Docker on
Windows

Docker on Windows

From 101 to production with Docker on Windows

Elton Stoneman

BIRMINGHAM - MUMBAI

Docker on Windows

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book. Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

First published: July 2017

Production reference: 1120717

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78528-165-5

www.packtpub.com

http://www.packtpub.com

Author
Elton Stoneman

Reviewer
Shashikant Bangera

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Rahul Nair

Content Development Editor
Sharon Raj

Technical Editors
Mohit Hassija
Komal Karne

Credits

Copy Editor
Stuti Srivastava

Project Coordinator
Virginia Dias

Proofreader
Safis Editing

Indexer
Aishwarya Gangawane

Graphics
Kirk D'Penha

Production Coordinator
Aparna Bhagat

About the Author

Elton Stoneman has been a Microsoft MVP for 8 years and a Pluralsight author for 5 years,
and now he works for Docker, Inc. Before joining Docker, he spent 15 years as a consultant,
architecting and delivering very large and very successful solutions built on .NET and
powered by Windows and Azure.

All the years he worked with Windows, Elton had a secret Linux server in his attic or
garage, running core services for the home, such as music servers and file servers. When
Docker started to take hold in the Linux world, Elton had early experience in a cross-
platform project he worked on, got hooked, and started to focus on containers. He was
made a Docker Captain, and for a time, was one of only two people in the world who were
both a Microsoft MVP and a Docker Captain.

Elton blogs about Docker, tweets about Docker, and speaks about Docker all the time. He is
a regular at local events and user groups; you will often see him at Docker London, London
DevOps, and WinOps London. He's also had great fun speaking at fantastic conferences
around the world, including DockerCon, NDC London, SDD, DevSum, and NDC Oslo.

You can’t write a 300-page technical book without a lot of late nights, a lot of support, and
a decent bean-to-cup coffee machine. Support is the most important of those, after the coffee
machine. There are a lot of people I would like to thank. Everyone I work with at Docker,
Inc. is exceptional, but Michael Friis and Brandon Royal are the pioneers of Docker on
Windows and their work is driving this important technology forward. The Docker
Captains are a fabulous group of people, and I have learned a great deal from Stefan
Scherer and all his community contributions. And my friends and family are just all-out
awesome, especially Nikki and Jackson.

About the Reviewer

Shashikant Bangera is a DevOps architect with 17 years of IT experience. He has vast
experience of DevOps tools across the platform, with core expertise in CI, CD, and aPaaS.
He has helped his customers adopt DevOps, and has architected and implemented
Enterprise DevOps for various domains, such as banking, e-commerce, and retail. He has
also contributed to many open sources platforms, such as DevOps Publication. He has
designed an automated on-demand environment with a set of open source tools and also
an environment booking tool, which is available on GitHub.

He has reviewed two Docker books for Packt: Learning Docker and Docker High Performance.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.packtPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
athttp://www.amazon.in/dp/1785281658. If you'd like to join our team of regular
reviewers, you can email us at customerreviews@packtpub.com. We award our regular
reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be
relentless in improving our products!

http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658

Table of Contents

Preface

Chapter 1: Getting Started with Docker on Windows
Docker and Windows containers
Windows licensing
Understanding the key Docker concepts
The Docker service and Docker command-line
Docker images
Image registries
Docker containers
Docker swarm
Running Docker on Windows
Docker for Windows
Docker as a Windows Service
Docker in an Azure VM
Learning Docker with this book
Summary

Chapter 2: Packaging and Running Applications as Docker Containers

Running a container from an image

Doing one thing with a task container

Connecting to an interactive container

Keeping a process running in a background container
Building a Docker image

Understanding the Dockerfile

Building an image from a Dockerfile

Examining how Docker builds an image
Packaging your own applications

Compiling the application during the build

Compiling the application before the build

Compiling with multi-stage builds

Using the main Dockerfile instructions

Understanding temporary containers and image state
Working with data in Docker images and containers

Data in layers and the virtual C drive

Sharing data between containers with volumes

Sharing data between container and host with volumes

Mounting volumes from host directories

Using volumes for configuration and state

Packaging a traditional ASP.NET web app as a Docker image

Table of Contents

Writing a Dockerfile for NerdDinner
Summary

Chapter 3: Developing Dockerized .NET and .NET Core Applications
Building good citizens for Docker
Hosting Internet Information Services (1IS) applications in Docker
Configuring IS for Docker-friendly logging
Promoting environment variables
Building Docker images that monitor applications
Separating dependencies
Creating Docker images for SQL Server databases
Managing database files for SQL Server containers
Running databases in containers
Connecting to database containers from application containers
Breaking up monolithic applications
Extracting high-value components from monoliths
Hosting a Ul component in an ASP.NET Core application
Connecting to application containers from other application containers
Summary

Chapter 4: Pushing and Pulling Images from Docker Registries
Understanding registries and repositories
Examining image repository names
Building, tagging, and versioning images
Pushing images to a registry
Running a local image registry
Building the registry image
Running a registry container
Pushing and pulling images with a local registry
Configuring Docker to allow insecure registries
Storing Windows image layers in a local registry
Using a commercial registry
Docker Hub
Docker Cloud
Docker Store
Docker Trusted Registry
Other registries
Summary

Chapter 5: Adopting Container-First Solution Design
Design goals for NerdDinner
Dockerizing NerdDinner's configuration
Splitting out the create dinner feature
Packaging .NET console apps in Docker
Running a message queue in Docker
Starting a multi-container solution

50
54

55
56
57
58
60
63
66
67
69
71
74
77
78
79
81
83

85
86
86
88
89
91
92
95
96
97
99
101
101
102
103
103
104
105

106
107
109
110
113
114
115

[ii]

Table of Contents

Adding new features in containers
Using Elasticsearch with Docker and .NET
Building hybrid .NET Framework and .NET Core solutions in Docker
Compiling the hybrid NerdDinner solution
Packaging .NET Core console apps in Docker
Providing analytics with Kibana
From monolith to distributed solution
Managing build and deployment dependencies
Summary

Chapter 6: Organizing Distributed Solutions with Docker Compose

Defining applications with Docker Compose
Capturing service definitions
Defining infrastructure services
Configuring application services
Specifying application resources

Managing applications with Docker Compose
Running applications
Scaling application services
Stopping and starting application services
Upgrading application services
Monitoring application containers
Managing application images

Configuring application environments
Specifying external resources
Using multiple Compose files

Summary

Chapter 7: Orchestrating Distributed Solutions with Docker Swarm
Creating a swarm and managing nodes
Creating and managing services in swarm mode
Running services across many containers
Global services
Deploying stacks to Docker swarm
Docker secrets
Defining a stack using Compose files
Deploying a stack from a Compose file
Running Docker swarm in the cloud
Managed Docker services in the cloud
Docker on Amazon Elastic Container Service
Docker on Google Container Platform
Docker on Azure Container Service
Docker cloud editions
Deploying updates with zero downtime
Load balancing across swarm nodes
Updating application services

118
119
121
123
125
126
129
131
132

133
134
135
136
138
141
142
143
144
146
148
150
152
153
154
155
158

160
161
163
166
168
169
169
172
174
176
177
177
178
178
179
182
182
184

[iii]

Table of Contents

Rolling back service updates

Configuring update behavior

Updating swarm nodes

Mixing hosts in hybrid swarms
Summary

Chapter 8: Administering and Monitoring Dockerized Solutions
Managing containers with Windows tools
IIS Manager
SQL Server Management Studio
Event logs
Server Manager
Managing containers with Docker tools
Docker visualizer
Portainer
Caa$S with Docker EE
Understanding UCP
Navigating the UCP Ul
Managing nodes
Volumes
Images
Networks
Deploying stacks
Creating services
Monitoring services
RBAC
Summary

Chapter 9: Understanding the Security Risks and Benefits of Docker
Understanding container security
Container processes
Container user accounts and ACLs
Running containers with resource constraints
Running containers with restricted capabilities
Isolation in Hyper-V containers
Securing applications with secure Docker images
Building minimal images
Docker Security Scanning
Managing Windows updates
Securing the software supply chain with DTR
Repositories and users
Organizations and teams
Image Signing and Content Trust
Golden images
Understanding security in swarm mode
Nodes and join tokens

186
186
187
189
191

192
193
194
196
199
200
204
204
206
209
209
210
211
213
215
216
218
220
225
230
232

234
235
235
237
238
240
241
242
242
243
245
246
247
249
252
253
254
255

[iv]

Table of Contents

Encryption and secrets
Node labels and external access
Summary

Chapter 10: Powering a Continuous Deployment Pipeline with Docker

Designing CI/CD with Docker
Running shared development services in Docker
Packaging a Git server into a Windows Docker image
Running the Bonobo Git server in Docker
Packaging a Cl server into a Windows Docker image
Running the Jenkins automation server in Docker
Configuring CI/CD using Jenkins in Docker
Setting up Jenkins credentials
Configuring the Jenkins ClI job
Building the solution using Docker Compose in Jenkins
Multi-stage builds in Cl pipelines
Running and verifying the solution
Running end-to-end tests in Docker
Tagging and pushing Docker images in Jenkins
Deploying to a remote Docker swarm using Jenkins
Summary

Chapter 11: Debugging and Instrumenting Application Containers
Working with Docker in integrated development environments
Docker in Visual Studio 2017
Debugging with Docker Compose in Visual Studio 2017
Docker in Visual Studio 2015
Docker in Visual Studio Code
Instrumentation in Dockerized applications
Instrumentation with Prometheus
Adding a Prometheus endpoint to .NET projects
Adding a Prometheus exporter alongside existing apps
Running a Prometheus server in a Windows Docker container
The bug fixing workflow in Docker
Bug fixing before Docker
Bug fixing with Docker
Summary

Chapter 12: Containerize What You Know - Guidance for Implementing

Docker
Dockerizing what you know
Selecting a simple Proof-of-Concept app
Generating an initial Dockerfile with Image2Docker
Engaging other stakeholders
Case studies for implementing Docker
Case study 1 - an in-house WebForms app

255
256
257

259
260
261
261
264
266
267
270
270
272
273
276
278
280
282
283
289

290
291
292
293
297
300
303
303
304
307
309
314
314
316
317

318
318
319
320
322
323
323

[v]

Table of Contents

Case study 2 - a database integration service 326

Case study 3 - an Azure loT app 328
Summary 332
Index 333

[vil

Preface

Docker is a platform for running server applications in lightweight units called containers.
You can run Docker on Windows Server 2016 and Windows 10, and run your existing apps
in containers to get significant improvements in efficiency, security, and portability. This
book teaches you all you need to know about Docker on Windows, from 101 to deploying
highly available workloads in production.

What this book covers

Chapter 1, Getting Started with Docker on Windows, introduces the Docker runtime and
walks through the options for running Docker on Windows, covering Docker Toolbox for
older client versions, native Docker for Windows 10 and Windows Server 2016, and
running Docker hosted on an Azure VM.

Chapter 2, Packaging and Running Applications as Docker Containers, focuses on the Docker
image: a packaged application with all its dependencies that will run in the same way on
any host that can run Docker. We'll see how to build Docker images with a Dockerfile for a
simple website, and then run it on Windows.

Chapter 3, Developing Dockerized .NET and .NET Core Applications, shows how we can build
applications with Microsoft technologies that can run on any operating system. .NET Core
apps run equally on Windows (including Nano Server) and Linux, and they are ideally
suited for packaging into a portable Docker container.

Chapter 4, Pushing and Pulling Images from Docker Registries, will look at publishing images
we build in development and using automated builds, hooking Docker Hub into GitHub so
new container image versions are built when code gets pushed. The chapter will also cover
running your own private Docker registry for internal use.

Chapter 5, Adopting Container-First Solution Design, builds on the previous chapters,
showing how the range of high-quality Docker images makes it straightforward to design
distributed solutions, and mixing off-the-shelf images with custom ones. The Windows
slant here is that you can run Windows hosts and manage them in the same way as other
machines, but they could be running Linux software inside a Docker container.

Preface

Chapter 6, Organizing Distributed Solutions with Docker Compose, takes the ad hoc
distributed solution from chapter 5, Adopting Container-First Solution Design and builds it
into a deployable package using Docker Compose--with a Docker Network so containers
can communicate using hostnames. The chapter will also cover the structure of the Docker
Compose YAML file and the runtime for Docker Compose.

Chapter 7, Orchestrating Distributed Solutions with Docker Swarm, covers production-ready
clustering with Docker Swarm, briefly introducing the old Docker Swarm product for
awareness, but focusing on the new Swarm Mode built into Docker from version 1.12. We'll
set up a Swarm running on Windows in Azure, explore how the Routing Mesh works, and
look at service discovery and reliability by deploying the solution from chapter &,
Organizing Distributed Solutions with Docker Compose as Swarm services.

Chapter 8, Administering and Monitoring Dockerized Solutions, covers management of
distributed Docker solutions. You'll see how to set up log shipping so container logs are
sent to a central location, use both free and commercial tools to visualize the containers in a
Swarm, and learn how to do rolling upgrades of a running service.

Chapter 9, Understanding the Security Risks and Benefits of Docker, covers the key aspects of
Docker security: the risks of having multiple containers on one node, the potential for an
attacker to compromise one container and access others, and how to mitigate that. We'll
also look at how Docker improves security, with vulnerability scanning for images built
into Docker Hub and Docker Trusted Registry and flagging security issues with the
software inside images. Lastly, we'll cover built-in security between nodes in Docker
Swarm.

Chapter 10, Powering a Continuous Deployment Pipeline with Docker, covers Docker in a
DevOps workflow, where everything is automated. We'll build out a whole deployment
pipeline using Docker, running GitLab for source control and builds, which will package a
new Docker image when code is pushed, run automated tests, and deploy to a test
environment.

Chapter 11, Debugging and Instrumenting Application Containers, looks at troubleshooting
Docker containers during both build and run. We will cover how to structure the Dockerfile
so that infrequently changing layers are preserved and containers are quicker to build, and
see the best way to build up an image. For running containers, we'll cover viewing the logs,
checking process performance, and connecting to the container for exploratory checks.

Chapter 12, Containerize What You Know: Guidance for Implementing Docker, will look at
containerizing existing software stacks for non-production deployment, and also extracting
a vertical slice from an application that can run in Docker, as a first move toward a
microservice architecture.

[2]

Preface

What you need for this book

To execute the examples given in this book, you will need the following;:

e Docker for Windows 17.06 or later
e Windows 10 or Windows Server 2016

Who this book is for

If you want to modernize an old monolithic application without rewriting it, smooth the
deployment to production, or move to DevOps or the cloud, then Docker is the enabler for
you. This book gives you a solid grounding in Docker so you can confidently approach all
of these scenarios.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning. Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "If you run docker container ls, which lists all the active containers, you won't
see this container."

A block of code is set as follows:

FROM microsoft/nanoserver
COPY scripts/print—env-details.psl c:\\print-env.psl
CMD ["powershell.exe", "c:\\print—-env.psl"]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

FROM microsoft/nanoserver
COPY scripts/print—-env-details.psl c:\\print-env.psl
CMD ["powershell.exe", "c:\\print-env.psl"]

Any command-line input or output is written as follows:

docker container run dockeronwindows/chOl-whale

[3]

Preface

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter.”

0 Warnings or important notes appear like this.
9 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.

[4]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Docker-on-Windows. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.

You can download this file from
https://www.packtpub.com/sites/default/files/downloads/DockeronWindows_ColorIma

ges.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https://www.packtpub.com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[5]

https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/DockeronWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DockeronWindows_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable

content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[6]

Getting Started with Docker on
Windows

Docker is an application platform. It's a new way of running applications in isolated,
lightweight units called containers. Containers are a very efficient way of running apps -
they start in seconds, and the container doesn't add any overhead to the memory and
compute requirements of the app. Docker is completely agnostic to the type of apps it can
run. You can run a brand new .NET Core app in one container and a 10-year old ASP.NET
2.0 WebForms app in another container on the same server.

Containers are isolated units, but they can integrate with other components. Your
WebForms container can access a REST API hosted in your .NET Core container. Your
.NET Core container can access a SQL Server database running in a container or a SQL
Server instance running on a separate machine. You can even set up a cluster with a
mixture of Linux and Windows machines all running Docker, and have Windows
containers transparently communicate with Linux containers.

Companies big and small are moving to Docker to take advantage of this flexibility and
efficiency. The case studies from Docker, Inc. - the company behind the Docker platform -
show that you can reduce your hardware requirements by 50% when you move to Docker,
while still supporting high availability for your applications. These significant reductions
apply equally to on-premises data centers and to the cloud.

Efficiency isn't the only gain. When you package your application to run in Docker, you get
portability. You can run your app in a Docker container on your laptop, and it will behave
in exactly the same way on a server in your data center and on a virtual machine (VM) in
any cloud. This means your deployment process is simple and risk-free because you're
deploying the exact same artifacts that you've tested, and you're also free to choose between
hardware vendors and cloud providers.

Getting Started with Docker on Windows Chapter 1

The other big motivator is security. Containers add secure isolation between applications,
so you can be confident that if one application is compromised, the attacker can't move on
to compromise other apps on the same host. There are wider security benefits in the
platform too. Docker can scan the contents of packaged applications and alert you to
security vulnerabilities in your application stack. And you can digitally sign packages and
configure Docker to run containers only from package authors that you trust.

Docker is built from open source components and is shipped as Docker Community
Edition (Docker CE) and Docker Enterprise Edition (Docker EE). Docker CE is free to use
and has monthly releases. Docker EE is a paid subscription, it comes with extended features
and support and has quarterly releases. Docker CE and Docker EE are available on
Windows, and both versions use the same underlying platform, so you can run your apps
in containers on Docker CE and EE in the same way.

Docker and Windows containers

Docker originally ran on Linux, taking advantage of core Linux features but making it
simple and efficient to use containers for application workloads. Microsoft saw the
potential and worked closely with the Docker engineering team to bring the same
functionality to Windows. Windows Server 2016 and Windows 10 are the first versions of
Windows that can run Docker containers. Right now, you can run only Windows
containers on Windows, but Microsoft is adding support for Linux containers to run on
Windows too.

There is no integration between containers and the Windows UI, though. Containers are
only for server side applications - workloads like websites, APIs, databases, message
queues, message handlers, and console applications. You can't use Docker to run a client
app, like a .NET WinForms or WPF application, but you could use Docker to package and
distribute the application, which would give you a consistent build and release process for
all your apps.

There is also a distinction between how containers run on Windows Server 2016 and
Windows 10. The user experience for working with Docker is the same, but the way
containers are hosted is different. On Windows Server, the process that serves your
application actually runs on the server, and there's no layer between the container and the
host. In the container, you may see w3wp . exe running to serve a website, but that process is
actually running on the server - if you had ten web containers running, you would see ten
instances of w3wp . exe in task manager on the server.

[8]

Getting Started with Docker on Windows Chapter 1

Windows 10 doesn't have the same operating system kernel as Windows Server 2016, so in
order to provide containers with the Windows Server kernel, Windows 10 runs each
container in a very light VM. These are called Hyper-V containers, and if you run a web
app in a container on Windows 10, you won't see w3wp . exe running on the host - it's
actually running inside a dedicated Windows Server kernel in the Hyper-V container.

It's good to understand this distinction. You use the same Docker artifacts and the same
Docker commands on Windows 10 and Windows Server 2016, so the processes are the
same, but there is a slight performance hit in using Hyper-V containers on Windows 10.
Later in this chapter, I'll show you the options for running Docker on Windows, and you
can choose the best approach for you.

Windows licensing

Windows containers don't have the same licensing requirements as servers or VMs running
Windows. Windows is licensed at the host level, not the container level. If you have 100
Windows containers running on one server, you only need a license for the server. There
are considerable savings to be had if you currently use VMs to isolate application
workloads. Removing the VM layer and running apps in containers directly on the server
removes the licensing requirement for all the VMs.

Hyper-V containers have separate licensing. On Windows 10, you can run multiple
containers, but not for production deployments. On Windows Server, you can also run
containers in Hyper-V mode to get increased isolation. This can be useful in multi-tenant
scenarios, where you need to expect and mitigate for hostile workloads. Hyper-V
containers are separately licensed, but in a high-volume environment, you would use a
Datacenter license run Hyper-V containers without individual licenses.

Microsoft and Docker, Inc. have partnered to provide Docker EE at no cost with Windows
Server 2016. The price of the Windows Server license includes Docker EE Basic, which gives
you support to run applications in containers. If you have problems with a container or
with the Docker service, you can raise it with Microsoft and they can go on to escalate it to
Docker engineers.

[9]

Getting Started with Docker on Windows Chapter 1

Understanding the key Docker concepts

Docker is a very powerful but very simple application platform. You can get started with
running your existing apps in Docker in just a few days, and be ready to move to
production in a few days more. This book will take you through lots of examples of .NET
Framework and .NET Core applications, running in Docker. You'll learn how to build, ship,
and run applications in Docker and move on to advanced topics like solution design,
security, administration, instrumentation, and continuous integration and continuous
delivery (CI/CD).

To start with, you need to understand the core Docker concepts: images, registries,
containers, and swarms--and understand how Docker actually runs.

The Docker service and Docker command-line

Docker runs as a background Windows service. This service manages all the running
containers and exposes a REST API for consumers to work with containers and other
Docker resources. The main consumer of that API is the Docker command-line tool, which
is what I use for most of the code samples in this book.

The Docker REST APl is public, and there are alternative management tools that are
powered by the AP]I, like Portainer (which is open source) and Docker Universal Control
Plane (UCP) (which is a commercial product). The Docker CLI is very simple to use; you
use commands like docker container run torun an application in a container and
docker container rmtoremove a container.

You can also configure the Docker API to be remotely accessible and configure your Docker
CLI to connect to a remote service. This means you can manage a Docker host running in
the cloud using Docker commands on your laptop. The setup to allow remote access should
also include encryption, so your connection is secure--and in this chapter, I will show you
an easy way to configure that.

When you have Docker running, you'll start by running containers from images.

[10]

Getting Started with Docker on Windows Chapter 1

Docker images

A Docker image is a complete application package. It contains one application and all of its
dependencies, the language runtime, the application host, and the underlying operating
system. Logically, the image is a single file, and it's a portable unit—you can share your
application by pushing your image to a Docker registry. Anyone who has access can pull
that image themselves and run your application in a container. It will behave in exactly the
same way for them as it does for you.

Here's a concrete example. An ASP.NET WebForms app is going to run on Internet
Information Services (IIS) in Windows Server. To package that application in Docker, you
build an image that is based on Windows Server Core, add IIS, add ASP.NET, copy your
application, and configure it as a website in IIS. You describe all these steps in a simple
script called a Dockerfile, and you can use PowerShell or batch files for each step you need
to perform.

You build the image by running docker image build. The input is the Dockerfile and
any resources that need to be packaged into the image (like the web application content).
The output is a Docker image. In this case, the image will have a logical size of about 11 GB,
but 10 GB of that is the Windows Server Core image you're using as a base, and that image
can be shared as the base across many other images (I will cover image layers and caching
more in Chapter 4, Pushing and Pulling Images from Docker Registries).

The Docker image is like a snapshot of the filesystem for one version of your application.
The image is static, and you distribute it using a registry.

Image registries

A registry is a storage server for Docker images. Registries can be public or private, and
there are free public registries and commercial registry servers that allow fine-grained
access control for images. Images are stored with a unique name within the registry.
Anyone with access can upload an image by running docker image push and download
an image by running docker image pull.

The most popular registries are the public ones hosted by Docker:

e Docker Hub is the original registry, which has become hugely popular for open
source projects in the Linux ecosystem. It has over 600,000 images stored and has
hosted over 12 billion image pulls.

[11]

Getting Started with Docker on Windows Chapter 1

¢ Docker Cloud is where you store images you build yourself, and you can
configure images to be public or private. It's suitable for internal products, where
you can limit access to the images. You can set up Docker Cloud to automatically
build images from Dockerfiles stored in GitHub—currently, this is supported
only for Linux-based images, but Windows support is coming soon.

e Docker Store is where you get commercial software, pre-packaged as Docker
images. Vendors are increasingly supporting Docker as a platform for their own
applications, and you will find software from Microsoft, Oracle, HPE, and more
on Docker Store.

In a typical workflow, you might build images as part of a CI pipeline and push them to a
registry if all the tests pass. The image is then available for other users to run your
application in a container.

Docker containers

A container is an instance of an application created from an image. The image contains the
whole application stack, and it also specifies the process to start the application, so Docker
knows what to do when you run a container. You can run multiple containers from the
same image, and you can run containers in different ways (I describe them all in the next
chapter).

You start your application with docker container run, specifying the name of the
image and your configuration options. Distribution is built into the Docker platform, so if
you don't have a copy of the image on the host where you're trying to run the container,
Docker will pull the image first. Then it starts the specified process, and your app is
running in a container.

Containers don't need a fixed allocation of CPU or memory, and the processes for your
application can use as much of the host's compute power as they need. You can run dozens
of containers on modest hardware, and unless the applications all try and use a lot of CPU
at the same time, they will happily run concurrently. You can also start containers with
resource limits to restrict how much CPU and memory they have access to.

Docker provides the container runtime as well as image packaging and distribution. In a
small environment and in development, you will manage individual containers on a single
Docker host, which would be your laptop or a test server. When you move to production,
you'll need high availability and the option to scale, and that comes with Docker swarm.

[12]

Getting Started with Docker on Windows Chapter 1

Docker swarm

Docker has the ability to run on a single machine or as one node in a cluster of machines all
running Docker. This cluster is called a swarm, and you don't need to install anything extra
to run in swarm mode. You install Docker on a set of machines, and on the first you run
docker swarm init to initialize the swarm, and on the others you run docker swarm
join to join the swarm.

I will cover swarm mode in depth in chapter 7, Orchestrating Distributed Solutions with
Docker Swarm, but it's important to know before you get much further that the Docker
platform has high availability, scale, and resilience built in. Your Docker journey will
hopefully lead you to production, where you'll need all these attributes.

In swarm mode Docker uses exactly the same artifacts, so you can run your app across 50
containers in a 20-node swarm, and the functionality will be the same as when you run it in
a single container on your laptop. On the swarm, your app is more performant and tolerant
of failure, and you'll be able to perform automated rolling updates to new versions.

Nodes in a swarm use secure encryption for all communication, using trusted certificates
for each node. You can store application secrets as encrypted data in the swarm too, so
database connection strings and API keys can be saved securely, and the swarm will
deliver them only to containers that need them.

Docker is an established platform. It's new to Windows Server 2016, but it arrived on
Windows after four years of releases on Linux. Docker is written in Go, which is a cross-
platform language, and only a minority of code is specific to Windows. When you run
Docker on Windows, you're running an application platform that has had years of
successful production use.

Running Docker on Windows

It's easy to install Docker on Windows 10 and Windows Server 2016. On these operating
systems, you can use the Docker for Windows installer, which sets up all the prerequisites,
deploys the latest version of Docker CE, and gives you some useful options to manage
image repositories and remote swarms with Docker Cloud.

[13]

Getting Started with Docker on Windows Chapter 1

In production, you should ideally use Windows Server 2016 Core, the installation with no
UL This reduces the attack surface and the amount of Windows updates your server will
need. If you move all your apps to Docker, you won't need any other Windows features
installed; you'll just have Docker EE running as a Windows service.

I'll walk through both these installation options and show you a third option using a VM in
Azure, which is useful if you want to try Docker but don't have access to Windows 10 or
Windows Server 2016.

There is a fantastic online Docker playground at https://dockr.ly/play-
with-docker. Windows support is currently in beta, and it's a great way to
try Docker without having to make any investment - you just browse the
site and get started.

Docker for Windows

Docker for Windows is available from Docker Store—navigate to https://dockr.ly/
docker-for-windows. You can choose between the Stable channel and the Edge channel.
Both channels give you Docker CE, but the Edge channel follows the monthly release cycle,
and you will get experimental features. The Stable channel follows the EE release cycle,
with quarterly updates.

You should use the Edge channel in development if you want to work
with the latest features. In test and production, you will use Docker EE, so
you need to be careful that you don't use features in development that are
not yet available in EE.

Download and run the installer. The installer will verify that you can run Docker in your
setup and will configure the Windows features needed to support Docker. When Docker is
running, you will see a whale icon in the notification bar, which you can click on for
options:

[14]

https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows

Getting Started with Docker on Windows Chapter 1

About Docker

Discover Docker Enterprise Edition

Settings...
Check for Updates...
Diagnose and Feedback...

Switch to Windows containers...
Docker Store

Documentation

Kitematic

Sign in / Create Docker ID...

Swarms

Repositories

Quit Docker

You need to select Switch to Windows containers before you do anything else. Docker for
Windows can run Linux containers by running Docker inside a Linux VM on your
machine. That's great to test out Linux apps to see how they run in containers, but this book
is all about Windows containers - switch over, and Docker will remember that setting in
future.

While Docker for Windows is running, you can open Command Prompt or a PowerShell
session and start working with containers. First, verify that everything is working as
expected by running docker version. You should see output similar to this:

> docker version

Client:

Version: 17.06.0-ce

API version: 1.30

Go version: gol.8.3

Git commit: 02¢1d87

Built: Fri Jun 23 21:30:30 2017
0OS/Arch: windows/amdé64

Server:

Version: 17.06.0-ce

API version: 1.30 (minimum version 1.24)
Go version: gol.8.3

Git commit: 02c1d87

[15]

Getting Started with Docker on Windows Chapter 1

Built: Fri Jun 23 22:19:00 2017
OS/Arch: windows/amdé4
Experimental: true

The output tells you the version of the command-line client and the
Docker service. The operating system field should read Windows for both;
if not, then you may be in Linux mode, and you'll need to switch to
Windows containers.

Now run a simple container:

docker container run dockeronwindows/chOl-whale

This uses a public image on Docker Cloud—one of the sample images for this book, which
Docker will pull the first time you use it. If you don't have any other images, this will take
few minutes, as it will also download the Microsoft Nano Server image that my image uses
as a base. When the container runs, it shows some ASCII art and then exits. Run the same
command again, and you will see that it executes much more quickly as the images are now
cached locally.

That's all the setup you need. Docker for Windows also contains the Docker Compose tool
I'll be using later in the book, so you're all set to follow along with the code samples.

Docker as a Windows Service

You can use Docker for Windows on Windows 10 and Windows Server 2016, and it's great
for development and test environments. For production environments where you have a
headless server with no UI, you can install Docker using a PowerShell module.

On a new installation of Windows Server 2016 core, use the sconfig tool to install all the
latest Windows updates, and then run these PowerShell commands:

Install-Module -Name DockerMsftProvider —-Repository PSGallery -Force
Install-Package —-Name docker —-ProviderName DockerMsftProvider

This will configure the server with the necessary Windows features, install Docker, and set
it up to run as a Windows service. Depending on how many Windows updates were
installed, you may need to reboot the server:

Restart-Computer -Force

[16]

Getting Started with Docker on Windows Chapter 1

When the server is online, check whether Docker is running with docker version, and
then try to run a container from the sample image for this chapter:

docker container run dockeronwindows/chOl-whale

I use this configuration for some of my environments—running Windows Server 2016 Core
in a lightweight VM, which has only Docker installed. You can use Docker on the server by
connecting with Remote Desktop, or you can configure the Docker service to allow remote
connections. This is a more advanced setup, but it does give you secure remote access.

It's best to set up the Docker service so that communication with the client is secured using
TLS. Clients can connect only if they have the right TLS certificates to authenticate with the
service. You can set this up by running these PowerShell commands inside the VM,
supplying the VM's external IP address:

$ipAddress = '<vm-ip-address>'
mkdir -p C:\certs\client

docker container run —--rm °

——env SERVER_NAME=$ (hostname)

—-—env IP_ADDRESSES=127.0.0.1, $vm-ip—-address °

—-volume 'C:\ProgramData\docker:C:\ProgramData\docker'

——volume 'C:\certs\client:C:\Users\ContainerAdministrator\.docker'
stefanscherer/dockertls—-windows

Restart-Service docker

Don't worry too much about what this command is doing. Over the next
few chapters, you'll get a good understanding of all these Docker options.
I'm using a Docker image from Stefan Scherer, who is a Microsoft MVP
and Docker Captain. The image has a script that secures the Docker
service with TLS certificates. You can read more details on Stefan's blog at
https://stefanscherer.github.io

When this command completes, it will have configured the Docker service to allow only
secure remote connections and will also have created the certificates that the client needs to
use to connect. Copy these certificates from C:\certs\client on the VM onto the
machine where you want to use the Docker client.

[17]

https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io

Getting Started with Docker on Windows Chapter 1

On the client machine, you can set environment variables to point the Docker client to use a
remote Docker service. These commands will set up a remote connection to the VM
(assuming you have used the same path for the certificate files on the client):

$ipAddress = '<vm-ip-address>'

$env:DOCKER_HOST='tcp://$ ($ipAddress) :2376"'
$env:DOCKER_TLS_VERIFY='1"
$Senv:DOCKER_CERT_PATH='C:\certs\client'

You can use this approach to securely connect to any remote Docker service. If you don't
have access to Windows 10 or Windows Server 2016, you can create a VM on the cloud and
connect to it using the same commands.

Docker in an Azure VM

Microsoft makes it easy to run Docker in Azure. They provide a VM image with Docker
installed and configured and with the base Windows images already pulled so you can get
started quickly.

For testing and exploring, I always use DevTest labs in Azure. It's a great feature for non-
production environments. By default, any VMs you create in a DevTest lab will be turned
off every evening, so you don't end up with a big Azure bill from a VM you used for a few
hours and forgot to turn off.

You can create a DevTest Lab through the Azure Portal and then create a VM from
Microsoft's VM image Windows Server 2016 Datacenter - with Containers. As an
alternative to the Azure Portal, you can use the az command-line to manage the DevTest
lab. I've packaged az in a Docker image, which you can run in a Windows container:

docker run -it dockeronwindows/chOl-az

This runs an interactive Docker container that has the az command packaged and ready to
use. Run az login, and you'll need to open a browser and authenticate the Azure CLI.
Then, you can run this in the container to create a VM:

az lab vm create °

—-lab-name docker-on-win —--resource—group docker—on-winRG236992 °
—-name dow-vm-01 °

——image 'Windows Server 2016 Datacenter - with Containers'
—-image-type gallery —--size Standard_DS2 °

——admin-username 'elton' --—admin-password 'S3crett20!7'

[18]

Getting Started with Docker on Windows Chapter 1

The VM uses the full Windows Server 2016 installation with the UI, so you can connect to
the machine with RDP, open a PowerShell cmdlet, and start using Docker right away. Just
like the other options, you can check whether Docker is running with docker version
and then run a container from the sample image for this chapter:

docker container run dockeronwindows/chOl-whale

If an Azure VM is your preferred option, you can follow the steps from the previous section
to secure the Docker API for remote access. This way, you can run the Docker command-
line on your laptop to manage containers on the cloud.

Learning Docker with this book

Every code listing in this book is accompanied by a full code sample on my GitHub
repository at https://github.com/sixeyed/docker-on-windows. The source tree is
organized into a folder for each chapter, and for each chapter there's a folder for each code
sample. In this chapter, I've used two samples to create Docker images, which you'll find in
ch01\ch0l-whale and ch01\chOl-az.

The code listings in the book may be condensed for the page, but the full
code is always in the GitHub repository.

I prefer to follow along with the code samples when I'm learning a new technology, but if
you want to use working versions of the demo applications, every sample is also available
as a public Docker image on Docker Cloud. Wherever you see a docker container run
command, the image already exists on Docker Cloud, so you can use mine rather than
building your own if you wish. All the images in the dockeronwindows organization, such
as this chapter's dockeronwindows/ch01l-whale—were built from the relevant Dockerfile
in the GitHub repository.

My own development environment is based on Windows Server 2016, where I use Docker
for Windows. My test environment is based on Windows Server 2016 Core, where I run
Docker as a Windows Service. I've also verified all the code samples using Windows 10.

[19]

https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows

Getting Started with Docker on Windows Chapter 1

I'm using version 17.06 of Docker, which is the latest release at the time of writing. Some of
the features I demonstrate need version 17.06 as a minimum--such as multi-stage builds
and secrets. But Docker has always been backward-compatible, so if you're using a version
later than 17.06, then the sample Dockerfiles and images should work in the same way.

My goal is for this to be a definitive book about Docker on Windows, so I've covered
everything from the 101 on containers through modernizing .NET apps with Docker and
the security implications of containers to CI/CD and administration in production. The
book ends with a guide to moving forward with Docker in your own projects.

If you want to discuss the book or your own Docker journey with me, feel
free to ping me on Twitter at @E1tonStoneman.

Summary

In this chapter I introduced Docker, an application platform that can run new and old apps
in lightweight units of compute called containers. Companies are moving to Docker for
efficiency, security, and portability. I covered:

e How Docker works on Windows and how containers are licensed
¢ The key Docker concepts: images, registries, containers, and swarms
¢ The options to run Docker on Windows 10, Windows Server 2016, and Azure

If you're planning to work along with the code samples in the rest of the book, you should
have a working Docker environment by now. In chapter 2, Packaging and Running
Applications as Docker Containers, I'll move on to packaging more complex apps as Docker
images and showing how to manage state in containers with Docker volumes.

[20]

Packaging and Running
Applications as Docker
Containers

Docker reduces the logical view of your infrastructure to three core components: hosts,
containers, and images. Hosts run containers, which are isolated instances of an
application. Containers are created from images, which are packaged applications. The
Docker container image is conceptually very simple - it's a single unit that contains a
complete, self-contained application. The image format is very efficient, and the integration
between the image and the runtime is very smart, so mastering images is your first step to
using Docker effectively.

You've already seen some images in chapter 1, Getting Started with Docker on Windows, by
running some basic containers to check your Docker installation was working correctly -
but I didn't look very closely at the image or how Docker used it. In this chapter, you'll get
a thorough understanding of Docker images: learning how they're structured,
understanding how Docker uses them, and looking at how to package your own
applications as Docker images.

The first thing to understand is the difference between an image and a container, which you
can see very clearly by running different types of container from the same image.

In this chapter, you'll get a lot of experience of the Docker basics:

¢ Running containers from images
e Building images from Dockerfiles
e Packaging your own applications as Docker images

Packaging and Running Applications as Docker Containers Chapter 2

e Working with data in images and containers
¢ Packaging legacy ASP.NET web apps as Docker images

Running a container from an image

The docker container runcommand creates a container from an image and starts the
application inside the container. It's actually equivalent to running two separate
commands, docker container create and docker container start, which shows
that containers can have different states. You can create a container without starting it, and
you can pause, stop, and restart running containers. Containers can be in different states,
and you can use them in different ways.

Doing one thing with a task container

The dockeronwindows/ch02-powershell-env image is an example of a packaged
application that is meant to run in a container and perform a single task. The image is based
on Microsoft Nano Server and is set up to run a simple PowerShell script when it starts,
printing details about the current environment. Let's see what happens when I run a
container directly from the image:

> docker container run dockeronwindows/ch02-powershell-env

Name Value

ALLUSERSPROFILE C:\ProgramData

APPDATA

C:\Users\ContainerAdministrator\AppData\Roaming
CommonProgramFiles C:\Program Files\Common Files
CommonProgramFiles (x86) C:\Program Files (x86)\Common Files
CommonProgramW6432 C:\Program Files\Common Files
COMPUTERNAME 361CB712CB4B

Without any options, the container runs a PowerShell script that is built into the image, and
the script prints out some basic information about the operating system environment. I call
that a task container because the container performs one task and then exits. If you run
docker container 1s, which lists all the active containers, you won't see this container.
But if you run docker container 1s --all, which shows containers in all states, you'll

see it in the Exited status:

> docker container ls --all
CONTAINER ID IMAGE COMMAND

[22]

Packaging and Running Applications as Docker Containers Chapter 2

CREATED STATUS PORTS NAMES
361cb712cb4b dockeronwindows/ch02-powershell-env "powershell.exe
c:..." 30 seconds ago Exited

Task containers are very useful in automating repetitive tasks - like running scripts to set
up an environment, backing up data, or collecting log files. Your container image packages
the script to run, along with the exact version of the engine that the script needs, so anyone
with Docker installed can run that script without having to install the engine.

This is especially useful for PowerShell, where scripts can be dependent on several
PowerShell modules. The modules may be publicly available, but your script is dependent
on specific versions. Instead of sharing a script that requires users to install the correct
version of many different modules, you build an image that has the modules already
installed. Then, you only need Docker to run the script task.

Images are self-contained units, but you can also use them as a template. An image may be
configured to do one thing, but you can run containers from the image in different ways to
do different things.

Connecting to an interactive container

An interactive container is one that has an open connection to the Docker command line, so
you work with the container as if you were connected to a remote machine. You can run an
interactive container from that same Nano Server image by specifying the interactive
options and a command to run when the container starts:

> docker container run —--interactive —--tty dockeronwindows/ch02-powershell-
env
powershell

Windows PowerShell
Copyright (C) 2016 Microsoft Corporation. All rights reserved.

PS C:\> Write-Output 'This is an interactive container'
This is an interactive container
PS C:\> exit

[23]

Packaging and Running Applications as Docker Containers Chapter 2

The —-interactive option runs an interactive container, and the —-tty flag attaches a
dummy terminal connection to the container. The powershell statement after the name of
the container image is the command to run when the container starts. By specifying a
command, you replace the startup command that's been set up in the image. In this case, I
start a PowerShell session, and that runs instead of the configured command, so the
environment printout script doesn't run.

An interactive container keeps running as long as the command inside is running. While
you're connected to PowerShell, running docker container 1s on another window on
the host will show the container is still running. When you type exit in the container, the
PowerShell session ends, so there's no process running and the container exits too.

Interactive containers are useful when you're building your own container images, as you
can work through the steps interactively first and verify that everything will work as you
expect. They're good exploratory tools too. You'll see as you move further into this book
that Docker can host complex distributed systems in a virtual network, with each
component running in its own container. If you want to examine parts of the system, you
can run an interactive container inside the network and check on individual components,
without having to make the parts publicly accessible.

Keeping a process running in a background
container

The last type of container is the one that you'll use most in production - the background
container, which keeps a long-running process running in the background. It's a container
that behaves like a Windows Service. In Docker terminology, it's called a detached
container, and it's the Docker service that keeps it running in the background. Inside the
container, the process runs in the foreground. The process might be a web server or a
console application polling a message queue for work, but as long as the process keeps
running, Docker will keep the container alive.

I can run a background container from the same image again, specifying the detach option
and a command that runs for some minutes:

> docker container run —--detach dockeronwindows/chO2-powershell-env °
powershell Test-Connection 'localhost' -Count 100

ce7b2604£681871a8dcd2f£d8898257fad26b24edec7135e76aedd47cdcdc4d27

[24]

Packaging and Running Applications as Docker Containers Chapter 2

In this case, when the container has launched control returns to the terminal; the long
random string is the ID of the new container. You can run docker container 1ls and see
the container running, and the docker container logs command shows you the console
output from the container. For commands operating on specific containers, you can
reference them by the container name or by part of the container ID:

> docker container logs ce7

Source Destination IPV4Address IPV6Address

CE7B2604F681 localhost
CE7B2604F681 localhost

The --detach flag detaches the container so it moves into the background, and the
command in this case just pings localhost repeatedly one hundred times. After a few
minutes, the PowerShell command completes so there's no process running and the
container exits. That's a key thing to remember - if you want to keep a container running in
the background, the process that Docker starts when it runs the container has to keep
running.

Now you've seen that a container is created from an image, but it can run in different ways
- s0 you can use the image exactly as it was prepared, or treat the image as a template, with
a default startup mode built in. Next, I'll show you how to build that image.

Building a Docker image

Docker images are layered. The bottom layer is the operating system, which can be a full
OS like Windows Server Core, or a minimal OS like Microsoft Nano Server. On top of that
are layers for each change you make to the base OS when you build an image - by installing
software, copying files, and running commands. Logically, Docker treats the image as a
single unit, but physically, each layer is stored as a separate file in Docker's cache, so
images with a lot of common features can share layers from the cache.

Images are built using a text file with the Dockerfile language - specifying the base OS
image to start with, and all the steps to add on top. The language is very simple, and there
are only a few commands you need to master in order to build production-grade images.
I'll start by looking at the basic PowerShell image I've been using so far in this chapter.

[25]

Packaging and Running Applications as Docker Containers Chapter 2

Understanding the Dockerfile

The Dockerfile is the source code for an image. The complete code for the PowerShell image
is just three lines:

FROM microsoft/nanoserver
COPY scripts/print-env-details.psl c:\\print-env.psl
CMD ["powershell.exe", "c:\\print-env.psl"]

It's pretty easy to guess what's happening even if you've never seen a Dockerfile before. By
convention, the instructions (FROM, COPY and CMD) are uppercase and the arguments are
lowercase, but that's not mandatory. Also by convention, you save the text in a file called
Dockerfile, but that's not mandatory either (a file with no extension looks odd in
Windows, but remember that Docker's heritage is in Linux).

Let's take a look at the instructions in that Dockerfile line by line:

e FROM microsoft/nanoserver uses the image called microsoft/nanoserver
as the starting point for this image

® COPY scripts/print-env-details.psl c:\\print-env.psl copy the
PowerShell script from the local computer into a specific location on the image

® CMD ["powershell.exe", "c:\\print-env.psl1"] specifies the startup
command when a container runs, in this case running the PowerShell script

There are a few obvious questions here. Where does the base image come from? Built into
Docker is the concept of an image registry, which is a store for container images. The
default registry is a free public service called Docker Hub. Microsoft has made the Nano
Server image available on Docker Hub, and that image is called microsoft/nanoserver.
The first time you use the image, Docker will download it to your local machine and then
cache it for further use.

Where does the PowerShell script get copied from? When you build an image, the directory
containing the Dockerfile is used as the context for the build. When you build an image
from this Dockerfile, Docker will expect to find a folder called scripts in the context
directory, containing a file called print-env-details.ps1. If it doesn't find that file, the
build will fail.

Dockerfiles use the backslash as an escape character in order to continue
instructions onto a new line. This clashes with Windows file paths, so you
have to write c: \print .psl asc:\\print.psl orc:/print.psl.
There is a nice way to get around this, using a processor directive at the
start of the Dockerfile, which I'll demonstrate later in the chapter.

[26]

Packaging and Running Applications as Docker Containers Chapter 2

How do you know PowerShell is available for use? It's part of the Nano Server base image,
so you can rely on it being there. You can install any software that isn't in the base image
with additional Dockerfile instructions. You can add Windows features, copy or download
files into the image, extract ZIP files and do whatever else you need.

This is a very simple Dockerfile but even so, two of the instructions are optional. Only the
FROM instruction is mandatory, so if you wanted to build an exact clone of Microsoft's Nano
Server image, you could do that with just a FROM statement in your Dockerfile.

Building an image from a Dockerfile

Now that you have a Dockerfile, you use the docker command line to build it into an
image. Like most Docker commands, the image build command is straightforward and
has very few required options, preferring conventions instead. To build an image, open a
command line and navigate to the directory where your Dockerfile is. Then, run docker
image build and give your image a tag, which is the name that will identify the image:

docker image build --tag dockeronwindows/chO02-powershell-env .

Every image needs a tag, specified with the --tag option, which is a unique identifier for
the image in your local image cache and in image registries. The tag is how you'll refer to
the image when you run containers. A full tag specifies the registry to use, the repository
name, which is the identifier for the application and a suffix, which is the identifier for this
version of the image.

When you're building an image for yourself, you can call it anything, but the convention is
to name your repository as your username for the registry, followed by the application
name: {user}/{app}. You can use also the tag to identify application versions or
variations, such as sixeyed/hadoop-dot-net:latest and sixeyed/hadoop—-dot—
net:2.7.2, which are two of my images on Docker Hub.

The period at the end of the image build command tells Docker the location of the
context to use for the image, . is the current directory. Docker copies the contents of the
directory tree into a temporary folder for the build, so the context needs to contain any files
you reference in the Dockerfile. After copying the context, Docker starts executing the
instructions in the Dockerfile.

[27]

Packaging and Running Applications as Docker Containers Chapter 2

Examining how Docker builds an image

Understanding how Docker images are constructed will help you build efficient images.
The image build command produces a lot of output, which tells you exactly what Docker
does for each step of the build. Each instruction in the Dockerfile is executed as a separate
step that produces a new image layer, and the final image will be the combined stack of all
the layers. This is the output from building my image:

> docker image build --tag dockeronwindows/ch02-powershell-env .

Sending build context to Docker daemon 3.584kB
Step 1/3 : FROM microsoft/nanoserver
——=> d9bccb9d4cac
Step 2/3 : COPY scripts/print—-env-details.psl c:\\print-env.psl
———> a4d4026142eaa
Removing intermediate container 9901221bbf99
Step 3/3 : CMD powershell.exe c:\print-env.psl
———> Running in 56af93a47abl
———> 253feb55a9c0
Removing intermediate container 56af93a47abl
Successfully built 253feb55a9c0
Successfully tagged dockeronwindows/chO2-powershell-env:latest

This is what's happening in these execution steps:

¢ Step 1: The FROM image already exists in my local cache, so Docker doesn't need
to download it. The output is the ID of Microsoft's Nano Server image (starting
dob).

e Step 2: Docker creates a temporary, intermediate container from the base image
and copies the script file from the build context into the container. Then it saves
the container as a new image layer (ID a44) and removes the intermediate
container (ID 990).

¢ Step 3: Docker configures the command to execute when a container is run from
the image. It creates a temporary container from the Step 2 image, configures the
startup command, saves the container as a new image layer (ID 253), and deletes
the intermediate container (ID 56a).

[28]

Packaging and Running Applications as Docker Containers Chapter 2

The final layer is tagged with the image name, but all the intermediate layers are also
added to the local cache. The layered approach means Docker can be very efficient when it
builds images and runs containers. The latest Windows Nano Server image is over 900 MB
uncompressed, but when you run multiple containers based from Nano Server they will all
use the same base image layers, you don't end up with multiple copies of the 900 MB
image.

You'll understand more about image layers and storage later in the chapter, but first I'll
look at some more complex Dockerfiles that package .NET and .NET Core applications.

Packaging your own applications

The goal of building an image is to package your application in a portable, self-contained
unit. The image should be as small as possible, so it's easy to move around when you want
to run the application, and it should have as few OS features as possible, so it has a fast
startup time and a small attack vector.

Docker doesn't impose restrictions on the image size. Your long-term goal may be to build
minimal images that run lightweight .NET Core applications on Linux or Nano Server. But
you can start by packaging your existing ASP.NET apps in their entirety as Docker images
to run on Windows Server Core. Docker also doesn't impose restrictions on how to package
your app, so you can choose from different approaches.

Compiling the application during the build

There are two common approaches to packaging your own apps in Docker images. The first
is to use a base image that contains the application platform and the build tools, so in your
Dockerfile, you copy the source code into the image and compile the app as a step during
the image building process.

This is a popular approach for public images because it means that anyone can build the
image without having the application platform installed locally. It also means the tooling
for the application is bundled with the image, so that can make it possible to debug and
troubleshoot the application running in the container.

Here's an example with a simple .NET Core application. This Dockerfile is for the image
dockeronwindows/ch02-dotnet-helloworld:

FROM microsoft/dotnet:1.1-sdk—-nanoserver

WORKDIR /src

[29]

Packaging and Running Applications as Docker Containers Chapter 2

COPY src/

RUN dotnet restore; dotnet build
CMD ["dotnet", "run"]

The Dockerfile uses Microsoft's NET Core image from Docker Hub as the base image. It's a
specific variation of the image, one which is based on Nano Server and has the .NET Core
1.1 SDK installed. The build copies in the application source code from the context, and
compiles the application as part of the container build process.

There are two new instructions in this Dockerfile which you haven't seen before:

® WORKDIR specifies the current working directory. Docker creates the directory in
the intermediate container, if it doesn't already exist, and sets it to be the current
directory. It remains the working directory for the subsequent instructions in the
Dockerfile, and for containers when they run from the image.

e RUN executes a command inside an intermediate container and saves the state of
the container after the command completes, creating a new image layer.

When I build this image, you'll see the dotnet command output, which is the application
being compiled from the RUN instruction in the image build:

> docker image build --tag dockeronwindows/ch02-dotnet-helloworld
Sending build context to Docker daemon 367.1kB
Step 1/5 : FROM microsoft/dotnet:1.1l-sdk-nanoserver
———> 80950bc5c558
Step 2/5 : WORKDIR /src
—-——> 00352aflc40a
Removing intermediate container 1167582ec3ae
Step 3/5 : COPY src/
—-——> abd047ca95d7
Removing intermediate container 09d543e402c5
Step 4/5 : RUN dotnet restore; dotnet build
———> Running in 4ec42bb93cal
Restoring packages for C:\src\HelloWorld.NetCore.csproj...
Generating MSBuild file
C:\src\obj\HelloWorld.NetCore.csproj.nuget.g.props.
Writing lock file to disk. Path: C:\src\obj\project.assets.json
Restore completed in 10.36 sec for C:\src\HelloWorld.NetCore.csproj.

[30]

Packaging and Running Applications as Docker Containers Chapter 2

You'll see this approach a lot on Docker Cloud for applications built with platforms like
.NET Core, Go, and Node.js, where the tooling is easy to add to a base image. It means that
you can set up an automated build on Docker Cloud so Docker's servers build your image
from the Dockerfile when you push code changes to GitHub. The servers can do that
without having .NET Core, Go, or Nodejs installed because all the build dependencies are
inside the base image.

This option means that the final image will be a lot bigger than it needs to be for a
production application. Platform tooling will probably use more disk than the app itself,
and your end result is meant to be the application - all the build tools taking up space in
your image will never be used when the container runs in production. An alternative is to
build the application first and then package the compiled binaries into your container
image.

Compiling the application before the build

Building the application first fits in neatly with existing build pipelines. Your build servers
need to have all the application platforms and build tools installed, but your finished
container image only has the minimum it needs to run the app. With this approach, the
Dockerfile for my .NET Core app becomes even simpler:

FROM microsoft/dotnet:1.l-runtime-nanoserver

WORKDIR /dotnetapp
COPY ./src/bin/Debug/netcoreappl.l/publish .

CMD ["dotnet", "HelloWorld.NetCore.dll"]

This Dockerfile uses a different FROM image, one that contains just the .NET Core 1.1
runtime and not the tooling (so it can run a compiled application, but it can't compile one
from source). You can't build this image without building the application first, so you'll
need to wrap the docker image buildcommand in a build script that also runs the
dotnet publish command to compile the binaries.

A simple build script that compiles the application and builds the Docker image looks like
this:

dotnet restore src; dotnet publish src

docker image build —--file Dockerfile.slim —--tag dockeronwindows/ch02-
dotnet-helloworld:slim .

[31]

Packaging and Running Applications as Docker Containers Chapter 2

If you put your Dockerfile instructions in a file called something other
than Dockerfile, you can build it by specifying the filename with the —-
file option, as shown in this example: image build --file
Dockerfile.slim.

I've moved the requirements for the platform tooling from the image to the build server,
and that results in a smaller final image: 1.15 GB for this version compared to 1.68 GB for
the previous one. You can see the size difference by listing images, and filtering on the
image repository name:

> docker image ls —--filter reference=dockeronwindows/ch02-dotnet-helloworld
REPOSITORY TAG IMAGE ID CREATED
SIZE

dockeronwindows/ch02-dotnet-helloworld latest ebdf7accdadb 6 minutes
ago 1.68GB
dockeronwindows/ch02-dotnet-helloworld slim 63aebf93b60e 13 minutes
ago 1.15GB

This new version is also a more restricted image. The source code and the .NET Core SDK
aren't packaged in the image, so you can't connect to a running container and inspect the
application code, or make changes to the code and recompile the app.

For enterprise environments, or for commercial applications, you're likely to already have a
well-equipped build server, and packaging the built app can be part of a more
comprehensive workflow:

[32]

Packaging and Running Applications as Docker Containers Chapter 2

In this pipeline, the developer pushes their changes to the central source code repository
(1). The build server compiles the application and runs unit tests - if they pass, then the
container image is built and deployed in a staging environment (2). Integration tests and
end-to-end tests are run against the staging environment, and if they pass, then your
versioned container image is a good release candidate for testers to verify (3).

You deploy a new release by running a container from the image in production, and you
know that your whole application stack is the same set of binaries which passed all the
tests.

The downside with this approach is that you need to have the application SDK installed on
all your build agents, and the versions of the SDK and all its dependencies need to match
what the developers are using. Often in Windows projects, you find CI servers with Visual
Studio installed, to ensure the server has the same tools as the developer. That makes for
heavy build servers which take a lot of effort to commission and maintain.

It also means that you can't build this Docker image yourself unless you
have the .NET Core 1.1 SDK installed on your machine.

You can get the best of both options by using a multi-stage build, where your Dockerfile
defines one step to compile your application, and another step to package it into the final
image. Multi-stage Dockerfiles are portable, so anyone can build the image with no pre-
requisites, but the final image only contains the minimum needed for the app.

Compiling with multi-stage builds

In a multi-stage build, you have multiple FROM instructions in your Dockerfile, where each
FROM instruction starts a new stage in the build. Docker executes all the instructions when
you build the image, and later stages can access the output from earlier stages, but only the
final stage is used for the completed image.

I can write a multi-stage Dockerfile for the .NET Core console app by combining the
previous two Dockerfiles into one:

build stage

FROM microsoft/dotnet:1.1-sdk-nanoserver AS builder
WORKDIR /src

COPY src/ .

RUN dotnet restore; dotnet publish

final image stage

[33]

Packaging and Running Applications as Docker Containers Chapter 2

FROM microsoft/dotnet:1.l-runtime-nanoserver

WORKDIR /dotnetapp

COPY —-from=builder /src/bin/Debug/netcoreappl.l/publish .
CMD ["dotnet", "HelloWorld.NetCore.dll"]

There are a couple of things that are new here. The first stage uses the large base image,
with the .NET Core SDK installed. I've named that stage builder, using the AS option in
the FROM instruction. The rest of that stage goes on to copy in the source code and publish
the application. When the builder stage completes, the published application will be stored
in an intermediate container.

The second stage uses the runtime .NET Core image, which doesn't have the SDK installed.
In that stage I copy the published output from the previous stage, specifying —-
from=builder in the COPY instruction. Anyone can compile this application from source,
without needing .NET Core installed on their machine.

Multi-stage Dockerfiles for Windows apps are completely portable. To compile the app and
build the image, the only pre-requisite is to have a Windows machine with Docker
installed, and a copy of the code. The builder stage contains the SDK and all the compiler
tools, but the final image just has the minimum needed to run the application.

This approach isn't just for NET Core. You can write a multi-stage Dockerfile for a .NET
Framework app, where the first stage uses an image with MSBuild installed, which you use
to compile your application. There are plenty of examples of that later in this book.

Whichever approach you take, there are just a few more Dockerfile instructions you need to
understand in order to build more complex application images, which can integrate with
other systems.

Using the main Dockerfile instructions

The Dockerfile syntax is very simple. You've already seen FROM, COPY, RUN, and CMD which
are enough to package up a basic application to run as a container. For real-world images,
you'll need to do more than that, and there are three more key instructions to understand.

[34]

Packaging and Running Applications as Docker Containers Chapter 2

Here's a Dockerfile for a simple static website - it uses Internet Information Services (IIS)
and serves an HTML page in the default website, which shows some basic details:

escape="
FROM microsoft/iis
SHELL ["powershell"]

ARG ENV_NAME=DEV
EXPOSE 80
COPY template.html C:\template.html

RUN (Get-Content —-Raw -Path C:\template.html)
-replace '{hostname}', [Environment]::MachineName °
-replace '{environment}',
[Environment] : :GetEnvironmentVariable ('ENV_NAME')
| Set—-Content -Path C:\inetpub\wwwroot\index.html

This Dockerfile starts differently, with the escape directive. That tells Docker to use the
backtick * for the escape character, to split commands over multiple lines, rather than the
default backslash \. With the escape directive, I can use backslashes in file paths and
backticks to split long PowerShell commands - which is more natural to Windows users.

The base image is microsoft/iis which is a Microsoft Windows Server Core image with
IIS already set up. I copy an HTML template file from the Docker build context into the root
folder. Then I run a PowerShell command to update the content of the template file and
save it in the default website location for IIS.

In this Dockerfile, I use two new instructions:

® ARG specifies a build argument to use in the image with a default value

e EXPOSE will make a port available in the image, so containers from the image can
have traffic sent in by the host

[35]

Packaging and Running Applications as Docker Containers Chapter 2

This static website has a single home page, which tells you the name of the server that sent
the response, with the name of the environment in the page title. The HTML template file
has placeholders for the host name and the environment name. The RUN command executes
a PowerShell script to read the file contents, replace the placeholders with the actual host
name and environment value, and then write the contents out.

Containers run in an isolated space, and the host can only send network traffic into the
container if the image has explicitly made the port available for use. That's the EXPOSE
instruction, which you can use to expose the ports that your application is listening on.
When you run a container from this image, port 80 is available to be published so Docker
can serve web traffic from the container.

I can build this image in the usual way, and make use of the ARG specified in the Dockerfile
to override the default value at build-time with the --build-arg option:

docker image build --build-arg ENV_NAME=TEST --tag dockeronwindows/ch02-
static-website .

Docker processes the new instructions in the same way as those you've already seen—it
creates a new, intermediate container from the previous image in the stack, executes the
instruction, and extracts a new image layer from the container. After the build, I have a new
image that I can run to start the static web server:

> docker container run —--detach —--publish 80 dockeronwindows/chO02-static-
website

3472a4f0efdb7£4215d49c44dcbfc8leael426clfc56ad75be86£63a5abf9b0e

This is a detached container so it runs in the background, and the —-publish option makes
port 80 in the container available to the host. Published ports mean traffic coming into the
host can be directed into containers by Docker. But when I'm logged into the host like on
my dev machine - I need to use the container's IP address to use the app. I can find the IP
address with docker container inspect.The inspect command returns a lot of data,
but I can pass a format string to just return the attribute I want, so this gives me the IP
address of the container:

> docker container inspect —--format '{{
.NetworkSettings.Networks.nat.IPAddress }}' 3472
172.26.204.5

[36]

Packaging and Running Applications as Docker Containers Chapter 2

That's a virtual IP address assigned by Docker, which I can use on the host to communicate
with the container. I can browse to that IP address and see the response from IIS running
inside the container, showing me the host name - which is actually a container ID, and in
the title bar there is the name of the environment:

Y ® Thisis TEST - O %
< I C @ ©® 172262045 * 0 a v
EI Hello from FSD20D2AD720!

g

©

i

The environment name is just a text description, but the value came from the argument
passed to the docker image build command - which overrides the default value from
the ARG instruction in the Dockerfile. The hostname should show the container ID, but
there's a problem with the current implementation.

On the web page, the hostname starts F5D2, but my container ID actually starts with 3472.
To understand that, I'll look again at the temporary containers used during image builds.

Understanding temporary containers and image
state

My website container has an ID that starts 3472, which is the hostname the application
inside the container should see, but that's not what the website claims. So what went
wrong? Remember that Docker executes every build instruction inside a temporary,
intermediate container.

[371]

Packaging and Running Applications as Docker Containers Chapter 2

The RUN instruction to generate the HTML ran in a temporary container, so the PowerShell
script wrote that container's ID as the hostname in the HTML file. The intermediate
container gets removed by Docker, but the HTML file it created is persisted in the image.

This is an important concept - when you build a Docker image, the instructions execute
inside temporary containers. The containers are removed, but the state they write is
persisted in the final image and will be present in any containers you run from that image.
If I run multiple containers from my website image, they will all show the same hostname
from the HTML file, because that's saved inside the image, which is shared by all
containers.

Of course you can store state in individual containers, which is not part of the image so it's
not shared between containers. I'll look at how to work with data in Docker now and then
finish the chapter with a real-world Dockerfile example.

Working with data in Docker images and
containers

Applications running in a Docker container see a single filesystem that they can read from
and write to in the usual way for the operating system. The container sees a single
filesystem drive but it's actually a virtual filesystem, and the underlying data can be in
many different physical locations.

Files that a container can access on its C drive could actually be stored in an image layer, in
the container's own storage layer, or in a volume that is mapped to a location on the host.
Docker merges all these locations into a single virtual filesystem.

Data in layers and the virtual C drive

The virtual filesystem is how Docker can take a set of physical image layers and treat them
as one logical container image. Image layers are mounted as read-only parts of the
filesystem in a container, so they can't be altered, and that's how they can be safely shared
by many containers.

[38]

Packaging and Running Applications as Docker Containers Chapter 2

Each container has its own writable layer on top of all the read-only layers, so every
container can modify its own data without affecting any other containers:

1 2 B8
"""""""""" : i
| Setup App |: I u
1
| Install NET | : - ;
: ‘ Writeable Layer ‘ ‘ Writeable Layer ‘
| Install TIS | s e
1 I 1
[B Server Core] i i E E E
___________________ ' '1______:______: l______:______:

This diagram shows two containers running from the same image. The image (1) is
physically composed of many layers - one built from each instruction in the Dockerfile. The
two containers (2 and 3) use the same layers from the image when they run, but they each
have their own isolated, writeable layers.

Docker presents a single filesystem to the container. The concept of layers and read-only
base layers is hidden, and your container just reads and writes data as if it had a full native
filesystem, with a single drive. If you create a file when you build a Docker image and then
edit the file inside a container, Docker actually creates a copy of the changed file in the
container's writable layer and hides the original read-only file. So the container has edited a
copy of the file, but the original file in the image is unchanged.

You can see this by creating some simple images with data in different layers. The
Dockerfile for the image dockeronwindows/ch02-fs~-1 uses Nano Server as the base
image, creates a directory, and writes a file into it:

escape="
FROM microsoft/nanoserver

RUN md c:\data °
echo 'from layer 1' > c:\data\filel.txt

[39]

Packaging and Running Applications as Docker Containers Chapter 2

The Dockerfile for the image dockeronwindows/ch02-£fs-2 creates an image based from
that image, and adds a second file to the data directory:

escape="
FROM dockeronwindows/ch02-fs-1

RUN echo 'from image 2' > c:\data\file2.txt

There's nothing special about base images - any image can be used in the
FROM instruction for a new image. It can be an official image curated on
the Docker Hub, a commercial image from Docker Store, a local image
built from scratch, or an image that is many levels deep in a hierarchy.

I'll build both images and run an interactive container from dockeronwindows/ch02-
fs-2, so I can take a look at the files on the C drive. This command starts a container and
gives it an explicit name, c1, so I can work with it without using the random container ID:

docker container run -it —--name cl dockeronwindows/ch02-fs—-2 powershell

Many options in Docker commands have short and long forms. The long
form starts with two dashes, like ——interactive. The short form is a
single letter and starts with a single dash, like —i. Short tags can be
combined, so -it is equivalent to -i -t, which is equivalent to ——

interactive --tty.Rundocker --help tonavigate the commands
and their options.

The 1s command is a PowerShell alias for Get—-ChildItem, which I can use to list the
directory contents inside the container:

> 1ls C:\data

Directory: C:\data

Mode LastWriteTime Length Name
-a———- 6/22/2017 7:35 AM 17 filel.txt
-a———- 6/22/2017 7:35 AM 17 file2.txt

Both the files are there for the container to use in the C:\data directory - the first file is in a
layer from the ch02-fs~1 image, and the second file is in a layer from the ch02-fs-2

image. The PowerShell executable is available from another layer in the base Nano Server
image, and the container sees them all in the same way.

[40]

Packaging and Running Applications as Docker Containers Chapter 2

I'lll append some more text to one of the existing files and create a new file in the c1
container:

PS C:\> echo ' * ADDITIONAL * ' >> c:\data\file2.txt
PS C:\> echo 'New!' > c:\data\file3.txt
PS C:\> 1ls c:\data

Directory: C:\data

Mode LastWriteTime Length Name

-a———-— 6/22/2017 7:35 AM 17 filel.txt
-a———-— 6/22/2017 7:47 AM 53 file2.txt
-a———-— 6/22/2017 7:47 AM 14 file3.txt

From the file listing, you can see that file2.txt from the image layer has been modified
and there is a new file, file3.txt. Now I'll exit this container and create a new one using
the same image:

PS C:\> exit
PS> docker container run -it —--name c2 dockeronwindows/ch02-fs-2 powershell

What are you expecting to see in the C: \data directory in this new container? Let's take a
look:

> 1ls C:\data

Directory: C:\data

Mode LastWriteTime Length Name
-a———-— 6/22/2017 7:35 AM 17 filel.txt
-a———-— 6/22/2017 7:35 AM 17 file2.txt

You know that image layers are read-only and every container has its own writeable layer,
so the results should be clear. The new container c2 has the original files from the image
without the changes from the first container c1 - which are stored in the writeable layer for

c1. Each container's filesystem is isolated, so one container doesn't see any changes made
by another container.

If you want to share data between containers, or between containers and the host, you can
use Docker volumes.

[41]

Packaging and Running Applications as Docker Containers Chapter 2

Sharing data between containers with volumes

Volumes are defined in an image with the VOLUME instruction, specifying a directory path.
When you run a container with a volume defined, the volume is mapped to a physical
location on the host, which is specific to that one container. More containers running from
the same image will have their volume mapped to a different host location.

In Windows, volume directories need to be empty - in your Dockerfile, you can't create files
in a directory and then expose it as a volume. Volumes also need to be defined on a disk
that exists in the image. In the Windows base images, there is only a C drive available, so
volumes need to be created on the C drive.

The Dockerfile for dockeronwindows/ch02-volumes creates an image with two volumes:

escape="
FROM microsoft/nanoserver

VOLUME C:\app\config
VOLUME C:\app\logs

ENTRYPOINT powershell

When I run a container from that image, Docker creates a virtual filesystem from three
sources. The image layers are read-only, the container's layer is writeable, and the volumes
can be set to read-only or writeable:

AN

Volume 1 ‘

‘ Wiriteable Layer

Volume 2 ‘

| Image Layer |

[== Nano Server]

[42]

Packaging and Running Applications as Docker Containers Chapter 2

Because volumes are separate from the container, they can be shared with other containers
even if the source container isn't running. I can run a task container from this image, with a
command to create a new file in the volume:

docker container run —--name source dockeronwindows/ch02-volumes "echo
'start' > c:\app\logs\log-1l.txt"

Docker starts the container, which writes the file, and then exits. The container and its
volumes haven't been deleted, so I can connect to the volumes in another container using
the ——volumes-from option and by specifying my first container's name:

docker container run -it —--volumes-from source dockeronwindows/ch02-volumes

This is an interactive container, and when I list the contents of the C: \app directory, I'll see
the two directories 1ogs and config, which are volumes from the first container:

> 1s C:\app

Directory: C:\app

Mode LastWriteTime Length Name
d----1 6/22/2017 8:11 AM config
d-——-1 6/22/2017 8:11 AM logs

The shared volume has read and write access, so I can see the file created in the first
container and append to it:

PS C:\> cat C:\app\logs\log-1l.txt
start

PS C:\> echo 'more' >> C:\app\logs\log-1l.txt

PS C:\> cat C:\app\logs\log-1l.txt
start
more

Sharing data between containers like this is very useful - you can run a task container that
takes a backup of data or log files from a long-running background container. The default
access is for volumes to be writeable, but that's something to be wary of, as you could edit
data and break the application running in the source container.

[43]

Packaging and Running Applications as Docker Containers Chapter 2

Docker lets you mount volumes from another container in the read-only mode instead by
adding the : ro flag to the name of the container in the ——volumes-£from option. This is a
safer way to access data if you want to read it without making changes. I'll run a new
container, sharing the same volumes from the original container in read-only mode:

> docker container run -it --volumes-from source:ro dockeronwindows/ch02-
volumes

PS C:\> cat C:\app\logs\log-1l.txt
start
more

PS C:\> echo 'more' >> C:\app\logs\log-1l.txt

out-file : Access to the path 'C:\app\logs\log-l.txt' is denied.
At line:1 char:1

+ echo 'more' >> C:\app\logs\log-1l.txt

P PPN PPN PPN PP PPN PPN PPN PPN PPN PPN

+ CategoryInfo : OpenError: (:) [Out-File], UnauthorizedAccessException
+ FullyQualifiedErrorId :
FileOpenFailure,Microsoft.PowerShell.Commands.OutFileCommand

In the new container, I can't write to the log file. However I can see the content in the log
file from the original container, and the line appended by the second container.

Sharing data between container and host with
volumes

Container volumes are stored on the host, so you can access them directly from the
machine running Docker - but they'll be in a nested directory somewhere in Docker's
program data directory. The docker container inspect command tells you the
physical location for a container's volumes, along with a lot more information - I've used it
previously to fetch the container's IP address.

I can use explicit JSON formatting in the container inspect command, and extract just
the volume information which is in the Mount s field. This command pipes the Docker
output into a PowerShell cmdlet to show the JSON in a friendly format:

> docker container inspect —--format '{{ json .Mounts }}' source |
ConvertFrom-Json

Type : volume

Name : 3514e9620e667028b7e3ca8bc42£3615a94108e2c08875d50c102c9da7¢cbec06
Source : C:\ProgramData\Docker\volumes\3514e96..._data

Destination : c:\app\config

[44]

Packaging and Running Applications as Docker Containers Chapter 2

Driver : local
RW : True

Type : volume

Name : a342dc516el19fe2b84d7514067d48cl7e5324bbda5£3e97962blad8fad4043247
Source : C:\ProgramData\Docker\volumes\a342dc5..._data

Destination : c:\app\logs

Driver : local

RW : True

I've abbreviated the output, but in the source file you can see the full path where the
volume data is stored on the host. I can access the container's files directly from the host,
using the source directory. When I run this command on my Windows machine, I'll see the
file created inside the container volume:

> 1ls C:\ProgramData\Docker\volumes\a342dc5..._data
Directory: C:\ProgramData\Docker\volumes\a342dc5..._data

Mode LastWriteTime Length Name

-a-——— 22/06/2017 08:13 28 log-1.txt

Accessing the files on the host is possible this way, but it's awkward to use the nested
directory location with the volume ID. Instead, you can mount a volume from a specific
location on the host when you create a container.

Mounting volumes from host directories

You use the ——volume option to explicitly map a directory in a container from a known
location on the host. The target location in the container can be a directory created with the
VOLUME command, or any directory in the container's filesystem. The source is the location
on the host filesystem.

I'll create a dummy configuration file for my app in a directory on the ¢ drive on my
Windows machine:

PS> mkdir C:\app-config | Out-Null
PS> echo 'VERSION=17.06' > C:\app-config\version.txt

[45]

Packaging and Running Applications as Docker Containers Chapter 2

Now I'll run a container which maps a volume from the host, and read the configuration
file which is actually stored on the host:

> docker container run °
—-volume C:\app-config:C:\app\config °
dockeronwindows/ch02-volumes °
cat C:\app\config\version.txt
VERSION=17.06

The —-volume option specifies the mount in the format {source}:{target}. The source
is the host location, which needs to exist. The target is the container location, which does
not need to exist - but needs to be empty if it does exist.

Volume mounts are different in Windows and Linux containers. In Linux
the target folder does not need to be empty, and Docker will merge the
contents from the source into the target. Docker on Linux also lets you
mount a single file location, but on Windows you can only mount whole
directories.

Volume mounts are useful for running stateful applications in containers, like databases.
You can run SQL Server in a container, and have the database files stored in a location on
the host - which could be a RAID array on the server. When you have schema updates, you
remove the old container and start a new container from the updated Docker image. You
use the same volume mount for the new container, so the data is preserved from the old
container.

Using volumes for configuration and state

Application state is an important consideration when you're running applications in
containers. Containers can be long-running, but they are not intended to be permanent.
One of the biggest advantages with containers over traditional compute models is that you
can easily replace them, and the replacement starts in seconds. When you have a new
feature to deploy, or a security vulnerability to patch, you just build an upgraded image,
stop the old container, and start a replacement from the new image.

[46]

Packaging and Running Applications as Docker Containers Chapter 2

Volumes let you manage that upgrade process by keeping your data separate from your
application container. I'll demonstrate this with a simple web application that stores the hit
count for a page in a text file - each time you browse to the page, the site increments the
count.

The Dockerfile for the image dockeronwindows/ch02-hitcount-website uses multi-
stage builds, compiling the application using the microsoft/dotnet image and packaging
the final app using microsoft/aspnetcore as the base:

escape="

FROM microsoft/dotnet:1.1.2-sdk-nanoserver AS builder
WORKDIR C:\src

COPY src

RUN dotnet restore; dotnet publish

app image

FROM microsoft/aspnetcore:1.1.2-nanoserver
WORKDIR C:\dotnetapp

RUN New-Item -Type Directory -Path .\app-state

CMD ["dotnet", "HitCountWebApp.dll"]
COPY —-—-from=builder C:\src\bin\Debug\netcoreappl.l\publish

In the Docketfile I create an empty directory at C: \dotnetapp\app-state which is where
the application will store the hit count in a text file. I've built the first version of the app into
an image with the v1 tag:

docker image build --tag dockeronwindows/ch02-hitcount-website:vl

I'll create a directory on the host to use for the container's state, and run a container that
mounts the application state directory from a directory on the host:

mkdir C:\app-state

docker container run -d -P °
-v C:\app-state:C:\dotnetapp\app-state °
—-name appvl
dockeronwindows/ch02-hitcount-website:vl

[47]

Packaging and Running Applications as Docker Containers Chapter 2

I can get the IP address of the container from docker container inspect, and then
browse to the site. When I refresh the page a few times I'll see the hit count increasing;:

» - HitCountWebhpp s = X
< K C @ ©® 1722619823 * 0 a v
A
hd
= Hit count: 19.
G) This is Version 1
+
© 2017 - HitCountWebApp
e

Now when I have an upgraded version of the app to deploy, I can package it into a new
image tagged with v2. When the image is ready, I can stop the old container and start a
new one, using the same volume mapping:

PS> docker container stop appvl
appvl

PS> docker container run -d -P °

-v C:\app-state:C:\dotnetapp\app-state °
—-name appv2
dockeronwindows/ch02-hitcount-website:v2

£6433a09e9479d76db3cd0bc76£9£f817acfc6c52375c5e33dbec1d4c9780feb6d

The volume containing the application state is being reused, so the new version will
continue using the saved state from the old version. I have a new container with a new IP
address. When I browse to it for the first time, I see the updated UI with an attractive icon,
but the hit count is carried forward from version 1:

[48]

Packaging and Running Applications as Docker Containers Chapter 2

M- HitCountWeblpp 'IE = = X
< K v C @ © 17226200144 0 a v
H HitCountWebApp Home About
1
- .|I|
E .
© Hit count: 20.
- This is Version 2
© 2017 - HitCountWebApp
P

Application state can have structural changes between versions, which is something you
will need to manage yourself. The Docker image for the open source Git server, GitLab, is a
good example of this - the state is stored in a database on a volume, and when you upgrade
to a new version, the app checks the database and runs upgrade scripts, if needed.

Application configuration is another place to make use of volumes. You can ship your
application with a default configuration set built into the image but with a volume created
for users to override the base configuration with their own values.

You'll see these techniques put to good use in the next chapter.

Packaging a traditional ASP.NET web app as
a Docker image

Microsoft has made the Windows Server Core base image available on Docker Hub, and
that's a version of Windows Server 2016 which has much of the functionality of the full
server edition but without the Ul As base images go, it's very large - 5 GB compressed on
Docker Hub, compared to 380 MB for Nano Server, and 2 MB for the tiny Alpine Linux
image. But it means you can Dockerize pretty much any existing Windows app, and that's a
great way to start migrating your systems to Docker.

[49]

Packaging and Running Applications as Docker Containers Chapter 2

Remember NerdDinner? It was an open source ASP.NET MVC showcase app, originally
written by Scott Hanselman and Scott Guthrie - among others at Microsoft. You can still get
the code at CodePlex, but there hasn't been a change committed since 2013, so it's an ideal
candidate for proving that old ASP.NET apps can be migrated to Docker, and that can be
the first step in modernizing them.

Writing a Dockerfile for NerdDinner

I'll follow the multi-stage build approach for NerdDinner, so the Dockerfile for the
dockeronwindows/ch-02-nerd-dinner images starts with a builder stage:

escape="
FROM sixeyed/msbuild:netfx-4.5.2-webdeploy-10.0.14393.1198 AS builder

WORKDIR C:\src\NerdDinner
COPY src\NerdDinner\packages.config .
RUN nuget restore packages.config —-PackagesDirectory ..\packages

COPY src C:\src
RUN msbuild .\NerdDinner\NerdDinner.csproj /p:OutputPath=c:\out\NerdDinner

/p:DeployOnBuild=true °
/p:VSToolsPath=C:\MSBuild.Microsoft.VisualStudio.Web.targets.14.0.0.3\tools
\VSToolsPath

The stage uses sixeyed/msbuild as the base image for compiling the application, which is
an image I maintain on Docker Cloud. That image installs MSBuild, NuGet and the other
dependencies you need for packaging a Visual Studio Web project, without using Visual
Studio. The build stage happens in two parts:

e First, copy the NuGet packages.config file into the image, and then run nuget
restore

¢ Next, copy the rest of the source tree and run msbuild

[50]

Packaging and Running Applications as Docker Containers Chapter 2

Separating those parts means Docker will use multiple image layers, the first layer will
contain all the restored NuGet packages and the second layer will contain the compiled
web app. This means I can take advantage of Docker's layer caching. Unless I change my
NuGet references, the packages will be loaded from the cached layer and Docker won't run
the restore part, which is an expensive operation. The MSBuild step will run every time any
source files change.

If I had a deployment guide for NerdDinner, before the move to Docker, it would look
something like this:

e Install Windows on a clean server

¢ Run all Windows Updates

¢ Install IIS

e Install NET

e Set up ASP.NET

e Copy the web app into the C drive

¢ Create an application pool in IIS

¢ Create the website in IIS using the application pool
e Delete the default website

This will be the basis for the second stage of the Dockerfile, but I will be able to simplify all
the steps. I can use microsoft/aspnet as the FROM image, which gives me a clean install
of Windows with IIS and ASP.NET installed. That takes care of the first five steps in one
instruction. This is the remainder of the Dockerfile for dockeronwindows/ch-02-nerd-
dinner:

FROM microsoft/aspnet:windowsservercore-10.0.14393.1198
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

WORKDIR C:\nerd-dinner
RUN Remove-Website —-Name 'Default Web Site';
New-Website -Name 'nerd-dinner' -Port 80 -PhysicalPath 'c:\nerd-dinner'

—ApplicationPool '.NET v4.5'

RUN & c:\windows\system32\inetsrv\appcmd.exe unlock config
/section:system.webServer/handlers

COPY ——-from=builder C:\out\NerdDinner_PublishedWebsites\NerdDinner
C:\nerd-dinner

[51]

Packaging and Running Applications as Docker Containers Chapter 2

Using the escape directive and SHELL instruction lets me use normal Windows file paths
without double backslashes and PowerShell-style backticks to separate commands over
many lines. Removing the default website and creating a new website in IIS is simple with
PowerShell, and the Dockerfile clearly shows me the port the app is using and the path of
the content.

I'm using the built-in .NET 4.5 application pool, which is a simplification from the original
deployment process. In IIS on a VM, you'd normally have a dedicated application pool for
each website in order to isolate processes from each other. But in the containerized app,
there will be only one website running - another website would be in another container, so
we already have isolation, and each container can use the default application pool without
worrying about interference.

The final COPY instruction copies the published web application from the builder stage into
the application image. It's the last line in the Dockerfile to take advantage of Docker's
caching again. When I'm working on the app, the source code is the most frequent thing to
change. The Dockerfile is structured so that when I change code and run docker image
build the only instructions that run are MSBuild in the first stage and the copy in the
second stage, so the build is very fast.

This could be all you need for a fully functioning Dockerized ASP.NET website, but in the
case of NerdDinner, there is one more instruction, which proves that you can cope with
awkward, unexpected details when you containerize your application. The NerdDinner
app has some custom configuration settings in the system.webServer section of its
Web.config file, and by default that section is locked by IIS. I need to unlock the section,
which I do with appcmd in the second RUN instruction.

Now I can build the image and can run a legacy ASP.NET app in a Windows container:

docker container run -d -P dockeronwindows/ch02-nerd-dinner

I can get the container's IP address with docker container inspect, and browse to the
NerdDinner homepage:

[52]

Packaging and Running Applications as Docker Containers Chapter 2

W {1 Nerd Dinner m - 0o X
'4 W C 1t © 122620243 0 a M
H
Regist Login

+ Register Logi
=] [
©
+

Nerd Dinner. Organizing the world's nerds and helping them eat in packs.

Enter your location or View All
Find a Dinner Upcoming Dinners .
N
Search
ASIA
NORTH EURCPE .
vt Popular Dinners
AFRICA
The specified credentials are invalid. You can sign up for a free developer account at
http://www.bingmapsportal.com
Bbng AMNTARCTICA 2500 miles 5000 km
© 2017 Microscft Corporation

Code by Hanselmen, Guthrie, Galloway, Mourfield , Petersen and Amott . JavaScript by Dave Ward . ASP.NET MVC by Haack and friends. Style by Michael Dorian Bach .

Source Code at hitpy//nerddinner.codeplex.com . Free Sample Book Chapter and code walkthrough at http//tinyurl.com/aspretmye .
0 Version: 1.0 .

At this point, the app isn't fully functional - I just have a basic version running. The Bing
Maps object doesn't show a real map because I haven't provided an API key. The API key is
something that will change for every environment (each developer, the test environments,
and production will have different keys). In Docker you manage environment
configuration with environment variables, which I will use for the next iteration of the
Dockerfile in chapter 3, Developing Dockerized .NET and .NET Core Applications.

If you navigate around this version of NerdDinner and try to register a new user or search
for a dinner, you'll see a yellow screen crash page telling you the database isn't available. In
its original form, NerdDinner uses SQL Server LocalDB as a lightweight database and
stores the database file in the app directory. I could install the LocalDB runtime into the
container image, but that doesn't fit with the Docker philosophy of having one function per
container. Instead, I'll build a separate image for the database so I can run it in its own
container.

[53]

Packaging and Running Applications as Docker Containers Chapter 2

I'll be iterating on the NerdDinner example in the next chapter, adding environment
variables, running SQL Server as a separate component in its own container, and
demonstrating how you can start modernizing traditional ASP.NET apps by making use of
the Docker platform.

Summary

In this chapter, I took a closer look at Docker images and containers. Images are packaged
applications, and containers are instances of an application, run from an image. You can
use containers to do simple fire-and-forget tasks, you can work with them interactively, or
have them running in the background. As you start to use Docker more, you'll find yourself
doing all three.

The Dockerfile is the source to build an image. It's a simple text file with a small number of
instructions to specify a base image, copy files, and run commands. You use the Docker
command-line tool to build an image, which is very easy to add as a step to your CI build.
When a developer pushes code that passes all the tests, the output of the build will be a
versioned Docker image, which you can deploy to any host knowing that it will always run
in the same way.

I'looked at a few simple Dockerfiles in this chapter, and finished with a real-world
application. NerdDinner is a legacy ASP.NET MVC app that was built to run on Windows
and IIS. Using multi-stage builds I packaged that legacy app into a Docker image and ran it
in a container. This shows that the new model of compute that Docker offers isn't just for
greenfield projects using .NET Core and Nano Server - you can migrate existing apps to
Docker and put yourself in a good place to start modernizing them.

In the next chapter, I'll use Docker to modernize the architecture of NerdDinner, breaking
features out into separate components and using Docker to plug them all together.

[54]

Developing Dockerized .NET
and .NET Core Applications

Docker is a platform for packaging, distributing, and running applications. When you
package your applications as Docker images, they all have the same shape, you can deploy,
manage, secure, and upgrade them all in the same way. All Dockerized applications have
the same requirements to run them: the Docker Engine running on a compatible operating
system. Applications run in isolated environments, so you can host different application
platforms and different platform versions on the same machine with no interference.

In the .NET world, this means you can run multiple workloads on a single Windows
machine, they could be ASP.NET websites or Windows Communication Foundation
(WCF) apps on .NET console applications or .NET Windows Services. You saw in the
previous chapter that you can Dockerize legacy .NET applications without any code
change, but Docker has some simple expectations about how applications running inside
containers should behave, so they can get the full benefit of the platform.

In this chapter, you'll look at how to build applications so they can take complete
advantage of the Docker platform, including the following:

¢ The integration points between Docker and your application

¢ Configuring your application with environment variables

¢ Monitoring applications with health checks

¢ Running distributed solutions with components in different containers

This will help you develop .NET and .NET Core applications that behave in the way
Docker expects, so you can manage them fully with Docker.

Developing Dockerized .NET and .NET Core Applications Chapter 3

Building good citizens for Docker

The Docker platform makes very few demands on applications that want to use it. You're
not restricted to certain languages or frameworks, and you don't need to use special
libraries to communicate from the app to the container and you don't need to structure
your application in a certain way.

To support the widest possible range of applications, Docker uses the console to
communicate between the application and the container runtime. Application logs and
error messages are expected on the console output and error streams. Storage managed by
Docker is presented as a normal disk to the operating system, and Docker's networking
stack is transparent. The application appears to be running on its own machine, connected
to other machines by a normal TCP/IP network.

A good citizen for Docker is an app that makes very few assumptions about the system it's
running on and uses basic mechanisms that all operating systems support: the filesystem,
environment variables, networking, and the console. Most importantly, the application
should only do one thing. As you've seen, when Docker runs a container, it starts the
process specified in the Dockerfile or the command line, and it watches that process. When
the process ends, the container exits, so ideally, you should build your app to have a single
process, which ensures Docker is watching the process that matters.

These are recommendations, though, not requirements. You can start multiple processes in
a bootstrap script when a container runs and Docker will run it happily, but it will only
monitor the last process that started. Your apps can write log entries to local files instead of
the console and Docker will still run them, but you won't see any output if you use Docker
to check the container logs.

In .NET, you can easily meet the recommendations by running a console application, which
provides a simplified integration between the application and the host, and it's one reason
why all .NET Core apps - including websites and web APIs run as console applications. For
legacy .NET apps, you won't be able to make them into perfect citizens, but you can extend
them to make good use of the Docker platform.

[561]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Hosting Internet Information Services (lIS)
applications in Docker

Complete .NET Framework apps can be easily packaged into Docker images, but there are
some limitations you need to be aware of. Microsoft provides Nano Server and Windows
Server Core base images on Docker Hub. The complete .NET Framework doesn't run on
Nano Server, so to host your existing .NET apps in Docker, you need to use the Windows
Server Core base image.

Running from Windows Server Core means your application images will be around 10 GB
in size, the bulk of which is in the base image. You have a complete Windows Server
operating system, with all the packages available to enable Windows Server features, such
as DNS and DHCP, even though you only want to use it for a single application role. It's
perfectly reasonable to run containers from Windows Server Core, but you need to be
aware of the implications:

¢ The base image has a large surface area with a lot of software installed, which
means it's likely to have more frequent security and functional patches

¢ The OS runs a lot of its own processes in addition to your application process, as
several core parts of Windows run as background Windows services

e Windows has its own application platforms, with high-value feature sets for
hosting and management, which do not natively integrate with the Docker
approach

You can take an ASP.NET web application and dockerize it in a few hours. It will build into
a large Docker image that takes longer to distribute and start up than an application built
on a lightweight, modern application stack. But you still have a single package with your
whole application deployed, configured, and ready to run. This is a big step in improving
quality and reducing deployment time, and it can be the first part of a program to
modernize a legacy application.

To integrate an ASP.NET app more closely with Docker, you can modify how IIS logs are
written and specify how Docker checks whether the container is healthy without any
changes to the application code. If changing code is part of your modernization program,
then with minimal changes, you can use the container's environment variables for
application configuration.

[571

Developing Dockerized .NET and .NET Core Applications Chapter 3

Configuring IIS for Docker-friendly logging

IIS writes log entries to text files, recording HTTP requests and responses. You can
configure exactly what fields are written, but the default installation records useful things,
such as the route of the HTTP request, the response status code, and the time taken for IIS
to respond. It would be good to surface these logs entries to Docker, but IIS manages its
own log files, buffering entries before writing them to the disk and rotating log files to
manage the disk space.

Log management is a fundamental part of application platforms, which is why IIS takes
care of it for web apps, but Docker has its own logging system. Docker logging is far more
powerful and pluggable than the text filesystem that IIS uses, but it only reads log entries
from the container's console output stream. You can't have IIS writing logs to the console
because it runs in a background Windows Service with no console attached, so you need a
different approach.

There are two options for this. The first is to build an HTTP module that plugs into the IIS
platform with an event handler that receives logs from IIS. This handler can publish all
messages to a queue or a Windows pipe, so you don't change how IIS logs; you just add
another log sink. Then, you'd package your web application together with a console app
that listened for published log entries and relayed them on the console. The console app
would be the entry point when a container starts, so every IIS log entry would get routed to
the console for Docker to read.

The HTTP module approach is robust and scalable, but it adds more complexity than we
need when we're getting started. A simpler option is to configure IIS to write all log entries
to a single text file and in the startup command for the container run a PowerShell script to
watch that file and echo new log entries to the console. When the container is running, all
the IIS log entries get echoed to the console, which surfaces them to Docker.

To set this up in the Docker image, you first need to configure IIS so it writes all log entries
from any site to a single file, and it lets the file grow without rotating it. You can do this
with PowerShell, using the Set-WebConfigurationProperty cmdlet in the Dockerfile,
modifying the central logging properties at the application host level. I use this cmdlet in
the Dockerfile for the dockeronwindows/ch03-iis-log-watcher image:

RUN Set-WebConfigurationProperty —-p 'MACHINE/WEBROOT/APPHOST' -fi
'system.applicationHost/log' -n 'centralLogFileMode' -v 'CentralW3C';
Set-WebConfigurationProperty —-p 'MACHINE/WEBROOT/APPHOST' -fi
'system.applicationHost/log/centralW3CLogFile' -n 'truncateSize' -v
4294967295,
Set-WebConfigurationProperty —-p 'MACHINE/WEBROOT/APPHOST' -fi
'system.applicationHost/log/centralW3CLogFile' -n 'period' -v 'MaxSize';
Set-WebConfigurationProperty —-p 'MACHINE/WEBROOT/APPHOST' -fi

[581]

Developing Dockerized .NET and .NET Core Applications Chapter 3

'system.applicationHost/log/centralW3CLogFile' -n 'directory' -v
'C:\iislog’

This configures IIS to log all entries to a file in C: \iislog, and to set the maximum file size
for log rotation, letting the log file grow to 4 GB. That's plenty of room to play with;
remember containers that are not meant to be long-lived, so we shouldn't have gigabytes of
log entries in a single container. IIS still uses a subdirectory format for the log file, so the
actual log file path will be C: \iislog\W3SVC\u_extendl.log. Now thatIhave a known
log file location, I can use PowerShell to echo log entries to the console.

I do that in the cMD instruction, so the final command that Docker runs and monitors is the
PowerShell cmdlet to echo log entries. When new entries are written to the console, they get
picked up by Docker. PowerShell makes it easy to watch the file, but there's a complication
because the file needs to exist before PowerShell can watch it. In the Dockerfile, I use
multiple commands at startup:

CMD Start-Service W3SVC;
Invoke-WebRequest http://localhost -UseBasicParsing | Out-Null;
netsh http flush logbuffer | Out-Null;
Get-Content -path 'c:\iislog\W3SVC\u_extendl.log' -Tail 1 -Wait

There are four parts to this command:

Start the IIS Windows service (W3SVC)

Make an HTTP GET request to the localhost, which starts the IIS worker process
and writes the first log entry

Flush the HTTP log buffer, so the log file gets written to the disk and exists for
PowerShell to watch

Read the content of the log file in the tail mode, so any new lines written to the
file get shown on the console.

I can run a container from this image in the usual way:

docker container run -d -P —--name log-watcher dockeronwindows/ch03-iis-
log-watcher

When I send some traffic to the site by browsing to the container's IP address (or using
Invoke-WebRequest in PowerShell), I can see the IIS log entries that are relayed to Docker
from the Get-Content cmdlet using docker container logs:

> docker container logs log-watcher

2017-06-22 10:38:54 W3sSvCl ::1 GET / - 80 - ::1
Mozilla/5.0+ (Windows+NT; +Windows+NT+10.0; +en—

US) +WindowsPowerShell/5.1.14393.1066 — 200 0 0 251

2017-06-22 10:39:21 W3SvCl 172.26.207.181 GET / — 80 - 172.26.192.1

[591]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Mozilla/5.0+ (Windows+NT+10.0; +WOW64) +AppleWebKit /537 .36+ (KHTML, +1ike+Gecko)
+Chrome/59.0.3071.90+Safari/537.36+Vivaldi/1.91.867.38 — 200 0 0 O
2017-06-22 10:39:21 W3SVCl 172.26.207.181 GET /iisstart.png - 80 -
172.26.192.1

Mozilla/5.0+ (Windows+NT+10.0; +WOW64) +AppleWebKit /537 .36+ (KHTML, +1ike+Gecko)
+Chrome/59.0.3071.90+Safari/537.36+Vivaldi/1.91.867.38
http://172.26.207.181/ 200 0 0 119

IIS always buffers log entries in the memory before writing them to the
disk, so it micro-batches the writes to improve performance. The flush
happens every 60 seconds or when the buffer is 64 KB in size. If you want
to force the IIS log in a container to flush, use the same netsh command I
used in the Dockerfile: docker container exec log-watcher netsh
http flush logbuffer. You'll see an Ok output, and new entries will be
there in docker container logs.

I've added configuration to IIS in the image and a new command, which means all IIS log
entries get echoed to the console. This will work for any application hosted in IIS, so I can
echo HTTP logs for ASP.NET applications and static websites without any changes to the
apps or the site content. Console output is where Docker looks for log entries, so this simple
extension integrates logging from the existing application into the new platform.

Promoting environment variables

Modern apps increasingly use environment variables for configuration settings because
they're supported by practically every platform, from physical machines to serverless
functions. All platforms use environment variables in the same way, as a store of key-value
pairs, so using environment variables for configuration, you make your app highly
portable.

ASP.NET apps already have a rich configuration framework in Web . config, but with some
small code changes, you can take key settings and move them to environment variables.
This lets you build one Docker image for your app, which you can run in different
environments, setting environment variables in containers to change configuration.

Docker lets you specify environment variables in the Dockerfile and give them initial
default values. The ENV instruction sets environment variables, and you can set either one
variable or many variables in each ENV, this example is from the Dockerfile for
dockeronwindows/ch03-iis-environment-variables:

ENV AO1_KEY A0l value
ENV A02_KEY="A02 value" °
A03_KEY="A03 value"

[60]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Settings added to the Dockerfile with ENV become part of the image, so every container you
run from the image will have these values set. When you run a container, you can add new
environment variables or replace the value of existing image variables using the --env or —
e option. You can see how environment variables work with a simple Nano Server
container:

> docker container run °
——env ENV_0l='Hello' --env ENV_02='World'
microsoft/nanoserver °
powershell 'Write-Output $env:ENV_01 $env:ENV_02'
Hello
World

With apps hosted in IIS, there's a complication in using environment variables from
Docker. When IIS starts, it reads all the environment variables from the system and caches
them. When Docker runs a container with environment variables set, it writes them at the
process level, but that's after IIS has cached the original values, so they don't get updated
and IIS applications won't see the new value. IIS doesn't cache machine-level environment
variables in the same way, though, so we can promote the values set by Docker to machine-
level environment variables, and IIS apps will be able to read them.

Promoting environment variables can be done by copying them from the process level to
the machine level. This PowerShell script does that by looping through all process-level
variables and copying them to machine-level unless the machine-level key already exists:

foreach ($key in
[System.Environment] ::GetEnvironmentVariables ('Process') .Keys) {
if ([System.Environment]::GetEnvironmentVariable ($Skey, 'Machine') -eq
Snull) {
Svalue = [System.Environment]::GetEnvironmentVariable ($key,
'Process')
[System.Environment]::SetEnvironmentVariable (Skey, $value,
'Machine')
}
}

I can use this script block to the CMD instruction in my Dockerfile, but if I add that to the
block to echo the log, the command runs to 10 lines, and it gets difficult to manage inside
the Dockerfile. Instead, I've put the environment commands and the log echo commands
into one script file and used that as ENTRYPOINT:

COPY bootstrap.psl C:\
ENTRYPOINT ["powershell", "C:\bootstrap.psl"]

[61]

Developing Dockerized .NET and .NET Core Applications Chapter 3

The ENTRYPOINT and CMD instructions both tell Docker how to run your
application. You can combine them to specify a default entry point and
allow users of your image to override the command when they start a
container.

The application in the image is a simple ASP.NET Web Forms page that lists out
environment variables. I can run this in a container in the usual way:

docker container run -d -P ——name iis-env dockeronwindows/ch03-iis-
environment-variables

When the container starts, I can get the IP address and open a browser on the ASP.NET
Web Forms page:

$ip = docker inspect —-format '{{ .NetworkSettings.Networks.nat.IPAddress

}}' iis—-env
start "http://$ip"

I see output like this, with the default environment variable values from the Docker image:

V| ® ASPNETinline - O %
< M C @} ® 1722620022 v O a v
W . .]

) Machine-level Environment Variables

8 A01 KEY: A01 value

® A02 KEY: A02 value

A03 KEY: A03 value
ALLUSERSPROFILE: C:\ProgramData
APPDATA: C:\Users\ContainerAdministrator' AppData'Roaming
CommonProgramPFiles: C:\Program Files\Common Files
¢ CommonProgramFiles(x86): C:\Program Files (x86)'\Common Files
¢ CommonProgramwe432: C:\Program Files\Common Files
o « COMPUTERNAME: 6E7CC4500D4A

+
e & = = = 9

You can run the same image with different environment variables, overriding one of the
image variables and adding a new variable:

docker run -d -P —-name iis-env2 °
—e AOl1_KEY='NEW VALUE!'
—e BO1l_KEY='NEW KEY!'
dockeronwindows/ch03-iis—-environment-variables

[62]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Browse the container's IP address again, and you'll see the new values written out by the
ASP.NET page:

VY ® APNETinline I —— [s] X
< M C @ ® 17226199183 v [a v
W . .)

) Machine-level Environment Variables

& A01 KEY: NEW VALUE!

® A02 KEY: A02 value

A03 KEY: A03 value

ALLUSERSPROFILE: C:'\ProgramData

APPDATA: C:\Users\ContainerAdministrator'AppData\Roaming

B01 KEY: NEW KEY!

CommonProgramFiles: C:\Program Files\Common Files
CommonProgramFiles(x86): C:'\Program Files (x86)\Common Files
CommonProgramWwe432: C:\Program Files\Common Files

o e ETAEE T ETTRAT 4 R AW ATA AT 4 AT s

I've added support for Docker's environment variable management into an IIS image now,
so ASP.NET apps can use the System.Environment class to read configuration settings.
I've retained the IIS log echo in this new image, so this is a good Docker citizen now you
can configure the application and check the logs through Docker.

One last improvement I can make is to tell Docker how to monitor the application running
inside the container, so Docker can determine whether the application is healthy and take
action if it becomes unhealthy.

Building Docker images that monitor applications

When I add these new features to the NerdDinner Dockerfile and run a container from the
image, I'll be able to see the web request and response logs with the docker container
logs command, which relays all the IIS log entries captured by Docker, and I can use an
environment variable to specify the database user credentials. This makes running and
administering the legacy ASP.NET application consistent with how I use any other
containerized application running on Docker. But I can also configure Docker to monitor
the container for me, so I can manage any unexpected failures.

[63]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Docker provides the ability to monitor the application health rather than just checking
whether the application process is still running, with the HEALTHCHECK instruction in the
Dockerfile. With HEALTHCHECK, you tell Docker how to test whether the application is still
healthy. The syntax is similar to the RUN and CMD instructions you pass in a shell command
to execute, which should have a return code of 0 if the application is healthy and 1 if it is
not. Docker runs the health check periodically when the container is running and emits
status events if the health of a container changes.

The simple definition of healthy for a web application is the ability to respond normally to
HTTP requests. Which request you make depends on how thorough you want the check to
be ideally, the request should execute key parts of your application, so you're confident it is
all working correctly. But equally, the request should complete quickly and have a minimal
compute impact, so processing lots of health checks doesn't affect consumer requests.

A simple health check for any web application just uses the Invoke-WebRequest
PowerShell cmdlet to fetch the home page and check whether the HTTP response code is
200, which means the response was successfully received:

try {
Sresponse = iwr http://localhost/ -UseBasicParsing
if (Sresponse.StatusCode -eq 200) {
return 0
} else {
return 1

}

catch { return 1 }

For a more complex web application, it can be useful to add a new endpoint specifically for
healthchecks. You can add a diagnostic endpoint to APIs and websites that exercise some of
the core logic for your app and returns a Boolean result to indicate whether the app is
healthy. You can call that endpoint in the Docker health check and check the response
content as well as the status code in order to give you more confidence that the app is
working correctly.

The HEALTHCHECK instruction in the Dockerfile is very simple. You can configure the
interval between checks and the number of checks that can fail before the container is
considered unhealthy, but to use the default values, just specify the test script in
HEALTHCHECK CMD . This example from the Dockerfile for the dockeronwindows/ch03-
iis-healthcheck image uses PowerShell to make a GET request to the diagnostics URL
and check the response status code:

HEALTHCHECK --interval=5s °
CMD powershell —-command °
try { °

[64]

Developing Dockerized .NET and .NET Core Applications Chapter 3

$response = iwr http://localhost/diagnostics -UseBasicParsing;
if ($response.StatusCode -eq 200) { return 0} °

else {return 1};

} catch { return 1 }

I've specified an interval for the health check, so Docker will execute this command inside
the container every five seconds (the default interval is 30 seconds if you don't specify one).
The health check is very cheap to run, as it's local to the container, so you can have a short
interval like this and catch any problems quickly.

The application in this Docker image is an ASP.NET Web API app, which has a diagnostics
endpoint, and a controller you can use to toggle the health of the application. The
Dockerfile contains a health check, and you can see how Docker uses it when we run a
container from that image:

docker container run -d -P ——name healthcheck dockeronwindows/ch03-iis-—
healthcheck

If you run docker container 1ls after starting that container, you'll see a slightly
different output in the status field, similar to Up 3 seconds (health: starting).
Docker runs the health check every five seconds for this container, so at this point, the
check hasn't been run. Wait a little longer and then the status will be something like Up 46
seconds (healthy).

This container will stay healthy until I make a call to the controller to toggle the health. I
can do that with a POST request that sets the API to return HTTP status 500 for all
subsequent requests:

$ip = docker inspect -f '{{ .NetworkSettings.Networks.nat.IPAddress }}'
healthcheck
iwr "http://$ip/toggle/unhealthy" -Method Post

Now the application will respond with a 500 response to all the GET requests the Docker
platform makes, which will fail the health check. Docker keeps trying the health check, and
if there are three failures in a row, then it considers the container to be unhealthy. At this
point, the status field in the container list shows Up 3 minutes (unhealthy).Docker
doesn't take automatic action on single containers that are unhealthy, so this one is left
running and you can still access the APL

[65]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Health checks are important when you start running containers in a clustered Docker
environment (which I cover in chapter 7, Orchestrating Distributed Solutions with Docker
Swarm), and it's a good practice to include them in all Dockerfiles. Being able to package an
application that the platform can test for health is a very useful feature; this means that
wherever you run the app, we can keep a check on it.

Now you have all the tools to containerize an ASP.NET application and make it a good
Docker citizen, integrating with the platform so it can be monitored and administered in
the same way as other containers. A full .NET Framework application running on Windows
Server Core can't meet the expectation of running a single process because of the all the
necessary background Windows services. But we should still build container images so
they run only one logical function and separate any dependencies.

Separating dependencies

In the last chapter, I dockerized the legacy NerdDinner app and got it running but without
a database. The original application expected to use SQL Server LocalDB on the same host
where the app is running. LocalDB is an MSI-based installation, and I can add it to the
Docker image, just by downloading the MSI and installing it with RUN commands in the
Dockerfile. But this means that when I start a container from the image, it has two functions
hosting a web application and running a database.

Having two functions in one container is not a good idea; what would
happen if you wanted to upgrade your website without changing the
database? Or, what if you needed to do some maintenance on the
database, which didn't impact the website? What if you need to scale out
the website? By coupling the two functions together, you've added a
deployment risk, test effort, and administration complexity and reduced
your operational flexibility.

Instead, I'm going to package the database in a new Docker image and run it in a separate
container using Docker's network layer to access the database container from the website
container. SQL Server is a licensed product, but the free variant, SQL Server Express, is
available from Microsoft as an image on the Docker Hub and comes with a production
license. I can use that as the base for my image, building on it to prepare a pre-configured
database instance, with the schema deployed and ready to connect to the web application.

[66]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Creating Docker images for SQL Server
databases

Setting up a database image is just like any other Docker image; I'll be encapsulating the
setup tasks in a Dockerfile. Broadly, for a new database, the steps will be as follows:

e Install SQL Server

¢ Configure SQL server

e Run DDL scripts to create the database schema
e Run DML scripts to populate static data

This fits in very well with a typical build process using Visual Studio's SQL database
project type and the Dacpac deployment model. The output from publishing the project is a
.dacpac file that contains the database schema and any custom SQL scripts to run. Using
the SqlPackage tool, you can deploy the Dacpac file to a SQL Server instance, and it will
either create a new database if it doesn't exist, or it will upgrade an existing database so the
schema matches the Dacpac.

This approach is perfect for a custom SQL Server Docker image. I can use multi-stage
builds again for the Dockerfile, so you don't need Visual Studio installed to package the
database from the source code. This is the first stage of the Dockerfile for the
dockeronwindows/ch03-nerd-dinner-db image:

escape="
FROM sixeyed/msbuild:netfx—-4.5.2-ssdt AS builder

WORKDIR C:\src\NerdDinner.Database
COPY src\NerdDinner.Database .

RUN msbuild NerdDinner.Database.sqglproj °
/p:SQLDBExtensionsRefPath="C:\Microsoft.Data.Tools.Msbuild.10.0.61026\1ib\n
etd4o" °
/p:SglServerRedistPath="C:\Microsoft.Data.Tools.Msbuild.10.0.61026\1ib\net4
O"

The builder stage just copies in the SQL project source and runs MSBuild to produce the
Dacpac. I'm using a variant of the public sixeyed/msbuildimage on Docker Cloud,
which includes the NuGet packages you need to compile SQL projects.

[671]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Here's the second stage of the Dockerfile, which packages the NerdDinner Dacpac to run in

SQL Server Express:

FROM microsoft/mssqgl-server-windows-express

ENV ACCEPT_EULA="Y" °
DATA_PATH="C:\data" °
sa_password="N3rdD!Nne720"6"

VOLUME S${DATA_PATH}
WORKDIR C:\init

COPY Initialize-Database.psl
CMD ./Initialize-Database.psl -sa_password $env:sa_password —-data_path
Senv:data_path -Verbose

COPY —-—from=builder
C:\src\NerdDinner.Database\bin\Debug\NerdDinner.Database.dacpac .

There are no new instructions here, beyond what you've seen so far. You'll see that there
are no RUN commands, so I'm not actually setting up the database schema when I build the
image; I'm just packaging the Dacpac file into the image so I have everything I need to
create or upgrade the database when the container starts.

In cMD, I run a PowerShell script that sets up the database. It's usually not a good idea to
hide all the startup details in a separate script because that means you can't see what's
going to happen when the container runs from the Dockerfile alone. But in this case, the
startup procedure has a few functions, and they would make for a huge Dockerfile if we
put them all in there.

The base SQL Server Express image defines environment variables called ACCEPT_EULA, so

the user can accept the license agreement and sa_password to set the administrator
password. I extend this image and set default values for the variables. I'll use the variables
in the same way in order to allow users to specify an administrator password when they
run the container. The rest of the startup script deals with the problem of storing the
database state in a Docker volume.

[68]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Managing database files for SQL Server
containers

A database container is like any other Docker container, but with a focus on statefulness.
You'll want to ensure your database files are stored outside of the container, so you can
replace the database container without losing any data. You can easily do that with
volumes, as we saw in the last chapter, but there is a catch.

If you build a custom SQL Server image with a deployed database, your database files will
be inside the image in a known location. You can run a container from that image without
mounting a volume and it will just work, but the data will be stored in the container's
writable layer. If you replace the container, when you have a database upgrade to perform,
then you'll lose all your data.

Instead, you can run the container with a volume mounted from the host, mapping the
expected SQL Server data directory from a host directory so your files live outside of the
container in a known location on the host. This way, you can ensure your data files are
stored in a RAID array on your server. But that means you can't deploy the database in the
Dockerfile because the data directory will have data files from the image and you can't
mount a directory that isn't empty.

The SQL Server images from Microsoft deal with this by letting you attach database and log
files when it runs, so it works on the basis that you already have your database files on the
host. In this case, you can use the image directly, mount your data folder, and run a SQL
Server container with arguments telling it which database(s) to attach. This is a very limited
approach, though it means you need to create the database on a different SQL Server
instance first and then attach it when you run the container. This doesn't fit with an
automated release process.

For my custom image, I want to do something different. The image contains the Dacpac, so
it has everything it needs to deploy the database. When the container starts, I want it to
check the data directory, and if it's empty, then I create a new database by deploying the
Dacpac. If the database files already exist when the container starts, then attach the
database files first and upgrade the database using the Dacpac.

This approach means you can use the same image to run a fresh database container for a
new environment or upgrade an existing database container without losing any of its data.
And this works just as well whether you mount the database directory from the host or not,
so you can let the user choose how to manage the container storage, and my image
supports many different scenarios.

[69]

Developing Dockerized .NET and .NET Core Applications Chapter 3

The logic to do that is all in the Initialize-Database.psl PowerShell script, which the
Dockerfile sets as the entry point for containers. In the Dockerfile, I pass the data directory
to the PowerShell script in the data_path variable, and the script checks whether the
NerdDinner data (mdf) and log (1df) files are in that directory:

SmdfPath = "S$data_path\NerdDinner_Primary.mdf"
S1dfPath "Sdata_path\NerdDinner_Primary.ldf"

attach data files if they exist:
if ((Test-Path $mdfPath) -eqg S$true) {
$sglcmd = "IF DB_ID('NerdDinner') IS NULL BEGIN CREATE DATABASE NerdDinner
ON (FILENAME = N'S$mdfPath')"
if ((Test-Path $1dfPath) -eqg Strue) {
$sqlcmd = "$sglcmd, (FILENAME = N'$ldfPath')"

}
$sqlcmd = "$sglcmd FOR ATTACH; END"
Invoke-Sglcmd -Query $sglcmd —-ServerInstance ".\SQLEXPRESS"

}

This script looks complex, but actually, it's just building a CREATE
DATABASE...FOR ATTACH statement, filling in the paths of the MDF data
file and LDF log file if they exist. Then, it invokes the SQL statement,
which attaches the database files from the external volume as a new
database in the SQL Server container.

This covers the scenario where a user runs a container with a volume mount, where the
host directory has data files from a previous container. These files are attached, and the
database is available in the new container. Next, the script uses the SqlPackage tool to
generate a deployment script from the Dacpac. I know the SqlPackage tool exists and I
know the path to it because it's built into the SQL Server Express base image:

$SglPackagePath = 'C:\Program Files (x86)\Microsoft SQL
Server\130\DAC\bin\SglPackage.exe'
& $SglPackagePath °
/sf:NerdDinner.Database.dacpac °
/a:Script /op:deploy.sql /p:CommentOutSetVarDeclarations=true °
/tsn: . \SQLEXPRESS /tdn:NerdDinner /tu:sa /tp:$sa_password

[70]

Developing Dockerized .NET and .NET Core Applications Chapter 3

If the database directory was empty when the container started, there's no NerdDinner
database on the container, and SqlPackage will generate a script with a set of CREATE
statements to deploy the new database. If the database directory did contain files, then the
existing database would have been attached. In that case, SqlPackage would generate a
script with a set of ALTER and CREATE statements to bring the database in line with the
Dacpac.

The deploy. sql script generated in this step will create the new schema or apply changes
to the old schema to upgrade it. The final database schema will be the same in both cases.

Lastly, the PowerShell script executes the SQL script, passing in variables for the database
name, file prefixes, and data paths:

$SqlCmdvars = "DatabaseName=NerdDinner", "DefaultFilePrefix=NerdDinner",
"DefaultDataPath=$data_path", "DefaultLogPath=$data_path"

Invoke-Sqlemd —-InputFile deploy.sql —-Variable $SqlCmdVars —-Verbose

After the SQL script runs, the database exists in the container with the schema modelled in
the Dacpac, which was built from the SQL project in the builder stage of the Dockerfile. The
database files are in the expected location with the expected names, so if this container is
replaced with another one from the same image, the new container will find the existing
database and attach it.

Running databases in containers

Now I have an image that can work for new deployments and upgrades. The image can be
used by developers who might run it without mounting a volume while they're working on
a feature, so they can start with a fresh database every time they run a container. And the
same image can be used in environments where the existing database needs to be preserved
by running the container with a volume that contains the database files.

This is how you run the NerdDinner database in Docker, using the default administrator
password, using a host directory for the database files, and naming the container so I can
access it from other containers:

mkdir -p C:\databases\nd

docker container run -d -p 1433:1433 °
—-name nerd-dinner-db °
-v C:\databases\nd:C:\data °
dockeronwindows/ch03-nerd-dinner-db

[71]

Developing Dockerized .NET and .NET Core Applications Chapter 3

The first time you run that container, the Dacpac will run to create the database, saving the
data and log files in the mounted directory on the host. You can check whether the files
exist on your host with 1s, and the output from docker container logs shows the
generated SQL script running and creating resources:

> docker container logs nerd-dinner-db

VERBOSE: Starting SQL Server

VERBOSE: Changing SA login credentials

VERBOSE: No data files - will create new database
Generating publish script for database 'NerdDinner' on server
' .\SQLEXPRESS' .

Successfully generated script to file C:\init\deploy.sql.
VERBOSE: Changed database context to 'master'.

VERBOSE: Creating NerdDinner...

VERBOSE: Changed database context to 'NerdDinner'.
VERBOSE: Creating [dbo].[Dinners]...

The run command also publishes the standard SQL Server port 1433, so you can connect to
the database running inside the container remotely through a .NET connection or with SQL
Server Management Studio (SSMS). If you already have a SQL Server instance running on
your host, you can map the container's port 1433 to a different port on the host.

To connect to the SQL Server instance running in the container with SSMS, Visual Studio,
or Visual Studio Code, just use the container's IP address, select SQL Server Authentication,
and use the sa credentials:

[72]

Developing Dockerized .NET and .NET Core Applications

Chapter 3

Add Connection

data source and/or provider.

Data source:

Enter information to connect to the selected data source or click "Change” to choose a different

|Microsc-1"t S0L Server (5glClient)

Change...

Server name:

|1?2.31.12?.91 “

Leg on to the server

Authentication: | 501 Server Authentication

Refresh

User name: |5El

Passwgrd: |..............

Save my password
Connect to a database

(®) Select or enter a database name:

v

master
O;model

msdb

tempdhb

Test Connection

Advanced...

Then, you can work with the dockerized database just like any other SQL Server database,
querying tables and inserting data. From the Docker host machine, you use the container's
IP address as the database server name, but by publishing the port, you can access the
containerized database outside of the host, using the host machine name as the server
name. Docker will route any traffic on port 1433 into SQL Server running on the container.

[73]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Connecting to database containers from
application containers

Docker has a DNS server built into the platform, which is used by containers for service
discovery. I started the NerdDinner database container with an explicit name, and any
other containers running in the same Docker network can access that container by its name,
in exactly the same way as a web server would access a remote database server by its DNS
hostname:

‘nerd—dinner-web ‘ ‘ nerd-dinner-db ‘

____________________ R —

| Docker Network |

This makes application configuration much simpler than a traditional distributed solution.
Every environment will look the same in dev, QA, and production, the web container will
always connect to a database using the hostname nerd-dinner-db, which is actually
running inside a container. The container could be on the same Docker host or a separate
machine in a swarm cluster, and that's transparent to the application.

Service discovery in Docker isn't for containers only. A container can
access another host on the network using its hostname. You could run
your web application in a container but still have it connected to SQL
Server running on a physical machine rather than using a database
container.

One piece of configuration could be different for each environment, and that's the SQL
Server login credentials. In the NerdDinner database image, I use an environment variable
with a default value to set the administrator password, and I use a similar approach in the
web application container. The connection string for the database is in the web . config file,
with the expected hostname and user ID, but with a placeholder for the password:

Data Source=nerd-dinner-db,1433;Initial Catalog=NerdDinner;User
Id=sa;Password={SA_PASSWORD}

[74]

Developing Dockerized .NET and .NET Core Applications Chapter 3

In the NerdDinner application image, I can add an environment variable for the password
and take a similar approach to the database image, do some preprocessing in the entry
point that Docker runs to start the container in order to set up the application. The
Web.config file is in a known place on the image, so the startup script just needs to update
the connection strings. This can be done easily with PowerShell:

SconnectionString="Data Source=nerd-dinner-db,1433;Initial
Catalog=NerdDinner;User Id=sa;Password=$ ($env:sa_password)"

$file = 'C:\nerd-dinner\Web.config'

[xml] $config = Get-Content $file;

$dblNode = $config.configuration.connectionStrings.add | where {$_.name -eq
'DefaultConnection'}

$db1Node.connectionString = $connectionString

Sconfig.Save ($file)

This is a simplified approach to security credentials, which I'm using to
show how we can make our application more Docker-friendly without
changing the code. Environment variables are not the best approach to
managing secrets, though, and I'll look at this again in chapter 9,
Understanding the Security Risks and Benefits of Docker, when I cover
security in Docker.

I've added this to a bootstrap.psl script file, which also has the logic from this chapter to
make NerdDinner a better Docker citizen, promoting environment variables and echoing
the IIS logs. I can use this script as the startup command in the Dockerfile and add a
HEALTHCHECK instruction so Docker monitors the web app for me.

The Dockerfile for dockeronwindows/ch03-nerd-dinner-web has one other important
instruction, which is currently needed for Windows containers to work with Docker's
service discovery:

RUN Set-ItemProperty -Path
'HKLM: \SYSTEM\CurrentControlSet\Services\Dnscache\Parameters'
—-Name ServerPriorityTimeLimit -Value 0 -Type DWord

This command writes a registry entry that effectively turns off the Windows DNS cache.
Windows caches DNS entries heavily, and this means it doesn't return to Docker frequently
enough to get updated information. If a container is replaced, it will have a new IP address,
and so we want containers to always use the DNS server in Docker to get the latest
information and not cache any results. That's accomplished with this line.

[75]

Developing Dockerized .NET and .NET Core Applications Chapter 3

So far in this chapter, I still haven't made any functional changes to the NerdDinner code
base, only altering the database connection string in Web . config to use the connection
details for the SQL Server database container. When I run the web application container
now, it will be able to connect to the database container by name and use the SQL Server
Express database running in Docker:

docker container run -d -P dockeronwindows/ch0O3-nerd-dinner-web

You can explicitly specify the Docker network a container should join
when it's created, but on Windows, all containers default to joining the
system created the nat network. Because of the database container and
web container on the nat network, they can reach each other by the
container name.

When the container starts up, I can now open the website using the container's IP address,
click on the Register link, and create an account:

v 1} Register Tw‘ = o *

M C' 1} ©® nNotSecwr 172.26.200.130/Account/Register * 0 q v

0 A

Register Login

nerddinner

@ @ |«

+

Register. Create a new account.
User name
elton

Password

Confirm password

thrie, Galloway, Mourfield , Petersen and Amott . JavaScript by Dave Ward . ASP NET MVC by Haack and friends. Style by Michael Dorian Bach.
rddinner.codeplex.com . Free Sample Boo<_ apter and code walkthrough at http://tinyurl.com/aspnetmvc

Version: 1.0

[76]

Developing Dockerized .NET and .NET Core Applications Chapter 3

The register page queries the ASP.NET membership database, running in the SQL Server
container, so if the page is functioning, then the web application has a working connection
to the database. I can verify this in SSMS, querying the user table and seeing the new user
row:

SQLQuerylsgl* ® X
[v H m mf NerdDinner -3 H-0 2
| UserProfile|

100 % -

|_ & T-50L T+ B Results V" B Message
Userld UserName

I've now separated the LocalDB database from the web application, and each component is
running in a lightweight Docker container. On my development laptop, each container uses
less than 1% of the host CPU at idle, with the database using 600 MB of memory and the
web server under 300 MB. Containers are light on resources so there's no penalty in
splitting functional units into different containers and then you can scale, deploy, and
upgrade these components individually.

Breaking up monolithic applications

Traditional .NET web applications that rely on a SQL Server database can be migrated to
Docker with minimal effort and without having to rewrite any application code. At this
stage in my NerdDinner migration, I have an application Docker image and a database
Docker image that I can reliably and repeatably deploy and maintain. I also have some
beneficial side-effects.

Encapsulating the database definition in a Visual Studio project may be a new departure,
but it adds quality assurance to database scripts and brings the schema into the code base,
so it can be source-controlled and managed alongside the rest of the system. Dacpacs,
PowerShell scripts, and Dockerfiles provide a new common ground for different functions
of IT. Development, operations, and database administration teams can work together on
the same artifacts, using the same language.

[77]

Developing Dockerized .NET and .NET Core Applications Chapter 3

Docker is an enabler for DevOps transitions, but whether or not DevOps is on your road
map, Docker provides the foundations for fast, reliable releases. To take the most
advantage of that, you need to look at breaking down monolithic apps into smaller pieces,
so you can release high-value components frequently without having to do a regression test
on the whole of a large application.

Extracting core components from an existing application lets you bring modern,
lightweight technologies into your system without having to do a large, complex rewrite.
This is a microservices style of architecture applied to an existing solution, where you
already understand the areas that are worth extracting into their own services.

Extracting high-value components from
monoliths

The Docker platform offers a huge opportunity to modernize legacy applications, allowing
you to take features out of monoliths and run them in separate containers. If you can isolate
the logic in a feature, that's also an opportunity migrate it to .NET Core, which lets you
package it into a much smaller .NET Core image.

Microsoft's road map for .NET Core will see it adopt more and more functionality of the
full NET Framework, but porting parts of a legacy .NET application to .NET Core could
still be a large undertaking. But you don't need to take that step. The value in breaking
down the monolith is having features that can be developed, deployed, and maintained
independently, if the components have full NET Framework, you still get those benefits.

The advantage of a legacy app is that you understand the feature set. You can identify the
high-value functionality in your system and start by extracting those features into their
own components. Good candidates would be features that offer value to the business if
they change frequently, so new feature requests can be rapidly built and deployed without
modifying and testing the whole application.

Equally, good candidates are features that offer value to IT if they stay the same, complex
components with a lot of dependencies that the business doesn't change often. Extracting
such a feature into a separate component means you can deploy upgrades to the main
application without having to test the complex component because it remains unchanged.
Breaking up a monolith like this gives you a set of components that each have their own
delivery cadence.

[78]

Developing Dockerized .NET and .NET Core Applications Chapter 3

In NerdDinner, there are some good candidates to break out into their own services. In the
rest of this chapter, I'll focus on one of them, the home page. The home page is the feature
that renders the HTML for the first page of the application. A process to deploy changes to
the home page quickly and safely in production will let the business experiment with a new
look and feel, evaluate the impact of the new version, and decide whether to continue with
it.

The current application is distributed among two containers. For the part of this chapter, I'll
break the home page out into its own component, so it will run in three containers:

OO —@

I Public entrypoint

| nerd-dinner-homepage | | nerd-dinner-web | nerd-dinner-db
__________________________________ e

| Docker Network |

I won't change the routing for the application; users will still come to the NerdDinner
application first, and the application container will call the home page service container to
get the content to show. This way, I don't need to expose the new container publicly. There
is only one technical requirement for the change, the main application needs to be able to
communicate with the new service component.

You're free to choose how the applications in containers communicate, Docker networking
gives you full protocol support for TCP/IP and UDP. You could make the whole process
asynchronous, running a message queue in another container, with message handlers
listening in other containers, but I'll start with something simpler in this chapter.

Hosting a Ul component in an ASP.NET Core

application

ASP.NET Core is a modern application stack that delivers the best of ASP.NET MVC and
web APl in a slim and performant runtime. ASP.NET Core websites run as console
applications, they write logs to the console output stream, and they can use environment
variables for configuration. The architecture makes them good Docker citizens out of the
box.

[79]

Developing Dockerized .NET and .NET Core Applications Chapter 3

The easiest way to extract the NerdDinner home page into a new service is to write it as an
ASP.NET Core website with a single page and relay the new application's output from the
existing application. Here's my stylish, modern redesign of the home page running in
ASP.NET Core on a local machine:

W | Nerd Dinner T [=] X
< 1] C @ ® locahost:s000 ¥ [| Qv search Google v
A
i
B
©

+

Nerd Dinner

Organizing the world's nerds and helping them eat in packs.

Find Dinner &

To package the home page application as a Docker image, I'm using the same multi-stage
build approach I've used for the main application and the database images. In chapter 10,
Powering a Continuous Deployment Pipeline with Docker, you'll see how to use Docker to
power a CI/CD build pipeline and tie the whole automated deployment process together.

The Dockerfile for the dockeronwindows/ch03-nerd-dinner-homepage image uses the

same pattern I have for the full ASP.NET application, separating the package restore and
the compilation steps:

escape="
FROM microsoft/dotnet:1.1.2-sdk—-nanoserver AS builder

WORKDIR C:\src\NerdDinnerHomepage
COPY src\NerdDinnerHomepage\NerdDinnerHomepage.csproj
RUN dotnet restore

[80]

Developing Dockerized .NET and .NET Core Applications Chapter 3

COPY src\NerdDinnerHomepage
RUN dotnet publish

The final stage of the Dockerfile provides a default value for the NERD_DINNER_URL
environment variable. The application uses it as the target for the link on the home page.
The rest of the Dockerfile instructions just copy in the published application and set up the
entry point:

FROM microsoft/aspnetcore:1l.1l.2-nanoserver

ENV NERD_DINNER_URL="/home/find"
CMD ["dotnet", "NerdDinnerHomepage.dll"]

WORKDIR C:\dotnetapp
COPY —-—from=builder
C:\src\NerdDinnerHomepage\bin\Debug\netcoreappl.l\publish .

I can run the home page component in a separate container, but it's not connected to the
main NerdDinner app yet. I need to make a code change to the original app in order to
integrate the new home page service.

Connecting to application containers from other
application containers

Calling the new home page service from the main application container is fundamentally

the same as connecting to the database, I will run the home page container with a known

name, and I can access the service in other containers using its name and Docker's built-in
service discovery.

A simple change to the HomeController class in the main NerdDinner application will
relay the response from the new home page service instead of rendering the page from the
main application:

static HomeController ()
{

var homepageUrl = Environment.GetEnvironmentVariable ("HOMEPAGE_URL",
EnvironmentVariableTarget.Machine);

var request = WebRequest.Create (homepageUrl) ;

using (var response = request.GetResponse())

using (var responseStream = new
StreamReader (response.GetResponseStream()))

{

_NewHomePageHtml = responseStream.ReadToEnd();

}

[81]

Developing Dockerized .NET and .NET Core Applications Chapter 3

}

public string Index()
{

return _NewHomePageHtml;

}

In the new code, I get the URL for the home page service from an environment variable.
Just as with the database connection, I can set a default value for that in the Dockerfile. This
would be a bad practice in a distributed application where we can't guarantee where the
components are running, but in a dockerized application, I can do it safely because I will
control the names of the containers, so I can be sure the service names are correct when I
deploy them.

I've tagged this updated image as dockeronwindows/ch03-nerd-dinner-web:v2. To
start the whole solution now, I need to run three containers:

docker container run -d -p 1433:1433 —--name nerd-dinner-db °
-v C:\databases\nd:C:\data dockeronwindows/ch03-nerd-dinner-db

docker container run -d -P —--name nerd-dinner-homepage
dockeronwindows/ch03-nerd-dinner-homepage

docker container run -d -P dockeronwindows/ch0O3-nerd-dinner-web:v2

When the containers are running, I go to the NerdDinner container, and I see the home
page from the new component:

v 1§ Merd Dinner Tw— ~ = »
{ > Wi C @ ©® 17226195145 v 0la :
H
+ Nerd Dinner
. Organizing the world's nerds and helping them eat in packs.
)
Find Dinner
.
o

[82]

Developing Dockerized .NET and .NET Core Applications Chapter 3

The Find Dinner link takes me back to the original web app, and now I can iterate over the
home page and release a new Ul just by replacing that container--without releasing or
testing the rest of the app.

What happened to the new UI? In this simple example, the integrated
home page doesn't have the styling of the new ASP.NET Core version
because the main application only reads the HTML for the page, not the
CSS files or other assets. A better approach would be to run a proxy in a
container and use that as the entry point to other containers, so each
container serves all its assets.

Now that I have my solution split across three containers, I've dramatically improved
flexibility. During build time, I can focus on features that give the highest value without
spending effort to test components that haven't changed. At deployment time, I can release
quickly and confidently, knowing that the new image we push to production will be
exactly what was tested. And at runtime, I can scale components independently according
to their requirements.

I do have a new nonfunctional requirement, which is to ensure that all the containers have
the expected names, are started in the correct order, and are in the same Docker network, so
the solution as a whole works correctly. Docker has support for this, which I'll show you in
Chapter 6, Organizing Distributed Solutions with Docker Compose, which is focused on
organizing distributed systems with Docker Compose.

Summary

In this chapter, we covered three main topics:

¢ Containerizing legacy .NET Framework applications so they are good Docker
citizens and integrate with the platform for configuration, logging, and
monitoring

¢ Containerizing database workloads with SQL Server Express and the Dacpac
deployment model, building a versioned Docker image that can run as a new
database or upgrade an existing database

e Extracting functionality from monolithic apps into separate containers, using
ASP.NET Core and Windows Nano Server to package a fast, lightweight service
that the main application consumes

[83]

Developing Dockerized .NET and .NET Core Applications Chapter 3

You've learned how to use more images from Microsoft on Docker Hub and how to use
Windows Server Core for full NET applications, SQL Server Express for databases, and the
Nano Server flavors of the NET Core image.

In later chapters, I'll return to NerdDinner and continue to modernize it by extracting
features into dedicated services. Before that, in the next chapter, I'll look more closely at
Docker Hub and other registries to store images.

[84]

Pushing and Pulling Images
from Docker Registries

Shipping applications is an integral part of the Docker platform. The Docker service can
download images from a central location to run containers from them, and also upload
images that were built locally to a central location. These shared image stores are called
registries, and in this chapter I'll look more closely at how image registries work and the
type of registries that are available to you.

The primary image registry is Docker Hub, which is a free online service and is the default
location for the Docker service to work with images. Docker Hub is a great place for the
community to share images built to package open source software that is free to
redistribute. Docker Hub has been hugely successful. At the time of writing this book, there
are over 600,000 images available on the Hub, with over 12 billion downloads between
them.

A public registry may not be suitable for your own applications. Docker Cloud is an
alternative which offers a commercial plan to host private images (in a similar way that
GitHub lets you host public and private source code repositories), and there are other
commercial registries. You can also run your own registry server in your environment,
using an open-source registry implementation which is freely available.

In this chapter, I'll show you how to use those registries, and I'll cover the finer details of
tagging images - which is how you can version your Docker images, and work with images
from different registries.

Pushing and Pulling Images from Docker Registries Chapter 4

Understanding registries and repositories

You download an image from a registry using the docker image pull command. When
you run the command, the Docker service connects to the registry, authenticates - if it needs
to - and pulls the image down. The pull process downloads all the image layers and stores
them in the local image cache on the machine. Containers can only be run from images that
are available in the local image cache, so unless they're built locally, they need to be pulled
first.

One of the earliest commands you run when you get started with Docker on Windows is
something simple, like this example from chapter 2, Packaging and Running Applications as
Docker Containers_SSR:

> docker container run dockeronwindows/ch02-powershell-env

Name Value

ALLUSERSPROFILE C:\ProgramData
APPDATA C:\Users\ContainerAdministrator\AppData\Roaming

This will work even if you don't have the image in your local cache because Docker can pull
it from the default registry - Docker Cloud, in this case. If you try to run a container from an
image that you don't have stored locally, Docker will automatically pull it before creating
the container.

In this example, I haven't given Docker much information to go on - just the image name
dockeronwindows/ch02-powershell-env. That detail is enough for Docker to find the
right image in the registry, because Docker fills in some of the missing details with default
values. The name of the repository is dockeronwindows/ch02-powershell-env;a
repository is a storage unit that can contains many versions of a Docker image.

Examining image repository names

Repositories have a fixed naming scheme: {registry-domain}/{account-
id}/{repository-name}:{tag}. All parts are required, but Docker assumes defaults for
some values. So, dockeronwindows/ch02-powershell-env is actually a short form of
the full repository name docker.io/dockeronwindows/ch02-powershell-
env:latest.

[86]

Pushing and Pulling Images from Docker Registries Chapter 4

e registry-domain is the domain name or IP address of the registry that stores
the image. Docker Hub, Docker Cloud and Docker Store are default registries, so
you can omit the registry domain when you're using those images. Docker will
use docker. io as the registry if you don't specify one.

e account-id is the name of the account or organization that owns the image on
the registry. On Docker Hub the account name is mandatory, my own account ID
is sixeyed, and the organization account ID for the images that accompany this
book is called dockeronwindows. On other registries the account ID may not be
needed.

e repository-name:Itis the name you want to give your image to uniquely
identify the application, within all the repositories for your account on the
registry.

e tag: is how you distinguish between different image variations in the repository.

You use the tag for versioning your applications or to identify variants. If you don't specify
a tag when you build or pull images, Docker assumes the default tag 1atest. When you
start with Docker, you will use Docker Hub and the l1atest tag, which are the defaults
Docker provides to hide some of the complexity until you're ready to dig deeper. As you
continue with Docker, you'll use tags to make clear distinctions between different versions
of your application package.

A good example is Microsoft's .NET Core base image, which is on Docker Hub in the
microsoft/dotnet repository. NET Core is a cross-platform application stack that runs
on Linux and Windows. You can run only Linux containers on Linux-based Docker hosts,
and you can run only Windows containers on Windows-based Docker hosts, so Microsoft
includes the operating system in the tag name.

At the time of writing, Microsoft has dozens of versions of the .NET Core image available
for use in the microsoft/dotnet repository, identified with different tags. These are just
some of the tags:

e 1.1.2-runtime-jessie a Linux image based on Debian that has the NET Core
1.1 runtime installed

e 1.1.2-runtime-nanoserver a Nano Server image that has the NET Core 1.1
runtime installed

[871]

Pushing and Pulling Images from Docker Registries Chapter 4

e 1.1.2-sdk-jessie a Linux image based on Debian that has the INET Core 1.1
runtime and SDK installed

e 1.1.2-sdk-nanoserver a Nano Server image that has the NET Core 1.1
runtime and SDK installed

The tags make it clear what each image contains, but they are all fundamentally similar -
they are all variations of microsoft/dotnet.

Docker also supports multi-arch images, where a single repository name
is used as an umbrella for many variations. There could be image
variations based on Linux and Windows, Intel and Advanced RISC
Machines (ARM) processors. They all use the same umbrella repository
name, and when you run docker image pull, Docker pulls the
matching image for your host's operating system and CPU architecture.

Building, tagging, and versioning images

You tag images when you first build them, but you can also explicitly add tags to an image
with the docker image tagcommand. This is very useful in versioning mature
applications, so users can choose which versioning level they want to work with. If you run
these commands, you would build an image with five tags, with ascending levels of
precision for the application version:

docker image build -t myapp .

docker image tag myapp:latest myapp:5
docker image tag myapp:latest myapp:5.1
docker image tag myapp:latest myapp:5.1.6
docker image tag myapp:latest myapp:bc90e9

The initial docker image build command doesn't specify a tag, so the new image will
default to myapp:latest. Each subsequent docker image tagcommand adds a new tag
to the same image. Tagging doesn't copy the image, so there's no data duplication, you just
have one image which can be referred to with several tags. By adding all these tags, you
give consumers the choice of image to use, or to base their own image on.

This example application uses semantic versioning. The final tag could be the ID of the
source code commit that triggered the build; this might be used internally but not made
public. 5. 1. 6 is the patch version, 5.1 is the minor version number, and 5 is the major
version number.

[881]

Pushing and Pulling Images from Docker Registries Chapter 4

Users can explicitly use myapp: 5. 1.6, which is the most specific version number, knowing
that the tag won't change at that level and the image will always be the same. The next
release will have the tag 5. 1.7, but that will be a different image with a different
application version.

myapp: 5.1 will change with each patch release - with the next build, 5. 1 will be a tagged
alias of 5.1.7 - but users can be confident there won't be any breaking changes. myapp: 5
will change with each minor release - next month it could be an alias of myapp:5.2. Users
can choose the major version if they always want the latest release for version 5, or they
could use latest if they always want the latest version, and can accept the possibility of
breaking changes.

As the producer of images, you can decide how to support versioning in your image tags.
As the consumer, you should favor being more specific - especially with images you use as
the FROM image for your own builds. If you're packaging a .NET Core application, you will
have problems if you start your Dockerfile like this:

FROM microsoft/dotnet:runtime-nanoserver

At the time of writing, this image has version 1.1 of the .NET Core runtime installed. If your
application targets version 1.1 then that's fine, the image will build and your application
will run correctly in a container. But when .NET Core 1.2 or 2.0 is released, the generic
runtime-nanoserver tag will be applied to the new image, which may not support the
1.1 target. When you use the exact same Dockerfile after that release, it will use a new base
image - your image will build but the application may fail if the base image no longer
supports your application.

Instead, you should use consider using a tag for the minor version of the application
framework you're using:

FROM microsoft/dotnet:1.l-runtime-nanoserver

This way, you'll benefit from any patch releases to the image, but you'll always be using the
1.1 release of .NET Core, so your application will always have a matching host platform in
the base image.

You can tag any image you have in your local cache, not just images you build yourself.
This is useful if you want to re-tag a public image and add it to an approved set of base
images in your local, private registry.

[891]

Pushing and Pulling Images from Docker Registries Chapter 4

Pushing images to a registry

Building and tagging images are local operations. The end result of docker image build
and docker image tag is achange to the image cache on the Docker host where you run
the commands. Images need to be explicitly shared to a registry with the docker image
push command.

Docker Hub is available for use without authenticating to pull public images, but to upload
images (or pull private images), you need to register for an account. Registration is free at
https://cloud.docker.com/ - where you can create a Docker ID that you can use on
Docker Hub, Docker Cloud, and other Docker services. Your Docker ID is how you
authenticate with the Docker service to access Docker Hub, with the docker login

command:

> docker login

Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head over to https://hub.docker.com to create one.
Username: dockeronwindows

Password:

Login Succeeded

To push images to Docker Hub, the repository name must contain your Docker ID as the
account ID. You can tag an image using account account ID - like microsoft /my-app - but
you can't push it to Microsoft's organization on the registry. The Docker ID you are logged
in with needs to have permission to push to the account on the registry.

When I publish images to go along with this book, I build them with dockeronwindows as
the account name in the repository, log in with that account, and push:

docker image build -t dockeronwindows/ch03-iis-healthcheck .
docker image push dockeronwindows/ch03-iis-healthcheck

The output from the Docker CLI shows how the image is split into layers, and it tells you
the upload status for each layer:

The push refers to a repository [docker.io/dockeronwindows/ch03-iis-
healthcheck]

177624560099: Pushed

badbec9dc449: Pushed

£87d75e4972b: Pushing [>]
7.925 MB/12.66 MB

0c3e4b980d94: Pushed

19150debad5f: Pushed

1225b6de9£9d: Pushed

[90]

https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/

Pushing and Pulling Images from Docker Registries Chapter 4

64e9e8b7£f7a8: Pushing [>)
22.14 MB/62.19 MB
48c58914e7al: Pushing [>)
20.45 MB/66.33 MB
ef215b8all76: Pushing [==>]

14.07 MB/280.3 MB

72ee693ca2b2: Pushed

de57d9086f9a: Skipped foreign layer
£358bel0862c: Skipped foreign layer

This image uses Windows Server Core as the base image. The base image
is not publicly redistributable - it's publicly available on Docker Hub, but
Microsoft have not licensed the image to be stored on other public image
registries. That's why we see the lines stating Skipped foreign layer - Docker
will not push those layers.

You can't publish to another user's account, but you can tag another user's images with
your own account name. This is a perfectly valid set of commands, which I could run if I
wanted to download a specific version of the Windows Server Core image, give it a
friendlier name, and make it available on the Hub under that new name in my account:

docker image pull microsoft/windowsservercore:10.0.14393.1358
docker image tag microsoft/windowsservercore:10.0.14393.1358
sixeyed/windowsservercore:2017-07

docker image push sixeyed/windowsservercore:2017-07

Pushing images to a registry doesn't get any more complex than that, for the user -
although under the hood Docker runs some smart logic. Image layering applies to registries
as well as to the local image cache on the Docker host. When you push an image based on
Windows Server Core to the Hub, Docker doesn't upload the 10 GB base image - it knows
that base layer already exists on the Hub, and it will only upload the layers which are
missing on the target registry.

The last example of tagging a public image and pushing it to the public Hub is valid but
unlikely - you're much more likely to tag and push images to your own local, private
registry.

Running a local image registry

The Docker platform is portable because it's written in Go, which is a cross-platform
language. Go applications can be compiled to native binaries, so Docker can run on Linux
or Windows without users having to install Go. On the Docker Hub the registry image
contains a registry server written in Go, so you can host your own image registry by

[91]

Pushing and Pulling Images from Docker Registries Chapter 4

running a Docker container from that image.

registry is an official repository, but at the time of writing, it only has images available
for Linux. It's likely that a Windows version of the registry will be published soon, but in
this chapter I will walk you through building your own registry image, as it demonstrates
some common Docker usage patterns.

Official repositories are available on Docker Hub like other public images,
but they have been curated by Docker, Inc, and are maintained either by
Docker themselves or by the application owners. You can rely on them
containing correctly packaged and up-to-date software. The majority of
official images only have Linux variants, but the number of Windows-
based official images is growing.

Building the registry image

Docker's registry server is an open source application. It's hosted on GitHub in the
docker/distribution repository. To build the application, you need to install the Go
SDK first. If you did that, you can run a simple command to compile the application:

go get github.com/docker/distribution/cmd/registry

But if you're not a regular Go developer, you don't want the overhead of installing and
maintaining the Go tools on your local machine, just so you can build the registry server
when you want to update it. It would be better to package the Go tools into a Docker image
and set up the image so that when you run a container, it builds the registry server for you.
You can do this with the same multi-stage build approach I demonstrated in

Chapter 3, Developing Dockerized .NET and .NET Core Applications.

The multi-stage pattern has a lot of advantages. Firstly, it means that your application
image can be kept as lightweight as possible - you don't need to package the build tools
along with the runtime. Secondly, it means that your build agent is encapsulated in a
Docker image so you don't need to install those tools on your build server. Thirdly, it
means that developers can use exactly the same build process that the build server uses, so
you avoid a situation where developer machines and the build server have different tool
sets installed, with the risk of them drifting and causing build issues.

[92]

Pushing and Pulling Images from Docker Registries Chapter 4

The Dockerfile for dockeronwindows/ch04-registry uses the official Go image, which
has a Windows Server Core variant on Docker Hub. The builder stage uses that image to
compile the registry application:

escape="
FROM golang:1.8-windowsservercore AS builder
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

ARG REGISTRY_VERSION=v2.6.1

WORKDIR C:\gopath\src\github.com\docker

RUN git clone https://github.com/docker/distribution.git;
cd distribution;
git checkout $env:REGISTRY_VERSION;
go build -o C:\out\registry.exe .\cmd\registry

I'm using an ARG instruction to specify the version of the source code to build - the GitHub
repository has labels for each released version, and I'm defaulting to version 2.6.1. Then I
use git to clone the source code and switch to the labelled version of the code, and go
build to compile the application. The output will be registry.exe, a native Windows
executable which doesn't need Go installed to run.

The final stage of the Dockerfile uses Nano Server as the base, which can run the Go
application just fine. I'll look at this stage in detail, because the setup addresses a problem
with storage in Windows containers which impacts Go and other languages. The start of
the stage just specifies the version of Nano Server to use as the base, and switches to
PowerShell:

FROM microsoft/nanoserver:10.0.14393.1358
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

Next there are instructions to configure storage for the registry server. I use environment
variables to specify the paths, create a volume, and then set a Windows registry flag to
create a drive mapping for the volume path:

ENV DATA_PATH="C:\data"
REGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY="G:\\"

VOLUME ${DATA_PATH}
RUN Set-ItemProperty —-Path 'HKLM:\SYSTEM\CurrentControlSet\Control\Session

Manager\DOS Devices'
-Name 'G:' —-Value "\??2\$(Senv:DATA_PATH)" -Type String

[93]

Pushing and Pulling Images from Docker Registries Chapter 4

This is a pattern you may have to use with Java, Node, PHP and even in .NET applications
in Windows containers. It's necessary because of the way Windows implements volumes.
My volume creates the directory path C: \data inside the container, but that's actually a
symbolic link (symlink) to another directory location.

Symlinks are very common in Linux. Windows has supported them for a long time, but
they're far less common. Some language rutimes see a directory is a symlink, and try to
resolve the underlying path. In a container, the path will be something like
\\?\\ContainerMappedDirectories\{GUID}. Making sense of that path can cause the
app to fail.

So this setup creates a drive alias for the directory - inside the container, the G: drive
actually maps to C: \data. When applications see G: \ they don't see it as a symlink, so they
don't try to resolve the path. They write directly to the G: drive, and Windows redirects it
to C:\data, which is actually a volume hosted outside of the container.

If you're interested in the mechanics of this fix, the details are in a GitHub
issue: https://github.com/moby/moby/issues/27537.

TheregmhgzaﬂverusestheREGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY
environment variable to configure the storage location. That's set to G: so the Go runtime
can work without hitting the symlink issue. The rest of the Dockerfile sets up the image to
allow traffic on port 5000, the conventional registry port, and copies in the output from the
builder stage:

EXPOSE 5000
WORKDIR C:\registry

CMD ["registry", "serve", "config.yml"]

COPY —-—-from=builder C:\out\registry.exe .

COPY —--from=builder
C:\gopath\src\github.com\docker\distribution\...\config-example.yml
.\config.yml

Building the registry image is the same as any other image, but when you use it to run your
own registry, there are some important factors to consider.

[94]

https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537

Pushing and Pulling Images from Docker Registries Chapter 4

Running a registry container

Running your own registry lets you share images between team members and store the
output of all your application builds using the fast local network instead of an internet
connection. You would typically run the registry container on a server that can be widely
accessed, in a configuration like this:

The registry is running in a container (1) on a server (2). The client machines (3) connected
to the server to use the local registry to push and pull private images.

To make the registry container accessible, you need to publish port 5000 from the container
to port 5000 on the host. Registry users can access the container using the host server's IP
address or hostname, and that will be the registry domain you use in repository names.
You'll also want to mount a volume from the host to store the image data in a known
location. When you replace the container for a new version, it will still be available using
the host's domain name, and it will still have all the image layers stored by the previous
container.

On my host server I have a RAID array configured as disk E:, which I'll use for my registry
data, so I can run my registry container mapping that volume:
mkdir E:\registry-data

docker container run -d -p 5000:5000 -v E:\registry-data:C:\data
dockeronwindows/ch04-registry

The volume is mapped to C:\data - the G: drive alias only exists inside
the container.

[95]

Pushing and Pulling Images from Docker Registries Chapter 4

In my network, I'll be running the container on a physical machine with the IP address
192.168.2.146.Icould use 192.168.2.146:5000 as the registry domain to tag images,
but that isn't very flexible. It's better to use the domain name of the host, so I could point
that to a different physical server if I needed to, without having to re-tag all my images.

For the hostname you can use your network's Domain Name System (DNS) service, or a
Canonical Name (CNAME) if you're running a public server, or you could add an entry to
the hosts file on the client machines and use a custom domain name. This is the PowerShell
command I use to add the host name entry for registry.local pointing to my Docker
server:

Add-Content -Path 'C:\Windows\System32\drivers\etc\hosts' -Value
'192.168.2.146 registry.local'

Now my server is running a registry server in a container with reliable storage, and my
client is set up to access the registry host using a friendly domain name. I can start pushing
and pulling private images from my own registry, which is only available to users on my
network.

Pushing and pulling images with a local
registry

You can only push images to a registry if the image tag matches the registry domain. The
process for tagging and pushing is the same as with Docker Hub, but you need to explicitly
include the local registry domain in the new tag. These commands pull the registry server
image from Docker Hub and add a new tag, making it suitable to be pushed to the local
registry:

docker image pull dockeronwindows/chO4-registry

docker image tag dockeronwindows/chO4-registry
registry.local:5000/infrastructure/registry:v2.6.1

In the docker image tagcommand, you can change every part of the image name for the
new tag. I've used the following:

® registry.local:5000 the registry domain. The original image name had an
implied domain of docker. io.

e infrastructure the account name. The original account name was
dockeronwindows.

[961]

Pushing and Pulling Images from Docker Registries Chapter 4

® registry the repository name. The original was ch04-registry.
e v2.6.1 the image tag. The original implied tag was latest.

I can try to push the new tagged image to the local registry, but Docker won't let me use the
registry yet:

> docker push registry.local:5000/infrastructure/registry:v2.6.1

The push refers to a repository
[registry.local:5000/infrastructure/registry]

Get https://registry.local:5000/v2/: http: server gave HTTP response to
HTTPS client

The Docker platform is secure by default, and the same principle extends to image
registries. The Docker service expects to use SSL to communicate with registries, so the
traffic is encrypted. My simple registry installation uses plaintext HTTP, so I get an error
saying Docker tried to use an encrypted transport for the registry but only an unencrypted
transport was available.

There are two options to set up Docker to use the local registry. The first is to extend the
registry server to secure the communication - the registry server image can run over HTTPS
if you supply it with an SSL certificate. That's what I would do in a production
environment, but to start out I can use the other option and make an exception in the
Docker configuration. The Docker service will allow an HTTP registry to be used if it's
explicitly named in an allowed list of insecure registries.

You can run the registry image with HTTPS using your company's SSL
certificate or a self-signed certificate, which means that you don't need to
configure the Docker Engine to allow insecure registries. There is a
Windows registry walkthrough in Docker's lab repository on GitHub
docker/labs which explains how to do that.

Configuring Docker to allow insecure registries

The Docker service can use a JSON configuration file to change settings, including the list of
insecure registries the engine will allow. Any registry domains in that list can use HTTP
rather than HTTPS, so this is not something you should do for a registry hosted on a public
network.

[97]

Pushing and Pulling Images from Docker Registries Chapter 4

Docker's configuration file is located at

$programdata%\docker\config\daemon. json (daemon is Linux terminology for a
background service, so this is the name of the Docker service configuration file). You can
manually edit it to add the local registry as a secure option and then restart the Docker
Windows service. This configuration allows Docker to use the local registry with HTTP:

{
"insecure-registries": [
"registry.local:5000"
]
}

If you're using Docker for Windows, the Ul has a nice configuration window that takes care
of this for you. Instead of editing the file manually, just right-click on the Docker logo in the
status bar, select Settings, navigate to the Daemon page, and add an entry to the Insecure
registries list:

& Settings *

General Daemon nn

Proxies Configure the Docker daemon by typing a json docker daemon

configuration file.
(D Basic

Experimental features

Daemon
Diagnose & Feedback

Reset Insecure registries:

registry.local:SOOd

Registry mirrors:

@ Docker is running Docker will restart when applying these settings. Apply

[981]

Pushing and Pulling Images from Docker Registries Chapter 4

With the local registry domain added to my insecure list, I can use it to push and pull
images:

> docker push registry.local:5000/infrastructure/registry:v2.6.1

The push refers to a repository
[registry.local:5000/infrastructure/registry]
8aeflb3b4856: Pushed

cacb6be9%e720: Pushed

415729850£90: Pushed

£f£6770fbf55c: Pushed

9acef5971c00: Pushed

45049fad42adf: Pushed

3c7d57559064: Pushed

£f6£3d7c5a77c: Pushed

c5dc94330b3f: Pushed

e6537bd7a896: Skipped foreign layer
6c357baed9f5: Skipped foreign layer

v2.6.1: digest:
sha256:970ea320b67116cea565f5af24ed99dea65b6e3d8aeldbb285acfb2673d4307b
size: 2615

Any users with network access to my Docker server can use images stored in the local
registry with the docker image pull or docker image run commands. You can also
use local images as the base image in other Dockerfiles, specifying the name with the
registry domain, the repository name, and the tag in the FROM instruction:

FROM registry.local:5000/infrastructure/registry:v2.6.1
CMD ["powershell", "Write-Output", "Hello from Chapter 4."]

There is no way to override the default registry, so you can't set your local
registry to be the default when a domain isn't specified - the default is
always Docker Hub. If you want to use a different registry for images, the
registry domain always has to be specified in the image name. Any image
names you use without a registry address will be assumed to refer to
images from docker. io.

Storing Windows image layers in a local registry

You are not allowed to publicly redistribute the base layers for the Microsoft images, but
you are allowed to store them in a private registry. This is particularly useful for the
Windows Server Core image. The compressed size of that image is 5 GB, and Microsoft
release a new version of the image every month on Docker Hub with the latest security
patches.

[991]

Pushing and Pulling Images from Docker Registries Chapter 4

The updates usually only add one new layer to the image, but that layer could be a 1 GB
download. If you have many users working with Windows images, they will all need to
download those layers and that's a lot of bandwidth and a lot of time. If you run a local
registry server, you can pull those layers once from Docker Hub, and push them to your
local registry. Every other user then pulls from the local registry, downloading from the fast
local network rather than the internet.

You need to enable this feature for specific registries in the Docker configuration file, using
the allow-nondistributable-artifacts field:

{
"insecure-registries": [
"registry.local:5000"
] 14
"allow-nondistributable—-artifacts": [
"registry.local:5000"
1
}

This setting isn't exposed directly in the Docker for Windows UI, but you can set it in the
Advanced mode of the settings screen:

& settings X

General Daemon nn

Proxies Configure the Docker daemon by typing a json docker daemon

configuration file.

Daemon
Advanced

Diagnose & Feedback . . .
¢ This can prevent Docker from starting. Use at your own risk!

Reset t s w
insecure-registries”: [
“registry.local:5000"
it
"allow-nondistributable-artifacts™: [
“registry.local:5000"
]
@ Docker is running Docker will restart when applying these settings. Apply

[100]

Pushing and Pulling Images from Docker Registries Chapter 4

Now I can push the Windows foreign layers to my local registry. I can tag the latest Nano
Server image with my own registry domain and push the image there:

PS> docker image tag microsoft/nanoserver:10.0.14393.1358
registry.sixeyed:5000/microsoft/nanoserver:10.0.14393.1358

PS> docker image push
registry.sixeyed:5000/microsoft/nanoserver:10.0.14393.1358

The push refers to a repository
[registry.sixeyed:5000/microsoft/nanoserver]

e6537bd7a896: Pushing [>] 146.1MB/344.1MB
6c357baed9f5: Pushing [===========>] 160.3MB/700.8MB

On another Docker host, I can pull my local Nano Server image. But I don't need to use the
custom image name
registry.sixeyed:5000/microsoft/nanoserver:10.0.14393.1358 when I want to
use Nano Server - I can use the standard microsoft/nanoserver:10.0.14393.1358
name. Docker will see that image doesn't exist and start to pull it from Docker Hub - but it
will find the layers already available on the host's image cache, from the local registry, and
it will use them instead of downloading from Docker Hub.

Using a commercial registry

Running your own registry is not the only way to have a secure, private store for image
repositories, there are several third-party offerings you can use. In practice they all work in
the same way - you need to tag your images with the registry domain and authenticate
with the registry server. There are several options available, and the most comprehensive
ones come from Docker, Inc, which has different products available for different levels of
service.

Docker Hub

Docker Hub is the most widely used public container registry, averaging one billion image
pulls per month at the time of writing. You can host unlimited public repositories on the
Hub and pay a subscription to host multiple private repositories.

[101]

Pushing and Pulling Images from Docker Registries Chapter 4

Docker Hub has an automated build system, so you can link image repositories to source
code repositories in GitHub or BitBucket, and Docker's servers will build an image from the
Dockerfile in the repository whenever you push changes - it's a simple and effective hosted
Continuous Integration (CI) solution, especially if you are using portable multi-stage
Dockerfiles.

A Hub subscription is suitable for smaller projects or teams with multiple users working on
the same applications. It has an authorization framework where users can create an
organization - which becomes the account name in the repository rather than an individual
user's account name. Many users can be given access to the organization repositories,
which allows multiple users to push images to the repository, something you can't do with
individual user repositories.

Docker Cloud

Docker Cloud is a hosted platform which provides a registry and a platform for managing
Docker swarms running in the cloud. You can create Docker swarms on virtual machines in
AWS, Azure, DigitalOcean or other cloud providers and use Docker Cloud to deploy
Docker on the VMs, and Docker for Windows to manage the remote Docker nodes.

In addition to the CI builds of Docker Hub, with Cloud you can configure automated
application testing. You define tests in your source code repository, and when you push
changes Docker Cloud will build the image, run a container, and execute the test suite. This
means that you can use Docker Cloud for a full CI/CD pipeline, where new changes are
automatically deployed to the cloud servers managed by Docker Cloud.

The registry in Docker Cloud also provides security scanning, a feature where Docker
examines the contents of images, looking at the software installed and comparing it with
industry-standard databases of known vulnerabilities. Docker can flag security issues with
the operating system used in the base image or with software dependencies installed on top
of the base image. Security scanning and organization-level authorization make Docker
Cloud ideal for smaller teams and projects.

Docker Cloud is a good option to manage containerized workloads in the cloud. Docker
images are portable by definition, so you can limit your cloud requirements to basic
Infrastructure as a Service (IaaS) offerings - you just need VMs, storage, and virtual
networking to support Docker workloads. You can run multi-cloud applications or move
between providers easily using the consistent administration platform in Docker Cloud. I
will cover Docker swarm in chapter 7, Orchestrating Distributed Solutions with Docker
Swarm.

[102]

Pushing and Pulling Images from Docker Registries Chapter 4

Docker Store

Docker Store is a registry for commercial software distribution. It's like an app store for
server-side applications. If your company produces commercial software, Docker Store
could be a good choice for distributing it. You build and push images in exactly the same
way, but your source can be kept private - only the packaged application is publicly
available.

There is also a certification process you can go through, for images being hosted on Docker
Store. Docker certification applies across software images and hardware stacks. If your
image is certified, it's guaranteed to work on Docker Enterprise Edition (Docker EE) on
any certified hardware. Docker tests all the combinations in the certification process, and
that end-to-end guarantee is very attractive to large enterprises.

Docker Trusted Registry

Docker Trusted Registry (DTR) is part of the Docker EE Advanced suite, the enterprise-
grade Containers-as-a-Service (CaaS) platform from Docker, Inc. It's aimed at enterprises
running a cluster of Docker hosts in their own data centers or in a virtual private cloud.
Docker EE Advanced comes with a comprehensive management suite called Universal
Control Plane (UCP), which provides an interface to administer all the resources in your
Docker cluster - the host servers, images, containers, networks, volumes, and everything
else. Docker EE Advanced also provides DTR, which is a secure, scalable registry.

DTR runs over HTTPS and is a clustered service, so you can deploy multiple registry
servers across your cluster for scalability and failover. You can use local storage or cloud
storage for DTR, so images can be persisted on an Azure backend with practically
unlimited capacity. Like Docker Cloud, you can create organizations for shared
repositories, but with DTR you manage authentication by creating your own user accounts
or plugging into an Lightweight Directory Access Protocol (LDAP) service (such as Active
Directory). Then you can configure role-based access control for fine-grained permissions.

Security scanning is also available in DTR, so you can have the service running in your own
environment. You can configure scans to run whenever an image is pushed, or on a
schedule. Scheduled scans can alert you when a new vulnerability is found in one of the
dependencies for an old image. The DTR Ul lets you drill down into the details of the
vulnerability and see the exact file and the exact exploit.

[103]

Pushing and Pulling Images from Docker Registries Chapter 4

There is one other major security feature that is only available in Docker EE Advanced, and
that is content trust. Docker content trust lets users digitally sign images to capture an
approval workflow - so QA and security teams may run an image version through their test
suites and sign it to confirm that they approve a release candidate for production. Those
signatures are stored in DTR. UCP can be configured to only run images that have been
signed by certain teams, so you get close control over what software your cluster will run,
together with an audit trail proving who built and approved the software.

Docker EE Advanced has a rich suite of features that can be accessed through friendly web
Uls as well as through the standard Docker command line. Security, reliability, and
scalability are major factors in the feature set, which makes it a good choice for enterprise
users looking for a standard way to manage images, containers, and Docker hosts. I will
cover UCP in chapter 8, Administering and Monitoring Dockerized Solutions and DTR in
Chapter 9, Understanding the Security Risks and Benefits of Docker.

Other registries

Many third-party services have added an image registry to their existing offerings. On the
cloud, you have the EC2 Container Registry (ECR) from Amazon Web Services (AWS),
Azure Container Registry from Microsoft, and Container Registry on Google Cloud
Platform. All these offerings integrate with the standard Docker command line and with
the other products in each respective platform, so they can be good options if you are
heavily invested in one cloud service provider.

There are also standalone registry offerings, including Artifactory from JFrog, and Quay.io -
which are hosted services. Having a hosted registry

removes the management overhead of running your own registry server, and if you are
already using a platform that provides a registry, it makes sense to evaluate that option.

All the registry providers have different feature sets and service levels - you should
compare the offerings and most importantly, check the level of Windows support. Most of
the existing platforms were originally built to support Linux images and Linux clients, and
there may not be feature parity for Windows.

[104]

Pushing and Pulling Images from Docker Registries Chapter 4

Summary

In this chapter, you learned what an image registry does and how you work with it using
Docker. I covered repository names and image tagging to identify application versions or
platform variations, and how to run and use a local registry server - running in a container.

Using a private registry is something you're likely to do quite early in your Docker journey.
As you start to Dockerize existing applications and experiment with new software stacks, it
may be useful to push and pull images across the fast local network - or use Docker Cloud
if local storage space is an issue. As you use Docker more and progress to production
implementation, you may have a roadmap to upgrade to DTR for a supported registry with
rich security features.

Now that you have a good understanding on how to share images and use images shared
by other people, you can look at bringing tried and trusted software components into our
own applications with a container-first solution design.

[105]

Adopting Container-First
Solution Design

Adopting Docker as your application platform brings clear operational benefits. Containers
are a much lighter unit of compute than virtual machines, but they still provide isolation, so
you can run more workloads on less hardware. All these workloads have the same shape in
Docker, so operations teams can manage .NET, Java, Go, and Node.js applications in the
same way. The Docker platform also has benefits in application architecture. In this
chapter, I'll look at how container-first solution design helps you add features to your
application with high quality and low risk.

I'll be returning to NerdDinner in this chapter, picking up from where I left off in chapter
3, Developing Dockerized .NET and .NET Core Applications. NerdDinner is a traditional .NET
application, a monolithic design with tight coupling between components, where all
communication is synchronous. There is no unit testing, integration testing, or end-to-end
testing. NerdDinner is like millions of other .NET apps - it may have the features the users
need, but it's difficult and dangerous to modify. Moving apps like this to Docker lets you
take a different approach to modifying or adding features.

Two aspects of the Docker platform change the way you think about solution design. First,
networking and service discovery means you can distribute applications across multiple
components, each running in containers that can be moved, scaled, and upgraded
independently. Second, the expanding range of production-grade software available on
Docker Hub and Docker Store means you can use off-the-shelf software for many generic
services and manage them in the same way as your own components. This gives you the
freedom to design better solutions without infrastructure or technology restrictions.

Adopting Container-First Solution Design Chapter 5

In this chapter I'll show you how to modernize a traditional .NET application, by adopting
container-first design:

Splitting functionality into separate containers, to address performance issues
and add features

Adding enterprise-grade software to your solution by running containers from
official images

Building hybrid .NET Framework and .NET Core solutions in Docker

Moving from monoliths to distributed solutions

Design goals for NerdDinner

In chapter 3, Developing Dockerized .NET and .NET Core Applications, I extracted the
NerdDinner home page into a separate component, which enabled rapid delivery of Ul
changes. Now I'm going to make some more fundamental changes. The data layer in
NerdDinner uses Entity Framework (EF), and all database access is synchronous. A lot of
traffic to the site will create a lot of open connections to SQL Server and run a lot of queries.
Performance will deteriorate as load increases, to the point where queries time out or the
connection pool is starved, and the site will show errors to the users.

One way to improve this would be to make all the data access methods async, but that's an
invasive change - all the controller actions would need to be made async too, and there is
no automated test suite to verify such a wholesale set of changes. Alternatively, I could add
a cache for data retrieval so GET requests would hit the cache and not the database. That's
also a complex change, and I would need to cache data for long enough to make a cache hit
likely while keeping the cache in sync when data changes. Again, the lack of tests means
complex changes like this are hard to verify, so this is also a risky approach.

It would be hard to estimate the benefit if I did implement these complex changes. If all the
data access moves to asynchronous methods, will that make the website run faster and able
to handle more traffic? If I can integrate a cache that is efficient enough to take reads away
from the database, will that improve the overall performance? These benefits are difficult to
quantify until you've actually made the change, when you might find that the improvement
doesn't justify the investment.

[107]

Adopting Container-First Solution Design Chapter 5

With a container-first approach, you can look at the design differently. If you identify one
feature that makes expensive database calls but doesn't need to run synchronously, you can
move the database code to a separate component. Then you use asynchronous messaging
between the components, publishing an event from the main web app onto a message
queue and acting on the event message in the new component. With Docker, each of these
components will run in one or more containers:

i
= |

nerd-dinner-homepage ‘ ‘ nerd-dinner-web ‘ nerd-dinner-db

—g

______________________________ R

Docker Network

If T focus on just one feature then I can implement the change quickly. This design has none
of the drawbacks of the other approaches:

e It's a targeted change and only one controller action changes in the main
application

¢ The new message handler component is small and highly cohesive, so it will be
easy to test

¢ The web layer and the data layer are being decoupled, so they can be scaled
independently

¢ I'm moving work away from the web application, so we can be sure of a
performance improvement.

[108]

Adopting Container-First Solution Design Chapter 5

There are other advantages too. The new component is completely independent of the
original application, it just needs to listen for an event message and act on it. You can use
.NET, .NET Core or any other technology stack for the message handler; you don't need to
be constrained to a single stack. And you also have events being published from the app, so
you have the option to add other features later by adding new handlers listening for these
events.

Dockerizing NerdDinner's configuration

NerdDinner uses Web . config for configuration - both for application configuration values
that are constant between releases, and for environmental configuration values that change
between different environments. The configuration file is baked into the release package,
which makes it awkward to change. In chapter 3, Developing Dockerized .NET and .NET
Core Applications, I worked around this without changing code by using a start up script in
the Dockerfile to update values in Web . config from environment variables set by Docker.

In preparation for the bigger changes to come, I've updated the code for this chapter to use
environment variables directly. The Env class in the web project is a helper class that
fetches values for known configuration items, including the database connection strings
and secrets such as the Bing Maps API key. Some of these settings have default values in
the Dockerfile, but others need to be provided at runtime:

ENV BING_MAPS_KEY="" °
IP_INFO_DB_KEY="" °
HOMEPAGE_URL="http://nerd-dinner—homepage" °
MESSAGE_QUEUE_URL="nats://message—queue:4222" °
AUTH_DB_CONNECTION_STRING="Data Source=nerd-dinner-db..." °
APP_DB_CONNECTION_STRING="Data Source=nerd-dinner-db..."

Using default values for the database connection strings means that the app is usable when
you start the database and web containers without having to specify any environment
variables. The app isn't 100% functional, though, because the API keys are needed for Bing
Maps and the IP geolocation services. These are rate-limited services, so you are likely to
have different keys for each developer and each environment.

[109]

Adopting Container-First Solution Design Chapter 5

To keep environment values safe, Docker lets you load them from a file rather than
specifying them in plaintext in the docker container run command. Isolating values in
a file means that the file itself can be secured, so only administrators and the Docker service
account can access it. The environment file is a simple text format, with one line for each
environment variable, written as a key-value pair. For the web container, my environment
file contains the secret API keys:

BING_MAPS_KEY=*my key*
IP_INFO_DB_KEY=*my key*

To run the container and load the file contents as environment variables, you can use the —-
env-file option.

I've packaged those changes in a new version of the NerdDinner Docker image,
dockeronwindows/ch05-nerd-dinner-web. Like other examples from chapter 3,
Developing Dockerized .NET and .NET Core Applications, the Dockerfile uses a bootstrap script
as the entry point, which promotes environment variables to the machine level so the
ASP.NET application can read them.

The new version of the NerdDinner website runs in Docker with this command:

docker container run -d -P °

—-name nerd-dinner-web °

—-—-env-file api-keys.env °
dockeronwindows/ch0O5-nerd-dinner-web

The application needs these API keys set in the environment variables to run properly, but
that's a runtime requirement that is not clear from the Dockerfile alone. I have a PowerShell
script that starts containers in the right order, with the right options, but by the end of the
chapter, that script will be unwieldy. I'll address this in the next chapter when I look at
composition.

Splitting out the create dinner feature

In the DinnerController class, the Create action is a relatively expensive database
operation, which doesn't need to be synchronous. This feature is a good candidate for
splitting into a separate component. I can publish a message from the web app instead of
saving to the database while the user waits - if the site is experiencing high load, the
message may wait in the queue for seconds or even minutes before being processed, but the
response back to the user will be almost instant.

[110]

Adopting Container-First Solution Design Chapter 5

There are two pieces of work to split the feature into a new component. The web
application needs to publish a message to a queue when a dinner is created, and a message
handler needs to listen on the queue and save the dinner when it receives a message. In
NerdDinner, there's a bit more work to do because the existing code base is a physical
monolith as well as a logical monolith, and there's just one Visual Studio project that
contains everything: all the model definitions as well as the UI code.

In this chapter's source code, I've added a new .NET assembly project called
NerdDinner.Model to the solution and moved the EF classes to that project, so they can be
shared between the web app and the message handler. The model project targets the full
.NET Framework rather than .NET Core, so I can use the existing code as it is and I don't
need to bring an upgrade of EF into scope for this feature change. This choice restricts the
message handler to being a full .NET application too.

There's also a shared assembly project to isolate the message queue code in
NerdDinner.Messaging. I'll be using the nats message system, which is a high-
performance open source message queue. There is a nats client package on NuGet which
targets NET Standard, so it can be used in both .NET and .NET Core, and my messaging
project does the same. This means that I can be flexible, so other message handlers that
don't use the EF model could be written in .NET Core.

In the model project, the original definition of the Dinner class is polluted with a lot of EF
and MVC code to capture validation and storage behavior, like this definition for the
description property:

[Required (ErrorMessage = "Description is required")]
[StringLength (256, ErrorMessage = "Description may not be longer than 256
characters")]

[DataType (DataType.MultilineText)]
public string Description { get; set; }

The class should be a simple POCO definition, but these attributes mean the model
definition is not portable because any consumers also need to reference EF and MVC. To
avoid that in the messaging project, have a simple Dinner entity defined without any of
these attributes, and that class is the one I use to send dinner information in messages. I can
use the Aut oMapper NuGet package to convert between dinner class definitions, as the
properties are fundamentally the same.

This is the sort of challenge you will find in lots of older projects - there's
no clear separation of concerns, so breaking out features is not
straightforward. You can take this approach and restructure the code base
without fundamentally changing logic, which will help in modernizing
the app.

[111]

Adopting Container-First Solution Design Chapter 5

The main code in the Create method of the DinnersController class now maps the
dinner model to the clean dinner entity and publishes an event instead of writing to the
database:

if (ModelState.IsValid)
{
dinner.HostedBy = User.Identity.Name;
var eventMessage = new DinnerCreatedEvent

{
Dinner = Mapper.Map<entities.Dinner> (dinner),
CreatedAt = DateTime.UtcNow

i

MessageQueue.Publish (eventMessage) ;

return RedirectToAction ("Index");

}

This is the fire-and-forget messaging pattern. The web application is the producer,
publishing an event message. The producer doesn't wait for a response and doesn't know
which components--if any, will consume the message and act on it. It's loosely coupled and
fast, and it puts the responsibility to deliver the message onto the message queue, which is
where it should be.

Listening for this event message is a new .NET console project in
NerdDinner.MessageHandlers.CreateDinner. The Main method of the console app
uses the shared messaging project to open a connection to the message queue and subscribe
to these dinner-created event messages. When a message is received, the handler maps the
dinner entity in the message back to a dinner model and saves the model to the database
using code taken from the original implementation in the DinnersController class (and
tidied up a little):

var dinner = Mapper.Map<models.Dinner> (eventMessage.Dinner);
using (var db = new NerdDinnerContext ())
{
dinner.RSVPs = new List<RSVP>
{
new RSVP

{
AttendeeName = dinner.HostedBy
t
i
db.Dinners.Add (dinner) ;
db.SaveChanges () ;
t

Now the message handler can be packaged into its own Docker image and run in a
container alongside the website container.

[112]

Adopting Container-First Solution Design Chapter 5

Packaging .NET console apps in Docker

Console apps are easy to build as good citizens for Docker. The compiled executable for the
app will be the main process Docker starts and monitors, so you just need to make use of
the console for logging, and environment variables for configuration.

For my message handler I'm using a multi-stage build with a slightly different pattern. I
have a separate image for the builder stage, which I use to compile the whole solution - the
web project and the new projects I've added. I'll walk through the builder image later in the
chapter, when you've seen all the new components.

The builder compiles the solution, and the Dockerfile for the console application references
the dockeronwindows/ch05-nerd-dinner-builder image in a stage called builder. The
final stage packages the compiled executable from the builder stage and sets up default
configuration values:

escape="
FROM dockeronwindows/chO5-nerd-dinner-builder AS builder

app image
FROM microsoft/windowsservercore:10.0.14393.1198
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop';"]

CMD ["NerdDinner.MessageHandlers.SaveDinner.exe"]

ENV APP_DB_CONNECTION_STRING="Data Source=nerd-dinner-db..." °
MESSAGE_QUEUE_URL="nats://message-queue:4222"

WORKDIR C:\save-handler
COPY —-—-from=builder C:\src\NerdDinner.MessageHandlers.SaveDinner\bin\Debug\

The new message handler needs to access the message queue and the database, and the
connection strings for each are captured as environment variables. In the code for the
project, there is an Env class to read these values from environment variables.

In the Dockerfile, the entry point in the CMD instruction is the console executable, so the
container will keep running as long as the console app is running. The listener for the
message queue runs asynchronously on a separate thread. The handler code will fire when
a message is received, so there's no polling of the queue and the app runs very efficiently.

[113]

Adopting Container-First Solution Design Chapter 5

Keeping the console app running indefinitely is straightforward, using a
ManualResetEvent object. In the Main method, I wait for a reset event that never happens,
so the program keeps running;:

class Program

{
private static ManualResetEvent _ResetEvent = new
ManualResetEvent (false);

static void Main(string[] args)
{
// set up message listener
_ResetEvent.WaitOne () ;
}
}

This is a simple and efficient way of keeping a .NET (or .NET Core) console app alive.
When I start a message handler container, it will keep running in the background and listen
for messages until the container is stopped.

Running a message queue in Docker

The web application now publishes messages, and a handler listens for them, so the final
component I need is a message queue to connect the two. Queues need the same level of
availability as the rest of the solution, so they're good candidates for running in Docker
containers. In a distributed solution deployed on many servers, the queue can be clustered
across multiple containers for performance and redundancy.

Your choice of messaging technology depends on the features you need, but there are
plenty of options with .NET client librariesMicrosoft Message Queue (MSMQ) is the
native Windows queue, RabbitMQ is a popular open source queue that supports durable
messaging, and nats is an open source in-memory queue that is hugely performant.

The high throughput and low latency of nats messaging make it a good choice to
communicate between containers, and there is an official image for nats on Docker Hub.
nats is a Go application that runs cross-platform and there are Linux, Windows Server
Core, and Nano Server variants of the Docker image.

[114]

Adopting Container-First Solution Design Chapter 5

You run the nats message queue like any other container, publishing port 4222 which is the
port clients use to connect to the queue:

docker container run --detach °
—--publish 4222 °

—--name message—queue
nats:nanoserver

I'm using the Nano Server version of the nats image because the lighter
profile means it starts more quickly, runs more efficiently, and exposes a
smaller attack surface.

The nats server application logs messages to the console, so the log entries are collected by
Docker. When the container is running, you can verify that the queue is listening using
docker container logs:

> docker container logs message—queue

[1416] 2017/06/23 09:20:41.329327 [INF] Starting nats-server version 0.9.6
[1416] 2017/06/23 09:20:41.329327 [INF] Starting http monitor on
0.0.0.0:8222

[1416] 2017/06/23 09:20:41.331269 [INF] Listening for client connections on
0.0.0.0:4222

[1416] 2017/06/23 09:20:41.331269 [INF] Server is ready

[1416] 2017/06/23 09:20:41.334275 [INF] Listening for route connections on
0.0.0.0:6222

The message queue is an infrastructure-level component with no dependencies on other
components. It can be started before other containers and left running when application
containers are stopped or upgraded.

Starting a multi-container solution

As you make more use of Docker, your solution will become distributed across more
containers - either running custom code that you split out from a monolith, or tried and
trusted third-party software from Docker Hub or Docker Store.

NerdDinner now runs across four containers - SQL Server, the web app, the nats message
queue, and the message handler. There are dependencies between the containers, and they
need to be started in the correct order and created with the correct names so that
components can be found using Docker's service discovery.

[115]

Adopting Container-First Solution Design Chapter 5

In the next chapter, I'll use Docker Compose to declaratively map out these dependencies.
For now, I have a PowerShell script ch05-run-nerd-dinner_part-1.ps1 which
explicitly starts the containers with the correct configuration:

docker container run -d -p 4222
——name message-queue
nats:nanoserver;

docker container run -d -p 1433 °
——name nerd-dinner-db °
-v C:\databases\nd:C:\data °
dockeronwindows/ch03-nerd-dinner-db;

docker container run -d -p 80 °
——name nerd-dinner-homepage °
dockeronwindows/ch03-nerd-dinner-homepage;

docker container run -d °
——name nerd-dinner-save-handler °
dockeronwindows/ch0O5-nerd-dinner-save-handler;

docker container run -d -p 80 °
——name nerd-dinner-web °
—-—env-file api-keys.env °
dockeronwindows/ch0O5-nerd-dinner-web;

In this script I'm using the SQL database and home page images from
Chapter 3, Developing Dockerized NET and .NET Core Applications - these
components haven't changed, so they can be run alongside the new
components.

If you want to run this yourself with full functionality, you will need to
populate your own API keys in the file api-keys.env. You'll need to
sign up to the Bing Maps API and the IP information database. You can
run the app without those keys, but not all features will work correctly.

[116]

Adopting Container-First Solution Design Chapter 5

When I run the script with my own API keys set and inspect the web container to get the IP
address, I can browse to the application. It's a fully featured version of NerdDinner now. I
can log in and complete the create dinner form, complete with map integration:

¥ | 1} Hosta Nerd Dinner o - o X
4 W C @ © 17226192214/Dinners/Create 0 a v
D Hello, elton! Log off -
+
-]
B neraainner
©
+
Host a Dinner
N K Gm)»,.\f“?"' Title
¢ s & ‘Docker on Windows' Launch Party
(5% k 3 f; Event Date
% ey ‘
%, = T8 8/1/2017 7:30:00 PM
i = i
\ =) Description
! pentonvil
K wé%”“ Gy, Launch dinner for 'Docker on Windows
3
% ')"é Witk =
% %oﬁa V)& > it Host's Name
o Fraet
@ stpancras Elton
pirtenER Contact Info
[Bs0e] @EltonStoneman
e NN T Address, City, State, ZIP
ng ———) m—
5 ©2017 HERE ‘?30‘17 ‘A\L'Q‘Eg_ﬁsl:‘q.r:paoml-:'\ NW‘I 2AR
(drag the pin in the map if it doesn't look right) *
Country
o Back to List

When I submit the form, the web app publishes an event message to the queue. That is a
very cheap operation, so the web app returns to the user almost immediately. Listening for
messages is the console application, running in a different container - potentially on a
different host. It picks up the message and processes it. The handler logs the activity to the
console, so admin users can monitor it using docker container logs:

> docker container logs nerd-dinner-save-handler

Connecting to message queue url: nats://message-queue:4222

Listening on subject: events.dinner.created, queue: save-dinner-handler
Received message, subject: events.dinner.created

Saving new dinner, created at: 6/24/2017 8:44:21 PM; event ID: b7ecb300-

af6f-4f2e-abl18-19bea90d4684
Dinner saved. Dinner ID: 1; event ID: b7ecb300-af6f-4f2e-abl8-19bea90d4684

[117]

Adopting Container-First Solution Design Chapter 5

The functionality of the create dinner feature is the same - data entered by the user is saved
to SQL Server, and the user experience is the same, but the scalability of this feature is
massively improved. Designing for containers lets me extract the persistence code into a
new component, knowing the component can be deployed on the same infrastructure as
the existing solution and that it will inherit the existing levels of scalability and failover, if
the application is deployed on a cluster.

I can rely on the Docker platform and take a dependency on a new core component, the
message queue. The queue technology itself is enterprise-grade software, capable of
processing hundreds of thousands of messages per second. nats is free open source
software that is available on Docker Hub to drop straight into your solution, running as a
container and connected to other containers in the Docker network.

So far, I've used the container-first design and the power of Docker to modernize one part
of NerdDinner. Targeting a single feature means I can release this new version confidently,
after testing only the feature that's changed. If I wanted to add auditing to the create dinner
feature, I would just make an update to the message handler and I wouldn't need to do a
full regression test of the web application, because that component is not going to be
updated.

Designing with containers in mind also gives me a foundation to add more features.

Adding new features in containers

Decoupling components from a monolith has a beneficial side effect. The approach I've
taken has introduced a style of event-driven architecture for one feature. I can build on that
to add new features, again taking a container-first approach.

In NerdDinner there is a single data store, a transactional database stored in SQL Server.
That's fine to service the website, but it's limited when it comes to user-facing features, such
as reporting. There's no user-friendly way to search the data, build dashboards, or enable
self-service reporting.

An ideal solution for this would be to add a secondary data store, a reporting database,
using a technology which does provide self-service analytics. Without Docker that would
be a major project, needing a redesign or additional infrastructure or both. With Docker, I
can leave the existing application alone and add new features running in containers on the
existing servers.

[118]

Adopting Container-First Solution Design Chapter 5

Elasticsearch is another enterprise-grade open source project which is available as a
Windows image on Docker Hub. Elasticsearch is a full search document data store which
works well as a reporting database, along with the companion product Kibana which
provides a user friendly web front end.

I can add self-service analytics for the dinners created in NerdDinner by running
Elasticsearch and Kibana in containers in the same network as the other containers. The
current solution already publishes events with dinner details, so to add dinners to the
reporting database I need to build a new message handler which subscribes to the existing
events and saves the details in Elasticsearch.

When the new reporting feature is ready, it can be deployed to production without any
changes to the running application. Zero-downtime deployment is another benefit of
container-first design. Features are built to run in decoupled units, so individual containers
can be started or upgraded without affecting other containers.

For the next feature, I'll add a new message handler which is independent of the rest of the
solution. If I needed to replace the implementation of the save-dinner handler, I could also
do that with zero-downtime, using the message queue to buffer events while replacing the
handler.

Using Elasticsearch with Docker and .NET

Elasticsearch is such a widely useful technology that it's worth looking at in a little detail.
It's a Java application, but running in Docker you can treat it as a black box and manage it
in the same way as all other Docker workloads - you don't need to install Java or configure
the JDK. Elasticsearch exposes a REST API for writing, reading, and searching data, and
there are client wrappers for the API available in all major languages.

Data in Elasticsearch is stored as JSON documents, and every document can be fully
indexed so you can search for any value in any field. It's a clustered technology that can run
across many nodes for scale and resilience. In Docker, you can run each node in a separate
container and distribute them across your server estate to gain scale and resilience, but add
the ease of deployment and management you get with Docker.

The same storage considerations apply to Elasticsearch as with any stateful workload - in
development, you can save data inside the container, so when the container is replaced,
you start with a fresh database. In test environments, you can use a Docker volume
mounted to a drive on the host to keep persistent storage outside of the container. In
production, you can use a volume with a driver for an on-premises storage array or a cloud
storage service.

[119]

Adopting Container-First Solution Design Chapter 5

There's an official Elasticsearch image on Docker Hub, but currently it only has Linux
variants. [have my own image on Docker Cloud which packages Elasticsearch into a
Windows Docker image. Running Elasticsearch in Docker is the same as starting any
container. This command exposes port 9200, which is the default port for the REST API:

docker container run -d -p 9200 °
—--name elasticsearch °
——env ES_JAVA_OPTS='-Xms512m -Xmx512m'
sixeyed/elasticsearch:nanoserver

Elasticsearch is a memory-hungry application, and by default it allocates 2 GB of system
memory when it starts. In a development environment I don't need that much memory for
the database. I can configure that by setting the ES_JAVA_OPTS environment variable. In
this command I limit Elasticsearch to 512 MB of memory.

Elasticsearch is a cross-platform application like nats. As with nats, I'm
using the Nano Server image to get the most lightweight runtime.

There is a NuGet package for Elasticsearch called NEST, which is an API client for reading
and writing data, and is targeted for the .NET Framework and .NET Core. I use that
package in a new .NET Core console project,
NerdDinner.MessageHandlers.IndexDinner. The new console app listens for the
create dinner event message from nats and writes the dinner details as a document in
Elasticsearch.

The code to connect to the message queue and subscribe to messages is the same as the
existing message handler. I have a new Dinner class, which represents the Elasticsearch
document, so the message handler code maps from the dinner entity to the dinner
document and saves it in Elasticsearch:

var eventMessage =

MessageHelper.FromData<DinnerCreatedEvent> (e.Message.Data) ;

var dinner = Mapper.Map<documents.Dinner> (eventMessage.Dinner);
var node = new Uri(Env.ElasticsearchUrl);

var client = new ElasticClient (node);

client.Index (dinner, idx => idx.Index ("dinners"));

[120]

Adopting Container-First Solution Design Chapter 5

Elasticsearch and the document message handler will run in a container, all in the same
Docker network as the rest of the NerdDinner solution. I can start the new containers while
the existing solution is running, as there are no changes to the web application or the SQL
Server message handler. Adding this new feature with Docker is a zero-downtime
deployment.

The Elasticsearch message handler has no dependency on EF or any of the legacy code. I've
taken advantage of that to write the app in .NET Core, which gives me the freedom to run it
in a Docker container on Linux or Windows hosts. That means the Visual Studio solution
has both .NET Framework and .NET Core application projects, and the apps both refer to a
.NET Standard assembly project. That setup needs a slightly more complicated build agent.

Building hybrid .NET Framework and .NET Core
solutions in Docker

The multi-stage builds you've seen up until now have all used my sixeyed/msbuild
images on Docker Cloud. Those images provide MSBuild and NuGet, and any extra
packages needed to build specific project types - like web projects and SQL Server projects.
You can find the Dockerfiles for those images on GitHub at sixeyed/dockerfiles—
windows, and you'll see they're all very simple.

I've been using the sixeyed/msbuild image as the build agent to compile individual .NET
Framework projects. You can build Visual Studio solutions with the MSBuild tool, and if
there are multiple .NET projects with project references, MSBuild will compile them in the
correct order. If your Visual Studio solution contains both .NET and .NET Core projects,
you can't build it with MSBuild alone - you need the .NET Core SDK too.

That's the case with NerdDinner in this chapter, so I have a new Docker image which
packages MSBuild and the .NET Core SDK and I can use that to compile the solution. The
Dockerfile for dockeronwindows/ch05-msbuild-dotnet is itself a multi-stage build, and
the output is an image that can be used to compile a hybrid .NET Framework and .NET
Core solution.

The Dockerfile starts by installing Chocolatey and then using the choco command to install
the Visual Studio 2017 build tools and the NuGet command line. The build tools package
contains the latest release of MSBuild:

FROM microsoft/windowsservercore:10.0.14393.1198 AS buildtools
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

RUN Invoke-WebRequest -UseBasicParsing https://chocolatey.org/install.psl |

[121]

Adopting Container-First Solution Design Chapter 5

Invoke-Expression;

choco install -y visualstudio2017buildtools —--version
15.2.26430.20170605;

choco install -y nuget.commandline —--version 4.1.0

Running this in a separate stage means I can use Chocolatey for easy package install. In the
final image I'll copy the package output from this stage - but I won't copy Chocolatey itself.
That makes for a smaller and cleaner image for my build agent. The next stage uses
Microsoft's NET Core image with the SDK installed. I don't add anything to this stage, I
just reference the image so I can copy the SDK from it in the final image:

FROM microsoft/dotnet:1.1.2-sdk-nanoserver AS dotnet

The last stage puts together the build agent. It starts from Windows Server Core, sets file
paths as environment variables and copies the .NET Core SDK, MSBuild and NuGet from
the earlier stages:

FROM microsoft/windowsservercore:10.0.14393.1198
SHELL ["powershell", "-Command", "S$ErrorActionPreference = 'Stop'"]

ENV MSBUILD_PATH="C:\Program Files (x86)\Microsoft Visual

Studio\2017\BuildTools\MSBuild\15.0\Bin"
NUGET_PATH="C:\ProgramData\chocolatey\1lib\NuGet .CommandLine\tools"
DOTNET_PATH="C:\Program Files\dotnet"

COPY --from=dotnet ${DOTNET_PATH} ${DOTNET_PATH}
COPY --from=buildtools ${MSBUILD_PATH} ${MSBUILD_PATH}
COPY -—-from=buildtools ${NUGET_PATH} ${NUGET_PATH}

Next I add packages for the .NET 4.5.2 targeting pack, web deploy, and the build targets for
web projects:

RUN Install-PackageProvider —-Name chocolatey —-RequiredVersion 2.8.5.130 -
Force;

Install-Package —-Name netfx-4.5.2-devpack -RequiredVersion 4.5.5165101
-Force;

Install-Package —-Name webdeploy —-RequiredVersion 3.6.0 -Force;

& nuget install MSBuild.Microsoft.VisualStudio.Web.targets -Version
14.0.0.3

I build this Dockerfile in the usual way, and the output is an image which has the complete
toolchain to compile a Hybrid .NET Framework and .NET Core solution.

[122]

Adopting Container-First Solution Design Chapter 5

Compiling the hybrid NerdDinner solution

I'm taking a different approach to building NerdDinner in this chapter, one which fits
nicely with a CI process if you're mixing .NET Core and .NET Framework projects (I cover
CI and CD with Docker in chapter 10, Powering a Continuous Deployment Pipeline with
Docker). I'll compile the whole solution in one image, and use that image as the build stage
in my application Dockerfiles.

This is how the build agent and builder images are used to package the application images

for this ct lapteI:
4i o Iy, T—
/v Cllo- lleld dll].llel Web
7’
Fd
e

A
N
ch05-msbuild-dotnet | ‘ ch05-nerd-dmner-builder ‘ \\ m
“ 4‘ ch05-nerd-dinner-index-handler

All the tools I need to build the solution are in the build agent, so the Dockerfile for
dockeronwindows/chO5-nerd-dinner-builder is straightforward. It starts from the

build agent and copies in the source tree for the solution:

escape="
FROM dockeronwindows/ch05-msbuild-dotnet

WORKDIR C:\src
COPY src .

Next it restores all the packages used in the projects, using dotnet restore for the NET
Core projects and NuGet restore for the .NET Framework projects:

RUN dotnet restore;
nuget restore -msbuildpath $env:MSBUILD_PATH

[123]

Adopting Container-First Solution Design Chapter 5

The two steps are necessary, because the tooling is different. Package references for .NET
Core projects are listed inside the . csproj files, whereas for NET Framework projects
they're in packages.config. Both commands run from the NerdDinner.sln file, so I
don't need to list individual projects, and as the solution grows I won't need to update the
builder.

There are only two more instructions in the builder, and they compile all the projects and
publish the applications:

RUN dotnet build .\NerdDinner.Messaging\NerdDinner.Messaging.csproj;
dotnet msbuild NerdDinner.sln

RUN dotnet publish .\NerdDinner.MessageHandlers.IndexDinner;
msbuild .\NerdDinner\NerdDinner.csproj
/p:DeployOnBuild=true /p:OutputPath=c:\out\NerdDinner °
/p:VSToolsPath=C:\MSBuild.Microsoft.VisualStudio.Web.targets.14.0.0.3\tools
\VSToolsPath

Again there are separate steps for the .NET Core and .NET Framework apps, because the
tooling is not yet integrated. I expect later releases of MSBuild and .NET Core will have
integrated tooling, so the complexity of managing multiple toolchains will go away. Until
then, you can use Docker to isolate the complexity - building all the tools into one image,
which lets you have a clean builder image with no clutter for the tooling.

The disadvantage of this approach is that there's no use of the Docker cache. The whole
source tree is copied into the image as the first step. Whenever there is a code change the
build will update the packages, even if the package references haven't changed. You could
write this builder differently, to copy in the . s1n, .csproj, and package.config files
first for the restore phase, and then copy in the rest of the source for the build phase.

That would give you package caching and a faster build, at the cost of a more brittle
Dockerfile - you'd need to edit the initial file list every time you add or remove a project.

You can choose the approach that works best with your processes. In the case of a more
complex solution like this, developers may build and run the app from Visual Studio, and
only build the Docker images to run tests before checking in code. In that case, the slower
Docker image build is not an issue (I discuss the options for running your application in
Docker while you're developing it in Chapter 11, Debugging and Instrumenting Application
Containers).

[124]

Adopting Container-First Solution Design Chapter 5

One thing is different in how this image is built. The Dockerfile copies in the src folder,
which is one level higher than the folder where the Dockerfile lives. To make sure the src
folder is included in the Docker context, I need to run the build image command from the
ch05 folder, and specify the path to the Dockerfile with the —-file option:

docker image build °
--tag dockeronwindows/ch05-nerd-dinner-builder °
——file chO5-nerd-dinner-builder\Dockerfile .

Building the image compiles and packages all the projects, so I can use that image as the
source stage in the application Dockerfiles. I only need to build the builder once, and then I
can use it to build all the other images.

Packaging .NET Core console apps in Docker

In chapter 3, Developing Dockerized .NET and .NET Core Applications, I built the replacement
NerdDinner home page as an ASP.NET Core web application, and in this chapter, I have
the Elasticsearch message handler as a .NET Core console application. In this case the
application can be packaged as a Docker image using the microsoft/dotnet image from
Microsoft on Docker Hub.

The Dockerfile for dockeronwindows/ch05-index-handler uses multi-stage builds,
with the builder image as the source:

escape="
FROM dockeronwindows/chO05-nerd-dinner-builder AS builder

app image
FROM microsoft/dotnet:1.1.2-runtime-nanoserver
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

ENV ELASTICSEARCH_URL="http://elasticsearch:9200" °
MESSAGE_QUEUE_URL="nats://message-queue:4222"

CMD ["dotnet", "NerdDinner.MessageHandlers.IndexDinner.dl1l"]

WORKDIR /index-handler

COPY -—-from=builder
C:\src\NerdDinner.MessageHandlers.IndexDinner\bin\Debug\netcoreappl.l\publi
sh\

[125]

Adopting Container-First Solution Design Chapter 5

The content is very similar to the NET Frameworks console app used for the SQL Server
message handler. The differences are the FROM image, here I'm using the .NET Core
runtime image, and the CMD instruction, here it's the dotnet command running the console
application DLL. Both the message handlers use the builder image as the source for
copying the compiled application, and then set up the environment variables and startup
commands they need.

The index handler application uses environment variables for configuration, specifying the
URLs for the message queue and the Elasticsearch API. These values have defaults set in
the Dockerfile in the same way as the other NerdDinner components, because I'll control
the deployment stack and can safely rely on these values. The start up command runs the
.NET Core application, which writes log entries to the console and stays alive with a
ManualResetEvent object, so it integrates well with Docker.

When the application runs, it will listen for messages from nats, with the create dinner
message subject. When events are published from the web application, nats will send
copies to every subscriber, so the SQL Server save handler and the Elasticsearch index
handler will both get copies of the event. The event message contains enough detail for
both handlers to operate. If a future feature requires more detail, then the web app can
publish a new version of the event with additional information, but the existing message
handlers would not need to change.

Running another container with Kibana will complete this feature and add self-service
analytics to NerdDinner.

Providing analytics with Kibana

Kibana is an open source web frontend for Elasticsearch, which gives you visualizations for
analytics and the ability to search for specific data. It's produced by the company behind
Elasticsearch and is very widely used because it provides a user friendly way to navigate
around huge quantities of data. You can explore the data interactively, and power users can
build comprehensive dashboards to share with others.

The latest version of Kibana is a Node.js application, so like Elasticsearch and nats, it's a
cross-platform application, which you can find packaged on Docker Hub with Linux and
Windows variants. The Kibana image is built using the same convention-based approach
that I've used in the message handlers, it expects to connect to a container called
elasticsearch on the default API port 9200.

[126]

Adopting Container-First Solution Design Chapter 5

In the source code directory for this chapter, there is a second PowerShell script which
deploys the containers for this feature. ch05-run-nerd-dinner_part-2.ps1 starts the
additional Elasticsearch, Kibana, and index handler containers, it assumes the other
components are already running from the part-1 script:

docker container run -d -p 9200
—-name elasticsearch °
sixeyed/elasticsearch:nanoserver

docker container run -d -p 5601
—-name kibana °
sixeyed/kibana:nanoserver;

docker container run -d °
—-name nerd-dinner-index-handler °
dockeronwindows/ch0O5-nerd-dinner-index-handler;

The full stack is running now. When I add a new dinner, I will see the logs from the
message handler containers showing the data is now being saved to Elasticsearch as well as
to SQL Server:

> docker container logs nerd-dinner-save-handler

Connecting to message queue url: nats://message—queue:4222

Listening on subject: events.dinner.created, queue: save-dinner-handler
Received message, subject: events.dinner.created

Saving new dinner, created at: 6/24/2017 10:58:31 PM; event ID: a7530414-
d2ad-407a-9b03-ade7a22f1f7e

Dinner saved. Dinner ID: 2; event ID: a7530414-d2ad-407a-9b03-ade7a22flf7e

> docker container logs nerd-dinner-index-handler

Connecting to message queue url: nats://message—queue:4222

Listening on subject: events.dinner.created, queue: index-dinner-handler
Received message, subject: events.dinner.created

Indexing new dinner, created at: 6/25/2017 12:13:13 AM; event ID: a7530414-
d2ad-407a-9b03-ade7a22f1f7e

[127]

Adopting Container-First Solution Design Chapter 5

Kibana runs on port 5601, so I can fetch the container IP address and navigate to that port
in the browser. The only configuration the launch screen needs is the name of the document
collection - which Elasticsearch calls an index. In this case, the index is called dinners. I've
already added a document Kibana, so can access the Elasticsearch metadata to determine
the fields in the documents:

El
I
O
X

¥ 1} Upcoming Nerd Dinners | [Kibana
&] C' Y ® 17226204176:5601/appskibane ¥ 0| Q Search Google -
] . Management / Kibana

. kibana : :
x Index Patterns Saved Objects Advanced Settings

@

Lz No default

index pattern. You must

Visualize celect or create one to CO nfigu re an index patte rn

continue.
Dashboard

© o

+

In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the

Timelion Elasticsearch index to run search and analytics against. They are also used to configure fields.

Dev Tools

[Index contains time-based events

Management

Index name or pattern

Patterns allow you to define dynamic index names using * as a wildcard. Example: logstash-*

dinners

-3 Collapse

[128]

Adopting Container-First Solution Design Chapter 5

Every dinner created will now be saved in the original transactional database, SQL Server,
and also in the new reporting database, Elasticsearch. Users can create visualizations over
aggregated data, looking for patterns in popular times or locations, and they can search for
particular dinner details and retrieve specific documents:

% 1} Upcoming Nerd Dinners A tibena rr— O X
4 M C @ ©® 17226204.176:5601/app/kibana ¥ M | Q search Google v
A . 1 hit New Save Open Share .
n kibana) n
* winops

B @ Discover dinners _source

@ Visualize Selected Fields T title: WAROPS|: Docker on Windows Workshop eventDate: September 20th 2017, 10:30:00.000 country: U

K location: { "lat": 51.5185737609863, "lon": -0.0862570032477379 } _id: AVzcnwyuduS7I7mDuGet

+

Dashboard 2 _source)) o :
_type: dinner _index: dinners _score: -

Timelion
. Link to /dinners/dinner/AVzcrmudySTI7mDuGet
¢t _id Table JsoN
Dev Tools
t _index
r _id m AVZenwyu4uS7 I7mDuGet
Management # _score aa
t _index m dinners
t _type
" -
t country —score o
@ eventDate t _type o dinner
@ lacation £ contry @ @@ % UK
t tide © eventDate @ @ (0 % September 20th 2017, 10:30:00.000
@ location m* {
"lat™: 51.5185737609863,
"lon™: -0.0862570032477379
}
t title @ Q@ [% [WinOps: Docker on Windaws Workshop

Elasticsearch and Kibana are hugely capable software systems. I won't
cover them in any further detail in this book, but they are popular
components with a lot of online resources if you want to learn more.

From monolith to distributed solution

NerdDinner has evolved from a legacy monolith to an easily scalable, easily extensible
solution running on a modern application platform using modern design patterns. It's been
a fast and low risk evolution, powered by the Docker platform and container-first design.

[129]

Adopting Container-First Solution Design Chapter 5

The project started by migrating NerdDinner to Docker as-is, running containers for the
web application and the SQL Server database. Now I have eight components, each running
in a lightweight Docker container and each capable of being independently deployed, so
they can follow their own release cadence:

I Public entrypoint

[nerd-dinner-homepage ‘ ‘ nerd-dinner-web ‘ ’ nerd-dinner-db ‘
W‘———W——’I] I
|
{ index-handler ‘ message-queue save-handlel ‘

W‘—'w

Docker Network

One of the great benefits of Docker is the huge library of packaged software available to
add to your solution. The official images on Docker Hub are enterprise-grade open source
software systems that have been tried and trusted by the community for years. Certified
images on Docker Store provide commercial software which is guaranteed to work

correctly on Docker EE.

More and more software packages are becoming available for Windows in easily-consumed
Docker images, giving you the scope to add features to your application without significant
development.

[130]

Adopting Container-First Solution Design Chapter 5

The new custom components in the NerdDinner stack are the message handlers, both
simple console applications of around 100 lines of code. The save dinner handler uses the
original code from the web application and uses the EF model - which I refactored into its
own project to enable that reuse. The index dinner handler uses all new code written in
.NET Core, which makes it efficient and portable at runtime, but at build time, all the
projects are in a single Visual Studio solution.

The container-first approach is about breaking features into discrete components and
designing these components to run in containers, either as small custom applications you
write yourself, or as off-the-shelf images from Docker Hub. The feature-driven approach
means you focus on an area that is valuable to the project's stakeholders:

¢ To the business because it gives them new functionality or more frequent releases

¢ To operations because it makes the application more resilient and easier to
maintain

¢ To the development team because it addresses technical debt and allows greater
architectural freedom

Managing build and deployment dependencies

In the current evolution, NerdDinner has a well-structured and logical architecture, but
practically it has a lot of dependencies. The container-first design approach gives me
technology stack freedom, but that can lead to a lot of new technologies. If you were to join
the project at this stage and wanted to run the application locally, outside of Docker, you'd
need the following:

e Visual Studio 2017

.NET Core 1.1.2 runtime and SDK 1.0.4
IIS and ASP.NET 4.5

SQL Server

nats, Elasticsearch, and Kibana

If you join the project and you have Docker for Windows installed, you don't need any of
those dependencies. When you've cloned the source code, you can build and run the whole
application stack with Docker. You can even develop and debug the solution with Docker
and a lightweight editor like VS Code, removing even the dependency for Visual Studio.

[131]

Adopting Container-First Solution Design Chapter 5

This also makes continuous integration very easy - your build servers only need Docker
installed to build and package the solution. You can use disposable build servers, spinning
up a VM when you have builds queued and then destroying the VM when the queue is
empty. You don't need complex initialization scripts for the VM, just a scripted Docker
install.

There are still runtime dependencies for the solution, which I'm currently managing with a
script that starts all the containers with the right options and in the right order. This is a
brittle and limited approach - the script has no logic to handle any failures or to allow for a
partial start where some containers are already running. I'll address this in the next chapter
using Docker Compose to define and run the whole solution.

Summary

In this chapter, I looked at the container-first solution design, making use of the Docker

platform at design time to easily and safely add features to your application. I covered a
feature-driven approach to modernizing an existing software project, which maximizes

return on investment and gives clear visibility on progress.

The container-first approach to features lets you use production-grade software from
Docker Hub or Docker Store to add capabilities to your solution, with official and certified
images that are high-quality curated applications. You can add these off-the-shelf
components, and focus on building small custom components to complete features. Your
application will evolve to be loosely coupled, so individual elements can each have the
most appropriate release cycle.

The speed of development in this chapter has outpaced operations, so we currently have a
well-architected solution that is fragile to deploy. In the next chapter, I'll introduce Docker
Compose, which provides a clear and uniform way to describe and manage multi-container
solutions.

[132]

Organizing Distributed
Solutions with Docker Compose

Shipping software is an integral part of the Docker platform. The public registries on
Docker Hub, Docker Cloud, and Docker Store make it easy to design a distributed solution
using tried-and-tested components. In the previous chapter, I showed how to integrate
these components into your own solution, taking a container-first design approach. The
end result is a distributed solution with several moving parts. In this chapter, you'll learn
how to organize all those moving parts into one unit using Docker Compose.

Docker Compose is another open source product from Docker, Inc., which extends the
Docker ecosystem. The Docker Command Line Interface (CLI) and Docker API work on
individual resources, such as images and containers. Docker Compose works on a higher
level of services applications. An application is a single unit composed of multiple
resources, which are Docker containers, networks, and volumes at runtime. You use
compose to define all the resources of the application and the dependencies between them.

There are two parts to Docker Compose. The design-time element captures the application
definition in a YAML file, and at runtime, Docker Compose can manage an application
from the YAML file. I'll cover both these parts in this chapter, showing you how to:

¢ Define distributed solutions with the Docker Compose file format
e Start, stop, upgrade, and scale applications using Docker Compose
e Manage containers and images with Docker Compose

e Structure Docker Compose files to support multiple environments

Organizing Distributed Solutions with Docker Compose Chapter 6

Docker Compose is installed as part of Docker for Windows CE. If you
install Docker using the PowerShell installer, that doesn't give you
compose. You can download it from the releases on GitHub at
docker/compose.

Defining applications with Docker Compose

The Docker Compose file format is very simple. YAML is a human-readable superset of
JSON, and the Compose file specification uses descriptive attribute names. In the Compose
file, you define the services, networks, and volumes that make up your application.
Networks and volumes are the same concepts that you use with the Docker engine.
Services are an abstraction over containers.

A container is a single instance of a component, but a service can be multiple instances of
the same component running in different containers. You could have three containers in the
service used for your web application and two containers in the service you use for a
message handler:

—

message-queue
message-handler

A service is like a template to run a container from an image, with a known configuration.
Using services, you can scale up components of the application—running multiple
containers from the same image and configuration and managing them as a single unit.
Services are not used in the standalone Docker engine, but they are used in Docker
Compose and also with a cluster of Docker engines running in the swarm mode (which I
cover in the next chapter).

[134]

Organizing Distributed Solutions with Docker Compose Chapter 6

Docker provides discoverability for services in the same way that it does for containers.
Consumers access the service by name, and Docker can load-balance requests across
multiple containers in a service. The number of instances in the service is transparent to
consumers; they always refer to the service name, and they are always directed to a single
container by Docker.

In this chapter, I'll use Docker Compose to organize the distributed solution I built in the
previous chapter, replacing the brittle docker container run PowerShell scripts with a
reliable and production-ready Docker Compose file.

Capturing service definitions

Services can be defined in any order in the Compose file. To make it easier to read, I prefer
to start with the simplest services, which have no dependencies—infrastructure
components such as message queue and databases.

Docker Compose files are conventionally called docker-compose.yml, and they start with
an explicit statement of the API version; the latest is version 3.3. Application resources are
defined at the top level—this is a template Compose file with sections for services,
networks, and volumes:

version: '3.3"

services:
networks:
volumes:

All resources need a unique name, and the name is how resources refer to other resources.
Services may have a dependency on networks, volumes, and other services, which are all
captured by name. The configuration for each resource is in its own section, and the
attributes available are broadly the same as the respective create command in the Docker
CLI such as docker network create and docker volume create.

In this chapter, I'll build a Compose file for the distributed NerdDinner application and
show you how to use Docker Compose to manage the application. I'll start my Compose
file with the common services first.

[135]

Organizing Distributed Solutions with Docker Compose Chapter 6

Defining infrastructure services

The simplest service I have is the message queue, nats, which has no dependencies. Each
service needs a name and the image name to start containers from. Optionally, you can
include start up parameters that you would use in docker container run.For the nats
message queue, I add a network name, which means any containers created in this service
will all be attached to the nd-net network:

message-queue:
image: nats:nanoserver
networks:
- nd-net

In this service definition, I have all the parameters required to start message queue
containers:

¢ message-queue: This is the name of the service; this becomes the DNS entry for
other services to access nats.

¢ image: This is the full name of the image to start containers from. In this case, it's
the official nats:nanoserver image from the public Docker Hub, but you can
also use an image from a private registry by including the registry domain in the
image name.

e networks: This is a list of the networks to connect containers to when they start.
This service connects to one network named nd-net. This will be a Docker
network used for all the services in this application. Later in the Docker Compose
file, I'll explicitly capture the details of the network.

I haven't published any ports for the nats service. The message queue is
used only internally by other containers. Within a Docker network,
containers can access ports on other containers without them being
published to the host. This keeps the message queue secure, as it is only
accessible through the Docker platform by other containers in the same
network. No external server and no applications running on the server
can access the message queue.

[136]

Organizing Distributed Solutions with Docker Compose Chapter 6

The next infrastructure service is Elasticsearch, which also has no dependencies on other
services. It will be used by the message handler that also uses the nats message queue, so I
will need to join all these services to the same Docker network. For Elasticsearch, I also
want to limit the amount of memory it uses and use a volume for the data so it will be
stored outside of the container:

elasticsearch:
image: sixeyed/elasticsearch:nanoserver
environment:
- ES_JAVA_OPTS=-Xms512m -Xmx512m
volumes:
- es-data:C:\data
networks:
- nd-net

Here, elasticsearch is the name of the service and sixeyed/elasticsearch is the
name of the image, which is my public image on Docker Cloud. I'm connecting the service
to the same nd-net network, and I also mount a volume to a known location in the
container. When Elasticsearch writes data to C: \data on the container, it will actually be
stored in a volume.

Just like with networks, volumes are first-class resources in the Docker Compose file. For
Elasticsearch, I'm mapping a volume called es-data to the data location in the container. I'll
specify how the es-data volume should be created later in the Compose file.

Kibana is the first service that is available outside of the Docker network, so I need to
publish ports, and it's the first that depends on another service. I can capture both these
attributes in the service definition:

kibana:
image: sixeyed/kibana:nanoserver
ports:
- "5601:5601"
depends_on:
- elasticsearch
networks:
— nd-net

Port publishing is the same in Docker Compose as it is when running a container. You
specify which container port to publish and which host port it should publish to, so Docker
routes incoming host traffic to the container. The ports section allows multiple mappings,
and you can optionally specify TCP or UDP protocols if you have a specific requirement.

[137]

Organizing Distributed Solutions with Docker Compose Chapter 6

The depends_on attribute shows how to capture dependencies between services. In this
case, as Kibana is dependent on Elasticsearch, Docker will ensure the elasticsearch
service is up and running before starting the kibana service.

Containers for the Kibana service also connect to the application network. In an alternative
configuration, I could have separate backend and frontend networks. All the infrastructure
services would connect to the backend network, and the public-facing services would
connect to the backend and frontend networks. These are both Docker networks, but
separating them would give me the flexibility to configure the networks differently.

Configuring application services

The infrastructure services I've specified so far haven't needed application-level
configuration. I've configured the integration points between the containers and the Docker
platform with networks, volumes, and ports, but the applications use the configuration
built into each Docker image.

The Kibana image connects to Elasticsearch by convention using the hostname
elasticsearch, which is the service name I've used in the Docker Compose file to
support that convention. The Docker platform will route any requests to the
elasticsearch hostname to the service, load-balancing between containers if there are
multiple containers running the service, so Kibana will be able to find Elasticsearch at the
expected domain name.

My custom applications need configuration settings specified, which I can include in the
Compose file using environment variables. Defining environment variables for a service in
the Compose file sets these environment variables for every container running the service.

The index-dinner message handler service subscribes to the nats message queue and creates
documents in Elasticsearch, so it needs to connect to the same Docker network, and it also
depends on these services. I can capture these dependencies in the Compose file and
specify the configuration for the application:

nerd-dinner—-index-handler:
image: dockeronwindows/chO5-nerd-dinner-index-handler
depends_on:
- elasticsearch
- message-queue
environment:
— ELASTICSEARCH_URL=http://elasticsearch:9200
- MESSAGE_QUEUE_URL=nats://message—queue:4222
networks:
- nd-net

[138]

Organizing Distributed Solutions with Docker Compose Chapter 6

Here, I'm using the environment section to specify two environment variables—each with
a key-value pair—to configure the URLs for the message queue and Elasticsearch. These are
actually the default values baked into the message handler image, so I don't need to include
them in the Compose file, but it's useful to explicitly set them.

You can think of the Compose file as the complete deployment guide for
the distributed solution. If you explicitly specify the environment values,
it makes it clear what configuration options are available.

Storing configuration variables in plain text is fine for simple application settings, but using
a separate environment file is better for sensitive values, which is the approach I used in the
previous chapter. This is also supported in the Compose file format. For the database
service, I can use an environment file for the administrator password, specified with the
env-file attribute:

nerd-dinner-db:
image: dockeronwindows/ch03-nerd-dinner-db
env_file:
— db-credentials.env
volumes:
- db-data:C:\data
networks:
— nd-net

When the database service starts, Docker will set up the environment variables from the file
called db-credentials.env. I've used a relative path, so that file needs to be in the same
location as the Compose file. Like earlier, the contents of that file are key-value pairs, with
one line per environment variable. In this file, I've included the connection strings for the
application as well as the password for the database, so the credentials are all in one place:

sa_password=4jsZedB32!iSm___

AUTH_DB_CONNECTION_STRING=Data Source=nerd-dinner-db,1433;Initial
Catalog=NerdDinner...

APP_DB_CONNECTION_STRING=Data Source=nerd-dinner-db,1433;Initial
Catalog=NerdDinner...

The sensitive data is still in plain text, but by isolating it in a separate file, I can do two
things. First, I can secure the file to restrict access. Second, I can take advantage of the
separation of the service configuration from the application definition and use the same
Docker Compose file for different environments, substituting different environment files.

[139]

Organizing Distributed Solutions with Docker Compose Chapter 6

Environment variables are not secure even if you secure access to the file.
You can view environment variable values when you inspect a container,
so anyone with access to the Docker API can read this data. For sensitive
data such as passwords and API keys, you should use Docker secrets with
Docker swarm, which I cover in the next chapter.

For the save-dinner message handler, I can make use of the same environment file. The
handler depends on the message queue and database services, but there are no new
attributes in this definition:

nerd-dinner-save-handler:
image: dockeronwindows/chO5-nerd-dinner—-save-handler
depends_on:
- nerd-dinner-db
- message—queue
env_file:
- db-credentials.env
networks:
- nd-net

The last service is the website itself. Here, I will use a combination of environment variables
and environment files. Variable values that are typically consistent across environments can
be explicitly stated to make the configuration clear. Sensitive data can be read from separate
files—in this case, containing the database credentials and the API keys:

nerd-dinner-web:
image: dockeronwindows/chO5-nerd-dinner-web
ports:
- "80:80"
environment:
— HOMEPAGE_URL=http://nerd-dinner-homepage
- MESSAGE_QUEUE_URL=nats://message-queue:4222
env_file:
- api-keys.env
— db-credentials.env
depends_on:
- nerd-dinner-homepage
- nerd-dinner-db
- message—queue
networks:
- nd-net

[140]

Organizing Distributed Solutions with Docker Compose Chapter 6

The website containers need to be publicly available, so I publish the port exposed in the
image. The application needs access to the other services, so it's connected to the same
network. The home page service is also defined in the Compose file, but there is no
configuration required, so that's a simple definition with just the image and network
attributes.

All the services are configured now, so I just need to specify the network and volume
resources to complete the Compose file.

Specifying application resources

Docker Compose separates network and volume definitions from service definitions, which
allows flexibility between environments. I'll cover this flexibility later in the chapter, but to
finish the NerdDinner Compose file, I'll start with the simplest approach using default
values.

The services in my Compose file all use a network called nd-net, which needs to be
specified in the Compose file. Docker networks are a good way to segregate applications.
You could have several solutions that all use Elasticsearch but that have different SLAs and
storage requirements. If you have a separate network for each application, you can run
separate Elasticsearch services, individually configured for each application, but all named
elasticsearch. This keeps to the expected conventions but segregates by the network so
services only see the Elasticsearch instance in their own network.

Docker Compose can create networks at runtime, or you can define the resource to use an
external network that already exists on the host. This specification for the NerdDinner
network uses the default nat network that Docker creates when it is installed, so this setup
will work for all standard Docker hosts:

networks:
nd-net:
external:
name: nat

[141]

Organizing Distributed Solutions with Docker Compose Chapter 6

Volumes also need to be specified. Both of my stateful services, Elasticsearch and SQL
Server—use named volumes for data storage, es-data and nd-data, respectively. Like
networks, volumes can be specified as external so Docker Compose will use existing
volumes. There are no default volumes, though, so if I use an external volume, I would
need to create it on each host before running the application. Instead, I'll specify the
volumes without any options, so Docker Compose will create them for me:

volumes:
es—data:
db-data:

These volumes will store the data on the host rather than in the container's writeable layer.
They're not host-mounted volumes, so although the data is stored on the local disk, I'm not
specifying the location. Each volume will write its data in the Docker data directory,
C:\ProgramData\Docker. I'll look at managing these volumes later in the chapter.

My Compose file has services, networks, and volumes all specified, so it's ready to run.

Managing applications with Docker
Compose

Docker Compose presents a similar interface to the Docker CLI. The docker-compose
command uses some of the same command names and arguments for the functionality it
supports—which is a subset of the functionality of the full Docker CLI. When you run
commands through the compose CLI, it sends requests to the Docker engine to act on the
resources in the Compose file.

Compose treats all the resources in a Compose file as a single application, and to
disambiguate applications running on the same host, the runtime adds a project name to all
the resources it creates for the application. When you run an application through compose
and then look at the containers running on your host, you won't see a container with a
name that exactly matches the service name. Compose adds the project name and an index
to container names in order to support multiple containers in the service.

[142]

Organizing Distributed Solutions with Docker Compose Chapter 6

Running applications

I have the first Compose file for NerdDinner in the ch06-docker—-compose directory,
which also contains the environment variable files. From that directory, I can start the
whole application with a single docker-compose command:

> docker—compose up -d

Creating volume "chO6dockercompose_db-data" with default driver
Creating volume "chO6dockercompose_es—data" with default driver
Creating chO6dockercompose_nerd-dinner-homepage_1

Creating chO6dockercompose_elasticsearch_1

Creating chO6dockercompose_nerd-dinner—-db_1

Creating chO6dockercompose_message—queue_1l

Creating chO6dockercompose_nerd-dinner—-index-handler_1

Creating chO6dockercompose_nerd-dinner-web_1

Creating chO6dockercompose_nerd-dinner-save—handler_1

¢ The up command is used to start the application, creating networks, and volumes
and running containers

e The -d option runs all the containers in the background; it's the same as the —-
detach option in docker container run

You can see that Docker Compose creates all the services in a dependency order. Services
without any dependencies are created first, and when they're running, the application
services are started—the web and save-handler services are the last of all, as they have the
most dependencies.

The names in the output are individual container names, with the naming format
{project}_{service}_{index}. Each service has only one container running, which is
the default, so the indexes are all 1. The project name is a sanitized version of the directory
name where I ran the compose command.

When you run a docker-compose command and it completes, you can manage the
containers with Docker Compose or with the standard Docker CLI. The containers are just
normal Docker containers, with some extra metadata used by compose to manage them as
a whole unit. Listing containers shows me all the service containers created by compose:

> docker container 1s

CONTAINER ID IMAGE COMMAND
CREATED

e264defce984 dockeronwindows/ch05-nerd-dinner-save-handler

"NerdDinner .Messag..." 6 minutes ago...

d4ad2405a76b dockeronwindows/ch05-nerd-dinner-web "powershell
C:\\boo..." 6 minutes ago...

7a858e0d8019 sixeyed/kibana:nanoserver "powershell -

[143]

Organizing Distributed Solutions with Docker Compose Chapter 6

Comma. .." 6 minutes ago...

2c235ad3f2ab dockeronwindows/chO5-nerd-dinner-index-handler "dotnet
NerdDinner..." 6 minutes ago...

9de3ed80lccb sixeyed/elasticsearch:nanoserver "powershell -
Comma..." 7 minutes ago...

abb480eb4416 dockeronwindows/ch06-nerd-dinner-db "powershell -
Comma..." 7 minutes ago...

a3df821dl47a nats:nanoserver "gnatsd -c
gnatsd...." 7 minutes ago...

9e30bcae2a67 dockeronwindows/ch03-nerd-dinner-homepage "dotnet
NerdDinner..." 7 minutes ago...

The container running the website is called ch06dockercompose_nerd-dinner-web_1,
and I can inspect that container to get the IP address and test the website. Both the
NerdDinner site and the Kibana analytics will behave as expected because the full
configuration is captured in the Compose file, and all the components are started by Docker
Compose.

This is one of the most powerful features of the Compose file format. The file contains the
complete specification to run your application, and anyone can use it to run your app. In
this case, all the NerdDinner components are images on public registries, so anyone can
start the app from this Compose file. You don't need any prerequisites other than Docker
and Docker Compose to run NerdDinner, which is now a distributed application
containing .NET Framework, .NET Core, Java, Go, and Node.js components.

Scaling application services

Docker Compose lets you scale services up and down easily, adding or removing
containers to a running service. When a service is running with multiple containers, it's still
accessible to other services in the network. Consumers use the service name for discovery
and the DNS server in Docker load balances requests across all the containers in the service.

Adding more containers doesn't automatically give scale and resilience to your service,
though; that depends on the application running the service. You won't get a SQL Server
failover cluster just by adding another container to a SQL database service because SQL
Server needs to be explicitly configured for failover. If you add another container, you'll
just have two distinct database instances with separate data stores.

Web applications typically scale well if they are designed to support scale-out. Stateless
applications can run in any number of containers because any container can handle any
request. But if your application maintains the session state locally, requests from the same
user need to be handled by the same service, which prevents you from load-balancing
across many containers.

[144]

Organizing Distributed Solutions with Docker Compose Chapter 6

Services that publish ports to the host can't be scaled if they're running on a single Docker
engine. Ports can have one only operating system process listening on them, and that's also
true for Docker—you can't have the same host port mapped to multiple container ports. On
a Docker swarm where you have multiple hosts, you can scale services with published
ports, and Docker will run the containers on different hosts.

In NerdDinner, the message handlers are truly stateless components. They receive a
message from the queue that contains all the information they need, and they process it.
The nats supports grouping of subscribers on the same message queue, which means I can
have several containers running the save-dinner handler, and nats will ensure only one
handler gets a copy of each message, so I don't have duplicate message processing. The
code in the message handlers already takes advantage of that.

Scaling up the message handler is something I can do at peak time in order to increase the
throughput for message processing. I can do that with the up command and the —-scale
option, specifying the service name and the desired number of instances:

> docker—-compose up —d ——-scale nerd-dinner-save-handler=3

chO6dockercompose_nerd-dinner-homepage_1 is up-to-date
chO6dockercompose_nerd-dinner-db_1 is up-to-date
chO6dockercompose_message—queue_1l is up-to-date
chO6dockercompose_elasticsearch_1 is up-to-date
chO6dockercompose_kibana_1 is up-to-date
chO6dockercompose_nerd-dinner-index-handler_1 is up-to-date
Starting chO6dockercompose_nerd-dinner-save-handler_1
Creating chO6dockercompose_nerd-dinner-save—handler_2
Creating chO6dockercompose_nerd-dinner-save—handler_3

Docker Compose compares the state of the running application with the configuration in
the Compose file and the overrides specified in the command. In this case, all the services
are unchanged except for the save-dinner handler, so they are listed as up to date. The save-
handler has a new service level, so Docker Compose adds two more containers.

With three instances of the save-message handler running, they share the incoming
message load in a round-robin approach. That's a great way to increase the scale. The
handlers concurrently process messages and write to the SQL database, which increases the
throughput for saves and reduces the time taken for messages to be handled. But there is
still a strict limit to the number of processes writing to SQL Server, so the database is
unlikely to become a bottleneck.

[145]

Organizing Distributed Solutions with Docker Compose Chapter 6

I can create multiple dinners through the web application, and the message handlers will
share the load when the event messages are published. I can see in the logs that different
handlers process different messages, and there is no duplicate processing of events:

PS> docker container logs chO6dockercompose_nerd-dinner-save-handler_ 1
Received message, subject: events.dinner.created

Saving new dinner, created at: 6/25/2017 7:34:24 PM; event ID: 39b4c8d2-
a9ad-4bf0-9e58-£60edfc57a84

Dinner saved. Dinner ID: 1; event ID: 39b4c8d2-a9ad-4bf0-9e58-f60edfc57a84

PS> docker container logs chO6dockercompose_nerd-dinner-save-handler_ 2
Received message, subject: events.dinner.created

Saving new dinner, created at: 6/25/2017 7:47:37 PM; event ID:
££636870-049b-4328-87a4-e32dfacb79db

Dinner saved. Dinner ID: 2; event ID: ££f636870-049b-4328-87a4-e32dfacb79db

PS> docker container logs chO6dockercompose_nerd-dinner-save—-handler_3
Received message, subject: events.dinner.created

Saving new dinner, created at: 6/25/2017 7:47:43 PM; event ID:
eedeb29d-9d4c-4411-abb5-ac6501laaceb

Dinner saved. Dinner ID: 3; event ID: eedeb29d-9d4c-44l1l1-abb5-ac650l1laace6

Stopping and starting application services

There are several commands to manage container life cycle in Docker Compose. It's
important to understand the differences between the options so you don't remove resources
unexpectedly.

The up and down commands are blunt tools to start and stop the whole application. The up
command creates any resources in the Compose file that don't exist, and it creates and
starts containers for all the services. The down command does the reverse—it stops any
running containers and removes the application resources. Containers and networks are
removed if they were created by Docker Compose, but volumes are not removed—so any
application data you have is retained.

The stop command just stops all the running containers without removing them or other
resources. Stopping the container ends the running process with a graceful shutdown. The
kill command stops all the containers by forcibly ending the running process. Stopped
application containers can be started again with start, which runs the entry point program
in the existing container.

[146]

Organizing Distributed Solutions with Docker Compose Chapter 6

Stopped containers retain all their configuration and data but don't use any compute
resources. Starting and stopping containers is a very efficient way to switch context if you
work on multiple projects. If I'm developing on NerdDinner when another piece of work
comes in as a priority, I can stop the whole NerdDinner application to free up my
development environment:

PS> docker-compose stop

Stopping chO6dockercompose_nerd-dinner-save-handler_3 ... done
Stopping chO6dockercompose_nerd-dinner-save-handler_2 ... done
Stopping chO6dockercompose_nerd-dinner-save-handler_1 ... done
Stopping chO6dockercompose_nerd-dinner-web_1 ... done

Stopping chO6dockercompose_kibana_1 ... done

Stopping chO6dockercompose_nerd-dinner-index-handler_1 ... done
Stopping chO6dockercompose_elasticsearch_1 ... done

Stopping chO6dockercompose_message—queue_1 ... done

Stopping chO6dockercompose_nerd-dinner-db_1 ... done

Stopping chO6dockercompose_nerd-dinner-homepage_1 ... done

Now I have no containers running, and I can switch to the other project. When that work is
done, I can fire up NerdDinner again by running docker-compose start.

Stopping a container releases the IP address used by the container, and
starting it again allocates a new IP address. This is transparent to other
services and external consumers, but in your development environment,
you will need to inspect web containers to find the new IP address to
browse to.

You can also stop individual services by specifying a name, w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>