				jump	fail	address	(e.g.	jz	0x10	=>	next	instruction)

$m				opcode	memory	reference	(e.g.	mov	eax,[0x10]	=>	0x10)

$b				block	size

Some	more	examples:

[0x4A13B8C0]>	?	$m	+	$l

140293837812900	0x7f98b45df4a4	03771426427372244	130658.0G	8b45d000:04a4	140293837812900

	10100100	140293837812900.0	-0.000000

[0x4A13B8C0]>	pd	1	@	+$l

0x4A13B8C2			call	0x4a13c000

Expressions

34

Expressions

35

Basic	Debugger	Session
To	debug	a	program,	start	radare	with	the		-d		option.	Note	that	you	can	attach	to	a	running	process	by
specifying	its	PID,	or	you	can	start	a	new	program	by	specifying	its	name	and	parameters:

$	pidof	mc

32220

$	r2	-d	32220

$	r2	-d	/bin/ls

$	r2	-a	arm	-b	16	-d	gdb://192.168.1.43:9090

...

In	the	second	case,	the	debugger	will	fork	and	load	the	debugee		ls		program	in	memory.

It	 will	 pause	 its	 execution	 early	 in	 	ld.so	 	 dynamic	 linker.	 As	 a	 result,	 you	 will	 not	 yet	 see	 the
entrypoint	or	any	shared	libraries	at	this	point.

You	can	override	this	behavior	by	setting	another	name	for	an	entry	breakpoint.	To	do	this,	add	a	radare
command	 	 e	 dbg.bep=entry	 	 or	 	 e	 dbg.bep=main	 	 to	 your	 startup	 script,	 usually	 it	 is
	~/.config/radare2/radare2rc	.

Another	way	to	continue	until	a	specific	address	is	by	using	the		dcu		command.	Which	means:	"debug
continue	until"	taking	the	address	of	the	place	to	stop	at.	For	example:

dcu	main

Be	warned	that	certain	malware	or	other	tricky	programs	can	actually	execute	code	before		main()		and
thus	you'll	be	unable	to	control	them.	(Like	the	program	constructor	or	the	tls	initializers)

Below	is	a	list	of	most	common	commands	used	with	debugger:

Basic	Debugger	Session

36

>	d?												;	get	help	on	debugger	commands

>	ds	3										;	step	3	times

>	db	0x8048920		;	setup	a	breakpoint

>	db	-0x8048920	;	remove	a	breakpoint

>	dc												;	continue	process	execution

>	dcs											;	continue	until	syscall

>	dd												;	manipulate	file	descriptors

>	dm												;	show	process	maps

>	dmp	A	S	rwx			;	change	permissions	of	page	at	A	and	size	S

>	dr	eax=33					;	set	register	value.	eax	=	33

There	is	another	option	for	debugging	in	radare,	which	may	be	easier:	using	visual	mode.

That	way	you	will	neither	need	to	remember	many	commands	nor	to	keep	program	state	in	your	mind.

To	enter	visual	debugger	mode	use		Vpp	:

[0xb7f0c8c0]>	Vpp

The	 initial	 view	after	 entering	visual	mode	 is	 a	hexdump	view	of	 the	 current	 target	program	counter
(e.g.,	EIP	for	x86).	Pressing		p		will	allow	you	to	cycle	through	the	rest	of	visual	mode	views.	You	can
press		p		and		P		to	rotate	through	the	most	commonly	used	print	modes.	Use	F7	or		s		to	step	into	and
F8	or		S		to	step	over	current	instruction.	With	the	 	c		key	you	can	toggle	the	cursor	mode	to	mark	a
byte	range	selection	(for	example,	to	later	overwrite	them	with	nop).	You	can	set	breakpoints	with		F2	
key.

In	visual	mode	you	can	enter	regular	radare	commands	by	prepending	them	with	 	:	.	For	example,	to
dump	a	one	block	of	memory	contents	at	ESI:

<Press	':'>

x	@	esi

To	get	help	on	visual	mode,	press		?	.	To	scroll	the	help	screen,	use	arrows.	To	exit	the	help	view,	press
	q	.

A	frequently	used	command	is		dr	,	which	is	used	to	read	or	write	values	of	the	target's	general	purpose
registers.	For	a	more	compact	register	value	representation	you	might	use		dr=		command.	You	can	also
manipulate	the	hardware	and	the	extended/floating	point	registers.

Basic	Debugger	Session

37

Contributing

Radare2	Book
If	 you	 want	 to	 contribute	 to	 the	 Radare2	 book,	 you	 can	 do	 it	 at	 the	 Github	 repository.	 Suggested
contributions	include:

Crackme	writeups
CTF	writeups
Documentation	on	how	to	use	Radare2
Documentation	on	developing	for	Radare2
Conference	presentations/workshops	using	Radare2
Missing	content	from	the	Radare1	book	updated	to	Radare2

Please	get	permission	to	port	any	content	you	do	not	own/did	not	create	before	you	put	it	in	the	Radare2
book.

See	https://github.com/radare/radare2/blob/master/DEVELOPERS.md	for	general	help	on	contributing
to	radare2.

Contributing	to	radare2

38

https://github.com/radare/radare2book
https://github.com/radare/radare2/blob/master/DEVELOPERS.md

Configuration
The	core	reads	 	~/.config/radare2/radare2rc		while	starting.	You	can	add	 	e		commands	to	this	file
to	tune	the	radare2	configuration	to	your	taste.

To	prevent	radare2	from	parsing	this	file	at	startup,	pass	it	the		-N		option.

All	the	configuration	of	radare2	is	done	with	the		eval		commands.	A	typical	startup	configuration	file
looks	like	this:

$	cat	~/.radare2rc

e	scr.color	=	1

e	dbg.bep			=	loader

The	 configuration	 can	 also	 be	 changed	 with	 	-e	 	 command-line	 option.	 This	 way	 you	 can	 adjust
configuration	 from	 the	 command	 line,	 keeping	 the	 .radare2rc	 file	 intact.	 For	 example,	 to	 start	 with
empty	configuration	and	then	adjust		scr.color		and		asm.syntax		the	following	line	may	be	used:

$	radare2	-N	-e	scr.color=1	-e	asm.syntax=intel	-d	/bin/ls

Internally,	the	configuration	is	stored	in	a	hash	table.	The	variables	are	grouped	in	namespaces:		cfg.	,
	file.	,		dbg.	,		scr.		and	so	on.

To	get	a	list	of	all	configuration	variables	just	type		e		in	the	command	line	prompt.	To	limit	the	output
to	 a	 selected	 namespace,	 pass	 it	with	 an	 ending	dot	 to	 	e	.	 For	 example,	 	e	file.	 	 will	 display	 all
variables	defined	inside	the	"file"	namespace.

To	get	help	about		e		command	type		e?	:

Configuration

39

Usage:	e[?]	[var[=value]]

e?														show	this	help

e?asm.bytes					show	description

e??													list	config	vars	with	description

e															list	config	vars

e-														reset	config	vars

e*														dump	config	vars	in	r	commands

e!a													invert	the	boolean	value	of	'a'	var

er	[key]								set	config	key	as	readonly.	no	way	back

ec	[k]	[color]		set	color	for	given	key	(prompt,	offset,	...)

e	a													get	value	of	var	'a'

e	a=b											set	var	'a'	the	'b'	value

env	[k[=v]]					get/set	environment	variable

A	simpler	alternative	to	the		e		command	is	accessible	from	the	visual	mode.	Type		Ve		 to	enter	it,	use
arrows	(up,	down,	left,	right)	to	navigate	the	configuration,	and	 	q		 to	exit	it.	The	start	screen	for	the
visual	configuration	edit	looks	like	this:

[EvalSpace]

				>		anal

							asm

							scr

							asm

							bin

							cfg

							diff

							dir

							dbg

							cmd

							fs

							hex

							http

							graph

							hud

							scr

							search

							io

For	configuration	values	that	can	take	one	of	several	values,	you	can	use	the	 	=?		operator	to	get	a	list
of	valid	values:

[0x00000000]>	e	scr.nkey	=	?

scr.nkey	=	fun,	hit,	flag

Configuration

40

Configuration

41

Colors
Console	 access	 is	wrapped	 in	API	 that	 permits	 to	 show	 the	 output	 of	 any	 command	 as	ANSI,	W32
Console	or	HTML	formats.	This	allows	radare's	core	to	run	inside	environments	with	limited	displaying
capabilities,	like	kernels	or	embedded	devices.	It	is	still	possible	to	receive	data	from	it	in	your	favorite
format.

To	 enable	 colors	 support	 by	 default,	 add	 a	 corresponding	 configuration	 option	 to	 the	 .radare2
configuration	file:

$	echo	'e	scr.color=1'	>>	~/.radare2rc

Note	 that	 enabling	 colors	 is	 not	 a	 boolean	option.	 Instead,	 it	 is	 a	 number	 because	 there	 are	 different
color	depth	levels.	This	is:

0:	black	and	white
1:	16	basic	ANSI	colors
2:	256	scale	colors
3:	24bit	true	color

The	reason	for	having	such	user-defined	options	is	because	there's	no	standard	or	portable	way	for	the
terminal	 programs	 to	 query	 the	 console	 to	 determine	 the	 best	 configuration,	 same	 goes	 for	 charset
encodings,	so	r2	allows	you	to	choose	that	by	hand.

Usually,	serial	consoles	may	work	with	0	or	1,	while	xterms	may	support	up	to	3.	RCons	will	try	to	find
the	closest	color	scheme	for	your	theme	when	you	choose	a	different	them	with	the		eco		command.

It	is	possible	to	configure	the	color	of	almost	any	element	of	disassembly	output.	For	*NIX	terminals,	r2
accepts	color	specification	in	RGB	format.	To	change	the	console	color	palette	use		ec		command.

Type	 	ec		 to	get	a	 list	of	all	currently	used	colors.	Type	 	ecs		 to	show	a	color	palette	 to	pick	colors
from:

Colors

42

Colors

43

Themes
You	 can	 create	 your	 own	 color	 theme,	 but	 radare2	 have	 its	 own	 predefined	 ones.	 Use	 the	 	eco	
command	to	list	or	select	them.

In	visual	mode	use	the		R		key	to	randomize	colors	or	choose	the	next	theme	in	the	list.

Colors

44

Configuration	Variables
Below	 is	 a	 list	 of	 the	most	 frequently	 used	 configuration	 variables.	 You	 can	 get	 a	 complete	 list	 by
issuing	 	e	 	 command	 without	 arguments.	 For	 example,	 to	 see	 all	 variables	 defined	 in	 the	 "cfg"
namespace,	issue		e	cfg.		(mind	the	ending	dot).	You	can	get	help	on	any	eval	configuration	variable
by	using		e?	cfg.	

The		e??		command	to	get	help	on	all	the	evaluable	configuration	variables	of	radare2.	As	long	as	the
output	of	this	command	is	pretty	large	you	can	combine	it	with	the	internal	grep	 	~		 to	filter	for	what
you	are	looking	for:

The	Visual	mode	has	an	eval	browser	that	is	accessible	through	the		Vbe		command.

asm.arch

Defines	the	target	CPU	architecture	used	for	disassembling	(pd	,	 	pD		 commands)	and	code	analysis
(a		command).	You	can	find	the	list	of	possible	values	by	looking	at	the	result	of	 	e	asm.arch=?		or
	rasm2	-L	.	It	is	quite	simple	to	add	new	architectures	for	disassembling	and	analyzing	code.	There	is
an	 interface	 for	 that.	 For	 x86,	 it	 is	 used	 to	 attach	 a	 number	 of	 third-party	 disassembler	 engines,
including	GNU	binutils,	Udis86	and	a	few	handmade	ones.

asm.bits

Determines	width	in	bits	of	registers	for	the	current	architecture.	Supported	values:	8,	16,	32,	64.	Note
that	not	all	target	architectures	support	all	combinations	for	asm.bits.

asm.syntax

Changes	 syntax	 flavor	 for	disassembler	between	 Intel	 and	AT&T.	At	 the	moment,	 this	 setting	affects
Udis86	disassembler	for	Intel	32/Intel	64	targets	only.	Supported	values	are		intel		and		att	.

asm.pseudo

Configuration	Variables

45

A	boolean	value	to	choose	a	string	disassembly	engine.	"False"	indicates	a	native	one,	defined	by	the
current	architecture,	"true"	activates	a	pseudocode	strings	format;	for	example,	it	will	show	 	eax=ebx	
instead	of	a		mov	eax,	ebx	.

asm.os

Selects	a	 target	operating	system	of	currently	 loaded	binary.	Usually,	OS	is	automatically	detected	by
	rabin	-rI	.	Yet,		asm.os		can	be	used	to	switch	to	a	different	syscall	table	employed	by	another	OS.

asm.flags

If	defined	to	"true",	disassembler	view	will	have	flags	column.

asm.lines.call

If	set	 to	"true",	draw	lines	at	 the	left	of	 the	disassemble	output	(pd	,	 	pD		commands)	to	graphically
represent	 control	 flow	 changes	 (jumps	 and	 calls)	 that	 are	 targeted	 inside	 current	 block.	 Also,	 see
	asm.linesout	.

asm.linesout

When	defined	as	"true",	the	disassembly	view	will	also	draw	control	flow	lines	that	go	outside	of	the
block.

asm.linestyle

A	boolean	value	which	changes	the	direction	of	control	flow	analysis.	If	set	to	"false",	it	is	done	from
top	to	bottom	of	a	block;	otherwise,	it	goes	from	bottom	to	top.	The	"false"	setting	seems	to	be	a	better
choice	for	improved	readability	and	is	the	default	one.

asm.offset

Boolean	value	which	controls	the	visibility	of	offsets	for	individual	disassembled	instructions.

asm.trace

A	boolean	value	that	controls	displaying	of	tracing	information	(sequence	number	and	counter)	at	 the
left	of	each	opcode.	It	is	used	to	assist	with	programs	trace	analysis.

Configuration	Variables

46

asm.bytes

A	boolean	value	used	to	show	or	hide	displaying	of	raw	bytes	of	instructions.

cfg.bigendian

Change	endianness.	"true"	means	big-endian,	"false"	is	for	little-endian.	"file.id"	and	"file.flag"	both	to
be	true.

cfg.newtab

If	 this	 variable	 is	 enabled,	 help	 messages	 will	 be	 displayed	 along	 with	 command	 names	 in	 tab
completion	for	commands.

scr.color

This	variable	specifies	the	mode	for	colorized	screen	output:	"false"	(or	0)	means	no	colors,	"true"	(or	1)
means	 16-colors	mode,	 2	means	 256-colors	mode,	 3	means	 16	million-colors	mode.	 If	 your	 favorite
theme	looks	weird,	try	to	bump	this	up.

scr.seek

This	variable	accepts	 a	 full-featured	expression	or	 a	pointer/flag	 (eg.	 eip).	 If	 set,	 radare	will	 set	 seek
position	to	its	value	on	startup.

cfg.fortunes

Enables	or	disables	"fortune"	messages	displayed	at	each	radare	start.

cfg.fortunes.type

Fortunes	are	classified	by	type.	This	variable	determines	which	types	are	allowed	for	displaying	when
	cfg.fortunes		 is	 	true	,	 so	 they	can	be	 fine-tuned	on	what's	 appropriate	 for	 the	 intended	audience.
Current	types	are		tips	,		fun	,		nsfw	,		creepy	.

Configuration	Variables

47

Files
Use		r2	-H		to	list	all	the	environment	variables	that	matter	to	know	where	it	will	be	looking	for	files.
Those	paths	depend	on	the	way	(and	operating	system)	you	have	built	r2	for.

R2_PREFIX=/usr

MAGICPATH=/usr/share/radare2/2.8.0-git/magic

PREFIX=/usr

INCDIR=/usr/include/libr

LIBDIR=/usr/lib64

LIBEXT=so

RCONFIGHOME=/home/user/.config/radare2

RDATAHOME=/home/user/.local/share/radare2

RCACHEHOME=/home/user/.cache/radare2

LIBR_PLUGINS=/usr/lib/radare2/2.8.0-git

USER_PLUGINS=/home/user/.local/share/radare2/plugins

USER_ZIGNS=/home/user/.local/share/radare2/zigns

RC	Files
RC	files	are	r2	scripts	that	are	loaded	at	startup	time.	Those	files	must	be	in	3	different	places:

System

radare2	will	first	try	to	load	/usr/share/radare2/radare2rc

Your	Home

Each	user	 in	 the	system	can	have	 its	own	r2	scripts	 to	 run	on	startup	 to	select	 the	color	scheme,	and
other	custom	options	by	having	r2	commands	in	there.

~/.radare2rc
~/.config/radare2/radare2rc
~/.config/radare2/radare2rc.d/

Target	file

Files

48

If	you	want	to	run	a	script	everytime	you	open	a	file,	just	create	a	file	with	the	same	name	of	the	file	but
appending		.r2		to	it.

Files

49

Basic	Commands
Most	command	names	in	radare	are	derived	from	action	names.	They	should	be	easy	to	remember,	as
they	 are	 short.	 Actually,	 all	 commands	 are	 single	 letters.	 Subcommands	 or	 related	 commands	 are
specified	 using	 the	 second	 character	 of	 the	 command	name.	For	 example,	 	/	foo		 is	 a	 command	 to
search	plain	string,	while		/x	90	90		is	used	to	look	for	hexadecimal	pairs.

The	general	format	for	a	valid	command	(as	explained	in	the	Command	Format	chapter)	looks	like	this:

[.][times][cmd][~grep][@[@iter]addr!size][|>pipe]	;	...

For	example,

>	3s	+1024				;	seeks	three	times	1024	from	the	current	seek

If	 a	 command	 starts	with	 	=!	,	 the	 rest	 of	 the	 string	 is	 passed	 to	 the	 currently	 loaded	 IO	 plugin	 (a
debugger,	for	example).	Most	plugins	provide	help	messages	with		=!?		or		=!help	.

$	r2	-d	/bin/ls

>	=!help						;	handled	by	the	IO	plugin

If	a	command	starts	with	 	!	,	posix_system()	is	called	to	pass	the	command	to	your	shell.	Check	 	!?	
for	more	options	and	usage	examples.

>	!ls									;	run	`ls`	in	the	shell

The	meaning	of	the	arguments	(iter,	addr,	size)	depends	on	the	specific	command.	As	a	rule	of	thumb,
most	commands	take	a	number	as	an	argument	to	specify	the	number	of	bytes	to	work	with,	instead	of
the	currently	defined	block	size.	Some	commands	accept	math	expressions	or	strings.

>	px	0x17					;	show	0x17	bytes	in	hexs	at	current	seek

>	s	base+0x33	;	seeks	to	flag	'base'	plus	0x33

>	/	lib							;	search	for	'lib'	string.

Basic	Commands

50

The		@		sign	is	used	to	specify	a	temporary	offset	location	or	a	seek	position	at	which	the	command	is
executed,	instead	of	current	seek	position.	This	is	quite	useful	as	you	don't	have	to	seek	around	all	the
time.

>	p8	10	@	0x4010		;	show	10	bytes	at	offset	0x4010

>	f	patata	@	0x10	;	set	'patata'	flag	at	offset	0x10

Using		@@		you	can	execute	a	single	command	on	a	list	of	flags	matching	the	glob.	You	can	think	of	this
as	a	foreach	operation:

>	s	0

>	/	lib													;	search	'lib'	string

>	p8	20	@@	hit0_*			;	show	20	hexpairs	at	each	search	hit

The	 	>		operation	 is	used	 to	 redirect	 the	output	of	a	command	 into	a	 file	 (overwriting	 it	 if	 it	 already
exists).

>	pr	>	dump.bin			;	dump	'raw'	bytes	of	current	block	to	file	named	'dump.bin'

>	f		>	flags.txt		;	dump	flag	list	to	'flags.txt'

The		|		operation	(pipe)	is	similar	to	what	you	are	used	to	expect	from	it	in	a	*NIX	shell:	an	output	of
one	command	as	input	to	another.

[0x4A13B8C0]>	f	|	grep	section	|	grep	text

0x0805f3b0	512	section._text

0x080d24b0	512	section._text_end

You	can	pass	several	commands	in	a	single	line	by	separating	them	with	a	semicolon		;	:

>	px	;	dr

Basic	Commands

51

Seeking
To	move	around	the	file	we	are	inspecting	we	will	need	to	change	the	offset	at	which	we	are	using	the
	s		command.

The	 argument	 is	 a	 math	 expression	 that	 can	 contain	 flag	 names,	 parenthesis,	 addition,	 substraction,
multiplication	of	immediates	of	contents	of	memory	using	brackets.

Some	example	commands:

[0x00000000]>	s	0x10

[0x00000010]>	s+4

[0x00000014]>	s-

[0x00000010]>	s+

[0x00000014]>

Observe	how	the	prompt	offset	changes.	The	first	line	moves	the	current	offset	to	the	address	0x10.

The	second	does	a	relative	seek	4	bytes	forward.

And	finally,	the	last	2	commands	are	undoing,	and	redoing	the	last	seek	operations.

Instead	 of	 using	 just	 numbers,	 we	 can	 use	 complex	 expressions,	 or	 basic	 arithmetic	 operations	 to
represent	the	address	to	seek.

To	do	this,	check	the	?$?	Help	message	which	describes	the	internal	variables	that	can	be	used	in	the
expressions.	For	example,	this	is	the	same	as	doing	s+4	.

[0x00000000]>	s	$$+4

From	 the	 debugger	 (or	when	 emulating)	we	 can	 also	 use	 the	 register	 names	 as	 references.	 They	 are
loaded	as	flags	with	the		.dr*		command,	which	happens	under	the	hood.

[0x00000000]>	s	rsp+0x40

Here's	the	full	help	of	the		s		command.	We	will	explain	in	more	detail	below.

Seeking

52

[0x00000000]>	s?

Usage:	s[+-]	[addr]

s																	print	current	address

s	0x320											seek	to	this	address

s-																undo	seek

s+																redo	seek

s*																list	undo	seek	history

s++															seek	blocksize	bytes	forward

s--															seek	blocksize	bytes	backward

s+	512												seek	512	bytes	forward

s-	512												seek	512	bytes	backward

sg/sG													seek	begin	(sg)	or	end	(sG)	of	section	or	file

s.hexoff										Seek	honoring	a	base	from	core->offset

sa	[[+-]a]	[asz]		seek	asz	(or	bsize)	aligned	to	addr

sn/sp													seek	next/prev	scr.nkey

s/	DATA											search	for	next	occurrence	of	'DATA'

s/x	9091										search	for	next	occurrence	of	\x90\x91

sb																seek	aligned	to	bb	start

so	[num]										seek	to	N	next	opcode(s)

sf																seek	to	next	function	(f->addr+f->size)

sC	str												seek	to	comment	matching	given	string

sr	pc													seek	to	register

>	3s++								;	3	times	block-seeking

>	s	10+0x80			;	seek	at	0x80+10

If	 you	want	 to	 inspect	 the	 result	 of	 a	math	 expression,	 you	 can	 evaluate	 it	 using	 the	 	?	 	 command.
Simply	pass	the	expression	as	an	argument.	The	result	can	be	displayed	in	hexadecimal,	decimal,	octal
or	binary	formats.

>	?	0x100+200

0x1C8	;	456d	;	710o	;	1100	1000

There	are	also	subcommands	of		?		that	display	the	output	in	one	specific	format	(base	10,	base	16	,...).
See		?v		and		?vi	.

In	 the	visual	mode,	you	can	press	 	u		 (undo)	or	 	U		 (redo)	 inside	 the	 seek	 history	 to	 return	 back	 to
previous	or	forward	to	the	next	location.

Open	file
As	a	test	file,	let's	use	a	simple	 	hello_world.c		compiled	 in	Linux	ELF	format.	After	we	compile	 it
let's	open	it	with	radare2:

Seeking

53

$	r2	hello_world

Now	we	have	the	command	prompt:

[0x00400410]>

And	it	is	time	to	go	deeper.

Seeking	at	any	position
All	seeking	commands	that	take	an	address	as	a	command	parameter	can	use	any	numeral	base	such	as
hex,	octal,	binary	or	decimal.

Seek	to	an	address	0x0.	An	alternative	command	is	simply		0x0	

[0x00400410]>	s	0x0

[0x00000000]>

Print	current	address:

[0x00000000]>	s

0x0

[0x00000000]>

There	is	an	alternate	way	to	print	current	position:		?v	$$.

Seek	N	positions	forward,	space	is	optional:

[0x00000000]>	s+	128

[0x00000080]>

Undo	last	two	seeks	to	return	to	the	initial	address:

[0x00000080]>	s-

[0x00000000]>	s-

[0x00400410]>

We	are	back	at	0x00400410.

Seeking

54

There's	also	a	command	to	show	the	seek	history:

[0x00400410]>	s*

f	undo_3	@	0x400410

f	undo_2	@	0x40041a

f	undo_1	@	0x400410

f	undo_0	@	0x400411

#	Current	undo/redo	position.

f	redo_0	@	0x4005b4

Seeking

55

Block	Size
The	block	size	determines	how	many	bytes	radare2	commands	will	process	when	not	given	an	explicit
size	argument.	You	can	temporarily	change	the	block	size	by	specifying	a	numeric	argument	to	the	print
commands.	For	example		px	20	.

[0xB7F9D810]>	b?

|Usage:	b[f]	[arg]	Get/Set	block	size

|	b								display	current	block	size

|	b	33					set	block	size	to	33

|	b+3						increase	blocksize	by	3

|	b-16					decrease	blocksize	by	16

|	b	eip+4		numeric	argument	can	be	an	expression

|	bf	foo			set	block	size	to	flag	size

|	bm	1M				set	max	block	size

The		b		command	is	used	to	change	the	block	size:

[0x00000000]>	b	0x100			;	block	size	=	0x100

[0x00000000]>	b	+16					;		...	=	0x110

[0x00000000]>	b	-32					;		...	=	0xf0

The	 	bf	 	 command	 is	 used	 to	 change	 the	 block	 size	 to	 value	 specified	 by	 a	 flag.	 For	 example,	 in
symbols,	the	block	size	of	the	flag	represents	the	size	of	the	function.

[0x00000000]>	bf	sym.main				;	block	size	=	sizeof(sym.main)

[0x00000000]>	pd	@	sym.main		;	disassemble	sym.main

...

You	can	combine	two	operations	in	a	single	one	(pdf):

[0x00000000]>	pdf	@	sym.main

Block	Size

56

Sections
The	 concept	 of	 sections	 is	 tied	 to	 the	 information	 extracted	 from	 the	 binary.	 We	 can	 display	 this
information	by	using	the		i		command.

Displaying	information	about	sections:

[0x00005310]>	iS

[Sections]

00	0x00000000					0	0x00000000					0	----

01	0x00000238				28	0x00000238				28	-r--	.interp

02	0x00000254				32	0x00000254				32	-r--	.note.ABI_tag

03	0x00000278			176	0x00000278			176	-r--	.gnu.hash

04	0x00000328		3000	0x00000328		3000	-r--	.dynsym

05	0x00000ee0		1412	0x00000ee0		1412	-r--	.dynstr

06	0x00001464			250	0x00001464			250	-r--	.gnu.version

07	0x00001560			112	0x00001560			112	-r--	.gnu.version_r

08	0x000015d0		4944	0x000015d0		4944	-r--	.rela.dyn

09	0x00002920		2448	0x00002920		2448	-r--	.rela.plt

10	0x000032b0				23	0x000032b0				23	-r-x	.init

...

As	you	may	know,	binaries	have	sections	and	maps.	The	sections	define	the	contents	of	a	portion	of	the
file	that	can	be	mapped	in	memory	(or	not).	What	is	mapped	is	defined	by	the	segments.

Before	 the	 IO	refactoring	done	by	condret,	 the	 	S		 command	was	used	 to	manage	what	we	now	call
maps.	Currently	the		S		command	is	deprecated	because		iS		and		om		should	be	enough.

Firmware	 images,	 bootloaders	 and	binary	 files	 usually	 place	various	 sections	of	 a	 binary	 at	 different
addresses	 in	memory.	 To	 represent	 this	 behavior,	 radare	 offers	 the	 	iS	 .	 Use	 	iS?	 	 to	 get	 the	 help
message.	To	list	all	created	sections	use		iS		(or		iSj		to	get	the	json	format).	The	 	iS=		will	show	the
region	bars	in	ascii-art.

You	can	create	a	new	mapping	using	the		om		subcommand	as	follows:

om	fd	vaddr	[size]	[paddr]	[rwx]	[name]

For	Example:

[0x0040100]>	om	4	0x00000100	0x00400000	0x0001ae08	rwx	test

Sections

57

You	can	also	use		om		command	to	view	information	about	mapped	sections:

[0x00401000]>	om

	6	fd:	4	+0x0001ae08	0x00000100	-	0x004000ff	rwx	test

	5	fd:	3	+0x00000000	0x00000000	-	0x0000055f	r--	fmap.LOAD0

	4	fd:	3	+0x00001000	0x00001000	-	0x000011e4	r-x	fmap.LOAD1

	3	fd:	3	+0x00002000	0x00002000	-	0x0000211f	r--	fmap.LOAD2

	2	fd:	3	+0x00002de8	0x00003de8	-	0x0000402f	r--	fmap.LOAD3

	1	fd:	4	+0x00000000	0x00004030	-	0x00004037	rw-	mmap.LOAD3

Use		om?		to	get	all	the	possible	subcommands.	To	list	all	the	defined	maps	use		om		(or		omj		to	get	the
json	format	or		om*		to	get	the	r2	commands	format).	To	get	the	ascii	art	view	use		om=	.

It	is	also	possible	to	delete	the	mapped	section	using	the		om-mapid		command.

For	Example:

[0x00401000]>	om-6

Sections

58

Mapping	Files
Radare's	I/O	subsystem	allows	you	to	map	the	contents	of	files	into	the	same	I/O	space	used	to	contain	a
loaded	binary.	New	contents	can	be	placed	at	random	offsets.

The		o		command	permits	the	user	to	open	a	file,	this	is	mapped	at	offset	0	unless	it	has	a	known	binary
header	and	then	the	maps	are	created	in	virtual	addresses.

Sometimes,	we	want	to	rebase	a	binary,	or	maybe	we	want	to	load	or	map	the	file	in	a	different	address.

When	 launching	 r2,	 the	 base	 address	 can	 be	 changed	 with	 the	 	-B	 	 flag.	 But	 you	 must	 notice	 the
difference	when	opening	files	with	unknown	headers,	like	bootloaders,	so	we	need	to	map	them	using
the		-m		flag	(or	specifying	it	as	argument	to	the		o		command).

radare2	is	able	to	open	files	and	map	portions	of	them	at	random	places	in	memory	specifying	attributes
like	permissions	and	name.	It	is	the	perfect	basic	tooling	to	reproduce	an	environment	like	a	core	file,	a
debug	session,	by	also	loading	and	mapping	all	the	libraries	the	binary	depends	on.

Opening	files	(and	mapping	them)	is	done	using	the		o		(open)	command.	Let's	read	the	help:

Mapping	Files

59

[0x00000000]>	o?

|Usage:	o	[com-]	[file]	([offset])

|	o																									list	opened	files

|	o-1																							close	file	descriptor	1

|	o-!*																						close	all	opened	files

|	o--																							close	all	files,	analysis,	binfiles,	flags,	same	as	!r2	--

|	o	[file]																		open	[file]	file	in	read-only

|	o+	[file]																	open	file	in	read-write	mode

|	o	[file]	0x4000	rwx							map	file	at	0x4000

|	oa[-]	[A]	[B]	[filename]		Specify	arch	and	bits	for	given	file

|	oq																								list	all	open	files

|	o*																								list	opened	files	in	r2	commands

|	o.	[len]																		open	a	malloc://[len]	copying	the	bytes	from	current	offset

|	o=																								list	opened	files	(ascii-art	bars)

|	ob[?]	[lbdos]	[...]							list	opened	binary	files	backed	by	fd

|	oc	[file]																	open	core	file,	like	relaunching	r2

|	of	[file]																	open	file	and	map	it	at	addr	0	as	read-only

|	oi[-|idx]																	alias	for	o,	but	using	index	instead	of	fd

|	oj[?]																					list	opened	files	in	JSON	format

|	oL																								list	all	IO	plugins	registered

|	om[?]																					create,	list,	remove	IO	maps

|	on	[file]	0x4000										map	raw	file	at	0x4000	(no	r_bin	involved)

|	oo[?]																					reopen	current	file	(kill+fork	in	debugger)

|	oo+																							reopen	current	file	in	read-write

|	ood[r]	[args]													reopen	in	debugger	mode	(with	args)

|	oo[bnm]	[...]													see	oo?	for	help

|	op	[fd]																			prioritize	given	fd	(see	also	ob)

|	ox	fd	fdx																	exchange	the	descs	of	fd	and	fdx	and	keep	the	mapping

Prepare	a	simple	layout:

$	rabin2	-l	/bin/ls

[Linked	libraries]

libselinux.so.1

librt.so.1

libacl.so.1

libc.so.6

4	libraries

Map	a	file:

[0x00001190]>	o	/bin/zsh	0x499999

List	mapped	files:

Mapping	Files

60

[0x00000000]>	o

-	6	/bin/ls	@	0x0	;	r

-	10	/lib/ld-linux.so.2	@	0x100000000	;	r

-	14	/bin/zsh	@	0x499999	;	r

Print	hexadecimal	values	from	/bin/zsh:

[0x00000000]>	px	@	0x499999

Unmap	files	using	the		o-		command.	Pass	the	required	file	descriptor	to	it	as	an	argument:

[0x00000000]>	o-14

Mapping	Files

61

Print	Modes
One	of	 the	key	 features	of	 radare2	 is	displaying	 information	 in	many	 formats.	The	goal	 is	 to	offer	 a
selection	of	display	choices	to	interpret	in	the	best	possible	way	binary	data.

Binary	data	can	be	 represented	as	 integers,	 shorts,	 longs,	 floats,	 timestamps,	hexpair	 strings,	or	more
complex	formats	like	C	structures,	disassembly	listings,	decompilation	listing,	be	a	result	of	an	external
processing...

Below	is	a	list	of	available	print	modes	listed	by		p?	:

[0x00005310]>	p?

|Usage:	p[=68abcdDfiImrstuxz]	[arg|len]	[@addr]

|	p-[?][jh]	[mode]									bar|json|histogram	blocks	(mode:	e?search.in)

|	p=[?][bep]	[N]	[len]	[b]	show	entropy/printable	chars/chars	bars

|	p2	[len]																	8x8	2bpp-tiles

|	p3	[file]																print	stereogram	(3D)

|	p6[de]	[len]													base64	decode/encode

|	p8[?][j]	[len]											8bit	hexpair	list	of	bytes

|	pa[edD]	[arg]												pa:assemble		pa[dD]:disasm	or	pae:	esil	from	hexpairs

|	pA[n_ops]																show	n_ops	address	and	type

|	p[b|B|xb]	[len]	([skip])	bindump	N	bits	skipping	M

|	pb[?]	[n]																bitstream	of	N	bits

|	pB[?]	[n]																bitstream	of	N	bytes

|	pc[?][p]	[len]											output	C	(or	python)	format

|	pC[d]	[rows]													print	disassembly	in	columns	(see	hex.cols	and	pdi)

|	pd[?]	[sz]	[a]	[b]							disassemble	N	opcodes	(pd)	or	N	bytes	(pD)

|	pf[?][.nam]	[fmt]								print	formatted	data	(pf.name,	pf.name	$<expr>)

|	ph[?][=|hash]	([len])				calculate	hash	for	a	block

|	pj[?]	[len]														print	as	indented	JSON

|	p[iI][df]	[len]										print	N	ops/bytes	(f=func)	(see	pi?	and	pdi)

|	p[kK]	[len]														print	key	in	randomart	(K	is	for	mosaic)

|	pm[?]	[magic]												print	libmagic	data	(see	pm?	and	/m?)

|	pq[?][iz]	[len]										print	QR	code	with	the	first	Nbytes	of	the	current	block

|	pr[?][glx]	[len]									print	N	raw	bytes	(in	lines	or	hexblocks,	'g'unzip)

|	ps[?][pwz]	[len]									print	pascal/wide/zero-terminated	strings

|	pt[?][dn]	[len]										print	different	timestamps

|	pu[?][w]	[len]											print	N	url	encoded	bytes	(w=wide)

|	pv[?][jh]	[mode]									show	variable/pointer/value	in	memory

|	pwd																						display	current	working	directory

|	px[?][owq]	[len]									hexdump	of	N	bytes	(o=octal,	w=32bit,	q=64bit)

|	pz[?]	[len]														print	zoom	view	(see	pz?	for	help)

[0x00005310]>

Print	Modes

62

Tip:	when	using	json	output,	you	can	append	the	 	~{}		to	the	command	to	get	a	pretty-printed	version
of	the	output:

[0x00000000]>	oj

[{"raised":false,"fd":563280,"uri":"malloc://512","from":0,"writable":true,"size":512,"o

verlaps":false}]

[0x00000000]>	oj~{}

[

				{

								"raised":	false,

								"fd":	563280,

								"uri":	"malloc://512",

								"from":	0,

								"writable":	true,

								"size":	512,

								"overlaps":	false

				}

]

For	more	on	the	magical	powers	of		~		see	the	help	in		?@?	,	and	the	Command	Format	chapter	earlier
in	the	book.

Hexadecimal	View
	px	 	 gives	 a	 user-friendly	 output	 showing	 16	 pairs	 of	 numbers	 per	 row	 with	 offsets	 and	 raw
representations:

Show	Hexadecimal	Words	Dump	(32	bits)

Print	Modes

63

8	bits	Hexpair	List	of	Bytes

[0x00404888]>	p8	16

31ed4989d15e4889e24883e4f0505449

Show	Hexadecimal	Quad-words	Dump	(64	bits)

Date/Time	Formats

Currently	supported	timestamp	output	modes	are:

[0x00404888]>	pt?

|Usage:	pt[dn?]

|	pt						print	unix	time	(32	bit	cfg.big_endian)

|	ptd					print	dos	time	(32	bit	cfg.big_endian)

|	ptn					print	ntfs	time	(64	bit	!cfg.big_endian)

|	pt?					show	help	message

For	example,	you	can	'view'	the	current	buffer	as	timestamps	in	the	ntfs	time:

[0x08048000]>	e	cfg.bigendian	=	false

[0x08048000]>	pt	4

29:04:32948	23:12:36	+0000

[0x08048000]>	e	cfg.bigendian	=	true

[0x08048000]>	pt	4

20:05:13001	09:29:21	+0000

As	you	can	see,	the	endianness	affects	the	result.	Once	you	have	printed	a	timestamp,	you	can	grep	the
output,	for	example,	by	year:

[0x08048000]>	pt	~1974	|	wc	-l

15

[0x08048000]>	pt	~2022

27:04:2022	16:15:43	+0000

Print	Modes

64

The	 default	 date	 format	 can	 be	 configured	 using	 the	 	cfg.datefmt		 variable.	 Formatting	 rules	 for	 it
follow	the	well	known	strftime(3)	format.	Check	the	manpage	for	more	details,	but	these	are	the	most
important:

%a		The	abbreviated	name	of	the	day	of	the	week	according	to	the	current	locale.

%A		The	full	name	of	the	day	of	the	week	according	to	the	current	locale.

%d		The	day	of	the	month	as	a	decimal	number	(range	01	to	31).

%D		Equivalent	to	%m/%d/%y.		(Yecch—for	Americans	only).

%H		The	hour	as	a	decimal	number	using	a	24-hour	clock	(range	00	to	23).

%I		The	hour	as	a	decimal	number	using	a	12-hour	clock	(range	01	to	12).

%m		The	month	as	a	decimal	number	(range	01	to	12).

%M		The	minute	as	a	decimal	number	(range	00	to	59).

%p		Either	"AM"	or	"PM"	according	to	the	given	time	value.

%s		The	number	of	seconds	since	the	Epoch,	1970-01-01	00:00:00		+0000	(UTC).	(TZ)

%S		The	second	as	a	decimal	number	(range	00	to	60).		(The	range	is	up	to	60	to	allow	fo

r	occasional	leap	seconds.)

%T		The	time	in	24-hour	notation	(%H:%M:%S).		(SU)

%y		The	year	as	a	decimal	number	without	a	century	(range	00	to	99).

%Y		The	year	as	a	decimal	number	including	the	century.

%z		The	+hhmm	or	-hhmm	numeric	timezone	(that	is,	the	hour	and	minute	offset	from	UTC).	

(SU)

%Z		The	timezone	name	or	abbreviation.

Basic	Types

There	are	print	modes	available	for	all	basic	types.	If	you	are	interested	in	a	more	complex	structure,
type		pf??		for	format	characters	and		pf???		for	examples:

Print	Modes

65

[0x00499999]>	pf??

|pf:	pf[.k[.f[=v]]|[v]]|[n]|[0|cnt][fmt]	[a0	a1	...]

|	Format:

|		b							byte	(unsigned)

|		B							resolve	enum	bitfield	(see	t?)

|		c							char	(signed	byte)

|		d							0x%%08x	hexadecimal	value	(4	bytes)	(see	%%i	and	%%x)

|		D							disassemble	one	opcode

|		e							temporally	swap	endian

|		E							resolve	enum	name	(see	t?)

|		f							float	value	(4	bytes)

|		F							double	value	(8	bytes)

|		i							%%i	signed	integer	value	(4	bytes)	(see	%%d	and	%%x)

|		n							next	char	specifies	size	of	signed	value	(1,	2,	4	or	8	byte(s))

|		N							next	char	specifies	size	of	unsigned	value	(1,	2,	4	or	8	byte(s))

|		o							0x%%08o	octal	value	(4	byte)

|		p							pointer	reference	(2,	4	or	8	bytes)

|		q							quadword	(8	bytes)

|		r							CPU	register	`pf	r	(eax)plop`

|		s							32bit	pointer	to	string	(4	bytes)

|		S							64bit	pointer	to	string	(8	bytes)

|		t							UNIX	timestamp	(4	bytes)

|		T							show	Ten	first	bytes	of	buffer

|		u							uleb128	(variable	length)

|		w							word	(2	bytes	unsigned	short	in	hex)

|		x							0x%%08x	hex	value	and	flag	(fd	@	addr)	(see	%%d	and	%%i)

|		X							show	formatted	hexpairs

|		z							\0	terminated	string

|		Z							\0	terminated	wide	string

|		?							data	structure	`pf	?	(struct_name)example_name`

|		*							next	char	is	pointer	(honors	asm.bits)

|		+							toggle	show	flags	for	each	offset

|		:							skip	4	bytes

|		.							skip	1	byte

Use	triple-question-mark		pf???		to	get	some	examples	using	print	format	strings.

Print	Modes

66

[0x00499999]>	pf???

|pf:	pf[.k[.f[=v]]|[v]]|[n]|[0|cnt][fmt]	[a0	a1	...]

|	Examples:

|	pf	3xi	foo	bar																															3-array	of	struct,	each	with	named	fields

:	'foo'	as	hex,	and	'bar'	as	int

|	pf	B	(BitFldType)arg_name`																			bitfield	type

|	pf	E	(EnumType)arg_name`																					enum	type

|	pf.obj	xxdz	prev	next	size	name														Define	the	obj	format	as	xxdz

|	pf	obj=xxdz	prev	next	size	name														Same	as	above

|	pf	iwq	foo	bar	troll																									Print	the	iwq	format	with	foo,	bar,	troll

	as	the	respective	names	for	the	fields

|	pf	0iwq	foo	bar	troll																								Same	as	above,	but	considered	as	a	union	

(all	fields	at	offset	0)

|	pf.plop	?	(troll)mystruct																				Use	structure	troll	previously	defined

|	pf	10xiz	pointer	length	string															Print	a	size	10	array	of	the	xiz	struct	w

ith	its	field	names

|	pf	{integer}?	(bifc)																									Print	integer	times	the	following	format	

(bifc)

|	pf	[4]w[7]i																																		Print	an	array	of	4	words	and	then	an	arr

ay	of	7	integers

|	pf	ic...?i	foo	bar	"(pf	xw	yo	foo)troll"	yo		Print	nested	anonymous	structres

|	pfn2																																									print	signed	short	(2	bytes)	value.	Use	N

	insted	of	n	for	printing	unsigned	values

Some	examples	are	below:

[0x4A13B8C0]>	pf	i

0x00404888	=	837634441

[0x4A13B8C0]>	pf

0x00404888	=	837634432.000000

High-level	Languages	Views
Valid	print	code	formats	for	human-readable	languages	are:

	pc		C
	pc*		print	'wx'	r2	commands
	pch		C	half-words	(2	byte)
	pcw		C	words	(4	byte)
	pcd		C	dwords	(8	byte)
	pca		GAS	.byte	blob
	pcA		.bytes	with	instructions	in	comments

Print	Modes

67

	pcs		string
	pcS		shellscript	that	reconstructs	the	bin
	pcj		json
	pcJ		javascript
	pcp		python

If	we	need	to	create	a	.c	file	containing	a	binary	blob,	use	the	 	pc		command,	that	creates	this	output.
The	default	 size	 is	 like	 in	many	other	commands:	 the	block	size,	which	can	be	changed	with	 the	 	b	
command.

But	we	can	just	temporarily	override	this	block	size	by	expressing	it	as	an	argument.

[0xB7F8E810]>	pc	32

#define	_BUFFER_SIZE	32

unsigned	char	buffer[_BUFFER_SIZE]	=	{

0x89,	0xe0,	0xe8,	0x49,	0x02,	0x00,	0x00,	0x89,	0xc7,	0xe8,	0xe2,	0xff,	0xff,	0xff,	0x81

,	0xc3,	0xd6,	0xa7,	0x01,	0x00,	0x8b,	0x83,	0x00,	0xff,	0xff,	0xff,	0x5a,	0x8d,	0x24,	0x

84,	0x29,	0xc2	};

That	cstring	can	be	used	in	many	programming	languages,	not	just	C.

[0x7fcd6a891630]>	pcs

"\x48\x89\xe7\xe8\x68\x39\x00\x00\x49\x89\xc4\x8b\x05\xef\x16\x22\x00\x5a\x48\x8d\x24\xc

4\x29\xc2\x52\x48\x89\xd6\x49\x89\xe5\x48\x83\xe4\xf0\x48\x8b\x3d\x06\x1a

Strings

Strings	are	probably	one	of	the	most	important	entry	points	when	starting	to	reverse	engineer	a	program
because	they	usually	reference	information	about	functions'	actions	(asserts,	debug	or	info	messages...).
Therefore,	radare	supports	various	string	formats:

Print	Modes

68

[0x00000000]>	ps?

|Usage:	ps[zpw]	[N]Print	String

|	ps			print	string

|	pss		print	string	in	screen	(wrap	width)

|	psi		print	string	inside	curseek

|	psb		print	strings	in	current	block

|	psx		show	string	with	escaped	chars

|	psz		print	zero	terminated	string

|	psp		print	pascal	string

|	psu		print	utf16	unicode	(json)

|	psw		print	16bit	wide	string

|	psW		print	32bit	wide	string

|	psj		print	string	in	JSON	format

Most	 strings	 are	 zero-terminated.	 Below	 there	 is	 an	 example	 using	 the	 debugger	 to	 continue	 the
execution	 of	 a	 program	 until	 it	 executes	 the	 'open'	 syscall.	 When	 we	 recover	 the	 control	 over	 the
process,	we	get	the	arguments	passed	to	the	syscall,	pointed	by	%ebx.	In	the	case	of	the	'open'	call,	it	is
a	zero	terminated	string	which	we	can	inspect	using		psz	.

[0x4A13B8C0]>	dcs	open

0x4a14fc24	syscall(5)	open	(0x4a151c91	0x00000000	0x00000000)	=	0xffffffda

[0x4A13B8C0]>	dr

		eax		0xffffffda				esi		0xffffffff				eip				0x4a14fc24

		ebx		0x4a151c91				edi		0x4a151be1				oeax			0x00000005

		ecx		0x00000000				esp		0xbfbedb1c				eflags	0x200246

		edx		0x00000000				ebp		0xbfbedbb0				cPaZstIdor0	(PZI)

[0x4A13B8C0]>

[0x4A13B8C0]>	psz	@	0x4a151c91

/etc/ld.so.cache

Print	Memory	Contents

It	is	also	possible	to	print	various	packed	data	types	using	the		pf		command:

[0xB7F08810]>	pf	xxS	@	rsp

0x7fff0d29da30	=	0x00000001

0x7fff0d29da34	=	0x00000000

0x7fff0d29da38	=	0x7fff0d29da38	->	0x0d29f7ee	/bin/ls

This	can	be	used	to	look	at	the	arguments	passed	to	a	function.	To	achieve	this,	simply	pass	a	 'format
memory	string'	 as	an	argument	 to	 	pf	,	 and	 temporally	 change	 the	 current	 seek	position/offset	 using
	@	.	It	is	also	possible	to	define	arrays	of	structures	with		pf	.	To	do	this,	prefix	the	format	string	with	a

Print	Modes

69

numeric	value.	You	can	also	define	a	name	for	each	field	of	the	structure	by	appending	them	as	a	space-
separated	arguments	list.

[0x4A13B8C0]>	pf	2*xw	pointer	type	@	esp

0x00404888	[0]	{

			pointer	:

(*0xffffffff8949ed31)						type	:	0x00404888	=	0x8949ed31

			0x00404890	=	0x48e2

}

0x00404892	[1]	{

(*0x50f0e483)				pointer	:	0x00404892	=	0x50f0e483

					type	:	0x0040489a	=	0x2440

}

A	practical	example	for	using		pf		on	a	binary	of	a	GStreamer	plugin:

$	radare	~/.gstreamer-0.10/plugins/libgstflumms.so

[0x000028A0]>	seek	sym.gst_plugin_desc

[0x000185E0]>	pf	iissxsssss	major	minor	name	desc	_init	version	\

	license	source	package	origin

				major	:	0x000185e0	=	0

				minor	:	0x000185e4	=	10

					name	:	0x000185e8	=	0x000185e8	flumms

					desc	:	0x000185ec	=	0x000185ec	Fluendo	MMS	source

				_init	:	0x000185f0	=	0x00002940

		version	:	0x000185f4	=	0x000185f4	0.10.15.1

		license	:	0x000185f8	=	0x000185f8	unknown

			source	:	0x000185fc	=	0x000185fc	gst-fluendo-mms

		package	:	0x00018600	=	0x00018600	Fluendo	MMS	source

			origin	:	0x00018604	=	0x00018604	http://www.fluendo.com

Disassembly
The	 	pd	 	 command	 is	 used	 to	 disassemble	 code.	 It	 accepts	 a	 numeric	 value	 to	 specify	 how	 many
instructions	 should	 be	 disassembled.	 The	 	pD	 	 command	 is	 similar	 but	 instead	 of	 a	 number	 of
instructions,	it	decompiles	a	given	number	of	bytes.

	d		:	disassembly	N	opcodes	count	of	opcodes
	D		:	asm.arch	disassembler	bsize	bytes

[0x00404888]>	pd	1

												;--	entry0:

												0x00404888				31ed									xor	ebp,	ebp

Print	Modes

70

Selecting	Target	Architecture

The	architecture	flavor	for	the	disassembler	is	defined	by	the		asm.arch		eval	variable.	You	can	use	 	e
asm.arch=??		to	list	all	available	architectures.

[0x00005310]>	e	asm.arch=??

_dAe		_8_16						6502								LGPL3			6502/NES/C64/Tamagotchi/T-1000	CPU

_dAe		_8									8051								PD						8051	Intel	CPU

dA		_16_32					arc									GPL3				Argonaut	RISC	Core

a___		_16_32_64		arm.as						LGPL3			as	ARM	Assembler	(use	ARM_AS	environment)

adAe		_16_32_64		arm									BSD					Capstone	ARM	disassembler

dA		_16_32_64		arm.gnu					GPL3				Acorn	RISC	Machine	CPU

_d__		_16_32					arm.winedbg	LGPL2			WineDBG's	ARM	disassembler

adAe		_8_16						avr									GPL					AVR	Atmel

adAe		_16_32_64		bf										LGPL3			Brainfuck

dA		_32								chip8							LGPL3			Chip8	disassembler

dA		_16								cr16								LGPL3			cr16	disassembly	plugin

dA		_32								cris								GPL3				Axis	Communications	32-bit	embedded	processor

adA_		_32_64					dalvik						LGPL3			AndroidVM	Dalvik

ad__		_16								dcpu16						PD						Mojang's	DCPU-16

dA		_32_64					ebc									LGPL3			EFI	Bytecode

adAe		_16								gb										LGPL3			GameBoy(TM)	(z80-like)

_dAe		_16								h8300							LGPL3			H8/300	disassembly	plugin

_dAe		_32								hexagon					LGPL3			Qualcomm	Hexagon	(QDSP6)	V6

_d__		_32								hppa								GPL3				HP	PA-RISC

_dAe		_0									i4004							LGPL3			Intel	4004	microprocessor

dA		_8									i8080							BSD					Intel	8080	CPU

adA_		_32								java								Apache		Java	bytecode

_d__		_32								lanai							GPL3				LANAI

...

Configuring	the	Disassembler

There	 are	multiple	 options	which	 can	 be	 used	 to	 configure	 the	 output	 of	 the	 disassembler.	All	 these
options	are	described	in		e?	asm.	

Print	Modes

71

[0x00005310]>	e?	asm.

asm.anal:	Analyze	code	and	refs	while	disassembling	(see	anal.strings)

asm.arch:	Set	the	arch	to	be	used	by	asm

asm.assembler:	Set	the	plugin	name	to	use	when	assembling

asm.bbline:	Show	empty	line	after	every	basic	block

asm.bits:	Word	size	in	bits	at	assembler

asm.bytes:	Display	the	bytes	of	each	instruction

asm.bytespace:	Separate	hexadecimal	bytes	with	a	whitespace

asm.calls:	Show	callee	function	related	info	as	comments	in	disasm

asm.capitalize:	Use	camelcase	at	disassembly

asm.cmt.col:	Column	to	align	comments

asm.cmt.flgrefs:	Show	comment	flags	associated	to	branch	reference

asm.cmt.fold:	Fold	comments,	toggle	with	Vz

...

Currently	there	are	136		asm.		configuration	variables	so	we	do	not	list	them	all.

Disassembly	Syntax

The		asm.syntax		variable	is	used	to	change	the	flavor	of	the	assembly	syntax	used	by	a	disassembler
engine.	To	switch	between	Intel	and	AT&T	representations:

e	asm.syntax	=	intel

e	asm.syntax	=	att

You	can	also	check	 	asm.pseudo	,	which	 is	an	experimental	pseudocode	view,	and	 	asm.esil		 which
outputs	 ESIL	 ('Evaluable	 Strings	 Intermediate	 Language').	 ESIL's	 goal	 is	 to	 have	 a	 human-readable
representation	 of	 every	 opcode	 semantics.	 Such	 representations	 can	 be	 evaluated	 (interpreted)	 to
emulate	effects	of	individual	instructions.

Print	Modes

72

Flags
Flags	are	conceptually	similar	to	bookmarks.	They	associate	a	name	with	a	given	offset	in	a	file.	Flags
can	 be	 grouped	 into	 'flag	 spaces'.	 A	 flag	 space	 is	 a	 namespace	 for	 flags,	 grouping	 together	 flags	 of
similar	characteristics	or	type.	Examples	for	flag	spaces:	sections,	registers,	symbols.

To	create	a	flag:

[0x4A13B8C0]>	f	flag_name	@	offset

You	can	 remove	 a	 flag	by	 appending	 the	 	-		 character	 to	 command.	Most	 commands	 accept	 	-	 	 as
argument-prefix	as	an	indication	to	delete	something.

[0x4A13B8C0]>	f-flag_name

To	switch	between	or	create	new	flagspaces	use	the		fs		command:

Flags

73

[0x00005310]>	fs?

|Usage:	fs	[*]	[+-][flagspace|addr]	#	Manage	flagspaces

|	fs												display	flagspaces

|	fs*											display	flagspaces	as	r2	commands

|	fsj											display	flagspaces	in	JSON

|	fs	*										select	all	flagspaces

|	fs	flagspace		select	flagspace	or	create	if	it	doesn't	exist

|	fs-flagspace		remove	flagspace

|	fs-*										remove	all	flagspaces

|	fs+foo								push	previous	flagspace	and	set

|	fs-											pop	to	the	previous	flagspace

|	fs-.										remove	the	current	flagspace

|	fsq											list	flagspaces	in	quiet	mode

|	fsm	[addr]				move	flags	at	given	address	to	the	current	flagspace

|	fss											display	flagspaces	stack

|	fss*										display	flagspaces	stack	in	r2	commands

|	fssj										display	flagspaces	stack	in	JSON

|	fsr	newname			rename	selected	flagspace

[0x00005310]>	fs

0		439	*	strings

1			17	*	symbols

2			54	*	sections

3			20	*	segments

4		115	*	relocs

5		109	*	imports

[0x00005310]>

Here	there	are	some	command	examples:

[0x4A13B8C0]>	fs	symbols	;	select	only	flags	in	symbols	flagspace

[0x4A13B8C0]>	f										;	list	only	flags	in	symbols	flagspace

[0x4A13B8C0]>	fs	*							;	select	all	flagspaces

[0x4A13B8C0]>	f	myflag			;	create	a	new	flag	called	'myflag'

[0x4A13B8C0]>	f-myflag		;	delete	the	flag	called	'myflag'

You	can	rename	flags	with		fr	.

Local	flags
Every	flag	name	should	be	unique	for	addressing	reasons.	But	 it	 is	quite	a	common	need	 to	have	 the
flags,	for	example	inside	the	functions,	with	simple	and	ubiquitous	names	like		loop		or	 	return	.	For
this	purpose	you	can	use	so	called	"local"	flags,	which	are	tied	to	the	function	where	they	reside.	It	is
possible	to	add	them	using		f.		command:

Flags

74

[0x00003a04]>	pd	10

│						0x00003a04						48c705c9cc21.		mov	qword	[0x002206d8],	0xffffffffffffffff	;

[0x2206d8:8]=0

│						0x00003a0f						c60522cc2100.		mov	byte	[0x00220638],	0					;	[0x220638:1]=0

│						0x00003a16						83f802									cmp	eax,	2

│		.─<	0x00003a19						0f84880d0000			je	0x47a7

│		│			0x00003a1f						83f803									cmp	eax,	3

│	.──<	0x00003a22						740e											je	0x3a32

│	││			0x00003a24						83e801									sub	eax,	1

│.───<	0x00003a27						0f84ed080000			je	0x431a

││││			0x00003a2d						e8fef8ffff					call	sym.imp.abort											;	void	abort(void)

││││			;	CODE	XREF	from	main	(0x3a22)

││╰──>	0x00003a32						be07000000					mov	esi,	7

[0x00003a04]>	f.	localflag	@	0x3a32

[0x00003a04]>	f.

0x00003a32	localflag			[main	+	210]

[0x00003a04]>	pd	10

│						0x00003a04						48c705c9cc21.		mov	qword	[0x002206d8],	0xffffffffffffffff	;

[0x2206d8:8]=0

│						0x00003a0f						c60522cc2100.		mov	byte	[0x00220638],	0					;	[0x220638:1]=0

│						0x00003a16						83f802									cmp	eax,	2

│		.─<	0x00003a19						0f84880d0000			je	0x47a7

│		│			0x00003a1f						83f803									cmp	eax,	3

│	.──<	0x00003a22						740e											je	0x3a32																				;	main.localflag

│	││			0x00003a24						83e801									sub	eax,	1

│.───<	0x00003a27						0f84ed080000			je	0x431a

││││			0x00003a2d						e8fef8ffff					call	sym.imp.abort											;	void	abort(void)

││││			;	CODE	XREF	from	main	(0x3a22)

││`──>		.localflag:

││││			;	CODE	XREF	from	main	(0x3a22)

││`──>	0x00003a32						be07000000					mov	esi,	7

[0x00003a04]>

Flags

75

Writing	Data
Radare	can	manipulate	a	loaded	binary	file	in	many	ways.	You	can	resize	the	file,	move	and	copy/paste
bytes,	 insert	new	bytes	(shifting	data	 to	 the	end	of	 the	block	or	file),	or	simply	overwrite	bytes.	New
data	may	be	given	as	a	wide-string,	assembler	instructions,	or	the	data	may	be	read	in	from	another	file.

Resize	the	file	using	the		r		command.	It	accepts	a	numeric	argument.	A	positive	value	sets	a	new	size
for	the	file.	A	negative	one	will	truncate	the	file	to	the	current	seek	position	minus	N	bytes.

r	1024						;	resize	the	file	to	1024	bytes

r	-10	@	33		;	strip	10	bytes	at	offset	33

Write	 bytes	 using	 the	 	w		 command.	 It	 accepts	 multiple	 input	 formats	 like	 inline	 assembly,	 endian-
friendly	dwords,	files,	hexpair	files,	wide	strings:

Write

76

[0x00404888]>	w?

|Usage:	w[x]	[str]	[<file]	[<<EOF]	[@addr]

|	w[1248][+-][n]							increment/decrement	byte,word..

|	w	foobar													write	string	'foobar'

|	w0	[len]													write	'len'	bytes	with	value	0x00

|	w6[de]	base64/hex				write	base64	[d]ecoded	or	[e]ncoded	string

|	wa[?]	push	ebp							write	opcode,	separated	by	';'

|	waf	file													assemble	file	and	write	bytes

|	wao[?]	op												modify	opcode	(conditional	jump.	nop,	etc)

|	wA[?]	r	0												alter/modify	opcode	at	current	seek	(wA?)

|	wb	010203												fill	current	block	with	cyclic	hexpairs

|	wB[-]0xVALUE									set	or	unset	bits	with	given	value

|	wc																			list	all	write	changes

|	wc[?][ir*?]										write	cache	undo/commit/reset/list	(io.cache)

|	wd	[off]	[n]									duplicate	N	bytes	from	offset	to	here

|	we[?]	[nNsxX]	[arg]		extend	write	operations	(insert	vs	replace)

|	wf	-|file												write	contents	of	file	at	current	offset

|	wh	r2																whereis/which	shell	command

|	wm	f0ff														set	cyclick	binary	write	mask	hexpair

|	wo[?]	hex												write	in	block	with	operation.	'wo?'	fmi

|	wp[?]	-|file									apply	radare	patch	file.	See	wp?	fmi

|	wr	10																write	10	random	bytes

|	ws	pstring											write	1	byte	for	length	and	then	the	string

|	wt[f][?]	file	[sz]			write	to	file	(from	current	seek,	blocksize)

|	wts	host:port	[sz]			send	data	to	remote	host:port	via	tcp://

|	ww	foobar												write	wide	string

|	wx[?][fs]	9090							write	two	intel	nops	(from	wxfile	or	wxseek)

|	wv[?]	eip+34									write	32-64	bit	value

|	wz	string												write	zero	terminated	string	(like	w	+	\x00)

Some	examples:

	[0x00000000]>	wx	123456	@	0x8048300

	[0x00000000]>	wv	0x8048123	@	0x8049100

	[0x00000000]>	wa	jmp	0x8048320

Write	Over

The		wo		command	(write	over)	has	many	subcommands,	each	combines	the	existing	data	with	the	new
data	using	an	operator.	The	command	is	applied	to	the	current	block.	Supported	operators	include	XOR,
ADD,	SUB...

Write

77

[0x4A13B8C0]>	wo?

|Usage:	wo[asmdxoArl24]	[hexpairs]	@	addr[:bsize]

|Example:

|		wox	0x90			;	xor	cur	block	with	0x90

|		wox	90					;	xor	cur	block	with	0x90

|		wox	0x0203	;	xor	cur	block	with	0203

|		woa	02	03		;	add	[0203][0203][...]	to	curblk

|		woe	02	03		;	create	sequence	from	2	to	255	with	step	3

|Supported	operations:

|		wow		==		write	looped	value	(alias	for	'wb')

|		woa		+=		addition

|		wos		-=		substraction

|		wom		*=		multiply

|		wod		/=		divide

|		wox		^=		xor

|		woo		|=		or

|		woA		&=		and

|		woR		random	bytes	(alias	for	'wr	$b'

|		wor		>>=	shift	right

|		wol		<<=	shift	left

|		wo2		2=		2	byte	endian	swap

|		wo4		4=		4	byte	endian	swap

It	is	possible	to	implement	cipher-algorithms	using	radare	core	primitives	and	 	wo	.	A	sample	session
performing	xor(90)	+	add(01,	02):

[0x7fcd6a891630]>	px

-	offset	-							0	1		2	3		4	5		6	7		8	9		A	B		C	D		E	F

0x7fcd6a891630		4889	e7e8	6839	0000	4989	c48b	05ef	1622

0x7fcd6a891640		005a	488d	24c4	29c2	5248	89d6	4989	e548

0x7fcd6a891650		83e4	f048	8b3d	061a	2200	498d	4cd5	1049

0x7fcd6a891660		8d55	0831	ede8	06e2	0000	488d	15cf	e600

[0x7fcd6a891630]>	wox	90

[0x7fcd6a891630]>	px

-	offset	-							0	1		2	3		4	5		6	7		8	9		A	B		C	D		E	F

0x7fcd6a891630		d819	7778	d919	541b	90ca	d81d	c2d8	1946

0x7fcd6a891640		1374	60d8	b290	d91d	1dc5	98a1	9090	d81d

0x7fcd6a891650		90dc	197c	9f8f	1490	d81d	95d9	9f8f	1490

0x7fcd6a891660		13d7	9491	9f8f	1490	13ff	9491	9f8f	1490

[0x7fcd6a891630]>	woa	01	02

[0x7fcd6a891630]>	px

-	offset	-							0	1		2	3		4	5		6	7		8	9		A	B		C	D		E	F

0x7fcd6a891630		d91b	787a	91cc	d91f	1476	61da	1ec7	99a3

0x7fcd6a891640		91de	1a7e	d91f	96db	14d9	9593	1401	9593

0x7fcd6a891650		c4da	1a6d	e89a	d959	9192	9159	1cb1	d959

0x7fcd6a891660		9192	79cb	81da	1652	81da	1456	a252	7c77

Write

78

Write

79

Zoom
The	zoom	is	a	print	mode	that	allows	you	to	get	a	global	view	of	the	whole	file	or	a	memory	map	on	a
single	screen.	In	this	mode,	each	byte	represents		file_size/block_size		bytes	of	the	file.	Use	the		pz	
command,	or	just	use		Z		in	the	visual	mode	to	toggle	the	zoom	mode.

The	cursor	can	be	used	to	scroll	faster	through	the	zoom	out	view.	Pressing	 	z		again	will	zoom-in	at
the	cursor	position.

[0x004048c5]>	pz?

|Usage:	pz	[len]	print	zoomed	blocks	(filesize/N)

|	e	zoom.maxsz		max	size	of	block

|	e	zoom.from			start	address

|	e	zoom.to					end	address

|	e	zoom.byte			specify	how	to	calculate	each	byte

|	pzp											number	of	printable	chars

|	pzf											count	of	flags	in	block

|	pzs											strings	in	range

|	pz0											number	of	bytes	with	value	'0'

|	pzF											number	of	bytes	with	value	0xFF

|	pze											calculate	entropy	and	expand	to	0-255	range

|	pzh											head	(first	byte	value);	This	is	the	default	mode

Let's	see	some	examples:

[0x08049790]>	e	zoom.byte=h

[0x08049790]>	pz	//	or	default	pzh

0x00000000		7f00	0000	e200	0000	146e	6f74	0300	0000

0x00000010		0000	0000	0068	2102	00ff	2024	e8f0	007a

0x00000020		8c00	18c2	ffff	0080	4421	41c4	1500	5dff

0x00000030		ff10	0018	0fc8	031a	000c	8484	e970	8648

0x00000040		d68b	3148	348b	03a0	8b0f	c200	5d25	7074

0x00000050		7500	00e1	ffe8	58fe	4dc4	00e0	dbc8	b885

[0x08049790]>	e	zoom.byte=p

[0x08049790]>	pz	//	or	pzp

0x00000000		2f47	0609	070a	0917	1e9e	a4bd	2a1b	2c27

0x00000010		322d	5671	8788	8182	5679	7568	82a2	7d89

0x00000020		8173	7f7b	727a	9588	a07b	5c7d	8daf	836d

0x00000030		b167	6192	a67d	8aa2	6246	856e	8c9b	999f

0x00000040		a774	96c3	b1a4	6c8e	a07c	6a8f	8983	6a62

0x00000050		7d66	625f	7ea4	7ea6	b4b6	8b57	a19f	71a2

Zoom

80

[0x08049790]>	eval	zoom.byte	=	flags

[0x08049790]>	pz	//	or	pzf

0x00406e65		48d0	80f9	360f	8745	ffff	ffeb	ae66	0f1f

0x00406e75		4400	0083	f801	0f85	3fff	ffff	410f	b600

0x00406e85		3c78	0f87	6301	0000	0fb6	c8ff	24cd	0026

0x00406e95		4100	660f	1f84	0000	0000	0084	c074	043c

0x00406ea5		3a75	18b8	0500	0000	83f8	060f	95c0	e9cd

0x00406eb5		feff	ff0f	1f84	0000	0000	0041	8801	4983

0x00406ec5		c001	4983	c201	4983	c101	e9ec	feff	ff0f

[0x08049790]>	e	zoom.byte=F

[0x08049790]>	pO	//	or	pzF

0x00000000		0000	0000	0000	0000	0000	0000	0000	0000

0x00000010		0000	2b5c	5757	3a14	331f	1b23	0315	1d18

0x00000020		222a	2330	2b31	2e2a	1714	200d	1512	383d

0x00000030		1e1a	181b	0a10	1a21	2a36	281e	1d1c	0e11

0x00000040		1b2a	2f22	2229	181e	231e	181c	1913	262b

0x00000050		2b30	4741	422f	382a	1e22	0f17	0f10	3913

You	can	 limit	 zooming	 to	 a	 range	of	bytes	 instead	of	 the	whole	bytespace.	Change	 	zoom.from	 	 and
	zoom.to		eval	variables:

[0x00003a04]>	e?	zoom.

zoom.byte:	Zoom	callback	to	calculate	each	byte	(See	pz?	for	help)

zoom.from:	Zoom	start	address

zoom.in:	Specify		boundaries	for	zoom

zoom.maxsz:	Zoom	max	size	of	block

zoom.to:	Zoom	end	address

[0x00003a04]>	e	zoom.

zoom.byte	=	h

zoom.from	=	0

zoom.in	=	io.map

zoom.maxsz	=	512

zoom.to	=	0

Zoom

81

Yank/Paste
Radare2	 has	 an	 internal	 clipboard	 to	 save	 and	write	 portions	 of	memory	 loaded	 from	 the	 current	 io
layer.

This	clipboard	can	be	manipulated	with	the		y		command.

The	two	basic	operations	are

copy	(yank)
paste

The	yank	operation	will	read	N	bytes	(specified	by	the	argument)	into	the	clipboard.	We	can	later	use
the		yy		command	to	paste	what	we	read	before	into	a	file.

You	can	yank/paste	bytes	in	visual	mode	selecting	them	with	the	cursor	mode	(Vc)	and	then	using	the
	y		and		Y		key	bindings	which	are	aliases	for		y		and		yy		commands	of	the	command-line	interface.

[0x00000000]>	y?

|Usage:	y[ptxy]	[len]	[[@]addr]	#	See	wd?	for	memcpy,	same	as	'yf'.

|	y														show	yank	buffer	information	(srcoff	len	bytes)

|	y	16											copy	16	bytes	into	clipboard

|	y	16	0x200					copy	16	bytes	into	clipboard	from	0x200

|	y	16	@	0x200			copy	16	bytes	into	clipboard	from	0x200

|	yz	[len]							copy	string	(from	current	block)	into	clipboard

|	yp													print	contents	of	clipboard

|	yx													print	contents	of	clipboard	in	hexadecimal

|	ys													print	contents	of	clipboard	as	string

|	yt	64	0x200				copy	64	bytes	from	current	seek	to	0x200

|	ytf	file							dump	the	clipboard	to	given	file

|	yf	64	0x200				copy	64	bytes	from	0x200	from	file

|	yfa	file	copy		copy	all	bytes	from	file	(opens	w/	io)

|	yy	0x3344						paste	clipboard

Sample	session:

[0x00000000]>	s	0x100				;	seek	at	0x100

[0x00000100]>	y	100						;	yanks	100	bytes	from	here

[0x00000200]>	s	0x200				;	seek	0x200

[0x00000200]>	yy									;	pastes	100	bytes

Yank/Paste

82

You	can	perform	a	yank	and	paste	in	a	single	line	by	just	using	the		yt		command	(yank-to).	The	syntax
is	as	follows:

[0x4A13B8C0]>	x

			offset			0	1		2	3		4	5		6	7		8	9		A	B		0123456789AB

0x4A13B8C0,	89e0	e839	0700	0089	c7e8	e2ff	...9........

0x4A13B8CC,	ffff	81c3	eea6	0100	8b83	08ff

0x4A13B8D8,	ffff	5a8d	2484	29c2											..Z.$.).

[0x4A13B8C0]>	yt	8	0x4A13B8CC	@	0x4A13B8C0

[0x4A13B8C0]>	x

			offset			0	1		2	3		4	5		6	7		8	9		A	B		0123456789AB

0x4A13B8C0,	89e0	e839	0700	0089	c7e8	e2ff	...9........

0x4A13B8CC,	89e0	e839	0700	0089	8b83	08ff	...9........

0x4A13B8D8,	ffff	5a8d	2484	29c2											..Z.$.).

Yank/Paste

83

Comparing	Bytes
For	most	generic	reverse	engineering	tasks	like	finding	the	differences	between	two	binary	files,	which
bytes	 has	 changed,	 find	 differences	 in	 the	 graphs	 of	 the	 code	 analysis	 results,	 and	 other	 diffing
operations	you	can	just	use	radiff2:

$	radiff2	-h

Inside	r2,	the	functionalities	exposed	by	radiff2	are	available	with	the		c		command.

	c		(short	for	"compare")	allows	you	to	compare	arrays	of	bytes	from	different	sources.	The	command
accepts	input	in	a	number	of	formats	and	then	compares	it	against	values	found	at	current	seek	position.

[0x00404888]>	c?

	|Usage:	c[?dfx]	[argument]	#	Compare

	|	c	[string]							Compare	a	plain	with	escaped	chars	string

	|	c*	[string]						Same	as	above,	but	printing	r2	commands

	|	c4	[value]							Compare	a	doubleword	from	a	math	expression

	|	c8	[value]							Compare	a	quadword	from	a	math	expression

	|	cat	[file]							Show	contents	of	file	(see	pwd,	ls)

	|	cc	[at]										Compares	in	two	hexdump	columns	of	block	size

	|	ccc	[at]									Same	as	above,	but	only	showing	different	lines

	|	ccd	[at]									Compares	in	two	disasm	columns	of	block	size

	|	cf	[file]								Compare	contents	of	file	at	current	seek

	|	cg[?]	[o]	[file]	Graphdiff	current	file	and	[file]

	|	cu[?]	[addr]	@at	Compare	memory	hexdumps	of	$$	and	dst	in	unified	diff

	|	cud	[addr]	@at			Unified	diff	disasm	from	$$	and	given	address

	|	cv[1248]	[hexpairs]	@at		Compare	1,2,4,8-byte	value

	|	cV[1248]	[addr]	@at						Compare	1,2,4,8-byte	address	contents

	|	cw[?]	[us?]	[...]								Compare	memory	watchers

	|	cx	[hexpair]				Compare	hexpair	string	(use	'.'	as	nibble	wildcard)

	|	cx*	[hexpair]			Compare	hexpair	string	(output	r2	commands)

	|	cX	[addr]							Like	'cc'	but	using	hexdiff	output

	|	cd	[dir]								chdir

	|	cl|cls|clear				Clear	screen,	(clear0	to	goto	0,	0	only)

To	compare	memory	contents	at	current	seek	position	against	a	given	string	of	values,	use		cx	:

Comparing	Bytes

84

[0x08048000]>	p8	4

7f	45	4c	46

[0x08048000]>	cx	7f	45	90	46

Compare	3/4	equal	bytes

0x00000002	(byte=03)			90	'	'		->		4c	'L'

[0x08048000]>

Another	subcommand	of	the		c		command	is		cc		which	stands	for	"compare	code".	To	compare	a	byte
sequence	with	a	sequence	in	memory:

[0x4A13B8C0]>	cc	0x39e8e089	@	0x4A13B8C0

To	compare	contents	of	two	functions	specified	by	their	names:

[0x08049A80]>	cc	sym.main2	@	sym.main

	c8		compares	a	quadword	from	the	current	seek	(in	the	example	below,	0x00000000)	against	a	math
expression:

[0x00000000]>	c8	4

Compare	1/8	equal	bytes	(0%)

0x00000000	(byte=01)			7f	'	'		->		04	'	'

0x00000001	(byte=02)			45	'E'		->		00	'	'

0x00000002	(byte=03)			4c	'L'		->		00	'	'

The	number	parameter	can,	of	course,	be	math	expressions	which	use	flag	names	and	anything	allowed
in	an	expression:

[0x00000000]>	cx	7f469046

Compare	2/4	equal	bytes

0x00000001	(byte=02)			45	'E'		->		46	'F'

0x00000002	(byte=03)			4c	'L'		->		90	'	'

You	can	use	 the	compare	command	 to	 find	differences	between	a	current	block	and	a	 file	previously
dumped	to	a	disk:

Comparing	Bytes

85

r2	/bin/true

[0x08049A80]>	s	0

[0x08048000]>	cf	/bin/true

Compare	512/512	equal	bytes

Comparing	Bytes

86

SDB
SDB	stands	for	String	DataBase.	It's	a	simple	key-value	database	that	only	operates	with	strings	created
by	pancake.	It	is	used	in	many	parts	of	r2	to	have	a	disk	and	in-memory	database	which	is	small	and	fast
to	manage	using	it	as	a	hashtable	on	steroids.

SDB	 is	 a	 simple	 string	 key/value	 database	 based	 on	 djb’s	 cdb	 disk	 storage	 and	 supports	 JSON	 and
arrays	introspection.

There’s	also	the	sdbtypes:	a	vala	library	that	 implements	several	data	structures	on	top	of	an	sdb	or	a
memcache	instance.

SDB	supports:

namespaces	(multiple	sdb	paths)
atomic	database	sync	(never	corrupted)
bindings	for	vala,	luvit,	newlisp	and	nodejs
commandline	frontend	for	sdb	databases
memcache	client	and	server	with	sdb	backend
arrays	support	(syntax	sugar)
json	parser/getter

Usage	example
Let's	create	a	database!

$	sdb	d	hello=world

$	sdb	d	hello

world

Using	arrays:

SDB

87

$	sdb	-	'[]list=1,2'	'[0]list'	'[0]list=foo'	'[]list'	'[+1]list=bar'

1

foo

2

foo

bar

2

Let's	play	with	json:

$	sdb	d	g='{"foo":1,"bar":{"cow":3}}'

$	sdb	d	g?bar.cow

3

$	sdb	-	user='{"id":123}'	user?id=99	user?id

99

Using	the	command	line	without	any	disk	database:

$	sdb	-	foo=bar	foo	a=3	+a	-a

bar

4

3

$	sdb	-

foo=bar

foo

bar

a=3

+a

4

-a

3

Remove	the	database

$	rm	-f	d

So	what	?
So,	you	can	now	do	this	inside	your	radare2	sessions!

Let's	take	a	simple	binary,	and	check	what	is	already	sdbized.

SDB

88

$	cat	test.c

int	main(){

				puts("Hello	world\n");

}

$	gcc	test.c	-o	test

$	r2	-A	./test

[0x08048320]>	k	**

bin

anal

syscall

debug

[0x08048320]>	k	bin/**

fd.6

[0x08048320]>	k	bin/fd.6/*

archs=0:0:x86:32

The	file	corresponding	to	the	sixth	file	descriptor	is	a	x86_32	binary.

[0x08048320]>	k	anal/meta/*

meta.s.0x80484d0=12,SGVsbG8gd29ybGQ=

[...]

[0x08048320]>	?b64-	SGVsbG8gd29ybGQ=

Hello	world

Strings	are	stored	encoded	in	base64.

More	Examples
List	namespaces

k	**

List	sub-namespaces

k	anal/**

SDB

89

List	keys

k	*

k	anal/*

Set	a	key

k	foo=bar

Get	the	value	of	a	key

k	foo

List	all	syscalls

k	syscall/*~^0x

List	all	comments

k	anal/meta/*~.C.

Show	a	comment	at	given	offset:

k	%anal/meta/[1]meta.C.0x100005000

SDB

90

Visual	Mode
The	 visual	 mode	 is	 a	 more	 user-friendly	 interface	 alternative	 to	 radare2's	 command-line	 prompt.	 It
allows	 easy	 navigation,	 has	 a	 cursor	mode	 for	 selecting	 bytes,	 and	 offers	 numerous	 key	 bindings	 to
simplify	debugger	use.	To	enter	visual	mode,	use		V		command.	To	exit	from	it	back	to	command	line,
press		q	.

Navigation
Navigation	can	be	done	using	HJKL	or	arrow	keys	and	PgUp/PgDown	keys.	It	also	understands	usual
Home/End	keys.	Like	in	Vim	the	movements	can	be	repeated	by	preceding	the	navigation	key	with	the
number,	for	example		5j		will	move	down	for	5	lines,	or		2l		will	move	2	characters	right.

print	modes	aka	panels

Visual	mode

91

The	Visual	mode	uses	"print	modes"	which	are	basically	different	panel	that	you	can	rotate.	By	default
those	are:

↻	Hexdump	panel	->	Disassembly	panel	→	Debugger	panel	→	Hexadecimal	words	dump	panel
→	Hex-less	hexdump	panel	→	Op	analysis	color	map	panel	→	Annotated	hexdump	panel	↺.

Notice	that	the	top	of	the	panel	contains	the	command	which	is	used,	for	example	for	the	disassembly
panel:

[0x00404890	16%	120	/bin/ls]>	pd	$r	@	entry0

Getting	Help
To	see	help	on	all	key	bindings	defined	for	visual	mode,	press		?	:

Visual	mode	help:

	?								show	this	help

	??							show	the	user-friendly	hud

	%								in	cursor	mode	finds	matching	pair,	or	toggle	autoblocksz

	@								redraw	screen	every	1s	(multi-user	view)

	^								seek	to	the	begining	of	the	function

	!								enter	into	the	visual	panels	mode

	_								enter	the	flag/comment/functions/..	hud	(same	as	VF_)

	=								set	cmd.vprompt	(top	row)

	|								set	cmd.cprompt	(right	column)

	.								seek	to	program	counter

	\								toggle	visual	split	mode

	"								toggle	the	column	mode	(uses	pC..)

	/								in	cursor	mode	search	in	current	block

	:cmd					run	radare	command

	;[-]cmt		add/remove	comment

	0								seek	to	beginning	of	current	function

	[1-9]				follow	jmp/call	identified	by	shortcut	(like	;[1])

	,file				add	a	link	to	the	text	file

	/*+-[]			change	block	size,	[]	=	resize	hex.cols

	</>						seek	aligned	to	block	size	(seek	cursor	in	cursor	mode)

	a/A						(a)ssemble	code,	visual	(A)ssembler

	b								browse	symbols,	flags,	configurations,	classes,	...

	B								toggle	breakpoint

	c/C						toggle	(c)ursor	and	(C)olors

	d[f?]				define	function,	data,	code,	..

	D								enter	visual	diff	mode	(set	diff.from/to

	e								edit	eval	configuration	variables

	f/F						set/unset	or	browse	flags.	f-	to	unset,	F	to	browse,	..

	gG							go	seek	to	begin	and	end	of	file	(0-$s)

Visual	mode

92

	hjkl					move	around	(or	HJKL)	(left-down-up-right)

	i								insert	hex	or	string	(in	hexdump)	use	tab	to	toggle

	mK/'K				mark/go	to	Key	(any	key)

	M								walk	the	mounted	filesystems

	n/N						seek	next/prev	function/flag/hit	(scr.nkey)

	g								go/seek	to	given	offset

	O								toggle	asm.pseudo	and	asm.esil

	p/P						rotate	print	modes	(hex,	disasm,	debug,	words,	buf)

	q								back	to	radare	shell

	r								refresh	screen	/	in	cursor	mode	browse	comments

	R								randomize	color	palette	(ecr)

	sS							step	/	step	over

	t								browse	types

	T								enter	textlog	chat	console	(TT)

	uU							undo/redo	seek

	v								visual	function/vars	code	analysis	menu

	V								(V)iew	graph	using	cmd.graph	(agv?)

	wW							seek	cursor	to	next/prev	word

	xX							show	xrefs/refs	of	current	function	from/to	data/code

	yY							copy	and	paste	selection

	z								fold/unfold	comments	in	disassembly

	Z								toggle	zoom	mode

	Enter				follow	address	of	jump/call

Function	Keys:	(See	'e	key.'),	defaults	to:

		F2						toggle	breakpoint

		F4						run	to	cursor

		F7						single	step

		F8						step	over

		F9						continue

Visual	mode

93

Visual	Disassembly

Navigation
Move	within	the	Disassembly	using	arrow	keys	or		hjkl	.	Use		g		to	seek	directly	to	a	flag	or	an	offset,
type	it	when	requested	by	the	prompt:		[offset]>	.	Follow	a	jump	or	a	call	using	the	 	number		of	your
keyboard		[0-9]		and	the	number	on	the	right	in	disassembly	to	follow	a	call	or	a	jump.	In	this	example
typing		1		on	the	keyboard	would	follow	the	call	to	 	sym.imp.__libc_start_main		and	therefore,	seek
at	the	offset	of	this	symbol.

0x00404894						e857dcffff					call	sym.imp.__libc_start_main	;[1]

Seek	back	to	the	previous	location	using		u	,		U		will	allow	you	to	redo	the	seek.

	d		as	define
	d	 	 can	 be	 used	 to	 change	 the	 type	 of	 data	 of	 the	 current	 block,	 several	 basic	 types/structures	 are
available	as	well	as	more	advanced	one	using		pf		template:

d	→	...

0x004048f7						48c1e83f							shr	rax,	0x3f

d	→	b

0x004048f7	.byte	0x48

d	→	B

0x004048f7	.word	0xc148

d	→	d

0x004048f7	hex	length=165	delta=0

0x004048f7		48c1	e83f	4801	c648	d1fe	7415	b800	0000

...

To	improve	code	readability	you	can	change	how	radare2	presents	numerical	values	in	disassembly,	by
default	most	of	disassembly	display	numerical	value	as	hexadecimal.	Sometimes	you	would	like	to	view
it	 as	 a	 decimal,	 binary	 or	 even	 custom	 defined	 constant.	 To	 change	 value	 format	 you	 can	 use	 	d	
following	by		i		then	choose	what	base	to	work	in,	this	is	the	equivalent	to		ahi	:

Visual	Disassembly

94

d	→	i	→	...

0x004048f7						48c1e83f							shr	rax,	0x3f

d	→	i	→		10

0x004048f7						48c1e83f							shr	rax,	63

d	→	i	→		2

0x004048f7						48c1e83f							shr	rax,	'?'

Usage	of	the	Cursor	for	Inserting/Patching...
Remember	 that,	 to	 be	 able	 to	 actually	 edit	 files	 loaded	 in	 radare2,	 you	have	 to	 start	 it	with	 the	 	-w	
option.	Otherwise	a	file	is	opened	in	read-only	mode.

Pressing	lowercase		c		 toggles	the	cursor	mode.	When	this	mode	is	active,	the	currently	selected	byte
(or	byte	range)	is	highlighted.

The	cursor	is	used	to	select	a	range	of	bytes	or	simply	to	point	to	a	byte.	You	can	use	the	cursor	to	create
a	named	flag	at	specifc	location.	To	do	so,	seek	to	the	required	position,	then	press		f		and	enter	a	name
for	a	flag.	If	the	file	was	opened	in	write	mode	using	the	 	-w		flag	or	the	 	o+		command,	you	can	also
use	 the	cursor	 to	overwrite	a	selected	 range	with	new	values.	To	do	so,	 select	a	 range	of	bytes	 (with
HJKL	and	SHIFT	key	pressed),	then	press	 	i		and	enter	the	hexpair	values	for	the	new	data.	The	data
will	be	repeated	as	needed	to	fill	the	range	selected.	For	example:

<select	10	bytes	in	visual	mode	using	SHIFT+HJKL>

<press	'i'	and	then	enter	'12	34'>

The	10	bytes	you	have	selected	will	be	changed	to	"12	34	12	34	12	...".

The	Visual	Assembler	 is	a	 feature	 that	provides	a	 live-preview	while	you	 type	 in	new	 instructions	 to
patch	into	the	disassembly.	To	use	it,	seek	or	place	the	cursor	at	the	wanted	location	and	hit	the	'A'	key.
To	provide	multiple	instructions,	separate	them	with	semicolons,		;	.

Visual	Disassembly

95

XREF
When	 radare2	 has	 discovered	 a	 XREF	 during	 the	 analysis,	 it	 will	 show	 you	 the	 information	 in	 the
Visual	Disassembly	using		XREF		tag:

;	DATA	XREF	from	0x00402e0e	(unk)

str.David_MacKenzie:

To	see	where	this	string	is	called,	press	 	x	,	if	you	want	to	jump	to	the	location	where	the	data	is	used
then	press	the	corresponding	number	[0-9]	on	your	keyboard.	(This	functionality	is	similar	to		axt)

	X		corresponds	to	the	reverse	operation	aka		axf	.

Function	Argument	display
To	enable	this	view	use	this	config	var		e	dbg.funcarg	=	true	

Visual	Disassembly

96

Add	a	comment
To	add	a	comment	press		;	.

Type	other	commands
Quickly	type	commands	using		:	.

Search

Visual	Disassembly

97

	/	:	 allows	 highlighting	 of	 strings	 in	 the	 current	 display.	 	:cmd	 	 allows	 you	 to	 use	 one	 of	 the	 "/?"
commands	that	perform	more	specialized	searches.

The	HUDS

The	"UserFriendly	HUD"
The	 "UserFriendly	 HUD"	 can	 be	 accessed	 using	 the	 	??	 	 key-combination.	 This	 HUD	 acts	 as	 an
interactive	 Cheat	 Sheet	 that	 one	 can	 use	 to	 more	 easily	 find	 and	 execute	 commands.	 This	 HUD	 is
particularly	useful	 for	new-comers.	For	 experienced	users,	 the	other	HUDS	which	 are	more	 activity-
specific	may	be	more	useful.

The	"flag/comment/functions/..	HUD"
This	HUD	can	be	displayed	using	the		_		key,	it	shows	a	list	of	all	the	flags	defined	and	lets	you	jump
to	them.	Using	the	keyboard	you	can	quickly	filter	the	list	down	to	a	flag	that	contains	a	specific	pattern.

Tweaking	the	Disassembly
The	 disassembly's	 look-and-feel	 is	 controlled	 using	 the	 "asm.*	 configuration	 keys,	 which	 can	 be
changed	 using	 the	 	e	 	 command.	 All	 configuration	 keys	 can	 also	 be	 edited	 through	 the	 Visual
Configuration	Editor.

Visual	Configuration	Editor
This	HUD	can	be	accessed	using	the	 	e		key	in	visual	mode.	The	editor	allows	you	to	easily	examine
and	 change	 radare2's	 configuration.	 For	 example,	 if	 you	 want	 to	 change	 something	 about	 the
disassembly	display,	select		asm		from	the	list,	navigate	to	the	item	you	wish	to	modify	it,	then	select	it
by	hitting		Enter	.	If	the	item	is	a	boolean	variable,	it	will	 toggle,	otherwise	you	will	be	prompted	to
provide	a	new	value.

Visual	Disassembly

98

Example	switch	to	pseudo	disassembly:

Visual	Disassembly

99

Visual	Disassembly

100

Following	are	some	example	of	eval	variable	related	to	disassembly.

Visual	Disassembly

101

Examples

asm.arch:	Change	Architecture	&&	asm.bits:	Word	size	in	bits
at	assembler

You	can	view	the	list	of	all	arch	using		e	asm.arch=?	

e	asm.arch	=	dalvik

0x00404870						31ed4989							cmp-long	v237,	v73,	v137

0x00404874						d15e4889							rsub-int	v14,	v5,	0x8948

0x00404878						e24883e4							ushr-int/lit8	v72,	v131,	0xe4

0x0040487c						f0505449c7c0			+invoke-object-init-range	{},	method+18772	;[0]

0x00404882						90244100							add-int	v36,	v65,	v0

e	asm.bits	=	16

0000:4870						31ed											xor	bp,	bp

0000:4872						49													dec	cx

0000:4873						89d1											mov	cx,	dx

0000:4875						5e													pop	si

0000:4876						48													dec	ax

0000:4877						89e2											mov	dx,	sp

This	latest	operation	can	also	be	done	using		&		in	Visual	mode.

asm.pseudo:	Enable	pseudo	syntax

e	asm.pseudo	=	true

0x00404870						31ed											ebp	=	0

0x00404872						4989d1									r9	=	rdx

0x00404875						5e													pop	rsi

0x00404876						4889e2									rdx	=	rsp

0x00404879						4883e4f0							rsp	&=	0xfffffffffffffff0

asm.syntax:	Select	assembly	syntax	(intel,	att,	masm...)

e	asm.syntax	=	att

0x00404870						31ed											xor	%ebp,	%ebp

0x00404872						4989d1									mov	%rdx,	%r9

0x00404875						5e													pop	%rsi

0x00404876						4889e2									mov	%rsp,	%rdx

0x00404879						4883e4f0							and	$0xfffffffffffffff0,	%rsp

Visual	Disassembly

102

asm.describe:	Show	opcode	description

e	asm.describe	=	true

0x00404870		xor	ebp,	ebp			;	logical	exclusive	or

0x00404872		mov	r9,	rdx				;	moves	data	from	src	to	dst

0x00404875		pop	rsi								;	pops	last	element	of	stack	and	stores	the	result	in	argumen

t

0x00404876		mov	rdx,	rsp			;	moves	data	from	src	to	dst

0x00404879		and	rsp,	-0xf		;	binary	and	operation	between	src	and	dst,	stores	result	on	

dst

Visual	Disassembly

103

Visual	Assembler
You	can	use	Visual	Mode	to	assemble	code	using		A	.	For	example	let's	replace	the		push		by	a		jmp	:

Notice	the	preview	of	the	disassembly	and	arrows:

Visual	Assembler

104

You	need	to	open	the	file	in	writing	mode	(r2	-w		or		oo+)	in	order	to	patch	the	file.	You	can	also	use
the	cache	mode:		e	io.cache	=	true		and		wc?	.

Remember	that	patching	files	in	debug	mode	only	patch	the	memory	not	the	file.

Visual	Assembler

105

Visual	Configuration	Editor
	Ve		or		e		in	visual	mode	allows	you	to	edit	radare2	configuration	visually.	For	example,	if	you	want
to	change	the	assembly	display	just	select		asm		in	the	list	and	choose	your	assembly	display	flavor.

Visual	Configuration	Editor

106

Example	switch	to	pseudo	disassembly:

Visual	Configuration	Editor

107

Visual	Configuration	Editor

108

Visual	Panels

Concept
Visual	Panels	is	characterized	by	the	following	core	functionalities:

1.	 Split	Screen
2.	 Display	multiple	screens	such	as	Symbols,	Registers,	Stack,	as	well	as	custom	panels
3.	 Menu	will	cover	all	those	commonly	used	commands	for	you	so	that	you	don't	have	to	memorize

any	of	them

CUI	met	some	useful	GUI	as	the	menu,	that	is	Visual	Panels.

Panels	can	be	accessed	from	visual	mode	by	using		!	.

Overview

Commands

Visual	Panels

109

|Visual	Ascii	Art	Panels:

|	|						split	the	current	panel	vertically

|	-						split	the	current	panel	horizontally

|	:						run	r2	command	in	prompt

|	_						start	the	hud	input	mode

|	?						show	this	help

|	??					show	the	user-friendly	hud

|	!						run	r2048	game

|	.						seek	to	PC	or	entrypoint

|	*						show	pseudo	code/r2dec	in	the	current	panel

|	/						highlight	the	keyword

|	[1-9]		follow	jmp/call	identified	by	shortcut	(like	;[1])

|	'	'				(space)	toggle	graph	/	panels

|	tab				go	to	the	next	panel

|	b						browse	symbols,	flags,	configurations,	classes,	...

|	c						toggle	cursor

|	C						toggle	color

|	d						define	in	the	current	address.	Same	as	Vd

|	D						show	disassembly	in	the	current	panel

|	e						change	title	and	command	of	current	panel

|	g						show	graph	in	the	current	panel

|	i						insert	hex

|	hjkl			move	around	(left-down-up-right)

|	J						scroll	panels	down	by	page

|	K						scroll	panels	up	by	page

|	m						select	the	menu	panel

|	M						open	new	custom	frame

|	nN					create	new	panel	with	given	command

|	o						go/seek	to	given	offset

|	pP					seek	to	next	or	previous	scr.nkey

|	q						quit,	back	to	visual	mode

|	r						toggle	jmphints/leahints

|	sS					step	in	/	step	over

|	uU					undo	/	redo	seek

|	w						start	Window	mode

|	V						go	to	the	graph	mode

|	X						close	current	panel

|	z						swap	current	panel	with	the	first	one

Basic	Usage
Use		tab		to	move	around	the	panels	until	you	get	to	the	targeted	panel.	Then,	use	 	hjkl	,	 just	like	in
vim,	to	scroll	the	panel	you	are	currently	on.	Use		S		and		s		to	step	over/in,	and	all	the	panels	should
be	updated	dynamically	while	you	are	debugging.	Either	in	the	Registers	or	Stack	panels,	you	can	edit

Visual	Panels

110

the	 values	 by	 inserting	 hex.	 This	will	 be	 explained	 later.	While	 hitting	 	tab	 	 can	 help	 you	moving
between	panels,	it	is	highly	recommended	to	use		m		to	open	the	menu.	As	usual,	you	can	use		hjkl		 to

move	around	the	menu	and	will	find	tons	of	useful	stuff	there.

Split	Screen
	|		is	for	the	vertical	and		-		is	for	the	horizontal	split.	You	can	delete	any	panel	by	pressing		X	.

Split	panels	can	be	resized	from	Window	Mode,	which	is	accessed	with		w	.

Window	Mode	Commands

|Panels	Window	mode	help:

|	?						show	this	help

|	??					show	the	user-friendly	hud

|	Enter		start	Zoom	mode

|	c						toggle	cursor

|	hjkl			move	around	(left-down-up-right)

|	JK					resize	panels	vertically

|	HL					resize	panels	horizontally

|	q						quit	Window	mode

Edit	Values
Either	in	the	Register	or	Stack	panel,	you	can	edit	the	values.	Use		c		to	activate	cursor	mode	and	you
can	move	 the	cursor	by	pressing	 	hjkl	,	 as	usual.	Then,	hit	 	i	,	 just	 like	 the	 insert	mode	of	 vim,	 to
insert	a	value.

Visual	Panels

111

Searching	for	Bytes
The	radare2	search	engine	is	based	on	work	done	by	esteve,	plus	multiple	features	implemented	on	top
of	 it.	 It	 supports	multiple	 keyword	 searches,	 binary	masks,	 and	 hexadecimal	 values.	 It	 automatically
creates	flags	for	search	hit	locations	ease	future	referencing.

Search	is	initiated	by		/		command.

Searching	bytes

112

[0x00000000]>	/?

|Usage:	/[!bf]	[arg]Search	stuff	(see	'e??search'	for	options)

|Use	io.va	for	searching	in	non	virtual	addressing	spaces

|	/	foo\x00															search	for	string	'foo\0'

|	/j	foo\x00														search	for	string	'foo\0'	(json	output)

|	/!	ff																			search	for	first	occurrence	not	matching,	command	modifier

|	/!x	00																		inverse	hexa	search	(find	first	byte	!=	0x00)

|	/+	/bin/sh														construct	the	string	with	chunks

|	//																						repeat	last	search

|	/a	jmp	eax														assemble	opcode	and	search	its	bytes

|	/A	jmp																		find	analyzed	instructions	of	this	type	(/A?	for	help)

|	/b																						search	backwards,	command	modifier,	followed	by	other	command

|	/B																						search	recognized	RBin	headers

|	/c	jmp	[esp]												search	for	asm	code	matching	the	given	string

|	/ce	rsp,rbp													search	for	esil	expressions	matching

|	/C[ar]																		search	for	crypto	materials

|	/d	101112															search	for	a	deltified	sequence	of	bytes

|	/e	/E.F/i															match	regular	expression

|	/E	esil-expr												offset	matching	given	esil	expressions	%%=	here

|	/f																						search	forwards,	command	modifier,	followed	by	other	command

|	/F	file	[off]	[sz]						search	contents	of	file	with	offset	and	size

|	/g[g]	[from]												find	all	graph	paths	A	to	B	(/gg	follow	jumps,	see	search.coun

t	and

anal.depth)

|	/h[t]	[hash]	[len]						find	block	matching	this	hash.	See	ph

|	/i	foo																		search	for	string	'foo'	ignoring	case

|	/m	magicfile												search	for	matching	magic	file	(use	blocksize)

|	/M																						search	for	known	filesystems	and	mount	them	automatically

|	/o	[n]																		show	offset	of	n	instructions	backward

|	/O	[n]																		same	as	/o,	but	with	a	different	fallback	if	anal	cannot	be	us

ed

|	/p	patternsize										search	for	pattern	of	given	size

|	/P	patternsize										search	similar	blocks

|	/r[erwx][?]	sym.printf		analyze	opcode	reference	an	offset	(/re	for	esil)

|	/R	[grepopcode]									search	for	matching	ROP	gadgets,	semicolon-separated

|	/s																						search	for	all	syscalls	in	a	region	(EXPERIMENTAL)

|	/v[1248]	value										look	for	an	`cfg.bigendian`	32bit	value

|	/V[1248]	min	max								look	for	an	`cfg.bigendian`	32bit	value	in	range

|	/w	foo																		search	for	wide	string	'f\0o\0o\0'

|	/wi	foo																	search	for	wide	string	ignoring	case	'f\0o\0o\0'

|	/x	ff..33															search	for	hex	string	ignoring	some	nibbles

|	/x	ff0033															search	for	hex	string

|	/x	ff43:ffd0												search	for	hexpair	with	mask

|	/z	min	max														search	for	strings	of	given	size

Because	everything	is	treated	as	a	file	in	radare2,	it	does	not	matter	whether	you	search	in	a	socket,	a
remote	device,	in	process	memory,	or	a	file.

Searching	bytes

113

Searching	bytes

114

Basic	Search
A	basic	search	for	a	plain	text	string	in	a	file	would	be	something	like:

$	r2	-q	-c	"/	lib"	/bin/ls

Searching	3	bytes	from	0x00400000	to	0x0041ae08:	6c	69	62	

hits:	9

0x00400239	hit0_0	"lib64/ld-linux-x86-64.so.2"

0x00400f19	hit0_1	"libselinux.so.1"

0x00400fae	hit0_2	"librt.so.1"

0x00400fc7	hit0_3	"libacl.so.1"

0x00401004	hit0_4	"libc.so.6"

0x004013ce	hit0_5	"libc_start_main"

0x00416542	hit0_6	"libs/"

0x00417160	hit0_7	"lib/xstrtol.c"

0x00417578	hit0_8	"lib"

As	can	be	seen	from	the	output	above,	radare2	generates	a	"hit"	flag	for	every	entry	found.	You	can	then
use	the		ps		command	to	see	the	strings	stored	at	the	offsets	marked	by	the	flags	in	this	group,	and	they
will	have	names	of	the	form		hit0_<index>	:

[0x00404888]>	/	ls

...

[0x00404888]>	ps	@	hit0_0

lseek

You	can	search	for	wide-char	strings	(e.g.,	unicode	letters)	using	the		/w		command:

[0x00000000]>	/w	Hello

0	results	found.

To	perform	a	case-insensitive	search	for	strings	use		/i	:

[0x0040488f]>	/i	Stallman

Searching	8	bytes	from	0x00400238	to	0x0040488f:	53	74	61	6c	6c	6d	61	6e

[#]hits:	004138	<	0x0040488f		hits	=	0

It	 is	 possible	 to	 specify	 hexadecimal	 escape	 sequences	 in	 the	 search	 string	 by	prepending	 them	with
"\x":

Basic	Searches

115

[0x00000000]>	/	\x7FELF

But,	 if	you	are	searching	for	a	string	of	hexadecimal	values,	you're	probably	better	of	using	 the	 	/x	
command:

[0x00000000]>	/x	7F454C46

Once	the	search	is	done,	the	results	are	stored	in	the		searches		flag	space.

[0x00000000]>	fs

0				0	.	strings

1				0	.	symbols

2				6	.	searches

[0x00000000]>	f

0x00000135	512	hit0_0

0x00000b71	512	hit0_1

0x00000bad	512	hit0_2

0x00000bdd	512	hit0_3

0x00000bfb	512	hit0_4

0x00000f2a	512	hit0_5

To	remove	"hit"	flags	after	you	do	not	need	them	anymore,	use	the		f-	hit*		command.

Often,	during	long	search	sessions,	you	will	need	to	launch	the	latest	search	more	than	once.	You	can
use	the		//		command	to	repeat	the	last	search.

[0x00000f2a]>	//					;	repeat	last	search

Basic	Searches

116

Configuring	Search	Options
The	radare2	search	engine	can	be	configured	through	several	configuration	variables,	modifiable	with
the		e		command.

e	cmd.hit	=	x									;	radare2	command	to	execute	on	every	search	hit

e	search.distance	=	0	;	search	string	distance

e	search.in	=	[foo]			;	pecify	search	boundarie.	Supported	values	are	listed	under	e	sea

rch.in=??

e	search.align	=	4				;	only	show	search	results	aligned	by	specified	boundary.

e	search.from	=	0					;	start	address

e	search.to	=	0							;	end	address

e	search.asmstr	=	0			;	search	for	string	instead	of	assembly

e	search.flags	=	true	;	if	enabled,	create	flags	on	hits

The		search.align		variable	is	used	to	limit	valid	search	hits	to	certain	alignment.	For	example,	with		e
search.align=4		you	will	see	only	hits	found	at	4-bytes	aligned	offsets.

The	 	search.flags	 	 boolean	 variable	 instructs	 the	 search	 engine	 to	 flag	 hits	 so	 that	 they	 can	 be
referenced	later.	If	a	currently	running	search	is	interrupted	with	 	Ctrl-C		keyboard	sequence,	current
search	position	is	flagged	with		search_stop	.

Configurating	the	Search

117

Pattern	Matching	Search
The		/p		command	allows	you	to	apply	repeated	pattern	searches	on	IO	backend	storage.	It	is	possible
to	identify	repeated	byte	sequences	without	explicitly	specifying	them.	The	only	command's	parameter
sets	minimum	detectable	pattern	length.	Here	is	an	example:

[0x00000000]>	/p	10

This	 command	 output	 will	 show	 different	 patterns	 found	 and	 how	 many	 times	 each	 of	 them	 is
encountered.

Pattern	Search

118

Search	Automation
The	 	cmd.hit	 	 configuration	 variable	 is	 used	 to	 define	 a	 radare2	 command	 to	 be	 executed	 when	 a
matching	entry	is	found	by	the	search	engine.	If	you	want	to	run	several	commands,	separate	them	with
	;	.	Alternatively,	 you	 can	 arrange	 them	 in	 a	 separate	 script,	 and	 then	 invoke	 it	 as	 a	whole	with	 	.
script-file-name		command.	For	example:

[0x00404888]>	e	cmd.hit	=	p8	8

[0x00404888]>	/	lib

Searching	3	bytes	from	0x00400000	to	0x0041ae08:	6c	69	62

hits:	9

0x00400239	hit4_0	"lib64/ld-linux-x86-64.so.2"

31ed4989d15e4889

0x00400f19	hit4_1	"libselinux.so.1"

31ed4989d15e4889

0x00400fae	hit4_2	"librt.so.1"

31ed4989d15e4889

0x00400fc7	hit4_3	"libacl.so.1"

31ed4989d15e4889

0x00401004	hit4_4	"libc.so.6"

31ed4989d15e4889

0x004013ce	hit4_5	"libc_start_main"

31ed4989d15e4889

0x00416542	hit4_6	"libs/"

31ed4989d15e4889

0x00417160	hit4_7	"lib/xstrtol.c"

31ed4989d15e4889

0x00417578	hit4_8	"lib"

31ed4989d15e4889

Automation

119

Searching	Backwards
Sometimes	you	want	to	find	a	keyword	backwards.	This	is,	before	the	current	offset,	to	do	this	you	can
seek	back	and	search	forward	by	adding	some	search.from/to	restrictions,	or	use	the		/b		command.

[0x100001200]>	/	nop

0x100004b15	hit0_0	.STUWabcdefghiklmnopqrstuvwxbin/ls.

0x100004f50	hit0_1	.STUWabcdefghiklmnopqrstuwx1]	[file	.

[0x100001200]>	/b	nop

[0x100001200]>	s	0x100004f50p

[0x100004f50]>	/b	nop

0x100004b15	hit2_0	.STUWabcdefghiklmnopqrstuvwxbin/ls.

[0x100004f50]>

Note	that		/b		is	doing	the	same	as	 	/	,	but	backward,	so	what	if	we	want	to	use	 	/x		backward?	We
can	use		/bx	,	and	the	same	goes	for	other	search	subcommands:

[0x100001200]>	/x	90

0x100001a23	hit1_0	90

0x10000248f	hit1_1	90

0x1000027b2	hit1_2	90

0x100002b2e	hit1_3	90

0x1000032b8	hit1_4	90

0x100003454	hit1_5	90

0x100003468	hit1_6	90

0x10000355b	hit1_7	90

0x100003647	hit1_8	90

0x1000037ac	hit1_9	90

0x10000389c	hit1_10	90

0x100003c5c	hit1_11	90

[0x100001200]>	/bx	90

[0x100001200]>	s	0x10000355b

[0x10000355b]>	/bx	90

0x100003468	hit3_0	90

0x100003454	hit3_1	90

0x1000032b8	hit3_2	90

0x100002b2e	hit3_3	90

0x1000027b2	hit3_4	90

0x10000248f	hit3_5	90

0x100001a23	hit3_6	90

[0x10000355b]>

Backward	Search

120

Backward	Search

121

Assembler	Search
If	you	want	to	search	for	a	certain	assembler	opcodes,	you	can	either	use		/c		or		/a		commands.

The	command		/c	jmp	[esp]		searches	for	the	specified	category	of	assembly	mnemonic:

[0x00404888]>	/c	jmp	qword	[rdx]

f	hit_0	@	0x0040e50d			#	2:	jmp	qword	[rdx]

f	hit_1	@	0x00418dbb			#	2:	jmp	qword	[rdx]

f	hit_2	@	0x00418fcb			#	3:	jmp	qword	[rdx]

f	hit_3	@	0x004196ab			#	6:	jmp	qword	[rdx]

f	hit_4	@	0x00419bf3			#	3:	jmp	qword	[rdx]

f	hit_5	@	0x00419c1b			#	3:	jmp	qword	[rdx]

f	hit_6	@	0x00419c43			#	3:	jmp	qword	[rdx]

The	command	 	/a	jmp	eax		 assembles	 a	 string	 to	machine	 code,	 and	 then	 searches	 for	 the	 resulting
bytes:

[0x00404888]>	/a	jmp	eax

hits:	1

0x004048e7	hit3_0	ffe00f1f8000000000b8

Search	in	Assembly

122

Searching	for	AES	Keys
Thanks	 to	Victor	Muñoz,	 radare2	now	has	 support	of	 the	algorithm	he	developed,	capable	of	 finding
expanded	 AES	 keys	 with	 	 /Ca	 	 command.	 It	 searches	 from	 current	 seek	 position	 up	 to	 the
	search.distance		 limit,	 or	until	 end	of	 file	 is	 reached.	You	can	 interrupt	 current	 search	by	pressing
	Ctrl-C	.	For	example,	to	look	for	AES	keys	in	physical	memory	of	your	system:

$	sudo	r2	/dev/mem

[0x00000000]>	/Ca

0	AES	keys	found

Searching	for	AES	Keys

123

Disassembling
Disassembling	in	radare	is	just	a	way	to	represent	an	array	of	bytes.	It	is	handled	as	a	special	print	mode
within		p		command.

In	the	old	times,	when	the	radare	core	was	smaller,	the	disassembler	was	handled	by	an	external	rsc	file.
That	 is,	 radare	first	dumped	current	block	 into	a	file,	and	then	simply	called	 	objdump		 configured	 to
disassemble	for	Intel,	ARM	or	other	supported	architectures.

It	was	 a	working	 and	unix	 friendly	 solution,	 but	 it	was	 inefficient	 as	 it	 repeated	 the	 same	 expensive
actions	over	and	over,	because	there	were	no	caches.	As	a	result,	scrolling	was	terribly	slow.

So	 there	was	a	need	 to	create	a	generic	disassembler	 library	 to	 support	multiple	plugins	 for	different
architectures.	We	can	list	the	current	loaded	plugins	with

$	rasm2	-L

Or	from	inside	radare2:

>	e	asm.arch=??

This	was	many	years	before	capstone	appeared.	So	r2	was	using	udis86	and	olly	disassemblers,	many
gnu	(from	binutils).

Nowadays,	 the	disassembler	 support	 is	one	of	 the	basic	 features	of	 radare.	 It	now	has	many	options,
endianness,	including	target	architecture	flavor	and	disassembler	variants,	among	other	things.

To	see	 the	disassembly,	use	 the	 	pd		 command.	 It	 accepts	 a	 numeric	 argument	 to	 specify	how	many
opcodes	of	current	block	you	want	to	see.	Most	of	the	commands	in	radare	consider	the	current	block
size	as	the	default	limit	for	data	input.	If	you	want	to	disassemble	more	bytes,	set	a	new	block	size	using
the		b		command.

[0x00000000]>	b	100				;	set	block	size	to	100

[0x00000000]>	pd							;	disassemble	100	bytes

[0x00000000]>	pd	3					;	disassemble	3	opcodes

[0x00000000]>	pD	30				;	disassemble	30	bytes

Disassembling

124

The		pD		command	works	like		pd		but	accepts	the	number	of	input	bytes	as	its	argument,	instead	of	the
number	of	opcodes.

The	 "pseudo"	 syntax	may	be	 somewhat	 easier	 for	 a	 human	 to	 understand	 than	 the	 default	 assembler
notations.	But	it	can	become	annoying	if	you	read	lots	of	code.	To	play	with	it:

[0x00405e1c]>	e	asm.pseudo	=	true

[0x00405e1c]>	pd	3

										;	JMP	XREF	from	0x00405dfa	(fcn.00404531)

										0x00405e1c				488b9424a80.	rdx	=	[rsp+0x2a8]

										0x00405e24				64483314252.	rdx	^=	[fs:0x28]

										0x00405e2d				4889d8							rax	=	rbx

[0x00405e1c]>	e	asm.syntax	=	intel

[0x00405e1c]>	pd	3

										;	JMP	XREF	from	0x00405dfa	(fcn.00404531)

										0x00405e1c				488b9424a80.	mov	rdx,	[rsp+0x2a8]

										0x00405e24				64483314252.	xor	rdx,	[fs:0x28]

										0x00405e2d				4889d8							mov	rax,	rbx

[0x00405e1c]>	e	asm.syntax=att

[0x00405e1c]>	pd	3

										;	JMP	XREF	from	0x00405dfa	(fcn.00404531)

										0x00405e1c				488b9424a80.	mov	0x2a8(%rsp),	%rdx

										0x00405e24				64483314252.	xor	%fs:0x28,	%rdx

										0x00405e2d				4889d8							mov	%rbx,	%rax

Disassembling

125

Adding	Metadata	to	Disassembly
The	 typical	work	 involved	 in	 reversing	binary	 files	makes	powerful	 annotation	 capabilities	 essential.
Radare	offers	multiple	ways	to	store	and	retrieve	such	metadata.

By	following	common	basic	UNIX	principles,	it	is	easy	to	write	a	small	utility	in	a	scripting	language
which	uses		objdump	,		otool		or	any	other	existing	utility	to	obtain	information	from	a	binary	and	to
import	it	into	radare.	For	example,	take	a	look	at		idc2r.py		shipped	with	radare2ida.	To	use	it,	invoke
it	 as	 	idc2r.py	 file.idc	 >	 file.r2	.	 It	 reads	 an	 IDC	 file	 exported	 from	 an	 IDA	Pro	 database	 and
produces	an	r2	script	containing	the	same	comments,	names	of	functions	and	other	data.	You	can	import
the	resulting	'file.r2'	by	using	the	dot		.		command	of	radare:

[0x00000000]>	.	file.r2

The	 	.		 command	 is	 used	 to	 interpret	 Radare	 commands	 from	 external	 sources,	 including	 files	 and
program	output.	For	example,	to	omit	generation	of	an	intermediate	file	and	import	the	script	directly
you	can	use	this	combination:

[0x00000000]>	.!idc2r.py	<	file.idc

Please	keep	 in	mind	 that	 importing	 IDA	Pro	metadata	 from	IDC	dump	 is	deprecated	mechanism	and
might	not	work	in	the	future.	The	recommended	way	to	do	it	-	use	python-idb-based		ida2r2.py		which
opens	IDB	files	directly	without	IDA	Pro	installed.

The	 	C	 	 command	 is	 used	 to	 manage	 comments	 and	 data	 conversions.	 You	 can	 define	 a	 range	 of
program's	 bytes	 to	 be	 interpreted	 as	 either	 code,	 binary	 data	 or	 string.	 It	 is	 also	 possible	 to	 execute
external	code	at	every	specified	flag	location	in	order	to	fetch	some	metadata,	such	as	a	comment,	from
an	external	file	or	database.

There	are	many	different	metadata	manipulation	commands,	here	is	the	glimpse	of	all	of	them:

Adding	Metadata

126

https://github.com/radare/radare2ida
https://github.com/williballenthin/python-idb

[0x00404cc0]>	C?

|Usage:	C[-LCvsdfm*?][*?]	[...]	#	Metadata	management

|	C																												list	meta	info	in	human	friendly	form

|	C*																											list	meta	info	in	r2	commands

|	C[Chsdmf]																				list	comments/hidden/strings/data/magic/formatted	in	huma

n	friendly	form

|	C[Chsdmf]*																			list	comments/hidden/strings/data/magic/formatted	in	r2	c

ommands

|	C-	[len]	[[@]addr]											delete	metadata	at	given	address	range

|	CL[-][*]	[file:line]	[addr]		show	or	add	'code	line'	information	(bininfo)

|	CS[-][space]																	manage	meta-spaces	to	filter	comments,	etc..

|	CC[?]	[-]	[comment-text]	[@addr]	add/remove	comment

|	CC.[addr]																				show	comment	in	current	address

|	CC!	[@addr]																		edit	comment	with	$EDITOR

|	CCa[-at]|[at]	[text]	[@addr]	add/remove	comment	at	given	address

|	CCu	[comment-text]	[@addr]			add	unique	comment

|	Cv[bsr][?]																			add	comments	to	args

|	Cs[?]	[-]	[size]	[@addr]					add	string

|	Cz[@addr]																				add	string	(see	Cs?)

|	Ch[-]	[size]	[@addr]									hide	data

|	Cd[-]	[size]	[repeat]	[@addr]hexdump	data	array	(Cd	4	10	==	dword	[10])

|	Cf[?][-]	[sz]	[0|cnt][fmt]	[a0	a1...]	[@addr]		format	memory	(see	pf?)

|	CF[sz]	[fcn-sign..]	[@addr]		function	signature

|	Cm[-]	[sz]	[fmt..]	[@addr]			magic	parse	(see	pm?)

Simply	to	add	the	comment	to	a	particular	line/address	you	can	use		Ca		command:

[0x00000000]>	CCa	0x0000002	this	guy	seems	legit

[0x00000000]>	pd	2

0x00000000				0000									add	[rax],	al

;						this	guy	seems	legit

0x00000002				0000									add	[rax],	al

The		C?		family	of	commands	lets	you	mark	a	range	as	one	of	several	kinds	of	types.	Three	basic	types
are:	code	(disassembly	is	done	using	asm.arch),	data	(an	array	of	data	elements)	or	string.	Use	the		Cs	
comand	to	define	a	string,	use	 the	 	Cd		command	for	defining	an	array	of	data	elements,	and	use	 the
	Cf		command	to	define	more	complex	data	structures	like	structs.

Annotating	 data	 types	 is	 most	 easily	 done	 in	 visual	 mode,	 using	 the	 "d"	 key,	 short	 for	 "data	 type
change".	First,	use	the	cursor	 to	select	a	range	of	bytes	(press	 	c		key	 to	 toggle	cursor	mode	and	use
HJKL	keys	to	expand	selection),	then	press	'd'	to	get	a	menu	of	possible	actions/types.	For	example,	to
mark	the	range	as	a	string,	use	the	's'	option	from	the	menu.	You	can	achieve	the	same	result	from	the
shell	using	the		Cs		command:

Adding	Metadata

127

[0x00000000]>	f	string_foo	@	0x800

[0x00000000]>	Cs	10	@	string_foo

The	 	Cf	 	 command	 is	 used	 to	 define	 a	 memory	 format	 string	 (the	 same	 syntax	 used	 by	 the	 	pf	
command).	Here's	an	example:

[0x7fd9f13ae630]>	Cf	16	2xi	foo	bar

[0x7fd9f13ae630]>	pd

;--	rip:

0x7fd9f13ae630	format	2xi	foo	bar	{

0x7fd9f13ae630	[0]	{

	foo	:	0x7fd9f13ae630	=	0xe8e78948

	bar	:	0x7fd9f13ae634	=	14696

}

0x7fd9f13ae638	[1]	{

	foo	:	0x7fd9f13ae638	=	0x8bc48949

	bar	:	0x7fd9f13ae63c	=	571928325

}

}	16

0x7fd9f13ae633				e868390000			call	0x7fd9f13b1fa0

0x7fd9f13ae638				4989c4							mov	r12,	rax

The	 	[sz]	 	 argument	 to	 	Cf	 	 is	 used	 to	 define	 how	 many	 bytes	 the	 struct	 should	 take	 up	 in	 the
disassembly,	and	 is	 completely	 independent	 from	 the	 size	of	 the	data	 structure	defined	by	 the	 format
string.	This	may	seem	confusing,	but	has	several	uses.	For	example,	you	may	want	to	see	the	formatted
structure	displayed	in	the	disassembly,	but	still	have	those	locations	be	visible	as	offsets	and	with	raw
bytes.	 Sometimes,	 you	 find	 large	 structures,	 but	 only	 identified	 a	 few	 fields,	 or	 only	 interested	 in
specific	fields.	Then,	you	can	tell	r2	to	display	only	those	fields,	using	the	format	string	and	using	'skip'
fields,	and	also	have	the	disassembly	continue	after	the	entire	structure,	by	giving	it	full	size	using	the
	sz		argument.

Using	 	Cf	 ,	 it's	 easy	 to	 define	 complex	 structures	 with	 simple	 oneliners.	 See	 	pf?	 	 for	 more
information.	Remember	 that	 all	 these	 	C		 commands	 can	 also	 be	 accessed	 from	 the	 visual	mode	 by
pressing	the	 	d		 (data	conversion)	key.	Note	 that	unlike	 	t		 commands	 	Cf		 doesn't	 change	 analysis
results.	It	is	only	a	visual	boon.

Sometimes	just	adding	a	single	line	of	comments	is	not	enough,	in	this	case	radare2	allows	you	to	create
a	link	for	a	particular	text	file.	You	can	use	it	with		CC,		command	or	by	pressing		,		key	in	the	visual
mode.	This	will	open	an		$EDITOR		to	create	a	new	file,	or	if	filename	does	exist,	just	will	create	a	link.
It	will	be	shown	in	the	disassembly	comments:

Adding	Metadata

128

[0x00003af7	11%	290	/bin/ls]>	pd	$r	@	main+55	#	0x3af7

│0x00003af7		call	sym.imp.setlocale								;[1]	;	,(locale-help.txt)	;	char	*setlocale(i

nt	category,	const	char	*locale)

│0x00003afc		lea	rsi,	str.usr_share_locale	;	0x179cc	;	"/usr/share/locale"

│0x00003b03		lea	rdi,	[0x000179b2]									;	"coreutils"

│0x00003b0a		call	sym.imp.bindtextdomain			;[2]	;	char	*bindtextdomain(char	*domainname,

	char	*dirname)

Note		,(locale-help.txt)		appeared	in	the	comments,	if	we	press		,		again	in	the	visual	mode,	it	will
open	 the	 file.	 Using	 this	mechanism	we	 can	 create	 a	 long	 descriptions	 of	 some	 particular	 places	 in
disassembly,	link	datasheets	or	related	articles.

Adding	Metadata

129

ESIL
ESIL	 stands	 for	 'Evaluable	 Strings	 Intermediate	 Language'.	 It	 aims	 to	 describe	 a	 Forth)-like
representation	 for	 every	 target	 CPU	 opcode	 semantics.	 ESIL	 representations	 can	 be	 evaluated
(interpreted)	 in	 order	 to	 emulate	 individual	 instructions.	 Each	 command	 of	 an	 ESIL	 expression	 is
separated	by	a	comma.	Its	virtual	machine	can	be	described	as	this:

			while	((word=haveCommand()))	{

					if	(word.isOperator())	{

							esilOperators[word](esil);

					}	else	{

							esil.push	(word);

					}

					nextCommand();

			}

As	we	can	see	ESIL	uses	a	 stack-based	 interpreter	 similar	 to	what	 is	commonly	used	 for	calculators.
You	have	two	categories	of	inputs:	values	and	operators.	A	value	simply	gets	pushed	on	the	stack,	an
operator	then	pops	values	(its	arguments	if	you	will)	off	the	stack,	performs	its	operation	and	pushes	its
results	(if	any)	back	on.	We	can	think	of	ESIL	as	a	post-fix	notation	of	the	operations	we	want	to	do.

So	let's	see	an	example:

4,esp,-=,ebp,esp,=[4]

Can	you	guess	what	this	is?	If	we	take	this	post-fix	notation	and	transform	it	back	to	in-fix	we	get

esp	-=	4

4bytes(dword)	[esp]	=	ebp

We	can	see	that	this	corresponds	to	the	x86	instruction		push	ebp	!	Isn't	that	cool?	The	aim	is	to	be	able
to	 express	 most	 of	 the	 common	 operations	 performed	 by	 CPUs,	 like	 binary	 arithmetic	 operations,
memory	loads	and	stores,	processing	syscalls.	This	way	if	we	can	transform	the	instructions	to	ESIL	we
can	see	what	a	program	does	while	it	is	running	even	for	the	most	cryptic	architectures	you	definitely
don't	have	a	device	to	debug	on	for.

Using	ESIL

ESIL

130

https://en.wikipedia.org/wiki/Forth_(programming_language

r2's	visual	mode	is	great	to	inspect	the	ESIL	evaluations.

There	are	2	environment	variables	that	are	important	for	watching	what	a	program	does:

[0x00000000]>	e	emu.str	=	true

	asm.emu	 	 tells	 r2	 if	 you	 want	 ESIL	 information	 to	 be	 displayed.	 If	 it	 is	 set	 to	 true,	 you	 will	 see
comments	 appear	 to	 the	 right	 of	 your	 disassembly	 that	 tell	 you	 how	 the	 contents	 of	 registers	 and
memory	addresses	are	changed	by	the	current	instruction.	For	example,	if	you	have	an	instruction	that
subtracts	a	value	from	a	register	it	tells	you	what	the	value	was	before	and	what	it	becomes	after.	This	is
super	useful	so	you	don't	have	to	sit	there	yourself	and	track	which	value	goes	where.

One	problem	with	this	is	that	it	is	a	lot	of	information	to	take	in	at	once	and	sometimes	you	simply	don't
need	it.	r2	has	a	nice	compromise	for	this.	That	is	what	the	 	emu.str		variable	is	for	(asm.emustr		on
<=	 2.2).	 Instead	 of	 this	 super	 verbose	 output	 with	 every	 register	 value,	 this	 only	 adds	 really	 useful
information	to	the	output,	e.g.,	strings	that	are	found	at	addresses	a	program	uses	or	whether	a	jump	is
likely	to	be	taken	or	not.

The	third	important	variable	is		asm.esil	.	This	switches	your	disassembly	to	no	longer	show	you	the
actual	 disassembled	 instructions,	 but	 instead	 now	 shows	 you	 corresponding	 ESIL	 expressions	 that
describe	what	the	instruction	does.	So	if	you	want	to	take	a	look	at	how	instructions	are	expressed	in
ESIL	simply	set	"asm.esil"	to	true.

[0x00000000]>	e	asm.esil	=	true

In	visual	mode	you	can	also	toggle	this	by	simply	typing		O	.

ESIL	Commands
"ae"	:	Evaluate	ESIL	expression.

[0x00000000]>	"ae	1,1,+"

0x2

[0x00000000]>

"aes"	:	ESIL	Step.

ESIL

131

[0x00000000]>	aes

[0x00000000]>10aes

"aeso"	:	ESIL	Step	Over.

[0x00000000]>	aeso

[0x00000000]>10aeso

"aesu"	:	ESIL	Step	Until.

[0x00001000]>	aesu	0x1035

ADDR	BREAK

[0x00001019]>

"ar"	:	Show/modify	ESIL	registry.

[0x00001ec7]>	ar	r_00	=	0x1035

[0x00001ec7]>	ar	r_00

0x00001035

[0x00001019]>

ESIL	Instruction	Set
Here	is	the	complete	instruction	set	used	by	the	ESIL	VM:

ESIL
Opcode Operands Name Operation example

TRAP src Trap Trap	signal

$ src Syscall syscall

$$ src Instruction
address

Get	 address	 of
current	instruction
stack=instruction
address

== src,dst Compare

stack	 =	 (dst	 ==
src)	;	
update_eflags(dst
-	src)

Smaller
stack	=	(dst	<	src) [0x0000000]>	"ae	1,5,

<"	

ESIL

132

< src,dst (signed
comparison)

update_eflags(dst
-	src)

0x0
>	"ae	5,5"
0x0"

<= src,dst
Smaller	 or
Equal	 (signed
comparison)

stack	 =	 (dst	 <=
src)	;	
update_eflags(dst
-	src)

[0x0000000]>	"ae	1,5,
<"	
0x0
>	"ae	5,5"
0x1"

> src,dst Bigger	 (signed
comparison)

stack	=	(dst	>	src)
;	
update_eflags(dst
-	src)

>	"ae	1,5,>"
0x1
>	"ae	5,5,>"
0x0

>= src,dst
Bigger	 or
Equal	 (signed
comparison)

stack	 =	 (dst	 >=
src)	;	
update_eflags(dst
-	src)

>	"ae	1,5,>="
0x1
>	"ae	5,5,>="
0x1

<< src,dst Shift	Left stack	=	dst	<<	src

>	"ae	1,1,<<"
0x2
>	"ae	2,1,<<"
0x4

>> src,dst Shift	Right stack	=	dst	>>	src

>	"ae	1,4,>>"
0x2
>	"ae	2,4,>>"
0x1

<<< src,dst Rotate	Left stack=dst	ROL	src

>	"ae	31,1,<<<"
0x80000000
>	"ae	32,1,<<<"
0x1

>>> src,dst Rotate	Right stack=dst	ROR	src

>	"ae	1,1,>>>"
0x80000000
>	"ae	32,1,>>>"
0x1

& src,dst AND stack	=	dst	&	src

>	"ae	1,1,&"
0x1
>	"ae	1,0,&"
0x0
>	"ae	0,1,&"
0x0
>	"ae	0,0,&"
0x0

>	"ae	1,1,|"
0x1

ESIL

133

| src,dst OR stack	=	dst	|	src

>	"ae	1,0,|"
0x1
>	"ae	0,1,|"
0x1
>	"ae	0,0,|"
0x0

^ src,dst XOR stack	=	dst	^src

>	"ae	1,1,^"
0x0
>	"ae	1,0,^"
0x1
>	"ae	0,1,^"
0x1
>	"ae	0,0,^"
0x0

+ src,dst ADD stack	=	dst	+	src

>	"ae	3,4,+"
0x7
>	"ae	5,5,+"
0xa

- src,dst SUB stack	=	dst	-	src

>	"ae	3,4,-"
0x1
>	"ae	5,5,-"
0x0
>	"ae	4,3,-"
0xffffffffffffffff

* src,dst MUL stack	=	dst	*	src

>	"ae	3,4,*"
0xc
>	"ae	5,5,*"
0x19

/ src,dst DIV stack	=	dst	/	src

>	"ae	2,4,/"
0x2
>	"ae	5,5,/"
0x1
>	"ae	5,9,/"
0x1

% src,dst MOD stack	=	dst	%	src

>	"ae	2,4,%"
0x0
>	"ae	5,5,%"
0x0
>	"ae	5,9,%"
0x4

! src NEG stack	=	!!!src

>	"ae	1,!"
0x0
>	"ae	4,!"
0x0

ESIL

134

>	"ae	0,!"
0x1

++ src INC stack	=	src++

>	ar	r_00=0;ar	r_00
0x00000000
>	"ae	r_00,++"
0x1
>	ar	r_00
0x00000000
>	"ae	1,++"
0x2

-- src DEC stack	=	src--

>	ar	r_00=5;ar	r_00
0x00000005
>	"ae	r_00,--"
0x4
>	ar	r_00
0x00000005
>	"ae	5,--"
0x4

= src,reg EQU reg	=	src

>	"ae	3,r_00,="
>	aer	r_00
0x00000003
>	"ae	r_00,r_01,="
>	aer	r_01
0x00000003

+= src,reg ADD	eq reg	=	reg	+	src

>	 ar	 r_01=5;ar
r_00=0;ar	r_00
0x00000000
>	"ae	r_01,r_00,+="
>	ar	r_00
0x00000005
>	"ae	5,r_00,+="
>	ar	r_00
0x0000000a

-= src,reg SUB	eq reg	=	reg	-	src

>	"ae	r_01,r_00,-="
>	ar	r_00
0x00000004
>	"ae	3,r_00,-="
>	ar	r_00
0x00000001

*= src,reg MUL	eq reg	=	reg	*	src

>	 ar	 r_01=3;ar
r_00=5;ar	r_00
0x00000005
>	"ae	r_01,r_00,*="
>	ar	r_00
0x0000000f

ESIL

135

>	"ae	2,r_00,*="
>	ar	r_00
0x0000001e

/= src,reg DIV	eq reg	=	reg	/	src

>	 ar	 r_01=3;ar
r_00=6;ar	r_00
0x00000006
>	"ae	r_01,r_00,/="
>	ar	r_00
0x00000002
>	"ae	1,r_00,/="
>	ar	r_00
0x00000002

%= src,reg MOD	eq reg	=	reg	%	src

>	 ar	 r_01=3;ar
r_00=7;ar	r_00
0x00000007
>	"ae	r_01,r_00,%="
>	ar	r_00
0x00000001
>	ar	r_00=9;ar	r_00
0x00000009
>	"ae	5,r_00,%="
>	ar	r_00
0x00000004

<<= src,reg Shift	Left	eq reg	=	reg	<<	src

>	 ar	 r_00=1;ar
r_01=1;ar	r_01
0x00000001
>	"ae	r_00,r_01,<<="
>	ar	r_01
0x00000002
>	"ae	2,r_01,<<="
>	ar	r_01
0x00000008

>>= src,reg Shift	Right	eq reg	=	reg	<<	src

>	 ar	 r_00=1;ar
r_01=8;ar	r_01
0x00000008
>	"ae	r_00,r_01,>>="
>	ar	r_01
0x00000004
>	"ae	2,r_01,>>="
>	ar	r_01
0x00000001

>	 ar	 r_00=2;ar
r_01=6;ar	r_01
0x00000006
>	"ae	r_00,r_01,&="
>	ar	r_01

ESIL

136

&= src,reg AND	eq reg	=	reg	&	src
>	ar	r_01
0x00000002
>	"ae	2,r_01,&="
>	ar	r_01
0x00000002
>	"ae	1,r_01,&="
>	ar	r_01
0x00000000

|= src,reg OR	eq reg	=	reg	|	src

>	 ar	 r_00=2;ar
r_01=1;ar	r_01
0x00000001
>	"ae	r_00,r_01,|="
>	ar	r_01
0x00000003
>	"ae	4,r_01,|="
>	ar	r_01
0x00000007

^= src,reg XOR	eq reg	=	reg	^	src

>	 ar	 r_00=2;ar
r_01=0xab;ar	r_01
0x000000ab
>	"ae	r_00,r_01,^="
>	ar	r_01
0x000000a9
>	"ae	2,r_01,^="
>	ar	r_01
0x000000ab

++= reg INC	eq reg	=	reg	+	1

>	ar	r_00=4;ar	r_00
0x00000004
>	"ae	r_00,++="
>	ar	r_00
0x00000005

--= reg DEC	eq reg	=	reg	-	1

>	ar	r_00=4;ar	r_00
0x00000004
>	"ae	r_00,--="
>	ar	r_00
0x00000003

!= reg NOT	eq reg	=	!reg

>	ar	r_00=4;ar	r_00
0x00000004
>	"ae	r_00,!="
>	ar	r_00
0x00000000
>	"ae	r_00,!="
>	ar	r_00
0x00000001

--- --- --- --- ---------------------------

ESIL

137

=[]
=[*]
=[1]
=[2]
=[4]
=[8]

src,dst poke *dst=src

>	 "ae
0xdeadbeef,0x10000,=
[4],"

>	pxw	4@0x10000
0x00010000
0xdeadbeef

>	 "ae	 0x0,0x10000,=
[4],"

>	pxw	4@0x10000
0x00010000
0x00000000

[]
[*]
[1]
[2]
[4]
[8]

src peek stack=*src

>	w	test@0x10000

>	"ae	0x10000,[4],"
0x74736574

>	ar	r_00=0x10000

>	"ae	r_00,[4],"
0x74736574

|=[]
|=[1]
|=[2]
|=[4]
|=[8]

reg nombre code >	
>

SWAP Swap Swap	 two	 top
elements SWAP

PICK n Pick
Pick	nth	element
from	the	top	of	the
stack

2,PICK

RPICK m Reverse	Pick
Pick	nth	element
from	 the	 base	 of
the	stack

0,RPICK

DUP Duplicate Duplicate	 top
element	in	stack DUP

If	top	element	is	a
reference	
(register	 name,

ESIL

138

dereference	 it	 and
push	its	real	value

CLEAR Clear Clear	stack CLEAR

BREAK Break Stops	 ESIL
emulation BREAK

GOTO n Goto Jumps	 to	 Nth
ESIL	word GOTO	5

TODO To	Do

Stops	execution
(reason:	 ESIL
expression	 not
completed)

TODO

ESIL	Flags

ESIL	VM	has	an	 internal	 state	 flags	 that	are	 read-only	and	can	be	used	 to	export	 those	values	 to	 the
underlying	target	CPU	flags.	It	is	because	the	ESIL	VM	always	calculates	all	flag	changes,	while	target
CPUs	only	update	flags	under	certain	conditions	or	at	specific	instructions.

Internal	flags	are	prefixed	with		$		character.

z						-	zero	flag,	only	set	if	the	result	of	an	operation	is	0

b						-	borrow,	this	requires	to	specify	from	which	bit	(example:	$b4	-	checks	if	borro

w	from	bit	4)

c						-	carry,	same	like	above	(example:	$c7	-	checks	if	carry	from	bit	7)

o						-	overflow

p						-	parity

r						-	regsize	(asm.bits/8)

s						-	sign

ds					-	delay	slot	state

jt					-	jump	target

js					-	jump	target	set

[0-9]*	-	Used	to	set	flags	and	registers	without	having	any	side	effects,

									i.e.	setting	esil_cur,	esil_old	and	esil_lastsz.

									(example:	"$0,of,="	to	reset	the	overflow	flag)

Syntax	and	Commands
A	target	opcode	is	translated	into	a	comma	separated	list	of	ESIL	expressions.

xor	eax,	eax				->				0,eax,=,1,zf,=

ESIL

139

xor	eax,	eax				->				0,eax,=,1,zf,=

Memory	access	is	defined	by	brackets	operation:

mov	eax,	[0x80480]			->			0x80480,[],eax,=

Default	operand	size	is	determined	by	size	of	operation	destination.

movb	$0,	0x80480					->			0,0x80480,=[1]

The	 	?		operator	uses	 the	value	of	 its	argument	 to	decide	whether	 to	evaluate	 the	expression	in	curly
braces.

1.	 Is	the	value	zero?	->	Skip	it.
2.	 Is	the	value	non-zero?	->	Evaluate	it.

cmp	eax,	123		->			123,eax,==,$z,zf,=

jz	eax								->			zf,?{,eax,eip,=,}

If	you	want	to	run	several	expressions	under	a	conditional,	put	them	in	curly	braces:

zf,?{,eip,esp,=[],eax,eip,=,$r,esp,-=,}

Whitespaces,	newlines	and	other	chars	are	ignored.	So	the	first	thing	when	processing	a	ESIL	program
is	to	remove	spaces:

esil	=	r_str_replace	(esil,	"	",	"",	R_TRUE);

Syscalls	need	special	 treatment.	They	are	 indicated	by	 '$'	 at	 the	beginning	of	an	expression.	You	can
pass	an	optional	numeric	value	to	specify	a	number	of	syscall.	An	ESIL	emulator	must	handle	syscalls.
See	(r_esil_syscall).

Arguments	Order	for	Non-associative
Operations
As	discussed	on	IRC,	the	current	implementation	works	like	this:

ESIL

140

a,b,-						b	-	a

a,b,/=					b	/=	a

This	approach	is	more	readable,	but	it	is	less	stack-friendly.

Special	Instructions

NOPs	are	represented	as	empty	strings.	As	it	was	said	previously,	syscalls	are	marked	by	'$'	command.
For	example,	 '0x80,$'.	It	delegates	emulation	from	the	ESIL	machine	to	a	callback	which	implements
syscalls	for	a	specific	OS/kernel.

Traps	 are	 implemented	 with	 the	 	TRAP	 	 command.	 They	 are	 used	 to	 throw	 exceptions	 for	 invalid
instructions,	division	by	zero,	memory	read	error,	or	any	other	needed	by	specific	architectures.

Quick	Analysis
Here	is	a	list	of	some	quick	checks	to	retrieve	information	from	an	ESIL	string.	Relevant	information
will	be	probably	found	in	the	first	expression	of	the	list.

indexOf('[')				->	have	memory	references

indexOf("=[")			->	write	in	memory

indexOf("pc,=")	->	modifies	program	counter	(branch,	jump,	call)

indexOf("sp,=")	->	modifies	the	stack	(what	if	we	found	sp+=	or	sp-=?)

indexOf("=")				->	retrieve	src	and	dst

indexOf(":")				->	unknown	esil,	raw	opcode	ahead

indexOf("$")				->	accesses	internal	esil	vm	flags	ex:	$z

indexOf("$")				->	syscall	ex:	1,$

indexOf("TRAP")	->	can	trap

indexOf('++')			->	has	iterator

indexOf('--')			->	count	to	zero

indexOf("?{")			->	conditional

equalsTo("")				->	empty	string,	aka	nop	(wrong,	if	we	append	pc+=x)

Common	operations:

Check	dstreg
Check	srcreg
Get	destinaion
Is	jump
Is	conditional
Evaluate

ESIL

141

CPU	flags	are	usually	defined	as	 single	bit	 registers	 in	 the	RReg	profile.	They	and	 sometimes	 found
under	the	'flg'	register	type.

Variables

Properties	of	the	VM	variables:

1.	 They	have	no	predefined	bit	width.	This	way	it	should	be	easy	to	extend	them	to	128,	256	and	512
bits	later,	e.g.	for	MMX,	SSE,	AVX,	Neon	SIMD.

2.	 There	can	be	unbound	number	of	variables.	It	is	done	for	SSA-form	compatibility.

3.	 Register	names	have	no	specific	syntax.	They	are	just	strings.

4.	 Numbers	can	be	specified	in	any	base	supported	by	RNum	(dec,	hex,	oct,	binary	...).

5.	 Each	ESIL	backend	should	have	an	associated	RReg	profile	to	describe	the	ESIL	register	specs.

Bit	Arrays

What	to	do	with	them?	What	about	bit	arithmetics	if	use	variables	instead	of	registers?

Arithmetics

1.	 ADD	("+")
2.	 MUL	("*")
3.	 SUB	("-")
4.	 DIV	("/")
5.	 MOD	("%")

Bit	Arithmetics

1.	 AND	"&"
2.	 OR	"|"
3.	 XOR	"^"
4.	 SHL	"<<"
5.	 SHR	">>"
6.	 ROL	"<<<"
7.	 ROR	">>>"
8.	 NEG	"!"

ESIL

142

6.	 ROL	"<<<"
7.	 ROR	">>>"
8.	 NEG	"!"

Floating	Point	Unit	Support

At	 the	moment	 of	 this	writing,	 ESIL	 does	 not	 yet	 support	 FPU.	But	 you	 can	 implement	 support	 for
unsupported	 instructions	 using	 r2pipe.	 Eventually	 we	 will	 get	 proper	 support	 for	 multimedia	 and
floating	point.

Handling	x86	REP	Prefix	in	ESIL

ESIL	 specifies	 that	 the	 parsing	 control-flow	 commands	must	 be	 uppercase.	 Bear	 in	mind	 that	 some
architectures	have	uppercase	register	names.	The	corresponding	register	profile	should	take	care	not	to
reuse	any	of	the	following:

3,SKIP			-	skip	N	instructions.	used	to	make	relative	forward	GOTOs

3,GOTO			-	goto	instruction	3

LOOP					-	alias	for	0,GOTO

BREAK				-	stop	evaluating	the	expression

STACK				-	dump	stack	contents	to	screen

CLEAR				-	clear	stack

Usage	Example:

rep	cmpsb

cx,!,?{,BREAK,},esi,[1],edi,[1],==,?{,BREAK,},esi,++,edi,++,cx,--,0,GOTO

Unimplemented/Unhandled	Instructions

Those	 are	 expressed	 with	 the	 'TODO'	 command.	 They	 act	 as	 a	 'BREAK',	 but	 displays	 a	 warning
message	describing	that	an	instruction	is	not	implemented	and	will	not	be	emulated.	For	example:

fmulp	ST(1),	ST(0)						=>						TODO,fmulp	ST(1),ST(0)

ESIL	Disassembly	Example:

ESIL

143

[0x1000010f8]>	e	asm.esil=true

[0x1000010f8]>	pd	$r	@	entry0

0x1000010f8				55											8,rsp,-=,rbp,rsp,=[8]

0x1000010f9				4889e5							rsp,rbp,=

0x1000010fc				4883c768					104,rdi,+=

0x100001100				4883c668					104,rsi,+=

0x100001104				5d											rsp,[8],rbp,=,8,rsp,+=

0x100001105				e950350000			0x465a,rip,=	;[1]

0x10000110a				55											8,rsp,-=,rbp,rsp,=[8]

0x10000110b				4889e5							rsp,rbp,=

0x10000110e				488d4668					rsi,104,+,rax,=

0x100001112				488d7768					rdi,104,+,rsi,=

0x100001116				4889c7							rax,rdi,=

0x100001119				5d											rsp,[8],rbp,=,8,rsp,+=

0x10000111a				e93b350000			0x465a,rip,=	;[1]

0x10000111f				55											8,rsp,-=,rbp,rsp,=[8]

0x100001120				4889e5							rsp,rbp,=

0x100001123				488b4f60					rdi,96,+,[8],rcx,=

0x100001127				4c8b4130					rcx,48,+,[8],r8,=

0x10000112b				488b5660					rsi,96,+,[8],rdx,=

0x10000112f				b801000000			1,eax,=

0x100001134				4c394230					rdx,48,+,[8],r8,==,cz,?=

0x100001138				7f1a									sf,of,!,^,zf,!,&,?{,0x1154,rip,=,}	;[2]

0x10000113a				7d07									of,!,sf,^,?{,0x1143,rip,}	;[3]

0x10000113c				b8ffffffff			0xffffffff,eax,=	;		0xffffffff

0x100001141				eb11									0x1154,rip,=	;[2]

0x100001143				488b4938					rcx,56,+,[8],rcx,=

0x100001147				48394a38					rdx,56,+,[8],rcx,==,cz,?=

Introspection
To	ease	ESIL	parsing	we	should	have	a	way	to	express	introspection	expressions	to	extract	the	data	that
we	 want.	 For	 example,	 we	 may	 want	 to	 get	 the	 target	 address	 of	 a	 jump.	 The	 parser	 for	 ESIL
expressions	should	offer	an	API	to	make	it	possible	to	extract	information	by	analyzing	the	expressions
easily.

>		ao~esil,opcode

opcode:	jmp	0x10000465a

esil:	0x10000465a,rip,=

We	need	a	way	to	retrieve	the	numeric	value	of	'rip'.	This	is	a	very	simple	example,	but	there	are	more
complex,	like	conditional	ones.	We	need	expressions	to	be	able	to	get:

opcode	type
destination	of	a	jump

ESIL

144

condition	depends	on
all	regs	modified	(write)
all	regs	accessed	(read)

API	HOOKS

It	is	important	for	emulation	to	be	able	to	setup	hooks	in	the	parser,	so	we	can	extend	it	to	implement
analysis	without	having	 to	change	 it	 again	and	again.	That	 is,	 every	 time	an	operation	 is	about	 to	be
executed,	a	user	hook	is	called.	It	can	be	used	for	example	to	determine	if		RIP		is	going	to	change,	or	if
the	 instruction	updates	 the	stack.	Later,	we	can	split	 that	callback	 into	several	ones	 to	have	an	event-
based	analysis	API	that	may	be	extended	in	JavaScript	like	this:

esil.on('regset',	function(){..

esil.on('syscall',	function(){esil.regset('rip'

For	 the	 API,	 see	 the	 functions	 	hook_flag_read()	 ,	 	hook_execute()	 	 and	 	hook_mem_read()	 .	 A
callback	should	return	true	or	1	 if	you	want	 to	override	the	action	that	 it	 takes.	For	example,	 to	deny
memory	reads	in	a	region,	or	voiding	memory	writes,	effectively	making	it	read-only.	Return	false	or	0
if	you	want	to	trace	ESIL	expression	parsing.

Other	operations	require	bindings	to	external	functionalities	to	work.	In	this	case,	 	r_ref		and	 	r_io	.
This	must	be	defined	when	initializing	the	ESIL	VM.

Io	Get/Set

Out	ax,	44

44,ax,:ou

Selectors	(cs,ds,gs...)

Mov	eax,	ds:[ebp+8]

Ebp,8,+,:ds,eax,=

ESIL

145

Data	and	Code	Analysis
Radare2	has	a	very	rich	set	of	commands	and	configuration	options	to	perform	data	and	code	analysis,
to	extract	useful	information	from	a	binary,	like	pointers,	string	references,	basic	blocks,	opcode	data,
jump	 targets,	 cross	 references	 and	 much	 more.	 These	 operations	 are	 handled	 by	 the	 	a	 	 (analyze)
command	family:

|Usage:	a[abdefFghoprxstc]	[...]

|	aa[?]														analyze	all	(fcns	+	bbs)	(aa0	to	avoid	sub	renaming)

|	a8	[hexpairs]						analyze	bytes

|	ab[b]	[addr]							analyze	block	at	given	address

|	abb	[len]										analyze	N	basic	blocks	in	[len]	(section.size	by	default)

|	abt	[addr]									find	paths	in	the	bb	function	graph	from	current	offset	to	given	ad

dress

|	ac	[cycles]								analyze	which	op	could	be	executed	in	[cycles]

|	ad[?]														analyze	data	trampoline	(wip)

|	ad	[from]	[to]					analyze	data	pointers	to	(from-to)

|	ae[?]	[expr]							analyze	opcode	eval	expression	(see	ao)

|	af[?]														analyze	Functions

|	aF																	same	as	above,	but	using	anal.depth=1

|	ag[?]	[options]				draw	graphs	in	various	formats

|	ah[?]														analysis	hints	(force	opcode	size,	...)

|	ai	[addr]										address	information	(show	perms,	stack,	heap,	...)

|	an	[name]	[@addr]		show/rename/create	whatever	flag/function	is	used	at	addr

|	ao[?]	[len]								analyze	Opcodes	(or	emulate	it)

|	aO[?]	[len]								Analyze	N	instructions	in	M	bytes

|	ap																	find	prelude	for	current	offset

|	ar[?]														like	'dr'	but	for	the	esil	vm.	(registers)

|	as[?]	[num]								analyze	syscall	using	dbg.reg

|	av[?]	[.]										show	vtables

|	ax[?]														manage	refs/xrefs	(see	also	afx?)

In	fact,		a		namespace	is	one	of	the	biggest	in	radare2	tool	and	allows	to	control	very	different	parts	of
the	analysis:

Code	flow	analysis
Data	references	analysis
Using	loaded	symbols
Managing	different	type	of	graphs,	like	CFG	and	call	graph
Manage	variables
Manage	types
Emulation	using	ESIL	VM

Analysis

146

Opcode	introspection
Objects	information,	like	virtual	tables

Analysis

147

Code	Analysis
Code	analysis	is	a	common	technique	used	to	extract	information	from	assembly	code.

Radare2	 has	 different	 code	 analysis	 techniques	 implemented	 in	 the	 core	 and	 available	 in	 different
commands.

As	long	as	the	whole	functionalities	of	r2	are	available	with	the	API	as	well	as	using	commands.	This
gives	you	the	ability	to	implement	your	own	analysis	loops	using	any	programming	language,	even	with
r2	oneliners,	shellscripts,	or	analysis	or	core	native	plugins.

The	 analysis	will	 show	 up	 the	 internal	 data	 structures	 to	 identify	 basic	 blocks,	 function	 trees	 and	 to
extract	opcode-level	information.

The	most	common	radare2	analysis	command	sequence	is		aa	,	which	stands	for	"analyze	all".	That	all
is	 referring	 to	 all	 symbols	 and	 entry-points.	 If	 your	 binary	 is	 stripped	 you	 will	 need	 to	 use	 other
commands	like		aaa	,		aab	,		aar	,		aac		or	so.

Take	some	time	to	understand	what	each	command	does	and	the	results	after	running	them	to	find	the
best	one	for	your	needs.

[0x08048440]>	aa

[0x08048440]>	pdf	@	main

											;	DATA	XREF	from	0x08048457	(entry0)

/	(fcn)	fcn.08048648	141

|					;--	main:

|					0x08048648				8d4c2404					lea	ecx,	[esp+0x4]

|					0x0804864c				83e4f0							and	esp,	0xfffffff0

|					0x0804864f				ff71fc							push	dword	[ecx-0x4]

|					0x08048652				55											push	ebp

|					;	CODE	(CALL)	XREF	from	0x08048734	(fcn.080486e5)

|					0x08048653				89e5									mov	ebp,	esp

|					0x08048655				83ec28							sub	esp,	0x28

|					0x08048658				894df4							mov	[ebp-0xc],	ecx

|					0x0804865b				895df8							mov	[ebp-0x8],	ebx

|					0x0804865e				8975fc							mov	[ebp-0x4],	esi

|					0x08048661				8b19									mov	ebx,	[ecx]

|					0x08048663				8b7104							mov	esi,	[ecx+0x4]

|					0x08048666				c744240c000.	mov	dword	[esp+0xc],	0x0

|					0x0804866e				c7442408010.	mov	dword	[esp+0x8],	0x1	;		0x00000001

|					0x08048676				c7442404000.	mov	dword	[esp+0x4],	0x0

|					0x0804867e				c7042400000.	mov	dword	[esp],	0x0

|					0x08048685				e852fdffff			call	sym..imp.ptrace

|								sym..imp.ptrace(unk,	unk)

Code	Analysis

148

|					0x0804868a				85c0									test	eax,	eax

|	,=<	0x0804868c				7911									jns	0x804869f

|	|			0x0804868e				c70424cf870.	mov	dword	[esp],	str.Don_tuseadebuguer_	;		0x080487cf

|	|			0x08048695				e882fdffff			call	sym..imp.puts

|	|						sym..imp.puts()

|	|			0x0804869a				e80dfdffff			call	sym..imp.abort

|	|						sym..imp.abort()

|	`->	0x0804869f				83fb02							cmp	ebx,	0x2

|,==<	0x080486a2				7411									je	0x80486b5

||				0x080486a4				c704240c880.	mov	dword	[esp],	str.Youmustgiveapasswordforusethisprog

ram_	;		0x0804880c

||				0x080486ab				e86cfdffff			call	sym..imp.puts

||							sym..imp.puts()

||				0x080486b0				e8f7fcffff			call	sym..imp.abort

||							sym..imp.abort()

|`-->	0x080486b5				8b4604							mov	eax,	[esi+0x4]

|					0x080486b8				890424							mov	[esp],	eax

|					0x080486bb				e8e5feffff			call	fcn.080485a5

|								fcn.080485a5()	;	fcn.080484c6+223

|					0x080486c0				b800000000			mov	eax,	0x0

|					0x080486c5				8b4df4							mov	ecx,	[ebp-0xc]

|					0x080486c8				8b5df8							mov	ebx,	[ebp-0x8]

|					0x080486cb				8b75fc							mov	esi,	[ebp-0x4]

|					0x080486ce				89ec									mov	esp,	ebp

|					0x080486d0				5d											pop	ebp

|					0x080486d1				8d61fc							lea	esp,	[ecx-0x4]

\					0x080486d4				c3											ret

In	this	example,	we	analyze	the	whole	file	(aa)	and	then	print	disassembly	of	the	 	main()		function
(pdf).	The	 	aa		 command	belongs	 to	 the	 family	of	auto	analysis	commands	and	performs	only	 the
most	basic	auto	analysis	steps.	In	radare2	there	are	many	different	types	of	the	auto	analysis	commands
with	a	different	analysis	depth,	including	partial	emulation:		aa	,		aaa	,		aab	,		aaaa	,	 ...	There	is	also	a
mapping	of	those	commands	to	the	r2	CLI	options:		r2	-A	,		r2	-AA	,	and	so	on.

It	is	a	common	sense	that	completely	automated	analysis	can	produce	non	sequitur	results,	thus	radare2
provides	separate	commands	for	the	particular	stages	of	the	analysis	allowing	fine-grained	control	of	the
analysis	 process.	 Moreover,	 there	 is	 a	 treasure	 trove	 of	 configuration	 variables	 for	 controlling	 the
analysis	outcomes.	You	can	find	them	in		anal.*		and		emu.*		cfg	variables'	namespaces.

One	of	 the	most	 important	 "basic"	 analysis	 commands	 is	 the	 set	 of	 	af		 subcommands.	 	af	 	 means
"analyze	 function".	 Using	 this	 command	 you	 can	 either	 allow	 automatic	 analysis	 of	 the	 particular
function	or	perform	completely	manual	one.

Code	Analysis

149

[0x00000000]>	af?

|Usage:	af

|	af	([name])	([addr])					analyze	functions	(start	at	addr	or	$$)

|	afr	([name])	([addr])				analyze	functions	recursively

|	af+	addr	name	[type]	[diff]		hand	craft	a	function	(requires	afb+)

|	af-	[addr]															clean	all	function	analysis	data	(or	function	at	addr)

|	afb+	fcnA	bbA	sz	[j]	[f]	([t]([d]))		add	bb	to	function	@	fcnaddr

|	afb[?]	[addr]												List	basic	blocks	of	given	function

|	afB	16																			set	current	function	as	thumb	(change	asm.bits)

|	afC[lc]	([addr])@[addr]		calculate	the	Cycles	(afC)	or	Cyclomatic	Complexity	(afCc)

|	afc[?]	type	@[addr]						set	calling	convention	for	function

|	afd[addr]																show	function	+	delta	for	given	offset

|	aff																						re-adjust	function	boundaries	to	fit

|	afF[1|0|]																fold/unfold/toggle

|	afi	[addr|fcn.name]						show	function(s)	information	(verbose	afl)

|	afl[?]	[l*]	[fcn	name]			list	functions	(addr,	size,	bbs,	name)	(see	afll)

|	afm	name																	merge	two	functions

|	afM	name																	print	functions	map

|	afn[?]	name	[addr]							rename	name	for	function	at	address	(change	flag	too)

|	afna																					suggest	automatic	name	for	current	offset

|	afo	[fcn.name]											show	address	for	the	function	named	like	this

|	afs	[addr]	[fcnsign]					get/set	function	signature	at	current	address

|	afS[stack_size]										set	stack	frame	size	for	function	at	current	address

|	aft[?]																			type	matching,	type	propagation

|	afu	[addr]															resize	and	analyze	function	from	current	address	until	addr

|	afv[bsra]?															manipulate	args,	registers	and	variables	in	function

|	afx																						list	function	references

Some	of	the	most	challenging	tasks	while	performing	a	function	analysis	are	merge,	crop	and	resize.	As
with	 other	 analysis	 commands	 you	 have	 two	 modes:	 semi-automatic	 and	 manual.	 For	 the	 semi-
automatic,	you	can	use		afm	<function	name>		to	merge	the	current	function	with	the	one	specified	by
name	 as	 an	 argument,	 	aff	 	 to	 readjust	 the	 function	 after	 analysis	 changes	 or	 function	 edits,	 	afu
<address>		to	do	the	resize	and	analysis	of	the	current	function	until	the	specified	address.

Apart	from	those	semi-automatic	ways	to	edit/analyze	the	function,	you	can	hand	craft	it	in	the	manual
mode	with	 	af+		 command	 and	 edit	 basic	 blocks	 of	 it	 using	 	afb		 commands.	 Before	 changing	 the
basic	blocks	of	the	function	it	is	recommended	to	check	the	already	presented	ones:

[0x00003ac0]>	afb

0x00003ac0	0x00003b7f	01:001A	191	f	0x00003b7f

0x00003b7f	0x00003b84	00:0000	5	j	0x00003b92	f	0x00003b84

0x00003b84	0x00003b8d	00:0000	9	f	0x00003b8d

0x00003b8d	0x00003b92	00:0000	5

0x00003b92	0x00003ba8	01:0030	22	j	0x00003ba8

0x00003ba8	0x00003bf9	00:0000	81

Code	Analysis

150

There	are	two	very	important	commands	for	this:		afc		and		afB	.	The	latter	is	a	must-know	command
for	 some	 platforms	 like	 ARM.	 It	 provides	 a	 way	 to	 change	 the	 "bitness"	 of	 the	 particular	 function.
Basically,	allowing	to	select	between	ARM	and	Thumb	modes.

	afc		 on	 the	 other	 side,	 allows	 to	manually	 specify	 function	 calling	 convention.	You	 can	 find	more
information	on	its	usage	in	calling_conventions.

Recursive	analysis
There	are	4	important	program	wide	half-automated	analysis	commands:

	aab		-	perform	basic-block	analysis	("Nucleus"	algorithm)
	aac		-	analyze	function	calls	from	one	(selected	or	current	function)
	aaf		-	analyze	all	function	calls
	aar		-	analyze	data	references
	aad		-	analyze	pointers	to	pointers	references

Those	are	only	generic	semi-automated	reference	searching	algorithms.	Radare2	provides	a	wide	choice
of	manual	references'	creation	of	any	kind.	For	this	fine-grained	control	you	can	use		ax		commands.

|Usage:	ax[?d-l*]	#	see	also	'afx?'

|	ax														list	refs

|	ax*													output	radare	commands

|	ax	addr	[at]				add	code	ref	pointing	to	addr	(from	curseek)

|	ax-	[at]								clean	all	refs/refs	from	addr

|	ax-*												clean	all	refs/refs

|	axc	addr	[at]			add	generic	code	ref

|	axC	addr	[at]			add	code	call	ref

|	axg	[addr]						show	xrefs	graph	to	reach	current	function

|	axgj	[addr]					show	xrefs	graph	to	reach	current	function	in	json	format

|	axd	addr	[at]			add	data	ref

|	axq													list	refs	in	quiet/human-readable	format

|	axj													list	refs	in	json	format

|	axF	[flg-glob]		find	data/code	references	of	flags

|	axt	[addr]						find	data/code	references	to	this	address

|	axf	[addr]						find	data/code	references	from	this	address

|	axs	addr	[at]			add	string	ref

The	most	commonly	used	 	ax		commands	are	 	axt		and	 	axf	,	especially	as	a	part	of	various	r2pipe
scripts.	 Lets	 say	 we	 see	 the	 string	 in	 the	 data	 or	 a	 code	 section	 and	 want	 to	 find	 all	 places	 it	 was
referenced	from,	we	should	use		axt	:

Code	Analysis

151

[0x0001783a]>	pd	2

;--	str.02x:

;	STRING	XREF	from	0x00005de0	(sub.strlen_d50)

;	CODE	XREF	from	0x00017838	(str.._s_s_s	+	7)

0x0001783a					.string	"%%%02x"	;	len=7

;--	str.src_ls.c:

;	STRING	XREF	from	0x0000541b	(sub.free_b04)

;	STRING	XREF	from	0x0000543a	(sub.__assert_fail_41f	+	27)

;	STRING	XREF	from	0x00005459	(sub.__assert_fail_41f	+	58)

;	STRING	XREF	from	0x00005f9e	(sub._setjmp_e30)

;	CODE	XREF	from	0x0001783f	(str.02x	+	5)

0x00017841	.string	"src/ls.c"	;	len=9

[0x0001783a]>	axt

sub.strlen_d50	0x5de0	[STRING]	lea	rcx,	str.02x

(nofunc)	0x17838	[CODE]	jae	str.02x

Apart	from	predefined	algorithms	to	identify	functions	there	is	a	way	to	specify	a	function	prelude	with
a	configuration	option		anal.prelude	.	For	example,	like		e	anal.prelude	=	0x554889e5		which	means

push	rbp

mov	rbp,	rsp

on	x86_64	platform.	It	should	be	specified	before	any	analysis	commands.

Configuration
Radare2	allows	to	change	the	behavior	of	almost	any	analysis	stages	or	commands.	There	are	different
kinds	of	the	configuration	options:

Flow	control
Basic	blocks	control
References	control
IO/Ranges
Jump	tables	analysis	control
Platform/target	specific	options

Control	flow	configuration

Two	most	 commonly	 used	 options	 for	 changing	 the	 behavior	 of	 control	 flow	 analysis	 in	 radare2	 are
	anal.hasnext		 and	 	anal.afterjump	.	 The	 first	 one	 allows	 forcing	 radare2	 to	 continue	 the	 analysis
after	the	end	of	the	function,	even	if	the	next	chunk	of	the	code	wasn't	called	anywhere,	thus	analyzing

Code	Analysis

152

all	of	the	available	functions.	The	latter	one	allows	forcing	radare2	to	continue	the	analysis	even	after
unconditional	jumps.

In	 addition	 to	 those	we	 can	 also	 set	 	anal.ijmp	 	 to	 follow	 the	 indirect	 jumps,	 continuing	 analysis;
	anal.pushret		 to	 analyze	 	push	 ...;	 ret	 	 sequence	 as	 a	 jump;	 	anal.nopskip	 	 to	 skip	 the	 NOP
sequences	at	a	function	beginning.

For	 now,	 radare2	 also	 allows	 you	 to	 change	 the	maximum	 basic	 block	 size	with	 	anal.bb.maxsize	
option	.	The	default	value	just	works	in	most	use	cases,	but	it's	useful	to	increase	that	for	example	when
dealing	with	obfuscated	code.	Beware	that	some	of	basic	blocks	control	options	may	disappear	in	the
future	in	favor	of	more	automated	ways	to	set	those.

For	some	unusual	binaries	or	targets,	there	is	an	option		anal.noncode	.	Radare2	doesn't	try	to	analyze
data	sections	as	a	code	by	default.	But	in	some	cases	-	malware,	packed	binaries,	binaries	for	embedded
systems,	it	is	often	a	case.	Thus	-	this	option.

Reference	control

The	most	crucial	options	that	change	the	analysis	results	drastically.	Sometimes	some	can	be	disabled	to
save	the	time	and	memory	when	analyzing	big	binaries.

	anal.jmpref		-	to	allow	references	creation	for	unconditional	jumps
	anal.cjmpref		-	same,	but	for	conditional	jumps
	anal.datarefs		-	to	follow	the	data	references	in	code
	anal.refstr		-	search	for	strings	in	data	references
	anal.strings		-	search	for	strings	and	creating	references

Note	that	strings	references	control	is	disabled	by	default	because	it	increases	the	analysis	time.

Analysis	ranges

There	are	a	few	options	for	this:

	anal.limits		-	enables	the	range	limits	for	analysis	operations
	anal.from		-	starting	address	of	the	limit	range
	anal.to		-	the	corresponding	end	of	the	limit	range
	anal.in		 -	 specify	 search	 boundaries	 for	 analysis	 (io.maps	,	 	io.sections.exec	 ,	 	dbg.maps	
and	many	more	-	see		e	anal.in=?		for	the	complete	list)

Jump	tables

Code	Analysis

153

Jump	tables	are	one	of	the	trickiest	targets	in	binary	reverse	engineering.	There	are	hundreds	of	different
types,	 the	end	 result	depending	on	 the	compiler/linker	and	LTO	stages	of	optimization.	Thus	 radare2
allows	 enabling	 some	 experimental	 jump	 tables	 detection	 algorithms	 using	 	anal.jmptbl	 	 option.
Eventually,	algorithms	moved	into	the	default	analysis	loops	once	they	start	to	work	on	every	supported
platform/target/testcase.	Two	more	options	can	affect	the	jump	tables	analysis	results	too:

	anal.ijmp		-	follow	the	indirect	jumps,	some	jump	tables	rely	on	them
	anal.datarefs		-	follow	the	data	references,	some	jump	tables	use	those

Platform	specific	controls

There	are	two	common	problems	when	analyzing	embedded	targets:	ARM/Thumb	detection	and	MIPS
GP	 value.	 In	 case	 of	 ARM	 binaries	 radare2	 supports	 some	 auto-detection	 of	 ARM/Thumb	 mode
switches,	but	beware	that	it	uses	partial	ESIL	emulation,	thus	slowing	the	analysis	process.	If	you	will
not	like	the	results,	particular	functions'	mode	can	be	overridden	with		afB		command.

The	MIPS	GP	problem	is	even	trickier.	It	is	a	basic	knowledge	that	GP	value	can	be	different	not	only
for	the	whole	program,	but	also	for	some	functions.	To	partially	solve	that	there	are	options	 	anal.gp	
and		anal.gp2	.	The	first	one	sets	the	GP	value	for	the	whole	program	or	particular	function.	The	latter
allows	to	"constantify"	the	GP	value	if	some	code	is	willing	to	change	its	value,	always	resetting	it	if	the
case.	Those	are	heavily	experimental	and	might	be	changed	 in	 the	future	 in	 favor	of	more	automated
analysis.

Visuals
One	 of	 the	 easiest	 way	 to	 see	 and	 check	 the	 changes	 of	 the	 analysis	 commands	 and	 variables	 is	 to
perform	a	scrolling	in	a		Vv		special	visual	mode,	allowing	functions	preview:

When	we	want	to	check	how	analysis	changes	affect	the	result	in	the	case	of	big	functions,	we	can	use
minimap	instead,	allowing	to	see	a	bigger	flow	graph	on	the	same	screen	size.	To	get	into	the	minimap
mode	type		VV		then	press		p		twice:

Code	Analysis

154

This	mode	allows	you	to	see	the	disassembly	of	each	node	separately,	just	navigate	between	them	using
	Tab		key.

Analysis	hints
It	 is	 not	 an	 uncommon	 case	 that	 analysis	 results	 are	 not	 perfect	 even	 after	 you	 tried	 every	 single
configuration	 option.	 This	 is	 where	 the	 "analysis	 hints"	 radare2	 mechanism	 comes	 in.	 It	 allows	 to
override	some	basic	opcode	or	meta-information	properties,	or	even	to	rewrite	the	whole	opcode	string.
These	commands	are	located	under		ah		namespace:

Code	Analysis

155

|Usage:	ah[lba-]Analysis	Hints

|	ah?																show	this	help

|	ah?	offset									show	hint	of	given	offset

|	ah																	list	hints	in	human-readable	format

|	ah.																list	hints	in	human-readable	format	from	current	offset

|	ah-																remove	all	hints

|	ah-	offset	[size]		remove	hints	at	given	offset

|	ah*	offset									list	hints	in	radare	commands	format

|	aha	ppc	51									set	arch	for	a	range	of	N	bytes

|	ahb	16	@	$$								force	16bit	for	current	instruction

|	ahc	0x804804							override	call/jump	address

|	ahe	3,eax,+=							set	vm	analysis	string

|	ahf	0x804840							override	fallback	address	for	call

|	ahh	0x804840							highlight	this	adrress	offset	in	disasm

|	ahi[?]	10										define	numeric	base	for	immediates	(1,	8,	10,	16,	s)

|	ahj																list	hints	in	JSON

|	aho	foo	a0,33						replace	opcode	string

|	ahp	addr											set	pointer	hint

|	ahr	val												set	hint	for	return	value	of	a	function

|	ahs	4														set	opcode	size=4

|	ahS	jz													set	asm.syntax=jz	for	this	opcode

One	of	the	most	common	cases	is	to	set	a	particular	numeric	base	for	immediates:

[0x00003d54]>	ahi?

|Usage	ahi	[sbodh]	[@	offset]	Define	numeric	base

|	ahi	[base]		set	numeric	base	(1,	2,	8,	10,	16)

|	ahi	b							set	base	to	binary	(2)

|	ahi	d							set	base	to	decimal	(10)

|	ahi	h							set	base	to	hexadecimal	(16)

|	ahi	o							set	base	to	octal	(8)

|	ahi	p							set	base	to	htons(port)	(3)

|	ahi	i							set	base	to	IP	address	(32)

|	ahi	S							set	base	to	syscall	(80)

|	ahi	s							set	base	to	string	(1)

[0x00003d54]>	pd	2

0x00003d54						0583000000					add	eax,	0x83

0x00003d59						3d13010000					cmp	eax,	0x113

[0x00003d54]>	ahi	d

[0x00003d54]>	pd	2

0x00003d54						0583000000					add	eax,	131

0x00003d59						3d13010000					cmp	eax,	0x113

[0x00003d54]>	ahi	b

[0x00003d54]>	pd	2

0x00003d54						0583000000					add	eax,	10000011b

0x00003d59						3d13010000					cmp	eax,	0x113

Code	Analysis

156

It	 is	 notable	 that	 some	 analysis	 stages	 or	 commands	 add	 the	 internal	 analysis	 hints,	 which	 can	 be
checked	with		ah		command:

[0x00003d54]>	ah

	0x00003d54	-	0x00003d54	=>	immbase=2

[0x00003d54]>	ah*

	ahi	2	@	0x3d54

Sometimes	we	need	to	override	jump	or	call	address,	for	example	in	case	of	tricky	relocation,	which	is
unknown	for	radare2,	thus	we	can	change	the	value	manually.	The	current	analysis	information	about	a
particular	opcode	can	be	checked	with		ao		command.	We	can	use		ahc		command	for	performing	such
a	change:

Code	Analysis

157

[0x00003cee]>	pd	2

0x00003cee						e83d080100					call	sub.__errno_location_530

0x00003cf3						85c0											test	eax,	eax

[0x00003cee]>	ao

address:	0x3cee

opcode:	call	0x14530

mnemonic:	call

prefix:	0

id:	56

bytes:	e83d080100

refptr:	0

size:	5

sign:	false

type:	call

cycles:	3

esil:	83248,rip,8,rsp,-=,rsp,=[],rip,=

jump:	0x00014530

direction:	exec

fail:	0x00003cf3

stack:	null

family:	cpu

stackop:	null

[0x00003cee]>	ahc	0x5382

[0x00003cee]>	pd	2

0x00003cee						e83d080100					call	sub.__errno_location_530

0x00003cf3						85c0											test	eax,	eax

[0x00003cee]>	ao

address:	0x3cee

opcode:	call	0x14530

mnemonic:	call

prefix:	0

id:	56

bytes:	e83d080100

refptr:	0

size:	5

sign:	false

type:	call

cycles:	3

esil:	83248,rip,8,rsp,-=,rsp,=[],rip,=

jump:	0x00005382

direction:	exec

fail:	0x00003cf3

stack:	null

family:	cpu

stackop:	null

[0x00003cee]>	ah

	0x00003cee	-	0x00003cee	=>	jump:	0x5382

Code	Analysis

158

As	 you	 can	 see,	 despite	 the	 unchanged	 disassembly	 view	 the	 jump	 address	 in	 opcode	was	 changed
(jump		option).

If	 anything	of	 the	previously	described	didn't	help,	you	can	 simply	override	 shown	disassembly	with
anything	you	like:

[0x00003d54]>	pd	2

0x00003d54						0583000000					add	eax,	10000011b

0x00003d59						3d13010000					cmp	eax,	0x113

[0x00003d54]>	"aho	myopcode	bla,	foo"

[0x00003d54]>	pd	2

0x00003d54																					myopcode	bla,	foo

0x00003d55						830000									add	dword	[rax],	0

Code	Analysis

159

Managing	variables
Radare2	allows	managing	local	variables,	no	matter	their	location,	stack	or	registers.	The	variables'	auto
analysis	is	enabled	by	default	but	can	be	disabled	with		anal.vars		configuration	option.

The	main	variables	commands	are	located	in		afv		namespace:

|Usage:	afv[rbs]

|	afvr[?]																					manipulate	register	based	arguments

|	afvb[?]																					manipulate	bp	based	arguments/locals

|	afvs[?]																					manipulate	sp	based	arguments/locals

|	afv*																								output	r2	command	to	add	args/locals	to	flagspace

|	afvR	[varname]														list	addresses	where	vars	are	accessed	(READ)

|	afvW	[varname]														list	addresses	where	vars	are	accessed	(WRITE)

|	afva																								analyze	function	arguments/locals

|	afvd	name																			output	r2	command	for	displaying	the	value	of	args/locals	

in	the

debugger

|	afvn	[old_name]	[new_name]		rename	argument/local

|	afvt	[name]	[new_type]						change	type	for	given	argument/local

|	afv-([name])																remove	all	or	given	var

	afvr	,		afvb		and	 	afvs		commands	are	uniform	but	allow	manipulation	of	register-based	arguments
and	 variables,	 BP/FP-based	 arguments	 and	 variables,	 and	 SP-based	 arguments	 and	 variables
respectively.	If	we	check	the	help	for		afvr		we	will	get	the	way	two	others	commands	works	too:

|Usage:	afvr	[reg]	[type]	[name]

|	afvr																								list	register	based	arguments

|	afvr*																							same	as	afvr	but	in	r2	commands

|	afvr	[reg]	[name]	([type])		define	register	arguments

|	afvrj																							return	list	of	register	arguments	in	JSON	format

|	afvr-	[name]																delete	register	arguments	at	the	given	index

|	afvrg	[reg]	[addr]										define	argument	get	reference

|	afvrs	[reg]	[addr]										define	argument	set	reference

Like	many	other	 things	variables	 detection	 is	 performed	by	 radare2	 automatically,	 but	 results	 can	be
changed	 with	 those	 arguments/variables	 control	 commands.	 This	 kind	 of	 analysis	 relies	 heavily	 on
preloaded	 function	 prototypes	 and	 the	 calling-convention,	 thus	 loading	 symbols	 can	 improve	 it.
Moreover,	after	changing	something	we	can	rerun	variables	analysis	with		afva		command.	Quite	often
variables	analysis	is	accompanied	with	types	analysis,	see		afta		command.

Variables

160

The	most	important	aspect	of	reverse	engineering	-	naming	things.	Of	course,	you	can	rename	variable
too,	affecting	all	places	it	was	referenced.	This	can	be	achieved	with		afvn		for	any	type	of	argument	or
variable.	Or	you	can	simply	remove	the	variable	or	argument	with		afv-		command.

As	mentioned	before	the	analysis	 loop	relies	heavily	on	types	information	while	performing	variables
analysis	stages.	Thus	comes	next	very	important	command	-	 	afvt	,	which	allows	you	 to	change	 the
type	of	variable:

[0x00003b92]>	afvs

var	int	local_8h	@	rsp+0x8

var	int	local_10h	@	rsp+0x10

var	int	local_28h	@	rsp+0x28

var	int	local_30h	@	rsp+0x30

var	int	local_32h	@	rsp+0x32

var	int	local_38h	@	rsp+0x38

var	int	local_45h	@	rsp+0x45

var	int	local_46h	@	rsp+0x46

var	int	local_47h	@	rsp+0x47

var	int	local_48h	@	rsp+0x48

[0x00003b92]>	afvt	local_10h	char*

[0x00003b92]>	afvs

var	int	local_8h	@	rsp+0x8

var	char*	local_10h	@	rsp+0x10

var	int	local_28h	@	rsp+0x28

var	int	local_30h	@	rsp+0x30

var	int	local_32h	@	rsp+0x32

var	int	local_38h	@	rsp+0x38

var	int	local_45h	@	rsp+0x45

var	int	local_46h	@	rsp+0x46

var	int	local_47h	@	rsp+0x47

var	int	local_48h	@	rsp+0x48

Less	 commonly	used	 feature,	which	 is	 still	 under	heavy	development	 -	 distinction	between	variables
being	 read	and	written.	You	can	 list	 those	being	 read	with	 	afvR		 command	 and	 those	 being	written
with		afvW		command.	Both	commands	provide	a	list	of	the	places	those	operations	are	performed:

Variables

161

[0x00003b92]>	afvR

local_48h		0x48ee

local_30h		0x3c93,0x520b,0x52ea,0x532c,0x5400,0x3cfb

local_10h		0x4b53,0x5225,0x53bd,0x50cc

local_8h		0x4d40,0x4d99,0x5221,0x53b9,0x50c8,0x4620

local_28h		0x503a,0x51d8,0x51fa,0x52d3,0x531b

local_38h

local_45h		0x50a1

local_47h

local_46h

local_32h		0x3cb1

[0x00003b92]>	afvW

local_48h		0x3adf

local_30h		0x3d3e,0x4868,0x5030

local_10h		0x3d0e,0x5035

local_8h		0x3d13,0x4d39,0x5025

local_28h		0x4d00,0x52dc,0x53af,0x5060,0x507a,0x508b

local_38h		0x486d

local_45h		0x5014,0x5068

local_47h		0x501b

local_46h		0x5083

local_32h

[0x00003b92]>

Type	inference
The	type	inference	for	local	variables	and	arguments	is	well	integrated	with	the	command		afta	.

Let's	see	an	example	of	this	with	a	simple	hello_world	binary

Variables

162

https://github.com/radare/radare2book/tree/master/examples/hello_world

[0x000007aa]>	pdf

|											;--	main:

/	(fcn)	sym.main	157

|	sym.main	();

|	;	var	int	local_20h	@	rbp-0x20

|	;	var	int	local_1ch	@	rbp-0x1c

|	;	var	int	local_18h	@	rbp-0x18

|	;	var	int	local_10h	@	rbp-0x10

|	;	var	int	local_8h	@	rbp-0x8

|	;	DATA	XREF	from	entry0	(0x6bd)

|	0x000007aa		push	rbp

|	0x000007ab		mov	rbp,	rsp

|	0x000007ae		sub	rsp,	0x20

|	0x000007b2		lea	rax,	str.Hello										;	0x8d4	;	"Hello"

|	0x000007b9		mov	qword	[local_18h],	rax

|	0x000007bd		lea	rax,	str.r2_folks							;	0x8da	;	"	r2-folks"

|	0x000007c4		mov	qword	[local_10h],	rax

|	0x000007c8		mov	rax,	qword	[local_18h]

|	0x000007cc		mov	rdi,	rax

|	0x000007cf		call	sym.imp.strlen									;	size_t	strlen(const	char	*s)

After	applying		afta	

[0x000007aa]>	afta

[0x000007aa]>	pdf

|	;--	main:

|	;--	rip:

/	(fcn)	sym.main	157

|	sym.main	();

|	;	var	size_t	local_20h	@	rbp-0x20

|	;	var	size_t	size	@	rbp-0x1c

|	;	var	char	*src	@	rbp-0x18

|	;	var	char	*s2	@	rbp-0x10

|	;	var	char	*dest	@	rbp-0x8

|	;	DATA	XREF	from	entry0	(0x6bd)

|	0x000007aa		push	rbp

|	0x000007ab		mov	rbp,	rsp

|	0x000007ae		sub	rsp,	0x20

|	0x000007b2		lea	rax,	str.Hello										;	0x8d4	;	"Hello"

|	0x000007b9		mov	qword	[src],	rax

|	0x000007bd		lea	rax,	str.r2_folks							;	0x8da	;	"	r2-folks"

|	0x000007c4		mov	qword	[s2],	rax

|	0x000007c8		mov	rax,	qword	[src]

|	0x000007cc		mov	rdi,	rax																;	const	char	*s

|	0x000007cf		call	sym.imp.strlen									;	size_t	strlen(const	char	*s)

Variables

163

It	also	extracts	type	information	from	format	strings	like	 	printf	("fmt	:	%s	,	%u	,	%d",	...)	,	 the
format	specifications	are	extracted	from		anal/d/spec.sdb	

You	 could	 create	 a	 new	 profile	 for	 specifying	 a	 set	 of	 format	 chars	 depending	 on	 different
libraries/operating	systems/programming	languages	like	this	:

win=spec

spec.win.u32=unsigned	int

Then	change	your	default	specification	to	newly	created	one	using	this	config	variable		e	anal.spec	=
win	

For	more	information	about	primitive	and	user-defined	types	support	in	radare2	refer	to	types	chapter.

Variables

164

Types
Radare2	 supports	 the	 C-syntax	 data	 types	 description.	 Those	 types	 are	 parsed	 by	 a	 C11-compatible
parser	and	stored	in	the	internal	SDB,	thus	are	introspectable	with		k		command.

Most	of	the	related	commands	are	located	in		t		namespace:

[0x000051c0]>	t?

|Usage:	t	#	cparse	types	commands

|	t															List	all	loaded	types

|	tj														List	all	loaded	types	as	json

|	t	<type>								Show	type	in	'pf'	syntax

|	t*														List	types	info	in	r2	commands

|	t-	<name>							Delete	types	by	its	name

|	t-*													Remove	all	types

|	ta	<type>							Mark	immediate	as	a	type	offset

|	tc	([cctype])			calling	conventions	listing	and	manipulations

|	te[?]											List	all	loaded	enums

|	td[?]	<string>		Load	types	from	string

|	tf														List	all	loaded	functions	signatures

|	tk	<sdb-query>		Perform	sdb	query

|	tl[?]											Show/Link	type	to	an	address

|	tn[?]	[-][addr]	manage	noreturn	function	attributes	and	marks

|	to	-												Open	cfg.editor	to	load	types

|	to	<path>							Load	types	from	C	header	file

|	tos	<path>						Load	types	from	parsed	Sdb	database

|	tp		<type>	[addr|varname]		cast	data	at	<address>	to	<type>	and	print	it

|	tpx	<type>	<hexpairs>						Show	value	for	type	with	specified	byte	sequence

|	ts[?]											print	loaded	struct	types

|	tu[?]											print	loaded	union	types

|	tt[?]											List	all	loaded	typedefs

Note	 that	 the	basic	 (atomic)	 types	 are	 not	 those	 from	C	 standard	 -	 not	 	char	,	 	_Bool	 ,	 or	 	short	 .
Because	those	types	can	be	different	from	one	platform	to	another,	radare2	uses		definite		types	like	as
	int8_t		or	 	uint64_t		and	will	convert	 	int		 to	 	int32_t		or	 	int64_t		depending	on	the	binary	or
debuggee	platform/compiler.

Basic	types	can	be	listed	using		t		command,	for	the	structured	types	you	need	to	use		ts	,		tu		or		te	
for	enums:

Types

165

[0x000051c0]>	t

char

char	*

int

int16_t

int32_t

int64_t

int8_t

long

long	long

...

Loading	types
There	are	three	easy	ways	to	define	a	new	type:

Directly	from	the	string	using		td		command
From	the	file	using		to	<filename>		command
Open	an		$EDITOR		to	type	the	definitions	in	place	using		to	-	

[0x000051c0]>	"td	struct	foo	{char*	a;	int	b;}"

[0x000051c0]>	cat	~/radare2-regressions/bins/headers/s3.h

struct	S1	{

				int	x[3];

				int	y[4];

				int	z;

};

[0x000051c0]>	to	~/radare2-regressions/bins/headers/s3.h

[0x000051c0]>	ts

foo

S1

Also	note	there	is	a	config	option	to	specify	include	directories	for	types	parsing

[0x00000000]>	e??~dir.type

dir.types:	Default	path	to	look	for	cparse	type	files

[0x00000000]>	e	dir.types

/usr/include

Printing	types
Notice	below	we	have	used	 	ts		command,	which	basically	converts	 the	C	type	description	(or	 to	be
precise	it's	SDB	representation)	into	the	sequence	of		pf		commands.	See	more	about	print	format.

Types

166

The	 	tp		 command	uses	 the	 	pf		 string	 to	 print	 all	 the	members	 of	 type	 at	 the	 current	 offset/given
address:

[0x000051c0]>	ts	foo

pf	zd	a	b

[0x000051c0]>	tp	foo

	a	:	0x000051c0	=	'hello'

	b	:	0x000051cc	=	10

[0x000051c0]>	tp	foo	0x000053c0

	a	:	0x000053c0	=	'world'

	b	:	0x000053cc	=	20

Also,	you	could	fill	your	own	data	into	the	struct	and	print	it	using		tpx		command

[0x000051c0]>	tpx	foo	4141414144141414141442001000000

	a	:	0x000051c0	=	AAAAD.....B

	b	:	0x000051cc	=	16

Linking	Types
The		tp		command	just	performs	a	temporary	cast.	But	if	we	want	to	link	some	address	or	variable	with
the	chosen	type,	we	can	use		tl		command	to	store	the	relationship	in	SDB.

[0x000051c0]>	tl	S1	=	0x51cf

[0x000051c0]>	tll

(S1)

	x	:	0x000051cf	=	[2315619660,	1207959810,	34803085]

	y	:	0x000051db	=	[2370306049,	4293315645,	3860201471,	4093649307]

	z	:	0x000051eb	=	4464399

Moreover,	the	link	will	be	shown	in	the	disassembly	output	or	visual	mode:

Types

167

[0x000051c0	15%	300	/bin/ls]>	pd	$r	@	entry0

	;--	entry0:

	0x000051c0						xor	ebp,	ebp

	0x000051c2						mov	r9,	rdx

	0x000051c5						pop	rsi

	0x000051c6						mov	rdx,	rsp

	0x000051c9						and	rsp,	0xfffffffffffffff0

	0x000051cd						push	rax

	0x000051ce						push	rsp

(S1)

	x	:	0x000051cf	=	[2315619660,	1207959810,	34803085]

	y	:	0x000051db	=	[2370306049,	4293315645,	3860201471,	4093649307]

	z	:	0x000051eb	=	4464399

	0x000051f0						lea	rdi,	loc._edata									;	0x21f248

	0x000051f7						push	rbp

	0x000051f8						lea	rax,	loc._edata									;	0x21f248

	0x000051ff						cmp	rax,	rdi

	0x00005202						mov	rbp,	rsp

Once	the	struct	is	linked,	radare2	tries	to	propagate	structure	offset	in	the	function	at	current	offset,	to
run	 this	 analysis	 on	whole	 program	or	 at	 any	 targeted	 functions	 after	 all	 structs	 are	 linked	you	have
	taa		command:

[0x00000000]>	ta?

|	taa	[fcn]											Analyze	all/given	function	to	convert	immediate	to	linked	structur

e	offsets	(see	tl?)

Note	sometimes	the	emulation	may	not	be	accurate,	for	example	as	below	:

|0x000006da		push	rbp

|0x000006db		mov	rbp,	rsp

|0x000006de		sub	rsp,	0x10

|0x000006e2		mov	edi,	0x20															;	"@"

|0x000006e7		call	sym.imp.malloc									;		void	*malloc(size_t	size)

|0x000006ec		mov	qword	[local_8h],	rax

|0x000006f0		mov	rax,	qword	[local_8h]

The	return	value	of		malloc		may	differ	between	two	emulations,	so	you	have	to	set	the	hint	for	return
value	manually	using	 	ahr		command,	so	run	 	tl		or	 	taa		command	after	setting	up	the	return	value
hint.

[0x000006da]>	ah?

|	ahr	val												set	hint	for	return	value	of	a	function

Types

168

Structure	Immediates

There	is	one	more	important	aspect	of	using	types	in	radare2	-	using		ta		you	can	change	the	immediate
in	the	opcode	to	the	structure	offset.	Lets	see	a	simple	example	of	[R]SI-relative	addressing

[0x000052f0]>	pd	1

0x000052f0						mov	rax,	qword	[rsi	+	8]				;	[0x8:8]=0

Here		8		-	 is	some	offset	in	the	memory,	where	 	rsi		probably	holds	some	structure	pointer.	Imagine
that	we	have	the	following	structures

[0x000052f0]>	"td	struct	ms	{	char	b[8];	int	member1;	int	member2;	};"

[0x000052f0]>	"td	struct	ms1	{	uint64_t	a;	int	member1;	};"

[0x000052f0]>	"td	struct	ms2	{	uint16_t	a;	int64_t	b;	int	member1;	};"

Now	we	need	to	set	 the	proper	structure	member	offset	 instead	of	 	8		 in	 this	 instruction.	At	first,	we
need	to	list	available	types	matching	this	offset:

[0x000052f0]>	tas	8

ms.member1

ms1.member1

Note,	that		ms2		is	not	listed,	because	it	has	no	members	with	offset	 	8	.	After	listing	available	options
we	can	link	it	to	the	chosen	offset	at	the	current	address:

[0x000052f0]>	ta	ms1.member1

[0x000052f0]>	pd	1

0x000052f0						488b4608							mov	rax,	qword	[rsi	+	ms1.member1]				;	[0x8:8]=0

Managing	enums

Printing	all	fields	in	enum	using		te		command

[0x00000000]>	"td	enum	Foo	{COW=1,BAR=2};"

[0x00000000]>	te	Foo

COW	=	0x1

BAR	=	0x2

Finding	matching	enum	member	for	given	bitfield	and	vice-versa

Types

169

[0x00000000]>	te	Foo	0x1

COW

[0x00000000]>	teb	Foo	COW

0x1

Internal	representation
To	see	the	internal	representation	of	the	types	you	can	use		tk		command:

[0x000051c0]>	tk~S1

S1=struct

struct.S1=x,y,z

struct.S1.x=int32_t,0,3

struct.S1.x.meta=4

struct.S1.y=int32_t,12,4

struct.S1.y.meta=4

struct.S1.z=int32_t,28,0

struct.S1.z.meta=0

[0x000051c0]>

Defining	primitive	types	requires	an	understanding	of	basic		pf		formats,	you	can	find	the	whole	list	of
format	specifier	in		pf??	:

Types

170

|	format	|	explanation																														|

|---|

|		b					|		byte	(unsigned)																									|

|		c					|		char	(signed	byte)																						|

|		d					|		0x%%08x	hexadecimal	value	(4	bytes)					|

|		f					|		float	value	(4	bytes)																			|

|		i					|		%%i	integer	value	(4	bytes)													|

|		o					|		0x%%08o	octal	value	(4	byte)												|

|		p					|		pointer	reference	(2,	4	or	8	bytes)					|

|		q					|		quadword	(8	bytes)																						|

|		s					|		32bit	pointer	to	string	(4	bytes)							|

|		S					|		64bit	pointer	to	string	(8	bytes)							|

|		t					|		UNIX	timestamp	(4	bytes)																|

|		T					|		show	Ten	first	bytes	of	buffer										|

|		u					|		uleb128	(variable	length)															|

|		w					|		word	(2	bytes	unsigned	short	in	hex)				|

|		x					|		0x%%08x	hex	value	and	flag	(fd	@	addr)		|

|		X					|		show	formatted	hexpairs																	|

|		z					|		\0	terminated	string																				|

|		Z					|		\0	terminated	wide	string															|

there	 are	 basically	 3	 mandatory	 keys	 for	 defining	 basic	 data	 types:	 	 X=type	

	type.X=format_specifier			type.X.size=size_in_bits		For	example,	let's	define		UNIT	,	according	to
Microsoft	 documentation.aspx#UINT)	 	UINT	 	 is	 just	 equivalent	 of	 standard	 C	 	unsigned	 int	 	 (or
	uint32_t		in	terms	of	TCC	engine).	It	will	be	defined	as:

UINT=type

type.UINT=d

type.UINT.size=32

Now	there	is	an	optional	entry:

	X.type.pointto=Y	

This	one	may	only	be	used	in	case	of	pointer		type.X=p	,	one	good	example	is	LPFILETIME	definition,
it	is	a	pointer	to		_FILETIME		which	happens	to	be	a	structure.	Assuming	that	we	are	targeting	only	32-
bit	windows	machine,	it	will	be	defined	as	the	following:

LPFILETIME=type

type.LPFILETIME=p

type.LPFILETIME.size=32

type.LPFILETIME.pointto=_FILETIME

Types

171

https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85

This	last	field	is	not	mandatory	because	sometimes	the	data	structure	internals	will	be	proprietary,	and
we	will	not	have	a	clean	representation	for	it.

There	is	also	one	more	optional	entry:

type.UINT.meta=4

This	 entry	 is	 for	 integration	 with	 C	 parser	 and	 carries	 the	 type	 class	 information:	 integer	 size,
signed/unsigned,	etc.

Structures

Those	are	the	basic	keys	for	structs	(with	just	two	elements):

X=struct

struct.X=a,b

struct.X.a=a_type,a_offset,a_number_of_elements

struct.X.b=b_type,b_offset,b_number_of_elements

The	 first	 line	 is	used	 to	define	a	 structure	 called	 	X	,	 the	 second	 line	defines	 the	 elements	 of	 	X	 	 as
comma	separated	values.	After	that,	we	just	define	each	element	info.

For	example.	we	can	have	a	struct	like	this	one:

struct	_FILETIME	{

				DWORD	dwLowDateTime;

				DWORD	dwHighDateTime;

}

assuming	we	have		DWORD		defined,	the	struct	will	look	like	this

	_FILETIME=struct

struct._FILETIME=dwLowDateTime,dwHighDateTime

struct._FILETIME.dwLowDateTime=DWORD,0,0

struct._FILETIME.dwHighDateTime=DWORD,4,0

Note	that	the	number	of	elements	field	is	used	in	case	of	arrays	only	to	identify	how	many	elements	are
in	arrays,	other	than	that	it	is	zero	by	default.

Unions

Types

172

Unions	are	defined	exactly	 like	structs	 the	only	difference	 is	 that	you	will	 replace	 the	word	 	struct	
with	the	word		union	.

Function	prototypes

Function	prototypes	representation	is	the	most	detail	oriented	and	the	most	important	one	of	them	all.
Actually,	this	is	the	one	used	directly	for	type	matching

X=func

func.X.args=NumberOfArgs

func.x.arg0=Arg_type,arg_name

.

.

.

func.X.ret=Return_type

func.X.cc=calling_convention

It	 should	 be	 self-explanatory.	 Let's	 do	 strncasecmp	 as	 an	 example	 for	 x86	 arch	 for	 Linux	machines.
According	to	man	pages,	strncasecmp	is	defined	as	the	following:

int	strcasecmp(const	char	*s1,	const	char	*s2,	size_t	n);

When	converting	it	into	its	sdb	representation	it	will	look	like	the	following:

strcasecmp=func

func.strcasecmp.args=3

func.strcasecmp.arg0=char	*,s1

func.strcasecmp.arg1=char	*,s2

func.strcasecmp.arg2=size_t,n

func.strcasecmp.ret=int

func.strcasecmp.cc=cdecl

Note	that	the	 	.cc		part	 is	optional	and	if	 it	didn't	exist	 the	default	calling-convention	for	your	 target
architecture	will	be	used	instead.	There	is	one	extra	optional	key

func.x.noreturn=true/false

This	key	is	used	to	mark	functions	that	will	not	return	once	called,	such	as		exit		and		_exit	.

Types

173

Types

174

Calling	Conventions
Radare2	uses	calling	conventions	to	help	in	identifying	function	formal	arguments	and	return	types.	It	is
used	also	as	a	guide	for	basic	function	prototype	and	type	propagation.

[0x00000000]>	afc?

|Usage:	afc[agl?]

|	afc	convention		Manually	set	calling	convention	for	current	function

|	afc													Show	Calling	convention	for	the	Current	function

|	afcr[j]									Show	register	usage	for	the	current	function

|	afca												Analyse	function	for	finding	the	current	calling	convention

|	afcf	name							Prints	return	type	function(arg1,	arg2...)

|	afcl												List	all	available	calling	conventions

|	afco	path							Open	Calling	Convention	sdb	profile	from	given	path

[0x00000000]>

To	list	all	available	calling	conventions	for	current	architecture	using		afcl		command

[0x00000000]>	afcl

amd64

ms

To	display	function	prototype	of	standard	library	functions	you	have		afcf		command

[0x00000000]>	afcf	printf

int	printf(const	char	*format)

[0x00000000]>	afcf	fgets

char	*fgets(char	*s,	int	size,	FILE	*stream)

All	this	information	is	loaded	via	sdb	under		/libr/anal/d/cc-[arch]-[bits].sdb	

default.cc=amd64

ms=cc

cc.ms.name=ms

cc.ms.arg1=rcx

cc.ms.arg2=rdx

cc.ms.arg3=r8

cc.ms.arg3=r9

cc.ms.argn=stack

cc.ms.ret=rax

Calling	Conventions

175

	cc.x.argi=rax		is	used	to	set	the	ith	argument	of	this	calling	convention	to	register	name		rax	

	cc.x.argn=stack		means	that	all	the	arguments	(or	the	rest	of	them	in	case	there	was	argi	for	any	i	as
counting	number)	will	be	stored	in	stack	from	left	to	right

	cc.x.argn=stack_rev		same	as		cc.x.argn=stack		except	for	it	means	argument	are	passed	right	to	left

Calling	Conventions

176

Virtual	Tables
There	 is	a	basic	support	of	virtual	 tables	parsing	(RTTI	and	others).	The	most	 important	 thing	before
you	start	to	perform	such	kind	of	analysis	is	to	check	if	the	 	anal.cpp.abi		option	is	set	correctly,	and
change	if	needed.

All	commands	to	work	with	virtual	tables	are	located	in	the	 	av		namespace.	Currently,	the	support	is
very	basic,	allowing	you	only	to	inspect	parsed	tables.

|Usage:	av[?jr*]	C++	vtables	and	RTTI

|	av											search	for	vtables	in	data	sections	and	show	results

|	avj										like	av,	but	as	json

|	av*										like	av,	but	as	r2	commands

|	avr[j@addr]		try	to	parse	RTTI	at	vtable	addr	(see	anal.cpp.abi)

|	avra[j]						search	for	vtables	and	try	to	parse	RTTI	at	each	of	them

The	main	commands	here	are		av		and		avr	.		av		lists	all	virtual	tables	found	when	r2	opened	the	file.
If	you	are	not	happy	with	 the	result	you	may	want	 to	 try	 to	parse	virtual	 table	at	a	particular	address
with		avr		command.		avra		performs	the	search	and	parsing	of	all	virtual	tables	in	the	binary,	like	r2
does	during	the	file	opening.

Virtual	Tables

177

Syscalls
Radare2	allows	manual	search	for	assembly	code	looking	like	a	syscall	operation.	For	example	on	ARM
platform	 usually	 they	 are	 represented	 by	 the	 	svc	 	 instruction,	 on	 the	 others	 can	 be	 a	 different
instructions,	e.g.		syscall		on	x86	PC.

[0x0001ece0]>	/c	svc

...

0x000187c2			#	2:	svc	0x76

0x000189ea			#	2:	svc	0xa9

0x00018a0e			#	2:	svc	0x82

...

Syscalls	 detection	 is	 driven	 by	 	asm.os	 ,	 	asm.bits	 ,	 and	 	asm.arch	 .	 Be	 sure	 to	 setup	 those
configuration	options	accordingly.	You	can	use	 	asl		command	 to	check	 if	syscalls'	 support	 is	set	up
properly	and	as	you	expect.	The	command	lists	syscalls	supported	for	your	platform.

[0x0001ece0]>	asl

...

sd_softdevice_enable	=	0x80.16

sd_softdevice_disable	=	0x80.17

sd_softdevice_is_enabled	=	0x80.18

...

If	 you	 setup	ESIL	 stack	with	 	aei		 or	 	aeim	,	 you	 can	use	 	/as	 	 command	 to	 search	 the	 addresses
where	particular	syscalls	were	found	and	list	them.

[0x0001ece0]>	aei

[0x0001ece0]>	/as

0x000187c2	sd_ble_gap_disconnect

0x000189ea	sd_ble_gatts_sys_attr_set

0x00018a0e	sd_ble_gap_sec_info_reply

...

To	reduce	searching	time	it	 is	possible	to	restrict	the	searching	range	for	only	executable	segments	or
sections	with		/as	@e:search.in=io.maps.x	

Using	the	ESIL	emulation	radare2	can	print	syscall	arguments	in	the	disassembly	output.	To	enable	the
linear	(but	very	rough)	emulation	use		asm.emu		configuration	variable:

Syscalls

178

[0x0001ece0]>	e	asm.emu=true

[0x0001ece0]>	s	0x000187c2

[0x000187c2]>	pdf~svc

			0x000187c2			svc	0x76		;	118	=	sd_ble_gap_disconnect

[0x000187c2]>

In	case	of	executing		aae		(or		aaaa		which	calls		aae)	command	radare2	will	push	found	syscalls	to	a
special		syscall.		flagspace,	which	can	be	useful	for	automation	purpose:

[0x000187c2]>	fs

0				0	*	imports

1				0	*	symbols

2	1523	*	functions

3		420	*	strings

4		183	*	syscalls

[0x000187c2]>	f~syscall

...

0x000187c2	1	syscall.sd_ble_gap_disconnect.0

0x000189ea	1	syscall.sd_ble_gatts_sys_attr_set

0x00018a0e	1	syscall.sd_ble_gap_sec_info_reply

...

It	also	can	be	interactively	navigated	through	within	HUD	mode	(V_)

0>	syscall.sd_ble_gap_disconnect

	-	0x000187b2		syscall.sd_ble_gap_disconnect

			0x000187c2		syscall.sd_ble_gap_disconnect.0

			0x00018a16		syscall.sd_ble_gap_disconnect.1

			0x00018b32		syscall.sd_ble_gap_disconnect.2

			0x0002ac36		syscall.sd_ble_gap_disconnect.3

Syscalls

179

Emulation
One	of	the	most	important	things	to	remember	in	reverse	engineering	is	a	core	difference	between	static
analysis	and	dynamic	analysis.	As	many	already	know,	static	analysis	suffers	from	the	path	explosion
problem,	which	is	impossible	to	solve	even	in	the	most	basic	way	without	at	least	a	partial	emulation.

Thus	many	professional	reverse	engineering	tools	use	code	emulation	while	performing	an	analysis	of
binary	code,	and	radare2	is	no	difference	here.

For	partial	emulation	(or	imprecise	full	emulation)	radare2	uses	its	own	ESIL	intermediate	language	and
virtual	machine.

Radare2	 supports	 this	 kind	 of	 partial	 emulation	 for	 all	 platforms	 that	 implement	 ESIL	 uplifting
(x86/x86_64,	ARM,	arm64,	MIPS,	powerpc,	sparc,	AVR,	8051,	Gameboy,	...).

One	of	the	most	common	usages	of	such	emulation	is	to	calculate	indirect	jumps	and	conditional	jumps.

To	see	the	ESIL	representation	of	the	program	one	can	use	the		ao		command	or	enable	the		asm.esil	
configuration	variable,	to	check	if	the	program	uplifted	correctly,	and	to	grasp	how	ESIL	works:

Emulation

180

[0x00001660]>	pdf

.	(fcn)	fcn.00001660	40

│			fcn.00001660	();

│					;	CALL	XREF	from	0x00001713	(entry2.fini)

│					0x00001660		lea	rdi,	obj.__progname						;	0x207220

│					0x00001667		push	rbp

│					0x00001668		lea	rax,	obj.__progname						;	0x207220

│					0x0000166f		cmp	rax,	rdi

│					0x00001672		mov	rbp,	rsp

│	.─<	0x00001675		je	0x1690

│	│			0x00001677		mov	rax,	qword	[reloc._ITM_deregisterTMCloneTable]	;	[0x206fd8:8]=0

│	│			0x0000167e		test	rax,	rax

│.──<	0x00001681		je	0x1690

│││			0x00001683		pop	rbp

│││			0x00001684		jmp	rax

│``─>	0x00001690		pop	rbp

`					0x00001691		ret

[0x00001660]>	e	asm.esil=true

[0x00001660]>	pdf

.	(fcn)	fcn.00001660	40

│			fcn.00001660	();

│					;	CALL	XREF	from	0x00001713	(entry2.fini)

│					0x00001660		0x205bb9,rip,+,rdi,=

│					0x00001667		rbp,8,rsp,-=,rsp,=[8]

│					0x00001668		0x205bb1,rip,+,rax,=

│					0x0000166f		rdi,rax,==,$z,zf,=,$b64,cf,=,$p,pf,=,$s,sf,=,$o,of,=

│					0x00001672		rsp,rbp,=

│	.─<	0x00001675		zf,?{,5776,rip,=,}

│	│			0x00001677		0x20595a,rip,+,[8],rax,=

│	│			0x0000167e		0,rax,rax,&,==,$z,zf,=,$p,pf,=,$s,sf,=,$0,cf,=,$0,of,=

│.──<	0x00001681		zf,?{,5776,rip,=,}

│││			0x00001683		rsp,[8],rbp,=,8,rsp,+=

│││			0x00001684		rax,rip,=

│``─>	0x00001690		rsp,[8],rbp,=,8,rsp,+=

`					0x00001691		rsp,[8],rip,=,8,rsp,+=

To	manually	setup	the	ESIL	imprecise	emulation	you	need	to	run	this	command	sequence:

	aei		to	initialize	ESIL	VM
	aeim		to	initialize	ESIL	VM	memory	(stack)
	aeip		to	set	the	initial	ESIL	VM	IP	(instruction	pointer)
a	sequence	of		aer		commands	to	set	the	initial	register	values.

While	performing	emulation,	please	remember,	that	ESIL	VM	cannot	emulate	external	calls	or	system
calls,	along	with	SIMD	instructions.	Thus	the	most	common	scenario	is	to	emulate	only	a	small	chunk
of	the	code,	like	encryption/decryption,	unpacking	or	calculating	something.

Emulation

181

After	we	successfully	set	up	the	ESIL	VM	we	can	interact	with	 it	 like	with	a	usual	debugging	mode.
Commands	interface	for	ESIL	VM	is	almost	identical	to	the	debugging	one:

	aes		to	step	(or		s		key	in	visual	mode)
	aesi		to	step	over	the	function	calls
	aesu	<address>		to	step	until	some	specified	address
	aesue	<ESIL	expression>		to	step	until	some	specified	ESIL	expression	met
	aec		 to	continue	until	break	(Ctrl-C),	this	one	is	rarely	used	though,	due	to	the	omnipresence	of
external	calls
	aecu	<address>		to	continue	until	some	specified	address

In	visual	mode,	all	of	the	debugging	hotkeys	will	work	also	in	ESIL	emulation	mode.

Along	with	usual	emulation,	there	is	a	possibility	to	record	and	replay	mode:

	aets		to	list	all	current	ESIL	R&R	sessions
	aets+		to	create	a	new	one
	aesb		to	step	back	in	the	current	ESIL	R&R	session

More	about	this	operation	mode	you	can	read	in	Reverse	Debugging	chapter.

Emulation	in	analysis	loop
Apart	from	the	manual	emulation	mode,	it	can	be	used	automatically	in	the	analysis	loop.	For	example,
the	 	aaaa		 command	 performs	 the	 ESIL	 emulation	 stage	 along	with	 others.	 To	 disable	 or	 enable	 its
usage	 you	 can	 use	 	anal.esil	 	 configuration	 variable.	 There	 is	 one	more	 important	 option,	 though
setting	it	might	be	quite	dangerous,	especially	in	the	case	of	malware	-		emu.write		which	allows	ESIL
VM	to	modify	memory.	Sometimes	it	is	required	though,	especially	in	the	process	of	deobfuscating	or
unpacking	code.

To	show	the	process	of	emulation	you	can	set	 	asm.emu		variable,	which	will	show	calculated	register
and	memory	values	in	disassembly	comments:

Emulation

182

[0x00001660]>	e	asm.emu=true

[0x00001660]>	pdf

.	(fcn)	fcn.00001660	40

│			fcn.00001660	();

│					;	CALL	XREF	from	0x00001713	(entry2.fini)

│					0x00001660		lea	rdi,	obj.__progname	;	0x207220	;	rdi=0x207220	->	0x464c457f

│					0x00001667		push	rbp																;	rsp=0xfffffffffffffff8

│					0x00001668		lea	rax,	obj.__progname	;	0x207220	;	rax=0x207220	->	0x464c457f

│					0x0000166f		cmp	rax,	rdi												;	zf=0x1	->	0x2464c45	;	cf=0x0	;	pf=0x1	->	0x2

464c45	;	sf=0x0	;	of=0x0

│					0x00001672		mov	rbp,	rsp												;	rbp=0xfffffffffffffff8

│	.─<	0x00001675		je	0x1690															;	rip=0x1690	->	0x1f0fc35d	;	likely

│	│			0x00001677		mov	rax,	qword	[reloc._ITM_deregisterTMCloneTable]	;	[0x206fd8:8]=0	;	

rax=0x0

│	│			0x0000167e		test	rax,	rax											;	zf=0x1	->	0x2464c45	;	pf=0x1	->	0x2464c45	;	

sf=0x0	;	cf=0x0	;	of=0x0

│.──<	0x00001681		je	0x1690															;	rip=0x1690	->	0x1f0fc35d	;	likely

│││			0x00001683		pop	rbp																	;	rbp=0xffffffffffffffff	->	0x4c457fff	;	rsp=0

x0

│││			0x00001684		jmp	rax																	;	rip=0x0	..

│``─>	0x00001690		pop	rbp																	;	rbp=0x10102464c457f	;	rsp=0x8	->	0x464c457f

`					0x00001691		ret																					;	rip=0x0	;	rsp=0x10	->	0x3e0003

Note	here		likely		comments,	which	indicates	that	ESIL	emulation	predicted	for	particular	conditional
jump	to	happen.

Apart	from	the	basic	ESIL	VM	setup,	you	can	change	the	behavior	with	other	options	located	in		emu.	
and		esil.		configuration	namespaces.

For	manipulating	ESIL	working	with	memory	and	stack	you	can	use	the	following	options:

	esil.stack		to	enable	or	disable	temporary	stack	for		asm.emu		mode
	esil.stack.addr		to	set	stack	address	in	ESIL	VM	(like		aeim		command)
	esil.stack.size		to	set	stack	size	in	ESIL	VM	(like		aeim		command)
	esil.stack.depth		limits	the	number	of	PUSH	operations	into	the	stack
	esil.romem		specifies	read-only	access	to	the	ESIL	memory
	esil.fillstack		and	 	esil.stack.pattern		allows	you	to	use	a	various	pattern	for	filling	ESIL
VM	stack	upon	initialization
	esil.nonull		when	set	stops	ESIL	execution	upon	NULL	pointer	read	or	write.

Emulation

183

Symbols
Radare2	automatically	parses	available	imports	and	exports	sections	in	the	binary,	but	moreover,	it	can
load	additional	debugging	information	if	present.	Two	main	formats	are	supported:	DWARF	and	PDB
(for	Windows	 binaries).	Note	 that,	 unlike	many	 tools	 radare2	 doesn't	 rely	 on	Windows	API	 to	 parse
PDB	files,	thus	they	can	be	loaded	on	any	other	supported	platform	-	e.g.	Linux	or	OS	X.

DWARF	debug	 info	 loads	automatically	by	default	because	usually	 it's	 stored	 right	 in	 the	executable
file.	PDB	is	a	bit	of	a	different	beast	-	it	is	always	stored	as	a	separate	binary,	thus	the	different	logic	of
handling	it.

At	first,	one	of	the	common	scenarios	is	to	analyze	the	file	from	Windows	distribution.	In	this	case,	all
PDB	files	are	available	on	the	Microsoft	server,	which	is	by	default	is	in	options.	See	all	pdb	options	in
radare2:

pdb.autoload	=	0

pdb.extract	=	1

pdb.server	=	https://msdl.microsoft.com/download/symbols

pdb.useragent	=	Microsoft-Symbol-Server/6.11.0001.402

Using	 the	variable	 	pdb.server		 you	can	change	 the	address	where	 radare2	will	 try	 to	download	 the
PDB	 file	by	 the	GUID	stored	 in	 the	 executable	header.	Usually,	 there	 is	no	 reason	 to	 change	default
	pdb.useragent	,	but	who	knows	where	could	it	be	handy?

Because	 those	 PDB	 files	 are	 stored	 as	 "cab"	 archives	 on	 the	 server,	 	 pdb.extract=1	 	 says	 to
automatically	extract	them.

Note	that	for	the	automatic	downloading	to	work	you	need	"cabextract"	tool,	and	wget/curl	installed.

Sometimes	you	don't	need	to	do	that	from	the	radare2	itself,	thus	-	two	handy	rabin2	options:

	-P														show	debug/pdb	information

	-PP													download	pdb	file	for	binary

where	 	-PP	 	 automatically	 downloads	 the	 pdb	 for	 the	 selected	 binary,	 using	 those	 	pdb.*	 	 config
options.	 	-P	 	 will	 dump	 the	 contents	 of	 the	 PDB	 file,	 which	 is	 useful	 sometimes	 for	 a	 quick
understanding	of	the	symbols	stored	in	it.

Symbols	information

184

Apart	from	the	basic	scenario	of	just	opening	a	file,	PDB	information	can	be	additionally	manipulated
by	the		id		commands:

[0x000051c0]>	id?

|Usage:	id	Debug	information

|	Output	mode:

|	'*'														Output	in	radare	commands

|	id															Source	lines

|	idp	[file.pdb]			Load	pdb	file	information

|	idpi	[file.pdb]		Show	pdb	file	information

|	idpd													Download	pdb	file	on	remote	server

Where	 	idpi		 is	basically	the	same	as	 	rabin2	-P	.	Note	that	 	idp		 can	be	also	used	not	only	 in	 the
static	analysis	mode,	but	also	in	the	debugging	mode,	even	if	connected	via	WinDbg.

For	 simplifying	 the	 loading	PDBs,	 especially	 for	 the	processes	with	many	 linked	DLLs,	 radare2	 can
autoload	all	required	PDBs	automatically	-	you	need	just	set	the		e	pdb.autoload=true		option.	Then	if
you	load	some	file	in	debugging	mode	in	Windows,	using		r2	-d	file.exe		or		r2	-d	2345		(attach	to
pid	2345),	all	related	PDB	files	will	be	loaded	automatically.

DWARF	information	 loading,	on	 the	other	hand,	 is	completely	automated.	You	don't	need	 to	 run	any
commands/change	any	options:

r2	`which	rabin2`

[0x00002437	8%	300	/usr/local/bin/rabin2]>	pd	$r

0x00002437		jne	0x2468																		;[1]

0x00002439		cmp	qword	reloc.__cxa_finalize_224,	0

0x00002441		push	rbp

0x00002442		mov	rbp,	rsp

0x00002445		je	0x2453																			;[2]

0x00002447		lea	rdi,	obj.__dso_handle			;	0x207c40	;	"@|	"

0x0000244e		call	0x2360																	;[3]

0x00002453		call	sym.deregister_tm_clones	;[4]

0x00002458		mov	byte	[obj.completed.6991],	1	;	obj.__TMC_END__	;	[0x2082f0:1]=0

0x0000245f		pop	rbp

0x00002460		ret

0x00002461		nop	dword	[rax]

0x00002468		ret

0x0000246a		nop	word	[rax	+	rax]

;--	entry1.init:

;--	frame_dummy:

0x00002470		push	rbp

0x00002471		mov	rbp,	rsp

0x00002474		pop	rbp

0x00002475		jmp	sym.register_tm_clones		;[5]

;--	blob_version:

Symbols	information

185

0x0000247a		push	rbp																				;	../blob/version.c:18

0x0000247b		mov	rbp,	rsp

0x0000247e		sub	rsp,	0x10

0x00002482		mov	qword	[rbp	-	8],	rdi

0x00002486		mov	eax,	0x32															;	../blob/version.c:24	;	'2'

0x0000248b		test	al,	al																	;	../blob/version.c:19

0x0000248d		je	0x2498																			;[6]

0x0000248f		lea	rax,	str.2.0.1_182_gf1aa3aa4d	;	0x60b8	;	"2.0.1-182-gf1aa3aa4d"

0x00002496		jmp	0x249f																		;[7]

0x00002498		lea	rax,	0x000060cd

0x0000249f		mov	rsi,	qword	[rbp	-	8]

0x000024a3		mov	r8,	rax

0x000024a6		mov	ecx,	0x40															;	section_end.ehdr

0x000024ab		mov	edx,	0x40c0

0x000024b0		lea	rdi,	str._s_2.1.0_git__d___linux_x86__d_git._s_n	;	0x60d0	;	"%s	2.1.0-gi

t	%d	@	linux-x86-%d	git.%s\n"

0x000024b7		mov	eax,	0

0x000024bc		call	0x2350																	;[8]

0x000024c1		mov	eax,	0x66															;	../blob/version.c:25	;	'f'

0x000024c6		test	al,	al

0x000024c8		je	0x24d6																			;[9]

0x000024ca		lea	rdi,	str.commit:_f1aa3aa4d2599c1ad60e3ecbe5f4d8261b282385_build:_2017_11

_06__12:18:39	;	../blob/version.c:26	;	0x60f8	;	"commit:	f1aa3aa4d2599c1ad60e3ecbe5f4d82

61b282385	build:	2017-11-06__1

0x000024d1		call	sym.imp.puts											;[?]

0x000024d6		mov	eax,	0																		;	../blob/version.c:28

0x000024db		leave																							;	../blob/version.c:29

0x000024dc		ret

;--	rabin_show_help:

0x000024dd		push	rbp																				;	.//rabin2.c:27

As	you	can	see,	it	loads	function	names	and	source	line	information.

Symbols	information

186

Signatures
Radare2	has	its	own	format	of	 the	signatures,	allowing	to	both	load/apply	and	create	them	on	the	fly.
They	are	available	under	the		z		command	namespace:

[0x000100b0]>	z?

|Usage:	z[*j-aof/cs]	[args]	#	Manage	zignatures

|	z												show	zignatures

|	z*											show	zignatures	in	radare	format

|	zj											show	zignatures	in	json	format

|	z-zignature		delete	zignature

|	z-*										delete	all	zignatures

|	za[?]								add	zignature

|	zo[?]								manage	zignature	files

|	zf[?]								manage	FLIRT	signatures

|	z/[?]								search	zignatures

|	zc											check	zignatures	at	address

|	zs[?]								manage	zignspaces

To	load	the	created	signature	file	you	need	to	load	it	from	SDB	file	using	 	zo		command	or	from	the
compressed	SDB	file	using		zoz		command.

To	create	signature	you	need	to	make	function	first,	then	you	can	create	it	from	the	function:

r2	/bin/ls

[0x000051c0]>	aaa	#	this	creates	functions,	including	'entry0'

[0x000051c0]>	zaf	entry0	entry

[0x000051c0]>	z

entry:

		bytes:	31ed4989d15e4889e24883e4f050544c............48............48............ff.....

.....f4

		graph:	cc=1	nbbs=1	edges=0	ebbs=1

		offset:	0x000051c0

[0x000051c0]>

As	you	can	see	it	made	a	new	signature	with	a	name		entry		from	a	function		entry0	.	You	can	show	it
in	JSON	format	too,	which	can	be	useful	for	scripting:

Signatures

187

[0x000051c0]>	zj~{}

[

		{

				"name":	"entry",

				"bytes":	"31ed4989d15e4889e24883e4f050544c............48............48............ff

..........f4",

				"graph":	{

						"cc":	"1",

						"nbbs":	"1",

						"edges":	"0",

						"ebbs":	"1"

				},

				"offset":	20928,

				"refs":	[

]

		}

]

[0x000051c0]>

To	remove	it	just	run		z-entry		But	if	you	want	to	save	all	created	signatures,	you	need	to	save	it	into
the	SDB	file	using	command		zos	myentry	.	Then	we	can	apply	them.	Lets	open	a	file	again:

r2	/bin/ls

	--	Log	On.	Hack	In.	Go	Anywhere.	Get	Everything.

[0x000051c0]>	zo	myentry

[0x000051c0]>	z

entry:

		bytes:	31ed4989d15e4889e24883e4f050544c............48............48............ff.....

.....f4

		graph:	cc=1	nbbs=1	edges=0	ebbs=1

		offset:	0x000051c0

[0x000051c0]>

This	means	that	the	signatures	were	successfully	loaded	from	the	file		myentry		and	now	we	can	search
matching	functions:

[0x000051c0]>	zc

[+]	searching	0x000051c0	-	0x000052c0

[+]	searching	function	metrics

hits:	1

[0x000051c0]>

Signatures

188

Note	 that	 	zc		 command	 just	 checks	 the	 signatures	 against	 the	 current	 address.	To	 search	 signatures
across	the	all	file	we	need	to	do	a	bit	different	thing.	There	is	an	important	moment	though,	if	we	just
run	it	"as	is"	-	it	wont	find	anything:

[0x000051c0]>	z/

[+]	searching	0x0021dfd0	-	0x002203e8

[+]	searching	function	metrics

hits:	0

[0x000051c0]>

Note	the	searching	address	-	this	is	because	we	need	to	adjust	the	searching	range	first:

[0x000051c0]>	e	search.in=io.section

[0x000051c0]>	z/

[+]	searching	0x000038b0	-	0x00015898

[+]	searching	function	metrics

hits:	1

[0x000051c0]>

We	 are	 setting	 the	 search	mode	 to	 	io.section		 (it	was	 	file	 	 by	 default)	 to	 search	 in	 the	 current
section	(assuming	we	are	currently	in	the		.text		section	of	course).	Now	we	can	check,	what	radare2
found	for	us:

[0x000051c0]>	pd	5

;--	entry0:

;--	sign.bytes.entry_0:

0x000051c0						31ed											xor	ebp,	ebp

0x000051c2						4989d1									mov	r9,	rdx

0x000051c5						5e													pop	rsi

0x000051c6						4889e2									mov	rdx,	rsp

0x000051c9						4883e4f0							and	rsp,	0xfffffffffffffff0

[0x000051c0]>

Here	 we	 can	 see	 the	 comment	 of	 	entry0	 ,	 which	 is	 taken	 from	 the	 ELF	 parsing,	 but	 also	 the
	sign.bytes.entry_0	,	which	is	exactly	the	result	of	matching	signature.

Signatures	configuration	stored	in	the		zign.		config	vars'	namespace:

Signatures

189

[0x000051c0]>	e	zign.

zign.bytes	=	true

zign.graph	=	true

zign.maxsz	=	500

zign.mincc	=	10

zign.minsz	=	16

zign.offset	=	true

zign.prefix	=	sign

zign.refs	=	true

[0x000051c0]>

Signatures

190

Graph	commands
When	 analyzing	 data	 it	 is	 usually	 handy	 to	 have	 different	 ways	 to	 represent	 it	 in	 order	 to	 get	 new
perspectives	to	allow	the	analyst	to	understand	how	different	parts	of	the	program	interact.

Representing	basic	block	edges,	 function	calls,	 string	 references	as	graphs	show	a	very	clear	view	of
this	information.

Radare2	supports	various	types	of	graph	available	through	commands	starting	with		ag	:

[0x00005000]>	ag?

|Usage:	ag<graphtype><format>	[addr]

|	Graph	commands:

|	agc[format]	[fcn	addr]		Function	callgraph

|	agf[format]	[fcn	addr]		Basic	blocks	function	graph

|	agx[format]	[addr]						Cross	references	graph

|	agr[format]	[fcn	addr]		References	graph

|	aga[format]	[fcn	addr]		Data	references	graph

|	agd[format]	[fcn	addr]		Diff	graph

|	agi[format]													Imports	graph

|	agC[format]													Global	callgraph

|	agR[format]													Global	references	graph

|	agA[format]													Global	data	references	graph

|	agg[format]													Custom	graph

|	ag-																					Clear	the	custom	graph

|	agn[?]	title	body							Add	a	node	to	the	custom	graph

|	age[?]	title1	title2				Add	an	edge	to	the	custom	graph

|

|	Output	formats:

|	<blank>																	Ascii	art

|	v																							Interactive	ASCII	art

|	t																							Tiny	ASCII	art

|	d																							Graphviz	dot

|	j																							JSON	('J'	for	formatted	disassembly)

|	g																							Graph	Modelling	Language	(GML)

|	k																							SDB	key-value

|	*																							r2	commands

|	w																							Web/image	(see	graph.extension	and	graph.web)

The	structure	of	the	commands	is	as	follows:		ag	<graph	type>	<output	format>	.

For	example,		agid		displays	the	imports	graph	in	dot	format,	while		aggj		outputs	the	custom	graph	in
JSON	format.

Graph	commands

191

Here's	a	short	description	for	every	output	format	available:

Ascii	Art	**	(e.g.		agf)

Displays	the	graph	directly	to	stdout	using	ASCII	art	to	represent	blocks	and	edges.

Warning:	displaying	 large	graphs	directly	 to	 stdout	might	prove	 to	be	computationally	expensive	and
will	 make	 r2	 not	 responsive	 for	 some	 time.	 In	 case	 of	 a	 doubt,	 prefer	 using	 the	 interactive	 view
(explained	below).

Interactive	Ascii	Art	(e.g.		agfv)

Displays	the	ASCII	graph	in	an	interactive	view	similar	to		VV		which	allows	to	move	the	screen,	zoom
in	/	zoom	out,	...

Tiny	Ascii	Art	(e.g.		agft)

Displays	the	ASCII	graph	directly	to	stdout	in	tiny	mode	(which	is	the	same	as	reaching	the	maximum
zoom	out	level	in	the	interactive	view).

Graphviz	dot	(e.g.		agfd)

Prints	 the	 dot	 source	 code	 representing	 the	 graph,	 which	 can	 be	 interpreted	 by	 programs	 such	 as
graphviz	or	online	viewers	like	this

JSON	(e.g.		agfj)

Prints	a	JSON	string	representing	the	graph.

In	case	of	 the	 	f		 format	 (basic	 blocks	 of	 function),	 it	will	 have	 detailed	 information	 about	 the
function	and	will	also	contain	 the	disassembly	of	 the	 function	 (use	 	J		 format	 for	 the	 formatted
disassembly.

In	all	other	cases,	it	will	only	have	basic	information	about	the	nodes	of	the	graph	(id,	title,	body,
and	edges).

Graph	Modelling	Language	(e.g.		agfg)

Prints	the	GML	source	code	representing	the	graph,	which	can	be	interpreted	by	programs	such	as	yEd

Graph	commands

192

https://graphviz.gitlab.io/download/
http://www.webgraphviz.com/
https://www.yworks.com/products/yed/download

SDB	key-value	(e.g.		agfk)

Prints	key-value	strings	representing	the	graph	that	was	stored	by	sdb	(radare2's	string	database).

R2	custom	graph	commands	(e.g.		agf*)

Prints	 r2	commands	 that	would	 recreate	 the	desired	graph.	The	commands	 to	construct	 the	graph	are
	agn	[title]	[body]		to	add	a	node	and	 	age	[title1]	[title2]		 to	add	an	edge.	The	 	[body]		field
can	be	expressed	in	base64	to	include	special	formatting	(such	as	newlines).

To	easily	execute	the	printed	commands,	it	is	possible	to	prepend	a	dot	to	the	command	(.agf*).

Web	/	image	(e.g.		agfw)

Radare2	will	convert	the	graph	to	dot	format,	use	the		dot		program	to	convert	it	to	a		.gif		 image	and
then	 try	 to	 find	 an	 already	 installed	viewer	on	your	 system	 (xdg-open	,	 	open	 ,	 ...)	 and	 display	 the
graph	there.

The	 extension	 of	 the	 output	 image	 can	 be	 set	with	 the	 	graph.extension		 config	 variable.	Available
extensions	are		png,	jpg,	gif,	pdf,	ps	.

Note:	for	particularly	large	graphs,	the	most	recommended	extension	is		svg		as	it	will	produce	images
of	much	smaller	size

If		graph.web		config	variable	is	enabled,	radare2	will	try	to	display	the	graph	using	the	browser	(this
feature	is	experimental	and	unfinished,	and	disabled	by	default.)

Graph	commands

193

Scripting
Radare2	 provides	 a	 wide	 set	 of	 a	 features	 to	 automate	 boring	 work.	 It	 ranges	 from	 the	 simple
sequencing	 of	 the	 commands	 to	 the	 calling	 scripts/another	 programs	 via	 IPC	 (Inter-Process
Communication),	called	r2pipe.

As	 mentioned	 a	 few	 times	 before	 there	 is	 an	 ability	 to	 sequence	 commands	 using	 	;	 	 semicolon
operator.

[0x00404800]>	pd	1	;	ao	1

											0x00404800						b827e66100					mov	eax,	0x61e627						;	"tab"

address:	0x404800

opcode:	mov	eax,	0x61e627

prefix:	0

bytes:	b827e66100

ptr:	0x0061e627

refptr:	0

size:	5

type:	mov

esil:	6415911,rax,=

stack:	null

family:	cpu

[0x00404800]>

It	simply	runs	the	second	command	after	finishing	the	first	one,	like	in	a	shell.

The	second	important	way	to	sequence	the	commands	is	with	a	simple	pipe		|	

ao|grep	address

Note,	 the	 	|		 pipe	 only	 can	 pipe	 output	 of	 r2	 commands	 to	 external	 (shell)	 commands,	 like	 system
programs	 or	 builtin	 shell	 commands.	 There	 is	 a	 similar	 way	 to	 sequence	 r2	 commands,	 using	 the
backtick	operator	 	̀ command`		.	The	quoted	part	will	undergo	command	substitution	and	the	output	will
be	used	as	an	argument	of	the	command	line.

For	example,	we	want	to	see	a	few	bytes	of	the	memory	at	the	address	referred	to	by	the	'mov	eax,	addr'
instruction.	We	can	do	that	without	jumping	to	it,	using	a	sequence	of	commands:

Scripting

194

[0x00404800]>	pd	1

														0x00404800						b827e66100					mov	eax,	0x61e627						;	"tab"

[0x00404800]>	ao

address:	0x404800

opcode:	mov	eax,	0x61e627

prefix:	0

bytes:	b827e66100

ptr:	0x0061e627

refptr:	0

size:	5

type:	mov

esil:	6415911,rax,=

stack:	null

family:	cpu

[0x00404800]>	ao~ptr[1]

0x0061e627

0

[0x00404800]>	px	10	@	`ao~ptr[1]`

-	offset	-			0	1		2	3		4	5		6	7		8	9		A	B		C	D		E	F		0123456789ABCDEF

0x0061e627		7461	6200	2e69	6e74	6572																	tab..inter

[0x00404800]>

And	of	course	it's	possible	to	redirect	the	output	of	an	r2	command	into	a	file,	using	the	 	>		and	 	>>	
commands

[0x00404800]>	px	10	@	`ao~ptr[1]`	>	example.txt

[0x00404800]>	px	10	@	`ao~ptr[1]`	>>	example.txt

The	 	?$?		 command	describes	 several	helpful	variables	you	can	use	 to	do	 similar	actions	even	more
easily,	like	the		$v		"immediate	value"	variable,	or	the		$m		opcode	memory	reference	variable.

Scripting

195

Loops
One	of	the	most	common	task	in	automation	is	looping	through	something,	there	are	multiple	ways	to
do	this	in	radare2.

We	can	loop	over	flags:

@@	flagname-regex

For	example,	we	want	to	see	function	information	with		afi		command:

[0x004047d6]>	afi

#

offset:	0x004047d0

name:	entry0

size:	42

realsz:	42

stackframe:	0

call-convention:	amd64

cyclomatic-complexity:	1

bits:	64

type:	fcn	[NEW]

num-bbs:	1

edges:	0

end-bbs:	1

call-refs:	0x00402450	C

data-refs:	0x004136c0	0x00413660	0x004027e0

code-xrefs:

data-xrefs:

locals:0

args:	0

diff:	type:	new

[0x004047d6]>

Now	let's	say,	for	example,	that	we'd	like	see	a	particular	field	from	this	output	for	all	functions	found
by	analysis.	We	can	do	that	with	a	loop	over	all	function	flags	(whose	names	begin	with		fcn.):

[0x004047d6]>	afi	@@	fcn.*	~name

This	command	will	extract	the		name		field	from	the	 	afi		output	of	every	flag	with	a	name	matching
the	regexp		fcn.*	.

Loops

196

We	can	also	loop	over	a	list	of	offsets,	using	the	following	syntax:

@@=1	2	3	...	N

For	example,	say	we	want	to	see	the	opcode	information	for	2	offsets:	the	current	one,	and	at	current	+
2:

[0x004047d6]>	ao	@@=$$	$$+2

address:	0x4047d6

opcode:	mov	rdx,	rsp

prefix:	0

bytes:	4889e2

refptr:	0

size:	3

type:	mov

esil:	rsp,rdx,=

stack:	null

family:	cpu

address:	0x4047d8

opcode:	loop	0x404822

prefix:	0

bytes:	e248

refptr:	0

size:	2

type:	cjmp

esil:	1,rcx,-=,rcx,?{,4212770,rip,=,}

jump:	0x00404822

fail:	0x004047da

stack:	null

cond:	al

family:	cpu

[0x004047d6]>

Note	 we're	 using	 the	 	$$	 	 variable	 which	 evaluates	 to	 the	 current	 offset.	 Also	 note	 that	 	$$+2	 	 is
evaluated	before	looping,	so	we	can	use	the	simple	arithmetic	expressions.

A	third	way	to	loop	is	by	having	the	offsets	be	loaded	from	a	file.	This	file	should	contain	one	offset	per
line.

Loops

197

[0x004047d0]>	?v	$$	>	offsets.txt

[0x004047d0]>	?v	$$+2	>>	offsets.txt

[0x004047d0]>	!cat	offsets.txt

4047d0

4047d2

[0x004047d0]>	pi	1	@@.offsets.txt

xor	ebp,	ebp

mov	r9,	rdx

radare2	 also	 offers	 various	 	foreach	 	 constructs	 for	 looping.	 One	 of	 the	most	 useful	 is	 for	 looping
through	all	the	instructions	of	a	function:

[0x004047d0]>	pdf

╒	(fcn)	entry0	42

│;	UNKNOWN	XREF	from	0x00400018	(unk)

│;	DATA	XREF	from	0x004064bf	(sub.strlen_460)

│;	DATA	XREF	from	0x00406511	(sub.strlen_460)

│;	DATA	XREF	from	0x0040b080	(unk)

│;	DATA	XREF	from	0x0040b0ef	(unk)

│0x004047d0		xor	ebp,	ebp

│0x004047d2		mov	r9,	rdx

│0x004047d5		pop	rsi

│0x004047d6		mov	rdx,	rsp

│0x004047d9		and	rsp,	0xfffffffffffffff0

│0x004047dd		push	rax

│0x004047de		push	rsp

│0x004047df		mov	r8,	0x4136c0

│0x004047e6		mov	rcx,	0x413660						;	"AWA..AVI..AUI..ATL.%..	"

0A..AVI..AUI.

│0x004047ed		mov	rdi,	main										;	"AWAVAUATUH..S..H...."	@

0

│0x004047f4		call	sym.imp.__libc_start_main

╘0x004047f9		hlt

[0x004047d0]>	pi	1	@@i

mov	r9,	rdx

pop	rsi

mov	rdx,	rsp

and	rsp,	0xfffffffffffffff0

push	rax

push	rsp

mov	r8,	0x4136c0

mov	rcx,	0x413660

mov	rdi,	main

call	sym.imp.__libc_start_main

hlt

Loops

198

In	 this	 example	 the	 command	 	pi	1		 runs	 over	 all	 the	 instructions	 in	 the	 current	 function	 (entry0).
There	are	other	options	too	(not	complete	list,	check		@@?		for	more	information):

	@@k	sdbquery		-	iterate	over	all	offsets	returned	by	that	sdbquery
	@@t	-	iterate	over	on	all	threads	(see	dp)
	@@b		-	iterate	over	all	basic	blocks	of	current	function	(see	afb)
	@@f		-	iterate	over	all	functions	(see	aflq)

The	last	kind	of	looping	lets	you	loop	through	predefined	iterator	types:

symbols
imports
registers
threads
comments
functions
flags

This	is	done	using	the		@@@		command.	The	previous	example	of	listing	information	about	functions	can
also	be	done	using	the		@@@		command:

[0x004047d6]>	afi	@@@	functions	~name

This	will	extract	 	name		field	from	 	afi		output	and	will	output	a	huge	list	of	function	names.	We	can
choose	only	the	second	column,	to	remove	the	redundant		name:		on	every	line:

[0x004047d6]>	afi	@@@	functions	~name[1]

Beware,	@@@	is	not	compatible	with	JSON	commands.

Loops

199

Macros
Apart	 from	 simple	 sequencing	 and	 looping,	 radare2	 allows	 to	 write	 simple	 macros,	 using	 this
construction:

[0x00404800]>	(qwe,	pd	4,	ao)

This	will	define	a	macro	called	 'qwe'	which	 runs	 sequentially	 first	 'pd	4'	 then	 'ao'.	Calling	 the	macro
using	syntax		.(macro)		is	simple:

[0x00404800]>	(qwe,	pd	4,	ao)

[0x00404800]>	.(qwe)

0x00404800		mov	eax,	0x61e627						;	"tab"

0x00404805		push	rbp

0x00404806		sub	rax,	section_end.LOAD1

0x0040480c		mov	rbp,	rsp

address:	0x404800

opcode:	mov	eax,	0x61e627

prefix:	0

bytes:	b827e66100

ptr:	0x0061e627

refptr:	0

size:	5

type:	mov

esil:	6415911,rax,=

stack:	null

family:	cpu

[0x00404800]>

To	list	available	macroses	simply	call		(*	:

[0x00404800]>	(*

(qwe	,	pd	4,	ao)

And	if	want	to	remove	some	macro,	just	add	'-'	before	the	name:

[0x00404800]>	(-qwe)

Macro	'qwe'	removed.

[0x00404800]>

Macros

200

Moreover,	it's	possible	to	create	a	macro	that	takes	arguments,	which	comes	in	handy	in	some	simple
scripting	situations.	To	create	a	macro	that	takes	arguments	you	simply	add	them	to	macro	definition.
Be	sure,	if	you're	using	characters	like	';',	to	quote	the	whole	command	for	proper	parsing.

[0x00404800]

[0x004047d0]>	"(foo	x	y,pd	$0;	s	+$1)"

[0x004047d0]>	.(foo	5	6)

;--	entry0:

0x004047d0						xor	ebp,	ebp

0x004047d2						mov	r9,	rdx

0x004047d5						pop	rsi

0x004047d6				mov	rdx,	rsp

0x004047d9				and	rsp,	0xfffffffffffffff0

[0x004047d6]>

As	you	can	see,	the	arguments	are	named	by	index,	starting	from	0:	$0,	$1,	...

Macros

201

R2pipe
The	r2pipe	api	was	initially	designed	for	NodeJS	in	order	to	support	reusing	the	web's	r2.js	API	from
the	commandline.	The	r2pipe	module	permits	interacting	with	r2	instances	in	different	methods:

spawn	pipes	(r2	-0)
http	queries	(cloud	friendly)
tcp	socket	(r2	-c)

									pipe	spawn	async	http	tcp	rap	json

nodejs				x					x					x				x				x				-			x

python				x					x					-				x				x				x			x

swift					x					x					x				x				-				-			x

dotnet				x					x					x				x				-				-			-

haskell			x					x					-				x				-				-			x

java						-					x					-				x				-				-			-

golang				x					x					-				-				-				-			x

ruby						x					x					-				-				-				-			x

rust						x					x					-				-				-				-			x

vala						-					x					x				-				-				-			-

erlang				x					x					-				-				-				-			-

newlisp			x					-					-				-				-				-			-

dlang					x					-					-				-				-				-			x

perl						x					-					-				-				-				-			-

Examples

Python

$	pip	install	r2pipe

import	r2pipe

r2	=	r2pipe.open("/bin/ls")

r2.cmd('aa')

print(r2.cmd("afl"))

print(r2.cmdj("aflj"))		#	evaluates	JSONs	and	returns	an	object

R2pipe

202

NodeJS
Use	this	command	to	install	the	r2pipe	bindings

$	npm	install	r2pipe

Here's	a	sample	hello	world

const	r2pipe	=	require('r2pipe');

r2pipe.open('/bin/ls',	(err,	res)	=>	{

		if	(err)	{

		throw	err;

		}

		r2.cmd	('af	@	entry0',	function	(o)	{

		r2.cmd	("pdf	@	entry0",	function	(o)	{

				console.log	(o);

				r.quit	()

		});

		});

});

Checkout	the	GIT	repository	for	more	examples	and	details.

https://github.com/radare/radare2-r2pipe/blob/master/nodejs/r2pipe/README.md

Go

$	r2pm	-i	r2pipe-go

https://github.com/radare/r2pipe-go

package	main

import	(

		"fmt"

		"github.com/radare/r2pipe-go"

)

R2pipe

203

https://github.com/radare/radare2-r2pipe/blob/master/nodejs/r2pipe/README.md
https://github.com/radare/r2pipe-go

func	main()	{

		r2p,	err	:=	r2pipe.NewPipe("/bin/ls")

		if	err	!=	nil	{

				panic(err)

		}

		defer	r2p.Close()

		buf1,	err	:=	r2p.Cmd("?E	Hello	World")

		if	err	!=	nil	{

				panic(err)

		}

		fmt.Println(buf1)

}

Rust

$	cat	Cargo.toml

...

[dependencies]

r2pipe	=	"*"

#[macro_use]

extern	crate	r2pipe;

use	r2pipe::R2Pipe;

fn	main()	{

		let	mut	r2p	=	open_pipe!(Some("/bin/ls")).unwrap();

		println!("{:?}",	r2p.cmd("?e	Hello	World"));

		let	json	=	r2p.cmdj("ij").unwrap();

		println!("{}",	json.pretty());

		println!("ARCH	{}",	json.find_path(&["bin","arch"]).unwrap());

		r2p.close();

}

Ruby

$	gem	install	r2pipe

R2pipe

204

require	'r2pipe'

puts	'r2pipe	ruby	api	demo'

puts	'===================='

r2p	=	R2Pipe.new	'/bin/ls'

puts	r2p.cmd	'pi	5'

puts	r2p.cmd	'pij	1'

puts	r2p.json(r2p.cmd	'pij	1')

puts	r2p.cmd	'px	64'

r2p.quit

Perl

#!/usr/bin/perl

use	R2::Pipe;

use	strict;

my	$r	=	R2::Pipe->new	("/bin/ls");

print	$r->cmd	("pd	5")."\n";

print	$r->cmd	("px	64")."\n";

$r->quit	();

Erlang

R2pipe

205

#!/usr/bin/env	escript

%%	-*-	erlang	-*-

%%!	-smp	enable

%%	-sname	hr

-mode(compile).

-export([main/1]).

main(_Args)	->

		%%	adding	r2pipe	to	modulepath,	set	it	to	your	r2pipe_erl	location

		R2pipePATH	=	filename:dirname(escript:script_name())	++	"/ebin",

		true	=	code:add_pathz(R2pipePATH),

		%%	initializing	the	link	with	r2

		H	=	r2pipe:init(lpipe),

		%%	all	work	goes	here

		io:format("~s",	[r2pipe:cmd(H,	"i")]).

Haskell

import	R2pipe

import	qualified	Data.ByteString.Lazy	as	L

showMainFunction	ctx	=	do

		cmd	ctx	"s	main"

		L.putStr	=<<	cmd	ctx	"pD	`fl	$$`"

main	=	do

		--	Run	r2	locally

		open	"/bin/ls"	>>=	showMainFunction

		--	Connect	to	r2	via	HTTP	(e.g.	if	"r2	-qc=h	/bin/ls"	is	running)

		open	"http://127.0.0.1:9090"	>>=	showMainFunction

Dotnet

R2pipe

206

using	System;

using	System.Collections.Generic;

using	System.Diagnostics;

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

using	r2pipe;

namespace	LocalExample	{

		class	Program	{

				static	void	Main(string[]	args)	{

#if	__MonoCS__

						using(IR2Pipe	pipe	=	new	R2Pipe("/bin/ls"))	{

#else

						using	(IR2Pipe	pipe	=	new	R2Pipe(@"C:\Windows\notepad.exe",

								@"C:\radare2\radare2.exe"))	{

#endif

								Console.WriteLine("Hello	r2!	"	+	pipe.RunCommand("?V"));

								Task<string>	async	=	pipe.RunCommandAsync("?V");

								Console.WriteLine("Hello	async	r2!"	+	async.Result);

								QueuedR2Pipe	qr2	=	new	QueuedR2Pipe(pipe);

								qr2.Enqueue(new	R2Command("x",	(string	result)	=>	{

													Console.WriteLine("Result	of	x:\n	{0}",	result);	}));

								qr2.Enqueue(new	R2Command("pi	10",	(string	result)	=>	{

													Console.WriteLine("Result	of	pi	10:\n	{0}",	result);	}));

								qr2.ExecuteCommands();

						}

				}

		}

}

Java

R2pipe

207

import	org.radare.r2pipe.R2Pipe;

public	class	Test	{

		public	static	void	main	(String[]	args)	{

				try	{

						R2Pipe	r2p	=	new	R2Pipe	("/bin/ls");

						//	new	R2Pipe	("http://cloud.rada.re/cmd/",	true);

						System.out.println	(r2p.cmd	("pd	10"));

						System.out.println	(r2p.cmd	("px	32"));

						r2p.quit();

				}	catch	(Exception	e)	{

						System.err.println	(e);

				}

		}

}

Swift

if	let	r2p	=	R2Pipe(url:nil)	{

		r2p.cmd	("?V",	closure:{

				(str:String?)	in

				if	let	s	=	str	{

						print	("Version:	\(s)");

						exit	(0);

				}	else	{

						debugPrint	("R2PIPE.	Error");

						exit	(1);

				}

		});

		NSRunLoop.currentRunLoop().run();

}	else	{

		print	("Needs	to	run	from	r2")

}

Vala

R2pipe

208

public	static	int	main	(string[]	args)	{

		MainLoop	loop	=	new	MainLoop	();

		var	r2p	=	new	R2Pipe	("/bin/ls");

		r2p.cmd	("pi	4",	(x)	=>	{

				stdout.printf	("Disassembly:\n%s\n",	x);

				r2p.cmd	("ie",	(x)	=>	{

						stdout.printf	("Entrypoint:\n%s\n",	x);

						r2p.cmd	("q");

				});

		});

		ChildWatch.add	(r2p.child_pid,	(pid,	status)	=>	{

				Process.close_pid	(pid);

				loop.quit	();

		});

		loop.run	();

		return	0;

}

NewLisp

(load	"r2pipe.lsp")

(println	"pd	3:\n"	(r2pipe:cmd	"pd	3"))

(exit)

Dlang

import	std.stdio;

import	r2pipe;

void	main()	{

			auto	r2	=	r2pipe.open	();

			writeln	("Hello	"~	r2.cmd("?e	World"));

			writeln	("Hello	"~	r2.cmd("?e	Works"));

			string	uri	=	r2.cmdj("ij")["core"]["uri"].str;

			writeln	("Uri:	",uri);

}

R2pipe

209

Debugger
Debuggers	 are	 implemented	 as	 IO	 plugins.	 Therefore,	 radare	 can	 handle	 different	 URI	 types	 for
spawning,	attaching	and	controlling	processes.	The	complete	list	of	IO	plugins	can	be	viewed	with		r2
-L	.	Those	that	have	"d"	in	the	first	column	("rwd")	support	debugging.	For	example:

r_d		debug							Debug	a	program	or	pid.	dbg:///bin/ls,	dbg://1388	(LGPL3)

rwd		gdb									Attach	to	gdbserver,	'qemu	-s',	gdb://localhost:1234	(LGPL3)

There	 are	 different	 backends	 for	many	 target	 architectures	 and	 operating	 systems,	 e.g.,	 GNU/Linux,
Windows,	MacOS	X,	(Net,Free,Open)BSD	and	Solaris.

Process	memory	 is	 treated	as	a	plain	 file.	All	mapped	memory	pages	of	a	debugged	program	and	 its
libraries	can	be	read	and	interpreted	as	code	or	data	structures.

Communication	 between	 radare	 and	 the	 debugger	 IO	 layer	 is	wrapped	 into	 	system()	 	 calls,	 which
accept	a	string	as	an	argument,	and	executes	it	as	a	command.	An	answer	is	then	buffered	in	the	output
console,	its	contents	can	be	additionally	processed	by	a	script.	Access	to	the	IO	system	is	achieved	with
	=!	.	Most	IO	plugins	provide	help	with		=!?		or		=!help	.	For	example:

$	r2	-d	/bin/ls

...

[0x7fc15afa3cc0]>	=!help

Usage:	=!cmd	args

	=!ptrace			-	use	ptrace	io

	=!mem						-	use	/proc/pid/mem	io	if	possible

	=!pid						-	show	targeted	pid

	=!pid	<#>		-	select	new	pid

In	 general,	 debugger	 commands	 are	 portable	 between	 architectures	 and	 operating	 systems.	 Still,	 as
radare	tries	to	support	the	same	functionality	for	all	target	architectures	and	operating	systems,	certain
things	have	 to	be	handled	 separately.	They	 include	 injecting	 shellcodes	and	handling	exceptions.	For
example,	in	MIPS	targets	there	is	no	hardware-supported	single-stepping	feature.	In	this	case,	radare2
provides	 its	 own	 implementation	 for	 single-step	 by	 using	 a	 mix	 of	 code	 analysis	 and	 software
breakpoints.

To	get	basic	help	for	the	debugger,	type	'd?':

Debugger

210

Usage:	d	#	Debug	commands

db[?]																			Breakpoints	commands

dbt[?]																		Display	backtrace	based	on	dbg.btdepth	and	dbg.btalgo

dc[?]																			Continue	execution

dd[?]																			File	descriptors	(!fd	in	r1)

de[-sc]	[rwx]	[rm]	[e]		Debug	with	ESIL	(see	de?)

dg	<file>															Generate	a	core-file	(WIP)

dH	[handler]												Transplant	process	to	a	new	handler

di[?]																			Show	debugger	backend	information	(See	dh)

dk[?]																			List,	send,	get,	set,	signal	handlers	of	child

dL	[handler]												List	or	set	debugger	handler

dm[?]																			Show	memory	maps

do[?]																			Open	process	(reload,	alias	for	'oo')

doo[args]															Reopen	in	debugger	mode	with	args	(alias	for	'ood')

dp[?]																			List,	attach	to	process	or	thread	id

dr[?]																			Cpu	registers

ds[?]																			Step,	over,	source	line

dt[?]																			Display	instruction	traces	(dtr=reset)

dw	<pid>																Block	prompt	until	pid	dies

dx[?]																			Inject	and	run	code	on	target	process	(See	gs)

To	restart	your	debugging	session,	you	can	type		oo		or		oo+	,	depending	on	desired	behavior.

oo																	reopen	current	file	(kill+fork	in	debugger)

oo+																reopen	current	file	in	read-write

Debugger

211

Getting	Started

Small	session	in	radare2	debugger
	r2	-d	/bin/ls	:	Opens	radare2	with	file	 	/bin/ls		 in	debugger	mode	using	 the	 radare2	native
debugger,	but	does	not	run	the	program.	You’ll	see	a	prompt	(radare2)	-	all	examples	are	from	this
prompt.

	db	flag	:	place	a	breakpoint	at	flag,	where	flag	can	be	either	an	address	or	a	function	name

	db	-	flag	:	remove	the	breakpoint	at	flag,	where	flag	can	be	either	an	address	or	a	function	name

	db	:	show	list	of	breakpoint

	dc	:	run	the	program

	dr	:	Show	registers	state

	drr	:	Show	registers	references	(telescoping)	(like	peda)

	ds	:	Step	into	instruction

	dso	:	Step	over	instruction

	dbt	:	Display	backtrace

	dm	:	Show	memory	maps

	dk	<signal>	:	Send	KILL	signal	to	child

	ood	:	reopen	in	debug	mode

	ood	arg1	arg2	:	reopen	in	debug	mode	with	arg1	and	arg2

Getting	Started

212

Migration	from	ida,	GDB	or	WinDBG

How	to	run	the	program	using	the	debugger
	r2	-d	/bin/ls		-	start	in	debugger	mode	=>	[video]

How	do	I	attach/detach	to	running	process	?
(gdb	-p)
	r2	-d	<pid>		-	attach	to	process

	r2	ptrace://pid		-	same	as	above,	but	only	for	io	(not	debugger	backend	hooked)

	[0x7fff6ad90028]>	o-225		-	close	fd=225	(listed	in		o~[1]:0)

	r2	-D	gdb	gdb://localhost:1234		-	attach	to	gdbserver

How	to	set	args/environment	variable/load	a
specific	libraries	for	the	debugging	session	of
radare
Use	 	rarun2		(libpath=$PWD:/tmp/lib	,	 	arg2=hello	,	 	setenv=FOO=BAR		 ...)	see	 	rarun2	-h		 /	 	man
rarun2	

How	to	script	radare2	?
	r2	-i	<scriptfile>	...		-	run	a	script	after	loading	the	file	=>	[video]

	r2	-I	<scriptfile>	...		-	run	a	script	before	loading	the	file

	r2	-c	$@	|	awk	$@		-	run	thru	awk	get	asm	from	function	=>	[link]

	[0x80480423]>	.	scriptfile		-	interpret	this	file	=>	[video]

Migration	from	ida,	GDB	or	WinDBG

213

http://asciinema.org/a/12022
http://asciinema.org/a/12020
http://sprunge.us/dEOK
http://asciinema.org/a/12017

	[0x80480423]>	#!c		-	enter	C	repl	(see		#!		to	list	all	available	RLang	plugins)	=>	[video],	everything
have	to	be	done	in	a	oneliner	or	a	.c	file	must	be	passed	as	an	argument.

To	get		#!python		and	much	more,	just	build	radare2-bindings

How	to	list	Source	code	as	in	gdb	list	?
	CL	@	sym.main		-	though	the	feature	is	highly	experimental

shortcuts

Command IDA	Pro radare2 r2	(visual	mode) GDB

Analysis

Analysis	 of
everything

	Automatically

launched	 when

opening	 a

binary	

	aaa	or	-A	(aaaa

or	 -AA	 for	 even

experimental

analysis)	

	N/A	 N/A

Navigation

xref	to 	x	 	axt	 	x	 N/A

xref	from 	ctrl	+	j	 	axf	 	X	 N/A

xref	to	graph ? 	agt	[offset]	 ? N/A

xref	from	graph ? 	agf	[offset]	 ? N/A

list	functions 	alt	+	1	 	afl;is	 	t	 N/A

listing 	alt	+	2	 	pdf	 	p	 N/A

hex	mode 	alt	+	3	 	pxa	 	P	 N/A

imports 	alt	+	6	 	ii	 	:ii	 N/A

exports 	alt	+	7	 	is~FUNC	 ? N/A

follow	jmp/call 	enter	 	s	offset	 	enter		or		0	-	9	 N/A

undo	seek 	esc	 	s-	 	u	 N/A

redo	seek 	ctrl+enter	 	s+	 	U	 N/A

show	graph 	space	 	agv	 	V	 N/A

Migration	from	ida,	GDB	or	WinDBG

214

http://asciinema.org/a/12019
https://github.com/radare/radare2-bindings

Edit

rename 	n	 	afn	 	dr	 N/A

graph	view 	space	 	agv	 	V	 N/A

define	as	data 	d	 	Cd	[size]	 	dd	,	db	,	dw	,	dW	 N/A

define	as	code 	c	 	C-	[size]	 	d-		or		du	 N/A

define	as	undefined 	u	 	C-	[size]	 	d-		or		du	 N/A

define	as	string 	A	 	Cs	[size]	 	ds	 N/A

define	as	struct 	Alt+Q	 	Cf	[size]	 	dF	 N/A

Debugger

Start	 Process/
Continue	execution

	F9	 	dc	 	F9	 	r		and	

Terminate	Process 	Ctrl+F2	 	dk	9	 ? 	kill

Detach 	?	 	o-	 ? 	detach

step	into 	F7	 	ds	 	s	 	n	

step	 into	 4
instructions ? 	ds	4	 F7 	n	4	

step	over 	F8	 	dso	 	S	 	s	

step	until	a	specific
address ? 	dsu	<addr>	 ? 	s	

Run	until	return 	Ctrl+F7	 	dcr	 ? 	finish

Run	until	cursor 	F4	 #249 #249 N/A

Show	Backtrace 	?	 	dbt	 ? 	bt	

display	Register On	 register
Windows

	dr	all	
Shown	 in	 Visual
mode

	

registers

display	eax On	 register
Windows

	dr?eax	
Shown	 in	 Visual
mode

	

registers

eax	

display	 old	 state	 of
all	registers ? 	dro	 ? ?

	afi	$$		-	display

Migration	from	ida,	GDB	or	WinDBG

215

https://github.com/radare/radare2/issues/249
https://github.com/radare/radare2/issues/249

display	 function
addr	+	N ?

function
information	 of
current	 offset
($$)

? ?

display	frame	state ? 	pxw	rbp-rsp@rsp	 ? 	i	f	

How	 to	 step	 until
condition	is	true ? 	dsi	 ? ?

Update	 a	 register
value ? 	dr	rip=0x456	 ? 	

$rip=0x456

Disassembly

disassembly
forward N/A 	pd	 	Vp	 	disas

disassembly	 N
instructions N/A 	pd	X	 Vp x/i

disassembly	 N
(backward) N/A 	pd	-X	 	Vp	

	disas	<a-o>

<a>	

Information	 on
the	bin

Sections/regions 	 Menu

sections	

	 iS	 	 or	 	 S	

(append	j	for	json) N/A maint	 info
sections

Load	symbol	file

Sections/regions 	pdb	menu	
	asm.dwarf.file	,
	pdb.XX) N/A add-symbol-

file

BackTrace

Stack	Trace N/A 	dbt	 N/A 	bt	

Stack	Trace	in	Json N/A 	dbtj	 N/A

Partial	 Backtrace
(innermost) N/A

	 dbt	

(dbg.btdepth	

	dbg.btalgo)
N/A bt

Partial	 Backtrace
(outermost) N/A

	 dbt	

(dbg.btdepth	

	dbg.btalgo)
N/A bt	-

Stacktrace	 for	 all
threads N/A 	dbt@t	 N/A

	

apply	 all

bt	

Migration	from	ida,	GDB	or	WinDBG

216

Breakpoints

Breakpoint	list 	Ctrl+Alt+B	 	db	 ? 	

breakpoints

add	breakpoint 	F2	 	db	[offset]	 	F2	 	break

Threads

Switch	to	thread 	Thread	menu	 	dp	 N/A 	thread	<N>

Frames

Frame	Numbers 	N/A	 	?	 N/A 	 any	 bt

command

Select	Frame 	N/A	 	?	 N/A 	frame

Parameters/Locals

Display	parameters 	N/A	 	afv	 N/A 	info	args

Display	parameters 	N/A	 	afv	 N/A 	

locals

Display
parameters/locals
in	json

	N/A	 	afvj	 N/A 	

locals

list	addresses	where
vars	 are
accessed(R/W)

	N/A	 	afvR/afvW	 N/A 	?	

Project	Related

open	project 	Po	[file]	 ?

save	project automatic 	Ps	[file]	 ?

show	 project
informations

	Pi	[file]	 ?

Miscellaneous

Dump	 byte	 char
array

	N/A	
	 pc?	 	 (json,	 C,
char,	etc.) Vpppp x/bc

options option	menu 	e?	 	e	

search search	menu 	/?	

Select	 the	 zone
with	 the	cursor	 	c	
then		/	

Migration	from	ida,	GDB	or	WinDBG

217

Equivalent	of	"set-follow-fork-mode"	gdb
command
This	can	be	done	using	2	commands:

1.	 	dcf		-	until	a	fork	happen
2.	 then	use		dp		to	select	what	process	you	want	to	debug.

Common	features
r2	accepts	FLIRT	signatures
r2	can	connect	to	GDB,	LLVM	and	WinDbg
r2	can	write/patch	in	place
r2	have	fortunes	and	[s]easter	eggs[/s]balls	of	steel
r2	can	do	basic	loading	of	ELF	core	files	from	the	box	and	MDMP	(Windows	minidumps)

Migration	from	ida,	GDB	or	WinDBG

218

Registers
The	registers	are	part	of	a	user	area	stored	in	the	context	structure	used	by	the	scheduler.	This	structure
can	be	manipulated	 to	get	and	set	 the	values	of	 those	 registers,	and,	 for	example,	on	 Intel	hosts,	 it	 is
possible	to	directly	manipulate	DR0-DR7	hardware	registers	to	set	hardware	breakpoints.

There	are	different	commands	to	get	values	of	registers.	For	the	General	Purpose	ones	use:

[0x4A13B8C0]>	dr

r15	=	0x00000000

r14	=	0x00000000

r13	=	0x00000000

r12	=	0x00000000

rbp	=	0x00000000

rbx	=	0x00000000

r11	=	0x00000000

r10	=	0x00000000

r9	=	0x00000000

r8	=	0x00000000

rax	=	0x00000000

rcx	=	0x00000000

rdx	=	0x00000000

rsi	=	0x00000000

rdi	=	0x00000000

oeax	=	0x0000003b

rip	=	0x7f20bf5df630

rsp	=	0x7fff515923c0

[0x7f0f2dbae630]>	dr	rip	;	get	value	of	'rip'

0x7f0f2dbae630

[0x4A13B8C0]>	dr	rip	=	esp			;	set	'rip'	as	esp

Interaction	between	a	plugin	and	 the	core	 is	done	by	commands	returning	radare	 instructions.	This	 is
used,	for	example,	to	set	flags	in	the	core	to	set	values	of	registers.

Registers

219

[0x7f0f2dbae630]>	dr*						;	Appending	'*'	will	show	radare	commands

f	r15	1	0x0

f	r14	1	0x0

f	r13	1	0x0

f	r12	1	0x0

f	rbp	1	0x0

f	rbx	1	0x0

f	r11	1	0x0

f	r10	1	0x0

f	r9	1	0x0

f	r8	1	0x0

f	rax	1	0x0

f	rcx	1	0x0

f	rdx	1	0x0

f	rsi	1	0x0

f	rdi	1	0x0

f	oeax	1	0x3b

f	rip	1	0x7fff73557940

f	rflags	1	0x200

f	rsp	1	0x7fff73557940

[0x4A13B8C0]>	.dr*		;	include	common	register	values	in	flags

An	old	copy	of	registers	is	stored	all	the	time	to	keep	track	of	the	changes	done	during	execution	of	a
program	being	analyzed.	This	old	copy	can	be	accessed	with		oregs	.

[0x7f1fab84c630]>	dro

r15	=	0x00000000

r14	=	0x00000000

r13	=	0x00000000

r12	=	0x00000000

rbp	=	0x00000000

rbx	=	0x00000000

r11	=	0x00000000

r10	=	0x00000000

r9	=	0x00000000

r8	=	0x00000000

rax	=	0x00000000

rcx	=	0x00000000

rdx	=	0x00000000

rsi	=	0x00000000

rdi	=	0x00000000

oeax	=	0x0000003b

rip	=	0x7f1fab84c630

rflags	=	0x00000200

rsp	=	0x7fff386b5080

Registers

220

Current	state	of	registers

[0x7f1fab84c630]>	dr

r15	=	0x00000000

r14	=	0x00000000

r13	=	0x00000000

r12	=	0x00000000

rbp	=	0x00000000

rbx	=	0x00000000

r11	=	0x00000000

r10	=	0x00000000

r9	=	0x00000000

r8	=	0x00000000

rax	=	0x00000000

rcx	=	0x00000000

rdx	=	0x00000000

rsi	=	0x00000000

rdi	=	0x7fff386b5080

oeax	=	0xffffffffffffffff

rip	=	0x7f1fab84c633

rflags	=	0x00000202

rsp	=	0x7fff386b5080

Values	stored	in	eax,	oeax	and	eip	have	changed.

To	store	and	restore	register	values	you	can	just	dump	the	output	of	'dr*'	command	to	disk	and	then	re-
interpret	it	again:

[0x4A13B8C0]>	dr*	>	regs.saved	;	save	registers

[0x4A13B8C0]>	drp	regs.saved	;	restore

EFLAGS	can	be	similarly	altered.	E.g.,	setting	selected	flags:

[0x4A13B8C0]>	dr	eflags	=	pst

[0x4A13B8C0]>	dr	eflags	=	azsti

You	can	get	a	string	which	represents	latest	changes	of	registers	using		drd		command	(diff	registers):

[0x4A13B8C0]>	drd

oeax	=	0x0000003b	was	0x00000000	delta	59

rip	=	0x7f00e71282d0	was	0x00000000	delta	-418217264

rflags	=	0x00000200	was	0x00000000	delta	512

rsp	=	0x7fffe85a09c0	was	0x00000000	delta	-396752448

Registers

221

Registers

222

Memory	Maps
The	 ability	 to	 understand	 and	manipulate	 the	memory	maps	 of	 a	 debugged	program	 is	 important	 for
many	 different	Reverse	Engineering	 tasks.	 radare2	 offers	 a	 rich	 set	 of	 commands	 to	 handle	memory
maps	in	the	binary.	This	includes	listing	the	memory	maps	of	the	currently	debugged	binary,	removing
memory	maps,	handling	loaded	libraries	and	more.

First,	let's	see	the	help	message	for		dm	,	the	command	which	is	responsible	for	handling	memory	maps:

[0x55f2104cf620]>	dm?

|Usage:	dm	#	Memory	maps	commands

|	dm														List	memory	maps	of	target	process

|	dm	addr	size				Allocate	<size>	bytes	at	<address>	(anywhere	if	address	is	-1)	in	chil

d	process

|	dm=													List	memory	maps	of	target	process	(ascii-art	bars)

|	dm.													Show	map	name	of	current	address

|	dm*													List	memmaps	in	radare	commands

|	dm-	address					Deallocate	memory	map	of	<address>

|	dmd[a]	[file]			Dump	current	(all)	debug	map	region	to	a	file	(from-to.dmp)	(see	Sd)

|	dmh[?]										Show	map	of	heap

|	dmi.												List	closest	symbol	to	the	current	address

|	dmiv												Show	address	of	given	symbol	for	given	lib

|	dmj													List	memmaps	in	JSON	format

|	dml	<file>						Load	contents	of	file	into	the	current	map	region	(see	Sl)

|	dmm[?][j*]						List	modules	(libraries,	binaries	loaded	in	memory)

|	dmi	[addr|libname]	[symname]					List	symbols	of	target	lib

|	dmi*	[addr|libname]	[symname]				List	symbols	of	target	lib	in	radare	commands

|	dmp[?]	<address>	<size>	<perms>		Change	page	at	<address>	with	<size>,	protection	<per

ms>	(rwx)

|	dms[?]	<id>	<mapaddr>												Take	memory	snapshot

|	dms-	<id>	<mapaddr>														Restore	memory	snapshot

|	dmS	[addr|libname]	[sectname]				List	sections	of	target	lib

|	dmS*	[addr|libname]	[sectname]			List	sections	of	target	lib	in	radare	commands

In	this	chapter,	we'll	go	over	some	of	the	most	useful	subcommands	of		dm		using	simple	examples.	For
the	 following	examples,	we'll	 use	 a	 simple	 	helloworld		 program	 for	Linux	but	 it'll	 be	 the	 same	 for
every	binary.

First	things	first	-	open	a	program	in	debugging	mode:

Memory	Maps

223

$	r2	-d	helloworld

Process	with	PID	20304	started...

=	attach	20304	20304

bin.baddr	0x56136b475000

Using	0x56136b475000

asm.bits	64

[0x7f133f022fb0]>

Note	that	we	passed	"helloworld"	to	radare2	without	"./".	radare2	will	try	to	find	this	program	in
the	 current	 directory	 and	 then	 in	 $PATH,	 even	 if	 no	 "./"	 is	 passed.	This	 is	 contradictory	with
UNIX	systems,	but	makes	the	behaviour	consistent	for	windows	users

Let's	use		dm		to	print	the	memory	maps	of	the	binary	we've	just	opened:

[0x7f133f022fb0]>	dm

0x0000563a0113a000	-	usr			4K	s	r-x	/tmp/helloworld	/tmp/helloworld	;	map.tmp_helloworld

.r_x

0x0000563a0133a000	-	usr			8K	s	rw-	/tmp/helloworld	/tmp/helloworld	;	map.tmp_helloworld

.rw

0x00007f133f022000	*	usr	148K	s	r-x	/usr/lib/ld-2.27.so	/usr/lib/ld-2.27.so	;	map.usr_li

b_ld_2.27.so.r_x

0x00007f133f246000	-	usr			8K	s	rw-	/usr/lib/ld-2.27.so	/usr/lib/ld-2.27.so	;	map.usr_li

b_ld_2.27.so.rw

0x00007f133f248000	-	usr			4K	s	rw-	unk0	unk0	;	map.unk0.rw

0x00007fffd25ce000	-	usr	132K	s	rw-	[stack]	[stack]	;	map.stack_.rw

0x00007fffd25f6000	-	usr		12K	s	r--	[vvar]	[vvar]	;	map.vvar_.r

0x00007fffd25f9000	-	usr			8K	s	r-x	[vdso]	[vdso]	;	map.vdso_.r_x

0xffffffffff600000	-	usr			4K	s	r-x	[vsyscall]	[vsyscall]	;	map.vsyscall_.r_x

For	those	of	you	who	prefer	a	more	visual	way,	you	can	use	 	dm=		 to	see	 the	memory	maps	using	an
ASCII-art	bars.	This	will	be	handy	when	you	want	to	see	how	these	maps	are	located	in	the	memory.

If	you	want	to	know	the	memory-map	you	are	currently	in,	use		dm.	:

[0x7f133f022fb0]>	dm.

0x00007f947eed9000	#	0x00007f947eefe000	*	usr			148K	s	r-x	/usr/lib/ld-2.27.so	/usr/lib/

ld-2.27.so	;	map.usr_lib_ld_2.27.so.r_x

Using	 	dmm	 	 we	 can	 "List	 modules	 (libraries,	 binaries	 loaded	 in	 memory)",	 this	 is	 quite	 a	 handy
command	to	see	which	modules	were	loaded.

Memory	Maps

224

[0x7fa80a19dfb0]>	dmm

0x55ca23a4a000	/tmp/helloworld

0x7fa80a19d000	/usr/lib/ld-2.27.so

Note	that	the	output	of		dm		subcommands,	and	 	dmm		specifically,	might	be	different	in	various
systems	and	different	binaries.

We	can	see	 that	along	with	our	 	helloworld		 binary	 itself,	 another	 library	was	 loaded	which	 is	 	ld-
2.27.so	.	We	don't	see		libc		yet	and	this	is	because	radare2	breaks	before		libc		is	loaded	to	memory.
Let's	 use	 	dcu		(debug	continue	until)	 to	 execute	 our	 program	 until	 the	 entry	 point	 of	 the	 program,
which	radare	flags	as		entry0	.

[0x7fa80a19dfb0]>	dcu	entry0

Continue	until	0x55ca23a4a520	using	1	bpsize

hit	breakpoint	at:	55ca23a4a518

[0x55ca23a4a520]>	dmm

0x55ca23a4a000	/tmp/helloworld

0x7fa809de1000	/usr/lib/libc-2.27.so

0x7fa80a19d000	/usr/lib/ld-2.27.so

Now	we	can	see	that		libc-2.27.so		was	loaded	as	well,	great!

Speaking	of		libc	,	a	popular	task	for	binary	exploitation	is	to	find	the	address	of	a	specific	symbol	in	a
library.	With	this	information	in	hand,	you	can	build,	for	example,	an	exploit	which	uses	ROP.	This	can
be	achieved	using	the		dmi		command.	So	if	we	want,	for	example,	to	find	the	address	of		system()		 in
the	loaded		libc	,	we	can	simply	execute	the	following	command:

[0x55ca23a4a520]>	dmi	libc	system

514	0x00000000	0x7fa809de1000		LOCAL		FILE				0	system.c

515	0x00043750	0x7fa809e24750		LOCAL		FUNC	1221	do_system

4468	0x001285a0	0x7fa809f095a0	LOCAL		FUNC		100	svcerr_systemerr

5841	0x001285a0	0x7fa809f095a0	LOCAL		FUNC		100	svcerr_systemerr

6427	0x00043d10	0x7fa809e24d10		WEAK		FUNC			45	system

7094	0x00043d10	0x7fa809e24d10	GLBAL		FUNC			45	system

7480	0x001285a0	0x7fa809f095a0	GLBAL		FUNC		100	svcerr_systemerr

Similar	to	the		dm.		command,	with		dmi.		you	can	see	the	closest	symbol	to	the	current	address.

Another	useful	command	is	to	list	the	sections	of	a	specific	library.	In	the	following	example	we'll	list
the	sections	of		ld-2.27.so	:

Memory	Maps

225

http://man7.org/linux/man-pages/man3/system.3.html

[0x55a7ebf09520]>	dmS	ld-2.27

[Sections]

00	0x00000000					0	0x00000000					0	----	ld-2.27.so.

01	0x000001c8				36	0x4652d1c8				36	-r--	ld-2.27.so..note.gnu.build_id

02	0x000001f0			352	0x4652d1f0			352	-r--	ld-2.27.so..hash

03	0x00000350			412	0x4652d350			412	-r--	ld-2.27.so..gnu.hash

04	0x000004f0			816	0x4652d4f0			816	-r--	ld-2.27.so..dynsym

05	0x00000820			548	0x4652d820			548	-r--	ld-2.27.so..dynstr

06	0x00000a44				68	0x4652da44				68	-r--	ld-2.27.so..gnu.version

07	0x00000a88			164	0x4652da88			164	-r--	ld-2.27.so..gnu.version_d

08	0x00000b30		1152	0x4652db30		1152	-r--	ld-2.27.so..rela.dyn

09	0x00000fb0	11497	0x4652dfb0	11497	-r-x	ld-2.27.so..text

10	0x0001d0e0	17760	0x4654a0e0	17760	-r--	ld-2.27.so..rodata

11	0x00021640		1716	0x4654e640		1716	-r--	ld-2.27.so..eh_frame_hdr

12	0x00021cf8		9876	0x4654ecf8		9876	-r--	ld-2.27.so..eh_frame

13	0x00024660		2020	0x46751660		2020	-rw-	ld-2.27.so..data.rel.ro

14	0x00024e48			336	0x46751e48			336	-rw-	ld-2.27.so..dynamic

15	0x00024f98				96	0x46751f98				96	-rw-	ld-2.27.so..got

16	0x00025000		3960	0x46752000		3960	-rw-	ld-2.27.so..data

17	0x00025f78					0	0x46752f80			376	-rw-	ld-2.27.so..bss

18	0x00025f78				17	0x00000000				17	----	ld-2.27.so..comment

19	0x00025fa0				63	0x00000000				63	----	ld-2.27.so..gnu.warning.llseek

20	0x00025fe0	13272	0x00000000	13272	----	ld-2.27.so..symtab

21	0x000293b8		7101	0x00000000		7101	----	ld-2.27.so..strtab

22	0x0002af75			215	0x00000000			215	----	ld-2.27.so..shstrtab

Memory	Maps

226

Heap
radare2's	 	dm		 subcommands	 can	 also	 display	 a	map	 of	 the	 heap	which	 is	 useful	 for	 those	who	 are
interesting	in	inspecting	the	heap	and	its	content.	Simply	execute		dmh		to	show	a	map	of	the	heap:

[0x7fae46236ca6]>	dmh

		Malloc	chunk	@	0x55a7ecbce250	[size:	0x411][allocated]

		Top	chunk	@	0x55a7ecbce660	-	[brk_start:	0x55a7ecbce000,	brk_end:	0x55a7ecbef000]

You	can	also	see	a	graph	layout	of	the	heap:

[0x7fae46236ca6]>	dmhg

Heap	Layout

				.────────────────────────────────────.

				│				Malloc	chunk	@	0x55a7ecbce000			│

				│	size:	0x251																								│

				│		fd:	0x0,	bk:	0x0																		│

				`────────────────────────────────────'

								│

				.───'

				│

				│

		.───.

		│				Malloc	chunk	@	0x55a7ecbce250												│

		│	size:	0x411																																	│

		│		fd:	0x57202c6f6c6c6548,	bk:	0xa21646c726f		│

		`───'

						│

		.───'

		│

		│

.──.

│		Top	chunk	@	0x55a7ecbce660																								│

│	[brk_start:0x55a7ecbce000,	brk_end:0x55a7ecbef000]	│

`──'

Another	heap	commands	can	be	found	under		dmh	,	check		dmh?		for	the	full	list.

Heap

227

[0x00000000]>	dmh?

|Usage:		dmh	#	Memory	map	heap

|	dmh																	List	chunks	in	heap	segment

|	dmh	[malloc_state]		List	heap	chunks	of	a	particular	arena

|	dmha																List	all	malloc_state	instances	in	application

|	dmhb																Display	all	parsed	Double	linked	list	of	main_arena's	bins	instanc

e

|	dmhb	[bin_num|bin_num:malloc_state]										Display	parsed	double	linked	list	of	bins

	instance	from	a	particular	arena

|	dmhbg	[bin_num]					Display	double	linked	list	graph	of	main_arena's	bin	[Under	develo

pemnt]

|	dmhc	@[chunk_addr]		Display	malloc_chunk	struct	for	a	given	malloc	chunk

|	dmhf																Display	all	parsed	fastbins	of	main_arena's	fastbinY	instance

|	dmhf	[fastbin_num|fastbin_num:malloc_state]		Display	parsed	single	linked	list	in	fast

binY	instance	from	a	particular	arena

|	dmhg																Display	heap	graph	of	heap	segment

|	dmhg	[malloc_state]	Display	heap	graph	of	a	particular	arena

|	dmhi	@[malloc_state]Display	heap_info	structure/structures	for	a	given	arena

|	dmhm																List	all	elements	of	struct	malloc_state	of	main	thread	(main_aren

a)

|	dmhm	[malloc_state]	List	all	malloc_state	instance	of	a	particular	arena

|	dmht																Display	all	parsed	thead	cache	bins	of	main_arena's	tcache	instanc

e

|	dmh?																Show	map	heap	help

Heap

228

Files
The	radare2	debugger	allows	the	user	to	list	and	manipulate	the	file	descriptors	from	the	target	process.

This	 is	a	useful	feature,	which	is	not	found	in	other	debuggers,	 the	functionality	 is	similar	 to	 the	 lsof
command	line	tool.

But	have	extra	subcommands	to	change	the	seek,	close	or	duplicate	them.

So,	 at	 any	 time	 in	 the	 debugging	 session	 you	 can	 replace	 the	 stdio	 file	 descriptors	 to	 use	 network
sockets	created	by	r2,	or	replace	a	network	socket	connection	to	hijack	it.

This	functionality	is	also	available	in	r2frida	by	using	the	dd	command	prefixed	with	a	backslash.	In	r2
you	may	want	to	see	the	output	of	dd?	for	proper	details.

Files

229

Reverse	Debugging
Radare2	 has	 reverse	 debugger,	 that	 can	 seek	 program	 counter	 backward.	 (e.g.	 reverse-next,	 reverse-
continue	in	gdb)	Firstly	you	need	to	save	program	state	at	the	point	that	you	want	to	start	recording.	The
syntax	for	recording	is:

[0x004028a0]>	dts+

You	can	use	 	dts		 commands	 for	 recording	and	managing	program	states.	After	 recording	 the	states,
you	can	seek	pc	back	and	forth	to	any	points	after	saved	address.	So	after	recording,	you	can	try	single
step	back:

[0x004028a0]>	2dso

[0x004028a0]>	dr	rip

0x004028ae

[0x004028a0]>	dsb

continue	until	0x004028a2

hit	breakpoint	at:	4028a2

[0x004028a0]>	dr	rip

0x004028a2

When	you	run		dsb	,	reverse	debugger	restore	previous	recorded	state	and	execute	program	from	it	until
desired	point.

Or	you	can	also	try	continue	back:

[0x004028a0]>	db	0x004028a2

[0x004028a0]>	10dso

[0x004028a0]>	dr	rip

0x004028b9

[0x004028a0]>	dcb

[0x004028a0]>	dr	rip

0x004028a2

	dcb		seeks	program	counter	until	hit	the	latest	breakpoint.	So	once	set	a	breakpoint,	you	can	back	to	it
any	time.

You	can	see	current	recorded	program	states	using		dts	:

Reverse	Debugging

230

[0x004028a0]>	dts

session:	0			at:0x004028a0			""

session:	1			at:0x004028c2			""

NOTE:	 Program	 records	 can	 be	 saved	 at	 any	 moments.	 These	 are	 diff	 style	 format	 that	 save	 only
different	memory	area	from	previous.	It	saves	memory	space	rather	than	entire	dump.

And	also	can	add	comment:

[0x004028c2]>	dtsC	0	program	start

[0x004028c2]>	dtsC	1	decryption	start

[0x004028c2]>	dts

session:	0			at:0x004028a0			"program	start"

session:	1			at:0x004028c2			"decryption	start"

You	 can	 leave	 notes	 for	 each	 records	 to	 keep	 in	 your	mind.	 	dsb		 and	 	dcb	 	 commands	 restore	 the
program	state	from	latest	record	if	there	are	many	records.

Program	records	can	exported	to	file	and	of	course	import	it.	Export/Import	records	to/from	file:

[0x004028c2]>	dtst	records_for_test

Session	saved	in	records_for_test.session	and	dump	in	records_for_test.dump

[0x004028c2]>	dtsf	records_for_test

session:	0,	0x4028a0	diffs:	0

session:	1,	0x4028c2	diffs:	0

Moreover,	you	can	do	reverse	debugging	in	ESIL	mode.	In	ESIL	mode,	program	state	can	be	managed
by		aets		commands.

[0x00404870]>	aets+

And	step	back	by		aesb	:

[0x00404870]>	aer	rip

0x00404870

[0x00404870]>	5aeso

[0x00404870]>	aer	rip

0x0040487d

[0x00404870]>	aesb

[0x00404870]>	aer	rip

0x00404879

Reverse	Debugging

231

Reverse	Debugging

232

Remote	Access	Capabilities
Radare	can	be	run	locally,	or	it	can	be	started	as	a	server	process	which	is	controlled	by	a	local	radare2
process.	 This	 is	 possible	 because	 everything	 uses	 radare's	 IO	 subsystem	 which	 abstracts	 access	 to
system(),	cmd()	and	all	basic	IO	operations	so	to	work	over	a	network.

Help	for	commands	useful	for	remote	access	to	radare:

[0x00405a04]>	=?

|Usage:		=[:!+-=hH]	[...]	#	radare	remote	command	execution	protocol

|

rap	commands:

|	=											list	all	open	connections

|	=<[fd]	cmd		send	output	of	local	command	to	remote	fd

|	=[fd]	cmd			exec	cmd	at	remote	'fd'	(last	open	is	default	one)

|	=!	cmd						run	command	via	r_io_system

|	=+	[proto://]host		add	host	(default=rap://,	tcp://,	udp://)

|	=-[fd]						remove	all	hosts	or	host	'fd'

|	==[fd]						open	remote	session	with	host	'fd',	'q'	to	quit

|	=!=									disable	remote	cmd	mode

|	!=!									enable	remote	cmd	mode

|

rap	server:

|	=:port						listen	on	given	port	using	rap	protocol	(o	rap://9999)

|	=&:port					start	rap	server	in	background

|	=:host:port	run	'cmd'	command	on	remote	server

|

other	servers:

|	=h[?]							listen	for	http	connections

|	=g[?]							using	gdbserver

You	can	learn	radare2	remote	capabilities	by	displaying	the	list	of	supported	IO	plugins:		radare2	-L	.

A	little	example	should	make	this	clearer.	A	typical	remote	session	might	look	like	this:

At	the	remote	host1:

$	radare2	rap://:1234

At	the	remote	host2:

$	radare2	rap://:1234

Remote	Access

233

At	localhost:

$	radare2	-

Add	hosts

[0x004048c5]>	=+	rap://<host1>:1234//bin/ls

Connected	to:	<host1>	at	port	1234

waiting...	ok

[0x004048c5]>	=

0	-	rap://<host1>:1234//bin/ls

You	can	open	remote	files	in	debug	mode	(or	using	any	IO	plugin)	specifying	URI	when	adding	hosts:

[0x004048c5]>	=+	=+	rap://<host2>:1234/dbg:///bin/ls

Connected	to:	<host2>	at	port	1234

waiting...	ok

0	-	rap://<host1>:1234//bin/ls

1	-	rap://<host2>:1234/dbg:///bin/ls

To	execute	commands	on	host1:

[0x004048c5]>	=0	px

[0x004048c5]>	=	s	0x666

To	open	a	session	with	host2:

[0x004048c5]>	==1

fd:6>	pi	1

...

fd:6>	q

To	remove	hosts	(and	close	connections):

[0x004048c5]>	=-

You	can	also	redirect	radare	output	to	a	TCP	or	UDP	server	(such	as		nc	-l).	First,	Add	the	server	with
'=+	tcp://'	or	'=+	udp://',	then	you	can	redirect	the	output	of	a	command	to	be	sent	to	the	server:

Remote	Access

234

[0x004048c5]>	=+	tcp://<host>:<port>/

Connected	to:	<host>	at	port	<port>

5	-	tcp://<host>:<port>/

[0x004048c5]>	=<5	cmd...

The		=<		command	will	send	the	output	from	the	execution	of		cmd		to	the	remote	connection	number	N
(or	the	last	one	used	if	no	id	specified).

Remote	Access

235

Debugging	with	gdbserver
radare2	allows	remote	debugging	over	the	gdb	remote	protocol.	So	you	can	run	a	gdbserver	and	connect
to	it	with	radare2	for	remote	debugging.	The	syntax	for	connecting	is:

$	r2	-d	gdb://<host>:<port>

Note	 that	 the	 following	command	does	 the	same,	 r2	will	use	 the	debug	plugin	specified	by	 the	uri	 if
found.

$	r2	-D	gdb	gdb://<host>:<port>

The	debug	plugin	can	be	changed	at	runtime	using	the	dL	or	Ld	commands.

Or	if	the	gdbserver	is	running	in	extended	mode,	you	can	attach	to	a	process	on	the	host	with:

$	r2	-d	gdb://<host>:<port>/<pid>

After	connecting,	you	can	use	the	standard	r2	debug	commands	as	normal.

radare2	does	not	yet	load	symbols	from	gdbserver,	so	it	needs	the	binary	to	be	locally	present	to	load
symbols	from	it.	In	case	symbols	are	not	loaded	even	if	the	binary	is	present,	you	can	try	specifying	the
path	with		e	dbg.exe.path	:

$	r2	-e	dbg.exe.path=<path>	-d	gdb://<host>:<port>

If	symbols	are	loaded	at	an	incorrect	base	address,	you	can	try	specifying	the	base	address	too	with	 	e
bin.baddr	:

$	r2	-e	bin.baddr=<baddr>	-e	dbg.exe.path=<path>	-d	gdb://<host>:<port>

Usually	 the	 gdbserver	 reports	 the	 maximum	 packet	 size	 it	 supports.	 Otherwise,	 radare2	 resorts	 to
sensible	 defaults.	 But	 you	 can	 specify	 the	 maximum	 packet	 size	 with	 the	 environment	 variable
	R2_GDB_PKTSZ	.	You	can	also	check	and	set	the	max	packet	size	during	a	session	with	the	IO	system,
	=!	.

Remote	GDB

236

$	export	R2_GDB_PKTSZ=512

$	r2	-d	gdb://<host>:<port>

=	attach	<pid>	<tid>

Assuming	filepath	<path/to/exe>

[0x7ff659d9fcc0]>	=!pktsz

packet	size:	512	bytes

[0x7ff659d9fcc0]>	=!pktsz	64

[0x7ff659d9fcc0]>	=!pktsz

packet	size:	64	bytes

The	gdb	IO	system	provides	useful	commands	which	might	not	fit	into	any	standard	radare2	commands.
You	can	get	a	list	of	these	commands	with		=!?	.	(Remember,		=!		accesses	the	underlying	IO	plugin's
	system()).

[0x7ff659d9fcc0]>	=!?

Usage:	=!cmd	args

	=!pid													-	show	targeted	pid

	=!pkt	s											-	send	packet	's'

	=!monitor	cmd					-	hex-encode	monitor	command	and	pass	to	target	interpreter

	=!detach	[pid]				-	detach	from	remote/detach	specific	pid

	=!inv.reg									-	invalidate	reg	cache

	=!pktsz											-	get	max	packet	size	used

	=!pktsz	bytes					-	set	max.	packet	size	as	'bytes'	bytes

	=!exec_file	[pid]	-	get	file	which	was	executed	for	current/specified	pid

radare2	also	provides	its	own	gdbserver	implementation:

$	r2	-

[0x00000000]>	=g?

|Usage:		=[g]	[...]	#	gdb	server

|	gdbserver:

|	=g	port	file	[args]			listen	on	'port'	debugging	'file'	using	gdbserver

|	=g!	port	file	[args]		same	as	above,	but	debug	protocol	messages	(like	gdbserver	--rem

ote-debug)

So	you	can	start	it	as:

$	r2	-

[0x00000000]>	=g	8000	/bin/radare2	-

And	then	connect	to	it	like	you	would	to	any	gdbserver.	For	example,	with	radare2:

Remote	GDB

237

$	r2	-d	gdb://localhost:8000

Remote	GDB

238

WinDBG
The	WinDBG	support	for	r2	allows	you	to	attach	to	VM	running	Windows	using	a	named	socket	file
(will	support	more	IOs	in	the	future)	to	debug	a	windows	box	using	the	KD	interface	over	serial	port.

Bear	in	mind	that	WinDBG	support	is	still	work-in-progress,	and	this	is	just	an	initial	implementation
which	will	get	better	in	time.

It	 is	 also	 possible	 to	 use	 the	 remote	GDB	 interface	 to	 connect	 and	 debug	Windows	 kernels	without
depending	on	Windows	capabilities.

Enable	WinDBG	support	on	Windows	Vista	and	higher	like	this:

bcdedit	/debug	on

bcdedit	/dbgsettings	serial	debugport:1	baudrate:115200

Starting	 from	Windows	 8	 there	 is	 no	way	 to	 enforce	 debugging	 for	 every	 boot,	 but	 it	 is	 possible	 to
always	show	the	advanced	boot	options,	which	allows	to	enable	kernel	debugging:

bcedit	/set	{globalsettings}	advancedoptions	true

Or	like	this	for	Windows	XP:	Open	boot.ini	and	add	/debug	/debugport=COM1	/baudrate=115200:

[boot	loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating	systems]

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Debugging	with	Cable"	/fastdetect	/debug	/d

ebugport=COM1	/baudrate=57600

In	case	of	VMWare

				Virtual	Machine	Settings	->	Add	->	Serial	Port

				Device	Status:

				[v]	Connect	at	power	on

				Connection:

				[v]	Use	socket	(named	pipe)

				[_/tmp/windbg.pipe________]

				From:	Server	To:	Virtual	Machine

Remote	WinDbg

239

Configure	the	VirtualBox	Machine	like	this:

				Preferences	->	Serial	Ports	->	Port	1

				[v]	Enable	Serial	Port

				Port	Number:	[_COM1_______[v]]

				Port	Mode:			[_Host_Pipe__[v]]

																	[v]	Create	Pipe

				Port/File	Path:	[_/tmp/windbg.pipe____]

Or	just	spawn	the	VM	with	qemu	like	this:

$	qemu-system-x86_64	-chardev	socket,id=serial0,\

					path=/tmp/windbg.pipe,nowait,server	\

					-serial	chardev:serial0	-hda	Windows7-VM.vdi

Radare2	will	use	the	'windbg'	io	plugin	to	connect	to	a	socket	file	created	by	virtualbox	or	qemu.	Also,
the	 'windbg'	 debugger	 plugin	 and	 we	 should	 specify	 the	 x86-32	 too.	 (32	 and	 64	 bit	 debugging	 is
supported)

$	r2	-a	x86	-b	32	-D	windbg	windbg:///tmp/windbg.pipe

On	Windows	you	should	run	the	following	line:

$	radare2	-D	windbg	windbg://\\.\pipe\com_1

At	this	point,	we	will	get	stuck	here:

[0x828997b8]>	pd	20

				;--	eip:

				0x828997b8				cc											int3

				0x828997b9				c20400							ret	4

				0x828997bc				cc											int3

				0x828997bd				90											nop

				0x828997be				c3											ret

				0x828997bf				90											nop

In	order	to	skip	that	trap	we	will	need	to	change	eip	and	run	'dc'	twice:

Remote	WinDbg

240

dr	eip=eip+1

dc

dr	eip=eip+1

dc

Now	the	Windows	VM	will	be	interactive	again.	We	will	need	to	kill	r2	and	attach	again	to	get	back	to
control	the	kernel.

In	addition,	 the	 	dp		 command	can	be	used	 to	 list	 all	 processes,	 and	 	dpa		 or	 	dp=		 to	 attach	 to	 the
process.	This	will	display	the	base	address	of	the	process	in	the	physical	memory	layout.

Remote	WinDbg

241

Tools
Radare2	is	not	just	the	only	tool	provided	by	the	radare2	project.	The	rest	if	chapters	in	this	book	are
focused	on	 explaining	 the	 use	 of	 the	 radare2	 tool,	 this	 chapter	will	 focus	 on	 explaining	 all	 the	 other
companion	tools	that	are	shipped	inside	the	radare2	project.

All	the	functionalities	provided	by	the	different	APIs	and	plugins	have	also	different	tools	to	allow	to
use	them	from	the	commandline	and	integrate	them	with	shellscripts	easily.

Thanks	to	the	ortogonal	design	of	the	framework	it	is	possible	to	do	all	the	things	that	r2	is	able	from
different	places:

these	companion	tools
native	library	apis
scripting	with	r2pipe
the	r2	shell

Command	Line	Tools

242

Rax2
The		rax2		utility	comes	with	the	radare	framework	and	aims	to	be	a	minimalistic	expression	evaluator
for	 the	 shell.	 It	 is	 useful	 for	 making	 base	 conversions	 between	 floating	 point	 values,	 hexadecimal
representations,	 hexpair	 strings	 to	 ascii,	 octal	 to	 integer.	 It	 supports	 endianness	 and	 can	be	used	 as	 a
shell	if	no	arguments	are	given.

This	is	the	help	message	of	rax2,	this	tool	can	be	used	in	the	command-line	or	interactively	(reading	the
values	from	stdin),	so	it	can	be	used	as	a	multi-base	calculator.

Inside	r2,	the	functionality	of	rax2	is	available	under	the	?	command.	For	example:

[0x00000000]>	?	3+4

As	 you	 can	 see,	 the	 numeric	 expressions	 can	 contain	 mathematical	 expressions	 like	 addition,
substraction,	..	as	well	as	group	operations	with	parenthesis.

The	syntax	in	which	the	numbers	are	represented	define	the	base,	for	example:

3	:	decimal,	base	10
0xface	:	hexadecimal,	base	16
0472	:	octal,	base	8
2M	:	units,	2	megabytes
...

This	is	the	help	message	of	rax2	-h,	which	will	show	you	a	bunch	more	syntaxes

Rax2

243

$	rax2	-h

Usage:	rax2	[options]	[expr	...]

		=[base]																						;		rax2	=10	0x46	->	output	in	base	10

		int					->		hex														;		rax2	10

		hex					->		int														;		rax2	0xa

		-int				->		hex														;		rax2	-77

		-hex				->		int														;		rax2	0xffffffb3

		int					->		bin														;		rax2	b30

		int					->		ternary										;		rax2	t42

		bin					->		int														;		rax2	1010d

		ternary	->		int														;		rax2	1010dt

		float			->		hex														;		rax2	3.33f

		hex					->		float												;		rax2	Fx40551ed8

		oct					->		hex														;		rax2	35o

		hex					->		oct														;		rax2	Ox12	(O	is	a	letter)

		bin					->		hex														;		rax2	1100011b

		hex					->		bin														;		rax2	Bx63

		ternary	->		hex														;		rax2	212t

		hex					->		ternary										;		rax2	Tx23

		raw					->		hex														;		rax2	-S	<	/binfile

		hex					->		raw														;		rax2	-s	414141

		-l																											;		append	newline	to	output	(for	-E/-D/-r/..

		-a						show	ascii	table					;		rax2	-a

		-b						bin	->	str											;		rax2	-b	01000101	01110110

		-B						str	->	bin											;		rax2	-B	hello

		-d						force	integer								;		rax2	-d	3	->	3	instead	of	0x3

		-e						swap	endianness						;		rax2	-e	0x33

		-D						base64	decode								;

		-E						base64	encode								;

		-f						floating	point							;		rax2	-f	6.3+2.1

		-F						stdin	slurp	code	hex	;		rax2	-F	<	shellcode.[c/py/js]

		-h						help																	;		rax2	-h

		-i						dump	as	C	byte	array	;		rax2	-i	<	bytes

		-k						keep	base												;		rax2	-k	33+3	->	36

		-K						randomart												;		rax2	-K	0x34	1020304050

		-L						bin	->	hex(bignum)			;		rax2	-L	111111111	#	0x1ff

		-n						binary	number								;		rax2	-n	0x1234	#	34120000

		-N						binary	number								;		rax2	-N	0x1234	#	\x34\x12\x00\x00

		-r						r2	style	output						;		rax2	-r	0x1234

		-s						hexstr	->	raw								;		rax2	-s	43	4a	50

		-S						raw	->	hexstr								;		rax2	-S	<	/bin/ls	>	ls.hex

		-t						tstamp	->	str								;		rax2	-t	1234567890

		-x						hash	string										;		rax2	-x	linux	osx

		-u						units																;		rax2	-u	389289238	#	317.0M

		-w						signed	word										;		rax2	-w	16	0xffff

		-v						version														;		rax2	-v

Some	examples:

Rax2

244

$	rax2	3+0x80

0x83

$	rax2	0x80+3

131

$	echo	0x80+3	|	rax2

131

$	rax2	-s	4142

AB

$	rax2	-S	AB

4142

$	rax2	-S	<	bin.foo

...

$	rax2	-e	33

0x21000000

$	rax2	-e	0x21000000

33

$	rax2	-K	90203010

+--[0x10302090]---+

|Eo.	.												|

|									|

|						o										|

|							.									|

|								S								|

|																	|

|																	|

|																	|

|																	|

+-----------------+

Rax2

245

Rax2

246

rafind2
Rafind2	is	the	command	line	fronted	of	the		r_search		library.	Which	allows	you	to	search	for	strings,
sequences	of	bytes	with	binary	masks,	etc

$	rafind2	-h

Usage:	rafind2	[-mXnzZhqv]	[-a	align]	[-b	sz]	[-f/t	from/to]	[-[e|s|S]	str]	[-x	hex]	fil

e|dir	..

	-a	[align]	only	accept	aligned	hits

	-b	[size]		set	block	size

	-e	[regex]	search	for	regex	matches	(can	be	used	multiple	times)

	-f	[from]		start	searching	from	address	'from'

	-h									show	this	help

	-i									identify	filetype	(r2	-nqcpm	file)

	-m									magic	search,	file-type	carver

	-M	[str]			set	a	binary	mask	to	be	applied	on	keywords

	-n									do	not	stop	on	read	errors

	-r									print	using	radare	commands

	-s	[str]			search	for	a	specific	string	(can	be	used	multiple	times)

	-S	[str]			search	for	a	specific	wide	string	(can	be	used	multiple	times)

	-t	[to]				stop	search	at	address	'to'

	-q									quiet	-	do	not	show	headings	(filenames)	above	matching	contents	(default	fo

r	searching	a	single	file)

	-v									print	version	and	exit

	-x	[hex]			search	for	hexpair	string	(909090)	(can	be	used	multiple	times)

	-X									show	hexdump	of	search	results

	-z									search	for	zero-terminated	strings

	-Z									show	string	found	on	each	search	hit

That's	how	to	use	it,	first	we'll	search	for	"lib"	inside	the		/bin/ls		binary.

$	rafind2	-s	lib	/bin/ls

0x5f9

0x675

0x679

...

$

Note	that	the	output	is	pretty	minimal,	and	shows	the	offsets	where	the	string	 	lib		 is	found.	We	can
then	use	this	output	to	feed	other	tools.

Counting	results:

Rafind2

247

$	rafind2	-s	lib	/bin/ls	|	wc	-l

Displaying	results	with	context:

$	export	F=/bin/ls

$	for	a	in	`rafind2	-s	lib	$F`	;	do	\

				r2	-ns	$a	-qc'x	32'	$F	;	done

0x000005f9		6c69	622f	6479	6c64	..	lib/dyld........

0x00000675		6c69	622f	6c69	6275	..	lib/libutil.dyli

0x00000679		6c69	6275	7469	6c2e	..	libutil.dylib...

0x00000683		6c69	6200	000c	0000	..	lib......8......

0x000006a5		6c69	622f	6c69	626e	..	lib/libncurses.5

0x000006a9		6c69	626e	6375	7273	..	libncurses.5.4.d

0x000006ba		6c69	6200	0000	0c00	..	lib.......8.....

0x000006dd		6c69	622f	6c69	6253	..	lib/libSystem.B.

0x000006e1		6c69	6253	7973	7465	..	libSystem.B.dyli

0x000006ef		6c69	6200	0000	0000	..	lib......&......

But	rafind2	can	be	also	used	as	a	 replacement	of	 	file		 to	 identify	 the	mimetype	of	 a	 file	using	 the
internal	magic	database	of	radare2.

$	rafind2	-i	/bin/ls

0x00000000	1	Mach-O

Also	works	as	a		strings		replacement,	similar	to	what	you	do	with	rabin2	-z,	but	without	caring	about
parsing	headers	and	obeying	binary	sections.

$	rafind2	-z	/bin/ls|	grep	http

0x000076e5	%http://www.apple.com/appleca/root.crl0\r

0x00007ae6	https://www.apple.com/appleca/0

0x00007fa9)http://www.apple.com/certificateauthority0

0x000080ab	$http://crl.apple.com/codesigning.crl0

Rafind2

248

Rarun2
Rarun2	 is	 a	 tool	 allowing	 to	 setup	 a	 specified	 execution	 environment	 -	 redefine	 stdin/stdout,	 pipes,
change	the	environment	variables	and	other	settings	useful	to	craft	the	boundary	conditions	you	need	to
run	a	binary	for	debugging.

$	rarun2	-h

Usage:	rarun2	-v|-t|script.rr2	[directive	..]

It	takes	the	text	file	in	key=value	format	to	specify	the	execution	environment.	Rarun2	can	be	used	as
both	separate	tool	or	as	a	part	of	radare2.	To	load	the	rarun2	profile	in	radare2	you	need	to	use	either		-
r		to	load	the	profile	from	file	or		-R		to	specify	the	directive	from	string.

The	format	of	the	profile	is	very	simple.	Note	the	most	important	keys	-		program		and		arg*	

One	of	the	most	common	usage	cases	-	redirect	the	output	of	debugged	program	in	radare2.	For	this	you
need	to	use		stdio	,		stdout	,		stdin	,		input	,	and	a	couple	similar	keys.

Here	is	the	basic	profile	example:

Rarun2

249

program=/bin/ls

arg1=/bin

#	arg2=hello

#	arg3="hello\nworld"

#	arg4=:048490184058104849

#	arg5=:!ragg2	-p	n50	-d	10:0x8048123

#	arg6=@arg.txt

#	arg7=@300@ABCD	#	300	chars	filled	with	ABCD	pattern

#	system=r2	-

#	aslr=no

setenv=FOO=BAR

#	unsetenv=FOO

#	clearenv=true

#	envfile=environ.txt

timeout=3

#	timeoutsig=SIGTERM	#	or	15

#	connect=localhost:8080

#	listen=8080

#	pty=false

#	fork=true

#	bits=32

#	pid=0

#	pidfile=/tmp/foo.pid

#	#sleep=0

#	#maxfd=0

#	#execve=false

#	#maxproc=0

#	#maxstack=0

#	#core=false

#	#stdio=blah.txt

#	#stderr=foo.txt

#	stdout=foo.txt

#	stdin=input.txt	#	or	!program	to	redirect	input	from	another	program

#	input=input.txt

#	chdir=/

#	chroot=/mnt/chroot

#	libpath=$PWD:/tmp/lib

#	r2preload=yes

#	preload=/lib/libfoo.so

#	setuid=2000

#	seteuid=2000

#	setgid=2001

#	setegid=2001

#	nice=5

Rarun2

250

Rabin2	—	Show	Properties	of	a	Binary
Under	 this	 bunny-arabic-like	 name,	 radare	 hides	 a	 powerful	 tool	 to	 handle	 binary	 files,	 to	 get
information	 on	 imports,	 sections,	 headers	 and	 other	 data.	 Rabin2	 can	 present	 it	 in	 several	 formats
accepted	by	other	tools,	including	radare2	itself.	Rabin2	understands	many	file	formats:	Java	CLASS,
ELF,	PE,	Mach-O	or	any	format	supported	by	plugins,	and	it	is	able	to	obtain	symbol	import/exports,
library	dependencies,	strings	of	data	sections,	xrefs,	entrypoint	address,	sections,	architecture	type.

$	rabin2	-h

Usage:	rabin2	[-AcdeEghHiIjlLMqrRsSvVxzZ]	[-@	at]	[-a	arch]	[-b	bits]	[-B	addr]

														[-C	F:C:D]	[-f	str]	[-m	addr]	[-n	str]	[-N	m:M]	[-P[-P]	pdb]

														[-o	str]	[-O	str]	[-k	query]	[-D	lang	symname]	|	file

	-@	[addr]							show	section,	symbol	or	import	at	addr

	-A														list	sub-binaries	and	their	arch-bits	pairs

	-a	[arch]							set	arch	(x86,	arm,	..	or	<arch>_<bits>)

	-b	[bits]							set	bits	(32,	64	...)

	-B	[addr]							override	base	address	(pie	bins)

	-c														list	classes

	-C	[fmt:C:D]				create	[elf,mach0,pe]	with	Code	and	Data	hexpairs	(see	-a)

	-d														show	debug/dwarf	information

	-D	lang	name				demangle	symbol	name	(-D	all	for	bin.demangle=true)

	-e														entrypoint

	-E														globally	exportable	symbols

	-f	[str]								select	sub-bin	named	str

	-F	[binfmt]					force	to	use	that	bin	plugin	(ignore	header	check)

	-g														same	as	-SMZIHVResizcld	(show	all	info)

	-G	[addr]							load	address	.	offset	to	header

	-h														this	help	message

	-H														header	fields

	-i														imports	(symbols	imported	from	libraries)

	-I														binary	info

	-j														output	in	json

	-k	[sdb-query]		run	sdb	query.	for	example:	'*'

	-K	[algo]							calculate	checksums	(md5,	sha1,	..)

	-l														linked	libraries

	-L	[plugin]					list	supported	bin	plugins	or	plugin	details

	-m	[addr]							show	source	line	at	addr

	-M														main	(show	address	of	main	symbol)

	-n	[str]								show	section,	symbol	or	import	named	str

	-N	[min:max]				force	min:max	number	of	chars	per	string	(see	-z	and	-zz)

	-o	[str]								output	file/folder	for	write	operations	(out	by	default)

	-O	[str]								write/extract	operations	(-O	help)

	-p														show	physical	addresses

	-P														show	debug/pdb	information

	-PP													download	pdb	file	for	binary

Rabin2

251

	-q														be	quiet,	just	show	fewer	data

	-qq													show	less	info	(no	offset/size	for	-z	for	ex.)

	-Q														show	load	address	used	by	dlopen	(non-aslr	libs)

	-r														radare	output

	-R														relocations

	-s														symbols

	-S														sections

	-u														unfiltered	(no	rename	duplicated	symbols/sections)

	-v														display	version	and	quit

	-V														Show	binary	version	information

	-x														extract	bins	contained	in	file

	-X	[fmt]	[f]	..	package	in	fat	or	zip	the	given	files	and	bins	contained	in	file

	-z														strings	(from	data	section)

	-zz													strings	(from	raw	bins	[e	bin.rawstr=1])

	-zzz												dump	raw	strings	to	stdout	(for	huge	files)

	-Z														guess	size	of	binary	program

......

Rabin2

252

File	Properties	Identification
File	type	identification	is	done	using		-I	.	With	this	option,	rabin2	prints	information	on	a	binary	type,
like	its	encoding,	endianness,	class,	operating	system:

$	rabin2	-I	/bin/ls

arch					x86

binsz				128456

bintype		elf

bits					64

canary			true

class				ELF64

crypto			false

endian			little

havecode	true

intrp				/lib64/ld-linux-x86-64.so.2

lang					c

linenum		false

lsyms				false

machine		AMD	x86-64	architecture

maxopsz		16

minopsz		1

nx							true

os							linux

pcalign		0

pic						true

relocs			false

relro				partial

rpath				NONE

static			false

stripped	true

subsys			linux

va							true

To	make	rabin2	output	information	in	format	that	the	main	program,	radare2,	can	understand,	pass	 	-
Ir		option	to	it:

File	Identification

253

$	rabin2	-Ir	/bin/ls

e	cfg.bigendian=false

e	asm.bits=64

e	asm.dwarf=true

e	bin.lang=c

e	file.type=elf

e	asm.os=linux

e	asm.arch=x86

e	asm.pcalign=0

File	Identification

254

Code	Entrypoints
The		-e		option	passed	to	rabin2	will	show	entrypoints	for	given	binary.	Two	examples:

$	rabin2	-e	/bin/ls

[Entrypoints]

vaddr=0x00005310	paddr=0x00005310	baddr=0x00000000	laddr=0x00000000	haddr=0x00000018	typ

e=program

1	entrypoints

$	rabin2	-er	/bin/ls

fs	symbols

f	entry0	1	@	0x00005310

f	entry0_haddr	1	@	0x00000018

s	entry0

Entrypoint

255

Imports
Rabin2	 is	 able	 to	 find	 imported	 objects	 by	 an	 executable,	 as	 well	 as	 their	 offsets	 in	 its	 PLT.	 This
information	 is	 useful,	 for	 example,	 to	 understand	 what	 external	 function	 is	 invoked	 by	 	 call	
instruction.	Pass		-i		flag	to	rabin2	to	get	a	list	of	imports.	An	example:

$	rabin2	-i	/bin/ls

[Imports]

			1	0x000032e0		GLOBAL				FUNC	__ctype_toupper_loc

			2	0x000032f0		GLOBAL				FUNC	getenv

			3	0x00003300		GLOBAL				FUNC	sigprocmask

			4	0x00003310		GLOBAL				FUNC	__snprintf_chk

			5	0x00003320		GLOBAL				FUNC	raise

			6	0x00000000		GLOBAL				FUNC	free

			7	0x00003330		GLOBAL				FUNC	abort

			8	0x00003340		GLOBAL				FUNC	__errno_location

			9	0x00003350		GLOBAL				FUNC	strncmp

		10	0x00000000				WEAK		NOTYPE	_ITM_deregisterTMCloneTable

		11	0x00003360		GLOBAL				FUNC	localtime_r

		12	0x00003370		GLOBAL				FUNC	_exit

		13	0x00003380		GLOBAL				FUNC	strcpy

		14	0x00003390		GLOBAL				FUNC	__fpending

		15	0x000033a0		GLOBAL				FUNC	isatty

		16	0x000033b0		GLOBAL				FUNC	sigaction

		17	0x000033c0		GLOBAL				FUNC	iswcntrl

		18	0x000033d0		GLOBAL				FUNC	wcswidth

		19	0x000033e0		GLOBAL				FUNC	localeconv

		20	0x000033f0		GLOBAL				FUNC	mbstowcs

		21	0x00003400		GLOBAL				FUNC	readlink

...

Imports

256

Exports
Rabin2	is	able	to	find	exports.	For	example:

$	rabin2	-E	/usr/lib/libr_bin.so	|	head

[Exports]

210	0x000ae1f0	0x000ae1f0	GLOBAL			FUNC		200	r_bin_java_print_exceptions_attr_summary

211	0x000afc90	0x000afc90	GLOBAL			FUNC		135	r_bin_java_get_args

212	0x000b18e0	0x000b18e0	GLOBAL			FUNC			35	r_bin_java_get_item_desc_from_bin_cp_list

213	0x00022d90	0x00022d90	GLOBAL			FUNC		204	r_bin_class_add_method

214	0x000ae600	0x000ae600	GLOBAL			FUNC		175	r_bin_java_print_fieldref_cp_summary

215	0x000ad880	0x000ad880	GLOBAL			FUNC		144	r_bin_java_print_constant_value_attr_summar

y

216	0x000b7330	0x000b7330	GLOBAL			FUNC		679	r_bin_java_print_element_value_summary

217	0x000af170	0x000af170	GLOBAL			FUNC			65	r_bin_java_create_method_fq_str

218	0x00079b00	0x00079b00	GLOBAL			FUNC			15	LZ4_createStreamDecode

Exports

257

Symbols	(Exports)
With	rabin2,	the	generated	symbols	list	format	is	similar	to	the	imports	list.	Use	the		-s		option	to	get	it:

rabin2	-s	/bin/ls	|	head

[Symbols]

110	0x000150a0	0x000150a0	GLOBAL	FUNC	56	_obstack_allocated_p

111	0x0001f600	0x0021f600	GLOBAL		OBJ		8	program_name

112	0x0001f620	0x0021f620	GLOBAL		OBJ		8	stderr

113	0x00014f90	0x00014f90	GLOBAL	FUNC	21	_obstack_begin_1

114	0x0001f600	0x0021f600			WEAK		OBJ		8	program_invocation_name

115	0x0001f5c0	0x0021f5c0	GLOBAL		OBJ		8	alloc_failed_handler

116	0x0001f5f8	0x0021f5f8	GLOBAL		OBJ		8	optarg

117	0x0001f5e8	0x0021f5e8	GLOBAL		OBJ		8	stdout

118	0x0001f5e0	0x0021f5e0	GLOBAL		OBJ		8	program_short_name

With	 the	 	-sr		 option	 rabin2	 produces	 a	 radare2	 script	 instead.	 It	 can	 later	 be	 passed	 to	 the	 core	 to
automatically	flag	all	symbols	and	to	define	corresponding	byte	ranges	as	functions	and	data	blocks.

$	rabin2	-sr	/bin/ls	|	head

fs	symbols

f	sym.obstack_allocated_p	56	0x000150a0

f	sym.program_invocation_name	8	0x0021f600

f	sym.stderr	8	0x0021f620

f	sym.obstack_begin_1	21	0x00014f90

f	sym.program_invocation_name	8	0x0021f600

f	sym.obstack_alloc_failed_handler	8	0x0021f5c0

f	sym.optarg	8	0x0021f5f8

f	sym.stdout	8	0x0021f5e8

f	sym.program_invocation_short_name	8	0x0021f5e0

Symbols	(exports)

258

List	Libraries
Rabin2	can	list	libraries	used	by	a	binary	with	the		-l		option:

$	rabin2	-l	`which	r2`

[Linked	libraries]

libr_core.so

libr_parse.so

libr_search.so

libr_cons.so

libr_config.so

libr_bin.so

libr_debug.so

libr_anal.so

libr_reg.so

libr_bp.so

libr_io.so

libr_fs.so

libr_asm.so

libr_syscall.so

libr_hash.so

libr_magic.so

libr_flag.so

libr_egg.so

libr_crypto.so

libr_util.so

libpthread.so.0

libc.so.6

22	libraries

Lets	check	the	output	with		ldd		command:

Libraries

259

$	ldd	`which	r2`

linux-vdso.so.1	(0x00007fffba38e000)

libr_core.so	=>	/usr/lib64/libr_core.so	(0x00007f94b4678000)

libr_parse.so	=>	/usr/lib64/libr_parse.so	(0x00007f94b4425000)

libr_search.so	=>	/usr/lib64/libr_search.so	(0x00007f94b421f000)

libr_cons.so	=>	/usr/lib64/libr_cons.so	(0x00007f94b4000000)

libr_config.so	=>	/usr/lib64/libr_config.so	(0x00007f94b3dfa000)

libr_bin.so	=>	/usr/lib64/libr_bin.so	(0x00007f94b3afd000)

libr_debug.so	=>	/usr/lib64/libr_debug.so	(0x00007f94b38d2000)

libr_anal.so	=>	/usr/lib64/libr_anal.so	(0x00007f94b2fbd000)

libr_reg.so	=>	/usr/lib64/libr_reg.so	(0x00007f94b2db4000)

libr_bp.so	=>	/usr/lib64/libr_bp.so	(0x00007f94b2baf000)

libr_io.so	=>	/usr/lib64/libr_io.so	(0x00007f94b2944000)

libr_fs.so	=>	/usr/lib64/libr_fs.so	(0x00007f94b270e000)

libr_asm.so	=>	/usr/lib64/libr_asm.so	(0x00007f94b1c69000)

libr_syscall.so	=>	/usr/lib64/libr_syscall.so	(0x00007f94b1a63000)

libr_hash.so	=>	/usr/lib64/libr_hash.so	(0x00007f94b185a000)

libr_magic.so	=>	/usr/lib64/libr_magic.so	(0x00007f94b164d000)

libr_flag.so	=>	/usr/lib64/libr_flag.so	(0x00007f94b1446000)

libr_egg.so	=>	/usr/lib64/libr_egg.so	(0x00007f94b1236000)

libr_crypto.so	=>	/usr/lib64/libr_crypto.so	(0x00007f94b1016000)

libr_util.so	=>	/usr/lib64/libr_util.so	(0x00007f94b0d35000)

libpthread.so.0	=>	/lib64/libpthread.so.0	(0x00007f94b0b15000)

libc.so.6	=>	/lib64/libc.so.6	(0x00007f94b074d000)

libr_lang.so	=>	/usr/lib64/libr_lang.so	(0x00007f94b0546000)

libr_socket.so	=>	/usr/lib64/libr_socket.so	(0x00007f94b0339000)

libm.so.6	=>	/lib64/libm.so.6	(0x00007f94affaf000)

libdl.so.2	=>	/lib64/libdl.so.2	(0x00007f94afdab000)

/lib64/ld-linux-x86-64.so.2	(0x00007f94b4c79000)

libssl.so.1.0.0	=>	/usr/lib64/libssl.so.1.0.0	(0x00007f94afb3c000)

libcrypto.so.1.0.0	=>	/usr/lib64/libcrypto.so.1.0.0	(0x00007f94af702000)

libutil.so.1	=>	/lib64/libutil.so.1	(0x00007f94af4ff000)

libz.so.1	=>	/lib64/libz.so.1	(0x00007f94af2e8000)

If	you	compare	the	outputs	of	 	rabin2	-l		and	 	ldd	,	you	will	notice	 that	rabin2	lists	fewer	 libraries
than		ldd	.	The	reason	is	that	rabin2	does	not	follow	and	does	not	show	dependencies	of	libraries.	Only
direct	binary	dependencies	are	shown.

Libraries

260

Strings
The		-z		option	is	used	to	list	readable	strings	found	in	the	.rodata	section	of	ELF	binaries,	or	the	.text
section	of	PE	files.	Example:

$	rabin2	-z	/bin/ls	|	head

000	0x000160f8	0x000160f8		11		12	(.rodata)	ascii	dev_ino_pop

001	0x00016188	0x00016188		10		11	(.rodata)	ascii	sort_files

002	0x00016193	0x00016193			6			7	(.rodata)	ascii	posix-

003	0x0001619a	0x0001619a			4			5	(.rodata)	ascii	main

004	0x00016250	0x00016250		10		11	(.rodata)	ascii	?pcdb-lswd

005	0x00016260	0x00016260		65		66	(.rodata)	ascii	#	Configuration	file	for	dircolors,	a	

utility	to	help	you	set	the

006	0x000162a2	0x000162a2		72		73	(.rodata)	ascii	#	LS_COLORS	environment	variable	used	

by	GNU	ls	with	the	--color	option.

007	0x000162eb	0x000162eb		56		57	(.rodata)	ascii	#	Copyright	(C)	1996-2018	Free	Softwar

e	Foundation,	Inc.

008	0x00016324	0x00016324		70		71	(.rodata)	ascii	#	Copying	and	distribution	of	this	fil

e,	with	or	without	modification,

009	0x0001636b	0x0001636b		76		77	(.rodata)	ascii	#	are	permitted	provided	the	copyright

	notice	and	this	notice	are	preserved.

With	the	 	-zr		option,	this	information	is	represented	as	a	radare2	commands	list.	It	can	be	used	in	a
radare2	 session	 to	 automatically	 create	 a	 flag	 space	 called	 "strings"	 pre-populated	with	 flags	 for	 all
strings	found	by	rabin2.	Furthermore,	this	script	will	mark	corresponding	byte	ranges	as	strings	instead
of	code.

$	rabin2	-zr	/bin/ls	|	head

fs	stringsf	str.dev_ino_pop	12	@	0x000160f8

Cs	12	@	0x000160f8

f	str.sort_files	11	@	0x00016188

Cs	11	@	0x00016188

f	str.posix	7	@	0x00016193

Cs	7	@	0x00016193

f	str.main	5	@	0x0001619a

Cs	5	@	0x0001619a

f	str.pcdb_lswd	11	@	0x00016250

Cs	11	@	0x00016250

Strings

261

Program	Sections
Rabin2	called	with	the		-S		option	gives	complete	information	about	the	sections	of	an	executable.	For
each	 section	 the	 index,	 offset,	 size,	 alignment,	 type	 and	 permissions,	 are	 shown.	 The	 next	 example
demonstrates	this:

$	rabin2	-S	/bin/ls

[Sections]

00	0x00000000					0	0x00000000					0	----

01	0x00000238				28	0x00000238				28	-r--	.interp

02	0x00000254				32	0x00000254				32	-r--	.note.ABI_tag

03	0x00000278			176	0x00000278			176	-r--	.gnu.hash

04	0x00000328		3000	0x00000328		3000	-r--	.dynsym

05	0x00000ee0		1412	0x00000ee0		1412	-r--	.dynstr

06	0x00001464			250	0x00001464			250	-r--	.gnu.version

07	0x00001560			112	0x00001560			112	-r--	.gnu.version_r

08	0x000015d0		4944	0x000015d0		4944	-r--	.rela.dyn

09	0x00002920		2448	0x00002920		2448	-r--	.rela.plt

10	0x000032b0				23	0x000032b0				23	-r-x	.init

11	0x000032d0		1648	0x000032d0		1648	-r-x	.plt

12	0x00003940				24	0x00003940				24	-r-x	.plt.got

13	0x00003960	73931	0x00003960	73931	-r-x	.text

14	0x00015a2c					9	0x00015a2c					9	-r-x	.fini

15	0x00015a40	20201	0x00015a40	20201	-r--	.rodata

16	0x0001a92c		2164	0x0001a92c		2164	-r--	.eh_frame_hdr

17	0x0001b1a0	11384	0x0001b1a0	11384	-r--	.eh_frame

18	0x0001e390					8	0x0021e390					8	-rw-	.init_array

19	0x0001e398					8	0x0021e398					8	-rw-	.fini_array

20	0x0001e3a0		2616	0x0021e3a0		2616	-rw-	.data.rel.ro

21	0x0001edd8			480	0x0021edd8			480	-rw-	.dynamic

22	0x0001efb8				56	0x0021efb8				56	-rw-	.got

23	0x0001f000			840	0x0021f000			840	-rw-	.got.plt

24	0x0001f360			616	0x0021f360			616	-rw-	.data

25	0x0001f5c8					0	0x0021f5e0		4824	-rw-	.bss

26	0x0001f5c8			232	0x00000000			232	----	.shstrtab

With	 the	 	-Sr	 	 option,	 rabin2	 will	 flag	 the	 start/end	 of	 every	 section,	 and	 will	 pass	 the	 rest	 of
information	as	a	comment.

Program	Sections

262

$	rabin2	-Sr	/bin/ls	|	head

fs	sections

S	0x00000000	0x00000000	0x00000000	0x00000000		0

f	section.	0	0x00000000

f	section_end.	1	0x00000000

CC	section	0	va=0x00000000	pa=0x00000000	sz=0	vsz=0	rwx=----		@	0x00000000

S	0x00000238	0x00000238	0x0000001c	0x0000001c	.interp	4

f	section..interp	28	0x00000238

f	section_end..interp	1	0x00000254

CC	section	1	va=0x00000238	pa=0x00000238	sz=28	vsz=28	rwx=-r--	.interp	@	0x00000238

S	0x00000254	0x00000254	0x00000020	0x00000020	.note.ABI_tag	4

Program	Sections

263

Radiff2
Radiff2	is	a	tool	designed	to	compare	binary	files,	similar	to	how	regular		diff		compares	text	files.

$	radiff2	-h

Usage:	radiff2	[-abBcCdjrspOxuUvV]	[-A[A]]	[-g	sym]	[-t	%]	[file]	[file]

		-a	[arch]		specify	architecture	plugin	to	use	(x86,	arm,	..)

		-A	[-A]				run	aaa	or	aaaa	after	loading	each	binary	(see	-C)

		-b	[bits]		specify	register	size	for	arch	(16	(thumb),	32,	64,	..)

		-B									output	in	binary	diff	(GDIFF)

		-c									count	of	changes

		-C									graphdiff	code	(columns:	off-A,	match-ratio,	off-B)	(see	-A)

		-d									use	delta	diffing

		-D									show	disasm	instead	of	hexpairs

		-e	[k=v]			set	eval	config	var	value	for	all	RCore	instances

		-g	[sym|off1,off2]			graph	diff	of	given	symbol,	or	between	two	offsets

		-G	[cmd]			run	an	r2	command	on	every	RCore	instance	created

		-i									diff	imports	of	target	files	(see	-u,	-U	and	-z)

		-j									output	in	json	format

		-n									print	bare	addresses	only	(diff.bare=1)

		-O									code	diffing	with	opcode	bytes	only

		-p									use	physical	addressing	(io.va=0)

		-q									quiet	mode	(disable	colors,	reduce	output)

		-r									output	in	radare	commands

		-s									compute	edit	distance	(no	substitution,	Eugene	W.	Myers'	O(ND)	diff	algorit

hm)

		-ss								compute	Levenshtein	edit	distance	(substitution	is	allowed,	O(N^2))

		-S	[name]		sort	code	diff	(name,	namelen,	addr,	size,	type,	dist)	(only	for	-C	or	-g)

		-t	[0-100]	set	threshold	for	code	diff	(default	is	70%)

		-x									show	two	column	hexdump	diffing

		-u									unified	output	(---+++)

		-U									unified	output	using	system	'diff'

		-v									show	version	information

		-V									be	verbose	(current	only	for	-s)

		-z									diff	on	extracted	strings

Radiff2

264

Binary	Diffing
This	section	is	based	on	the	http://radare.today	article	"binary	diffing"

Without	any	parameters,	 	radiff2		by	default	shows	what	bytes	are	changed	and	 their	corresponding
offsets:

$	radiff2	genuine	cracked

0x000081e0	85c00f94c0	=>	9090909090	0x000081e0

0x0007c805	85c00f84c0	=>	9090909090	0x0007c805

$	rasm2	-d	85c00f94c0

test	eax,	eax

sete	al

Notice	how	the	two	jumps	are	nop'ed.

For	bulk	processing,	you	may	want	to	have	a	higher-level	overview	of	differences.	This	is	why	radare2
is	able	to	compute	the	distance	and	the	percentage	of	similarity	between	two	files	with	the		-s		option:

$	radiff2	-s	/bin/true	/bin/false

similarity:	0.97

distance:	743

If	you	want	more	concrete	data,	it's	also	possible	to	count	the	differences,	with	the		-c		option:

$	radiff2	-c	genuine	cracked

2

If	you	are	unsure	whether	you	are	dealing	with	similar	binaries,	with		-C		flag	you	can	check	there	are
matching	 functions.	 It	 this	mode,	 it	will	 give	 you	 three	 columns	 for	 all	 functions:	 "First	 file	 offset",
"Percentage	of	matching"	and	"Second	file	offset".

Binary	Diffing

265

http://radare.today
http://radare.today/binary-diffing/

$	radiff2	-C	/bin/false	/bin/true

		entry0		0x4013e8	|			MATCH		(0.904762)	|	0x4013e2		entry0

		sym.imp.__libc_start_main		0x401190	|			MATCH		(1.000000)	|	0x401190		sym.imp.__libc_s

tart_main

		fcn.00401196		0x401196	|			MATCH		(1.000000)	|	0x401196		fcn.00401196

		fcn.0040103c		0x40103c	|			MATCH		(1.000000)	|	0x40103c		fcn.0040103c

		fcn.00401046		0x401046	|			MATCH		(1.000000)	|	0x401046		fcn.00401046

		fcn.000045e0			24	0x45e0	|	UNMATCH		(0.916667)	|	0x45f0				24	fcn.000045f0

		...

Moreover,	 we	 can	 ask	 radiff2	 to	 perform	 analysis	 first	 -	 adding	 	-A	 	 option	 will	 run	 	aaa	 	 on	 the
binaries.	And	we	can	specify	binaries	architecture	for	this	analysis	too	using

$	radiff2	-AC	-a	x86	/bin/true	/bin/false	|	grep	UNMATCH

[x]	Analyze	all	flags	starting	with	sym.	and	entry0	(aa)

[x]	Analyze	len	bytes	of	instructions	for	references	(aar)

[x]	Analyze	function	calls	(aac)

[]	[*]	Use	-AA	or	aaaa	to	perform	additional	experimental	analysis.

[x]	Constructing	a	function	name	for	fcn.*	and	sym.func.*	functions	(aan))

[x]	Analyze	all	flags	starting	with	sym.	and	entry0	(aa)

[x]	Analyze	len	bytes	of	instructions	for	references	(aar)

[x]	Analyze	function	calls	(aac)

[]	[*]	Use	-AA	or	aaaa	to	perform	additional	experimental	analysis.

[x]	Constructing	a	function	name	for	fcn.*	and	sym.func.*	functions	(aan))

																								sub.fileno_500			86	0x4500	|	UNMATCH		(0.965116)	|	0x4510				86	

sub.fileno_510

																				sub.__freading_4c0			59	0x44c0	|	UNMATCH		(0.949153)	|	0x44d0				59	

sub.__freading_4d0

																								sub.fileno_440		120	0x4440	|	UNMATCH		(0.200000)	|	0x4450			120	

sub.fileno_450

																					sub.setlocale_fa0			64	0x3fa0	|	UNMATCH		(0.104651)	|	0x3fb0				64	

sub.setlocale_fb0

																										fcn.00003a50		120	0x3a50	|	UNMATCH		(0.125000)	|	0x3a60			120	

fcn.00003a60

And	now	a	cool	feature	:	radare2	supports	graph-diffing,	à	la	DarunGrim,	with	the		-g		option.	You	can
either	give	it	a	symbol	name,	of	specify	two	offsets,	if	the	function	you	want	to	diff	is	named	differently
in	 compared	 files.	 For	 example,	 	radiff2	 -g	 main	 /bin/true	 /bin/false	 |	 xdot	 -	 	 will	 show
differences	in		main()		function	of	Unix		true		and		false		programs.	You	can	compare	it	to	 	radiff2
-g	main	/bin/false	/bin/true		(Notice	the	order	of	the	arguments)	to	get	the	two	versions.	This	is	the
result:

Binary	Diffing

266

http://www.darungrim.org/

Parts	in	yellow	indicate	that	some	offsets	do	not	match.	The	grey	piece	means	a	perfect	match.	The	red
one	highlights	a	strong	difference.	If	you	look	closely,	you	will	see	that	the	left	part	of	the	picture	has
	mov	edi,	0x1;	call	sym.imp.exit	,	while	the	right	one	has		xor	edi,	edi;	call	sym.imp.exit	.

Binary	diffing	is	an	important	feature	for	reverse	engineering.	It	can	be	used	to	analyze	security	updates,
infected	binaries,	firmware	changes	and	more...

We	have	only	 shown	 the	 code	 analysis	 diffing	 functionality,	 but	 radare2	 supports	 additional	 types	of
diffing	between	two	binaries:	at	byte	level,	deltified	similarities,	and	more	to	come.

We	have	plans	to	implement	more	kinds	of	bindiffing	algorithms	into	r2,	and	why	not,	add	support	for
ASCII	art	graph	diffing	and	better	integration	with	the	rest	of	the	toolkit.

Binary	Diffing

267

https://en.wikipedia.org/wiki/Patch_Tuesday

Rasm2
	rasm2		 is	an	 inline	assembler/disassembler.	 Initially,	 	rasm		 tool	was	designed	 to	be	used	 for	binary
patching.	Its	main	function	is	to	get	bytes	corresponding	to	given	machine	instruction	opcode.

$	rasm2	-h

Usage:	rasm2	[-ACdDehLBvw]	[-a	arch]	[-b	bits]	[-o	addr]	[-s	syntax]

													[-f	file]	[-F	fil:ter]	[-i	skip]	[-l	len]	'code'|hex|-

	-a	[arch]				Set	architecture	to	assemble/disassemble	(see	-L)

	-A											Show	Analysis	information	from	given	hexpairs

	-b	[bits]				Set	cpu	register	size	(8,	16,	32,	64)	(RASM2_BITS)

	-B											Binary	input/output	(-l	is	mandatory	for	binary	input)

	-c	[cpu]					Select	specific	CPU	(depends	on	arch)

	-C											Output	in	C	format

	-d,	-D							Disassemble	from	hexpair	bytes	(-D	show	hexpairs)

	-e											Use	big	endian	instead	of	little	endian

	-E											Display	ESIL	expression	(same	input	as	in	-d)

	-f	[file]				Read	data	from	file

	-F	[in:out]		Specify	input	and/or	output	filters	(att2intel,	x86.pseudo,	...)

	-h,	-hh						Show	this	help,	-hh	for	long

	-i	[len]					ignore/skip	N	bytes	of	the	input	buffer

	-j											output	in	json	format

	-k	[kernel]		Select	operating	system	(linux,	windows,	darwin,	..)

	-l	[len]					Input/Output	length

	-L											List	Asm	plugins:	(a=asm,	d=disasm,	A=analyze,	e=ESIL)

	-o	[offset]		Set	start	address	for	code	(default	0)

	-O	[file]				Output	file	name	(rasm2	-Bf	a.asm	-O	a)

	-p											Run	SPP	over	input	for	assembly

	-q											quiet	mode

	-r											output	in	radare	commands

	-s	[syntax]		Select	syntax	(intel,	att)

	-v											Show	version	information

	-w											What's	this	instruction	for?	describe	opcode

	If	'-l'	value	is	greater	than	output	length,	output	is	padded	with	nops

	If	the	last	argument	is	'-'	reads	from	stdin

Environment:

	RASM2_NOPLUGINS		do	not	load	shared	plugins	(speedup	loading)

	RASM2_ARCH							same	as	rasm2	-a

	RASM2_BITS							same	as	rasm2	-b

	R_DEBUG										if	defined,	show	error	messages	and	crash	signal

Plugins	for	supported	target	architectures	can	be	listed	with	the	 	-L		option.	Knowing	a	plugin	name,
you	can	use	it	by	specifying	its	name	to	the		-a		option

Rasm2

268

$	rasm2	-L

_dAe		8	16							6502								LGPL3			6502/NES/C64/Tamagotchi/T-1000	CPU

_dAe		8										8051								PD						8051	Intel	CPU

dA		16	32						arc									GPL3				Argonaut	RISC	Core

a___		16	32	64			arm.as						LGPL3			as	ARM	Assembler	(use	ARM_AS	environment)

adAe		16	32	64			arm									BSD					Capstone	ARM	disassembler

dA		16	32	64			arm.gnu					GPL3				Acorn	RISC	Machine	CPU

_d__		16	32						arm.winedbg	LGPL2			WineDBG's	ARM	disassembler

adAe		8	16							avr									GPL					AVR	Atmel

adAe		16	32	64			bf										LGPL3			Brainfuck	(by	pancake,	nibble)	v4.0.0

dA		32									chip8							LGPL3			Chip8	disassembler

dA		16									cr16								LGPL3			cr16	disassembly	plugin

dA		32									cris								GPL3				Axis	Communications	32-bit	embedded	processor

adA_		32	64						dalvik						LGPL3			AndroidVM	Dalvik

ad__		16									dcpu16						PD						Mojang's	DCPU-16

dA		32	64						ebc									LGPL3			EFI	Bytecode

adAe		16									gb										LGPL3			GameBoy(TM)	(z80-like)

_dAe		16									h8300							LGPL3			H8/300	disassembly	plugin

_dAe		32									hexagon					LGPL3			Qualcomm	Hexagon	(QDSP6)	V6

_d__		32									hppa								GPL3				HP	PA-RISC

_dAe													i4004							LGPL3			Intel	4004	microprocessor

dA		8										i8080							BSD					Intel	8080	CPU

adA_		32									java								Apache		Java	bytecode

_d__		32									lanai							GPL3				LANAI

_d__		8										lh5801						LGPL3			SHARP	LH5801	disassembler

_d__		32									lm32								BSD					disassembly	plugin	for	Lattice	Micro	32	ISA

dA		16	32						m68k								BSD					Capstone	M68K	disassembler

dA		32									malbolge				LGPL3			Malbolge	Ternary	VM

_d__		16									mcs96							LGPL3			condrets	car

adAe		16	32	64			mips								BSD					Capstone	MIPS	disassembler

adAe		32	64						mips.gnu				GPL3				MIPS	CPU

dA		16									msp430						LGPL3			msp430	disassembly	plugin

dA		32									nios2							GPL3				NIOS	II	Embedded	Processor

_dAe		8										pic									LGPL3			PIC	disassembler

_dAe		32	64						ppc									BSD					Capstone	PowerPC	disassembler

dA		32	64						ppc.gnu					GPL3				PowerPC

_d__		32									propeller			LGPL3			propeller	disassembly	plugin

dA		32	64						riscv							GPL					RISC-V

_dAe		32									rsp									LGPL3			Reality	Signal	Processor

_dAe		32									sh										GPL3				SuperH-4	CPU

dA		8	16							snes								LGPL3			SuperNES	CPU

_dAe		32	64						sparc							BSD					Capstone	SPARC	disassembler

dA		32	64						sparc.gnu			GPL3				Scalable	Processor	Architecture

_d__		16									spc700						LGPL3			spc700,	snes'	sound-chip

_d__		32									sysz								BSD					SystemZ	CPU	disassembler

dA		32									tms320						LGPLv3		TMS320	DSP	family	(c54x,c55x,c55x+,c64x)

_d__		32									tricore					GPL3				Siemens	TriCore	CPU

_dAe		32									v810								LGPL3			v810	disassembly	plugin

_dAe		32									v850								LGPL3			v850	disassembly	plugin

_dAe		8	32							vax									GPL					VAX

Rasm2

269

adA_		32									wasm								MIT					WebAssembly	(by	cgvwzq)	v0.1.0

dA		32									ws										LGPL3			Whitespace	esotheric	VM

a___		16	32	64			x86.as						LGPL3			Intel	X86	GNU	Assembler

_dAe		16	32	64			x86									BSD					Capstone	X86	disassembler

a___		16	32	64			x86.nasm				LGPL3			X86	nasm	assembler

a___		16	32	64			x86.nz						LGPL3			x86	handmade	assembler

dA		16									xap									PD						XAP4	RISC	(CSR)

dA		32									xcore							BSD					Capstone	XCore	disassembler

_dAe		32									xtensa						GPL3				XTensa	CPU

adA_		8										z80									GPL					Zilog	Z80

Note	 that	 "ad"	 in	 the	 first	 column	 means	 both	 assembler	 and	 disassembler	 are	 offered	 by	 a
corresponding	plugin.	"d"	indicates	disassembler,	"a"	means	only	assembler	is	available.

Rasm2

270

Assembler
Assembling	is	the	action	to	take	a	computer	instruction	in	human	readable	form	(using	mnemonics)	and
convert	that	into	a	bunch	of	bytes	that	can	be	executed	by	a	machine.

In	radare2,	the	assembler	and	disassembler	logic	is	implemented	in	the	rasm*	API,	and	can	be	used	with
the	pa	and	pad	commands	from	the	commandline	as	well	as	using		rasm2	.

Rasm2	 can	 be	 used	 to	 quickly	 copy-paste	 hexpairs	 that	 represent	 a	 given	 machine	 instruction.	 The
following	line	is	assembling	this	mov	instruction	for	x86/32.

$	rasm2	-a	x86	-b	32	'mov	eax,	33'

b821000000

Apart	from	the	specifying	the	input	as	an	argument,	you	can	also	pipe	it	to	rasm2:

$	echo	'push	eax;nop;nop'	|	rasm2	-f	-

5090

As	 you	 have	 seen,	 rasm2	 can	 assemble	 one	 or	many	 instructions.	 In	 line	 by	 separating	 them	with	 a
semicolon		;	,	but	can	also	read	that	from	a	file,	using	generic	nasm/gas/..	syntax	and	directives.	You
can	check	the	rasm2	manpage	for	more	details	on	this.

The	 	pa	 	 and	 	pad	 	 are	 a	 subcommands	 of	 print,	 what	 means	 they	 will	 only	 print	 assembly	 or
disassembly.	 In	 case	 you	 want	 to	 actually	 write	 the	 instruction	 it	 is	 required	 to	 use	 	wa	 	 or	 	wx	
commands	with	the	assembly	string	or	bytes	appended.

The	 assembler	 understands	 the	 following	 input	 languages	 and	 their	 flavors:	 	x86	 	 (Intel	 and	 AT&T
variants),		olly		(OllyDBG	syntax),	 	powerpc		(PowerPC),	 	arm		and	 	java	.	For	Intel	syntax,	rasm2
tries	to	mimic	NASM	or	GAS.

There	are	several	examples	in	the	rasm2	source	code	directory.	Consult	them	to	understand	how	you	can
assemble	a	raw	binary	file	from	a	rasm2	description.

Lets	create	an	assembly	file	called		selfstop.rasm	:

Assemble

271

;

;	Self-Stop	shellcode	written	in	rasm	for	x86

;

;	--pancake

;

.arch	x86

.equ	base	0x8048000

.org	0x8048000		;	the	offset	where	we	inject	the	5	byte	jmp

selfstop:

		push	0x8048000

		pusha

		mov	eax,	20

		int	0x80

		mov	ebx,	eax

		mov	ecx,	19

		mov	eax,	37

		int	0x80

		popa

		ret

;

;	The	call	injection

;

		ret

Now	we	can	assemble	it	in	place:

[0x00000000]>	e	asm.bits	=	32

[0x00000000]>	wx	`!rasm2	-f	a.rasm`

[0x00000000]>	pd	20

							0x00000000				6800800408			push	0x8048000	;		0x08048000

							0x00000005				60											pushad

							0x00000006				b814000000			mov	eax,	0x14	;		0x00000014

							0x0000000b				cd80									int	0x80

										syscall[0x80][0]=?

							0x0000000d				89c3									mov	ebx,	eax

							0x0000000f				b913000000			mov	ecx,	0x13	;		0x00000013

							0x00000014				b825000000			mov	eax,	0x25	;		0x00000025

							0x00000019				cd80									int	0x80

										syscall[0x80][0]=?

							0x0000001b				61											popad

							0x0000001c				c3											ret

							0x0000001d				c3											ret

Assemble

272

Visual	mode

Assembling	also	is	accessible	in	radare2	visual	mode	through	pressing		A		key	to	insert	the	assembly	in
the	current	offset.

The	cool	 thing	of	writing	assembly	using	 the	visual	 assembler	 interface	 that	 the	changes	are	done	 in
memory	until	you	press	enter.

So	 you	 can	 check	 the	 size	 of	 the	 code	 and	 which	 instructions	 is	 overlapping	 before	 commiting	 the
changes.

Assemble

273

Disassembler
Disassembling	is	the	inverse	action	of	assembling.	Rasm2	takes	hexpair	as	an	input	(but	can	also	take	a
file	in	binary	form)	and	show	the	human	readable	form.

To	do	this	we	can	use	the		-d		option	of	rasm2	like	this:

$	rasm2	-a	x86	-b	32	-d	'90'

nop

Rasm2	also	have	the		-D		flag	to	show	the	disassembly	like		-d		does,	but	includes	offset	and	bytes.

In	radare2	there	are	many	commands	to	perform	a	disassembly	from	a	specific	place	in	memory.

You	might	be	interested	in	trying	if	you	want	different	outputs	for	later	parsing	with	your	scripts,	or	just
grep	to	find	what	you	are	looking	for:

pd	N
Disassemble	N	instructions

pD	N
Disassemble	N	bytes

pda

Disassemble	all	instructions	(seeking	1	byte,	or	the	minimum	alignment	instruction	size),	which	can	be
useful	for	ROP

pi,	pI
Same	as		pd		and		pD	,	but	using	a	simpler	output.

Disassemble

274

Disassembler	Configuration
The	assembler	and	disassembler	have	many	small	switches	to	tweak	the	output.

Those	configurations	are	available	through	the		e		command.	Here	there	are	the	most	common	ones:

asm.bytes	-	show/hide	bytes
asm.offset	-	show/hide	offset
asm.lines	-	show/hide	lines
asm.ucase	-	show	disasm	in	uppercase
...

Use	the		e??asm.		for	more	details.

Configuration

275

ragg2
ragg2	stands	for	 	radare2	egg	,	 this	 is	 the	basic	block	to	construct	relocatable	snippets	of	code	to	be
used	for	injection	in	target	processes	when	doing	exploiting.

ragg2	compiles	programs	written	in	a	simple	high-level	language	into	tiny	binaries	for	x86,	x86-64,	and
ARM.

By	default	it	will	compile	it's	own	 	ragg2		 language,	but	you	can	also	compile	C	code	using	GCC	or
Clang	shellcodes	depending	on	the	file	extension.	Lets	create	C	file	called		a.c	:

int	main()	{

				write(1,	"Hello	World\n",	13);

				return	0;

}

$	ragg2	-a	x86	-b32	a.c

e900000000488d3516000000bf01000000b80400000248c7c20d0000000f0531c0c348656c6c6f20576f726c

640a00

$	rasm2	-a	x86	-b	32	-D	e900000000488d3516000000bf01000000b80400000248c7c20d0000000f0531

c0c348656c6c6f20576f726c640a00

0x00000000			5															e900000000		jmp	5

0x00000005			1																							48		dec	eax

0x00000006			6													8d3516000000		lea	esi,	[0x16]

0x0000000c			5															bf01000000		mov	edi,	1

0x00000011			5															b804000002		mov	eax,	0x2000004

0x00000016			1																							48		dec	eax

0x00000017			6													c7c20d000000		mov	edx,	0xd

0x0000001d			2																					0f05		syscall

0x0000001f			2																					31c0		xor	eax,	eax

0x00000021			1																							c3		ret

0x00000022			1																							48		dec	eax

0x00000023			2																					656c		insb	byte	es:[edi],	dx

0x00000025			1																							6c		insb	byte	es:[edi],	dx

0x00000026			1																							6f		outsd	dx,	dword	[esi]

0x00000027			3																			20576f		and	byte	[edi	+	0x6f],	dl

0x0000002a			2																					726c		jb	0x98

0x0000002c			3																			640a00		or	al,	byte	fs:[eax]

Compiling	ragg2	example

Ragg2

276

$	cat	hello.r

exit@syscall(1);

main@global()	{

				exit(2);

}

$	ragg2	-a	x86	-b	64	hello.r

48c7c00200000050488b3c2448c7c0010000000f054883c408c3

0x00000000			1																							48		dec	eax

0x00000001			6													c7c002000000		mov	eax,	2

0x00000007			1																							50		push	eax

0x00000008			1																							48		dec	eax

0x00000009			3																			8b3c24		mov	edi,	dword	[esp]

0x0000000c			1																							48		dec	eax

0x0000000d			6													c7c001000000		mov	eax,	1

0x00000013			2																					0f05		syscall

0x00000015			1																							48		dec	eax

0x00000016			3																			83c408		add	esp,	8

0x00000019			1																							c3		ret

$	rasm2	-a	x86	-b	64	-D	48c7c00200000050488b3c2448c7c0010000000f054883c408c3

0x00000000			7											48c7c002000000		mov	rax,	2

0x00000007			1																							50		push	rax

0x00000008			4																	488b3c24		mov	rdi,	qword	[rsp]

0x0000000c			7											48c7c001000000		mov	rax,	1

0x00000013			2																					0f05		syscall

0x00000015			4																	4883c408		add	rsp,	8

0x00000019			1																							c3		ret

Tiny	binaries
You	can	create	them	using	the		-F		flag	in	ragg2,	or	the		-C		in	rabin2.

Ragg2

277

Syntax	of	the	language
The	code	of	r_egg	is	compiled	as	in	a	flow.	It	is	a	one-pass	compiler;

this	means	that	you	have	to	define	the	proper	stackframe	size	at	the

beginning	of	the	function,	and	you	have	to	define	the	functions	in

order	to	avoid	getting	compilation	errors.

The	compiler	generates	assembly	code	for	x86-{32,64}	and	arm.	But	it	aims

to	support	more	platforms.	This	code	is	the	compiled	with	r_asm	and

injected	into	a	tiny	binary	with	r_bin.

You	may	like	to	use	r_egg	to	create	standalone	binaries,	position-

independent	raw	eggs	to	be	injected	on	running	processes	or	to	patch

on-disk	binaries.

The	generated	code	is	not	yet	optimized,	but	it's	safe	to	be	executed

at	any	place	in	the	code.

Preprocessor

Aliases

Sometimes	you	just	need	to	replace	at	compile	time	a	single	entity	on

multiple	places.	Aliases	are	translated	into	'equ'	statements	in	assembly

language.	This	is	just	an	assembler-level	keyword	redefinition.

	AF_INET@alias(2);	

	printf@alias(0x8053940);	

Includes
Use		cat(1)		or	the	preprocessor	to	concatenate	multiple	files	to	be	compiled.

Language

278

	INCDIR@alias("/usr/include/ragg2");	

	sys-osx.r@include(INCDIR);	

Hashbang
eggs	can	use	a	hashbang	to	make	them	executable.

	$	head	-n1	hello.r	

	#!/usr/bin/ragg2	-X	

	$./hello.r	

	Hello	World!	

Main

The	execution	of	the	code	is	done	as	in	a	flow.	The	first	function	to	be

defined	will	be	the	first	one	to	be	executed.	If	you	want	to	run	main()

just	do	like	this:

	#!/usr/bin/ragg2	-X	

	main();	

	...	

	main@global(128,64)	{	

	...	

Function	definition

You	may	like	to	split	up	your	code	into	several	code	blocks.	Those	blocks

are	bound	to	a	label	followed	by	root	brackets	'{	...	}'

Function	signatures
	name@type(stackframesize,staticframesize)	{	body	}	

	name		:	name	of	the	function	to	define

	type		:	see	function	types	below

	stackframesize		:	get	space	from	stack	to	store	local	variables

Language

279

	staticframesize		:	get	space	from	stack	to	store	static	variables	(strings)

	body		:	code	of	the	function

Function	types

	alias		Used	to	create	aliases

	data		;	the	body	of	the	block	is	defined	in	.data

	inline		;	the	function	body	is	inlined	when	called

	global		;	make	the	symbol	global

	fastcall		;	function	that	is	called	using	the	fast	calling	convention

	syscall		;	define	syscall	calling	convention	signature

Syscalls

r_egg	offers	a	syntax	sugar	for	defining	syscalls.	The	syntax	is	like	this:

	exit@syscall(1);	

	@syscall()	{	

	̀ 	:	mov	eax,	.arg```

	:	int	0x80	

	}	

	main@global()	{	

	exit	(0);	

	}	

Libraries
At	the	moment	there	is	no	support	for	linking	r_egg	programs	to	system

libraries.	but	if	you	inject	the	code	into	a	program	(disk/memory)	you

can	define	the	address	of	each	function	using	the	@alias	syntax.

Core	library

Language

280

There's	a	work-in-progress	libc-like	library	written	completely	in	r_egg

Variables
	.arg	

	.arg0	

	.arg1	

	.arg2	

	.var0	

	.var2	

	.fix	

	.ret	;	eax	for	x86,	r0	for	arm	

	.bp	

	.pc	

	.sp	

Attention:	All	the	numbers	after		.var		and		.arg		mean	the	offset	with	the

top	of	stack,	not	variable	symbols.

Arrays
Supported	as	raw	pointers.	TODO:	enhance	this	feature

Tracing

Sometimes	r_egg	programs	will	break	or	just	not	work	as	expected.	Use	the

'trace'	architecture	to	get	a	arch-backend	call	trace:

	$	ragg2	-a	trace	-s	yourprogram.r	

Pointers
TODO:	Theorically	'*'	is	used	to	get	contents	of	a	memory	pointer.

Virtual	registers

Language

281

TODO:	a0,	a1,	a2,	a3,	sp,	fp,	bp,	pc

Math	operations

Ragg2	supports	local	variables	assignment	by	math	operating,	including

the	following	operators:

	+			-			*			/			&			|		 	̂ 	

Return	values
The	return	value	is	stored	in	the	a0	register,	this	register	is	set	when

calling	a	function	or	when	typing	a	variable	name	without	assignment.

$	cat	test.r

add@global(4)	{

				.var0	=	.arg0	+	.arg1;

				.var0;

}

main@global()	{

				add	(3,4);

}

$	ragg2	-F	-o	test	test.r

$./test

$	echo	$?

7

Traps

Each	architecture	have	a	different	instruction	to	break	the	execution	of

the	program.	REgg	language	captures	calls	to	'break()'	to	run	the	emit_trap

callback	of	the	selected	arch.	The

	break()	;	-->	compiles	into	'int3'	on	x86

	break;		-->	compiles	into	'int3'	on	x86

Inline	assembly

Language

282

Lines	prefixed	with	':'	char	are	just	inlined	in	the	output	assembly.

	:	jmp	0x8048400	

	:	.byte	33,44	

Labels
You	can	define	labels	using	the		:		keyword	like	this:

	:label_name:	

	/*	loop	forever	*/	

	goto(label_name)

Control	flow

	goto	(addr)		--	branch	execution

	while	(cond)	

	if	(cond)	

	if	(cond)	{	body	}	else	{	body	}	

	break	()		--	executes	a	trap	instruction

Comments
Supported	syntax	for	comments	are:

	/*	multiline	comment	*/'	

	//	single	line	comment	

	#	single	line	comment	

Language

283

rahash2
The	 rahash2	 tool	 can	 be	 used	 to	 compute	 checksums	 of	 files,	 disk	 devices	 or	 strings.	 By	 block	 or
entirely	using	many	different	hash	algorithms.

This	tool	is	also	capable	of	doing	some	encoding/decoding	operations	like	base64	and	xor	encryption.

This	is	an	example	usage:

$	rahash2	-a	md5	-s	"hello	world"

Note	that	rahash2	also	permits	to	read	from	stdin	in	a	stream,	so	you	don't	need	4GB	of	ram	to	compute
the	hash	of	a	4GB	file.

Hashing	by	blocks
When	doing	forensics,	it	is	useful	to	compute	partial	checksums.	The	reason	for	that	is	because	you	may
want	to	split	a	huge	file	into	small	portions	that	are	easier	to	identify	by	contents	or	regions	in	the	disk.

This	will	spot	the	same	hash	for	blocks	containing	the	same	contents.	For	example,	if	filled	by	zeros.

But	also,	it	can	be	used	to	find	which	blocks	have	changed	between	more	than	one	sample	dump.

This	can	be	useful	when	analyzing	ram	dumps	from	a	virtual	machine	for	example.	Use	this	command
for	this:

$	rahash2	-B	1M	-b	-a	sha256	/bin/ls

Hashing	with	rabin2
The	rabin2	tool	parses	the	binary	headers	of	the	files,	but	it	also	have	the	ability	to	use	the	rhash	plugins
to	compute	checksum	of	sections	in	the	binary.

$	rabin2	-K	md5	-S	/bin/ls

Rahash2

284

Obtaining	hashes	within	radare2	session
To	 calculate	 a	 checksum	 of	 current	 block	 when	 running	 radare2,	 use	 the	 	ph	 	 command.	 Pass	 an
algorithm	name	to	it	as	a	parameter.	An	example	session:

$	radare2	/bin/ls

[0x08049790]>	bf	entry0

[0x08049790]>	ph	md5

d2994c75adaa58392f953a448de5fba7

You	can	use	all	hashing	algorithms	supported	by		rahash2	:

Rahash2

285

[0x00000000]>	ph?

md5

sha1

sha256

sha384

sha512

md4

xor

xorpair

parity

entropy

hamdist

pcprint

mod255

xxhash

adler32

luhn

crc8smbus

crc15can

crc16

crc16hdlc

crc16usb

crc16citt

crc24

crc32

crc32c

crc32ecma267

crc32bzip2

crc32d

crc32mpeg2

crc32posix

crc32q

crc32jamcrc

crc32xfer

crc64

crc64ecma

crc64we

crc64xz

crc64iso

The		ph		command	accepts	an	optional	numeric	argument	to	specify	length	of	byte	range	to	be	hashed,
instead	of	default	block	size.	For	example:

Rahash2

286

[0x08049A80]>	ph	md5	32

9b9012b00ef7a94b5824105b7aaad83b

[0x08049A80]>	ph	md5	64

a71b087d8166c99869c9781e2edcf183

[0x08049A80]>	ph	md5	1024

a933cc94cd705f09a41ecc80c0041def

Rahash2

287

Examples
The	 rahash2	 tool	 can	 be	 used	 to	 calculate	 checksums	 and	 has	 functions	 of	 byte	 streams,	 files,	 text
strings.

$	rahash2	-h

Usage:	rahash2	[-rBhLkv]	[-b	S]	[-a	A]	[-c	H]	[-E	A]	[-s	S]	[-f	O]	[-t	O]	[file]	...

	-a	algo					comma	separated	list	of	algorithms	(default	is	'sha256')

	-b	bsize				specify	the	size	of	the	block	(instead	of	full	file)

	-B										show	per-block	hash

	-c	hash					compare	with	this	hash

	-e										swap	endian	(use	little	endian)

	-E	algo					encrypt.	Use	-S	to	set	key	and	-I	to	set	IV

	-D	algo					decrypt.	Use	-S	to	set	key	and	-I	to	set	IV

	-f	from					start	hashing	at	given	address

	-i	num						repeat	hash	N	iterations

	-I	iv							use	give	initialization	vector	(IV)	(hexa	or	s:string)

	-S	seed					use	given	seed	(hexa	or	s:string)	use	^	to	prefix	(key	for	-E)

													(-	will	slurp	the	key	from	stdin,	the	@	prefix	points	to	a	file

	-k										show	hash	using	the	openssh's	randomkey	algorithm

	-q										run	in	quiet	mode	(-qq	to	show	only	the	hash)

	-L										list	all	available	algorithms	(see	-a)

	-r										output	radare	commands

	-s	string			hash	this	string	instead	of	files

	-t	to							stop	hashing	at	given	address

	-x	hexstr			hash	this	hexpair	string	instead	of	files

	-v										show	version	information

To	obtain	an	MD5	hash	value	of	a	text	string,	use	the		-s		option:

$	rahash2	-q	-a	md5	-s	'hello	world'

5eb63bbbe01eeed093cb22bb8f5acdc3

It	is	possible	to	calculate	hash	values	for	contents	of	files.	But	do	not	attempt	to	do	it	for	very	large	files
because	rahash2	buffers	the	whole	input	in	memory	before	computing	the	hash.

To	apply	all	algorithms	known	to	rahash2,	use		all		as	an	algorithm	name:

Rahash	Tool

288

$	rahash2	-a	all	/bin/ls

/bin/ls:	0x00000000-0x000268c7	md5:	767f0fff116bc6584dbfc1af6fd48fc7

/bin/ls:	0x00000000-0x000268c7	sha1:	404303f3960f196f42f8c2c12970ab0d49e28971

/bin/ls:	0x00000000-0x000268c7	sha256:	74ea05150acf311484bddd19c608aa02e6bf3332a0f0805a4

deb278e17396354

/bin/ls:	0x00000000-0x000268c7	sha384:	c6f811287514ceeeaabe73b5b2f54545036d6fd3a192ea5d6

a1fcd494d46151df4117e1c62de0884cbc174c8db008ed1

/bin/ls:	0x00000000-0x000268c7	sha512:	53e4950a150f06d7922a2ed732060e291bf0e1c2ac20bc72a

41b9303e1f2837d50643761030d8b918ed05d12993d9515e1ac46676bc0d15ac94d93d8e446fa09

/bin/ls:	0x00000000-0x000268c7	md4:	fdfe7c7118a57c1ff8c88a51b16fc78c

/bin/ls:	0x00000000-0x000268c7	xor:	42

/bin/ls:	0x00000000-0x000268c7	xorpair:	d391

/bin/ls:	0x00000000-0x000268c7	parity:	00

/bin/ls:	0x00000000-0x000268c7	entropy:	5.95471783

/bin/ls:	0x00000000-0x000268c7	hamdist:	00

/bin/ls:	0x00000000-0x000268c7	pcprint:	22

/bin/ls:	0x00000000-0x000268c7	mod255:	ef

/bin/ls:	0x00000000-0x000268c7	xxhash:	76554666

/bin/ls:	0x00000000-0x000268c7	adler32:	7704fe60

/bin/ls:	0x00000000-0x000268c7	luhn:	01

/bin/ls:	0x00000000-0x000268c7	crc8smbus:	8d

/bin/ls:	0x00000000-0x000268c7	crc15can:	1cd5

/bin/ls:	0x00000000-0x000268c7	crc16:	d940

/bin/ls:	0x00000000-0x000268c7	crc16hdlc:	7847

/bin/ls:	0x00000000-0x000268c7	crc16usb:	17bb

/bin/ls:	0x00000000-0x000268c7	crc16citt:	67f7

/bin/ls:	0x00000000-0x000268c7	crc24:	3e7053

/bin/ls:	0x00000000-0x000268c7	crc32:	c713f78f

/bin/ls:	0x00000000-0x000268c7	crc32c:	6cfba67c

/bin/ls:	0x00000000-0x000268c7	crc32ecma267:	b4c809d6

/bin/ls:	0x00000000-0x000268c7	crc32bzip2:	a1884a09

/bin/ls:	0x00000000-0x000268c7	crc32d:	d1a9533c

/bin/ls:	0x00000000-0x000268c7	crc32mpeg2:	5e77b5f6

/bin/ls:	0x00000000-0x000268c7	crc32posix:	6ba0dec3

/bin/ls:	0x00000000-0x000268c7	crc32q:	3166085c

/bin/ls:	0x00000000-0x000268c7	crc32jamcrc:	38ec0870

/bin/ls:	0x00000000-0x000268c7	crc32xfer:	7504089d

/bin/ls:	0x00000000-0x000268c7	crc64:	b6471d3093d94241

/bin/ls:	0x00000000-0x000268c7	crc64ecma:	b6471d3093d94241

/bin/ls:	0x00000000-0x000268c7	crc64we:	8fe37d44a47157bd

/bin/ls:	0x00000000-0x000268c7	crc64xz:	ea83e12c719e0d79

/bin/ls:	0x00000000-0x000268c7	crc64iso:	d243106d9853221c

Rahash	Tool

289

Plugins
radare2	is	implemented	on	top	of	a	bunch	of	libraries,	almost	every	of	those	libraries	support	plugins	to
extend	the	capabilities	of	the	library	or	add	support	for	different	targets.

This	section	aims	to	explain	what	are	the	plugins,	how	to	write	them	and	use	them

Types	of	plugins

$	ls	libr/*/p	|	grep	:	|	awk	-F	/	'{	print	$2	}'

anal						#	analysis	plugins

asm							#	assembler/disassembler	plugins

bin							#	binary	format	parsing	plugins

bp								#	breakpoint	plugins

core						#	core	plugins	(implement	new	commands)

crypto				#	encrypt/decrypt/hash/...

debug					#	debugger	backends

egg							#	shellcode	encoders,	etc

fs								#	filesystems	and	partition	tables

io								#	io	plugins

lang						#	embedded	scripting	languages

parse					#	disassembler	parsing	plugins

reg							#	arch	register	logic

Listing	plugins
Some	r2	tools	have	the		-L		flag	to	list	all	the	plugins	associated	to	the	functionality.

rasm2	-L				#	list	asm	plugins

r2	-L							#	list	io	plugins

rabin2	-L			#	list	bin	plugins

rahash2	-L		#	list	hash/crypto/encoding	plugins

There	are	more	plugins	 in	 r2land,	we	can	 list	 them	from	 inside	 r2,	and	 this	 is	done	by	using	 the	 	L	
suffix.

Those	are	some	of	the	commands:

Plugins

290

L										#	list	core	plugins

iL									#	list	bin	plugins

dL									#	list	debug	plugins

mL									#	list	fs	plugins

ph									#	print	support	hash	algoriths

But	also	using	the		?		value	in	the	associated	eval	vars.

e	asm.arch=?			#	list	assembler/disassembler	plugins

e	anal.arch=?		#	list	analysis	plugins

Notes
Note	there	are	some	inconsistencies	that	most	likely	will	be	fixed	in	the	future	radare2	versions.

Plugins

291

IO	plugins
All	access	to	files,	network,	debugger	and	all	 input/output	 in	general	 is	wrapped	by	an	IO	abstraction
layer	that	allows	radare	to	treat	all	data	as	if	it	were	just	a	file.

IO	plugins	are	the	ones	used	to	wrap	the	open,	read,	write	and	'system'	on	virtual	file	systems.	You	can
make	radare	understand	anything	as	a	plain	file.	E.g.	a	socket	connection,	a	remote	radare	session,	a	file,
a	process,	a	device,	a	gdb	session.

So,	when	radare	reads	a	block	of	bytes,	it	is	the	task	of	an	IO	plugin	to	get	these	bytes	from	any	place
and	put	them	into	internal	buffer.	An	IO	plugin	is	chosen	by	a	file's	URI	to	be	opened.	Some	examples:

Debugging	URIs

$	r2	dbg:///bin/ls

$	r2	pid://1927

Remote	sessions

$	r2	rap://:1234

$	r2	rap://<host>:1234//bin/ls

Virtual	buffers

$	r2	malloc://512

shortcut	for

$	r2	-

You	can	get	a	list	of	the	radare	IO	plugins	by	typing		radare2	-L	:

IO	plugins

292

$	r2	-L

rw_		ar							Open	ar/lib	files	[ar|lib]://[file//path]	(LGPL3)

rw_		bfdbg				BrainFuck	Debugger	(bfdbg://path/to/file)	(LGPL3)

rwd		bochs				Attach	to	a	BOCHS	debugger	(LGPL3)

r_d		debug				Native	debugger	(dbg:///bin/ls	dbg://1388	pidof://	waitfor://)	(LGPL3)

	v0.2.0	pancake

rw_		default		open	local	files	using	def_mmap://	(LGPL3)

rwd		gdb						Attach	to	gdbserver,	'qemu	-s',	gdb://localhost:1234	(LGPL3)

rw_		gprobe			open	gprobe	connection	using	gprobe://	(LGPL3)

rw_		gzip					read/write	gzipped	files	(LGPL3)

rw_		http					http	get	(http://rada.re/)	(LGPL3)

rw_		ihex					Intel	HEX	file	(ihex://eeproms.hex)	(LGPL)

r__		mach					mach	debug	io	(unsupported	in	this	platform)	(LGPL)

rw_		malloc			memory	allocation	(malloc://1024	hex://cd8090)	(LGPL3)

rw_		mmap					open	file	using	mmap://	(LGPL3)

rw_		null					null-plugin	(null://23)	(LGPL3)

rw_		procpid		/proc/pid/mem	io	(LGPL3)

rwd		ptrace			ptrace	and	/proc/pid/mem	(if	available)	io	(LGPL3)

rwd		qnx						Attach	to	QNX	pdebug	instance,	qnx://host:1234	(LGPL3)

rw_		r2k						kernel	access	API	io	(r2k://)	(LGPL3)

rw_		r2pipe			r2pipe	io	plugin	(MIT)

rw_		r2web				r2web	io	client	(r2web://cloud.rada.re/cmd/)	(LGPL3)

rw_		rap						radare	network	protocol	(rap://:port	rap://host:port/file)	(LGPL3)

rw_		rbuf					RBuffer	IO	plugin:	rbuf://	(LGPL)

rw_		self					read	memory	from	myself	using	'self://'	(LGPL3)

rw_		shm						shared	memory	resources	(shm://key)	(LGPL3)

rw_		sparse			sparse	buffer	allocation	(sparse://1024	sparse://)	(LGPL3)

rw_		tcp						load	files	via	TCP	(listen	or	connect)	(LGPL3)

rwd		windbg			Attach	to	a	KD	debugger	(windbg://socket)	(LGPL3)

rwd		winedbg		Wine-dbg	io	and	debug.io	plugin	for	r2	(MIT)

rw_		zip						Open	zip	files	[apk|ipa|zip|zipall]://[file//path]	(BSD)

IO	plugins

293

Implementing	a	new	disassembly	plugin
Radare2	has	modular	architecture,	 thus	adding	support	 for	a	new	architecture	 is	very	easy,	 if	you	are
fluent	in	C.	For	various	reasons	it	might	be	easier	to	implement	it	out	of	the	tree.	For	this	we	will	need
to	create	single	C	file,	called		asm_mycpu.c		and	makefile	for	it.

The	key	thing	of	RAsm	plugin	is	a	structure

RAsmPlugin	r_asm_plugin_mycpu	=	{

				.name	=	"mycpu",

				.license	=	"LGPL3",

				.desc	=	"MYCPU	disassembly	plugin",

				.arch	=	"mycpu",

				.bits	=	32,

				.endian	=	R_SYS_ENDIAN_LITTLE,

				.disassemble	=	&disassemble

};

where		.disassemble		is	a	pointer	to	disassembly	function,	which	accepts	the	bytes	buffer	and	length:

static	int	disassemble(RAsm	*a,	RAsmOp	*op,	const	ut8	*buf,	int	len)

Makefile

Asm	plugins

294

NAME=asm_snes

R2_PLUGIN_PATH=$(shell	r2	-H|grep	USER_PLUGINS|awk	'{print	$$2}')

CFLAGS=-g	-fPIC	$(shell	pkg-config	--cflags	r_anal)

LDFLAGS=-shared	$(shell	pkg-config	--libs	r_anal)

OBJS=$(NAME).o

SO_EXT=$(shell	uname|grep	-q	Darwin	&&	echo	dylib	||	echo	so)

LIB=$(NAME).$(SO_EXT)

all:	$(LIB)

clean:

				rm	-f	$(LIB)	$(OBJS)

$(LIB):	$(OBJS)

				$(CC)	$(CFLAGS)	$(LDFLAGS)	$(OBJS)	-o	$(LIB)

install:

				cp	-f	asm_mycpu.$(SO_EXT)	$(R2_PLUGIN_PATH)

uninstall:

				rm	-f	$(R2_PLUGIN_PATH)/asm_mycpu.$(SO_EXT)

asm_mycpu.c

Asm	plugins

295

/*	radare	-	LGPL	-	Copyright	2018	-	user	*/

#include	<stdio.h>

#include	<string.h>

#include	<r_types.h>

#include	<r_lib.h>

#include	<r_asm.h>

static	int	disassemble(RAsm	*a,	RAsmOp	*op,	const	ut8	*buf,	int	len)	{

				struct	op_cmd	cmd	=	{

								.instr	=	"",

								.operands	=	""

				};

				if	(len	<	2)	return	-1;

				int	ret	=	decode_opcode	(buf,	len,	&cmd);

				if	(ret	>	0)	{

								snprintf	(op->buf_asm,	R_ASM_BUFSIZE,	"%s	%s",

														cmd.instr,	cmd.operands);

				}

				return	op->size	=	ret;

}

RAsmPlugin	r_asm_plugin_mycpu	=	{

				.name	=	"mycpu",

				.license	=	"LGPL3",

				.desc	=	"MYCPU	disassembly	plugin",

				.arch	=	"mycpu",

				.bits	=	32,

				.endian	=	R_SYS_ENDIAN_LITTLE,

				.disassemble	=	&disassemble

};

#ifndef	CORELIB

RLibStruct	radare_plugin	=	{

				.type	=	R_LIB_TYPE_ASM,

				.data	=	&r_asm_plugin_mycpu,

				.version	=	R2_VERSION

};

#endif

After	compiling	radare2	will	list	this	plugin	in	the	output:

_d__		_8_32						mycpu								LGPL3			MYCPU

Moving	plugin	into	the	tree

Asm	plugins

296

Pushing	a	new	architecture	into	the	main	branch	of	r2	requires	to	modify	several	files	in	order	to	make	it
fit	into	the	way	the	rest	of	plugins	are	built.

List	of	affected	files:

	plugins.def.cfg		:	add	the		asm.mycpu		plugin	name	string	in	there
	libr/asm/p/mycpu.mk		:	build	instructions
	libr/asm/p/asm_mycpu.c		:	implementation
	libr/include/r_asm.h		:	add	the	struct	definition	in	there

Check	out	how	the	NIOS	II	CPU	disassembly	plugin	was	implemented	by	reading	those	commits:

Implement	 RAsm	 plugin:
https://github.com/radare/radare2/commit/933dc0ef6ddfe44c88bbb261165bf8f8b531476b

Implement	 RAnal	 plugin:
https://github.com/radare/radare2/commit/ad430f0d52fbe933e0830c49ee607e9b0e4ac8f2

Asm	plugins

297

https://github.com/radare/radare2/commit/933dc0ef6ddfe44c88bbb261165bf8f8b531476b
https://github.com/radare/radare2/commit/ad430f0d52fbe933e0830c49ee607e9b0e4ac8f2

Implementing	a	new	analysis	plugin
After	implementing	disassembly	plugin,	you	might	have	noticed	that	output	is	far	from	being	good	-	no
proper	highlighting,	no	 reference	 lines	and	 so	on.	This	 is	because	 radare2	 requires	every	architecture
plugin	to	provide	also	analysis	information	about	every	opcode.	At	the	moment	the	implementation	of
disassembly	and	opcodes	analysis	is	separated	between	two	modules	-	RAsm	and	RAnal.	Thus	we	need
to	write	 an	 analysis	 plugin	 too.	 The	 principle	 is	 very	 similar	 -	 you	 just	 need	 to	 create	 a	 C	 file	 and
corresponding	Makefile.

They	structure	of	RAnal	plugin	looks	like

RAnalPlugin	r_anal_plugin_v810	=	{

				.name	=	"mycpu",

				.desc	=	"MYCPU	code	analysis	plugin",

				.license	=	"LGPL3",

				.arch	=	"mycpu",

				.bits	=	32,

				.op	=	mycpu_op,

				.esil	=	true,

				.set_reg_profile	=	set_reg_profile,

};

Like	with	disassembly	plugin	there	is	a	key	function	-	 	mycpu_op		which	scans	the	opcode	and	builds
RAnalOp	structure.	On	the	other	hand,	in	this	example	analysis	plugins	also	performs	uplifting	to	ESIL,
which	 is	 enabled	 in	 	.esil	 =	 true	 	 statement.	 Thus,	 	mycpu_op	 	 obliged	 to	 fill	 the	 corresponding
RAnalOp	ESIL	field	for	the	opcodes.	Second	important	thing	for	ESIL	uplifting	and	emulation	-	register
profile,	like	in	debugger,	which	is	set	within		set_reg_profile		function.

Makefile

Analysis	plugins

298

NAME=anal_snes

R2_PLUGIN_PATH=$(shell	r2	-H|grep	USER_PLUGINS|awk	'{print	$$2}')

CFLAGS=-g	-fPIC	$(shell	pkg-config	--cflags	r_anal)

LDFLAGS=-shared	$(shell	pkg-config	--libs	r_anal)

OBJS=$(NAME).o

SO_EXT=$(shell	uname|grep	-q	Darwin	&&	echo	dylib	||	echo	so)

LIB=$(NAME).$(SO_EXT)

all:	$(LIB)

clean:

				rm	-f	$(LIB)	$(OBJS)

$(LIB):	$(OBJS)

				$(CC)	$(CFLAGS)	$(LDFLAGS)	$(OBJS)	-o	$(LIB)

install:

				cp	-f	anal_snes.$(SO_EXT)	$(R2_PLUGIN_PATH)

uninstall:

				rm	-f	$(R2_PLUGIN_PATH)/anal_snes.$(SO_EXT)

anal_snes.c:

Analysis	plugins

299

/*	radare	-	LGPL	-	Copyright	2015	-	condret	*/

#include	<string.h>

#include	<r_types.h>

#include	<r_lib.h>

#include	<r_asm.h>

#include	<r_anal.h>

#include	"snes_op_table.h"

static	int	snes_anop(RAnal	*anal,	RAnalOp	*op,	ut64	addr,	const	ut8	*data,	int	len)	{

				memset	(op,	'\0',	sizeof	(RAnalOp));

				op->size	=	snes_op[data[0]].len;

				op->addr	=	addr;

				op->type	=	R_ANAL_OP_TYPE_UNK;

				switch	(data[0])	{

								case	0xea:

												op->type	=	R_ANAL_OP_TYPE_NOP;

												break;

				}

				return	op->size;

}

struct	r_anal_plugin_t	r_anal_plugin_snes	=	{

				.name	=	"snes",

				.desc	=	"SNES	analysis	plugin",

				.license	=	"LGPL3",

				.arch	=	R_SYS_ARCH_NONE,

				.bits	=	16,

				.init	=	NULL,

				.fini	=	NULL,

				.op	=	&snes_anop,

				.set_reg_profile	=	NULL,

				.fingerprint_bb	=	NULL,

				.fingerprint_fcn	=	NULL,

				.diff_bb	=	NULL,

				.diff_fcn	=	NULL,

				.diff_eval	=	NULL

};

#ifndef	CORELIB

struct	r_lib_struct_t	radare_plugin	=	{

				.type	=	R_LIB_TYPE_ANAL,

				.data	=	&r_anal_plugin_snes,

				.version	=	R2_VERSION

};

#endif

After	compiling	radare2	will	list	this	plugin	in	the	output:

Analysis	plugins

300

dA		_8_16						snes								LGPL3			SuperNES	CPU

snes_op_table.h:	https://github.com/radare/radare2/blob/master/libr/asm/arch/snes/snes_op_table.h

Example:

6502:	https://github.com/radare/radare2/commit/64636e9505f9ca8b408958d3c01ac8e3ce254a9b
SNES:	https://github.com/radare/radare2/commit/60d6e5a1b9d244c7085b22ae8985d00027624b49

Analysis	plugins

301

https://github.com/radare/radare2/blob/master/libr/asm/arch/snes/snes_op_table.h
https://github.com/radare/radare2/commit/64636e9505f9ca8b408958d3c01ac8e3ce254a9b
https://github.com/radare/radare2/commit/60d6e5a1b9d244c7085b22ae8985d00027624b49

Implementing	a	new	format

To	enable	virtual	addressing
In		info		add		et->has_va	=	1;		and		ptr->srwx		with	the		R_BIN_SCN_MAP;		attribute

Create	a	folder	with	file	format	name	in	libr/bin/format
Makefile:

NAME=bin_nes

R2_PLUGIN_PATH=$(shell	r2	-hh|grep	R2_LIBR_PLUGINS|awk	'{print	$$2}')

CFLAGS=-g	-fPIC	$(shell	pkg-config	--cflags	r_bin)

LDFLAGS=-shared	$(shell	pkg-config	--libs	r_bin)

OBJS=$(NAME).o

SO_EXT=$(shell	uname|grep	-q	Darwin	&&	echo	dylib	||	echo	so)

LIB=$(NAME).$(SO_EXT)

all:	$(LIB)

clean:

				rm	-f	$(LIB)	$(OBJS)

$(LIB):	$(OBJS)

				$(CC)	$(CFLAGS)	$(LDFLAGS)	$(OBJS)	-o	$(LIB)

install:

				cp	-f	$(NAME).$(SO_EXT)	$(R2_PLUGIN_PATH)

uninstall:

				rm	-f	$(R2_PLUGIN_PATH)/$(NAME).$(SO_EXT)

bin_nes.c:

#include	<r_bin.h>

static	int	check(RBinFile	*arch);

static	int	check_bytes(const	ut8	*buf,	ut64	length);

static	void	*	load_bytes(RBinFile	*arch,	const	ut8	*buf,	ut64	sz,	ut64	loadaddr,	Sdb	*sd

b){

				check_bytes	(buf,	sz);

				return	R_NOTNULL;

}

Bin	plugins

302

static	int	check(RBinFile	*arch)	{

				const	ut8	*bytes	=	arch	?	r_buf_buffer	(arch->buf)	:	NULL;

				ut64	sz	=	arch	?	r_buf_size	(arch->buf):	0;

				return	check_bytes	(bytes,	sz);

}

static	int	check_bytes(const	ut8	*buf,	ut64	length)	{

				if	(!buf	||	length	<	4)	return	false;

				return	(!memcmp	(buf,	"\x4E\x45\x53\x1A",	4));

}

static	RBinInfo*	info(RBinFile	*arch)	{

				RBinInfo	*ret	=	R_NEW0	(RBinInfo);

				if	(!ret)	return	NULL;

				if	(!arch	||	!arch->buf)	{

								free	(ret);

								return	NULL;

				}

				ret->file	=	strdup	(arch->file);

				ret->type	=	strdup	("ROM");

				ret->machine	=	strdup	("Nintendo	NES");

				ret->os	=	strdup	("nes");

				ret->arch	=	strdup	("6502");

				ret->bits	=	8;

				return	ret;

}

struct	r_bin_plugin_t	r_bin_plugin_nes	=	{

				.name	=	"nes",

				.desc	=	"NES",

				.license	=	"BSD",

				.init	=	NULL,

				.fini	=	NULL,

				.get_sdb	=	NULL,

				.load	=	NULL,

				.load_bytes	=	&load_bytes,

				.check	=	&check,

				.baddr	=	NULL,

				.check_bytes	=	&check_bytes,

				.entries	=	NULL,

				.sections	=	NULL,

				.info	=	&info,

};

#ifndef	CORELIB

Bin	plugins

303

struct	r_lib_struct_t	radare_plugin	=	{

				.type	=	R_LIB_TYPE_BIN,

				.data	=	&r_bin_plugin_nes,

				.version	=	R2_VERSION

};

#endif

Some	Examples
XBE	-	https://github.com/radare/radare2/pull/972
COFF	-	https://github.com/radare/radare2/pull/645
TE	-	https://github.com/radare/radare2/pull/61
Zimgz	-	https://github.com/radare/radare2/commit/d1351cf836df3e2e63043a6dc728e880316f00eb
OMF	-	https://github.com/radare/radare2/commit/44fd8b2555a0446ea759901a94c06f20566bbc40

Bin	plugins

304

https://github.com/radare/radare2/pull/972
https://github.com/radare/radare2/pull/645
https://github.com/radare/radare2/pull/61
https://github.com/radare/radare2/commit/d1351cf836df3e2e63043a6dc728e880316f00eb
https://github.com/radare/radare2/commit/44fd8b2555a0446ea759901a94c06f20566bbc40

Write	a	debugger	plugin
Adding	the	debugger	registers	profile	into	the	shlr/gdb/src/core.c
Adding	 the	 registers	 profile	 and	 architecture	 support	 in	 the	 libr/debug/p/debug_native.c	 and
libr/debug/p/debug_gdb.c
Add	the	code	to	apply	the	profiles	into	the	function		r_debug_gdb_attach(RDebug	*dbg,	int	pid)	

If	you	want	to	add	support	for	the	gdb,	you	can	see	the	register	profile	in	the	active	gdb	session	using
command		maint	print	registers	.

More	to	come..
Related	article:	http://radare.today/posts/extending-r2-with-new-plugins/

Some	commits	related	to	"Implementing	a	new	architecture"

Extensa:	https://github.com/radare/radare2/commit/6f1655c49160fe9a287020537afe0fb8049085d7
Malbolge:	https://github.com/radare/radare2/pull/579
6502:	https://github.com/radare/radare2/pull/656
h8300:	https://github.com/radare/radare2/pull/664
GBA:	https://github.com/radare/radare2/pull/702
CR16:	https://github.com/radare/radare2/pull/721/	&&	726
XCore:	https://github.com/radare/radare2/commit/bb16d1737ca5a471142f16ccfa7d444d2713a54d
SharpLH5801:
https://github.com/neuschaefer/radare2/commit/f4993cca634161ce6f82a64596fce45fe6b818e7
MSP430:	https://github.com/radare/radare2/pull/1426
HP-PA-RISC:
https://github.com/radare/radare2/commit/f8384feb6ba019b91229adb8fd6e0314b0656f7b
V810:	https://github.com/radare/radare2/pull/2899
TMS320:	https://github.com/radare/radare2/pull/596

Implementing	a	new	pseudo	architecture
This	is	an	simple	plugin	for	z80	that	you	may	use	as	example:

https://github.com/radare/radare2/commit/8ff6a92f65331cf8ad74cd0f44a60c258b137a06

Other	plugins

305

http://radare.today/posts/extending-r2-with-new-plugins/
https://github.com/radare/radare2/commit/6f1655c49160fe9a287020537afe0fb8049085d7
https://github.com/radare/radare2/pull/579
https://github.com/radare/radare2/pull/656
https://github.com/radare/radare2/pull/664
https://github.com/radare/radare2/pull/702
https://github.com/radare/radare2/pull/721/
https://github.com/radare/radare2/commit/bb16d1737ca5a471142f16ccfa7d444d2713a54d
https://github.com/neuschaefer/radare2/commit/f4993cca634161ce6f82a64596fce45fe6b818e7
https://github.com/radare/radare2/pull/1426
https://github.com/radare/radare2/commit/f8384feb6ba019b91229adb8fd6e0314b0656f7b
https://github.com/radare/radare2/pull/2899
https://github.com/radare/radare2/pull/596
https://github.com/radare/radare2/commit/8ff6a92f65331cf8ad74cd0f44a60c258b137a06

Other	plugins

306

Python	plugins
At	first,	to	be	able	to	write	a	plugins	in	Python	for	radare2	you	need	to	install	r2lang	plugin.	If	you're
going	 to	use	Python	2,	 then	use	 	r2pm	-i	lang-python2	,	 otherwise	 (and	 recommended)	 -	 install	 the
Python	 3	 version:	 	r2pm	 -i	 lang-python3	 .	 Note	 -	 in	 the	 following	 examples	 there	 are	 missing
functions	of	the	actual	decoding	for	the	sake	of	readability!

For	this	you	need	to	do	this:

1.	 	import	r2lang		and		from	r2lang	import	R		(for	constants)
2.	 Make	 a	 function	 with	 2	 subfunctions	 -	 	assemble	 	 and	 	disassemble	 	 and	 returning	 plugin

structure	-	for	RAsm	plugin

def	mycpu(a):

	def	assemble(s):

					return	[1,	2,	3,	4]

	def	disassemble(memview,	addr):

					try:

									opcode	=	get_opcode(memview)	#	https://docs.python.org/3/library/stdtypes.h

tml#memoryview

									opstr	=	optbl[opcode][1]

									return	[4,	opstr]

					except:

									return	[4,	"unknown"]

3.	 This	structure	should	contain	a	pointers	to	these	2	functions	-		assemble		and		disassemble	

				return	{

												"name"	:	"mycpu",

												"arch"	:	"mycpu",

												"bits"	:	32,

												"endian"	:	"little",

												"license"	:	"GPL",

												"desc"	:	"MYCPU	disasm",

												"assemble"	:	assemble,

												"disassemble"	:	disassemble,

				}

1.	 Make	a	function	with	2	subfunctions	-		set_reg_profile		and		op		and	returning	plugin	structure	-
for	RAnal	plugin

Python	plugins

307

def	mycpu_anal(a):

							def	set_reg_profile():

								profile	=	"=PC				pc\n"	+	\

								"=SP				sp\n"	+	\

								"gpr				r0				.32				0				0\n"	+	\

								"gpr				r1				.32				4				0\n"	+	\

								"gpr				r2				.32				8				0\n"	+	\

								"gpr				r3				.32				12				0\n"	+	\

								"gpr				r4				.32				16				0\n"	+	\

								"gpr				r5				.32				20				0\n"	+	\

								"gpr				sp				.32				24				0\n"	+	\

								"gpr				pc				.32				28				0\n"

								return	profile

				def	op(memview,	pc):

								analop	=	{

												"type"	:	R.R_ANAL_OP_TYPE_NULL,

												"cycles"	:	0,

												"stackop"	:	0,

												"stackptr"	:	0,

												"ptr"	:	-1,

												"jump"	:	-1,

												"addr"	:	0,

												"eob"	:	False,

												"esil"	:	"",

								}

								try:

												opcode	=	get_opcode(memview)	#	https://docs.python.org/3/library/stdtypes.ht

ml#memoryview

												esilstr	=	optbl[opcode][2]

												if	optbl[opcode][0]	==	"J":	#	it's	jump

																analop["type"]	=	R.R_ANAL_OP_TYPE_JMP

																analop["jump"]	=	decode_jump(opcode,	j_mask)

																esilstr	=	jump_esil(esilstr,	opcode,	j_mask)

								except:

												result	=	analop

								#	Don't	forget	to	return	proper	instruction	size!

								return	[4,	result]

1.	 This	structure	should	contain	a	pointers	to	these	2	functions	-		set_reg_profile		and		op	

Python	plugins

308

				return	{

												"name"	:	"mycpu",

												"arch"	:	"mycpu",

												"bits"	:	32,

												"license"	:	"GPL",

												"desc"	:	"MYCPU	anal",

												"esil"	:	1,

												"set_reg_profile"	:	set_reg_profile,

												"op"	:	op,

				}

1.	 Then	register	those	using		r2lang.plugin("asm")		and		r2lang.plugin("anal")		respectively

print("Registering	MYCPU	disasm	plugin...")

print(r2lang.plugin("asm",	mycpu))

print("Registering	MYCPU	analysis	plugin...")

print(r2lang.plugin("anal",	mycpu_anal))

You	can	combine	everything	in	one	file	and	load	it	using		-i		option:

r2	-I	mycpu.py	some_file.bin

Or	you	can	load	it	from	the	r2	shell:		#!python	mycpu.py	

See	also:

Python
Javascript

Implementing	new	format	plugin	in	Python

Note	 -	 in	 the	 following	 examples	 there	 are	missing	 functions	 of	 the	 actual	 decoding	 for	 the	 sake	 of
readability!

For	this	you	need	to	do	this:

1.	 	import	r2lang	
2.	 Make	a	function	with	subfunctions:

	load	

	load_bytes	

	destroy	

Python	plugins

309

https://github.com/radare/radare2-bindings/blob/master/libr/lang/p/test-py-asm.py
https://github.com/radare/radare2-bindings/blob/master/libr/lang/p/dukasm.js

	check_bytes	

	baddr	

	entries	

	sections	

	imports	

	relocs	

	binsym	

	info	

and	returning	plugin	structure	-	for	RAsm	plugin

def	le_format(a):

	def	load(binf):

					return	[0]

	def	check_bytes(buf):

					try:

									if	buf[0]	==	77	and	buf[1]	==	90:

													lx_off,	=	struct.unpack("<I",	buf[0x3c:0x40])

													if	buf[lx_off]	==	76	and	buf[lx_off+1]	==	88:

																	return	[1]

									return	[0]

					except:

									return	[0]

and	 so	 on.	 Please	 be	 sure	 of	 the	 parameters	 for	 each	 function	 and	 format	 of	 returns.	Note,	 that
functions		entries	,		sections	,		imports	,		relocs		returns	a	list	of	special	formed	dictionaries	-
each	with	 a	 different	 type.	Other	 functions	 return	 just	 a	 list	 of	 numerical	 values,	 even	 if	 single
element	one.	There	is	a	special	function,	which	returns	information	about	the	file	-		info	:

	def	info(binf):

					return	[{

													"type"	:	"le",

													"bclass"	:	"le",

													"rclass"	:	"le",

													"os"	:	"OS/2",

													"subsystem"	:	"CLI",

													"machine"	:	"IBM",

													"arch"	:	"x86",

													"has_va"	:	0,

													"bits"	:	32,

													"big_endian"	:	0,

													"dbg_info"	:	0,

													}]

Python	plugins

310

3.	 This	structure	should	contain	a	pointers	to	the	most	important	functions	like		check_bytes	,		load	
and		load_bytes	,		entries	,		relocs	,		imports	.

				return	{

												"name"	:	"le",

												"desc"	:	"OS/2	LE/LX	format",

												"license"	:	"GPL",

												"load"	:	load,

												"load_bytes"	:	load_bytes,

												"destroy"	:	destroy,

												"check_bytes"	:	check_bytes,

												"baddr"	:	baddr,

												"entries"	:	entries,

												"sections"	:	sections,

												"imports"	:	imports,

												"symbols"	:	symbols,

												"relocs"	:	relocs,

												"binsym"	:	binsym,

												"info"	:	info,

				}

1.	 Then	you	need	to	register	it	as	a	file	format	plugin:

print("Registering	OS/2	LE/LX	plugin...")

print(r2lang.plugin("bin",	le_format))

Python	plugins

311

Debugging
It	is	common	to	have	an	issues	when	you	write	a	plugin,	especially	if	you	do	this	for	the	first	time.	This
is	why	debugging	them	is	very	important.	The	first	step	for	debugging	is	to	set	an	environment	variable
when	running	radare2	instance:

R_DEBUG=yes	r2	/bin/ls

Loading	/usr/local/lib/radare2/2.2.0-git//bin_xtr_dyldcache.so

Cannot	find	symbol	'radare_plugin'	in	library	'/usr/local/lib/radare2/2.2.0-git//bin_xtr

_dyldcache.so'

Cannot	open	/usr/local/lib/radare2/2.2.0-git//2.2.0-git

Loading	/home/user/.config/radare2/plugins/asm_mips_ks.so

PLUGIN	OK	0x55b205ea6070	fcn	0x7f298de08762

Loading	/home/user/.config/radare2/plugins/asm_sparc_ks.so

PLUGIN	OK	0x55b205ea6070	fcn	0x7f298de08762

Cannot	open	/home/user/.config/radare2/plugins/pimp

Cannot	open	/home/user/.config/radare2/plugins/yara

Loading	/home/user/.config/radare2/plugins/asm_arm_ks.so

PLUGIN	OK	0x55b205ea6070	fcn	0x7f298de08762

Loading	/home/user/.config/radare2/plugins/core_yara.so

Module	version	mismatch	/home/user/.config/radare2/plugins/core_yara.so	(2.1.0)	vs	(2.2.

0-git)

Loading	/home/user/.config/radare2/plugins/asm_ppc_ks.so

PLUGIN	OK	0x55b205ea6070	fcn	0x7f298de08762

Loading	/home/user/.config/radare2/plugins/lang_python3.so

PLUGIN	OK	0x55b205ea5ed0	fcn	0x7f298de08692

Loading	/usr/local/lib/radare2/2.2.0-git/bin_xtr_dyldcache.so

Cannot	find	symbol	'radare_plugin'	in	library	'/usr/local/lib/radare2/2.2.0-git/bin_xtr_

dyldcache.so'

Cannot	open	/usr/local/lib/radare2/2.2.0-git/2.2.0-git

Cannot	open	directory	'/usr/local/lib/radare2-extras/2.2.0-git'

Cannot	open	directory	'/usr/local/lib/radare2-bindings/2.2.0-git'

USER	CONFIG	loaded	from	/home/user/.config/radare2/radare2rc

	--	In	visual	mode	press	'c'	to	toggle	the	cursor	mode.	Use	tab	to	navigate

[0x00005520]>

Debugging

312

Testing	the	plugin
This	 plugin	 is	 used	 by	 rasm2	 and	 r2.	 You	 can	 verify	 that	 the	 plugin	 is	 properly	 loaded	 with	 this
command:

$	rasm2	-L	|	grep	mycpu

_d		mycpu								My	CPU	disassembler		(LGPL3)

Let's	open	an	empty	file	using	the	'mycpu'	arch	and	write	some	random	code	there.

$	r2	-

	--	I	endians	swap

[0x00000000]>	e	asm.arch=mycpu

[0x00000000]>	woR

[0x00000000]>	pd	10

											0x00000000				888e									mov	r8,	14

											0x00000002				b2a5									ifnot	r10,	r5

											0x00000004				3f67									ret

											0x00000006				7ef6									bl	r15,	r6

											0x00000008				2701									xor	r0,	1

											0x0000000a				9826									mov	r2,	6

											0x0000000c				478d									xor	r8,	13

											0x0000000e				6b6b									store	r6,	11

											0x00000010				1382									add	r8,	r2

											0x00000012				7f15									ret

Yay!	it	works..	and	the	mandatory	oneliner	too!

r2	-nqamycpu	-cwoR	-cpd'	10'	-

Testing

313

Creating	an	r2pm	package	of	the	plugin
As	you	remember	radare2	has	its	own	packaging	manager	and	we	can	easily	add	newly	written	plugin
for	everyone	to	access.

All	packages	are	located	in	radare2-pm	repository,	and	have	very	simple	text	format.

R2PM_BEGIN

R2PM_GIT	"https://github.com/user/mycpu"

R2PM_DESC	"[r2-arch]	MYCPU	disassembler	and	analyzer	plugins"

R2PM_INSTALL()	{

				${MAKE}	clean

				${MAKE}	all	||	exit	1

				${MAKE}	install	R2PM_PLUGDIR="${R2PM_PLUGDIR}"

}

R2PM_UNINSTALL()	{

				rm	-f	"${R2PM_PLUGDIR}/asm_mycpu."*

				rm	-f	"${R2PM_PLUGDIR}/anal_mycpu."*

}

R2PM_END

Then	add	it	in	the		/db		directory	of	radare2-pm	repository	and	send	a	pull	request	to	the	mainline.

Packaging

314

https://github.com/radare/radare2-pm

Crackmes
Crackmes	 (from	 "crack	me"	 challenge)	 are	 the	 training	 ground	 for	 reverse	 engineering	 people.	 This
section	will	go	over	tutorials	on	how	to	defeat	various	crackmes	using	r2.

Crackmes

315

IOLI	CrackMes
The	IOLI	crackme	is	a	good	starting	point	for	learning	r2.	This	is	a	set	of	tutorials	based	on	the	tutorial
at	dustri

The	IOLI	crackmes	are	available	at	a	locally	hosted	mirror

IOLI

316

http://dustri.org/b/defeating-ioli-with-radare2.html
https://github.com/radare/radare2book/tree/master/crackmes/ioli/IOLI-crackme.tar.gz

IOLI	0x00
This	is	the	first	IOLI	crackme,	and	the	easiest	one.

$./crackme0x00

IOLI	Crackme	Level	0x00

Password:	1234

Invalid	Password!

The	first	thing	to	check	is	if	the	password	is	just	plaintext	inside	the	file.	In	this	case,	we	don't	need	to
do	any	disassembly,	and	we	can	just	use	rabin2	with	the	-z	flag	to	search	for	strings	in	the	binary.

$	rabin2	-z	./crackme0x00

vaddr=0x08048568	paddr=0x00000568	ordinal=000	sz=25	len=24	section=.rodata	type=a	string

=IOLI	Crackme	Level	0x00\n

vaddr=0x08048581	paddr=0x00000581	ordinal=001	sz=11	len=10	section=.rodata	type=a	string

=Password:

vaddr=0x0804858f	paddr=0x0000058f	ordinal=002	sz=7	len=6	section=.rodata	type=a	string=2

50382

vaddr=0x08048596	paddr=0x00000596	ordinal=003	sz=19	len=18	section=.rodata	type=a	string

=Invalid	Password!\n

vaddr=0x080485a9	paddr=0x000005a9	ordinal=004	sz=16	len=15	section=.rodata	type=a	string

=Password	OK	:)\n

So	we	know	what	the	following	section	is,	this	section	is	the	header	shown	when	the	application	is	run.

vaddr=0x08048568	paddr=0x00000568	ordinal=000	sz=25	len=24	section=.rodata	type=a	string

=IOLI	Crackme	Level	0x00\n

Here	we	have	the	prompt	for	the	password.

vaddr=0x08048581	paddr=0x00000581	ordinal=001	sz=11	len=10	section=.rodata	type=a	string

=Password:

This	is	the	error	on	entering	an	invalid	password.

vaddr=0x08048596	paddr=0x00000596	ordinal=003	sz=19	len=18	section=.rodata	type=a	string

=Invalid	Password!\n

IOLI	0x00

317

This	is	the	message	on	the	password	being	accepted.

vaddr=0x080485a9	paddr=0x000005a9	ordinal=004	sz=16	len=15	section=.rodata	type=a	string

=Password	OK	:)\n

But	what	is	this?	It's	a	string,	but	we	haven't	seen	it	in	running	the	application	yet.

vaddr=0x0804858f	paddr=0x0000058f	ordinal=002	sz=7	len=6	section=.rodata	type=a	string=2

50382

Let's	give	this	a	shot.

$./crackme0x00

IOLI	Crackme	Level	0x00

Password:	250382

Password	OK	:)

So	we	now	know	that	250382	is	the	password,	and	have	completed	this	crackme.

IOLI	0x00

318

IOLI	0x01
This	is	the	second	IOLI	crackme.

$./crackme0x01

IOLI	Crackme	Level	0x01

Password:	test

Invalid	Password!

Let's	check	for	strings	with	rabin2.

$	rabin2	-z	./crackme0x01

vaddr=0x08048528	paddr=0x00000528	ordinal=000	sz=25	len=24	section=.rodata	type=a	string

=IOLI	Crackme	Level	0x01\n

vaddr=0x08048541	paddr=0x00000541	ordinal=001	sz=11	len=10	section=.rodata	type=a	string

=Password:

vaddr=0x0804854f	paddr=0x0000054f	ordinal=002	sz=19	len=18	section=.rodata	type=a	string

=Invalid	Password!\n

vaddr=0x08048562	paddr=0x00000562	ordinal=003	sz=16	len=15	section=.rodata	type=a	string

=Password	OK	:)\n

This	isn't	going	to	be	as	easy	as	0x00.	Let's	try	disassembly	with	r2.

IOLI	0x01

319

$	r2	./crackme0x01	

--	Use	`zoom.byte=printable`	in	zoom	mode	('z'	in	Visual	mode)	to	find	strings

[0x08048330]>	aa

[0x08048330]>	pdf@main

/	(fcn)	main	113

|										;	var	int	local_4	@	ebp-0x4

|										;	DATA	XREF	from	0x08048347	(entry0)

|										0x080483e4				55											push	ebp

|										0x080483e5				89e5									mov	ebp,	esp

|										0x080483e7				83ec18							sub	esp,	0x18

|										0x080483ea				83e4f0							and	esp,	-0x10

|										0x080483ed				b800000000			mov	eax,	0

|										0x080483f2				83c00f							add	eax,	0xf

|										0x080483f5				83c00f							add	eax,	0xf

|										0x080483f8				c1e804							shr	eax,	4

|										0x080483fb				c1e004							shl	eax,	4

|										0x080483fe				29c4									sub	esp,	eax

|										0x08048400				c7042428850.	mov	dword	[esp],	str.IOLI_Crackme_Level_0x01_n	;	[

0x8048528:4]=0x494c4f49		;	"IOLI	Crackme	Level	0x01."	@	0x8048528

|										0x08048407				e810ffffff			call	sym.imp.printf

|													sym.imp.printf(unk)

|										0x0804840c				c7042441850.	mov	dword	[esp],	str.Password_	;	[0x8048541:4]=0x7

3736150		;	"Password:	"	@	0x8048541

|										0x08048413				e804ffffff			call	sym.imp.printf

|													sym.imp.printf()

|										0x08048418				8d45fc							lea	eax,	dword	[ebp	+	0xfffffffc]

|										0x0804841b				89442404					mov	dword	[esp	+	4],	eax	;	[0x4:4]=0x10101

|										0x0804841f				c704244c850.	mov	dword	[esp],	0x804854c	;	[0x804854c:4]=0x49006

425		;	"%d"	@	0x804854c

|										0x08048426				e8e1feffff			call	sym.imp.scanf

|													sym.imp.scanf()

|										0x0804842b				817dfc9a140.	cmp	dword	[ebp	+	0xfffffffc],	0x149a

|						,=<	0x08048432				740e									je	0x8048442

|						|			0x08048434				c704244f850.	mov	dword	[esp],	str.Invalid_Password__n	;	[0x8048

54f:4]=0x61766e49		;	"Invalid	Password!."	@	0x804854f

|						|			0x0804843b				e8dcfeffff			call	sym.imp.printf

|						|						sym.imp.printf()

|					,==<	0x08048440				eb0c									jmp	0x804844e	;	(main)

|					||			;	JMP	XREF	from	0x08048432	(main)

|					|`->	0x08048442				c7042462850.	mov	dword	[esp],	str.Password_OK____n	;	[0x8048562

:4]=0x73736150		;	"Password	OK	:)."	@	0x8048562

|					|				0x08048449				e8cefeffff			call	sym.imp.printf

|					|							sym.imp.printf()

|					|				;	JMP	XREF	from	0x08048440	(main)

|					`-->	0x0804844e				b800000000			mov	eax,	0

|										0x08048453				c9											leave

\										0x08048454				c3											ret

"aa"	tells	r2	to	analyze	the	whole	binary,	which	gets	you	symbol	names,	among	things.

IOLI	0x01

320

"pdf"	stands	for

Print

Disassemble

Function

This	will	print	the	disassembly	of	the	main	function,	or	the		main()		that	everyone	knows.	You	can	see
several	things	as	well:	weird	names,	arrows,	etc.

"imp."	stands	for	imports.	Those	are	imported	symbols,	like	printf()

"str."	stands	for	strings.	Those	are	strings	(obviously).

If	you	look	carefully,	you'll	see	a	 	cmp		 instruction,	with	a	constant,	0x149a.	 	cmp		 is	an	x86	compare
instruction,	and	the	0x	in	front	of	it	specifies	it	is	in	base	16,	or	hex	(hexadecimal).

0x0804842b				817dfc9a140.	cmp	dword	[ebp	+	0xfffffffc],	0x149a

You	can	use	radare2's		?		command	to	get	it	in	another	numeric	base.

[0x08048330]>	?	0x149a

5274	0x149a	012232	5.2K	0000:049a	5274	10011010	5274.0	0.000000

So	now	we	know	that	0x149a	is	5274	in	decimal.	Let's	try	this	as	a	password.

$./crackme0x01

IOLI	Crackme	Level	0x01

Password:	5274

Password	OK	:)

Bingo,	the	password	was	5274.	In	this	case,	the	password	function	at	0x0804842b	was	comparing	the
input	against	 the	value,	0x149a	 in	hex.	Since	user	 input	 is	usually	decimal,	 it	was	a	safe	bet	 that	 the
input	was	intended	to	be	in	decimal,	or	5274.	Now,	since	we're	hackers,	and	curiosity	drives	us,	let's	see
what	happens	when	we	input	in	hex.

$./crackme0x01

IOLI	Crackme	Level	0x01

Password:	0x149a

Invalid	Password!

IOLI	0x01

321

It	was	worth	a	shot,	but	it	doesn't	work.	That's	because		scanf()		will	take	the	0	in	0x149a	to	be	a	zero,
rather	than	accepting	the	input	as	actually	being	the	hex	value.

And	this	concludes	IOLI	0x01.

IOLI	0x01

322

Avatao	R3v3rs3	4
After	 a	 few	years	 of	missing	out	 on	wargames	 at	Hacktivity,	 this	 year	 I've	 finally	 found	 the	 time	 to
begin,	and	almost	finish	(yeah,	I'm	quite	embarrassed	about	that	unfinished	webhack	:))	one	of	them.
There	 were	 3	 different	 games	 at	 the	 conf,	 and	 I've	 chosen	 the	 one	 that	 was	 provided	 by	 avatao.	 It
consisted	of	8	challenges,	most	of	them	being	basic	web	hacking	stuff,	one	sandbox	escape,	one	simple
buffer	overflow	exploitation,	and	there	were	two	reverse	engineering	exercises	too.	You	can	find	these
challenges	on	https://platform.avatao.com.

Avatao	R3v3rs3	4

323

https://hacktivity.com
https://avatao.com
https://platform.avatao.com

.radare2
I've	decided	to	solve	the	reversing	challenges	using	radare2,	a	free	and	open	source	reverse	engineering
framework.	I	have	first	learned	about	r2	back	in	2011.	during	a	huge	project,	where	I	had	to	reverse	a
massive,	11MB	statically	linked	ELF.	I	simply	needed	something	that	I	could	easily	patch	Linux	ELFs
with.	Granted,	back	then	I've	used	r2	alongside	IDA,	and	only	for	smaller	tasks,	but	I	loved	the	whole
concept	at	first	sight.	Since	then,	radare2	evolved	a	lot,	and	I	was	planning	for	some	time	now	to	solve
some	crackmes	with	the	framework,	and	write	writeups	about	them.	Well,	this	CTF	gave	me	the	perfect
opportunity	:)

Because	this	writeup	aims	to	show	some	of	r2's	features	besides	how	the	crackmes	can	be	solved,	I	will
explain	every	r2	command	I	use	in	blockquote	paragraphs	like	this	one:

r2	tip:	Always	use	?	or	-h	to	get	more	information!

If	 you	 know	 r2,	 and	 just	 interested	 in	 the	 crackme,	 feel	 free	 to	 skip	 those	 parts!	Also	 keep	 in	mind
please,	 that	because	of	 this	 tutorial	style	 I'm	going	 to	do	a	 lot	of	stuff	 that	you	 just	don't	do	during	a
CTF,	 because	 there	 is	 no	 time	 for	 proper	 bookkeeping	 (e.g.	 flag	 every	memory	 area	 according	 to	 its
purpose),	and	with	such	small	executables	you	can	succeed	without	doing	these	stuff.

A	few	advice	if	you	are	interested	in	learning	radare2	(and	frankly,	if	you	are	into	RE,	you	should	be
interested	in	learning	r2	:)):

The	framework	has	a	lot	of	supplementary	executables	and	a	vast	amount	of	functionality	-	and	they	are
very	 well	 documented.	 I	 encourage	 you	 to	 read	 the	 available	 docs,	 and	 use	 the	 built-in	 help	 (by
appending	a	?	to	any	command)	extensively!	E.g.:

.radare2

324

http://www.radare.org/r/

[0x00000000]>	?

Usage:	[.][times][cmd][~grep][@[@iter]addr!size][|>pipe]	;	...

Append	'?'	to	any	char	command	to	get	detailed	help

Prefix	with	number	to	repeat	command	N	times	(f.ex:	3x)

|%var	=valueAlias	for	'env'	command

|	*off[=[0x]value]					Pointer	read/write	data/values	(see	?v,	wx,	wv)

|	(macro	arg0	arg1)				Manage	scripting	macros

|	.[-|(m)|f|!sh|cmd]			Define	macro	or	load	r2,	cparse	or	rlang	file

|	=	[cmd]														Run	this	command	via	rap://

|	/																				Search	for	bytes,	regexps,	patterns,	..

|	!	[cmd]														Run	given	command	as	in	system(3)

|	#	[algo]	[len]							Calculate	hash	checksum	of	current	block

|	#!lang	[..]										Hashbang	to	run	an	rlang	script

|	a																				Perform	analysis	of	code

|	b																				Get	or	change	block	size

...

[0x00000000]>	a?

|Usage:	a[abdefFghoprxstc]	[...]

|	ab	[hexpairs]					analyze	bytes

|	aa																analyze	all	(fcns	+	bbs)	(aa0	to	avoid	sub	renaming)

|	ac	[cycles]							analyze	which	op	could	be	executed	in	[cycles]

|	ad																analyze	data	trampoline	(wip)

|	ad	[from]	[to]				analyze	data	pointers	to	(from-to)

|	ae	[expr]									analyze	opcode	eval	expression	(see	ao)

|	af[rnbcsl?+-*]				analyze	Functions

|	aF																same	as	above,	but	using	anal.depth=1

...

Also,	the	project	is	under	heavy	development,	there	is	no	day	without	commits	to	the	GitHub	repo.	So,
as	the	readme	says,	you	should	always	use	the	git	version!

Some	highly	recommended	reading	materials:

Cheatsheet	by	pwntester
Radare2	Book
Radare2	Blog
Radare2	Wiki

.radare2

325

https://github.com/pwntester/cheatsheets/blob/master/radare2.md
https://www.gitbook.com/book/radare/radare2book/details
http://radare.today
https://github.com/radare/radare2/wiki

.first_steps
OK,	enough	of	praising	r2,	lets	start	reversing	this	stuff.	First,	you	have	to	know	your	enemy:

[0x00	avatao]$	rabin2	-I	reverse4

pic						false

canary			true

nx							true

crypto			false

va							true

intrp				/lib64/ld-linux-x86-64.so.2

bintype		elf

class				ELF64

lang					c

arch					x86

bits					64

machine		AMD	x86-64	architecture

os							linux

subsys			linux

endian			little

stripped	true

static			false

linenum		false

lsyms				false

relocs			false

rpath				NONE

binsz				8620

r2	 tip:	 rabin2	 is	 one	 of	 the	 handy	 tools	 that	 comes	 with	 radare2.	 It	 can	 be	 used	 to	 extract
information	 (imports,	 symbols,	 libraries,	 etc.)	 about	 binary	 executables.	As	 always,	 check	 the
help	(rabin2	-h)!

So,	its	a	dynamically	linked,	stripped,	64bit	Linux	executable	-	nothing	fancy	here.	Let's	try	to	run	it:

[0x00	avatao]$./reverse4

?

Size	of	data:	2623

pamparam

Wrong!

[0x00	avatao]$	"\x01\x00\x00\x00"	|	./reverse4

Size	of	data:	1

.first_steps

326

OK,	 so	 it	 reads	 a	 number	 as	 a	 size	 from	 the	 standard	 input	 first,	 than	 reads	 further,	 probably	 "size"
bytes/characters,	 processes	 this	 input,	 and	 outputs	 either	 "Wrong!",	 nothing	 or	 something	 else,
presumably	our	 flag.	But	do	not	waste	any	more	 time	monkeyfuzzing	 the	executable,	 let's	 fire	up	 r2,
because	in	asm	we	trust!

[0x00	avatao]$	r2	-A	reverse4

	--	Heisenbug:	A	bug	that	disappears	or	alters	its	behavior	when	one	attempts	to	probe	o

r	isolate	it.

[0x00400720]>

r2	tip:	The	-A	switch	runs	aaa	command	at	start	to	analyze	all	referenced	code,	so	we	will	have
functions,	strings,	XREFS,	etc.	right	at	the	beginning.	As	usual,	you	can	get	help	with	?.

It	is	a	good	practice	to	create	a	project,	so	we	can	save	our	progress,	and	we	can	come	back	at	a	later
time:

[0x00400720]>	Ps	avatao_reverse4

avatao_reverse4

[0x00400720]>

r2	tip:	You	can	save	a	project	using	Ps	[file],	and	load	one	using	Po	[file].	With	the	-p	option,
you	can	load	a	project	when	starting	r2.

We	can	list	all	the	strings	r2	found:

[0x00400720]>	fs	strings

[0x00400720]>	f

0x00400e98	7	str.Wrong_

0x00400e9f	27	str.We_are_in_the_outer_space_

0x00400f80	18	str.Size_of_data:__u_n

0x00400f92	23	str.Such_VM__MuCH_reV3rse_

0x00400fa9	16	str.Use_everything_

0x00400fbb	9	str.flag.txt

0x00400fc7	26	str.You_won__The_flag_is:__s_n

0x00400fe1	21	str.Your_getting_closer_

[0x00400720]>

r2	 tip:	 r2	 puts	 so	 called	 flags	 on	 important/interesting	 offsets,	 and	 organizes	 these	 flags	 into
flagspaces	(strings,	functions,	symbols,	etc.)	You	can	list	all	flagspaces	using	fs,	and	switch	the
current	one	using	fs	[flagspace]	(the	default	is	*,	which	means	all	the	flagspaces).	The	command
f	prints	all	flags	from	the	currently	selected	flagspace(s).

.first_steps

327

OK,	the	strings	looks	interesting,	especially	the	one	at	0x00400f92.	It	seems	to	hint	that	this	crackme	is
based	on	a	virtual	machine.	Keep	that	in	mind!

These	strings	could	be	a	good	starting	point	if	we	were	talking	about	a	real-life	application	with	many-
many	features.	But	we	are	talking	about	a	crackme,	and	they	tend	to	be	small	and	simple,	and	focused
around	the	problem	to	be	solved.	So	I	usually	just	take	a	look	at	the	entry	point(s)	and	see	if	I	can	figure
out	something	from	there.	Nevertheless,	I'll	show	you	how	to	find	where	these	strings	are	used:

[0x00400720]>	axt	@@=`f~[0]`

d	0x400cb5	mov	edi,	str.Size_of_data:__u_n

d	0x400d1d	mov	esi,	str.Such_VM__MuCH_reV3rse_

d	0x400d4d	mov	edi,	str.Use_everything_

d	0x400d85	mov	edi,	str.flag.txt

d	0x400db4	mov	edi,	str.You_won__The_flag_is:__s_n

d	0x400dd2	mov	edi,	str.Your_getting_closer_

r2	tip:	We	can	list	crossreferences	to	addresses	using	the	axt	[addr]	command	(similarly,	we	can
use	axf	to	list	references	from	the	address).	The	@@	is	an	iterator,	it	just	runs	the	command	once
for	every	arguments	listed.

The	 argument	 list	 in	 this	 case	 comes	 from	 the	 command	 f~[0].	 It	 lists	 the	 strings	 from	 the
executable	with	f,	and	uses	the	internal	grep	command	~	to	select	only	the	first	column	([0])	that
contains	the	strings'	addresses.

.first_steps

328

.main
As	I	was	saying,	I	usually	take	a	look	at	the	entry	point,	so	let's	just	do	that:

[0x00400720]>	s	main

[0x00400c63]>

r2	tip:	You	can	go	 to	any	offset,	 flag,	expression,	etc.	 in	 the	executable	using	 the	s	 command
(seek).	You	 can	use	 references,	 like	$$	 (current	 offset),	 you	 can	undo	 (s-)	or	 redo	 (s+)	 seeks,
search	strings	(s/	[string])	or	hex	values	(s/x	4142),	and	a	lot	of	other	useful	stuff.	Make	sure	to
check	out	s?!

Now	that	we	are	at	the	beginning	of	the	main	function,	we	could	use	p	to	show	a	disassembly	(pd,	pdf),
but	r2	can	do	something	much	cooler:	it	has	a	visual	mode,	and	it	can	display	graphs	similar	to	IDA,	but
way	cooler,	since	they	are	ASCII-art	graphs	:)

r2	tip:	The	command	family	p	is	used	to	print	stuff.	For	example	it	can	show	disassembly	(pd),
disassembly	of	the	current	function	(pdf),	print	strings	(ps),	hexdump	(px),	base64	encode/decode
data	(p6e,	p6d),	or	print	raw	bytes	(pr)	so	you	can	for	example	dump	parts	of	the	binary	to	other
files.	There	are	many	more	functionalities,	check	?!

R2	also	has	a	minimap	view	which	is	incredibly	useful	for	getting	an	overall	look	at	a	function:

.main

329

.main

330

r2	tip:	With	command	V	you	can	enter	the	so-called	visual	mode,	which	has	several	views.	You
can	switch	between	them	using	p	and	P.	The	graph	view	can	be	displayed	by	hitting	V	in	visual
mode	(or	using	VV	at	the	prompt).

Hitting	 p	 in	 graph	 view	 will	 bring	 up	 the	 minimap.	 It	 displays	 the	 basic	 blocks	 and	 the
connections	 between	 them	 in	 the	 current	 function,	 and	 it	 also	 shows	 the	 disassembly	 of	 the
currently	selected	block	(marked	with	@@@@@	on	the	minimap).	You	can	select	 the	next	or
the	previous	block	using	the	**	and	the	**	keys	respectively.	You	can	also	select	the	true	or	the
false	branches	using	the	t	and	the	f	keys.

It	is	possible	to	bring	up	the	prompt	in	visual	mode	using	the	:	key,	and	you	can	use	o	to	seek.

Lets	read	main	node-by-node!	The	first	block	looks	like	this:

We	can	see	that	the	program	reads	a	word	(2	bytes)	into	the	local	variable	named	local_10_6,	and	than
compares	it	to	0xbb8.	Thats	3000	in	decimal,	btw:

[0x00400c63]>	?	0xbb8

3000	0xbb8	05670	2.9K	0000:0bb8	3000	10111000	3000.0	0.000000f	0.000000

r2	tip:	yep,	?	will	evaluate	expressions,	and	print	the	result	in	various	formats.

.main

331

If	the	value	is	greater	than	3000,	then	it	will	be	forced	to	be	3000:

There	are	a	few	things	happening	in	the	next	block:

First,	the	"Size	of	data:	"	message	we	saw	when	we	run	the	program	is	printed.	So	now	we	know	that
the	local	variable	local_10_6	is	the	size	of	the	input	data	-	so	lets	name	it	accordingly	(remember,	you
can	open	the	r2	shell	from	visual	mode	using	the	:	key!):

:>	afvn	local_10_6	input_size

.main

332

r2	 tip:	 The	 af	 command	 family	 is	 used	 to	 analyze	 functions.	 This	 includes	 manipulating
arguments	 and	 local	 variables	 too,	 which	 is	 accessible	 via	 the	 afv	 commands.	 You	 can	 list
function	 arguments	 (afa),	 local	 variables	 (afv),	 or	 you	 can	 even	 rename	 them	 (afan,	afvn).	 Of
course	there	are	lots	of	other	features	too	-	as	usual:	use	the	"?",	Luke!

After	this	an	input_size	bytes	 long	memory	chunk	is	allocated,	and	filled	with	data	from	the	standard
input.	The	address	of	this	memory	chunk	is	stored	in	local_10	-	time	to	use	afvn	again:

:>	afvn	local_10	input_data

We've	almost	finished	with	this	block,	there	are	only	two	things	remained.	First,	an	512	(0x200)	bytes
memory	chunk	is	zeroed	out	at	offset	0x00602120.	A	quick	glance	at	XREFS	to	this	address	reveals	that
this	memory	is	indeed	used	somewhere	in	the	application:

:>	axt	0x00602120

d	0x400cfe	mov	edi,	0x602120

d	0x400d22	mov	edi,	0x602120

d	0x400dde	mov	edi,	0x602120

d	0x400a51	mov	qword	[rbp	-	8],	0x602120

Since	it	probably	will	be	important	later	on,	we	should	label	it:

:>	f	sym.memory	0x200	0x602120

r2	 tip:	 Flags	 can	 be	 managed	 using	 the	 f	 command	 family.	 We've	 just	 added	 the	 flag
sym.memory	to	a	0x200	bytes	long	memory	area	at	0x602120.	It	is	also	possible	to	remove	(f-
name),	 rename	 (fr	 [old]	 [new]),	 add	 comment	 (fC	 [name]	 [cmt])	 or	 even	 color	 (fc	 [name]
[color])	flags.

While	we	are	here,	we	should	also	declare	that	memory	chunk	as	data,	so	it	will	show	up	as	a	hexdump
in	disassembly	view:

:>	Cd	0x200	@	sym.memory

r2	 tip:	 The	 command	 family	C	 is	 used	 to	 manage	 metadata.	 You	 can	 set	 (CC)	 or	 edit	 (CC)
comments,	declare	memory	areas	as	data	(Cd),	strings	(Cs),	 etc.	These	 commands	 can	 also	be
issued	via	a	menu	in	visual	mode	invoked	by	pressing	d.

.main

333

The	only	remaining	thing	in	this	block	is	a	function	call	to	0x400a45	with	the	input	data	as	an	argument.
The	 function's	 return	value	 is	compared	 to	"*",	and	a	conditional	 jump	 is	executed	depending	on	 the
result.

Earlier	I	told	you	that	this	crackme	is	probably	based	on	a	virtual	machine.	Well,	with	that	information
in	 mind,	 one	 can	 guess	 that	 this	 function	 will	 be	 the	 VM's	 main	 loop,	 and	 the	 input	 data	 is	 the
instructions	the	VM	will	execute.	Based	on	this	hunch,	I've	named	this	function	vmloop,	and	renamed
input_data	to	bytecode	and	input_size	to	bytecode_length.	This	is	not	really	necessary	in	a	small	project
like	this,	but	it's	a	good	practice	to	name	stuff	according	to	their	purpose	(just	like	when	you	are	writing
programs).

:>	af	vmloop	0x400a45

:>	afvn	input_size	bytecode_length

:>	afvn	input_data	bytecode

r2	tip:	The	af	command	is	used	to	analyze	a	function	with	a	given	name	at	the	given	address.	The
other	two	commands	should	be	familiar	from	earlier.

After	 renaming	 local	 variables,	 flagging	 that	memory	 area,	 and	 renaming	 the	VM	 loop	 function	 the
disassembly	looks	like	this:

.main

334

So,	 back	 to	 that	 conditional	 jump.	 If	 vmloop	 returns	 anything	 else	 than	 "*",	 the	 program	 just	 exits
without	giving	us	our	flag.	Obviously	we	don't	want	that,	so	we	follow	the	false	branch.

Now	we	see	 that	a	string	 in	 that	512	bytes	memory	area	(sym.memory)	gets	compared	 to	"Such	VM!
MuCH	reV3rse!".	If	they	are	not	equal,	the	program	prints	the	bytecode,	and	exits:

OK,	so	now	we	know	that	we	have	to	supply	a	bytecode	that	will	generate	that	string	when	executed.	As
we	 can	 see	 on	 the	minimap,	 there	 are	 still	 a	 few	more	 branches	 ahead,	which	probably	means	more
conditions	to	meet.	Lets	investigate	them	before	we	delve	into	vmloop!

If	you	take	a	look	at	the	minimap	of	the	whole	function,	you	can	probably	recognize	that	there	is	some
kind	of	loop	starting	at	block	[0d34],	and	it	involves	the	following	nodes:

[0d34]
[0d65]
[0d3d]
[0d61]

Here	are	the	assembly	listings	for	those	blocks.	The	first	one	puts	0	into	local	variable	local_10_4:

.main

335

And	this	one	compares	local_10_4	to	8,	and	executing	a	conditional	jump	based	on	the	result:

It's	pretty	obvious	that	local_10_4	is	the	loop	counter,	so	lets	name	it	accordingly:

:>	afvn	local_10_4	i

Next	block	is	the	actual	loop	body:

.main

336

The	memory	area	at	0x6020e0	is	treated	as	an	array	of	dwords	(4	byte	values),	and	checked	if	the	ith
value	of	it	is	zero.	If	it	is	not,	the	loop	simply	continues:

If	the	value	is	zero,	the	loop	breaks	and	this	block	is	executed	before	exiting:

.main

337

It	prints	 the	 following	message:	Use	everything!"	As	we've	established	earlier,	we	are	dealing	with	a
virtual	 machine.	 In	 that	 context,	 this	 message	 probably	 means	 that	 we	 have	 to	 use	 every	 available
instructions.	Whether	we	executed	an	instruction	or	not	is	stored	at	0x6020e0	-	so	lets	flag	that	memory
area:

:>	f	sym.instr_dirty	4*9	0x6020e0

Assuming	we	don't	break	out	and	the	loop	completes,	we	are	moving	on	to	some	more	checks:

This	 piece	 of	 code	 may	 look	 a	 bit	 strange	 if	 you	 are	 not	 familiar	 with	 x86_64	 specific	 stuff.	 In
particular,	we	are	 talking	about	RIP-relative	addressing,	where	offsets	are	described	as	displacements
from	the	current	instruction	pointer,	which	makes	implementing	PIE	easier.	Anyways,	r2	is	nice	enough
to	display	the	actual	address	(0x602104).	Got	the	address,	flag	it!

:>	f	sym.good_if_ne_zero	4	0x602104

Keep	 in	 mind	 though,	 that	 if	 RIP-relative	 addressing	 is	 used,	 flags	 won't	 appear	 directly	 in	 the
disassembly,	but	r2	displays	them	as	comments:

.main

338

If	sym.good_if_ne_zero	is	zero,	we	get	a	message	("Your	getting	closer!"),	and	then	the	program	exits.	If
it	is	non-zero,	we	move	to	the	last	check:

Here	 the	 program	compares	 a	 dword	 at	 0x6020f0	 (again,	RIP-relative	 addressing)	 to	 9.	 If	 its	 greater
than	9,	we	get	the	same	"Your	getting	closer!"	message,	but	if	it's	lesser,	or	equal	to	9,	we	finally	reach
our	destination,	and	get	the	flag:

.main

339

As	usual,	we	should	flag	0x6020f0:

:>	f	sym.good_if_le_9	4	0x6020f0

Well,	 it	 seems	 that	we	 have	 fully	 reversed	 the	main	 function.	To	 summarize	 it:	 the	 program	 reads	 a
bytecode	from	the	standard	input,	and	feeds	it	to	a	virtual	machine.	After	VM	execution,	the	program's
state	have	to	satisfy	these	conditions	in	order	to	reach	the	goodboy	code:

vmloop's	return	value	has	to	be	"*"
sym.memory	has	to	contain	the	string	"Such	VM!	MuCH	reV3rse!"
all	9	elements	of	sym.instr_dirty	array	should	not	be	zero	(probably	means	that	all	instructions	had
to	be	used	at	least	once)
sym.good_if_ne_zero	should	not	be	zero
sym.good_if_le_9	has	to	be	lesser	or	equal	to	9

This	concludes	our	analysis	of	the	main	function,	we	can	now	move	on	to	the	VM	itself.

.main

340

.vmloop

[offset]>	fcn.vmloop

Well,	that	seems	disappointingly	short,	but	no	worries,	we	have	plenty	to	reverse	yet.	The	thing	is	that
this	function	uses	a	jump	table	at	0x00400a74,

and	r2	can't	yet	recognize	jump	tables	(Issue	3201),	so	the	analysis	of	this	function	is	a	bit	incomplete.
This	means	that	we	can't	really	use	the	graph	view	now,	so	either	we	just	use	visual	mode,	or	fix	those
basic	blocks.	The	entire	function	is	just	542	bytes	long,	so	we	certainly	could	reverse	it	without	the	aid
of	the	graph	mode,	but	since	this	writeup	aims	to	include	as	much	r2	wisdom	as	possible,	I'm	going	to
show	you	how	to	define	basic	blocks.

.vmloop

341

https://github.com/radare/radare2/issues/3201

But	first,	lets	analyze	what	we	already	have!	First,	rdi	is	put	into	local_3.	Since	the	application	is	a	64bit
Linux	 executable,	we	 know	 that	 rdi	 is	 the	 first	 function	 argument	 (as	 you	may	have	 recognized,	 the
automatic	analysis	of	arguments	and	 local	variables	was	not	entirely	correct),	 and	we	also	know	 that
vmloop's	first	argument	is	the	bytecode.	So	lets	rename	local_3:

:>	afvn	local_3	bytecode

Next,	sym.memory	is	put	into	another	local	variable	at	rbp-8	that	r2	did	not	recognize.	So	let's	define	it!

:>	afv	8	memory	qword

r2	tip:	The	afv	[idx]	[name]	[type]	command	is	used	to	define	local	variable	at	[frame	pointer	-
idx]	with	the	name	[name]	and	type	[type].	You	can	also	remove	local	variables	using	the	afv-
[idx]	command.

In	the	next	block,	the	program	checks	one	byte	of	bytecode,	and	if	it	is	0,	the	function	returns	with	1.

If	 that	 byte	 is	 not	 zero,	 the	program	subtracts	0x41	 from	 it,	 and	 compares	 the	 result	 to	0x17.	 If	 it	 is
above	 0x17,	 we	 get	 the	 dreaded	 "Wrong!"	message,	 and	 the	 function	 returns	 with	 0.	 This	 basically
means	that	valid	bytecodes	are	ASCII	characters	in	the	range	of	"A"	(0x41)	through	"X"	(0x41	+	0x17).
If	the	bytecode	is	valid,	we	arrive	at	the	code	piece	that	uses	the	jump	table:

The	jump	table's	base	is	at	0x400ec0,	so	lets	define	that	memory	area	as	a	series	of	qwords:

.vmloop

342

[0x00400a74]>	s	0x00400ec0

[0x00400ec0]>	Cd	8	@@=`?s	$$	$$+8*0x17	8`

r2	tip:	Except	for	the	?s,	all	parts	of	this	command	should	be	familiar	now,	but	lets	recap	it!	Cd
defines	 a	memory	 area	 as	data,	 and	8	 is	 the	 size	of	 that	memory	 area.	@@	 is	 an	 iterator	 that
make	the	preceding	command	run	for	every	element	that	@@	holds.	In	this	example	it	holds	a
series	generated	using	the	?s	command.	?s	simply	generates	a	series	from	the	current	seek	($$)	to
current	seek	+	80x17	($$+80x17)	with	a	step	of	8.

This	is	how	the	disassembly	looks	like	after	we	add	this	metadata:

[0x00400ec0]>	pd	0x18

												;	DATA	XREF	from	0x00400a76	(unk)

												0x00400ec0	.qword	0x0000000000400a80

												0x00400ec8	.qword	0x0000000000400c04

												0x00400ed0	.qword	0x0000000000400b6d

												0x00400ed8	.qword	0x0000000000400b17

												0x00400ee0	.qword	0x0000000000400c04

												0x00400ee8	.qword	0x0000000000400c04

												0x00400ef0	.qword	0x0000000000400c04

												0x00400ef8	.qword	0x0000000000400c04

												0x00400f00	.qword	0x0000000000400aec

												0x00400f08	.qword	0x0000000000400bc1

												0x00400f10	.qword	0x0000000000400c04

												0x00400f18	.qword	0x0000000000400c04

												0x00400f20	.qword	0x0000000000400c04

												0x00400f28	.qword	0x0000000000400c04

												0x00400f30	.qword	0x0000000000400c04

												0x00400f38	.qword	0x0000000000400b42

												0x00400f40	.qword	0x0000000000400c04

												0x00400f48	.qword	0x0000000000400be5

												0x00400f50	.qword	0x0000000000400ab6

												0x00400f58	.qword	0x0000000000400c04

												0x00400f60	.qword	0x0000000000400c04

												0x00400f68	.qword	0x0000000000400c04

												0x00400f70	.qword	0x0000000000400c04

												0x00400f78	.qword	0x0000000000400b99

As	we	can	see,	the	address	0x400c04	is	used	a	lot,	and	besides	that	there	are	9	different	addresses.	Lets
see	that	0x400c04	first!

.vmloop

343

We	 get	 the	message	 "Wrong!",	 and	 the	 function	 just	 returns	 0.	 This	 means	 that	 those	 are	 not	 valid
instructions	 (they	are	valid	bytecode	 though,	 they	can	be	 e.g.	 parameters!)	We	 should	 flag	0x400c04
accordingly:

[0x00400ec0]>	f	not_instr	@	0x0000000000400c04

As	for	the	other	offsets,	they	all	seem	to	be	doing	something	meaningful,	so	we	can	assume	they	belong
to	valid	instructions.	I'm	going	to	flag	them	using	the	instructions'	ASCII	values:

[0x00400ec0]>	f	instr_A	@	0x0000000000400a80

[0x00400ec0]>	f	instr_C	@	0x0000000000400b6d

[0x00400ec0]>	f	instr_D	@	0x0000000000400b17

[0x00400ec0]>	f	instr_I	@	0x0000000000400aec

[0x00400ec0]>	f	instr_J	@	0x0000000000400bc1

[0x00400ec0]>	f	instr_P	@	0x0000000000400b42

[0x00400ec0]>	f	instr_R	@	0x0000000000400be5

[0x00400ec0]>	f	instr_S	@	0x0000000000400ab6

[0x00400ec0]>	f	instr_X	@	0x0000000000400b99

Ok,	so	these	offsets	were	not	on	the	graph,	so	it	is	time	to	define	basic	blocks	for	them!

r2	tip:	You	can	define	basic	blocks	using	the	afb+	command.	You	have	to	supply	what	function
the	block	belongs	to,	where	does	it	start,	and	what	is	 its	size.	If	 the	block	ends	in	a	jump,	you
have	 to	 specify	where	 does	 it	 jump	 too.	 If	 the	 jump	 is	 a	 conditional	 jump,	 the	 false	 branch's
destination	address	should	be	specified	too.

We	can	get	the	start	and	end	addresses	of	these	basic	blocks	from	the	full	disasm	of	vmloop.

.vmloop

344

.vmloop

345

As	I've	mentioned	previously,	 the	 function	 itself	 is	pretty	short,	and	easy	 to	 read,	especially	with	our
annotations.	But	a	promise	is	a	promise,	so	here	is	how	we	can	create	the	missing	bacic	blocks	for	the
instructions:

[0x00400ec0]>	afb+	0x00400a45	0x00400a80	0x00400ab6-0x00400a80	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400ab6	0x00400aec-0x00400ab6	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400aec	0x00400b17-0x00400aec	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400b17	0x00400b42-0x00400b17	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400b42	0x00400b6d-0x00400b42	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400b6d	0x00400b99-0x00400b6d	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400b99	0x00400bc1-0x00400b99	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400bc1	0x00400be5-0x00400bc1	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400be5	0x00400c04-0x00400be5	0x400c15

It	is	also	apparent	from	the	disassembly	that	besides	the	instructions	there	are	three	more	basic	blocks.
Lets	create	them	too!

[0x00400ec0]>	afb+	0x00400a45	0x00400c15	0x00400c2d-0x00400c15	0x400c3c	0x00400c2d

[0x00400ec0]>	afb+	0x00400a45	0x00400c2d	0x00400c3c-0x00400c2d	0x400c4d	0x00400c3c

[0x00400ec0]>	afb+	0x00400a45	0x00400c3c	0x00400c4d-0x00400c3c	0x400c61

Note	that	the	basic	blocks	starting	at	0x00400c15	and	0x00400c2d	ending	in	a	conditional	jump,	so	we
had	to	set	the	false	branch's	destination	too!

And	here	is	the	graph	in	its	full	glory	after	a	bit	of	manual	restructuring:

.vmloop

346

I	think	it	worth	it,	don't	you?	:)	(Well,	the	restructuring	did	not	really	worth	it,	because	it	is	apparently
not	stored	when	you	save	the	project.)

r2	tip:	You	can	move	the	selected	node	around	in	graph	view	using	the	HJKL	keys.

BTW,	here	is	how	IDA's	graph	of	this	same	function	looks	like	for	comparison:

.vmloop

347

As	we	 browse	 through	 the	 disassembly	 of	 the	 instr_LETTER	 basic	 blocks,	 we	 should	 realize	 a	 few
things.	The	first:	all	of	the	instructions	starts	with	a	sequence	like	these:

It	became	clear	now	that	the	9	dwords	at	sym.instr_dirty	are	not	simply	indicators	that	an	instruction	got
executed,	 but	 they	 are	 used	 to	 count	 how	many	 times	 an	 instruction	 got	 called.	Also	 I	 should	 have
realized	earlier	that	sym.good_if_le_9	(0x6020f0)	is	part	of	this	9	dword	array,	but	yeah,	well,	I	didn't,	I
have	 to	 live	with	 it...	Anyways,	what	 the	 condition	 "sym.good_if_le_9	 have	 to	 be	 lesser	 or	 equal	 9"
really	means	is	that	instr_P	can	not	be	executed	more	than	9	times:

Another	 similarity	 of	 the	 instructions	 is	 that	 7	 of	 them	 calls	 a	 function	 with	 either	 one	 or	 two
parameters,	where	the	parameters	are	the	next,	or	the	next	two	bytecodes.	One	parameter	example:

.vmloop

348

And	a	two	parameters	example:

We	should	also	 realize	 that	 these	blocks	put	 the	number	of	bytes	 they	eat	up	of	 the	bytecode	 (1	byte
instruction	+	1	or	2	bytes	arguments	=	2	or	3)	into	a	local	variable	at	0xc.	r2	did	not	recognize	this	local
var,	so	lets	do	it	manually!

:>	afv	0xc	instr_ptr_step	dword

If	we	look	at	instr_J	we	can	see	that	this	is	an	exception	to	the	above	rule,	since	it	puts	the	return	value
of	the	called	function	into	instr_ptr_step	instead	of	a	constant	2	or	3:

And	speaking	of	exceptions,	here	are	the	two	instructions	that	do	not	call	functions:

.vmloop

349

This	 one	 simply	 puts	 the	 next	 bytecode	 (the	 first	 the	 argument)	 into	 eax,	 and	 jumps	 to	 the	 end	 of
vmloop.	So	this	is	the	VM's	ret	instruction,	and	we	know	that	vmloop	has	to	return	"*",	so	"R*"	should
be	the	last	two	bytes	of	our	bytecode.

The	next	one	that	does	not	call	a	function:

This	is	a	one	argument	instruction,	and	it	puts	its	argument	to	0x6020c0.	Flag	that	address!

:>	f	sym.written_by_instr_C	4	@	0x6020c0

Oh,	and	by	the	way,	I	do	have	a	hunch	that	instr_C	also	had	a	function	call	in	the	original	code,	but	it
got	inlined	by	the	compiler.	Anyways,	so	far	we	have	these	two	instructions:

instr_R(a1):	returns	with	a1
instr_C(a1):	writes	a1	to	sym.written_by_instr_C

And	we	also	know	that	these	accept	one	argument,

instr_I
instr_D
instr_P
instr_X
instr_J

and	these	accept	two:

instr_A
instr_S

What	remains	is	the	reversing	of	the	seven	functions	that	are	called	by	the	instructions,	and	finally	the
construction	of	a	valid	bytecode	that	gives	us	the	flag.

instr_A

.vmloop

350

The	function	this	instruction	calls	is	at	offset	0x40080d,	so	lets	seek	there!

[offset]>	0x40080d

r2	tip:	In	visual	mode	you	can	just	hit	\	when	the	current	line	is	a	jump	or	a	call,	and	r2	will	seek
to	the	destination	address.

If	we	seek	to	that	address	from	the	graph	mode,	we	are	presented	with	a	message	that	says	"Not	in	a
function.	Type	'df'	to	define	it	here.	This	is	because	the	function	is	called	from	a	basic	block	r2	did	not
recognize,	so	r2	could	not	find	the	function	either.	Lets	obey,	and	type	df!	A	function	is	indeed	created,
but	we	want	some	meaningful	name	for	it.	So	press	dr	while	still	in	visual	mode,	and	name	this	function
instr_A!

r2	tip:	You	should	realize	that	 these	commands	are	all	part	of	 the	same	menu	system	in	visual
mode	I	was	talking	about	when	we	first	used	Cd	to	declare	sym.memory	as	data.

Ok,	now	we	have	our	shiny	new	fcn.instr_A,	lets	reverse	it!	We	can	see	from	the	shape	of	the	minimap
that	 probably	 there	 is	 some	 kind	 cascading	 if-then-elif,	 or	 a	 switch-case	 statement	 involved	 in	 this
function.	 This	 is	 one	 of	 the	 reasons	 the	minimap	 is	 so	 useful:	 you	 can	 recognize	 some	 patterns	 at	 a

.vmloop

351

glance,	which	 can	 help	 you	 in	 your	 analysis	 (remember	 the	 easily	 recognizable	 for	 loop	 from	 a	 few
paragraphs	before?)	So,	the	minimap	is	cool	and	useful,	but	I've	just	realized	that	I	did	not	yet	show	you

the	full	graph	mode,	so	I'm	going	to	do	this	using	full	graph.	The	first	basic	blocks:

The	two	function	arguments	(rdi	and	rsi)	are	stored	in	local	variables,	and	the	first	is	compared	to	0.	If	it
is,	 the	function	returns	(you	can	see	 it	on	 the	minimap),	otherwise	 the	same	check	is	executed	on	the
second	argument.	The	function	returns	from	here	too,	if	the	argument	is	zero.	Although	this	function	is
really	tiny,	I	am	going	to	stick	with	my	methodology,	and	rename	the	local	vars:

:>	afvn	local_1	arg1

:>	afvn	local_2	arg2

And	we	have	arrived	to	the	predicted	switch-case	statement,	and	we	can	see	that	arg1's	value	is	checked
against	"M",	"P",	and	"C".

.vmloop

352

This	is	the	"M"	branch:

It	 basically	 loads	 an	 address	 from	 offset	 0x602088	 and	 adds	arg2	 to	 the	 byte	 at	 that	 address.	As	 r2
kindly	shows	us	in	a	comment,	0x602088	initially	holds	the	address	of	sym.memory,	the	area	where	we
have	to	construct	the	"Such	VM!	MuCH	reV3rse!"	string.	It	is	safe	to	assume	that	somehow	we	will	be
able	to	modify	the	value	stored	at	0x602088,	so	this	"M"	branch	will	be	able	to	modify	bytes	other	than
the	first.	Based	on	this	assumption,	I'll	flag	0x602088	as	sym.current_memory_ptr:

.vmloop

353

:>	f	sym.current_memory_ptr	8	@	0x602088

Moving	on	to	the	"P"	branch:

Yes,	this	is	the	piece	of	code	that	allows	us	to	modify	sym.current_memory_ptr:	it	adds	arg2	to	it.

Finally,	the	"C"	branch:

Well,	 it	 turned	out	 that	 instr_C	 is	 not	 the	only	 instruction	 that	modifies	 sym.written_by_instr_C:	 this
piece	of	code	adds	arg2	to	it.

And	 that	was	 instr_A,	 lets	 summarize	 it!	 Depending	 on	 the	 first	 argument,	 this	 instruction	 does	 the
following:

arg1	==	"M":	adds	arg2	to	the	byte	at	sym.current_memory_ptr.
arg1	==	"P":	steps	sym.current_memory_ptr	by	arg2	bytes.
arg1	==	"C":	adds	arg2	to	the	value	at	sym.written_by_instr_C.

instr_S
This	function	is	not	recognized	either,	so	we	have	to	manually	define	it	like	we	did	with	instr_A.	After
we	do,	and	take	a	look	at	the	minimap,	scroll	through	the	basic	blocks,	it	is	pretty	obvious	that	these	two
functions	are	very-very	similar.	We	can	use	radiff2	to	see	the	difference.

.vmloop

354

r2	tip:	radiff2	is	used	to	compare	binary	files.	There's	a	few	options	we	can	control	the	type	of
binary	diffing	the	tool	does,	and	to	what	kind	of	output	format	we	want.	One	of	the	cool	features
is	that	it	can	generate	DarumGrim-style	bindiff	graphs	using	the	-g	option.

Since	now	we	want	to	diff	two	functions	from	the	same	binary,	we	specify	the	offsets	with	-g,	and	use
reverse4	 for	 both	 binaries.	 Also,	 we	 create	 the	 graphs	 for	 comparing	 instr_A	 to	 instr_S	 and	 for
comparing	instr_S	to	instr_A.

[0x00	~]$	radiff2	-g	0x40080d,0x40089f		reverse4	reverse4	|	xdot	-

[0x00	~]$	radiff2	-g	0x40089f,0x40080d		reverse4	reverse4	|	xdot	-

.vmloop

355

http://www.darungrim.org/

A	sad	 truth	 reveals	 itself	 after	 a	 quick	glance	 at	 these	graphs:	 radiff2	 is	 a	 liar!	 In	 theory,	 grey	boxes
should	be	identical,	yellow	ones	should	differ	only	at	some	offsets,	and	red	ones	should	differ	seriously.
Well	 this	 is	 obviously	not	 the	 case	here	 -	 e.g.	 the	 larger	grey	boxes	 are	 clearly	not	 identical.	This	 is
something	I'm	definitely	going	to	take	a	deeper	look	at	after	I've	finished	this	writeup.

Anyways,	after	we	get	over	the	shock	of	being	lied	to,	we	can	easily	recognize	that	instr_S	is	basically	a
reverse-instr_A:	where	the	latter	does	addition,	the	former	does	subtraction.	To	summarize	this:

arg1	==	"M":	subtracts	arg2	from	the	byte	at	sym.current_memory_ptr.
arg1	==	"P":	steps	sym.current_memory_ptr	backwards	by	arg2	bytes.
arg1	==	"C":	subtracts	arg2	from	the	value	at	sym.written_by_instr_C.

instr_I

.vmloop

356

This	one	is	simple,	it	just	calls	instr_A(arg1,	1).	As	you	may	have	noticed	the	function	call	looks	like
	call	fcn.0040080d		instead	of		call	fcn.instr_A	.	This	is	because	when	you	save	and	open	a	project,
function	names	get	lost	-	another	thing	to	examine	and	patch	in	r2!

instr_D

Again,	simple:	it	calls	instr_S(arg1,	1).

instr_P
It's	local	var	rename	time	again!

:>	afvn	local_0_1	const_M

:>	afvn	local_0_2	const_P

:>	afvn	local_3	arg1

.vmloop

357

This	function	is	pretty	straightforward	also,	but	there	is	one	oddity:	const_M	is	never	used.	I	don't	know
why	it	 is	 there	-	maybe	 it	 is	supposed	 to	be	some	kind	of	distraction?	Anyways,	 this	 function	simply
writes	arg1	to	sym.current_memory_ptr,	and	than	calls	instr_I("P").	This	basically	means	that	instr_P	is
used	to	write	one	byte,	and	put	the	pointer	to	the	next	byte.	So	far	this	would	seem	the	ideal	instruction
to	construct	most	of	the	"Such	VM!	MuCH	reV3rse!"	string,	but	remember,	this	is	also	the	one	that	can
be	used	only	9	times!

instr_X

Another	simple	one,	rename	local	vars	anyways!

:>	afvn	local_1	arg1

.vmloop

358

This	function	XORs	the	value	at	sym.current_memory_ptr	with	arg1.

instr_J

This	one	is	not	as	simple	as	the	previous	ones,	but	it's	not	that	complicated	either.	Since	I'm	obviously
obsessed	with	variable	renaming:

:>	afvn	local_3	arg1

:>	afvn	local_0_4	arg1_and_0x3f

After	the	result	of	arg1	&	0x3f	is	put	into	a	local	variable,	arg1	&	0x40	is	checked	against	0.	If	it	isn't
zero,	arg1_and_0x3f	is	negated:

.vmloop

359

The	next	branching:	if	arg1	>=	0,	then	the	function	returns	arg1_and_0x3f,

else	the	function	branches	again,	based	on	the	value	of	sym.written_by_instr_C:

If	it	is	zero,	the	function	returns	2,

else	it	is	checked	if	arg1_and_0x3f	is	a	negative	number,

.vmloop

360

and	if	it	is,	sym.good_if_ne_zero	is	incremented	by	1:

After	all	this,	the	function	returns	with	arg1_and_0x3f:

.vmloop

361

.instructionset
We've	now	reversed	all	the	VM	instructions,	and	have	a	full	understanding	about	how	it	works.	Here	is
the	VM's	instruction	set:

Instruction 1st	arg 2nd	arg What	does	it	do?

"A" "M" arg2 *sym.current_memory_ptr	+=	arg2

"P" arg2 sym.current_memory_ptr	+=	arg2

"C" arg2 sym.written_by_instr_C	+=	arg2

"S" "M" arg2 *sym.current_memory_ptr	-=	arg2

"P" arg2 sym.current_memory_ptr	-=	arg2

"C" arg2 sym.written_by_instr_C	-=	arg2

"I" arg1 n/a instr_A(arg1,	1)

"D" arg1 n/a instr_S(arg1,	1)

"P" arg1 n/a *sym.current_memory_ptr	=	arg1;	instr_I("P")

"X" arg1 n/a *sym.current_memory_ptr	^=	arg1

"J" arg1 n/a

arg1_and_0x3f	=	arg1	&	0x3f;
if	(arg1	&	0x40	!=	0)
		arg1_and_0x3f	*=	-1
if	(arg1	>=	0)	return	arg1_and_0x3f;
else	if	(*sym.written_by_instr_C	!=	0)	{
		if	(arg1_and_0x3f	<	0)
				++*sym.good_if_ne_zero;
		return	arg1_and_0x3f;
}	else	return	2;

"C" arg1 n/a *sym.written_by_instr_C	=	arg1

"R" arg1 n/a return(arg1)

.instructionset

362

.bytecode
Well,	 we	 did	 the	 reverse	 engineering	 part,	 now	 we	 have	 to	 write	 a	 program	 for	 the	 VM	 with	 the
instruction	set	described	in	the	previous	paragraph.	Here	is	the	program's	functional	specification:

the	program	must	return	"*"
sym.memory	has	to	contain	the	string	"Such	VM!	MuCH	reV3rse!"	after	execution
all	9	instructions	have	to	be	used	at	least	once
sym.good_if_ne_zero	should	not	be	zero
instr_P	is	not	allowed	to	be	used	more	than	9	times

Since	this	document	is	about	reversing,	I'll	leave	the	programming	part	to	the	fellow	reader	:)	But	I'm
not	going	to	leave	you	empty-handed,	I'll	give	you	one	advice:	Except	for	"J",	all	of	the	instructions	are
simple,	easy	to	use,	and	it	should	not	be	a	problem	to	construct	the	"Such	VM!	MuCH	reV3rse!"	using
them.	"J"	however	is	a	bit	complicated	compared	to	the	others.	One	should	realize	that	its	sole	purpose
is	to	make	sym.good_if_ne_zero	bigger	than	zero,	which	is	a	requirement	to	access	the	flag.	In	order	to
increment	sym.good_if_ne_zero,	three	conditions	should	be	met:

arg1	should	be	a	negative	number,	otherwise	we	would	return	early
sym.written_by_instr_C	should	not	be	0	when	"J"	 is	called.	This	means	 that	"C",	"AC",	or	"SC"
instructions	should	be	used	before	calling	"J".
arg1_and_0x3f	 should	 be	 negative	when	 checked.	 Since	 0x3f's	 sign	 bit	 is	 zero,	 no	matter	what
arg1	 is,	 the	 result	 of	arg1	&	 0x3f	will	 always	 be	 non-negative.	 But	 remember	 that	 "J"	 negates
arg1_and_0x3f	 if	arg1	&	0x40	 is	 not	 zero.	This	 basically	means	 that	arg1's	 6th	bit	 should	be	1
(0x40	=	01000000b).	Also,	because	arg1_and_0x3f	can't	be	0	either,	at	least	one	of	arg1's	0th,	1st,
2nd,	3rd,	4th	or	5th	bits	should	be	1	(0x3f	=	00111111b).

I	think	this	is	enough	information,	you	can	go	now	and	write	that	program.	Or,	you	could	just	reverse
engineer	the	quick'n'dirty	one	I've	used	during	the	CTF:

\x90\x00PSAMuAP\x01AMcAP\x01AMhAP\x01AM	AP\x01AMVAP\x01AMMAP\x01AM!AP\x01AM	AP\x01AMMAP\

x01AMuAP\x01AMCAP\x01AMHAP\x01AM	AP\x01AMrAP\x01AMeAP\x01AMVAP\x01AM3AP\x01AMrAP\x01AMsA

P\x01AMeIPAM!X\x00CAJ\xc1SC\x00DCR*

Keep	in	mind	though,	that	it	was	written	on-the-fly,	parallel	to	the	reversing	phase	-	for	example	there
are	parts	that	was	written	without	the	knowledge	of	all	possible	instructions.	This	means	that	the	code	is
ugly	and	unefficient.

.bytecode

363

.bytecode

364

.outro
Well,	what	can	I	say?	Such	VM,	much	reverse!	:)

What	started	out	as	a	simple	writeup	for	a	simple	crackme,	became	a	rather	lengthy	writeup/r2	tutorial,
so	 kudos	 if	 you've	 read	 through	 it.	 I	 hope	 you	 enjoyed	 it	 (I	 know	 I	 did),	 and	 maybe	 even	 learnt
something	from	it.	I've	surely	learnt	a	lot	about	r2	during	the	process,	and	I've	even	contributed	some
small	patches,	and	got	a	few	ideas	of	more	possible	improvements.

.outro

365

Radare2	Reference	Card
This	 chapter	 is	 based	 on	 the	 Radare	 2	 reference	 card	 by	 Thanat0s,	 which	 is	 under	 the	 GNU	GPL.
Original	license	is	as	follows:

This	card	may	be	freely	distributed	under	the	terms	of	the	GNU

general	public	licence	—	Copyright	by	Thanat0s	-	v0.1	-

Survival	Guide
Those	are	the	basic	commands	you	will	want	to	know	and	use	for	moving	around	a	binary	and	getting
information	about	it.

Command Description

s	(tab) Seek	to	a	different	place

x	[nbytes] Hexdump	of	nbytes,	$b	by	default

aa Auto	analyze

pdf@fcn(Tab) Disassemble	function

f	fcn(Tab) List	functions

f	str(Tab) List	strings

fr	[flagname]	[newname] Rename	flag

psz	[offset]~grep Print	strings	and	grep	for	one

arf	[flag] Find	cross	reference	for	a	flag

Flags
Flags	are	like	bookmarks,	but	they	carry	some	extra	information	like	size,	tags	or	associated	flagspace.
Use	the		f		command	to	list,	set,	get	them.

Reference	Card

366

Command Description

f List	flags

fd	$$ Describe	an	offset

fj Display	flags	in	JSON

fl Show	flag	length

fx Show	hexdump	of	flag

fC	[name]	[comment] Set	flag	comment

Flagspaces
Flags	 are	 created	 into	 a	 flagspace,	by	default	 none	 is	 selected,	 and	 listing	 flags	will	 list	 them	all.	To
display	a	subset	of	flags	you	can	use	the		fs		command	to	restrict	it.

Command Description

fs Display	flagspaces

fs	* Select	all	flagspaces

fs	[sections] Select	one	flagspace

Information
Binary	files	have	information	stored	inside	the	headers.	The		i		command	uses	the	RBin	api	and	allows
us	to	the	same	things	rabin2	do.	Those	are	the	most	common	ones.

Reference	Card

367

Command Description

ii Information	on	imports

iI Info	on	binary

ie Display	entrypoint

iS Display	sections

ir Display	relocations

iz List	strings	(izz,	izzz)

Print	string
There	are	different	ways	to	represent	a	string	in	memory.	The		ps		command	allows	us	to	print	it	in	utf-
16,	pascal,	zero	terminated,	..	formats.

Command Description

psz	[offset] Print	zero	terminated	string

psb	[offset] Print	strings	in	current	block

psx	[offset] Show	string	with	scaped	chars

psp	[offset] Print	pascal	string

psw	[offset] Print	wide	string

Visual	mode
The	visual	mode	is	the	standard	interactive	interface	of	radare2.

To	enter	in	visual	mode	use	the		v		or		V		command,	and	then	you'll	only	have	to	press	keys	to	get	the
actions	happen	instead	of	commands.

Command Description

V Enter	visual	mode

p/P Rotate	modes	(hex,	disasm,	debug,	words,	buf)

Reference	Card

368

c Toggle	(c)ursor

q Back	to	Radare	shell

hjkl Move	around	(or	HJKL)	(left-down-up-right)

Enter Follow	address	of	jump/call

sS Step/step	over

o Go/seek	to	given	offset

. Seek	to	program	counter

/ In	cursor	mode,	search	in	current	block

:cmd Run	radare	command

;[-]cmt Add/remove	comment

x+-/[] Change	block	size,	[]	=	resize	hex.cols

>||< Seek	aligned	to	block	size

i/a/A (i)nsert	hex,	(a)ssemble	code,	visual	(A)ssembler

b/B Toggle	breakpoint	/	automatic	block	size

d[f?] Define	function,	data,	code,	..

D Enter	visual	diff	mode	(set	diff.from/to)

e Edit	eval	configuration	variables

f/F Set/unset	flag

gG Go	seek	to	begin	and	end	of	file	(0-$s)

mK/’K Mark/go	to	Key	(any	key)

M Walk	the	mounted	filesystems

n/N Seek	next/prev	function/flag/hit	(scr.nkey)

o Go/seek	to	given	offset

C Toggle	(C)olors

R Randomize	color	palette	(ecr)

t Track	flags	(browse	symbols,	functions..)

T Browse	anal	info	and	comments

Reference	Card

369

v Visual	code	analysis	menu

V/W (V)iew	graph	(agv?),	open	(W)ebUI

uU Undo/redo	seek

x Show	xrefs	to	seek	between	them

yY Copy	and	paste	selection

z Toggle	zoom	mode

Searching
There	are	many	situations	where	we	need	 to	find	a	value	 inside	a	binary	or	 in	some	specific	regions.
Use	the		e	search.in=?		command	to	choose	where	the		/		command	may	search	for	the	given	value.

Reference	Card

370

Command Description

/	foo\00 Search	for	string	’foo\0’

/b Search	backwards

// Repeat	last	search

/w	foo Search	for	wide	string	’f\0o\0o\0’

/wi	foo Search	for	wide	string	ignoring	case

/!	ff Search	for	first	occurrence	not	matching

/i	foo Search	for	string	’foo’	ignoring	case

/e	/E.F/i Match	regular	expression

/x	ff0.23 Search	for	hex	string

/x	ff..33 Search	for	hex	string	ignoring	some	nibbles

/x	ff43	ffd0 Search	for	hexpair	with	mask

/d	101112 Search	for	a	deltified	sequence	of	bytes

/!x	00 Inverse	hexa	search	(find	first	byte	!=	0x00)

/c	jmp	[esp] Search	for	asm	code	(see	search.asmstr)

/a	jmp	eax Assemble	opcode	and	search	its	bytes

/A Search	for	AES	expanded	keys

/r	sym.printf Analyze	opcode	reference	an	offset

/R Search	for	ROP	gadgets

/P Show	offset	of	previous	instruction

/m	magicfile Search	for	matching	magic	file

/p	patternsize Search	for	pattern	of	given	size

/z	min	max Search	for	strings	of	given	size

/v[?248]	num Look	for	a	asm.bigendian	32bit	value

Saving

Reference	Card

371

By	default,	when	you	open	a	file	in	write	mode	(r2	-w)	all	changes	will	be	written	directly	into	the
file.	No	undo	history	is	saved	by	default.

Use	 	e	io.cache.write=true		and	the	 	wc		command	to	manage	 the	write	cache	history	changes.	To
undo,	redo,	commit	them	to	write	the	changes	on	the	file..

But,	if	we	want	to	save	the	analysis	information,	comments,	flags	and	other	user-created	metadata,	we
may	want	to	use	projects	with		r2	-p		and	the		P		command.

Command Description

Po	[file] Open	project

Ps	[file] Save	project

Pi	[file] Show	project	information

Usable	variables	in	expression
The		?$?		command	will	display	the	variables	that	can	be	used	in	any	math	operation	inside	the	r2	shell.
For	 example,	 using	 the	 	?	$$		 command	 to	 evaluate	 a	 number	 or	 	?v	 	 to	 just	 the	 the	 value	 in	 one
format.

All	commands	in	r2	that	accept	a	number	supports	the	use	of	those	variables.

Command Description

$$ here	(current	virtual	seek)

$$$ current	non-temporary	virtual	seek

$? last	comparison	value

$alias=value alias	commands	(simple	macros)

$b block	size

$B base	address	(aligned	lowest	map	address)

$f jump	fail	address	(e.g.	jz	0x10	=>	next	instruction)

$fl flag	length	(size)	at	current	address	(fla;	pD	$l	@	entry0)

$F current	function	size

$FB begin	of	function

Reference	Card

372

$Fb address	of	the	current	basic	block

$Fs size	of	the	current	basic	block

$FE end	of	function

$FS function	size

$Fj function	jump	destination

$Ff function	false	destination

$FI function	instructions

$c,$r get	width	and	height	of	terminal

$Cn get	nth	call	of	function

$Dn get	nth	data	reference	in	function

$D current	debug	map	base	address	?v	$D	@	rsp

$DD current	debug	map	size

$e 1	if	end	of	block,	else	0

$j jump	address	(e.g.	jmp	0x10,	jz	0x10	=>	0x10)

$Ja get	nth	jump	of	function

$Xn get	nth	xref	of	function

$l opcode	length

$m opcode	memory	reference	(e.g.	mov	eax,[0x10]	=>	0x10)

$M map	address	(lowest	map	address)

$o here	(current	disk	io	offset)

$p getpid()

$P pid	of	children	(only	in	debug)

$s file	size

$S section	offset

$SS section	size

$v opcode	immediate	value	(e.g.	lui	a0,0x8010	=>	0x8010)

Reference	Card

373

$w get	word	size,	4	if	asm.bits=32,	8	if	64,	...

${ev} get	value	of	eval	config	variable

$r{reg} get	value	of	named	register

$k{kv} get	value	of	an	sdb	query	value

$s{flag} get	size	of	flag

RNum $variables	usable	in	math	expressions

Reference	Card

374

Authors	&	Contributors
This	book	wouldn't	be	possible	without	the	help	of	a	large	list	of	contributors	who	have	been	reviewing,
writing	and	reporting	bugs	and	stuff	in	the	radare2	project	as	well	as	in	this	book.

The	radare2	book

This	book	was	started	by	maijin	as	a	new	version	of	the	original	radare	book	written	by	pancake.

Old	radare1	book	http://www.radare.org/get/radare.pdf

Many	thanks	to	everyone	who	has	been	involved	with	the	gitbook:

Adrian	 Studer,	 Ahmed	 Mohamed	 Abd	 El-MAwgood,	 Akshay	 Krishnan	 R,	 Andrew	 Hoog,	 Anton
Kochkov,	 Antonio	 Sánchez,	 Austin	 Hartzheim,	 Bob131,	 DZ_ruyk,	 David	 Tomaschik,	 Eric,	 Fangrui
Song,	Francesco	Tamagni,	FreeArtMan,	Gerardo	García	Peña,	Giuseppe,	Grigory	Rechistov,	Hui	Peng,
ITAYC0HEN,	 Itay	 Cohen,	 Jeffrey	 Crowell,	 John,	 Judge	 Dredd	 (key	 6E23685A),	 Jupiter,	 Kevin
Grandemange,	 Kevin	 Laeufer,	 Luca	 Di	 Bartolomeo,	 Lukas	 Dresel,	 Maijin,	 Michael	 Scherer,	 Mike,
Nikita	 Abdullin,	 Paul,	 Paweł	 Łukasik,	 Peter	 C,	 RandomLive,	 Ren	 Kimura,	 Reto	 Schneider,
SchumBlubBlub,	SkUaTeR,	Solomon,	Srimanta	Barua,	Sushant	Dinesh,	TDKPS,	Thanat0s,	Vanellope,
Vex	Woo,	 Vorlent,	 XYlearn,	 Yuri	 Slobodyanyuk,	 ali,	 aoighost,	 condret,	 hdznrrd,	 izhuer,	 jvoisin,	 kij,
madblobfish,	 muzlightbeer,	 pancake,	 polym	 (Tim),	 puddl3glum,	 radare,	 sghctoma,	 shakreiner,
sivaramaaa,	taiyu,	vane11ope,	xarkes.

Acknowledgments

375

http://www.radare.org/get/radare.pdf

	Introduction
	History
	The Framework
	Downloading radare2
	Compilation and Portability
	Compilation on Windows
	User Interfaces

	First Steps
	Command-line Flags
	Command Format
	Expressions
	Basic Debugger Session
	Contributing to radare2

	Configuration
	Colors
	Configuration Variables
	Files

	Basic Commands
	Seeking
	Block Size
	Sections
	Mapping Files
	Print Modes
	Flags
	Write
	Zoom
	Yank/Paste
	Comparing Bytes
	SDB

	Visual mode
	Visual Disassembly
	Visual Assembler
	Visual Configuration Editor
	Visual Panels

	Searching bytes
	Basic Searches
	Configurating the Search
	Pattern Search
	Automation
	Backward Search
	Search in Assembly
	Searching for AES Keys

	Disassembling
	Adding Metadata
	ESIL

	Analysis
	Code Analysis
	Variables
	Types
	Calling Conventions
	Virtual Tables
	Syscalls
	Emulation
	Symbols information
	Signatures
	Graph commands

	Scripting
	Loops
	Macros
	R2pipe

	Debugger
	Getting Started
	Migration from ida, GDB or WinDBG
	Registers
	Memory Maps
	Heap
	Files
	Reverse Debugging

	Remote Access
	Remote GDB
	Remote WinDbg

	Command Line Tools
	Rax2
	Rafind2
	Rarun2
	Rabin2
	File Identification
	Entrypoint
	Imports
	Exports
	Symbols (exports)
	Libraries
	Strings
	Program Sections

	Radiff2
	Binary Diffing

	Rasm2
	Assemble
	Disassemble
	Configuration

	Ragg2
	Language

	Rahash2
	Rahash Tool

	Plugins
	IO plugins
	Asm plugins
	Analysis plugins
	Bin plugins
	Other plugins
	Python plugins
	Debugging
	Testing
	Packaging

	Crackmes
	IOLI
	IOLI 0x00
	IOLI 0x01

	Avatao R3v3rs3 4
	.radare2
	.first_steps
	.main
	.vmloop
	.instructionset
	.bytecode
	.outro

	Reference Card
	Acknowledgments

