

Docker on Windows

From 101 to production with Docker on Windows

Elton Stoneman

BIRMINGHAM - MUMBAI

Docker on Windows
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book. Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

First published: July 2017

Production reference: 1120717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78528-165-5

www.packtpub.com

http://www.packtpub.com

Credits

Author
Elton Stoneman

Copy Editor
Stuti Srivastava

Reviewer
Shashikant Bangera

Project Coordinator
Virginia Dias

Commissioning Editor
Kartikey Pandey

Proofreader
Safis Editing

Acquisition Editor
Rahul Nair

Indexer
Aishwarya Gangawane

Content Development Editor
Sharon Raj

Graphics
Kirk D'Penha

Technical Editors
Mohit Hassija
Komal Karne

Production Coordinator
Aparna Bhagat

About the Author
Elton Stoneman has been a Microsoft MVP for 8 years and a Pluralsight author for 5 years,
and now he works for Docker, Inc. Before joining Docker, he spent 15 years as a consultant,
architecting and delivering very large and very successful solutions built on .NET and
powered by Windows and Azure.

All the years he worked with Windows, Elton had a secret Linux server in his attic or
garage, running core services for the home, such as music servers and file servers. When
Docker started to take hold in the Linux world, Elton had early experience in a cross-
platform project he worked on, got hooked, and started to focus on containers. He was
made a Docker Captain, and for a time, was one of only two people in the world who were
both a Microsoft MVP and a Docker Captain.

Elton blogs about Docker, tweets about Docker, and speaks about Docker all the time. He is
a regular at local events and user groups; you will often see him at Docker London, London
DevOps, and WinOps London. He's also had great fun speaking at fantastic conferences
around the world, including DockerCon, NDC London, SDD, DevSum, and NDC Oslo.

You can't write a 300-page technical book without a lot of late nights, a lot of support, and
a decent bean-to-cup coffee machine. Support is the most important of those, after the coffee
machine. There are a lot of people I would like to thank. Everyone I work with at Docker,
Inc. is exceptional, but Michael Friis and Brandon Royal are the pioneers of Docker on
Windows and their work is driving this important technology forward. The Docker
Captains are a fabulous group of people, and I have learned a great deal from Stefan
Scherer and all his community contributions. And my friends and family are just all-out
awesome, especially Nikki and Jackson.

About the Reviewer
Shashikant Bangera is a DevOps architect with 17 years of IT experience. He has vast
experience of DevOps tools across the platform, with core expertise in CI, CD, and aPaaS.
He has helped his customers adopt DevOps, and has architected and implemented
Enterprise DevOps for various domains, such as banking, e-commerce, and retail. He has
also contributed to many open sources platforms, such as DevOps Publication. He has
designed an automated on-demand environment with a set of open source tools and also
an environment booking tool, which is available on GitHub.

He has reviewed two Docker books for Packt: Learning Docker and Docker High Performance.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub. com/ mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at http://www.amazon. in/ dp/ 1785281658. If you'd like to join our team of regular
reviewers, you can email us at customerreviews@packtpub.com. We award our regular
reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be
relentless in improving our products!

http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658
http://www.amazon.in/dp/1785281658

Table of Contents
Preface 1

Chapter 1: Getting Started with Docker on Windows 7
Docker and Windows containers 8

Windows licensing 9
Understanding the key Docker concepts 10

The Docker service and Docker command-line 10
Docker images 11
Image registries 11
Docker containers 12
Docker swarm 13

Running Docker on Windows 13
Docker for Windows 14
Docker as a Windows Service 16
Docker in an Azure VM 18

Learning Docker with this book 19
Summary 20

Chapter 2: Packaging and Running Applications as Docker Containers 21
Running a container from an image 22

Doing one thing with a task container 22
Connecting to an interactive container 23
Keeping a process running in a background container 24

Building a Docker image 25
Understanding the Dockerfile 26
Building an image from a Dockerfile 27
Examining how Docker builds an image 28

Packaging your own applications 29
Compiling the application during the build 29
Compiling the application before the build 31
Compiling with multi-stage builds 33
Using the main Dockerfile instructions 34
Understanding temporary containers and image state 37

Working with data in Docker images and containers 38
Data in layers and the virtual C drive 38
Sharing data between containers with volumes 42
Sharing data between container and host with volumes 44

Mounting volumes from host directories 45
Using volumes for configuration and state 46

Packaging a traditional ASP.NET web app as a Docker image 49

Table of Contents

[ii]

Writing a Dockerfile for NerdDinner 50
Summary 54

Chapter 3: Developing Dockerized .NET and .NET Core Applications 55
Building good citizens for Docker 56

Hosting Internet Information Services (IIS) applications in Docker 57
Configuring IIS for Docker-friendly logging 58

Promoting environment variables 60
Building Docker images that monitor applications 63

Separating dependencies 66
Creating Docker images for SQL Server databases 67
Managing database files for SQL Server containers 69

Running databases in containers 71
Connecting to database containers from application containers 74

Breaking up monolithic applications 77
Extracting high-value components from monoliths 78
Hosting a UI component in an ASP.NET Core application 79
Connecting to application containers from other application containers 81

Summary 83

Chapter 4: Pushing and Pulling Images from Docker Registries 85
Understanding registries and repositories 86

Examining image repository names 86
Building, tagging, and versioning images 88
Pushing images to a registry 89

Running a local image registry 91
Building the registry image 92
Running a registry container 95

Pushing and pulling images with a local registry 96
Configuring Docker to allow insecure registries 97
Storing Windows image layers in a local registry 99

Using a commercial registry 101
Docker Hub 101
Docker Cloud 102
Docker Store 103
Docker Trusted Registry 103
Other registries 104

Summary 105

Chapter 5: Adopting Container-First Solution Design 106
Design goals for NerdDinner 107

Dockerizing NerdDinner's configuration 109
Splitting out the create dinner feature 110
Packaging .NET console apps in Docker 113

Running a message queue in Docker 114
Starting a multi-container solution 115

Table of Contents

[iii]

Adding new features in containers 118
Using Elasticsearch with Docker and .NET 119
Building hybrid .NET Framework and .NET Core solutions in Docker 121

Compiling the hybrid NerdDinner solution 123
Packaging .NET Core console apps in Docker 125

Providing analytics with Kibana 126
From monolith to distributed solution 129

Managing build and deployment dependencies 131
Summary 132

Chapter 6: Organizing Distributed Solutions with Docker Compose 133
Defining applications with Docker Compose 134

Capturing service definitions 135
Defining infrastructure services 136
Configuring application services 138
Specifying application resources 141

Managing applications with Docker Compose 142
Running applications 143
Scaling application services 144
Stopping and starting application services 146
Upgrading application services 148
Monitoring application containers 150
Managing application images 152

Configuring application environments 153
Specifying external resources 154
Using multiple Compose files 155

Summary 158

Chapter 7: Orchestrating Distributed Solutions with Docker Swarm 160
Creating a swarm and managing nodes 161
Creating and managing services in swarm mode 163

Running services across many containers 166
Global services 168

Deploying stacks to Docker swarm 169
Docker secrets 169
Defining a stack using Compose files 172
Deploying a stack from a Compose file 174

Running Docker swarm in the cloud 176
Managed Docker services in the cloud 177

Docker on Amazon Elastic Container Service 177
Docker on Google Container Platform 178
Docker on Azure Container Service 178

Docker cloud editions 179
Deploying updates with zero downtime 182

Load balancing across swarm nodes 182
Updating application services 184

Table of Contents

[iv]

Rolling back service updates 186
Configuring update behavior 186
Updating swarm nodes 187
Mixing hosts in hybrid swarms 189

Summary 191

Chapter 8: Administering and Monitoring Dockerized Solutions 192
Managing containers with Windows tools 193

IIS Manager 194
SQL Server Management Studio 196
Event logs 199
Server Manager 200

Managing containers with Docker tools 204
Docker visualizer 204
Portainer 206

CaaS with Docker EE 209
Understanding UCP 209
Navigating the UCP UI 210
Managing nodes 211
Volumes 213
Images 215
Networks 216
Deploying stacks 218
Creating services 220
Monitoring services 225
RBAC 230

Summary 232

Chapter 9: Understanding the Security Risks and Benefits of Docker 234
Understanding container security 235

Container processes 235
Container user accounts and ACLs 237
Running containers with resource constraints 238
Running containers with restricted capabilities 240
Isolation in Hyper-V containers 241

Securing applications with secure Docker images 242
Building minimal images 242
Docker Security Scanning 243
Managing Windows updates 245

Securing the software supply chain with DTR 246
Repositories and users 247
Organizations and teams 249
Image Signing and Content Trust 252
Golden images 253

Understanding security in swarm mode 254
Nodes and join tokens 255

Table of Contents

[v]

Encryption and secrets 255
Node labels and external access 256

Summary 257

Chapter 10: Powering a Continuous Deployment Pipeline with Docker 259
Designing CI/CD with Docker 260
Running shared development services in Docker 261

Packaging a Git server into a Windows Docker image 261
Running the Bonobo Git server in Docker 264
Packaging a CI server into a Windows Docker image 266
Running the Jenkins automation server in Docker 267

Configuring CI/CD using Jenkins in Docker 270
Setting up Jenkins credentials 270
Configuring the Jenkins CI job 272
Building the solution using Docker Compose in Jenkins 273
Multi-stage builds in CI pipelines 276
Running and verifying the solution 278
Running end-to-end tests in Docker 280
Tagging and pushing Docker images in Jenkins 282

Deploying to a remote Docker swarm using Jenkins 283
Summary 289

Chapter 11: Debugging and Instrumenting Application Containers 290
Working with Docker in integrated development environments 291

Docker in Visual Studio 2017 292
Debugging with Docker Compose in Visual Studio 2017 293

Docker in Visual Studio 2015 297
Docker in Visual Studio Code 300

Instrumentation in Dockerized applications 303
Instrumentation with Prometheus 303

Adding a Prometheus endpoint to .NET projects 304
Adding a Prometheus exporter alongside existing apps 307
Running a Prometheus server in a Windows Docker container 309

The bug fixing workflow in Docker 314
Bug fixing before Docker 314
Bug fixing with Docker 316

Summary 317

Chapter 12: Containerize What You Know - Guidance for Implementing
Docker 318

Dockerizing what you know 318
Selecting a simple Proof-of-Concept app 319
Generating an initial Dockerfile with Image2Docker 320
Engaging other stakeholders 322

Case studies for implementing Docker 323
Case study 1 - an in-house WebForms app 323

Table of Contents

[vi]

Case study 2 - a database integration service 326
Case study 3 - an Azure IoT app 328

Summary 332

Index 333

Preface
Docker is a platform for running server applications in lightweight units called containers.
You can run Docker on Windows Server 2016 and Windows 10, and run your existing apps
in containers to get significant improvements in efficiency, security, and portability. This
book teaches you all you need to know about Docker on Windows, from 101 to deploying
highly available workloads in production.

What this book covers
Chapter 1, Getting Started with Docker on Windows, introduces the Docker runtime and
walks through the options for running Docker on Windows, covering Docker Toolbox for
older client versions, native Docker for Windows 10 and Windows Server 2016, and
running Docker hosted on an Azure VM.

Chapter 2, Packaging and Running Applications as Docker Containers, focuses on the Docker
image: a packaged application with all its dependencies that will run in the same way on
any host that can run Docker. We'll see how to build Docker images with a Dockerfile for a
simple website, and then run it on Windows.

Chapter 3, Developing Dockerized .NET and .NET Core Applications, shows how we can build
applications with Microsoft technologies that can run on any operating system. .NET Core
apps run equally on Windows (including Nano Server) and Linux, and they are ideally
suited for packaging into a portable Docker container.

Chapter 4, Pushing and Pulling Images from Docker Registries, will look at publishing images
we build in development and using automated builds, hooking Docker Hub into GitHub so
new container image versions are built when code gets pushed. The chapter will also cover
running your own private Docker registry for internal use.

Chapter 5, Adopting Container-First Solution Design, builds on the previous chapters,
showing how the range of high-quality Docker images makes it straightforward to design
distributed solutions, and mixing off-the-shelf images with custom ones. The Windows
slant here is that you can run Windows hosts and manage them in the same way as other
machines, but they could be running Linux software inside a Docker container.

Preface

[2]

Chapter 6, Organizing Distributed Solutions with Docker Compose, takes the ad hoc
distributed solution from Chapter 5, Adopting Container-First Solution Design and builds it
into a deployable package using Docker Compose--with a Docker Network so containers
can communicate using hostnames. The chapter will also cover the structure of the Docker
Compose YAML file and the runtime for Docker Compose.

Chapter 7, Orchestrating Distributed Solutions with Docker Swarm, covers production-ready
clustering with Docker Swarm, briefly introducing the old Docker Swarm product for
awareness, but focusing on the new Swarm Mode built into Docker from version 1.12. We'll
set up a Swarm running on Windows in Azure, explore how the Routing Mesh works, and
look at service discovery and reliability by deploying the solution from Chapter 6,
Organizing Distributed Solutions with Docker Compose as Swarm services.

Chapter 8, Administering and Monitoring Dockerized Solutions, covers management of
distributed Docker solutions. You'll see how to set up log shipping so container logs are
sent to a central location, use both free and commercial tools to visualize the containers in a
Swarm, and learn how to do rolling upgrades of a running service.

Chapter 9, Understanding the Security Risks and Benefits of Docker, covers the key aspects of
Docker security: the risks of having multiple containers on one node, the potential for an
attacker to compromise one container and access others, and how to mitigate that. We'll
also look at how Docker improves security, with vulnerability scanning for images built
into Docker Hub and Docker Trusted Registry and flagging security issues with the
software inside images. Lastly, we'll cover built-in security between nodes in Docker
Swarm.

Chapter 10, Powering a Continuous Deployment Pipeline with Docker, covers Docker in a
DevOps workflow, where everything is automated. We'll build out a whole deployment
pipeline using Docker, running GitLab for source control and builds, which will package a
new Docker image when code is pushed, run automated tests, and deploy to a test
environment.

Chapter 11, Debugging and Instrumenting Application Containers, looks at troubleshooting
Docker containers during both build and run. We will cover how to structure the Dockerfile
so that infrequently changing layers are preserved and containers are quicker to build, and
see the best way to build up an image. For running containers, we'll cover viewing the logs,
checking process performance, and connecting to the container for exploratory checks.

Chapter 12, Containerize What You Know: Guidance for Implementing Docker, will look at
containerizing existing software stacks for non-production deployment, and also extracting
a vertical slice from an application that can run in Docker, as a first move toward a
microservice architecture.

Preface

[3]

What you need for this book
To execute the examples given in this book, you will need the following:

Docker for Windows 17.06 or later
Windows 10 or Windows Server 2016

Who this book is for
If you want to modernize an old monolithic application without rewriting it, smooth the
deployment to production, or move to DevOps or the cloud, then Docker is the enabler for
you. This book gives you a solid grounding in Docker so you can confidently approach all
of these scenarios.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning. Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "If you run docker container ls, which lists all the active containers, you won't
see this container."

A block of code is set as follows:

FROM microsoft/nanoserver
COPY scripts/print-env-details.ps1 c:\\print-env.ps1
CMD ["powershell.exe", "c:\\print-env.ps1"]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

FROM microsoft/nanoserver
COPY scripts/print-env-details.ps1 c:\\print-env.ps1
CMD ["powershell.exe", "c:\\print-env.ps1"]

Any command-line input or output is written as follows:

docker container run dockeronwindows/ch01-whale

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ /www.
packtpub.com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Docker- on- Windows. We also have other code bundles from our rich
catalog of books and videos available at https:/ /github. com/ PacktPublishing/ . Check
them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
https://www.packtpub.com/sites/default/files/downloads/DockeronWindows_ColorIma

ges.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ /www. packtpub. com/
books/content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/Docker-on-Windows
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/DockeronWindows_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DockeronWindows_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Getting Started with Docker on

Windows
Docker is an application platform. It's a new way of running applications in isolated,
lightweight units called containers. Containers are a very efficient way of running apps -
they start in seconds, and the container doesn't add any overhead to the memory and
compute requirements of the app. Docker is completely agnostic to the type of apps it can
run. You can run a brand new .NET Core app in one container and a 10-year old ASP.NET
2.0 WebForms app in another container on the same server.

Containers are isolated units, but they can integrate with other components. Your
WebForms container can access a REST API hosted in your .NET Core container. Your
.NET Core container can access a SQL Server database running in a container or a SQL
Server instance running on a separate machine. You can even set up a cluster with a
mixture of Linux and Windows machines all running Docker, and have Windows
containers transparently communicate with Linux containers.

Companies big and small are moving to Docker to take advantage of this flexibility and
efficiency. The case studies from Docker, Inc. - the company behind the Docker platform -
show that you can reduce your hardware requirements by 50% when you move to Docker,
while still supporting high availability for your applications. These significant reductions
apply equally to on-premises data centers and to the cloud.

Efficiency isn't the only gain. When you package your application to run in Docker, you get
portability. You can run your app in a Docker container on your laptop, and it will behave
in exactly the same way on a server in your data center and on a virtual machine (VM) in
any cloud. This means your deployment process is simple and risk-free because you're
deploying the exact same artifacts that you've tested, and you're also free to choose between
hardware vendors and cloud providers.

Getting Started with Docker on Windows Chapter 1

[8]

The other big motivator is security. Containers add secure isolation between applications,
so you can be confident that if one application is compromised, the attacker can't move on
to compromise other apps on the same host. There are wider security benefits in the
platform too. Docker can scan the contents of packaged applications and alert you to
security vulnerabilities in your application stack. And you can digitally sign packages and
configure Docker to run containers only from package authors that you trust.

Docker is built from open source components and is shipped as Docker Community
Edition (Docker CE) and Docker Enterprise Edition (Docker EE). Docker CE is free to use
and has monthly releases. Docker EE is a paid subscription, it comes with extended features
and support and has quarterly releases. Docker CE and Docker EE are available on
Windows, and both versions use the same underlying platform, so you can run your apps
in containers on Docker CE and EE in the same way.

Docker and Windows containers
Docker originally ran on Linux, taking advantage of core Linux features but making it
simple and efficient to use containers for application workloads. Microsoft saw the
potential and worked closely with the Docker engineering team to bring the same
functionality to Windows. Windows Server 2016 and Windows 10 are the first versions of
Windows that can run Docker containers. Right now, you can run only Windows
containers on Windows, but Microsoft is adding support for Linux containers to run on
Windows too.

There is no integration between containers and the Windows UI, though. Containers are
only for server side applications - workloads like websites, APIs, databases, message
queues, message handlers, and console applications. You can't use Docker to run a client
app, like a .NET WinForms or WPF application, but you could use Docker to package and
distribute the application, which would give you a consistent build and release process for
all your apps.

There is also a distinction between how containers run on Windows Server 2016 and
Windows 10. The user experience for working with Docker is the same, but the way
containers are hosted is different. On Windows Server, the process that serves your
application actually runs on the server, and there's no layer between the container and the
host. In the container, you may see w3wp.exe running to serve a website, but that process is
actually running on the server - if you had ten web containers running, you would see ten
instances of w3wp.exe in task manager on the server.

Getting Started with Docker on Windows Chapter 1

[9]

Windows 10 doesn't have the same operating system kernel as Windows Server 2016, so in
order to provide containers with the Windows Server kernel, Windows 10 runs each
container in a very light VM. These are called Hyper-V containers, and if you run a web
app in a container on Windows 10, you won't see w3wp.exe running on the host - it's
actually running inside a dedicated Windows Server kernel in the Hyper-V container.

It's good to understand this distinction. You use the same Docker artifacts and the same
Docker commands on Windows 10 and Windows Server 2016, so the processes are the
same, but there is a slight performance hit in using Hyper-V containers on Windows 10.
Later in this chapter, I'll show you the options for running Docker on Windows, and you
can choose the best approach for you.

Windows licensing
Windows containers don't have the same licensing requirements as servers or VMs running
Windows. Windows is licensed at the host level, not the container level. If you have 100
Windows containers running on one server, you only need a license for the server. There
are considerable savings to be had if you currently use VMs to isolate application
workloads. Removing the VM layer and running apps in containers directly on the server
removes the licensing requirement for all the VMs.

Hyper-V containers have separate licensing. On Windows 10, you can run multiple
containers, but not for production deployments. On Windows Server, you can also run
containers in Hyper-V mode to get increased isolation. This can be useful in multi-tenant
scenarios, where you need to expect and mitigate for hostile workloads. Hyper-V
containers are separately licensed, but in a high-volume environment, you would use a
Datacenter license run Hyper-V containers without individual licenses.

Microsoft and Docker, Inc. have partnered to provide Docker EE at no cost with Windows
Server 2016. The price of the Windows Server license includes Docker EE Basic, which gives
you support to run applications in containers. If you have problems with a container or
with the Docker service, you can raise it with Microsoft and they can go on to escalate it to
Docker engineers.

Getting Started with Docker on Windows Chapter 1

[10]

Understanding the key Docker concepts
Docker is a very powerful but very simple application platform. You can get started with
running your existing apps in Docker in just a few days, and be ready to move to
production in a few days more. This book will take you through lots of examples of .NET
Framework and .NET Core applications, running in Docker. You'll learn how to build, ship,
and run applications in Docker and move on to advanced topics like solution design,
security, administration, instrumentation, and continuous integration and continuous
delivery (CI/CD).

To start with, you need to understand the core Docker concepts: images, registries,
containers, and swarms--and understand how Docker actually runs.

The Docker service and Docker command-line
Docker runs as a background Windows service. This service manages all the running
containers and exposes a REST API for consumers to work with containers and other
Docker resources. The main consumer of that API is the Docker command-line tool, which
is what I use for most of the code samples in this book.

The Docker REST API is public, and there are alternative management tools that are
powered by the API, like Portainer (which is open source) and Docker Universal Control
Plane (UCP) (which is a commercial product). The Docker CLI is very simple to use; you
use commands like docker container run to run an application in a container and
docker container rm to remove a container.

You can also configure the Docker API to be remotely accessible and configure your Docker
CLI to connect to a remote service. This means you can manage a Docker host running in
the cloud using Docker commands on your laptop. The setup to allow remote access should
also include encryption, so your connection is secure--and in this chapter, I will show you
an easy way to configure that.

When you have Docker running, you'll start by running containers from images.

Getting Started with Docker on Windows Chapter 1

[11]

Docker images
A Docker image is a complete application package. It contains one application and all of its
dependencies, the language runtime, the application host, and the underlying operating
system. Logically, the image is a single file, and it's a portable unit—you can share your
application by pushing your image to a Docker registry. Anyone who has access can pull
that image themselves and run your application in a container. It will behave in exactly the
same way for them as it does for you.

Here's a concrete example. An ASP.NET WebForms app is going to run on Internet
Information Services (IIS) in Windows Server. To package that application in Docker, you
build an image that is based on Windows Server Core, add IIS, add ASP.NET, copy your
application, and configure it as a website in IIS. You describe all these steps in a simple
script called a Dockerfile, and you can use PowerShell or batch files for each step you need
to perform.

You build the image by running docker image build. The input is the Dockerfile and
any resources that need to be packaged into the image (like the web application content).
The output is a Docker image. In this case, the image will have a logical size of about 11 GB,
but 10 GB of that is the Windows Server Core image you're using as a base, and that image
can be shared as the base across many other images (I will cover image layers and caching
more in Chapter 4, Pushing and Pulling Images from Docker Registries).

The Docker image is like a snapshot of the filesystem for one version of your application.
The image is static, and you distribute it using a registry.

Image registries
A registry is a storage server for Docker images. Registries can be public or private, and
there are free public registries and commercial registry servers that allow fine-grained
access control for images. Images are stored with a unique name within the registry.
Anyone with access can upload an image by running docker image push and download
an image by running docker image pull.

The most popular registries are the public ones hosted by Docker:

Docker Hub is the original registry, which has become hugely popular for open
source projects in the Linux ecosystem. It has over 600,000 images stored and has
hosted over 12 billion image pulls.

Getting Started with Docker on Windows Chapter 1

[12]

Docker Cloud is where you store images you build yourself, and you can
configure images to be public or private. It's suitable for internal products, where
you can limit access to the images. You can set up Docker Cloud to automatically
build images from Dockerfiles stored in GitHub—currently, this is supported
only for Linux-based images, but Windows support is coming soon.
Docker Store is where you get commercial software, pre-packaged as Docker
images. Vendors are increasingly supporting Docker as a platform for their own
applications, and you will find software from Microsoft, Oracle, HPE, and more
on Docker Store.

In a typical workflow, you might build images as part of a CI pipeline and push them to a
registry if all the tests pass. The image is then available for other users to run your
application in a container.

Docker containers
A container is an instance of an application created from an image. The image contains the
whole application stack, and it also specifies the process to start the application, so Docker
knows what to do when you run a container. You can run multiple containers from the
same image, and you can run containers in different ways (I describe them all in the next
chapter).

You start your application with docker container run, specifying the name of the
image and your configuration options. Distribution is built into the Docker platform, so if
you don't have a copy of the image on the host where you're trying to run the container,
Docker will pull the image first. Then it starts the specified process, and your app is
running in a container.

Containers don't need a fixed allocation of CPU or memory, and the processes for your
application can use as much of the host's compute power as they need. You can run dozens
of containers on modest hardware, and unless the applications all try and use a lot of CPU
at the same time, they will happily run concurrently. You can also start containers with
resource limits to restrict how much CPU and memory they have access to.

Docker provides the container runtime as well as image packaging and distribution. In a
small environment and in development, you will manage individual containers on a single
Docker host, which would be your laptop or a test server. When you move to production,
you'll need high availability and the option to scale, and that comes with Docker swarm.

Getting Started with Docker on Windows Chapter 1

[13]

Docker swarm
Docker has the ability to run on a single machine or as one node in a cluster of machines all
running Docker. This cluster is called a swarm, and you don't need to install anything extra
to run in swarm mode. You install Docker on a set of machines, and on the first you run
docker swarm init to initialize the swarm, and on the others you run docker swarm
join to join the swarm.

I will cover swarm mode in depth in Chapter 7, Orchestrating Distributed Solutions with
Docker Swarm, but it's important to know before you get much further that the Docker
platform has high availability, scale, and resilience built in. Your Docker journey will
hopefully lead you to production, where you'll need all these attributes.

In swarm mode Docker uses exactly the same artifacts, so you can run your app across 50
containers in a 20-node swarm, and the functionality will be the same as when you run it in
a single container on your laptop. On the swarm, your app is more performant and tolerant
of failure, and you'll be able to perform automated rolling updates to new versions.

Nodes in a swarm use secure encryption for all communication, using trusted certificates
for each node. You can store application secrets as encrypted data in the swarm too, so
database connection strings and API keys can be saved securely, and the swarm will
deliver them only to containers that need them.

Docker is an established platform. It's new to Windows Server 2016, but it arrived on
Windows after four years of releases on Linux. Docker is written in Go, which is a cross-
platform language, and only a minority of code is specific to Windows. When you run
Docker on Windows, you're running an application platform that has had years of
successful production use.

Running Docker on Windows
It's easy to install Docker on Windows 10 and Windows Server 2016. On these operating
systems, you can use the Docker for Windows installer, which sets up all the prerequisites,
deploys the latest version of Docker CE, and gives you some useful options to manage
image repositories and remote swarms with Docker Cloud.

Getting Started with Docker on Windows Chapter 1

[14]

In production, you should ideally use Windows Server 2016 Core, the installation with no
UI. This reduces the attack surface and the amount of Windows updates your server will
need. If you move all your apps to Docker, you won't need any other Windows features
installed; you'll just have Docker EE running as a Windows service.

I'll walk through both these installation options and show you a third option using a VM in
Azure, which is useful if you want to try Docker but don't have access to Windows 10 or
Windows Server 2016.

There is a fantastic online Docker playground at https:/ /dockr. ly/ play-
with- docker. Windows support is currently in beta, and it's a great way to
try Docker without having to make any investment - you just browse the
site and get started.

Docker for Windows
Docker for Windows is available from Docker Store—navigate to https:/ /dockr. ly/
docker-for-windows. You can choose between the Stable channel and the Edge channel.
Both channels give you Docker CE, but the Edge channel follows the monthly release cycle,
and you will get experimental features. The Stable channel follows the EE release cycle,
with quarterly updates.

You should use the Edge channel in development if you want to work
with the latest features. In test and production, you will use Docker EE, so
you need to be careful that you don't use features in development that are
not yet available in EE.

Download and run the installer. The installer will verify that you can run Docker in your
setup and will configure the Windows features needed to support Docker. When Docker is
running, you will see a whale icon in the notification bar, which you can click on for
options:

https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/play-with-docker
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows
https://dockr.ly/docker-for-windows

Getting Started with Docker on Windows Chapter 1

[15]

You need to select Switch to Windows containers before you do anything else. Docker for
Windows can run Linux containers by running Docker inside a Linux VM on your
machine. That's great to test out Linux apps to see how they run in containers, but this book
is all about Windows containers - switch over, and Docker will remember that setting in
future.

While Docker for Windows is running, you can open Command Prompt or a PowerShell
session and start working with containers. First, verify that everything is working as
expected by running docker version. You should see output similar to this:

> docker version

Client:
 Version: 17.06.0-ce
 API version: 1.30
 Go version: go1.8.3
 Git commit: 02c1d87
 Built: Fri Jun 23 21:30:30 2017
 OS/Arch: windows/amd64

Server:
 Version: 17.06.0-ce
 API version: 1.30 (minimum version 1.24)
 Go version: go1.8.3
 Git commit: 02c1d87

Getting Started with Docker on Windows Chapter 1

[16]

 Built: Fri Jun 23 22:19:00 2017
 OS/Arch: windows/amd64
 Experimental: true

The output tells you the version of the command-line client and the
Docker service. The operating system field should read Windows for both;
if not, then you may be in Linux mode, and you'll need to switch to
Windows containers.

Now run a simple container:

docker container run dockeronwindows/ch01-whale

This uses a public image on Docker Cloud—one of the sample images for this book, which
Docker will pull the first time you use it. If you don't have any other images, this will take
few minutes, as it will also download the Microsoft Nano Server image that my image uses
as a base. When the container runs, it shows some ASCII art and then exits. Run the same
command again, and you will see that it executes much more quickly as the images are now
cached locally.

That's all the setup you need. Docker for Windows also contains the Docker Compose tool
I'll be using later in the book, so you're all set to follow along with the code samples.

Docker as a Windows Service
You can use Docker for Windows on Windows 10 and Windows Server 2016, and it's great
for development and test environments. For production environments where you have a
headless server with no UI, you can install Docker using a PowerShell module.

On a new installation of Windows Server 2016 core, use the sconfig tool to install all the
latest Windows updates, and then run these PowerShell commands:

Install-Module -Name DockerMsftProvider -Repository PSGallery -Force
Install-Package -Name docker -ProviderName DockerMsftProvider

This will configure the server with the necessary Windows features, install Docker, and set
it up to run as a Windows service. Depending on how many Windows updates were
installed, you may need to reboot the server:

Restart-Computer -Force

Getting Started with Docker on Windows Chapter 1

[17]

When the server is online, check whether Docker is running with docker version, and
then try to run a container from the sample image for this chapter:

docker container run dockeronwindows/ch01-whale

I use this configuration for some of my environments—running Windows Server 2016 Core
in a lightweight VM, which has only Docker installed. You can use Docker on the server by
connecting with Remote Desktop, or you can configure the Docker service to allow remote
connections. This is a more advanced setup, but it does give you secure remote access.

It's best to set up the Docker service so that communication with the client is secured using
TLS. Clients can connect only if they have the right TLS certificates to authenticate with the
service. You can set this up by running these PowerShell commands inside the VM,
supplying the VM's external IP address:

$ipAddress = '<vm-ip-address>'

mkdir -p C:\certs\client

docker container run --rm `
 --env SERVER_NAME=$(hostname) `
 --env IP_ADDRESSES=127.0.0.1,$vm-ip-address `
 --volume 'C:\ProgramData\docker:C:\ProgramData\docker' `
 --volume 'C:\certs\client:C:\Users\ContainerAdministrator\.docker' `
 stefanscherer/dockertls-windows

Restart-Service docker

Don't worry too much about what this command is doing. Over the next
few chapters, you'll get a good understanding of all these Docker options.
I'm using a Docker image from Stefan Scherer, who is a Microsoft MVP
and Docker Captain. The image has a script that secures the Docker
service with TLS certificates. You can read more details on Stefan's blog at
https:/ /stefanscherer. github. io.

When this command completes, it will have configured the Docker service to allow only
secure remote connections and will also have created the certificates that the client needs to
use to connect. Copy these certificates from C:\certs\client on the VM onto the
machine where you want to use the Docker client.

https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io
https://stefanscherer.github.io

Getting Started with Docker on Windows Chapter 1

[18]

On the client machine, you can set environment variables to point the Docker client to use a
remote Docker service. These commands will set up a remote connection to the VM
(assuming you have used the same path for the certificate files on the client):

$ipAddress = '<vm-ip-address>'

$env:DOCKER_HOST='tcp://$($ipAddress):2376'
$env:DOCKER_TLS_VERIFY='1'
$env:DOCKER_CERT_PATH='C:\certs\client'

You can use this approach to securely connect to any remote Docker service. If you don't
have access to Windows 10 or Windows Server 2016, you can create a VM on the cloud and
connect to it using the same commands.

Docker in an Azure VM
Microsoft makes it easy to run Docker in Azure. They provide a VM image with Docker
installed and configured and with the base Windows images already pulled so you can get
started quickly.

For testing and exploring, I always use DevTest labs in Azure. It's a great feature for non-
production environments. By default, any VMs you create in a DevTest lab will be turned
off every evening, so you don't end up with a big Azure bill from a VM you used for a few
hours and forgot to turn off.

You can create a DevTest Lab through the Azure Portal and then create a VM from
Microsoft's VM image Windows Server 2016 Datacenter - with Containers. As an
alternative to the Azure Portal, you can use the az command-line to manage the DevTest
lab. I've packaged az in a Docker image, which you can run in a Windows container:

docker run -it dockeronwindows/ch01-az

This runs an interactive Docker container that has the az command packaged and ready to
use. Run az login, and you'll need to open a browser and authenticate the Azure CLI.
Then, you can run this in the container to create a VM:

az lab vm create `
 --lab-name docker-on-win --resource-group docker-on-winRG236992 `
 --name dow-vm-01 `
 --image 'Windows Server 2016 Datacenter - with Containers' `
 --image-type gallery --size Standard_DS2 `
 --admin-username 'elton' --admin-password 'S3crett20!7'

Getting Started with Docker on Windows Chapter 1

[19]

The VM uses the full Windows Server 2016 installation with the UI, so you can connect to
the machine with RDP, open a PowerShell cmdlet, and start using Docker right away. Just
like the other options, you can check whether Docker is running with docker version
and then run a container from the sample image for this chapter:

docker container run dockeronwindows/ch01-whale

If an Azure VM is your preferred option, you can follow the steps from the previous section
to secure the Docker API for remote access. This way, you can run the Docker command-
line on your laptop to manage containers on the cloud.

Learning Docker with this book
Every code listing in this book is accompanied by a full code sample on my GitHub
repository at https:/ /github. com/ sixeyed/ docker- on- windows. The source tree is
organized into a folder for each chapter, and for each chapter there's a folder for each code
sample. In this chapter, I've used two samples to create Docker images, which you'll find in
ch01\ch01-whale and ch01\ch01-az.

The code listings in the book may be condensed for the page, but the full
code is always in the GitHub repository.

I prefer to follow along with the code samples when I'm learning a new technology, but if
you want to use working versions of the demo applications, every sample is also available
as a public Docker image on Docker Cloud. Wherever you see a docker container run
command, the image already exists on Docker Cloud, so you can use mine rather than
building your own if you wish. All the images in the dockeronwindows organization, such
as this chapter's dockeronwindows/ch01-whale—were built from the relevant Dockerfile
in the GitHub repository.

My own development environment is based on Windows Server 2016, where I use Docker
for Windows. My test environment is based on Windows Server 2016 Core, where I run
Docker as a Windows Service. I've also verified all the code samples using Windows 10.

https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows
https://github.com/sixeyed/docker-on-windows

Getting Started with Docker on Windows Chapter 1

[20]

I'm using version 17.06 of Docker, which is the latest release at the time of writing. Some of
the features I demonstrate need version 17.06 as a minimum--such as multi-stage builds
and secrets. But Docker has always been backward-compatible, so if you're using a version
later than 17.06, then the sample Dockerfiles and images should work in the same way.

My goal is for this to be a definitive book about Docker on Windows, so I've covered
everything from the 101 on containers through modernizing .NET apps with Docker and
the security implications of containers to CI/CD and administration in production. The
book ends with a guide to moving forward with Docker in your own projects.

If you want to discuss the book or your own Docker journey with me, feel
free to ping me on Twitter at @EltonStoneman.

Summary
In this chapter I introduced Docker, an application platform that can run new and old apps
in lightweight units of compute called containers. Companies are moving to Docker for
efficiency, security, and portability. I covered:

How Docker works on Windows and how containers are licensed
The key Docker concepts: images, registries, containers, and swarms
The options to run Docker on Windows 10, Windows Server 2016, and Azure

If you're planning to work along with the code samples in the rest of the book, you should
have a working Docker environment by now. In Chapter 2, Packaging and Running
Applications as Docker Containers, I'll move on to packaging more complex apps as Docker
images and showing how to manage state in containers with Docker volumes.

2
Packaging and Running
Applications as Docker

Containers
Docker reduces the logical view of your infrastructure to three core components: hosts,
containers, and images. Hosts run containers, which are isolated instances of an
application. Containers are created from images, which are packaged applications. The
Docker container image is conceptually very simple - it's a single unit that contains a
complete, self-contained application. The image format is very efficient, and the integration
between the image and the runtime is very smart, so mastering images is your first step to
using Docker effectively.

You've already seen some images in Chapter 1, Getting Started with Docker on Windows, by
running some basic containers to check your Docker installation was working correctly -
but I didn't look very closely at the image or how Docker used it. In this chapter, you'll get
a thorough understanding of Docker images: learning how they're structured,
understanding how Docker uses them, and looking at how to package your own
applications as Docker images.

The first thing to understand is the difference between an image and a container, which you
can see very clearly by running different types of container from the same image.

In this chapter, you'll get a lot of experience of the Docker basics:

Running containers from images
Building images from Dockerfiles
Packaging your own applications as Docker images

Packaging and Running Applications as Docker Containers Chapter 2

[22]

Working with data in images and containers
Packaging legacy ASP.NET web apps as Docker images

Running a container from an image
The docker container run command creates a container from an image and starts the
application inside the container. It's actually equivalent to running two separate
commands, docker container create and docker container start, which shows
that containers can have different states. You can create a container without starting it, and
you can pause, stop, and restart running containers. Containers can be in different states,
and you can use them in different ways.

Doing one thing with a task container
The dockeronwindows/ch02-powershell-env image is an example of a packaged
application that is meant to run in a container and perform a single task. The image is based
on Microsoft Nano Server and is set up to run a simple PowerShell script when it starts,
printing details about the current environment. Let's see what happens when I run a
container directly from the image:

> docker container run dockeronwindows/ch02-powershell-env
Name Value
---- -----
ALLUSERSPROFILE C:\ProgramData
APPDATA
C:\Users\ContainerAdministrator\AppData\Roaming
CommonProgramFiles C:\Program Files\Common Files
CommonProgramFiles(x86) C:\Program Files (x86)\Common Files
CommonProgramW6432 C:\Program Files\Common Files
COMPUTERNAME 361CB712CB4B
...

Without any options, the container runs a PowerShell script that is built into the image, and
the script prints out some basic information about the operating system environment. I call
that a task container because the container performs one task and then exits. If you run
docker container ls, which lists all the active containers, you won't see this container.
But if you run docker container ls --all, which shows containers in all states, you'll
see it in the Exited status:

> docker container ls --all
CONTAINER ID IMAGE COMMAND

Packaging and Running Applications as Docker Containers Chapter 2

[23]

CREATED STATUS PORTS NAMES
361cb712cb4b dockeronwindows/ch02-powershell-env "powershell.exe
c:..." 30 seconds ago Exited

Task containers are very useful in automating repetitive tasks - like running scripts to set
up an environment, backing up data, or collecting log files. Your container image packages
the script to run, along with the exact version of the engine that the script needs, so anyone
with Docker installed can run that script without having to install the engine.

This is especially useful for PowerShell, where scripts can be dependent on several
PowerShell modules. The modules may be publicly available, but your script is dependent
on specific versions. Instead of sharing a script that requires users to install the correct
version of many different modules, you build an image that has the modules already
installed. Then, you only need Docker to run the script task.

Images are self-contained units, but you can also use them as a template. An image may be
configured to do one thing, but you can run containers from the image in different ways to
do different things.

Connecting to an interactive container
An interactive container is one that has an open connection to the Docker command line, so
you work with the container as if you were connected to a remote machine. You can run an
interactive container from that same Nano Server image by specifying the interactive
options and a command to run when the container starts:

> docker container run --interactive --tty dockeronwindows/ch02-powershell-
env `
 powershell

Windows PowerShell
Copyright (C) 2016 Microsoft Corporation. All rights reserved.

PS C:\> Write-Output 'This is an interactive container'
This is an interactive container
PS C:\> exit

Packaging and Running Applications as Docker Containers Chapter 2

[24]

The --interactive option runs an interactive container, and the --tty flag attaches a
dummy terminal connection to the container. The powershell statement after the name of
the container image is the command to run when the container starts. By specifying a
command, you replace the startup command that's been set up in the image. In this case, I
start a PowerShell session, and that runs instead of the configured command, so the
environment printout script doesn't run.

An interactive container keeps running as long as the command inside is running. While
you're connected to PowerShell, running docker container ls on another window on
the host will show the container is still running. When you type exit in the container, the
PowerShell session ends, so there's no process running and the container exits too.

Interactive containers are useful when you're building your own container images, as you
can work through the steps interactively first and verify that everything will work as you
expect. They're good exploratory tools too. You'll see as you move further into this book
that Docker can host complex distributed systems in a virtual network, with each
component running in its own container. If you want to examine parts of the system, you
can run an interactive container inside the network and check on individual components,
without having to make the parts publicly accessible.

Keeping a process running in a background
container
The last type of container is the one that you'll use most in production - the background
container, which keeps a long-running process running in the background. It's a container
that behaves like a Windows Service. In Docker terminology, it's called a detached
container, and it's the Docker service that keeps it running in the background. Inside the
container, the process runs in the foreground. The process might be a web server or a
console application polling a message queue for work, but as long as the process keeps
running, Docker will keep the container alive.

I can run a background container from the same image again, specifying the detach option
and a command that runs for some minutes:

> docker container run --detach dockeronwindows/ch02-powershell-env `
 powershell Test-Connection 'localhost' -Count 100

ce7b2604f681871a8dcd2ffd8898257fad26b24edec7135e76aedd47cdcdc427

Packaging and Running Applications as Docker Containers Chapter 2

[25]

In this case, when the container has launched control returns to the terminal; the long
random string is the ID of the new container. You can run docker container ls and see
the container running, and the docker container logs command shows you the console
output from the container. For commands operating on specific containers, you can
reference them by the container name or by part of the container ID:

> docker container logs ce7

Source Destination IPV4Address IPV6Address
------ ----------- ----------- -----------
CE7B2604F681 localhost
CE7B2604F681 localhost

The --detach flag detaches the container so it moves into the background, and the
command in this case just pings localhost repeatedly one hundred times. After a few
minutes, the PowerShell command completes so there's no process running and the
container exits. That's a key thing to remember - if you want to keep a container running in
the background, the process that Docker starts when it runs the container has to keep
running.

Now you've seen that a container is created from an image, but it can run in different ways
- so you can use the image exactly as it was prepared, or treat the image as a template, with
a default startup mode built in. Next, I'll show you how to build that image.

Building a Docker image
Docker images are layered. The bottom layer is the operating system, which can be a full
OS like Windows Server Core, or a minimal OS like Microsoft Nano Server. On top of that
are layers for each change you make to the base OS when you build an image - by installing
software, copying files, and running commands. Logically, Docker treats the image as a
single unit, but physically, each layer is stored as a separate file in Docker's cache, so
images with a lot of common features can share layers from the cache.

Images are built using a text file with the Dockerfile language - specifying the base OS
image to start with, and all the steps to add on top. The language is very simple, and there
are only a few commands you need to master in order to build production-grade images.
I'll start by looking at the basic PowerShell image I've been using so far in this chapter.

Packaging and Running Applications as Docker Containers Chapter 2

[26]

Understanding the Dockerfile
The Dockerfile is the source code for an image. The complete code for the PowerShell image
is just three lines:

FROM microsoft/nanoserver
COPY scripts/print-env-details.ps1 c:\\print-env.ps1
CMD ["powershell.exe", "c:\\print-env.ps1"]

It's pretty easy to guess what's happening even if you've never seen a Dockerfile before. By
convention, the instructions (FROM, COPY and CMD) are uppercase and the arguments are
lowercase, but that's not mandatory. Also by convention, you save the text in a file called
Dockerfile, but that's not mandatory either (a file with no extension looks odd in
Windows, but remember that Docker's heritage is in Linux).

Let's take a look at the instructions in that Dockerfile line by line:

FROM microsoft/nanoserver uses the image called microsoft/nanoserver
as the starting point for this image
COPY scripts/print-env-details.ps1 c:\\print-env.ps1 copy the
PowerShell script from the local computer into a specific location on the image
CMD ["powershell.exe", "c:\\print-env.ps1"] specifies the startup
command when a container runs, in this case running the PowerShell script

There are a few obvious questions here. Where does the base image come from? Built into
Docker is the concept of an image registry, which is a store for container images. The
default registry is a free public service called Docker Hub. Microsoft has made the Nano
Server image available on Docker Hub, and that image is called microsoft/nanoserver.
The first time you use the image, Docker will download it to your local machine and then
cache it for further use.

Where does the PowerShell script get copied from? When you build an image, the directory
containing the Dockerfile is used as the context for the build. When you build an image
from this Dockerfile, Docker will expect to find a folder called scripts in the context
directory, containing a file called print-env-details.ps1. If it doesn't find that file, the
build will fail.

Dockerfiles use the backslash as an escape character in order to continue
instructions onto a new line. This clashes with Windows file paths, so you
have to write c:\print.ps1 as c:\\print.ps1 or c:/print.ps1.
There is a nice way to get around this, using a processor directive at the
start of the Dockerfile, which I'll demonstrate later in the chapter.

Packaging and Running Applications as Docker Containers Chapter 2

[27]

How do you know PowerShell is available for use? It's part of the Nano Server base image,
so you can rely on it being there. You can install any software that isn't in the base image
with additional Dockerfile instructions. You can add Windows features, copy or download
files into the image, extract ZIP files and do whatever else you need.

This is a very simple Dockerfile but even so, two of the instructions are optional. Only the
FROM instruction is mandatory, so if you wanted to build an exact clone of Microsoft's Nano
Server image, you could do that with just a FROM statement in your Dockerfile.

Building an image from a Dockerfile
Now that you have a Dockerfile, you use the docker command line to build it into an
image. Like most Docker commands, the image build command is straightforward and
has very few required options, preferring conventions instead. To build an image, open a
command line and navigate to the directory where your Dockerfile is. Then, run docker
image build and give your image a tag, which is the name that will identify the image:

docker image build --tag dockeronwindows/ch02-powershell-env .

Every image needs a tag, specified with the --tag option, which is a unique identifier for
the image in your local image cache and in image registries. The tag is how you'll refer to
the image when you run containers. A full tag specifies the registry to use, the repository
name, which is the identifier for the application and a suffix, which is the identifier for this
version of the image.

When you're building an image for yourself, you can call it anything, but the convention is
to name your repository as your username for the registry, followed by the application
name: {user}/{app}. You can use also the tag to identify application versions or
variations, such as sixeyed/hadoop-dot-net:latest and sixeyed/hadoop-dot-
net:2.7.2, which are two of my images on Docker Hub.

The period at the end of the image build command tells Docker the location of the
context to use for the image, . is the current directory. Docker copies the contents of the
directory tree into a temporary folder for the build, so the context needs to contain any files
you reference in the Dockerfile. After copying the context, Docker starts executing the
instructions in the Dockerfile.

Packaging and Running Applications as Docker Containers Chapter 2

[28]

Examining how Docker builds an image
Understanding how Docker images are constructed will help you build efficient images.
The image build command produces a lot of output, which tells you exactly what Docker
does for each step of the build. Each instruction in the Dockerfile is executed as a separate
step that produces a new image layer, and the final image will be the combined stack of all
the layers. This is the output from building my image:

> docker image build --tag dockeronwindows/ch02-powershell-env .

Sending build context to Docker daemon 3.584kB
Step 1/3 : FROM microsoft/nanoserver
 ---> d9bccb9d4cac
Step 2/3 : COPY scripts/print-env-details.ps1 c:\\print-env.ps1
 ---> a44026142eaa
Removing intermediate container 9901221bbf99
Step 3/3 : CMD powershell.exe c:\print-env.ps1
 ---> Running in 56af93a47ab1
 ---> 253feb55a9c0
Removing intermediate container 56af93a47ab1
Successfully built 253feb55a9c0
Successfully tagged dockeronwindows/ch02-powershell-env:latest

This is what's happening in these execution steps:

Step 1: The FROM image already exists in my local cache, so Docker doesn't need
to download it. The output is the ID of Microsoft's Nano Server image (starting
d9b).
Step 2: Docker creates a temporary, intermediate container from the base image
and copies the script file from the build context into the container. Then it saves
the container as a new image layer (ID a44) and removes the intermediate
container (ID 990).
Step 3: Docker configures the command to execute when a container is run from
the image. It creates a temporary container from the Step 2 image, configures the
startup command, saves the container as a new image layer (ID 253), and deletes
the intermediate container (ID 56a).

Packaging and Running Applications as Docker Containers Chapter 2

[29]

The final layer is tagged with the image name, but all the intermediate layers are also
added to the local cache. The layered approach means Docker can be very efficient when it
builds images and runs containers. The latest Windows Nano Server image is over 900 MB
uncompressed, but when you run multiple containers based from Nano Server they will all
use the same base image layers, you don't end up with multiple copies of the 900 MB
image.

You'll understand more about image layers and storage later in the chapter, but first I'll
look at some more complex Dockerfiles that package .NET and .NET Core applications.

Packaging your own applications
The goal of building an image is to package your application in a portable, self-contained
unit. The image should be as small as possible, so it's easy to move around when you want
to run the application, and it should have as few OS features as possible, so it has a fast
startup time and a small attack vector.

Docker doesn't impose restrictions on the image size. Your long-term goal may be to build
minimal images that run lightweight .NET Core applications on Linux or Nano Server. But
you can start by packaging your existing ASP.NET apps in their entirety as Docker images
to run on Windows Server Core. Docker also doesn't impose restrictions on how to package
your app, so you can choose from different approaches.

Compiling the application during the build
There are two common approaches to packaging your own apps in Docker images. The first
is to use a base image that contains the application platform and the build tools, so in your
Dockerfile, you copy the source code into the image and compile the app as a step during
the image building process.

This is a popular approach for public images because it means that anyone can build the
image without having the application platform installed locally. It also means the tooling
for the application is bundled with the image, so that can make it possible to debug and
troubleshoot the application running in the container.

Here's an example with a simple .NET Core application. This Dockerfile is for the image
dockeronwindows/ch02-dotnet-helloworld:

FROM microsoft/dotnet:1.1-sdk-nanoserver

WORKDIR /src

Packaging and Running Applications as Docker Containers Chapter 2

[30]

COPY src/ .

RUN dotnet restore; dotnet build
CMD ["dotnet", "run"]

The Dockerfile uses Microsoft's .NET Core image from Docker Hub as the base image. It's a
specific variation of the image, one which is based on Nano Server and has the .NET Core
1.1 SDK installed. The build copies in the application source code from the context, and
compiles the application as part of the container build process.

There are two new instructions in this Dockerfile which you haven't seen before:

WORKDIR specifies the current working directory. Docker creates the directory in
the intermediate container, if it doesn't already exist, and sets it to be the current
directory. It remains the working directory for the subsequent instructions in the
Dockerfile, and for containers when they run from the image.
RUN executes a command inside an intermediate container and saves the state of
the container after the command completes, creating a new image layer.

When I build this image, you'll see the dotnet command output, which is the application
being compiled from the RUN instruction in the image build:

> docker image build --tag dockeronwindows/ch02-dotnet-helloworld .
Sending build context to Docker daemon 367.1kB
Step 1/5 : FROM microsoft/dotnet:1.1-sdk-nanoserver
 ---> 80950bc5c558
Step 2/5 : WORKDIR /src
 ---> 00352af1c40a
Removing intermediate container 1167582ec3ae
Step 3/5 : COPY src/ .
 ---> abd047ca95d7
Removing intermediate container 09d543e402c5
Step 4/5 : RUN dotnet restore; dotnet build
 ---> Running in 4ec42bb93ca1
 Restoring packages for C:\src\HelloWorld.NetCore.csproj...
 Generating MSBuild file
C:\src\obj\HelloWorld.NetCore.csproj.nuget.g.props.
 Writing lock file to disk. Path: C:\src\obj\project.assets.json
 Restore completed in 10.36 sec for C:\src\HelloWorld.NetCore.csproj.
...

Packaging and Running Applications as Docker Containers Chapter 2

[31]

You'll see this approach a lot on Docker Cloud for applications built with platforms like
.NET Core, Go, and Node.js, where the tooling is easy to add to a base image. It means that
you can set up an automated build on Docker Cloud so Docker's servers build your image
from the Dockerfile when you push code changes to GitHub. The servers can do that
without having .NET Core, Go, or Node.js installed because all the build dependencies are
inside the base image.

This option means that the final image will be a lot bigger than it needs to be for a
production application. Platform tooling will probably use more disk than the app itself,
and your end result is meant to be the application - all the build tools taking up space in
your image will never be used when the container runs in production. An alternative is to
build the application first and then package the compiled binaries into your container
image.

Compiling the application before the build
Building the application first fits in neatly with existing build pipelines. Your build servers
need to have all the application platforms and build tools installed, but your finished
container image only has the minimum it needs to run the app. With this approach, the
Dockerfile for my .NET Core app becomes even simpler:

FROM microsoft/dotnet:1.1-runtime-nanoserver

WORKDIR /dotnetapp
COPY ./src/bin/Debug/netcoreapp1.1/publish .

CMD ["dotnet", "HelloWorld.NetCore.dll"]

This Dockerfile uses a different FROM image, one that contains just the .NET Core 1.1
runtime and not the tooling (so it can run a compiled application, but it can't compile one
from source). You can't build this image without building the application first, so you'll
need to wrap the docker image build command in a build script that also runs the
dotnet publish command to compile the binaries.

A simple build script that compiles the application and builds the Docker image looks like
this:

dotnet restore src; dotnet publish src

docker image build --file Dockerfile.slim --tag dockeronwindows/ch02-
dotnet-helloworld:slim .

Packaging and Running Applications as Docker Containers Chapter 2

[32]

If you put your Dockerfile instructions in a file called something other
than Dockerfile, you can build it by specifying the filename with the --
file option, as shown in this example: image build --file
Dockerfile.slim.

I've moved the requirements for the platform tooling from the image to the build server,
and that results in a smaller final image: 1.15 GB for this version compared to 1.68 GB for
the previous one. You can see the size difference by listing images, and filtering on the
image repository name:

> docker image ls --filter reference=dockeronwindows/ch02-dotnet-helloworld

REPOSITORY TAG IMAGE ID CREATED
SIZE
dockeronwindows/ch02-dotnet-helloworld latest ebdf7accda4b 6 minutes
ago 1.68GB
dockeronwindows/ch02-dotnet-helloworld slim 63aebf93b60e 13 minutes
ago 1.15GB

This new version is also a more restricted image. The source code and the .NET Core SDK
aren't packaged in the image, so you can't connect to a running container and inspect the
application code, or make changes to the code and recompile the app.

For enterprise environments, or for commercial applications, you're likely to already have a
well-equipped build server, and packaging the built app can be part of a more
comprehensive workflow:

Packaging and Running Applications as Docker Containers Chapter 2

[33]

In this pipeline, the developer pushes their changes to the central source code repository
(1). The build server compiles the application and runs unit tests - if they pass, then the
container image is built and deployed in a staging environment (2). Integration tests and
end-to-end tests are run against the staging environment, and if they pass, then your
versioned container image is a good release candidate for testers to verify (3).

You deploy a new release by running a container from the image in production, and you
know that your whole application stack is the same set of binaries which passed all the
tests.

The downside with this approach is that you need to have the application SDK installed on
all your build agents, and the versions of the SDK and all its dependencies need to match
what the developers are using. Often in Windows projects, you find CI servers with Visual
Studio installed, to ensure the server has the same tools as the developer. That makes for
heavy build servers which take a lot of effort to commission and maintain.

It also means that you can't build this Docker image yourself unless you
have the .NET Core 1.1 SDK installed on your machine.

You can get the best of both options by using a multi-stage build, where your Dockerfile
defines one step to compile your application, and another step to package it into the final
image. Multi-stage Dockerfiles are portable, so anyone can build the image with no pre-
requisites, but the final image only contains the minimum needed for the app.

Compiling with multi-stage builds
In a multi-stage build, you have multiple FROM instructions in your Dockerfile, where each
FROM instruction starts a new stage in the build. Docker executes all the instructions when
you build the image, and later stages can access the output from earlier stages, but only the
final stage is used for the completed image.

I can write a multi-stage Dockerfile for the .NET Core console app by combining the
previous two Dockerfiles into one:

build stage
FROM microsoft/dotnet:1.1-sdk-nanoserver AS builder
WORKDIR /src
COPY src/ .
RUN dotnet restore; dotnet publish

final image stage

Packaging and Running Applications as Docker Containers Chapter 2

[34]

FROM microsoft/dotnet:1.1-runtime-nanoserver
WORKDIR /dotnetapp
COPY --from=builder /src/bin/Debug/netcoreapp1.1/publish .
CMD ["dotnet", "HelloWorld.NetCore.dll"]

There are a couple of things that are new here. The first stage uses the large base image,
with the .NET Core SDK installed. I've named that stage builder, using the AS option in
the FROM instruction. The rest of that stage goes on to copy in the source code and publish
the application. When the builder stage completes, the published application will be stored
in an intermediate container.

The second stage uses the runtime .NET Core image, which doesn't have the SDK installed.
In that stage I copy the published output from the previous stage, specifying --
from=builder in the COPY instruction. Anyone can compile this application from source,
without needing .NET Core installed on their machine.

Multi-stage Dockerfiles for Windows apps are completely portable. To compile the app and
build the image, the only pre-requisite is to have a Windows machine with Docker
installed, and a copy of the code. The builder stage contains the SDK and all the compiler
tools, but the final image just has the minimum needed to run the application.

This approach isn't just for .NET Core. You can write a multi-stage Dockerfile for a .NET
Framework app, where the first stage uses an image with MSBuild installed, which you use
to compile your application. There are plenty of examples of that later in this book.

Whichever approach you take, there are just a few more Dockerfile instructions you need to
understand in order to build more complex application images, which can integrate with
other systems.

Using the main Dockerfile instructions
The Dockerfile syntax is very simple. You've already seen FROM, COPY, RUN, and CMD which
are enough to package up a basic application to run as a container. For real-world images,
you'll need to do more than that, and there are three more key instructions to understand.

Packaging and Running Applications as Docker Containers Chapter 2

[35]

Here's a Dockerfile for a simple static website - it uses Internet Information Services (IIS)
and serves an HTML page in the default website, which shows some basic details:

escape=`
FROM microsoft/iis
SHELL ["powershell"]

ARG ENV_NAME=DEV

EXPOSE 80

COPY template.html C:\template.html

RUN (Get-Content -Raw -Path C:\template.html) `
 -replace '{hostname}', [Environment]::MachineName `
 -replace '{environment}',
[Environment]::GetEnvironmentVariable('ENV_NAME') `
 | Set-Content -Path C:\inetpub\wwwroot\index.html

This Dockerfile starts differently, with the escape directive. That tells Docker to use the
backtick ` for the escape character, to split commands over multiple lines, rather than the
default backslash \. With the escape directive, I can use backslashes in file paths and
backticks to split long PowerShell commands - which is more natural to Windows users.

The base image is microsoft/iis which is a Microsoft Windows Server Core image with
IIS already set up. I copy an HTML template file from the Docker build context into the root
folder. Then I run a PowerShell command to update the content of the template file and
save it in the default website location for IIS.

In this Dockerfile, I use two new instructions:

ARG specifies a build argument to use in the image with a default value
EXPOSE will make a port available in the image, so containers from the image can
have traffic sent in by the host

Packaging and Running Applications as Docker Containers Chapter 2

[36]

This static website has a single home page, which tells you the name of the server that sent
the response, with the name of the environment in the page title. The HTML template file
has placeholders for the host name and the environment name. The RUN command executes
a PowerShell script to read the file contents, replace the placeholders with the actual host
name and environment value, and then write the contents out.

Containers run in an isolated space, and the host can only send network traffic into the
container if the image has explicitly made the port available for use. That's the EXPOSE
instruction, which you can use to expose the ports that your application is listening on.
When you run a container from this image, port 80 is available to be published so Docker
can serve web traffic from the container.

I can build this image in the usual way, and make use of the ARG specified in the Dockerfile
to override the default value at build-time with the --build-arg option:

docker image build --build-arg ENV_NAME=TEST --tag dockeronwindows/ch02-
static-website .

Docker processes the new instructions in the same way as those you've already seen—it
creates a new, intermediate container from the previous image in the stack, executes the
instruction, and extracts a new image layer from the container. After the build, I have a new
image that I can run to start the static web server:

> docker container run --detach --publish 80 dockeronwindows/ch02-static-
website

3472a4f0efdb7f4215d49c44dcbfc81eae0426c1fc56ad75be86f63a5abf9b0e

This is a detached container so it runs in the background, and the --publish option makes
port 80 in the container available to the host. Published ports mean traffic coming into the
host can be directed into containers by Docker. But when I'm logged into the host like on
my dev machine - I need to use the container's IP address to use the app. I can find the IP
address with docker container inspect. The inspect command returns a lot of data,
but I can pass a format string to just return the attribute I want, so this gives me the IP
address of the container:

> docker container inspect --format '{{
.NetworkSettings.Networks.nat.IPAddress }}' 3472
172.26.204.5

Packaging and Running Applications as Docker Containers Chapter 2

[37]

That's a virtual IP address assigned by Docker, which I can use on the host to communicate
with the container. I can browse to that IP address and see the response from IIS running
inside the container, showing me the host name - which is actually a container ID, and in
the title bar there is the name of the environment:

The environment name is just a text description, but the value came from the argument
passed to the docker image build command - which overrides the default value from
the ARG instruction in the Dockerfile. The hostname should show the container ID, but
there's a problem with the current implementation.

On the web page, the hostname starts F5D2, but my container ID actually starts with 3472.
To understand that, I'll look again at the temporary containers used during image builds.

Understanding temporary containers and image
state
My website container has an ID that starts 3472, which is the hostname the application
inside the container should see, but that's not what the website claims. So what went
wrong? Remember that Docker executes every build instruction inside a temporary,
intermediate container.

Packaging and Running Applications as Docker Containers Chapter 2

[38]

The RUN instruction to generate the HTML ran in a temporary container, so the PowerShell
script wrote that container's ID as the hostname in the HTML file. The intermediate
container gets removed by Docker, but the HTML file it created is persisted in the image.

This is an important concept - when you build a Docker image, the instructions execute
inside temporary containers. The containers are removed, but the state they write is
persisted in the final image and will be present in any containers you run from that image.
If I run multiple containers from my website image, they will all show the same hostname
from the HTML file, because that's saved inside the image, which is shared by all
containers.

Of course you can store state in individual containers, which is not part of the image so it's
not shared between containers. I'll look at how to work with data in Docker now and then
finish the chapter with a real-world Dockerfile example.

Working with data in Docker images and
containers
Applications running in a Docker container see a single filesystem that they can read from
and write to in the usual way for the operating system. The container sees a single
filesystem drive but it's actually a virtual filesystem, and the underlying data can be in
many different physical locations.

Files that a container can access on its C drive could actually be stored in an image layer, in
the container's own storage layer, or in a volume that is mapped to a location on the host.
Docker merges all these locations into a single virtual filesystem.

Data in layers and the virtual C drive
The virtual filesystem is how Docker can take a set of physical image layers and treat them
as one logical container image. Image layers are mounted as read-only parts of the
filesystem in a container, so they can't be altered, and that's how they can be safely shared
by many containers.

Packaging and Running Applications as Docker Containers Chapter 2

[39]

Each container has its own writable layer on top of all the read-only layers, so every
container can modify its own data without affecting any other containers:

This diagram shows two containers running from the same image. The image (1) is
physically composed of many layers - one built from each instruction in the Dockerfile. The
two containers (2 and 3) use the same layers from the image when they run, but they each
have their own isolated, writeable layers.

Docker presents a single filesystem to the container. The concept of layers and read-only
base layers is hidden, and your container just reads and writes data as if it had a full native
filesystem, with a single drive. If you create a file when you build a Docker image and then
edit the file inside a container, Docker actually creates a copy of the changed file in the
container's writable layer and hides the original read-only file. So the container has edited a
copy of the file, but the original file in the image is unchanged.

You can see this by creating some simple images with data in different layers. The
Dockerfile for the image dockeronwindows/ch02-fs-1 uses Nano Server as the base
image, creates a directory, and writes a file into it:

escape=`
FROM microsoft/nanoserver

RUN md c:\data `
 echo 'from layer 1' > c:\data\file1.txt

Packaging and Running Applications as Docker Containers Chapter 2

[40]

The Dockerfile for the image dockeronwindows/ch02-fs-2 creates an image based from
that image, and adds a second file to the data directory:

escape=`
FROM dockeronwindows/ch02-fs-1

RUN echo 'from image 2' > c:\data\file2.txt

There's nothing special about base images - any image can be used in the
FROM instruction for a new image. It can be an official image curated on
the Docker Hub, a commercial image from Docker Store, a local image
built from scratch, or an image that is many levels deep in a hierarchy.

I'll build both images and run an interactive container from dockeronwindows/ch02-
fs-2, so I can take a look at the files on the C drive. This command starts a container and
gives it an explicit name, c1, so I can work with it without using the random container ID:

docker container run -it --name c1 dockeronwindows/ch02-fs-2 powershell

Many options in Docker commands have short and long forms. The long
form starts with two dashes, like --interactive. The short form is a
single letter and starts with a single dash, like -i. Short tags can be
combined, so -it is equivalent to -i -t, which is equivalent to --
interactive --tty. Run docker --help to navigate the commands
and their options.

The ls command is a PowerShell alias for Get-ChildItem, which I can use to list the
directory contents inside the container:

> ls C:\data

 Directory: C:\data

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/22/2017 7:35 AM 17 file1.txt
-a---- 6/22/2017 7:35 AM 17 file2.txt

Both the files are there for the container to use in the C:\data directory - the first file is in a
layer from the ch02-fs-1 image, and the second file is in a layer from the ch02-fs-2
image. The PowerShell executable is available from another layer in the base Nano Server
image, and the container sees them all in the same way.

Packaging and Running Applications as Docker Containers Chapter 2

[41]

I'll append some more text to one of the existing files and create a new file in the c1
container:

PS C:\> echo ' * ADDITIONAL * ' >> c:\data\file2.txt
PS C:\> echo 'New!' > c:\data\file3.txt
PS C:\> ls c:\data

 Directory: C:\data

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/22/2017 7:35 AM 17 file1.txt
-a---- 6/22/2017 7:47 AM 53 file2.txt
-a---- 6/22/2017 7:47 AM 14 file3.txt

From the file listing, you can see that file2.txt from the image layer has been modified
and there is a new file, file3.txt. Now I'll exit this container and create a new one using
the same image:

PS C:\> exit
PS> docker container run -it --name c2 dockeronwindows/ch02-fs-2 powershell

What are you expecting to see in the C:\data directory in this new container? Let's take a
look:

> ls C:\data

Directory: C:\data

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 6/22/2017 7:35 AM 17 file1.txt
-a---- 6/22/2017 7:35 AM 17 file2.txt

You know that image layers are read-only and every container has its own writeable layer,
so the results should be clear. The new container c2 has the original files from the image
without the changes from the first container c1 - which are stored in the writeable layer for
c1. Each container's filesystem is isolated, so one container doesn't see any changes made
by another container.

If you want to share data between containers, or between containers and the host, you can
use Docker volumes.

Packaging and Running Applications as Docker Containers Chapter 2

[42]

Sharing data between containers with volumes
Volumes are defined in an image with the VOLUME instruction, specifying a directory path.
When you run a container with a volume defined, the volume is mapped to a physical
location on the host, which is specific to that one container. More containers running from
the same image will have their volume mapped to a different host location.

In Windows, volume directories need to be empty - in your Dockerfile, you can't create files
in a directory and then expose it as a volume. Volumes also need to be defined on a disk
that exists in the image. In the Windows base images, there is only a C drive available, so
volumes need to be created on the C drive.

The Dockerfile for dockeronwindows/ch02-volumes creates an image with two volumes:

escape=`
FROM microsoft/nanoserver

VOLUME C:\app\config
VOLUME C:\app\logs

ENTRYPOINT powershell

When I run a container from that image, Docker creates a virtual filesystem from three
sources. The image layers are read-only, the container's layer is writeable, and the volumes
can be set to read-only or writeable:

Packaging and Running Applications as Docker Containers Chapter 2

[43]

Because volumes are separate from the container, they can be shared with other containers
even if the source container isn't running. I can run a task container from this image, with a
command to create a new file in the volume:

docker container run --name source dockeronwindows/ch02-volumes "echo
'start' > c:\app\logs\log-1.txt"

Docker starts the container, which writes the file, and then exits. The container and its
volumes haven't been deleted, so I can connect to the volumes in another container using
the --volumes-from option and by specifying my first container's name:

docker container run -it --volumes-from source dockeronwindows/ch02-volumes

This is an interactive container, and when I list the contents of the C:\app directory, I'll see
the two directories logs and config, which are volumes from the first container:

> ls C:\app

 Directory: C:\app

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----l 6/22/2017 8:11 AM config
d----l 6/22/2017 8:11 AM logs

The shared volume has read and write access, so I can see the file created in the first
container and append to it:

PS C:\> cat C:\app\logs\log-1.txt
start

PS C:\> echo 'more' >> C:\app\logs\log-1.txt

PS C:\> cat C:\app\logs\log-1.txt
start
more

Sharing data between containers like this is very useful - you can run a task container that
takes a backup of data or log files from a long-running background container. The default
access is for volumes to be writeable, but that's something to be wary of, as you could edit
data and break the application running in the source container.

Packaging and Running Applications as Docker Containers Chapter 2

[44]

Docker lets you mount volumes from another container in the read-only mode instead by
adding the :ro flag to the name of the container in the --volumes-from option. This is a
safer way to access data if you want to read it without making changes. I'll run a new
container, sharing the same volumes from the original container in read-only mode:

> docker container run -it --volumes-from source:ro dockeronwindows/ch02-
volumes

PS C:\> cat C:\app\logs\log-1.txt
start
more

PS C:\> echo 'more' >> C:\app\logs\log-1.txt
out-file : Access to the path 'C:\app\logs\log-1.txt' is denied.
At line:1 char:1
+ echo 'more' >> C:\app\logs\log-1.txt
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : OpenError: (:) [Out-File], UnauthorizedAccessException
 + FullyQualifiedErrorId :
FileOpenFailure,Microsoft.PowerShell.Commands.OutFileCommand

In the new container, I can't write to the log file. However I can see the content in the log
file from the original container, and the line appended by the second container.

Sharing data between container and host with
volumes
Container volumes are stored on the host, so you can access them directly from the
machine running Docker - but they'll be in a nested directory somewhere in Docker's
program data directory. The docker container inspect command tells you the
physical location for a container's volumes, along with a lot more information - I've used it
previously to fetch the container's IP address.

I can use explicit JSON formatting in the container inspect command, and extract just
the volume information which is in the Mounts field. This command pipes the Docker
output into a PowerShell cmdlet to show the JSON in a friendly format:

> docker container inspect --format '{{ json .Mounts }}' source |
ConvertFrom-Json

Type : volume
Name : 3514e9620e667028b7e3ca8bc42f3615ea94108e2c08875d50c102c9da7cbc06
Source : C:\ProgramData\Docker\volumes\3514e96..._data
Destination : c:\app\config

Packaging and Running Applications as Docker Containers Chapter 2

[45]

Driver : local
RW : True

Type : volume
Name : a342dc516e19fe2b84d7514067d48c17e5324bbda5f3e97962b1ad8fa4043247
Source : C:\ProgramData\Docker\volumes\a342dc5..._data
Destination : c:\app\logs
Driver : local
RW : True

I've abbreviated the output, but in the source file you can see the full path where the
volume data is stored on the host. I can access the container's files directly from the host,
using the source directory. When I run this command on my Windows machine, I'll see the
file created inside the container volume:

> ls C:\ProgramData\Docker\volumes\a342dc5..._data

Directory: C:\ProgramData\Docker\volumes\a342dc5..._data

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 22/06/2017 08:13 28 log-1.txt

Accessing the files on the host is possible this way, but it's awkward to use the nested
directory location with the volume ID. Instead, you can mount a volume from a specific
location on the host when you create a container.

Mounting volumes from host directories
You use the --volume option to explicitly map a directory in a container from a known
location on the host. The target location in the container can be a directory created with the
VOLUME command, or any directory in the container's filesystem. The source is the location
on the host filesystem.

I'll create a dummy configuration file for my app in a directory on the C drive on my
Windows machine:

PS> mkdir C:\app-config | Out-Null
PS> echo 'VERSION=17.06' > C:\app-config\version.txt

Packaging and Running Applications as Docker Containers Chapter 2

[46]

Now I'll run a container which maps a volume from the host, and read the configuration
file which is actually stored on the host:

> docker container run `
 --volume C:\app-config:C:\app\config `
 dockeronwindows/ch02-volumes `
 cat C:\app\config\version.txt
VERSION=17.06

The --volume option specifies the mount in the format {source}:{target}. The source
is the host location, which needs to exist. The target is the container location, which does
not need to exist - but needs to be empty if it does exist.

Volume mounts are different in Windows and Linux containers. In Linux
the target folder does not need to be empty, and Docker will merge the
contents from the source into the target. Docker on Linux also lets you
mount a single file location, but on Windows you can only mount whole
directories.

Volume mounts are useful for running stateful applications in containers, like databases.
You can run SQL Server in a container, and have the database files stored in a location on
the host - which could be a RAID array on the server. When you have schema updates, you
remove the old container and start a new container from the updated Docker image. You
use the same volume mount for the new container, so the data is preserved from the old
container.

Using volumes for configuration and state
Application state is an important consideration when you're running applications in
containers. Containers can be long-running, but they are not intended to be permanent.
One of the biggest advantages with containers over traditional compute models is that you
can easily replace them, and the replacement starts in seconds. When you have a new
feature to deploy, or a security vulnerability to patch, you just build an upgraded image,
stop the old container, and start a replacement from the new image.

Packaging and Running Applications as Docker Containers Chapter 2

[47]

Volumes let you manage that upgrade process by keeping your data separate from your
application container. I'll demonstrate this with a simple web application that stores the hit
count for a page in a text file - each time you browse to the page, the site increments the
count.

The Dockerfile for the image dockeronwindows/ch02-hitcount-website uses multi-
stage builds, compiling the application using the microsoft/dotnet image and packaging
the final app using microsoft/aspnetcore as the base:

escape=`
FROM microsoft/dotnet:1.1.2-sdk-nanoserver AS builder
WORKDIR C:\src
COPY src .
RUN dotnet restore; dotnet publish

app image
FROM microsoft/aspnetcore:1.1.2-nanoserver
WORKDIR C:\dotnetapp
RUN New-Item -Type Directory -Path .\app-state

CMD ["dotnet", "HitCountWebApp.dll"]
COPY --from=builder C:\src\bin\Debug\netcoreapp1.1\publish .

In the Dockerfile I create an empty directory at C:\dotnetapp\app-state which is where
the application will store the hit count in a text file. I've built the first version of the app into
an image with the v1 tag:

docker image build --tag dockeronwindows/ch02-hitcount-website:v1 .

I'll create a directory on the host to use for the container's state, and run a container that
mounts the application state directory from a directory on the host:

mkdir C:\app-state

docker container run -d -P `
 -v C:\app-state:C:\dotnetapp\app-state `
 --name appv1
 dockeronwindows/ch02-hitcount-website:v1

Packaging and Running Applications as Docker Containers Chapter 2

[48]

I can get the IP address of the container from docker container inspect, and then
browse to the site. When I refresh the page a few times I'll see the hit count increasing:

Now when I have an upgraded version of the app to deploy, I can package it into a new
image tagged with v2. When the image is ready, I can stop the old container and start a
new one, using the same volume mapping:

PS> docker container stop appv1
appv1

PS> docker container run -d -P `
 -v C:\app-state:C:\dotnetapp\app-state `
 --name appv2
 dockeronwindows/ch02-hitcount-website:v2

f6433a09e9479d76db3cd0bc76f9f817acfc6c52375c5e33dbc1d4c9780feb6d

The volume containing the application state is being reused, so the new version will
continue using the saved state from the old version. I have a new container with a new IP
address. When I browse to it for the first time, I see the updated UI with an attractive icon,
but the hit count is carried forward from version 1:

Packaging and Running Applications as Docker Containers Chapter 2

[49]

Application state can have structural changes between versions, which is something you
will need to manage yourself. The Docker image for the open source Git server, GitLab, is a
good example of this - the state is stored in a database on a volume, and when you upgrade
to a new version, the app checks the database and runs upgrade scripts, if needed.

Application configuration is another place to make use of volumes. You can ship your
application with a default configuration set built into the image but with a volume created
for users to override the base configuration with their own values.

You'll see these techniques put to good use in the next chapter.

Packaging a traditional ASP.NET web app as
a Docker image
Microsoft has made the Windows Server Core base image available on Docker Hub, and
that's a version of Windows Server 2016 which has much of the functionality of the full
server edition but without the UI. As base images go, it's very large - 5 GB compressed on
Docker Hub, compared to 380 MB for Nano Server, and 2 MB for the tiny Alpine Linux
image. But it means you can Dockerize pretty much any existing Windows app, and that's a
great way to start migrating your systems to Docker.

Packaging and Running Applications as Docker Containers Chapter 2

[50]

Remember NerdDinner? It was an open source ASP.NET MVC showcase app, originally
written by Scott Hanselman and Scott Guthrie - among others at Microsoft. You can still get
the code at CodePlex, but there hasn't been a change committed since 2013, so it's an ideal
candidate for proving that old ASP.NET apps can be migrated to Docker, and that can be
the first step in modernizing them.

Writing a Dockerfile for NerdDinner
I'll follow the multi-stage build approach for NerdDinner, so the Dockerfile for the
dockeronwindows/ch-02-nerd-dinner images starts with a builder stage:

escape=`
FROM sixeyed/msbuild:netfx-4.5.2-webdeploy-10.0.14393.1198 AS builder

WORKDIR C:\src\NerdDinner
COPY src\NerdDinner\packages.config .
RUN nuget restore packages.config -PackagesDirectory ..\packages

COPY src C:\src
RUN msbuild .\NerdDinner\NerdDinner.csproj /p:OutputPath=c:\out\NerdDinner
`
 /p:DeployOnBuild=true `
/p:VSToolsPath=C:\MSBuild.Microsoft.VisualStudio.Web.targets.14.0.0.3\tools
\VSToolsPath

The stage uses sixeyed/msbuild as the base image for compiling the application, which is
an image I maintain on Docker Cloud. That image installs MSBuild, NuGet and the other
dependencies you need for packaging a Visual Studio Web project, without using Visual
Studio. The build stage happens in two parts:

First, copy the NuGet packages.config file into the image, and then run nuget
restore

Next, copy the rest of the source tree and run msbuild

Packaging and Running Applications as Docker Containers Chapter 2

[51]

Separating those parts means Docker will use multiple image layers, the first layer will
contain all the restored NuGet packages and the second layer will contain the compiled
web app. This means I can take advantage of Docker's layer caching. Unless I change my
NuGet references, the packages will be loaded from the cached layer and Docker won't run
the restore part, which is an expensive operation. The MSBuild step will run every time any
source files change.

If I had a deployment guide for NerdDinner, before the move to Docker, it would look
something like this:

Install Windows on a clean server
Run all Windows Updates
Install IIS
Install .NET
Set up ASP.NET
Copy the web app into the C drive
Create an application pool in IIS
Create the website in IIS using the application pool
Delete the default website

This will be the basis for the second stage of the Dockerfile, but I will be able to simplify all
the steps. I can use microsoft/aspnet as the FROM image, which gives me a clean install
of Windows with IIS and ASP.NET installed. That takes care of the first five steps in one
instruction. This is the remainder of the Dockerfile for dockeronwindows/ch-02-nerd-
dinner:

FROM microsoft/aspnet:windowsservercore-10.0.14393.1198
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

WORKDIR C:\nerd-dinner

RUN Remove-Website -Name 'Default Web Site'; `
 New-Website -Name 'nerd-dinner' -Port 80 -PhysicalPath 'c:\nerd-dinner'
-ApplicationPool '.NET v4.5'

RUN & c:\windows\system32\inetsrv\appcmd.exe unlock config
/section:system.webServer/handlers

COPY --from=builder C:\out\NerdDinner_PublishedWebsites\NerdDinner
C:\nerd-dinner

Packaging and Running Applications as Docker Containers Chapter 2

[52]

Using the escape directive and SHELL instruction lets me use normal Windows file paths
without double backslashes and PowerShell-style backticks to separate commands over
many lines. Removing the default website and creating a new website in IIS is simple with
PowerShell, and the Dockerfile clearly shows me the port the app is using and the path of
the content.

I'm using the built-in .NET 4.5 application pool, which is a simplification from the original
deployment process. In IIS on a VM, you'd normally have a dedicated application pool for
each website in order to isolate processes from each other. But in the containerized app,
there will be only one website running - another website would be in another container, so
we already have isolation, and each container can use the default application pool without
worrying about interference.

The final COPY instruction copies the published web application from the builder stage into
the application image. It's the last line in the Dockerfile to take advantage of Docker's
caching again. When I'm working on the app, the source code is the most frequent thing to
change. The Dockerfile is structured so that when I change code and run docker image
build the only instructions that run are MSBuild in the first stage and the copy in the
second stage, so the build is very fast.

This could be all you need for a fully functioning Dockerized ASP.NET website, but in the
case of NerdDinner, there is one more instruction, which proves that you can cope with
awkward, unexpected details when you containerize your application. The NerdDinner
app has some custom configuration settings in the system.webServer section of its
Web.config file, and by default that section is locked by IIS. I need to unlock the section,
which I do with appcmd in the second RUN instruction.

Now I can build the image and can run a legacy ASP.NET app in a Windows container:

docker container run -d -P dockeronwindows/ch02-nerd-dinner

I can get the container's IP address with docker container inspect, and browse to the
NerdDinner homepage:

Packaging and Running Applications as Docker Containers Chapter 2

[53]

At this point, the app isn't fully functional - I just have a basic version running. The Bing
Maps object doesn't show a real map because I haven't provided an API key. The API key is
something that will change for every environment (each developer, the test environments,
and production will have different keys). In Docker you manage environment
configuration with environment variables, which I will use for the next iteration of the
Dockerfile in Chapter 3, Developing Dockerized .NET and .NET Core Applications.

If you navigate around this version of NerdDinner and try to register a new user or search
for a dinner, you'll see a yellow screen crash page telling you the database isn't available. In
its original form, NerdDinner uses SQL Server LocalDB as a lightweight database and
stores the database file in the app directory. I could install the LocalDB runtime into the
container image, but that doesn't fit with the Docker philosophy of having one function per
container. Instead, I'll build a separate image for the database so I can run it in its own
container.

Packaging and Running Applications as Docker Containers Chapter 2

[54]

I'll be iterating on the NerdDinner example in the next chapter, adding environment
variables, running SQL Server as a separate component in its own container, and
demonstrating how you can start modernizing traditional ASP.NET apps by making use of
the Docker platform.

Summary
In this chapter, I took a closer look at Docker images and containers. Images are packaged
applications, and containers are instances of an application, run from an image. You can
use containers to do simple fire-and-forget tasks, you can work with them interactively, or
have them running in the background. As you start to use Docker more, you'll find yourself
doing all three.

The Dockerfile is the source to build an image. It's a simple text file with a small number of
instructions to specify a base image, copy files, and run commands. You use the Docker
command-line tool to build an image, which is very easy to add as a step to your CI build.
When a developer pushes code that passes all the tests, the output of the build will be a
versioned Docker image, which you can deploy to any host knowing that it will always run
in the same way.

I looked at a few simple Dockerfiles in this chapter, and finished with a real-world
application. NerdDinner is a legacy ASP.NET MVC app that was built to run on Windows
and IIS. Using multi-stage builds I packaged that legacy app into a Docker image and ran it
in a container. This shows that the new model of compute that Docker offers isn't just for
greenfield projects using .NET Core and Nano Server - you can migrate existing apps to
Docker and put yourself in a good place to start modernizing them.

In the next chapter, I'll use Docker to modernize the architecture of NerdDinner, breaking
features out into separate components and using Docker to plug them all together.

3
Developing Dockerized .NET
and .NET Core Applications

Docker is a platform for packaging, distributing, and running applications. When you
package your applications as Docker images, they all have the same shape, you can deploy,
manage, secure, and upgrade them all in the same way. All Dockerized applications have
the same requirements to run them: the Docker Engine running on a compatible operating
system. Applications run in isolated environments, so you can host different application
platforms and different platform versions on the same machine with no interference.

In the .NET world, this means you can run multiple workloads on a single Windows
machine, they could be ASP.NET websites or Windows Communication Foundation
(WCF) apps on .NET console applications or .NET Windows Services. You saw in the
previous chapter that you can Dockerize legacy .NET applications without any code
change, but Docker has some simple expectations about how applications running inside
containers should behave, so they can get the full benefit of the platform.

In this chapter, you'll look at how to build applications so they can take complete
advantage of the Docker platform, including the following:

The integration points between Docker and your application
Configuring your application with environment variables
Monitoring applications with health checks
Running distributed solutions with components in different containers

This will help you develop .NET and .NET Core applications that behave in the way
Docker expects, so you can manage them fully with Docker.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[56]

Building good citizens for Docker
The Docker platform makes very few demands on applications that want to use it. You're
not restricted to certain languages or frameworks, and you don't need to use special
libraries to communicate from the app to the container and you don't need to structure
your application in a certain way.

To support the widest possible range of applications, Docker uses the console to
communicate between the application and the container runtime. Application logs and
error messages are expected on the console output and error streams. Storage managed by
Docker is presented as a normal disk to the operating system, and Docker's networking
stack is transparent. The application appears to be running on its own machine, connected
to other machines by a normal TCP/IP network.

A good citizen for Docker is an app that makes very few assumptions about the system it's
running on and uses basic mechanisms that all operating systems support: the filesystem,
environment variables, networking, and the console. Most importantly, the application
should only do one thing. As you've seen, when Docker runs a container, it starts the
process specified in the Dockerfile or the command line, and it watches that process. When
the process ends, the container exits, so ideally, you should build your app to have a single
process, which ensures Docker is watching the process that matters.

These are recommendations, though, not requirements. You can start multiple processes in
a bootstrap script when a container runs and Docker will run it happily, but it will only
monitor the last process that started. Your apps can write log entries to local files instead of
the console and Docker will still run them, but you won't see any output if you use Docker
to check the container logs.

In .NET, you can easily meet the recommendations by running a console application, which
provides a simplified integration between the application and the host, and it's one reason
why all .NET Core apps - including websites and web APIs run as console applications. For
legacy .NET apps, you won't be able to make them into perfect citizens, but you can extend
them to make good use of the Docker platform.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[57]

Hosting Internet Information Services (IIS)
applications in Docker
Complete .NET Framework apps can be easily packaged into Docker images, but there are
some limitations you need to be aware of. Microsoft provides Nano Server and Windows
Server Core base images on Docker Hub. The complete .NET Framework doesn't run on
Nano Server, so to host your existing .NET apps in Docker, you need to use the Windows
Server Core base image.

Running from Windows Server Core means your application images will be around 10 GB
in size, the bulk of which is in the base image. You have a complete Windows Server
operating system, with all the packages available to enable Windows Server features, such
as DNS and DHCP, even though you only want to use it for a single application role. It's
perfectly reasonable to run containers from Windows Server Core, but you need to be
aware of the implications:

The base image has a large surface area with a lot of software installed, which
means it's likely to have more frequent security and functional patches
The OS runs a lot of its own processes in addition to your application process, as
several core parts of Windows run as background Windows services
Windows has its own application platforms, with high-value feature sets for
hosting and management, which do not natively integrate with the Docker
approach

You can take an ASP.NET web application and dockerize it in a few hours. It will build into
a large Docker image that takes longer to distribute and start up than an application built
on a lightweight, modern application stack. But you still have a single package with your
whole application deployed, configured, and ready to run. This is a big step in improving
quality and reducing deployment time, and it can be the first part of a program to
modernize a legacy application.

To integrate an ASP.NET app more closely with Docker, you can modify how IIS logs are
written and specify how Docker checks whether the container is healthy without any
changes to the application code. If changing code is part of your modernization program,
then with minimal changes, you can use the container's environment variables for
application configuration.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[58]

Configuring IIS for Docker-friendly logging
IIS writes log entries to text files, recording HTTP requests and responses. You can
configure exactly what fields are written, but the default installation records useful things,
such as the route of the HTTP request, the response status code, and the time taken for IIS
to respond. It would be good to surface these logs entries to Docker, but IIS manages its
own log files, buffering entries before writing them to the disk and rotating log files to
manage the disk space.

Log management is a fundamental part of application platforms, which is why IIS takes
care of it for web apps, but Docker has its own logging system. Docker logging is far more
powerful and pluggable than the text filesystem that IIS uses, but it only reads log entries
from the container's console output stream. You can't have IIS writing logs to the console
because it runs in a background Windows Service with no console attached, so you need a
different approach.

There are two options for this. The first is to build an HTTP module that plugs into the IIS
platform with an event handler that receives logs from IIS. This handler can publish all
messages to a queue or a Windows pipe, so you don't change how IIS logs; you just add
another log sink. Then, you'd package your web application together with a console app
that listened for published log entries and relayed them on the console. The console app
would be the entry point when a container starts, so every IIS log entry would get routed to
the console for Docker to read.

The HTTP module approach is robust and scalable, but it adds more complexity than we
need when we're getting started. A simpler option is to configure IIS to write all log entries
to a single text file and in the startup command for the container run a PowerShell script to
watch that file and echo new log entries to the console. When the container is running, all
the IIS log entries get echoed to the console, which surfaces them to Docker.

To set this up in the Docker image, you first need to configure IIS so it writes all log entries
from any site to a single file, and it lets the file grow without rotating it. You can do this
with PowerShell, using the Set-WebConfigurationProperty cmdlet in the Dockerfile,
modifying the central logging properties at the application host level. I use this cmdlet in
the Dockerfile for the dockeronwindows/ch03-iis-log-watcher image:

RUN Set-WebConfigurationProperty -p 'MACHINE/WEBROOT/APPHOST' -fi
'system.applicationHost/log' -n 'centralLogFileMode' -v 'CentralW3C'; `
 Set-WebConfigurationProperty -p 'MACHINE/WEBROOT/APPHOST' -fi
'system.applicationHost/log/centralW3CLogFile' -n 'truncateSize' -v
4294967295; `
 Set-WebConfigurationProperty -p 'MACHINE/WEBROOT/APPHOST' -fi
'system.applicationHost/log/centralW3CLogFile' -n 'period' -v 'MaxSize'; `
 Set-WebConfigurationProperty -p 'MACHINE/WEBROOT/APPHOST' -fi

Developing Dockerized .NET and .NET Core Applications Chapter 3

[59]

'system.applicationHost/log/centralW3CLogFile' -n 'directory' -v
'C:\iislog'

This configures IIS to log all entries to a file in C:\iislog, and to set the maximum file size
for log rotation, letting the log file grow to 4 GB. That's plenty of room to play with;
remember containers that are not meant to be long-lived, so we shouldn't have gigabytes of
log entries in a single container. IIS still uses a subdirectory format for the log file, so the
actual log file path will be C:\iislog\W3SVC\u_extend1.log. Now that I have a known
log file location, I can use PowerShell to echo log entries to the console.

I do that in the CMD instruction, so the final command that Docker runs and monitors is the
PowerShell cmdlet to echo log entries. When new entries are written to the console, they get
picked up by Docker. PowerShell makes it easy to watch the file, but there's a complication
because the file needs to exist before PowerShell can watch it. In the Dockerfile, I use
multiple commands at startup:

 CMD Start-Service W3SVC; `
 Invoke-WebRequest http://localhost -UseBasicParsing | Out-Null; `
 netsh http flush logbuffer | Out-Null; `
 Get-Content -path 'c:\iislog\W3SVC\u_extend1.log' -Tail 1 -Wait

There are four parts to this command:

Start the IIS Windows service (W3SVC)
Make an HTTP GET request to the localhost, which starts the IIS worker process
and writes the first log entry
Flush the HTTP log buffer, so the log file gets written to the disk and exists for
PowerShell to watch
Read the content of the log file in the tail mode, so any new lines written to the
file get shown on the console.

I can run a container from this image in the usual way:

 docker container run -d -P --name log-watcher dockeronwindows/ch03-iis-
log-watcher

When I send some traffic to the site by browsing to the container's IP address (or using
Invoke-WebRequest in PowerShell), I can see the IIS log entries that are relayed to Docker
from the Get-Content cmdlet using docker container logs:

> docker container logs log-watcher
2017-06-22 10:38:54 W3SVC1 ::1 GET / - 80 - ::1
Mozilla/5.0+(Windows+NT;+Windows+NT+10.0;+en-
US)+WindowsPowerShell/5.1.14393.1066 - 200 0 0 251
2017-06-22 10:39:21 W3SVC1 172.26.207.181 GET / - 80 - 172.26.192.1

Developing Dockerized .NET and .NET Core Applications Chapter 3

[60]

Mozilla/5.0+(Windows+NT+10.0;+WOW64)+AppleWebKit/537.36+(KHTML,+like+Gecko)
+Chrome/59.0.3071.90+Safari/537.36+Vivaldi/1.91.867.38 - 200 0 0 0
2017-06-22 10:39:21 W3SVC1 172.26.207.181 GET /iisstart.png - 80 -
172.26.192.1
Mozilla/5.0+(Windows+NT+10.0;+WOW64)+AppleWebKit/537.36+(KHTML,+like+Gecko)
+Chrome/59.0.3071.90+Safari/537.36+Vivaldi/1.91.867.38
http://172.26.207.181/ 200 0 0 119

IIS always buffers log entries in the memory before writing them to the
disk, so it micro-batches the writes to improve performance. The flush
happens every 60 seconds or when the buffer is 64 KB in size. If you want
to force the IIS log in a container to flush, use the same netsh command I
used in the Dockerfile: docker container exec log-watcher netsh
http flush logbuffer. You'll see an Ok output, and new entries will be
there in docker container logs.

I've added configuration to IIS in the image and a new command, which means all IIS log
entries get echoed to the console. This will work for any application hosted in IIS, so I can
echo HTTP logs for ASP.NET applications and static websites without any changes to the
apps or the site content. Console output is where Docker looks for log entries, so this simple
extension integrates logging from the existing application into the new platform.

Promoting environment variables
Modern apps increasingly use environment variables for configuration settings because
they're supported by practically every platform, from physical machines to serverless
functions. All platforms use environment variables in the same way, as a store of key-value
pairs, so using environment variables for configuration, you make your app highly
portable.

ASP.NET apps already have a rich configuration framework in Web.config, but with some
small code changes, you can take key settings and move them to environment variables.
This lets you build one Docker image for your app, which you can run in different
environments, setting environment variables in containers to change configuration.

Docker lets you specify environment variables in the Dockerfile and give them initial
default values. The ENV instruction sets environment variables, and you can set either one
variable or many variables in each ENV, this example is from the Dockerfile for
dockeronwindows/ch03-iis-environment-variables:

 ENV A01_KEY A01 value
 ENV A02_KEY="A02 value" `
 A03_KEY="A03 value"

Developing Dockerized .NET and .NET Core Applications Chapter 3

[61]

Settings added to the Dockerfile with ENV become part of the image, so every container you
run from the image will have these values set. When you run a container, you can add new
environment variables or replace the value of existing image variables using the --env or -
e option. You can see how environment variables work with a simple Nano Server
container:

> docker container run `
 --env ENV_01='Hello' --env ENV_02='World' `
 microsoft/nanoserver `
 powershell 'Write-Output $env:ENV_01 $env:ENV_02'
Hello
World

With apps hosted in IIS, there's a complication in using environment variables from
Docker. When IIS starts, it reads all the environment variables from the system and caches
them. When Docker runs a container with environment variables set, it writes them at the
process level, but that's after IIS has cached the original values, so they don't get updated
and IIS applications won't see the new value. IIS doesn't cache machine-level environment
variables in the same way, though, so we can promote the values set by Docker to machine-
level environment variables, and IIS apps will be able to read them.

Promoting environment variables can be done by copying them from the process level to
the machine level. This PowerShell script does that by looping through all process-level
variables and copying them to machine-level unless the machine-level key already exists:

 foreach($key in
[System.Environment]::GetEnvironmentVariables('Process').Keys) {
 if ([System.Environment]::GetEnvironmentVariable($key, 'Machine') -eq
$null) {
 $value = [System.Environment]::GetEnvironmentVariable($key,
'Process')
 [System.Environment]::SetEnvironmentVariable($key, $value,
'Machine')
 }
 }

I can use this script block to the CMD instruction in my Dockerfile, but if I add that to the
block to echo the log, the command runs to 10 lines, and it gets difficult to manage inside
the Dockerfile. Instead, I've put the environment commands and the log echo commands
into one script file and used that as ENTRYPOINT:

COPY bootstrap.ps1 C:\
ENTRYPOINT ["powershell", "C:\bootstrap.ps1"]

Developing Dockerized .NET and .NET Core Applications Chapter 3

[62]

The ENTRYPOINT and CMD instructions both tell Docker how to run your
application. You can combine them to specify a default entry point and
allow users of your image to override the command when they start a
container.

The application in the image is a simple ASP.NET Web Forms page that lists out
environment variables. I can run this in a container in the usual way:

docker container run -d -P --name iis-env dockeronwindows/ch03-iis-
environment-variables

When the container starts, I can get the IP address and open a browser on the ASP.NET
Web Forms page:

$ip = docker inspect --format '{{ .NetworkSettings.Networks.nat.IPAddress
}}' iis-env
start "http://$ip"

I see output like this, with the default environment variable values from the Docker image:

You can run the same image with different environment variables, overriding one of the
image variables and adding a new variable:

docker run -d -P --name iis-env2 `
 -e A01_KEY='NEW VALUE!' `
 -e B01_KEY='NEW KEY!' `
 dockeronwindows/ch03-iis-environment-variables

Developing Dockerized .NET and .NET Core Applications Chapter 3

[63]

Browse the container's IP address again, and you'll see the new values written out by the
ASP.NET page:

I've added support for Docker's environment variable management into an IIS image now,
so ASP.NET apps can use the System.Environment class to read configuration settings.
I've retained the IIS log echo in this new image, so this is a good Docker citizen now you
can configure the application and check the logs through Docker.

One last improvement I can make is to tell Docker how to monitor the application running
inside the container, so Docker can determine whether the application is healthy and take
action if it becomes unhealthy.

Building Docker images that monitor applications
When I add these new features to the NerdDinner Dockerfile and run a container from the
image, I'll be able to see the web request and response logs with the docker container
logs command, which relays all the IIS log entries captured by Docker, and I can use an
environment variable to specify the database user credentials. This makes running and
administering the legacy ASP.NET application consistent with how I use any other
containerized application running on Docker. But I can also configure Docker to monitor
the container for me, so I can manage any unexpected failures.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[64]

Docker provides the ability to monitor the application health rather than just checking
whether the application process is still running, with the HEALTHCHECK instruction in the
Dockerfile. With HEALTHCHECK, you tell Docker how to test whether the application is still
healthy. The syntax is similar to the RUN and CMD instructions you pass in a shell command
to execute, which should have a return code of 0 if the application is healthy and 1 if it is
not. Docker runs the health check periodically when the container is running and emits
status events if the health of a container changes.

The simple definition of healthy for a web application is the ability to respond normally to
HTTP requests. Which request you make depends on how thorough you want the check to
be ideally, the request should execute key parts of your application, so you're confident it is
all working correctly. But equally, the request should complete quickly and have a minimal
compute impact, so processing lots of health checks doesn't affect consumer requests.

A simple health check for any web application just uses the Invoke-WebRequest
PowerShell cmdlet to fetch the home page and check whether the HTTP response code is
200, which means the response was successfully received:

try {
 $response = iwr http://localhost/ -UseBasicParsing
 if ($response.StatusCode -eq 200) {
 return 0
 } else {
 return 1
 }
catch { return 1 }

For a more complex web application, it can be useful to add a new endpoint specifically for
healthchecks. You can add a diagnostic endpoint to APIs and websites that exercise some of
the core logic for your app and returns a Boolean result to indicate whether the app is
healthy. You can call that endpoint in the Docker health check and check the response
content as well as the status code in order to give you more confidence that the app is
working correctly.

The HEALTHCHECK instruction in the Dockerfile is very simple. You can configure the
interval between checks and the number of checks that can fail before the container is
considered unhealthy, but to use the default values, just specify the test script in
HEALTHCHECK CMD . This example from the Dockerfile for the dockeronwindows/ch03-
iis-healthcheck image uses PowerShell to make a GET request to the diagnostics URL
and check the response status code:

HEALTHCHECK --interval=5s `
 CMD powershell -command `
 try { `

Developing Dockerized .NET and .NET Core Applications Chapter 3

[65]

 $response = iwr http://localhost/diagnostics -UseBasicParsing; `
 if ($response.StatusCode -eq 200) { return 0} `
 else {return 1}; `
 } catch { return 1 }

I've specified an interval for the health check, so Docker will execute this command inside
the container every five seconds (the default interval is 30 seconds if you don't specify one).
The health check is very cheap to run, as it's local to the container, so you can have a short
interval like this and catch any problems quickly.

The application in this Docker image is an ASP.NET Web API app, which has a diagnostics
endpoint, and a controller you can use to toggle the health of the application. The
Dockerfile contains a health check, and you can see how Docker uses it when we run a
container from that image:

docker container run -d -P --name healthcheck dockeronwindows/ch03-iis-
healthcheck

If you run docker container ls after starting that container, you'll see a slightly
different output in the status field, similar to Up 3 seconds (health: starting).
Docker runs the health check every five seconds for this container, so at this point, the
check hasn't been run. Wait a little longer and then the status will be something like Up 46
seconds (healthy).

This container will stay healthy until I make a call to the controller to toggle the health. I
can do that with a POST request that sets the API to return HTTP status 500 for all
subsequent requests:

$ip = docker inspect -f '{{ .NetworkSettings.Networks.nat.IPAddress }}'
healthcheck
iwr "http://$ip/toggle/unhealthy" -Method Post

Now the application will respond with a 500 response to all the GET requests the Docker
platform makes, which will fail the health check. Docker keeps trying the health check, and
if there are three failures in a row, then it considers the container to be unhealthy. At this
point, the status field in the container list shows Up 3 minutes (unhealthy). Docker
doesn't take automatic action on single containers that are unhealthy, so this one is left
running and you can still access the API.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[66]

Health checks are important when you start running containers in a clustered Docker
environment (which I cover in Chapter 7, Orchestrating Distributed Solutions with Docker
Swarm), and it's a good practice to include them in all Dockerfiles. Being able to package an
application that the platform can test for health is a very useful feature; this means that
wherever you run the app, we can keep a check on it.

Now you have all the tools to containerize an ASP.NET application and make it a good
Docker citizen, integrating with the platform so it can be monitored and administered in
the same way as other containers. A full .NET Framework application running on Windows
Server Core can't meet the expectation of running a single process because of the all the
necessary background Windows services. But we should still build container images so
they run only one logical function and separate any dependencies.

Separating dependencies
In the last chapter, I dockerized the legacy NerdDinner app and got it running but without
a database. The original application expected to use SQL Server LocalDB on the same host
where the app is running. LocalDB is an MSI-based installation, and I can add it to the
Docker image, just by downloading the MSI and installing it with RUN commands in the
Dockerfile. But this means that when I start a container from the image, it has two functions
hosting a web application and running a database.

Having two functions in one container is not a good idea; what would
happen if you wanted to upgrade your website without changing the
database? Or, what if you needed to do some maintenance on the
database, which didn't impact the website? What if you need to scale out
the website? By coupling the two functions together, you've added a
deployment risk, test effort, and administration complexity and reduced
your operational flexibility.

Instead, I'm going to package the database in a new Docker image and run it in a separate
container using Docker's network layer to access the database container from the website
container. SQL Server is a licensed product, but the free variant, SQL Server Express, is
available from Microsoft as an image on the Docker Hub and comes with a production
license. I can use that as the base for my image, building on it to prepare a pre-configured
database instance, with the schema deployed and ready to connect to the web application.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[67]

Creating Docker images for SQL Server
databases
Setting up a database image is just like any other Docker image; I'll be encapsulating the
setup tasks in a Dockerfile. Broadly, for a new database, the steps will be as follows:

Install SQL Server
Configure SQL server
Run DDL scripts to create the database schema
Run DML scripts to populate static data

This fits in very well with a typical build process using Visual Studio's SQL database
project type and the Dacpac deployment model. The output from publishing the project is a
.dacpac file that contains the database schema and any custom SQL scripts to run. Using
the SqlPackage tool, you can deploy the Dacpac file to a SQL Server instance, and it will
either create a new database if it doesn't exist, or it will upgrade an existing database so the
schema matches the Dacpac.

This approach is perfect for a custom SQL Server Docker image. I can use multi-stage
builds again for the Dockerfile, so you don't need Visual Studio installed to package the
database from the source code. This is the first stage of the Dockerfile for the
dockeronwindows/ch03-nerd-dinner-db image:

escape=`
FROM sixeyed/msbuild:netfx-4.5.2-ssdt AS builder

WORKDIR C:\src\NerdDinner.Database
COPY src\NerdDinner.Database .

RUN msbuild NerdDinner.Database.sqlproj `
/p:SQLDBExtensionsRefPath="C:\Microsoft.Data.Tools.Msbuild.10.0.61026\lib\n
et40" `
/p:SqlServerRedistPath="C:\Microsoft.Data.Tools.Msbuild.10.0.61026\lib\net4
0"

The builder stage just copies in the SQL project source and runs MSBuild to produce the
Dacpac. I'm using a variant of the public sixeyed/msbuild image on Docker Cloud,
which includes the NuGet packages you need to compile SQL projects.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[68]

Here's the second stage of the Dockerfile, which packages the NerdDinner Dacpac to run in
SQL Server Express:

FROM microsoft/mssql-server-windows-express

ENV ACCEPT_EULA="Y" `
 DATA_PATH="C:\data" `
 sa_password="N3rdD!Nne720^6"

VOLUME ${DATA_PATH}
WORKDIR C:\init

COPY Initialize-Database.ps1 .
CMD ./Initialize-Database.ps1 -sa_password $env:sa_password -data_path
$env:data_path -Verbose

COPY --from=builder
C:\src\NerdDinner.Database\bin\Debug\NerdDinner.Database.dacpac .

There are no new instructions here, beyond what you've seen so far. You'll see that there
are no RUN commands, so I'm not actually setting up the database schema when I build the
image; I'm just packaging the Dacpac file into the image so I have everything I need to
create or upgrade the database when the container starts.

In CMD, I run a PowerShell script that sets up the database. It's usually not a good idea to
hide all the startup details in a separate script because that means you can't see what's
going to happen when the container runs from the Dockerfile alone. But in this case, the
startup procedure has a few functions, and they would make for a huge Dockerfile if we
put them all in there.

The base SQL Server Express image defines environment variables called ACCEPT_EULA, so
the user can accept the license agreement and sa_password to set the administrator
password. I extend this image and set default values for the variables. I'll use the variables
in the same way in order to allow users to specify an administrator password when they
run the container. The rest of the startup script deals with the problem of storing the
database state in a Docker volume.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[69]

Managing database files for SQL Server
containers
A database container is like any other Docker container, but with a focus on statefulness.
You'll want to ensure your database files are stored outside of the container, so you can
replace the database container without losing any data. You can easily do that with
volumes, as we saw in the last chapter, but there is a catch.

If you build a custom SQL Server image with a deployed database, your database files will
be inside the image in a known location. You can run a container from that image without
mounting a volume and it will just work, but the data will be stored in the container's
writable layer. If you replace the container, when you have a database upgrade to perform,
then you'll lose all your data.

Instead, you can run the container with a volume mounted from the host, mapping the
expected SQL Server data directory from a host directory so your files live outside of the
container in a known location on the host. This way, you can ensure your data files are
stored in a RAID array on your server. But that means you can't deploy the database in the
Dockerfile because the data directory will have data files from the image and you can't
mount a directory that isn't empty.

The SQL Server images from Microsoft deal with this by letting you attach database and log
files when it runs, so it works on the basis that you already have your database files on the
host. In this case, you can use the image directly, mount your data folder, and run a SQL
Server container with arguments telling it which database(s) to attach. This is a very limited
approach, though it means you need to create the database on a different SQL Server
instance first and then attach it when you run the container. This doesn't fit with an
automated release process.

For my custom image, I want to do something different. The image contains the Dacpac, so
it has everything it needs to deploy the database. When the container starts, I want it to
check the data directory, and if it's empty, then I create a new database by deploying the
Dacpac. If the database files already exist when the container starts, then attach the
database files first and upgrade the database using the Dacpac.

This approach means you can use the same image to run a fresh database container for a
new environment or upgrade an existing database container without losing any of its data.
And this works just as well whether you mount the database directory from the host or not,
so you can let the user choose how to manage the container storage, and my image
supports many different scenarios.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[70]

The logic to do that is all in the Initialize-Database.ps1 PowerShell script, which the
Dockerfile sets as the entry point for containers. In the Dockerfile, I pass the data directory
to the PowerShell script in the data_path variable, and the script checks whether the
NerdDinner data (mdf) and log (ldf) files are in that directory:

$mdfPath = "$data_path\NerdDinner_Primary.mdf"
$ldfPath = "$data_path\NerdDinner_Primary.ldf"

attach data files if they exist:
if ((Test-Path $mdfPath) -eq $true) {
 $sqlcmd = "IF DB_ID('NerdDinner') IS NULL BEGIN CREATE DATABASE NerdDinner
ON (FILENAME = N'$mdfPath')"
 if ((Test-Path $ldfPath) -eq $true) {
 $sqlcmd = "$sqlcmd, (FILENAME = N'$ldfPath')"
 }
 $sqlcmd = "$sqlcmd FOR ATTACH; END"
 Invoke-Sqlcmd -Query $sqlcmd -ServerInstance ".\SQLEXPRESS"
}

This script looks complex, but actually, it's just building a CREATE
DATABASE...FOR ATTACH statement, filling in the paths of the MDF data
file and LDF log file if they exist. Then, it invokes the SQL statement,
which attaches the database files from the external volume as a new
database in the SQL Server container.

This covers the scenario where a user runs a container with a volume mount, where the
host directory has data files from a previous container. These files are attached, and the
database is available in the new container. Next, the script uses the SqlPackage tool to
generate a deployment script from the Dacpac. I know the SqlPackage tool exists and I
know the path to it because it's built into the SQL Server Express base image:

$SqlPackagePath = 'C:\Program Files (x86)\Microsoft SQL
Server\130\DAC\bin\SqlPackage.exe'
& $SqlPackagePath `
 /sf:NerdDinner.Database.dacpac `
 /a:Script /op:deploy.sql /p:CommentOutSetVarDeclarations=true `
 /tsn:.\SQLEXPRESS /tdn:NerdDinner /tu:sa /tp:$sa_password

Developing Dockerized .NET and .NET Core Applications Chapter 3

[71]

If the database directory was empty when the container started, there's no NerdDinner
database on the container, and SqlPackage will generate a script with a set of CREATE
statements to deploy the new database. If the database directory did contain files, then the
existing database would have been attached. In that case, SqlPackage would generate a
script with a set of ALTER and CREATE statements to bring the database in line with the
Dacpac.

The deploy.sql script generated in this step will create the new schema or apply changes
to the old schema to upgrade it. The final database schema will be the same in both cases.

Lastly, the PowerShell script executes the SQL script, passing in variables for the database
name, file prefixes, and data paths:

$SqlCmdVars = "DatabaseName=NerdDinner", "DefaultFilePrefix=NerdDinner",
"DefaultDataPath=$data_path", "DefaultLogPath=$data_path"

Invoke-Sqlcmd -InputFile deploy.sql -Variable $SqlCmdVars -Verbose

After the SQL script runs, the database exists in the container with the schema modelled in
the Dacpac, which was built from the SQL project in the builder stage of the Dockerfile. The
database files are in the expected location with the expected names, so if this container is
replaced with another one from the same image, the new container will find the existing
database and attach it.

Running databases in containers
Now I have an image that can work for new deployments and upgrades. The image can be
used by developers who might run it without mounting a volume while they're working on
a feature, so they can start with a fresh database every time they run a container. And the
same image can be used in environments where the existing database needs to be preserved
by running the container with a volume that contains the database files.

This is how you run the NerdDinner database in Docker, using the default administrator
password, using a host directory for the database files, and naming the container so I can
access it from other containers:

mkdir -p C:\databases\nd

docker container run -d -p 1433:1433 `
 --name nerd-dinner-db `
 -v C:\databases\nd:C:\data `
 dockeronwindows/ch03-nerd-dinner-db

Developing Dockerized .NET and .NET Core Applications Chapter 3

[72]

The first time you run that container, the Dacpac will run to create the database, saving the
data and log files in the mounted directory on the host. You can check whether the files
exist on your host with ls, and the output from docker container logs shows the
generated SQL script running and creating resources:

> docker container logs nerd-dinner-db
VERBOSE: Starting SQL Server
VERBOSE: Changing SA login credentials
VERBOSE: No data files - will create new database
Generating publish script for database 'NerdDinner' on server
'.\SQLEXPRESS'.
Successfully generated script to file C:\init\deploy.sql.
VERBOSE: Changed database context to 'master'.
VERBOSE: Creating NerdDinner...
VERBOSE: Changed database context to 'NerdDinner'.
VERBOSE: Creating [dbo].[Dinners]...
...

The run command also publishes the standard SQL Server port 1433, so you can connect to
the database running inside the container remotely through a .NET connection or with SQL
Server Management Studio (SSMS). If you already have a SQL Server instance running on
your host, you can map the container's port 1433 to a different port on the host.

To connect to the SQL Server instance running in the container with SSMS, Visual Studio,
or Visual Studio Code, just use the container's IP address, select SQL Server Authentication,
and use the sa credentials:

Developing Dockerized .NET and .NET Core Applications Chapter 3

[73]

Then, you can work with the dockerized database just like any other SQL Server database,
querying tables and inserting data. From the Docker host machine, you use the container's
IP address as the database server name, but by publishing the port, you can access the
containerized database outside of the host, using the host machine name as the server
name. Docker will route any traffic on port 1433 into SQL Server running on the container.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[74]

Connecting to database containers from
application containers
Docker has a DNS server built into the platform, which is used by containers for service
discovery. I started the NerdDinner database container with an explicit name, and any
other containers running in the same Docker network can access that container by its name,
in exactly the same way as a web server would access a remote database server by its DNS
hostname:

This makes application configuration much simpler than a traditional distributed solution.
Every environment will look the same in dev, QA, and production, the web container will
always connect to a database using the hostname nerd-dinner-db, which is actually
running inside a container. The container could be on the same Docker host or a separate
machine in a swarm cluster, and that's transparent to the application.

Service discovery in Docker isn't for containers only. A container can
access another host on the network using its hostname. You could run
your web application in a container but still have it connected to SQL
Server running on a physical machine rather than using a database
container.

One piece of configuration could be different for each environment, and that's the SQL
Server login credentials. In the NerdDinner database image, I use an environment variable
with a default value to set the administrator password, and I use a similar approach in the
web application container. The connection string for the database is in the Web.config file,
with the expected hostname and user ID, but with a placeholder for the password:

Data Source=nerd-dinner-db,1433;Initial Catalog=NerdDinner;User
Id=sa;Password={SA_PASSWORD}

Developing Dockerized .NET and .NET Core Applications Chapter 3

[75]

In the NerdDinner application image, I can add an environment variable for the password
and take a similar approach to the database image, do some preprocessing in the entry
point that Docker runs to start the container in order to set up the application. The
Web.config file is in a known place on the image, so the startup script just needs to update
the connection strings. This can be done easily with PowerShell:

$connectionString="Data Source=nerd-dinner-db,1433;Initial
Catalog=NerdDinner;User Id=sa;Password=$($env:sa_password)"

$file = 'C:\nerd-dinner\Web.config'
[xml]$config = Get-Content $file;
$db1Node = $config.configuration.connectionStrings.add | where {$_.name -eq
'DefaultConnection'}
$db1Node.connectionString = $connectionString
$config.Save($file)

This is a simplified approach to security credentials, which I'm using to
show how we can make our application more Docker-friendly without
changing the code. Environment variables are not the best approach to
managing secrets, though, and I'll look at this again in Chapter 9,
Understanding the Security Risks and Benefits of Docker, when I cover
security in Docker.

I've added this to a bootstrap.ps1 script file, which also has the logic from this chapter to
make NerdDinner a better Docker citizen, promoting environment variables and echoing
the IIS logs. I can use this script as the startup command in the Dockerfile and add a
HEALTHCHECK instruction so Docker monitors the web app for me.

The Dockerfile for dockeronwindows/ch03-nerd-dinner-web has one other important
instruction, which is currently needed for Windows containers to work with Docker's
service discovery:

RUN Set-ItemProperty -Path
'HKLM:\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters' `
 -Name ServerPriorityTimeLimit -Value 0 -Type DWord

This command writes a registry entry that effectively turns off the Windows DNS cache.
Windows caches DNS entries heavily, and this means it doesn't return to Docker frequently
enough to get updated information. If a container is replaced, it will have a new IP address,
and so we want containers to always use the DNS server in Docker to get the latest
information and not cache any results. That's accomplished with this line.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[76]

So far in this chapter, I still haven't made any functional changes to the NerdDinner code
base, only altering the database connection string in Web.config to use the connection
details for the SQL Server database container. When I run the web application container
now, it will be able to connect to the database container by name and use the SQL Server
Express database running in Docker:

docker container run -d -P dockeronwindows/ch03-nerd-dinner-web

You can explicitly specify the Docker network a container should join
when it's created, but on Windows, all containers default to joining the
system created the nat network. Because of the database container and
web container on the nat network, they can reach each other by the
container name.

When the container starts up, I can now open the website using the container's IP address,
click on the Register link, and create an account:

Developing Dockerized .NET and .NET Core Applications Chapter 3

[77]

The register page queries the ASP.NET membership database, running in the SQL Server
container, so if the page is functioning, then the web application has a working connection
to the database. I can verify this in SSMS, querying the user table and seeing the new user
row:

I've now separated the LocalDB database from the web application, and each component is
running in a lightweight Docker container. On my development laptop, each container uses
less than 1% of the host CPU at idle, with the database using 600 MB of memory and the
web server under 300 MB. Containers are light on resources so there's no penalty in
splitting functional units into different containers and then you can scale, deploy, and
upgrade these components individually.

Breaking up monolithic applications
Traditional .NET web applications that rely on a SQL Server database can be migrated to
Docker with minimal effort and without having to rewrite any application code. At this
stage in my NerdDinner migration, I have an application Docker image and a database
Docker image that I can reliably and repeatably deploy and maintain. I also have some
beneficial side-effects.

Encapsulating the database definition in a Visual Studio project may be a new departure,
but it adds quality assurance to database scripts and brings the schema into the code base,
so it can be source-controlled and managed alongside the rest of the system. Dacpacs,
PowerShell scripts, and Dockerfiles provide a new common ground for different functions
of IT. Development, operations, and database administration teams can work together on
the same artifacts, using the same language.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[78]

Docker is an enabler for DevOps transitions, but whether or not DevOps is on your road
map, Docker provides the foundations for fast, reliable releases. To take the most
advantage of that, you need to look at breaking down monolithic apps into smaller pieces,
so you can release high-value components frequently without having to do a regression test
on the whole of a large application.

Extracting core components from an existing application lets you bring modern,
lightweight technologies into your system without having to do a large, complex rewrite.
This is a microservices style of architecture applied to an existing solution, where you
already understand the areas that are worth extracting into their own services.

Extracting high-value components from
monoliths
The Docker platform offers a huge opportunity to modernize legacy applications, allowing
you to take features out of monoliths and run them in separate containers. If you can isolate
the logic in a feature, that's also an opportunity migrate it to .NET Core, which lets you
package it into a much smaller .NET Core image.

Microsoft's road map for .NET Core will see it adopt more and more functionality of the
full .NET Framework, but porting parts of a legacy .NET application to .NET Core could
still be a large undertaking. But you don't need to take that step. The value in breaking
down the monolith is having features that can be developed, deployed, and maintained
independently, if the components have full .NET Framework, you still get those benefits.

The advantage of a legacy app is that you understand the feature set. You can identify the
high-value functionality in your system and start by extracting those features into their
own components. Good candidates would be features that offer value to the business if
they change frequently, so new feature requests can be rapidly built and deployed without
modifying and testing the whole application.

Equally, good candidates are features that offer value to IT if they stay the same, complex
components with a lot of dependencies that the business doesn't change often. Extracting
such a feature into a separate component means you can deploy upgrades to the main
application without having to test the complex component because it remains unchanged.
Breaking up a monolith like this gives you a set of components that each have their own
delivery cadence.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[79]

In NerdDinner, there are some good candidates to break out into their own services. In the
rest of this chapter, I'll focus on one of them, the home page. The home page is the feature
that renders the HTML for the first page of the application. A process to deploy changes to
the home page quickly and safely in production will let the business experiment with a new
look and feel, evaluate the impact of the new version, and decide whether to continue with
it.

The current application is distributed among two containers. For the part of this chapter, I'll
break the home page out into its own component, so it will run in three containers:

I won't change the routing for the application; users will still come to the NerdDinner
application first, and the application container will call the home page service container to
get the content to show. This way, I don't need to expose the new container publicly. There
is only one technical requirement for the change, the main application needs to be able to
communicate with the new service component.

You're free to choose how the applications in containers communicate, Docker networking
gives you full protocol support for TCP/IP and UDP. You could make the whole process
asynchronous, running a message queue in another container, with message handlers
listening in other containers, but I'll start with something simpler in this chapter.

Hosting a UI component in an ASP.NET Core
application
ASP.NET Core is a modern application stack that delivers the best of ASP.NET MVC and
web API in a slim and performant runtime. ASP.NET Core websites run as console
applications, they write logs to the console output stream, and they can use environment
variables for configuration. The architecture makes them good Docker citizens out of the
box.

Developing Dockerized .NET and .NET Core Applications Chapter 3

[80]

The easiest way to extract the NerdDinner home page into a new service is to write it as an
ASP.NET Core website with a single page and relay the new application's output from the
existing application. Here's my stylish, modern redesign of the home page running in
ASP.NET Core on a local machine:

To package the home page application as a Docker image, I'm using the same multi-stage
build approach I've used for the main application and the database images. In Chapter 10,
Powering a Continuous Deployment Pipeline with Docker, you'll see how to use Docker to
power a CI/CD build pipeline and tie the whole automated deployment process together.

The Dockerfile for the dockeronwindows/ch03-nerd-dinner-homepage image uses the
same pattern I have for the full ASP.NET application, separating the package restore and
the compilation steps:

escape=`
FROM microsoft/dotnet:1.1.2-sdk-nanoserver AS builder

WORKDIR C:\src\NerdDinnerHomepage
COPY src\NerdDinnerHomepage\NerdDinnerHomepage.csproj .
RUN dotnet restore

Developing Dockerized .NET and .NET Core Applications Chapter 3

[81]

COPY src\NerdDinnerHomepage .
RUN dotnet publish

The final stage of the Dockerfile provides a default value for the NERD_DINNER_URL
environment variable. The application uses it as the target for the link on the home page.
The rest of the Dockerfile instructions just copy in the published application and set up the
entry point:

FROM microsoft/aspnetcore:1.1.2-nanoserver

ENV NERD_DINNER_URL="/home/find"
CMD ["dotnet", "NerdDinnerHomepage.dll"]

WORKDIR C:\dotnetapp
COPY --from=builder
C:\src\NerdDinnerHomepage\bin\Debug\netcoreapp1.1\publish .

I can run the home page component in a separate container, but it's not connected to the
main NerdDinner app yet. I need to make a code change to the original app in order to
integrate the new home page service.

Connecting to application containers from other
application containers
Calling the new home page service from the main application container is fundamentally
the same as connecting to the database, I will run the home page container with a known
name, and I can access the service in other containers using its name and Docker's built-in
service discovery.

A simple change to the HomeController class in the main NerdDinner application will
relay the response from the new home page service instead of rendering the page from the
main application:

static HomeController()
{
 var homepageUrl = Environment.GetEnvironmentVariable("HOMEPAGE_URL",
EnvironmentVariableTarget.Machine);
 var request = WebRequest.Create(homepageUrl);
 using (var response = request.GetResponse())
 using (var responseStream = new
StreamReader(response.GetResponseStream()))
 {
 _NewHomePageHtml = responseStream.ReadToEnd();
 }

Developing Dockerized .NET and .NET Core Applications Chapter 3

[82]

}

public string Index()
{
 return _NewHomePageHtml;
}

In the new code, I get the URL for the home page service from an environment variable.
Just as with the database connection, I can set a default value for that in the Dockerfile. This
would be a bad practice in a distributed application where we can't guarantee where the
components are running, but in a dockerized application, I can do it safely because I will
control the names of the containers, so I can be sure the service names are correct when I
deploy them.

I've tagged this updated image as dockeronwindows/ch03-nerd-dinner-web:v2. To
start the whole solution now, I need to run three containers:

docker container run -d -p 1433:1433 --name nerd-dinner-db `
 -v C:\databases\nd:C:\data dockeronwindows/ch03-nerd-dinner-db

docker container run -d -P --name nerd-dinner-homepage
dockeronwindows/ch03-nerd-dinner-homepage

docker container run -d -P dockeronwindows/ch03-nerd-dinner-web:v2

When the containers are running, I go to the NerdDinner container, and I see the home
page from the new component:

Developing Dockerized .NET and .NET Core Applications Chapter 3

[83]

The Find Dinner link takes me back to the original web app, and now I can iterate over the
home page and release a new UI just by replacing that container--without releasing or
testing the rest of the app.

What happened to the new UI? In this simple example, the integrated
home page doesn't have the styling of the new ASP.NET Core version
because the main application only reads the HTML for the page, not the
CSS files or other assets. A better approach would be to run a proxy in a
container and use that as the entry point to other containers, so each
container serves all its assets.

Now that I have my solution split across three containers, I've dramatically improved
flexibility. During build time, I can focus on features that give the highest value without
spending effort to test components that haven't changed. At deployment time, I can release
quickly and confidently, knowing that the new image we push to production will be
exactly what was tested. And at runtime, I can scale components independently according
to their requirements.

I do have a new nonfunctional requirement, which is to ensure that all the containers have
the expected names, are started in the correct order, and are in the same Docker network, so
the solution as a whole works correctly. Docker has support for this, which I'll show you in
Chapter 6, Organizing Distributed Solutions with Docker Compose, which is focused on
organizing distributed systems with Docker Compose.

Summary
In this chapter, we covered three main topics:

Containerizing legacy .NET Framework applications so they are good Docker
citizens and integrate with the platform for configuration, logging, and
monitoring
Containerizing database workloads with SQL Server Express and the Dacpac
deployment model, building a versioned Docker image that can run as a new
database or upgrade an existing database
Extracting functionality from monolithic apps into separate containers, using
ASP.NET Core and Windows Nano Server to package a fast, lightweight service
that the main application consumes

Developing Dockerized .NET and .NET Core Applications Chapter 3

[84]

You've learned how to use more images from Microsoft on Docker Hub and how to use
Windows Server Core for full .NET applications, SQL Server Express for databases, and the
Nano Server flavors of the .NET Core image.

In later chapters, I'll return to NerdDinner and continue to modernize it by extracting
features into dedicated services. Before that, in the next chapter, I'll look more closely at
Docker Hub and other registries to store images.

4
Pushing and Pulling Images

from Docker Registries
Shipping applications is an integral part of the Docker platform. The Docker service can
download images from a central location to run containers from them, and also upload
images that were built locally to a central location. These shared image stores are called
registries, and in this chapter I'll look more closely at how image registries work and the
type of registries that are available to you.

The primary image registry is Docker Hub, which is a free online service and is the default
location for the Docker service to work with images. Docker Hub is a great place for the
community to share images built to package open source software that is free to
redistribute. Docker Hub has been hugely successful. At the time of writing this book, there
are over 600,000 images available on the Hub, with over 12 billion downloads between
them.

A public registry may not be suitable for your own applications. Docker Cloud is an
alternative which offers a commercial plan to host private images (in a similar way that
GitHub lets you host public and private source code repositories), and there are other
commercial registries. You can also run your own registry server in your environment,
using an open-source registry implementation which is freely available.

In this chapter, I'll show you how to use those registries, and I'll cover the finer details of
tagging images - which is how you can version your Docker images, and work with images
from different registries.

Pushing and Pulling Images from Docker Registries Chapter 4

[86]

Understanding registries and repositories
You download an image from a registry using the docker image pull command. When
you run the command, the Docker service connects to the registry, authenticates - if it needs
to - and pulls the image down. The pull process downloads all the image layers and stores
them in the local image cache on the machine. Containers can only be run from images that
are available in the local image cache, so unless they're built locally, they need to be pulled
first.

One of the earliest commands you run when you get started with Docker on Windows is
something simple, like this example from Chapter 2, Packaging and Running Applications as
Docker Containers_SSR:

> docker container run dockeronwindows/ch02-powershell-env

Name Value
---- -----
ALLUSERSPROFILE C:\ProgramData
APPDATA C:\Users\ContainerAdministrator\AppData\Roaming
...

This will work even if you don't have the image in your local cache because Docker can pull
it from the default registry - Docker Cloud, in this case. If you try to run a container from an
image that you don't have stored locally, Docker will automatically pull it before creating
the container.

In this example, I haven't given Docker much information to go on - just the image name
dockeronwindows/ch02-powershell-env. That detail is enough for Docker to find the
right image in the registry, because Docker fills in some of the missing details with default
values. The name of the repository is dockeronwindows/ch02-powershell-env; a
repository is a storage unit that can contains many versions of a Docker image.

Examining image repository names
Repositories have a fixed naming scheme: {registry-domain}/{account-
id}/{repository-name}:{tag}. All parts are required, but Docker assumes defaults for
some values. So, dockeronwindows/ch02-powershell-env is actually a short form of
the full repository name docker.io/dockeronwindows/ch02-powershell-
env:latest.

Pushing and Pulling Images from Docker Registries Chapter 4

[87]

registry-domain is the domain name or IP address of the registry that stores
the image. Docker Hub, Docker Cloud and Docker Store are default registries, so
you can omit the registry domain when you're using those images. Docker will
use docker.io as the registry if you don't specify one.
account-id is the name of the account or organization that owns the image on
the registry. On Docker Hub the account name is mandatory, my own account ID
is sixeyed, and the organization account ID for the images that accompany this
book is called dockeronwindows. On other registries the account ID may not be
needed.
repository-name: It is the name you want to give your image to uniquely
identify the application, within all the repositories for your account on the
registry.
tag: is how you distinguish between different image variations in the repository.

You use the tag for versioning your applications or to identify variants. If you don't specify
a tag when you build or pull images, Docker assumes the default tag latest. When you
start with Docker, you will use Docker Hub and the latest tag, which are the defaults
Docker provides to hide some of the complexity until you're ready to dig deeper. As you
continue with Docker, you'll use tags to make clear distinctions between different versions
of your application package.

A good example is Microsoft's .NET Core base image, which is on Docker Hub in the
microsoft/dotnet repository. .NET Core is a cross-platform application stack that runs
on Linux and Windows. You can run only Linux containers on Linux-based Docker hosts,
and you can run only Windows containers on Windows-based Docker hosts, so Microsoft
includes the operating system in the tag name.

At the time of writing, Microsoft has dozens of versions of the .NET Core image available
for use in the microsoft/dotnet repository, identified with different tags. These are just
some of the tags:

1.1.2-runtime-jessie a Linux image based on Debian that has the .NET Core
1.1 runtime installed
1.1.2-runtime-nanoserver a Nano Server image that has the .NET Core 1.1
runtime installed

Pushing and Pulling Images from Docker Registries Chapter 4

[88]

1.1.2-sdk-jessie a Linux image based on Debian that has the .NET Core 1.1
runtime and SDK installed
1.1.2-sdk-nanoserver a Nano Server image that has the .NET Core 1.1
runtime and SDK installed

The tags make it clear what each image contains, but they are all fundamentally similar -
they are all variations of microsoft/dotnet.

Docker also supports multi-arch images, where a single repository name
is used as an umbrella for many variations. There could be image
variations based on Linux and Windows, Intel and Advanced RISC
Machines (ARM) processors. They all use the same umbrella repository
name, and when you run docker image pull, Docker pulls the
matching image for your host's operating system and CPU architecture.

Building, tagging, and versioning images
You tag images when you first build them, but you can also explicitly add tags to an image
with the docker image tag command. This is very useful in versioning mature
applications, so users can choose which versioning level they want to work with. If you run
these commands, you would build an image with five tags, with ascending levels of
precision for the application version:

docker image build -t myapp .
docker image tag myapp:latest myapp:5
docker image tag myapp:latest myapp:5.1
docker image tag myapp:latest myapp:5.1.6
docker image tag myapp:latest myapp:bc90e9

The initial docker image build command doesn't specify a tag, so the new image will
default to myapp:latest. Each subsequent docker image tag command adds a new tag
to the same image. Tagging doesn't copy the image, so there's no data duplication, you just
have one image which can be referred to with several tags. By adding all these tags, you
give consumers the choice of image to use, or to base their own image on.

This example application uses semantic versioning. The final tag could be the ID of the
source code commit that triggered the build; this might be used internally but not made
public. 5.1.6 is the patch version, 5.1 is the minor version number, and 5 is the major
version number.

Pushing and Pulling Images from Docker Registries Chapter 4

[89]

Users can explicitly use myapp:5.1.6, which is the most specific version number, knowing
that the tag won't change at that level and the image will always be the same. The next
release will have the tag 5.1.7, but that will be a different image with a different
application version.

myapp:5.1 will change with each patch release - with the next build, 5.1 will be a tagged
alias of 5.1.7 - but users can be confident there won't be any breaking changes. myapp:5
will change with each minor release - next month it could be an alias of myapp:5.2. Users
can choose the major version if they always want the latest release for version 5, or they
could use latest if they always want the latest version, and can accept the possibility of
breaking changes.

As the producer of images, you can decide how to support versioning in your image tags.
As the consumer, you should favor being more specific - especially with images you use as
the FROM image for your own builds. If you're packaging a .NET Core application, you will
have problems if you start your Dockerfile like this:

FROM microsoft/dotnet:runtime-nanoserver

At the time of writing, this image has version 1.1 of the .NET Core runtime installed. If your
application targets version 1.1 then that's fine, the image will build and your application
will run correctly in a container. But when .NET Core 1.2 or 2.0 is released, the generic
runtime-nanoserver tag will be applied to the new image, which may not support the
1.1 target. When you use the exact same Dockerfile after that release, it will use a new base
image - your image will build but the application may fail if the base image no longer
supports your application.

Instead, you should use consider using a tag for the minor version of the application
framework you're using:

FROM microsoft/dotnet:1.1-runtime-nanoserver

This way, you'll benefit from any patch releases to the image, but you'll always be using the
1.1 release of .NET Core, so your application will always have a matching host platform in
the base image.

You can tag any image you have in your local cache, not just images you build yourself.
This is useful if you want to re-tag a public image and add it to an approved set of base
images in your local, private registry.

Pushing and Pulling Images from Docker Registries Chapter 4

[90]

Pushing images to a registry
Building and tagging images are local operations. The end result of docker image build
and docker image tag is a change to the image cache on the Docker host where you run
the commands. Images need to be explicitly shared to a registry with the docker image
push command.

Docker Hub is available for use without authenticating to pull public images, but to upload
images (or pull private images), you need to register for an account. Registration is free at
https://cloud.docker. com/ - where you can create a Docker ID that you can use on
Docker Hub, Docker Cloud, and other Docker services. Your Docker ID is how you
authenticate with the Docker service to access Docker Hub, with the docker login
command:

> docker login

Login with your Docker ID to push and pull images from Docker Hub. If you
don't have a Docker ID, head over to https://hub.docker.com to create one.
Username: dockeronwindows
Password:
Login Succeeded

To push images to Docker Hub, the repository name must contain your Docker ID as the
account ID. You can tag an image using account account ID - like microsoft/my-app - but
you can't push it to Microsoft's organization on the registry. The Docker ID you are logged
in with needs to have permission to push to the account on the registry.

When I publish images to go along with this book, I build them with dockeronwindows as
the account name in the repository, log in with that account, and push:

docker image build -t dockeronwindows/ch03-iis-healthcheck .
docker image push dockeronwindows/ch03-iis-healthcheck

The output from the Docker CLI shows how the image is split into layers, and it tells you
the upload status for each layer:

The push refers to a repository [docker.io/dockeronwindows/ch03-iis-
healthcheck]
177624560099: Pushed
badbec9dc449: Pushed
f87d75e4972b: Pushing [===============================>]
7.925 MB/12.66 MB
0c3e4b980d94: Pushed
19150debad5f: Pushed
1225b6de9f9d: Pushed

https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/
https://cloud.docker.com/

Pushing and Pulling Images from Docker Registries Chapter 4

[91]

64e9e8b7f7a8: Pushing [=================>]
22.14 MB/62.19 MB
48c58914e7a1: Pushing [===============>]
20.45 MB/66.33 MB
ef215b8a1176: Pushing [==>]
14.07 MB/280.3 MB
72ee693ca2b2: Pushed
de57d9086f9a: Skipped foreign layer
f358be10862c: Skipped foreign layer

This image uses Windows Server Core as the base image. The base image
is not publicly redistributable - it's publicly available on Docker Hub, but
Microsoft have not licensed the image to be stored on other public image
registries. That's why we see the lines stating Skipped foreign layer - Docker
will not push those layers.

You can't publish to another user's account, but you can tag another user's images with
your own account name. This is a perfectly valid set of commands, which I could run if I
wanted to download a specific version of the Windows Server Core image, give it a
friendlier name, and make it available on the Hub under that new name in my account:

docker image pull microsoft/windowsservercore:10.0.14393.1358
docker image tag microsoft/windowsservercore:10.0.14393.1358
sixeyed/windowsservercore:2017-07
docker image push sixeyed/windowsservercore:2017-07

Pushing images to a registry doesn't get any more complex than that, for the user -
although under the hood Docker runs some smart logic. Image layering applies to registries
as well as to the local image cache on the Docker host. When you push an image based on
Windows Server Core to the Hub, Docker doesn't upload the 10 GB base image - it knows
that base layer already exists on the Hub, and it will only upload the layers which are
missing on the target registry.

The last example of tagging a public image and pushing it to the public Hub is valid but
unlikely - you're much more likely to tag and push images to your own local, private
registry.

Running a local image registry
The Docker platform is portable because it's written in Go, which is a cross-platform
language. Go applications can be compiled to native binaries, so Docker can run on Linux
or Windows without users having to install Go. On the Docker Hub the registry image
contains a registry server written in Go, so you can host your own image registry by

Pushing and Pulling Images from Docker Registries Chapter 4

[92]

running a Docker container from that image.

registry is an official repository, but at the time of writing, it only has images available
for Linux. It's likely that a Windows version of the registry will be published soon, but in
this chapter I will walk you through building your own registry image, as it demonstrates
some common Docker usage patterns.

Official repositories are available on Docker Hub like other public images,
but they have been curated by Docker, Inc, and are maintained either by
Docker themselves or by the application owners. You can rely on them
containing correctly packaged and up-to-date software. The majority of
official images only have Linux variants, but the number of Windows-
based official images is growing.

Building the registry image
Docker's registry server is an open source application. It's hosted on GitHub in the
docker/distribution repository. To build the application, you need to install the Go
SDK first. If you did that, you can run a simple command to compile the application:

go get github.com/docker/distribution/cmd/registry

But if you're not a regular Go developer, you don't want the overhead of installing and
maintaining the Go tools on your local machine, just so you can build the registry server
when you want to update it. It would be better to package the Go tools into a Docker image
and set up the image so that when you run a container, it builds the registry server for you.
You can do this with the same multi-stage build approach I demonstrated in
Chapter 3, Developing Dockerized .NET and .NET Core Applications.

The multi-stage pattern has a lot of advantages. Firstly, it means that your application
image can be kept as lightweight as possible - you don't need to package the build tools
along with the runtime. Secondly, it means that your build agent is encapsulated in a
Docker image so you don't need to install those tools on your build server. Thirdly, it
means that developers can use exactly the same build process that the build server uses, so
you avoid a situation where developer machines and the build server have different tool
sets installed, with the risk of them drifting and causing build issues.

Pushing and Pulling Images from Docker Registries Chapter 4

[93]

The Dockerfile for dockeronwindows/ch04-registry uses the official Go image, which
has a Windows Server Core variant on Docker Hub. The builder stage uses that image to
compile the registry application:

escape=`
FROM golang:1.8-windowsservercore AS builder
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

ARG REGISTRY_VERSION=v2.6.1

WORKDIR C:\gopath\src\github.com\docker
RUN git clone https://github.com/docker/distribution.git; `
 cd distribution; `
 git checkout $env:REGISTRY_VERSION; `
 go build -o C:\out\registry.exe .\cmd\registry

I'm using an ARG instruction to specify the version of the source code to build - the GitHub
repository has labels for each released version, and I'm defaulting to version 2.6.1. Then I
use git to clone the source code and switch to the labelled version of the code, and go
build to compile the application. The output will be registry.exe, a native Windows
executable which doesn't need Go installed to run.

The final stage of the Dockerfile uses Nano Server as the base, which can run the Go
application just fine. I'll look at this stage in detail, because the setup addresses a problem
with storage in Windows containers which impacts Go and other languages. The start of
the stage just specifies the version of Nano Server to use as the base, and switches to
PowerShell:

FROM microsoft/nanoserver:10.0.14393.1358
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

Next there are instructions to configure storage for the registry server. I use environment
variables to specify the paths, create a volume, and then set a Windows registry flag to
create a drive mapping for the volume path:

ENV DATA_PATH="C:\data" `
 REGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY="G:\\"

VOLUME ${DATA_PATH}

RUN Set-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Control\Session
Manager\DOS Devices' `
 -Name 'G:' -Value "\??\$($env:DATA_PATH)" -Type String

Pushing and Pulling Images from Docker Registries Chapter 4

[94]

This is a pattern you may have to use with Java, Node, PHP and even in .NET applications
in Windows containers. It's necessary because of the way Windows implements volumes.
My volume creates the directory path C:\data inside the container, but that's actually a
symbolic link (symlink) to another directory location.

Symlinks are very common in Linux. Windows has supported them for a long time, but
they're far less common. Some language rutimes see a directory is a symlink, and try to
resolve the underlying path. In a container, the path will be something like
\\?\\ContainerMappedDirectories\{GUID}. Making sense of that path can cause the
app to fail.

So this setup creates a drive alias for the directory - inside the container, the G: drive
actually maps to C:\data. When applications see G:\ they don't see it as a symlink, so they
don't try to resolve the path. They write directly to the G: drive, and Windows redirects it
to C:\data, which is actually a volume hosted outside of the container.

If you're interested in the mechanics of this fix, the details are in a GitHub
issue: https:/ / github. com/ moby/ moby/ issues/ 27537.

The registry server uses the REGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY
environment variable to configure the storage location. That's set to G: so the Go runtime
can work without hitting the symlink issue. The rest of the Dockerfile sets up the image to
allow traffic on port 5000, the conventional registry port, and copies in the output from the
builder stage:

EXPOSE 5000

WORKDIR C:\registry

CMD ["registry", "serve", "config.yml"]
COPY --from=builder C:\out\registry.exe .
COPY --from=builder
C:\gopath\src\github.com\docker\distribution\...\config-example.yml
.\config.yml

Building the registry image is the same as any other image, but when you use it to run your
own registry, there are some important factors to consider.

https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537
https://github.com/moby/moby/issues/27537

Pushing and Pulling Images from Docker Registries Chapter 4

[95]

Running a registry container
Running your own registry lets you share images between team members and store the
output of all your application builds using the fast local network instead of an internet
connection. You would typically run the registry container on a server that can be widely
accessed, in a configuration like this:

The registry is running in a container (1) on a server (2). The client machines (3) connected
to the server to use the local registry to push and pull private images.

To make the registry container accessible, you need to publish port 5000 from the container
to port 5000 on the host. Registry users can access the container using the host server's IP
address or hostname, and that will be the registry domain you use in repository names.
You'll also want to mount a volume from the host to store the image data in a known
location. When you replace the container for a new version, it will still be available using
the host's domain name, and it will still have all the image layers stored by the previous
container.

On my host server I have a RAID array configured as disk E:, which I'll use for my registry
data, so I can run my registry container mapping that volume:

mkdir E:\registry-data
docker container run -d -p 5000:5000 -v E:\registry-data:C:\data
dockeronwindows/ch04-registry

The volume is mapped to C:\data - the G: drive alias only exists inside
the container.

Pushing and Pulling Images from Docker Registries Chapter 4

[96]

In my network, I'll be running the container on a physical machine with the IP address
192.168.2.146. I could use 192.168.2.146:5000 as the registry domain to tag images,
but that isn't very flexible. It's better to use the domain name of the host, so I could point
that to a different physical server if I needed to, without having to re-tag all my images.

For the hostname you can use your network's Domain Name System (DNS) service, or a
Canonical Name (CNAME) if you're running a public server, or you could add an entry to
the hosts file on the client machines and use a custom domain name. This is the PowerShell
command I use to add the host name entry for registry.local pointing to my Docker
server:

Add-Content -Path 'C:\Windows\System32\drivers\etc\hosts' -Value
'192.168.2.146 registry.local'

Now my server is running a registry server in a container with reliable storage, and my
client is set up to access the registry host using a friendly domain name. I can start pushing
and pulling private images from my own registry, which is only available to users on my
network.

Pushing and pulling images with a local
registry
You can only push images to a registry if the image tag matches the registry domain. The
process for tagging and pushing is the same as with Docker Hub, but you need to explicitly
include the local registry domain in the new tag. These commands pull the registry server
image from Docker Hub and add a new tag, making it suitable to be pushed to the local
registry:

docker image pull dockeronwindows/ch04-registry

docker image tag dockeronwindows/ch04-registry
registry.local:5000/infrastructure/registry:v2.6.1

In the docker image tag command, you can change every part of the image name for the
new tag. I've used the following:

registry.local:5000 the registry domain. The original image name had an
implied domain of docker.io.
infrastructure the account name. The original account name was
dockeronwindows.

Pushing and Pulling Images from Docker Registries Chapter 4

[97]

registry the repository name. The original was ch04-registry.
v2.6.1 the image tag. The original implied tag was latest.

I can try to push the new tagged image to the local registry, but Docker won't let me use the
registry yet:

> docker push registry.local:5000/infrastructure/registry:v2.6.1

The push refers to a repository
[registry.local:5000/infrastructure/registry]
Get https://registry.local:5000/v2/: http: server gave HTTP response to
HTTPS client

The Docker platform is secure by default, and the same principle extends to image
registries. The Docker service expects to use SSL to communicate with registries, so the
traffic is encrypted. My simple registry installation uses plaintext HTTP, so I get an error
saying Docker tried to use an encrypted transport for the registry but only an unencrypted
transport was available.

There are two options to set up Docker to use the local registry. The first is to extend the
registry server to secure the communication - the registry server image can run over HTTPS
if you supply it with an SSL certificate. That's what I would do in a production
environment, but to start out I can use the other option and make an exception in the
Docker configuration. The Docker service will allow an HTTP registry to be used if it's
explicitly named in an allowed list of insecure registries.

You can run the registry image with HTTPS using your company's SSL
certificate or a self-signed certificate, which means that you don't need to
configure the Docker Engine to allow insecure registries. There is a
Windows registry walkthrough in Docker's lab repository on GitHub
docker/labs which explains how to do that.

Configuring Docker to allow insecure registries
The Docker service can use a JSON configuration file to change settings, including the list of
insecure registries the engine will allow. Any registry domains in that list can use HTTP
rather than HTTPS, so this is not something you should do for a registry hosted on a public
network.

Pushing and Pulling Images from Docker Registries Chapter 4

[98]

Docker's configuration file is located at
%programdata%\docker\config\daemon.json (daemon is Linux terminology for a
background service, so this is the name of the Docker service configuration file). You can
manually edit it to add the local registry as a secure option and then restart the Docker
Windows service. This configuration allows Docker to use the local registry with HTTP:

{
 "insecure-registries": [
 "registry.local:5000"
]
}

If you're using Docker for Windows, the UI has a nice configuration window that takes care
of this for you. Instead of editing the file manually, just right-click on the Docker logo in the
status bar, select Settings, navigate to the Daemon page, and add an entry to the Insecure
registries list:

Pushing and Pulling Images from Docker Registries Chapter 4

[99]

With the local registry domain added to my insecure list, I can use it to push and pull
images:

> docker push registry.local:5000/infrastructure/registry:v2.6.1

The push refers to a repository
[registry.local:5000/infrastructure/registry]
8aef1b3b4856: Pushed
cacb6be9e720: Pushed
415729850f90: Pushed
ff6770fbf55c: Pushed
9acef5971c00: Pushed
45049fa42adf: Pushed
3c7d57559064: Pushed
f6f3d7c5a77c: Pushed
c5dc94330b3f: Pushed
e6537bd7a896: Skipped foreign layer
6c357baed9f5: Skipped foreign layer
v2.6.1: digest:
sha256:970ea320b67116cea565f5af24ed99dea65b6e3d8ae1dbb285acfb2673d4307b
size: 2615

Any users with network access to my Docker server can use images stored in the local
registry with the docker image pull or docker image run commands. You can also
use local images as the base image in other Dockerfiles, specifying the name with the
registry domain, the repository name, and the tag in the FROM instruction:

FROM registry.local:5000/infrastructure/registry:v2.6.1
CMD ["powershell", "Write-Output", "Hello from Chapter 4."]

There is no way to override the default registry, so you can't set your local
registry to be the default when a domain isn't specified - the default is
always Docker Hub. If you want to use a different registry for images, the
registry domain always has to be specified in the image name. Any image
names you use without a registry address will be assumed to refer to
images from docker.io.

Storing Windows image layers in a local registry
You are not allowed to publicly redistribute the base layers for the Microsoft images, but
you are allowed to store them in a private registry. This is particularly useful for the
Windows Server Core image. The compressed size of that image is 5 GB, and Microsoft
release a new version of the image every month on Docker Hub with the latest security
patches.

Pushing and Pulling Images from Docker Registries Chapter 4

[100]

The updates usually only add one new layer to the image, but that layer could be a 1 GB
download. If you have many users working with Windows images, they will all need to
download those layers and that's a lot of bandwidth and a lot of time. If you run a local
registry server, you can pull those layers once from Docker Hub, and push them to your
local registry. Every other user then pulls from the local registry, downloading from the fast
local network rather than the internet.

You need to enable this feature for specific registries in the Docker configuration file, using
the allow-nondistributable-artifacts field:

{
 "insecure-registries": [
 "registry.local:5000"
],
 "allow-nondistributable-artifacts": [
 "registry.local:5000"
]
}

This setting isn't exposed directly in the Docker for Windows UI, but you can set it in the
Advanced mode of the settings screen:

Pushing and Pulling Images from Docker Registries Chapter 4

[101]

Now I can push the Windows foreign layers to my local registry. I can tag the latest Nano
Server image with my own registry domain and push the image there:

PS> docker image tag microsoft/nanoserver:10.0.14393.1358
registry.sixeyed:5000/microsoft/nanoserver:10.0.14393.1358

PS> docker image push
registry.sixeyed:5000/microsoft/nanoserver:10.0.14393.1358
The push refers to a repository
[registry.sixeyed:5000/microsoft/nanoserver]
e6537bd7a896: Pushing [=====================>] 146.1MB/344.1MB
6c357baed9f5: Pushing [===========>] 160.3MB/700.8MB

On another Docker host, I can pull my local Nano Server image. But I don't need to use the
custom image name
registry.sixeyed:5000/microsoft/nanoserver:10.0.14393.1358 when I want to
use Nano Server - I can use the standard microsoft/nanoserver:10.0.14393.1358
name. Docker will see that image doesn't exist and start to pull it from Docker Hub - but it
will find the layers already available on the host's image cache, from the local registry, and
it will use them instead of downloading from Docker Hub.

Using a commercial registry
Running your own registry is not the only way to have a secure, private store for image
repositories, there are several third-party offerings you can use. In practice they all work in
the same way - you need to tag your images with the registry domain and authenticate
with the registry server. There are several options available, and the most comprehensive
ones come from Docker, Inc, which has different products available for different levels of
service.

Docker Hub
Docker Hub is the most widely used public container registry, averaging one billion image
pulls per month at the time of writing. You can host unlimited public repositories on the
Hub and pay a subscription to host multiple private repositories.

Pushing and Pulling Images from Docker Registries Chapter 4

[102]

Docker Hub has an automated build system, so you can link image repositories to source
code repositories in GitHub or BitBucket, and Docker's servers will build an image from the
Dockerfile in the repository whenever you push changes - it's a simple and effective hosted
Continuous Integration (CI) solution, especially if you are using portable multi-stage
Dockerfiles.

A Hub subscription is suitable for smaller projects or teams with multiple users working on
the same applications. It has an authorization framework where users can create an
organization - which becomes the account name in the repository rather than an individual
user's account name. Many users can be given access to the organization repositories,
which allows multiple users to push images to the repository, something you can't do with
individual user repositories.

Docker Cloud
Docker Cloud is a hosted platform which provides a registry and a platform for managing
Docker swarms running in the cloud. You can create Docker swarms on virtual machines in
AWS, Azure, DigitalOcean or other cloud providers and use Docker Cloud to deploy
Docker on the VMs, and Docker for Windows to manage the remote Docker nodes.

In addition to the CI builds of Docker Hub, with Cloud you can configure automated
application testing. You define tests in your source code repository, and when you push
changes Docker Cloud will build the image, run a container, and execute the test suite. This
means that you can use Docker Cloud for a full CI/CD pipeline, where new changes are
automatically deployed to the cloud servers managed by Docker Cloud.

The registry in Docker Cloud also provides security scanning, a feature where Docker
examines the contents of images, looking at the software installed and comparing it with
industry-standard databases of known vulnerabilities. Docker can flag security issues with
the operating system used in the base image or with software dependencies installed on top
of the base image. Security scanning and organization-level authorization make Docker
Cloud ideal for smaller teams and projects.

Docker Cloud is a good option to manage containerized workloads in the cloud. Docker
images are portable by definition, so you can limit your cloud requirements to basic
Infrastructure as a Service (IaaS) offerings - you just need VMs, storage, and virtual
networking to support Docker workloads. You can run multi-cloud applications or move
between providers easily using the consistent administration platform in Docker Cloud. I
will cover Docker swarm in Chapter 7, Orchestrating Distributed Solutions with Docker
Swarm.

Pushing and Pulling Images from Docker Registries Chapter 4

[103]

Docker Store
Docker Store is a registry for commercial software distribution. It's like an app store for
server-side applications. If your company produces commercial software, Docker Store
could be a good choice for distributing it. You build and push images in exactly the same
way, but your source can be kept private - only the packaged application is publicly
available.

There is also a certification process you can go through, for images being hosted on Docker
Store. Docker certification applies across software images and hardware stacks. If your
image is certified, it's guaranteed to work on Docker Enterprise Edition (Docker EE) on
any certified hardware. Docker tests all the combinations in the certification process, and
that end-to-end guarantee is very attractive to large enterprises.

Docker Trusted Registry
Docker Trusted Registry (DTR) is part of the Docker EE Advanced suite, the enterprise-
grade Containers-as-a-Service (CaaS) platform from Docker, Inc. It's aimed at enterprises
running a cluster of Docker hosts in their own data centers or in a virtual private cloud.
Docker EE Advanced comes with a comprehensive management suite called Universal
Control Plane (UCP), which provides an interface to administer all the resources in your
Docker cluster - the host servers, images, containers, networks, volumes, and everything
else. Docker EE Advanced also provides DTR, which is a secure, scalable registry.

DTR runs over HTTPS and is a clustered service, so you can deploy multiple registry
servers across your cluster for scalability and failover. You can use local storage or cloud
storage for DTR, so images can be persisted on an Azure backend with practically
unlimited capacity. Like Docker Cloud, you can create organizations for shared
repositories, but with DTR you manage authentication by creating your own user accounts
or plugging into an Lightweight Directory Access Protocol (LDAP) service (such as Active
Directory). Then you can configure role-based access control for fine-grained permissions.

Security scanning is also available in DTR, so you can have the service running in your own
environment. You can configure scans to run whenever an image is pushed, or on a
schedule. Scheduled scans can alert you when a new vulnerability is found in one of the
dependencies for an old image. The DTR UI lets you drill down into the details of the
vulnerability and see the exact file and the exact exploit.

Pushing and Pulling Images from Docker Registries Chapter 4

[104]

There is one other major security feature that is only available in Docker EE Advanced, and
that is content trust. Docker content trust lets users digitally sign images to capture an
approval workflow - so QA and security teams may run an image version through their test
suites and sign it to confirm that they approve a release candidate for production. Those
signatures are stored in DTR. UCP can be configured to only run images that have been
signed by certain teams, so you get close control over what software your cluster will run,
together with an audit trail proving who built and approved the software.

Docker EE Advanced has a rich suite of features that can be accessed through friendly web
UIs as well as through the standard Docker command line. Security, reliability, and
scalability are major factors in the feature set, which makes it a good choice for enterprise
users looking for a standard way to manage images, containers, and Docker hosts. I will
cover UCP in Chapter 8, Administering and Monitoring Dockerized Solutions and DTR in
Chapter 9, Understanding the Security Risks and Benefits of Docker.

Other registries
Many third-party services have added an image registry to their existing offerings. On the
cloud, you have the EC2 Container Registry (ECR) from Amazon Web Services (AWS),
Azure Container Registry from Microsoft, and Container Registry on Google Cloud
Platform. All these offerings integrate with the standard Docker command line and with
the other products in each respective platform, so they can be good options if you are
heavily invested in one cloud service provider.

There are also standalone registry offerings, including Artifactory from JFrog, and Quay.io -
which are hosted services. Having a hosted registry
removes the management overhead of running your own registry server, and if you are
already using a platform that provides a registry, it makes sense to evaluate that option.

All the registry providers have different feature sets and service levels - you should
compare the offerings and most importantly, check the level of Windows support. Most of
the existing platforms were originally built to support Linux images and Linux clients, and
there may not be feature parity for Windows.

Pushing and Pulling Images from Docker Registries Chapter 4

[105]

Summary
In this chapter, you learned what an image registry does and how you work with it using
Docker. I covered repository names and image tagging to identify application versions or
platform variations, and how to run and use a local registry server - running in a container.

Using a private registry is something you're likely to do quite early in your Docker journey.
As you start to Dockerize existing applications and experiment with new software stacks, it
may be useful to push and pull images across the fast local network - or use Docker Cloud
if local storage space is an issue. As you use Docker more and progress to production
implementation, you may have a roadmap to upgrade to DTR for a supported registry with
rich security features.

Now that you have a good understanding on how to share images and use images shared
by other people, you can look at bringing tried and trusted software components into our
own applications with a container-first solution design.

5
Adopting Container-First

Solution Design
Adopting Docker as your application platform brings clear operational benefits. Containers
are a much lighter unit of compute than virtual machines, but they still provide isolation, so
you can run more workloads on less hardware. All these workloads have the same shape in
Docker, so operations teams can manage .NET, Java, Go, and Node.js applications in the
same way. The Docker platform also has benefits in application architecture. In this
chapter, I'll look at how container-first solution design helps you add features to your
application with high quality and low risk.

I'll be returning to NerdDinner in this chapter, picking up from where I left off in Chapter
3, Developing Dockerized .NET and .NET Core Applications. NerdDinner is a traditional .NET
application, a monolithic design with tight coupling between components, where all
communication is synchronous. There is no unit testing, integration testing, or end-to-end
testing. NerdDinner is like millions of other .NET apps - it may have the features the users
need, but it's difficult and dangerous to modify. Moving apps like this to Docker lets you
take a different approach to modifying or adding features.

Two aspects of the Docker platform change the way you think about solution design. First,
networking and service discovery means you can distribute applications across multiple
components, each running in containers that can be moved, scaled, and upgraded
independently. Second, the expanding range of production-grade software available on
Docker Hub and Docker Store means you can use off-the-shelf software for many generic
services and manage them in the same way as your own components. This gives you the
freedom to design better solutions without infrastructure or technology restrictions.

Adopting Container-First Solution Design Chapter 5

[107]

In this chapter I'll show you how to modernize a traditional .NET application, by adopting
container-first design:

Splitting functionality into separate containers, to address performance issues
and add features
Adding enterprise-grade software to your solution by running containers from
official images
Building hybrid .NET Framework and .NET Core solutions in Docker
Moving from monoliths to distributed solutions

Design goals for NerdDinner
In Chapter 3, Developing Dockerized .NET and .NET Core Applications, I extracted the
NerdDinner home page into a separate component, which enabled rapid delivery of UI
changes. Now I'm going to make some more fundamental changes. The data layer in
NerdDinner uses Entity Framework (EF), and all database access is synchronous. A lot of
traffic to the site will create a lot of open connections to SQL Server and run a lot of queries.
Performance will deteriorate as load increases, to the point where queries time out or the
connection pool is starved, and the site will show errors to the users.

One way to improve this would be to make all the data access methods async, but that's an
invasive change - all the controller actions would need to be made async too, and there is
no automated test suite to verify such a wholesale set of changes. Alternatively, I could add
a cache for data retrieval so GET requests would hit the cache and not the database. That's
also a complex change, and I would need to cache data for long enough to make a cache hit
likely while keeping the cache in sync when data changes. Again, the lack of tests means
complex changes like this are hard to verify, so this is also a risky approach.

It would be hard to estimate the benefit if I did implement these complex changes. If all the
data access moves to asynchronous methods, will that make the website run faster and able
to handle more traffic? If I can integrate a cache that is efficient enough to take reads away
from the database, will that improve the overall performance? These benefits are difficult to
quantify until you've actually made the change, when you might find that the improvement
doesn't justify the investment.

Adopting Container-First Solution Design Chapter 5

[108]

With a container-first approach, you can look at the design differently. If you identify one
feature that makes expensive database calls but doesn't need to run synchronously, you can
move the database code to a separate component. Then you use asynchronous messaging
between the components, publishing an event from the main web app onto a message
queue and acting on the event message in the new component. With Docker, each of these
components will run in one or more containers:

If I focus on just one feature then I can implement the change quickly. This design has none
of the drawbacks of the other approaches:

It's a targeted change and only one controller action changes in the main
application
The new message handler component is small and highly cohesive, so it will be
easy to test
The web layer and the data layer are being decoupled, so they can be scaled
independently
I'm moving work away from the web application, so we can be sure of a
performance improvement.

Adopting Container-First Solution Design Chapter 5

[109]

There are other advantages too. The new component is completely independent of the
original application, it just needs to listen for an event message and act on it. You can use
.NET, .NET Core or any other technology stack for the message handler; you don't need to
be constrained to a single stack. And you also have events being published from the app, so
you have the option to add other features later by adding new handlers listening for these
events.

Dockerizing NerdDinner's configuration
NerdDinner uses Web.config for configuration - both for application configuration values
that are constant between releases, and for environmental configuration values that change
between different environments. The configuration file is baked into the release package,
which makes it awkward to change. In Chapter 3, Developing Dockerized .NET and .NET
Core Applications, I worked around this without changing code by using a start up script in
the Dockerfile to update values in Web.config from environment variables set by Docker.

In preparation for the bigger changes to come, I've updated the code for this chapter to use
environment variables directly. The Env class in the web project is a helper class that
fetches values for known configuration items, including the database connection strings
and secrets such as the Bing Maps API key. Some of these settings have default values in
the Dockerfile, but others need to be provided at runtime:

ENV BING_MAPS_KEY="" `
 IP_INFO_DB_KEY="" `
 HOMEPAGE_URL="http://nerd-dinner-homepage" `
 MESSAGE_QUEUE_URL="nats://message-queue:4222" `
 AUTH_DB_CONNECTION_STRING="Data Source=nerd-dinner-db..." `
 APP_DB_CONNECTION_STRING="Data Source=nerd-dinner-db..."

Using default values for the database connection strings means that the app is usable when
you start the database and web containers without having to specify any environment
variables. The app isn't 100% functional, though, because the API keys are needed for Bing
Maps and the IP geolocation services. These are rate-limited services, so you are likely to
have different keys for each developer and each environment.

Adopting Container-First Solution Design Chapter 5

[110]

To keep environment values safe, Docker lets you load them from a file rather than
specifying them in plaintext in the docker container run command. Isolating values in
a file means that the file itself can be secured, so only administrators and the Docker service
account can access it. The environment file is a simple text format, with one line for each
environment variable, written as a key-value pair. For the web container, my environment
file contains the secret API keys:

BING_MAPS_KEY=*my key*
IP_INFO_DB_KEY=*my key*

To run the container and load the file contents as environment variables, you can use the --
env-file option.

I've packaged those changes in a new version of the NerdDinner Docker image,
dockeronwindows/ch05-nerd-dinner-web. Like other examples from Chapter 3,
Developing Dockerized .NET and .NET Core Applications, the Dockerfile uses a bootstrap script
as the entry point, which promotes environment variables to the machine level so the
ASP.NET application can read them.

The new version of the NerdDinner website runs in Docker with this command:

docker container run -d -P `
 --name nerd-dinner-web `
 --env-file api-keys.env `
 dockeronwindows/ch05-nerd-dinner-web

The application needs these API keys set in the environment variables to run properly, but
that's a runtime requirement that is not clear from the Dockerfile alone. I have a PowerShell
script that starts containers in the right order, with the right options, but by the end of the
chapter, that script will be unwieldy. I'll address this in the next chapter when I look at
composition.

Splitting out the create dinner feature
In the DinnerController class, the Create action is a relatively expensive database
operation, which doesn't need to be synchronous. This feature is a good candidate for
splitting into a separate component. I can publish a message from the web app instead of
saving to the database while the user waits - if the site is experiencing high load, the
message may wait in the queue for seconds or even minutes before being processed, but the
response back to the user will be almost instant.

Adopting Container-First Solution Design Chapter 5

[111]

There are two pieces of work to split the feature into a new component. The web
application needs to publish a message to a queue when a dinner is created, and a message
handler needs to listen on the queue and save the dinner when it receives a message. In
NerdDinner, there's a bit more work to do because the existing code base is a physical
monolith as well as a logical monolith, and there's just one Visual Studio project that
contains everything: all the model definitions as well as the UI code.

In this chapter's source code, I've added a new .NET assembly project called
NerdDinner.Model to the solution and moved the EF classes to that project, so they can be
shared between the web app and the message handler. The model project targets the full
.NET Framework rather than .NET Core, so I can use the existing code as it is and I don't
need to bring an upgrade of EF into scope for this feature change. This choice restricts the
message handler to being a full .NET application too.

There's also a shared assembly project to isolate the message queue code in
NerdDinner.Messaging. I'll be using the nats message system, which is a high-
performance open source message queue. There is a nats client package on NuGet which
targets .NET Standard, so it can be used in both .NET and .NET Core, and my messaging
project does the same. This means that I can be flexible, so other message handlers that
don't use the EF model could be written in .NET Core.

In the model project, the original definition of the Dinner class is polluted with a lot of EF
and MVC code to capture validation and storage behavior, like this definition for the
description property:

[Required(ErrorMessage = "Description is required")]
[StringLength(256, ErrorMessage = "Description may not be longer than 256
characters")]
[DataType(DataType.MultilineText)]
public string Description { get; set; }

The class should be a simple POCO definition, but these attributes mean the model
definition is not portable because any consumers also need to reference EF and MVC. To
avoid that in the messaging project, I have a simple Dinner entity defined without any of
these attributes, and that class is the one I use to send dinner information in messages. I can
use the AutoMapper NuGet package to convert between dinner class definitions, as the
properties are fundamentally the same.

This is the sort of challenge you will find in lots of older projects - there's
no clear separation of concerns, so breaking out features is not
straightforward. You can take this approach and restructure the code base
without fundamentally changing logic, which will help in modernizing
the app.

Adopting Container-First Solution Design Chapter 5

[112]

The main code in the Create method of the DinnersController class now maps the
dinner model to the clean dinner entity and publishes an event instead of writing to the
database:

if (ModelState.IsValid)
{
 dinner.HostedBy = User.Identity.Name;
 var eventMessage = new DinnerCreatedEvent
 {
 Dinner = Mapper.Map<entities.Dinner>(dinner),
 CreatedAt = DateTime.UtcNow
 };
 MessageQueue.Publish(eventMessage);
 return RedirectToAction("Index");
}

This is the fire-and-forget messaging pattern. The web application is the producer,
publishing an event message. The producer doesn't wait for a response and doesn't know
which components--if any, will consume the message and act on it. It's loosely coupled and
fast, and it puts the responsibility to deliver the message onto the message queue, which is
where it should be.

Listening for this event message is a new .NET console project in
NerdDinner.MessageHandlers.CreateDinner. The Main method of the console app
uses the shared messaging project to open a connection to the message queue and subscribe
to these dinner-created event messages. When a message is received, the handler maps the
dinner entity in the message back to a dinner model and saves the model to the database
using code taken from the original implementation in the DinnersController class (and
tidied up a little):

var dinner = Mapper.Map<models.Dinner>(eventMessage.Dinner);
using (var db = new NerdDinnerContext())
{
 dinner.RSVPs = new List<RSVP>
 {
 new RSVP
 {
 AttendeeName = dinner.HostedBy
 }
 };
 db.Dinners.Add(dinner);
 db.SaveChanges();
}

Now the message handler can be packaged into its own Docker image and run in a
container alongside the website container.

Adopting Container-First Solution Design Chapter 5

[113]

Packaging .NET console apps in Docker
Console apps are easy to build as good citizens for Docker. The compiled executable for the
app will be the main process Docker starts and monitors, so you just need to make use of
the console for logging, and environment variables for configuration.

For my message handler I'm using a multi-stage build with a slightly different pattern. I
have a separate image for the builder stage, which I use to compile the whole solution - the
web project and the new projects I've added. I'll walk through the builder image later in the
chapter, when you've seen all the new components.

The builder compiles the solution, and the Dockerfile for the console application references
the dockeronwindows/ch05-nerd-dinner-builder image in a stage called builder. The
final stage packages the compiled executable from the builder stage and sets up default
configuration values:

escape=`
FROM dockeronwindows/ch05-nerd-dinner-builder AS builder

app image
FROM microsoft/windowsservercore:10.0.14393.1198
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

CMD ["NerdDinner.MessageHandlers.SaveDinner.exe"]

ENV APP_DB_CONNECTION_STRING="Data Source=nerd-dinner-db..." `
 MESSAGE_QUEUE_URL="nats://message-queue:4222"

WORKDIR C:\save-handler
COPY --from=builder C:\src\NerdDinner.MessageHandlers.SaveDinner\bin\Debug\
.

The new message handler needs to access the message queue and the database, and the
connection strings for each are captured as environment variables. In the code for the
project, there is an Env class to read these values from environment variables.

In the Dockerfile, the entry point in the CMD instruction is the console executable, so the
container will keep running as long as the console app is running. The listener for the
message queue runs asynchronously on a separate thread. The handler code will fire when
a message is received, so there's no polling of the queue and the app runs very efficiently.

Adopting Container-First Solution Design Chapter 5

[114]

Keeping the console app running indefinitely is straightforward, using a
ManualResetEvent object. In the Main method, I wait for a reset event that never happens,
so the program keeps running:

class Program
{
 private static ManualResetEvent _ResetEvent = new
ManualResetEvent(false);

 static void Main(string[] args)
 {
 // set up message listener
 _ResetEvent.WaitOne();
 }
}

This is a simple and efficient way of keeping a .NET (or .NET Core) console app alive.
When I start a message handler container, it will keep running in the background and listen
for messages until the container is stopped.

Running a message queue in Docker
The web application now publishes messages, and a handler listens for them, so the final
component I need is a message queue to connect the two. Queues need the same level of
availability as the rest of the solution, so they're good candidates for running in Docker
containers. In a distributed solution deployed on many servers, the queue can be clustered
across multiple containers for performance and redundancy.

Your choice of messaging technology depends on the features you need, but there are
plenty of options with .NET client librariesMicrosoft Message Queue (MSMQ) is the
native Windows queue, RabbitMQ is a popular open source queue that supports durable
messaging, and nats is an open source in-memory queue that is hugely performant.

The high throughput and low latency of nats messaging make it a good choice to
communicate between containers, and there is an official image for nats on Docker Hub.
nats is a Go application that runs cross-platform and there are Linux, Windows Server
Core, and Nano Server variants of the Docker image.

Adopting Container-First Solution Design Chapter 5

[115]

You run the nats message queue like any other container, publishing port 4222 which is the
port clients use to connect to the queue:

docker container run --detach `
 --publish 4222 `
 --name message-queue `
 nats:nanoserver

I'm using the Nano Server version of the nats image because the lighter
profile means it starts more quickly, runs more efficiently, and exposes a
smaller attack surface.

The nats server application logs messages to the console, so the log entries are collected by
Docker. When the container is running, you can verify that the queue is listening using
docker container logs:

> docker container logs message-queue
[1416] 2017/06/23 09:20:41.329327 [INF] Starting nats-server version 0.9.6
[1416] 2017/06/23 09:20:41.329327 [INF] Starting http monitor on
0.0.0.0:8222
[1416] 2017/06/23 09:20:41.331269 [INF] Listening for client connections on
0.0.0.0:4222
[1416] 2017/06/23 09:20:41.331269 [INF] Server is ready
[1416] 2017/06/23 09:20:41.334275 [INF] Listening for route connections on
0.0.0.0:6222

The message queue is an infrastructure-level component with no dependencies on other
components. It can be started before other containers and left running when application
containers are stopped or upgraded.

Starting a multi-container solution
As you make more use of Docker, your solution will become distributed across more
containers - either running custom code that you split out from a monolith, or tried and
trusted third-party software from Docker Hub or Docker Store.

NerdDinner now runs across four containers - SQL Server, the web app, the nats message
queue, and the message handler. There are dependencies between the containers, and they
need to be started in the correct order and created with the correct names so that
components can be found using Docker's service discovery.

Adopting Container-First Solution Design Chapter 5

[116]

In the next chapter, I'll use Docker Compose to declaratively map out these dependencies.
For now, I have a PowerShell script ch05-run-nerd-dinner_part-1.ps1 which
explicitly starts the containers with the correct configuration:

docker container run -d -p 4222 `
 --name message-queue `
 nats:nanoserver;

docker container run -d -p 1433 `
 --name nerd-dinner-db `
 -v C:\databases\nd:C:\data `
 dockeronwindows/ch03-nerd-dinner-db;

docker container run -d -p 80 `
 --name nerd-dinner-homepage `
 dockeronwindows/ch03-nerd-dinner-homepage;

docker container run -d `
 --name nerd-dinner-save-handler `
 dockeronwindows/ch05-nerd-dinner-save-handler;

docker container run -d -p 80 `
 --name nerd-dinner-web `
 --env-file api-keys.env `
 dockeronwindows/ch05-nerd-dinner-web;

In this script I'm using the SQL database and home page images from
Chapter 3, Developing Dockerized .NET and .NET Core Applications - these
components haven't changed, so they can be run alongside the new
components.
If you want to run this yourself with full functionality, you will need to
populate your own API keys in the file api-keys.env. You'll need to
sign up to the Bing Maps API and the IP information database. You can
run the app without those keys, but not all features will work correctly.

Adopting Container-First Solution Design Chapter 5

[117]

When I run the script with my own API keys set and inspect the web container to get the IP
address, I can browse to the application. It's a fully featured version of NerdDinner now. I
can log in and complete the create dinner form, complete with map integration:

When I submit the form, the web app publishes an event message to the queue. That is a
very cheap operation, so the web app returns to the user almost immediately. Listening for
messages is the console application, running in a different container - potentially on a
different host. It picks up the message and processes it. The handler logs the activity to the
console, so admin users can monitor it using docker container logs:

> docker container logs nerd-dinner-save-handler

Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.dinner.created, queue: save-dinner-handler
Received message, subject: events.dinner.created
Saving new dinner, created at: 6/24/2017 8:44:21 PM; event ID: b7ecb300-
af6f-4f2e-ab18-19bea90d4684
Dinner saved. Dinner ID: 1; event ID: b7ecb300-af6f-4f2e-ab18-19bea90d4684

Adopting Container-First Solution Design Chapter 5

[118]

The functionality of the create dinner feature is the same - data entered by the user is saved
to SQL Server, and the user experience is the same, but the scalability of this feature is
massively improved. Designing for containers lets me extract the persistence code into a
new component, knowing the component can be deployed on the same infrastructure as
the existing solution and that it will inherit the existing levels of scalability and failover, if
the application is deployed on a cluster.

I can rely on the Docker platform and take a dependency on a new core component, the
message queue. The queue technology itself is enterprise-grade software, capable of
processing hundreds of thousands of messages per second. nats is free open source
software that is available on Docker Hub to drop straight into your solution, running as a
container and connected to other containers in the Docker network.

So far, I've used the container-first design and the power of Docker to modernize one part
of NerdDinner. Targeting a single feature means I can release this new version confidently,
after testing only the feature that's changed. If I wanted to add auditing to the create dinner
feature, I would just make an update to the message handler and I wouldn't need to do a
full regression test of the web application, because that component is not going to be
updated.

Designing with containers in mind also gives me a foundation to add more features.

Adding new features in containers
Decoupling components from a monolith has a beneficial side effect. The approach I've
taken has introduced a style of event-driven architecture for one feature. I can build on that
to add new features, again taking a container-first approach.

In NerdDinner there is a single data store, a transactional database stored in SQL Server.
That's fine to service the website, but it's limited when it comes to user-facing features, such
as reporting. There's no user-friendly way to search the data, build dashboards, or enable
self-service reporting.

An ideal solution for this would be to add a secondary data store, a reporting database,
using a technology which does provide self-service analytics. Without Docker that would
be a major project, needing a redesign or additional infrastructure or both. With Docker, I
can leave the existing application alone and add new features running in containers on the
existing servers.

Adopting Container-First Solution Design Chapter 5

[119]

Elasticsearch is another enterprise-grade open source project which is available as a
Windows image on Docker Hub. Elasticsearch is a full search document data store which
works well as a reporting database, along with the companion product Kibana which
provides a user friendly web front end.

I can add self-service analytics for the dinners created in NerdDinner by running
Elasticsearch and Kibana in containers in the same network as the other containers. The
current solution already publishes events with dinner details, so to add dinners to the
reporting database I need to build a new message handler which subscribes to the existing
events and saves the details in Elasticsearch.

When the new reporting feature is ready, it can be deployed to production without any
changes to the running application. Zero-downtime deployment is another benefit of
container-first design. Features are built to run in decoupled units, so individual containers
can be started or upgraded without affecting other containers.

For the next feature, I'll add a new message handler which is independent of the rest of the
solution. If I needed to replace the implementation of the save-dinner handler, I could also
do that with zero-downtime, using the message queue to buffer events while replacing the
handler.

Using Elasticsearch with Docker and .NET
Elasticsearch is such a widely useful technology that it's worth looking at in a little detail.
It's a Java application, but running in Docker you can treat it as a black box and manage it
in the same way as all other Docker workloads - you don't need to install Java or configure
the JDK. Elasticsearch exposes a REST API for writing, reading, and searching data, and
there are client wrappers for the API available in all major languages.

Data in Elasticsearch is stored as JSON documents, and every document can be fully
indexed so you can search for any value in any field. It's a clustered technology that can run
across many nodes for scale and resilience. In Docker, you can run each node in a separate
container and distribute them across your server estate to gain scale and resilience, but add
the ease of deployment and management you get with Docker.

The same storage considerations apply to Elasticsearch as with any stateful workload - in
development, you can save data inside the container, so when the container is replaced,
you start with a fresh database. In test environments, you can use a Docker volume
mounted to a drive on the host to keep persistent storage outside of the container. In
production, you can use a volume with a driver for an on-premises storage array or a cloud
storage service.

Adopting Container-First Solution Design Chapter 5

[120]

There's an official Elasticsearch image on Docker Hub, but currently it only has Linux
variants. I have my own image on Docker Cloud which packages Elasticsearch into a
Windows Docker image. Running Elasticsearch in Docker is the same as starting any
container. This command exposes port 9200, which is the default port for the REST API:

 docker container run -d -p 9200 `
 --name elasticsearch `
 --env ES_JAVA_OPTS='-Xms512m -Xmx512m' `
 sixeyed/elasticsearch:nanoserver

Elasticsearch is a memory-hungry application, and by default it allocates 2 GB of system
memory when it starts. In a development environment I don't need that much memory for
the database. I can configure that by setting the ES_JAVA_OPTS environment variable. In
this command I limit Elasticsearch to 512 MB of memory.

Elasticsearch is a cross-platform application like nats. As with nats, I'm
using the Nano Server image to get the most lightweight runtime.

There is a NuGet package for Elasticsearch called NEST, which is an API client for reading
and writing data, and is targeted for the .NET Framework and .NET Core. I use that
package in a new .NET Core console project,
NerdDinner.MessageHandlers.IndexDinner. The new console app listens for the
create dinner event message from nats and writes the dinner details as a document in
Elasticsearch.

The code to connect to the message queue and subscribe to messages is the same as the
existing message handler. I have a new Dinner class, which represents the Elasticsearch
document, so the message handler code maps from the dinner entity to the dinner
document and saves it in Elasticsearch:

var eventMessage =
MessageHelper.FromData<DinnerCreatedEvent>(e.Message.Data);
var dinner = Mapper.Map<documents.Dinner>(eventMessage.Dinner);
var node = new Uri(Env.ElasticsearchUrl);
var client = new ElasticClient(node);
client.Index(dinner, idx => idx.Index("dinners"));

Adopting Container-First Solution Design Chapter 5

[121]

Elasticsearch and the document message handler will run in a container, all in the same
Docker network as the rest of the NerdDinner solution. I can start the new containers while
the existing solution is running, as there are no changes to the web application or the SQL
Server message handler. Adding this new feature with Docker is a zero-downtime
deployment.

The Elasticsearch message handler has no dependency on EF or any of the legacy code. I've
taken advantage of that to write the app in .NET Core, which gives me the freedom to run it
in a Docker container on Linux or Windows hosts. That means the Visual Studio solution
has both .NET Framework and .NET Core application projects, and the apps both refer to a
.NET Standard assembly project. That setup needs a slightly more complicated build agent.

Building hybrid .NET Framework and .NET Core
solutions in Docker
The multi-stage builds you've seen up until now have all used my sixeyed/msbuild
images on Docker Cloud. Those images provide MSBuild and NuGet, and any extra
packages needed to build specific project types - like web projects and SQL Server projects.
You can find the Dockerfiles for those images on GitHub at sixeyed/dockerfiles-
windows, and you'll see they're all very simple.

I've been using the sixeyed/msbuild image as the build agent to compile individual .NET
Framework projects. You can build Visual Studio solutions with the MSBuild tool, and if
there are multiple .NET projects with project references, MSBuild will compile them in the
correct order. If your Visual Studio solution contains both .NET and .NET Core projects,
you can't build it with MSBuild alone - you need the .NET Core SDK too.

That's the case with NerdDinner in this chapter, so I have a new Docker image which
packages MSBuild and the .NET Core SDK and I can use that to compile the solution. The
Dockerfile for dockeronwindows/ch05-msbuild-dotnet is itself a multi-stage build, and
the output is an image that can be used to compile a hybrid .NET Framework and .NET
Core solution.

The Dockerfile starts by installing Chocolatey and then using the choco command to install
the Visual Studio 2017 build tools and the NuGet command line. The build tools package
contains the latest release of MSBuild:

FROM microsoft/windowsservercore:10.0.14393.1198 AS buildtools
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

RUN Invoke-WebRequest -UseBasicParsing https://chocolatey.org/install.ps1 |

Adopting Container-First Solution Design Chapter 5

[122]

Invoke-Expression; `
 choco install -y visualstudio2017buildtools --version
15.2.26430.20170605; `
 choco install -y nuget.commandline --version 4.1.0

Running this in a separate stage means I can use Chocolatey for easy package install. In the
final image I'll copy the package output from this stage - but I won't copy Chocolatey itself.
That makes for a smaller and cleaner image for my build agent. The next stage uses
Microsoft's .NET Core image with the SDK installed. I don't add anything to this stage, I
just reference the image so I can copy the SDK from it in the final image:

FROM microsoft/dotnet:1.1.2-sdk-nanoserver AS dotnet

The last stage puts together the build agent. It starts from Windows Server Core, sets file
paths as environment variables and copies the .NET Core SDK, MSBuild and NuGet from
the earlier stages:

FROM microsoft/windowsservercore:10.0.14393.1198
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop'"]

ENV MSBUILD_PATH="C:\Program Files (x86)\Microsoft Visual
Studio\2017\BuildTools\MSBuild\15.0\Bin" `
 NUGET_PATH="C:\ProgramData\chocolatey\lib\NuGet.CommandLine\tools" `
 DOTNET_PATH="C:\Program Files\dotnet"

COPY --from=dotnet ${DOTNET_PATH} ${DOTNET_PATH}
COPY --from=buildtools ${MSBUILD_PATH} ${MSBUILD_PATH}
COPY --from=buildtools ${NUGET_PATH} ${NUGET_PATH}

Next I add packages for the .NET 4.5.2 targeting pack, web deploy, and the build targets for
web projects:

RUN Install-PackageProvider -Name chocolatey -RequiredVersion 2.8.5.130 -
Force; `
 Install-Package -Name netfx-4.5.2-devpack -RequiredVersion 4.5.5165101
-Force; `
 Install-Package -Name webdeploy -RequiredVersion 3.6.0 -Force; `
 & nuget install MSBuild.Microsoft.VisualStudio.Web.targets -Version
14.0.0.3

I build this Dockerfile in the usual way, and the output is an image which has the complete
toolchain to compile a Hybrid .NET Framework and .NET Core solution.

Adopting Container-First Solution Design Chapter 5

[123]

Compiling the hybrid NerdDinner solution
I'm taking a different approach to building NerdDinner in this chapter, one which fits
nicely with a CI process if you're mixing .NET Core and .NET Framework projects (I cover
CI and CD with Docker in Chapter 10, Powering a Continuous Deployment Pipeline with
Docker). I'll compile the whole solution in one image, and use that image as the build stage
in my application Dockerfiles.

This is how the build agent and builder images are used to package the application images
for this chapter:

All the tools I need to build the solution are in the build agent, so the Dockerfile for
dockeronwindows/ch05-nerd-dinner-builder is straightforward. It starts from the
build agent and copies in the source tree for the solution:

escape=`
FROM dockeronwindows/ch05-msbuild-dotnet

WORKDIR C:\src
COPY src .

Next it restores all the packages used in the projects, using dotnet restore for the .NET
Core projects and NuGet restore for the .NET Framework projects:

RUN dotnet restore; `
 nuget restore -msbuildpath $env:MSBUILD_PATH

Adopting Container-First Solution Design Chapter 5

[124]

The two steps are necessary, because the tooling is different. Package references for .NET
Core projects are listed inside the .csproj files, whereas for .NET Framework projects
they're in packages.config. Both commands run from the NerdDinner.sln file, so I
don't need to list individual projects, and as the solution grows I won't need to update the
builder.

There are only two more instructions in the builder, and they compile all the projects and
publish the applications:

RUN dotnet build .\NerdDinner.Messaging\NerdDinner.Messaging.csproj; `
 dotnet msbuild NerdDinner.sln

RUN dotnet publish .\NerdDinner.MessageHandlers.IndexDinner; `
 msbuild .\NerdDinner\NerdDinner.csproj `
 /p:DeployOnBuild=true /p:OutputPath=c:\out\NerdDinner `
/p:VSToolsPath=C:\MSBuild.Microsoft.VisualStudio.Web.targets.14.0.0.3\tools
\VSToolsPath

Again there are separate steps for the .NET Core and .NET Framework apps, because the
tooling is not yet integrated. I expect later releases of MSBuild and .NET Core will have
integrated tooling, so the complexity of managing multiple toolchains will go away. Until
then, you can use Docker to isolate the complexity - building all the tools into one image,
which lets you have a clean builder image with no clutter for the tooling.

The disadvantage of this approach is that there's no use of the Docker cache. The whole
source tree is copied into the image as the first step. Whenever there is a code change the
build will update the packages, even if the package references haven't changed. You could
write this builder differently, to copy in the .sln, .csproj, and package.config files
first for the restore phase, and then copy in the rest of the source for the build phase.

That would give you package caching and a faster build, at the cost of a more brittle
Dockerfile - you'd need to edit the initial file list every time you add or remove a project.

You can choose the approach that works best with your processes. In the case of a more
complex solution like this, developers may build and run the app from Visual Studio, and
only build the Docker images to run tests before checking in code. In that case, the slower
Docker image build is not an issue (I discuss the options for running your application in
Docker while you're developing it in Chapter 11, Debugging and Instrumenting Application
Containers).

Adopting Container-First Solution Design Chapter 5

[125]

One thing is different in how this image is built. The Dockerfile copies in the src folder,
which is one level higher than the folder where the Dockerfile lives. To make sure the src
folder is included in the Docker context, I need to run the build image command from the
ch05 folder, and specify the path to the Dockerfile with the --file option:

docker image build `
 --tag dockeronwindows/ch05-nerd-dinner-builder `
 --file ch05-nerd-dinner-builder\Dockerfile .

Building the image compiles and packages all the projects, so I can use that image as the
source stage in the application Dockerfiles. I only need to build the builder once, and then I
can use it to build all the other images.

Packaging .NET Core console apps in Docker
In Chapter 3, Developing Dockerized .NET and .NET Core Applications, I built the replacement
NerdDinner home page as an ASP.NET Core web application, and in this chapter, I have
the Elasticsearch message handler as a .NET Core console application. In this case the
application can be packaged as a Docker image using the microsoft/dotnet image from
Microsoft on Docker Hub.

The Dockerfile for dockeronwindows/ch05-index-handler uses multi-stage builds,
with the builder image as the source:

escape=`
FROM dockeronwindows/ch05-nerd-dinner-builder AS builder

app image
FROM microsoft/dotnet:1.1.2-runtime-nanoserver
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

ENV ELASTICSEARCH_URL="http://elasticsearch:9200" `
 MESSAGE_QUEUE_URL="nats://message-queue:4222"

CMD ["dotnet", "NerdDinner.MessageHandlers.IndexDinner.dll"]

WORKDIR /index-handler
COPY --from=builder
C:\src\NerdDinner.MessageHandlers.IndexDinner\bin\Debug\netcoreapp1.1\publi
sh\ .

Adopting Container-First Solution Design Chapter 5

[126]

The content is very similar to the .NET Frameworks console app used for the SQL Server
message handler. The differences are the FROM image, here I'm using the .NET Core
runtime image, and the CMD instruction, here it's the dotnet command running the console
application DLL. Both the message handlers use the builder image as the source for
copying the compiled application, and then set up the environment variables and startup
commands they need.

The index handler application uses environment variables for configuration, specifying the
URLs for the message queue and the Elasticsearch API. These values have defaults set in
the Dockerfile in the same way as the other NerdDinner components, because I'll control
the deployment stack and can safely rely on these values. The start up command runs the
.NET Core application, which writes log entries to the console and stays alive with a
ManualResetEvent object, so it integrates well with Docker.

When the application runs, it will listen for messages from nats, with the create dinner
message subject. When events are published from the web application, nats will send
copies to every subscriber, so the SQL Server save handler and the Elasticsearch index
handler will both get copies of the event. The event message contains enough detail for
both handlers to operate. If a future feature requires more detail, then the web app can
publish a new version of the event with additional information, but the existing message
handlers would not need to change.

Running another container with Kibana will complete this feature and add self-service
analytics to NerdDinner.

Providing analytics with Kibana
Kibana is an open source web frontend for Elasticsearch, which gives you visualizations for
analytics and the ability to search for specific data. It's produced by the company behind
Elasticsearch and is very widely used because it provides a user friendly way to navigate
around huge quantities of data. You can explore the data interactively, and power users can
build comprehensive dashboards to share with others.

The latest version of Kibana is a Node.js application, so like Elasticsearch and nats, it's a
cross-platform application, which you can find packaged on Docker Hub with Linux and
Windows variants. The Kibana image is built using the same convention-based approach
that I've used in the message handlers, it expects to connect to a container called
elasticsearch on the default API port 9200.

Adopting Container-First Solution Design Chapter 5

[127]

In the source code directory for this chapter, there is a second PowerShell script which
deploys the containers for this feature. ch05-run-nerd-dinner_part-2.ps1 starts the
additional Elasticsearch, Kibana, and index handler containers, it assumes the other
components are already running from the part-1 script:

 docker container run -d -p 9200 `
 --name elasticsearch `
 sixeyed/elasticsearch:nanoserver

docker container run -d -p 5601 `
 --name kibana `
 sixeyed/kibana:nanoserver;

docker container run -d `
 --name nerd-dinner-index-handler `
 dockeronwindows/ch05-nerd-dinner-index-handler;

The full stack is running now. When I add a new dinner, I will see the logs from the
message handler containers showing the data is now being saved to Elasticsearch as well as
to SQL Server:

> docker container logs nerd-dinner-save-handler
Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.dinner.created, queue: save-dinner-handler
Received message, subject: events.dinner.created
Saving new dinner, created at: 6/24/2017 10:58:31 PM; event ID: a7530414-
d2ad-407a-9b03-ade7a22f1f7e
Dinner saved. Dinner ID: 2; event ID: a7530414-d2ad-407a-9b03-ade7a22f1f7e

> docker container logs nerd-dinner-index-handler
Connecting to message queue url: nats://message-queue:4222
Listening on subject: events.dinner.created, queue: index-dinner-handler
Received message, subject: events.dinner.created
Indexing new dinner, created at: 6/25/2017 12:13:13 AM; event ID: a7530414-
d2ad-407a-9b03-ade7a22f1f7e

Adopting Container-First Solution Design Chapter 5

[128]

Kibana runs on port 5601, so I can fetch the container IP address and navigate to that port
in the browser. The only configuration the launch screen needs is the name of the document
collection - which Elasticsearch calls an index. In this case, the index is called dinners. I've
already added a document Kibana, so can access the Elasticsearch metadata to determine
the fields in the documents:

Adopting Container-First Solution Design Chapter 5

[129]

Every dinner created will now be saved in the original transactional database, SQL Server,
and also in the new reporting database, Elasticsearch. Users can create visualizations over
aggregated data, looking for patterns in popular times or locations, and they can search for
particular dinner details and retrieve specific documents:

Elasticsearch and Kibana are hugely capable software systems. I won't
cover them in any further detail in this book, but they are popular
components with a lot of online resources if you want to learn more.

From monolith to distributed solution
NerdDinner has evolved from a legacy monolith to an easily scalable, easily extensible
solution running on a modern application platform using modern design patterns. It's been
a fast and low risk evolution, powered by the Docker platform and container-first design.

Adopting Container-First Solution Design Chapter 5

[130]

The project started by migrating NerdDinner to Docker as-is, running containers for the
web application and the SQL Server database. Now I have eight components, each running
in a lightweight Docker container and each capable of being independently deployed, so
they can follow their own release cadence:

One of the great benefits of Docker is the huge library of packaged software available to
add to your solution. The official images on Docker Hub are enterprise-grade open source
software systems that have been tried and trusted by the community for years. Certified
images on Docker Store provide commercial software which is guaranteed to work
correctly on Docker EE.

More and more software packages are becoming available for Windows in easily-consumed
Docker images, giving you the scope to add features to your application without significant
development.

Adopting Container-First Solution Design Chapter 5

[131]

The new custom components in the NerdDinner stack are the message handlers, both
simple console applications of around 100 lines of code. The save dinner handler uses the
original code from the web application and uses the EF model - which I refactored into its
own project to enable that reuse. The index dinner handler uses all new code written in
.NET Core, which makes it efficient and portable at runtime, but at build time, all the
projects are in a single Visual Studio solution.

The container-first approach is about breaking features into discrete components and
designing these components to run in containers, either as small custom applications you
write yourself, or as off-the-shelf images from Docker Hub. The feature-driven approach
means you focus on an area that is valuable to the project's stakeholders:

To the business because it gives them new functionality or more frequent releases
To operations because it makes the application more resilient and easier to
maintain
To the development team because it addresses technical debt and allows greater
architectural freedom

Managing build and deployment dependencies
In the current evolution, NerdDinner has a well-structured and logical architecture, but
practically it has a lot of dependencies. The container-first design approach gives me
technology stack freedom, but that can lead to a lot of new technologies. If you were to join
the project at this stage and wanted to run the application locally, outside of Docker, you'd
need the following:

Visual Studio 2017
.NET Core 1.1.2 runtime and SDK 1.0.4
IIS and ASP.NET 4.5
SQL Server
nats, Elasticsearch, and Kibana

If you join the project and you have Docker for Windows installed, you don't need any of
those dependencies. When you've cloned the source code, you can build and run the whole
application stack with Docker. You can even develop and debug the solution with Docker
and a lightweight editor like VS Code, removing even the dependency for Visual Studio.

Adopting Container-First Solution Design Chapter 5

[132]

This also makes continuous integration very easy - your build servers only need Docker
installed to build and package the solution. You can use disposable build servers, spinning
up a VM when you have builds queued and then destroying the VM when the queue is
empty. You don't need complex initialization scripts for the VM, just a scripted Docker
install.

There are still runtime dependencies for the solution, which I'm currently managing with a
script that starts all the containers with the right options and in the right order. This is a
brittle and limited approach - the script has no logic to handle any failures or to allow for a
partial start where some containers are already running. I'll address this in the next chapter
using Docker Compose to define and run the whole solution.

Summary
In this chapter, I looked at the container-first solution design, making use of the Docker
platform at design time to easily and safely add features to your application. I covered a
feature-driven approach to modernizing an existing software project, which maximizes
return on investment and gives clear visibility on progress.

The container-first approach to features lets you use production-grade software from
Docker Hub or Docker Store to add capabilities to your solution, with official and certified
images that are high-quality curated applications. You can add these off-the-shelf
components, and focus on building small custom components to complete features. Your
application will evolve to be loosely coupled, so individual elements can each have the
most appropriate release cycle.

The speed of development in this chapter has outpaced operations, so we currently have a
well-architected solution that is fragile to deploy. In the next chapter, I'll introduce Docker
Compose, which provides a clear and uniform way to describe and manage multi-container
solutions.

6
Organizing Distributed

Solutions with Docker Compose
Shipping software is an integral part of the Docker platform. The public registries on
Docker Hub, Docker Cloud, and Docker Store make it easy to design a distributed solution
using tried-and-tested components. In the previous chapter, I showed how to integrate
these components into your own solution, taking a container-first design approach. The
end result is a distributed solution with several moving parts. In this chapter, you'll learn
how to organize all those moving parts into one unit using Docker Compose.

Docker Compose is another open source product from Docker, Inc., which extends the
Docker ecosystem. The Docker Command Line Interface (CLI) and Docker API work on
individual resources, such as images and containers. Docker Compose works on a higher
level of services applications. An application is a single unit composed of multiple
resources, which are Docker containers, networks, and volumes at runtime. You use
compose to define all the resources of the application and the dependencies between them.

There are two parts to Docker Compose. The design-time element captures the application
definition in a YAML file, and at runtime, Docker Compose can manage an application
from the YAML file. I'll cover both these parts in this chapter, showing you how to:

Define distributed solutions with the Docker Compose file format
Start, stop, upgrade, and scale applications using Docker Compose
Manage containers and images with Docker Compose
Structure Docker Compose files to support multiple environments

Organizing Distributed Solutions with Docker Compose Chapter 6

[134]

Docker Compose is installed as part of Docker for Windows CE. If you
install Docker using the PowerShell installer, that doesn't give you
compose. You can download it from the releases on GitHub at
docker/compose.

Defining applications with Docker Compose
The Docker Compose file format is very simple. YAML is a human-readable superset of
JSON, and the Compose file specification uses descriptive attribute names. In the Compose
file, you define the services, networks, and volumes that make up your application.
Networks and volumes are the same concepts that you use with the Docker engine.
Services are an abstraction over containers.

A container is a single instance of a component, but a service can be multiple instances of
the same component running in different containers. You could have three containers in the
service used for your web application and two containers in the service you use for a
message handler:

A service is like a template to run a container from an image, with a known configuration.
Using services, you can scale up components of the application—running multiple
containers from the same image and configuration and managing them as a single unit.
Services are not used in the standalone Docker engine, but they are used in Docker
Compose and also with a cluster of Docker engines running in the swarm mode (which I
cover in the next chapter).

Organizing Distributed Solutions with Docker Compose Chapter 6

[135]

Docker provides discoverability for services in the same way that it does for containers.
Consumers access the service by name, and Docker can load-balance requests across
multiple containers in a service. The number of instances in the service is transparent to
consumers; they always refer to the service name, and they are always directed to a single
container by Docker.

In this chapter, I'll use Docker Compose to organize the distributed solution I built in the
previous chapter, replacing the brittle docker container run PowerShell scripts with a
reliable and production-ready Docker Compose file.

Capturing service definitions
Services can be defined in any order in the Compose file. To make it easier to read, I prefer
to start with the simplest services, which have no dependencies—infrastructure
components such as message queue and databases.

Docker Compose files are conventionally called docker-compose.yml, and they start with
an explicit statement of the API version; the latest is version 3.3. Application resources are
defined at the top level—this is a template Compose file with sections for services,
networks, and volumes:

 version: '3.3'

 services:
 ...

 networks:
 ...

 volumes:
 ...

All resources need a unique name, and the name is how resources refer to other resources.
Services may have a dependency on networks, volumes, and other services, which are all
captured by name. The configuration for each resource is in its own section, and the
attributes available are broadly the same as the respective create command in the Docker
CLI such as docker network create and docker volume create.

In this chapter, I'll build a Compose file for the distributed NerdDinner application and
show you how to use Docker Compose to manage the application. I'll start my Compose
file with the common services first.

Organizing Distributed Solutions with Docker Compose Chapter 6

[136]

Defining infrastructure services
The simplest service I have is the message queue, nats, which has no dependencies. Each
service needs a name and the image name to start containers from. Optionally, you can
include start up parameters that you would use in docker container run. For the nats
message queue, I add a network name, which means any containers created in this service
will all be attached to the nd-net network:

message-queue:
 image: nats:nanoserver
 networks:
 - nd-net

In this service definition, I have all the parameters required to start message queue
containers:

message-queue: This is the name of the service; this becomes the DNS entry for
other services to access nats.
image: This is the full name of the image to start containers from. In this case, it's
the official nats:nanoserver image from the public Docker Hub, but you can
also use an image from a private registry by including the registry domain in the
image name.
networks: This is a list of the networks to connect containers to when they start.
This service connects to one network named nd-net. This will be a Docker
network used for all the services in this application. Later in the Docker Compose
file, I'll explicitly capture the details of the network.

I haven't published any ports for the nats service. The message queue is
used only internally by other containers. Within a Docker network,
containers can access ports on other containers without them being
published to the host. This keeps the message queue secure, as it is only
accessible through the Docker platform by other containers in the same
network. No external server and no applications running on the server
can access the message queue.

Organizing Distributed Solutions with Docker Compose Chapter 6

[137]

The next infrastructure service is Elasticsearch, which also has no dependencies on other
services. It will be used by the message handler that also uses the nats message queue, so I
will need to join all these services to the same Docker network. For Elasticsearch, I also
want to limit the amount of memory it uses and use a volume for the data so it will be
stored outside of the container:

elasticsearch:
 image: sixeyed/elasticsearch:nanoserver
 environment:
 - ES_JAVA_OPTS=-Xms512m -Xmx512m
 volumes:
 - es-data:C:\data
 networks:
 - nd-net

Here, elasticsearch is the name of the service and sixeyed/elasticsearch is the
name of the image, which is my public image on Docker Cloud. I'm connecting the service
to the same nd-net network, and I also mount a volume to a known location in the
container. When Elasticsearch writes data to C:\data on the container, it will actually be
stored in a volume.

Just like with networks, volumes are first-class resources in the Docker Compose file. For
Elasticsearch, I'm mapping a volume called es-data to the data location in the container. I'll
specify how the es-data volume should be created later in the Compose file.

Kibana is the first service that is available outside of the Docker network, so I need to
publish ports, and it's the first that depends on another service. I can capture both these
attributes in the service definition:

 kibana:
 image: sixeyed/kibana:nanoserver
 ports:
 - "5601:5601"
 depends_on:
 - elasticsearch
 networks:
 - nd-net

Port publishing is the same in Docker Compose as it is when running a container. You
specify which container port to publish and which host port it should publish to, so Docker
routes incoming host traffic to the container. The ports section allows multiple mappings,
and you can optionally specify TCP or UDP protocols if you have a specific requirement.

Organizing Distributed Solutions with Docker Compose Chapter 6

[138]

The depends_on attribute shows how to capture dependencies between services. In this
case, as Kibana is dependent on Elasticsearch, Docker will ensure the elasticsearch
service is up and running before starting the kibana service.

Containers for the Kibana service also connect to the application network. In an alternative
configuration, I could have separate backend and frontend networks. All the infrastructure
services would connect to the backend network, and the public-facing services would
connect to the backend and frontend networks. These are both Docker networks, but
separating them would give me the flexibility to configure the networks differently.

Configuring application services
The infrastructure services I've specified so far haven't needed application-level
configuration. I've configured the integration points between the containers and the Docker
platform with networks, volumes, and ports, but the applications use the configuration
built into each Docker image.

The Kibana image connects to Elasticsearch by convention using the hostname
elasticsearch, which is the service name I've used in the Docker Compose file to
support that convention. The Docker platform will route any requests to the
elasticsearch hostname to the service, load-balancing between containers if there are
multiple containers running the service, so Kibana will be able to find Elasticsearch at the
expected domain name.

My custom applications need configuration settings specified, which I can include in the
Compose file using environment variables. Defining environment variables for a service in
the Compose file sets these environment variables for every container running the service.

The index-dinner message handler service subscribes to the nats message queue and creates
documents in Elasticsearch, so it needs to connect to the same Docker network, and it also
depends on these services. I can capture these dependencies in the Compose file and
specify the configuration for the application:

nerd-dinner-index-handler:
 image: dockeronwindows/ch05-nerd-dinner-index-handler
 depends_on:
 - elasticsearch
 - message-queue
 environment:
 - ELASTICSEARCH_URL=http://elasticsearch:9200
 - MESSAGE_QUEUE_URL=nats://message-queue:4222
 networks:
 - nd-net

Organizing Distributed Solutions with Docker Compose Chapter 6

[139]

Here, I'm using the environment section to specify two environment variables—each with
a key-value pair—to configure the URLs for the message queue and Elasticsearch. These are
actually the default values baked into the message handler image, so I don't need to include
them in the Compose file, but it's useful to explicitly set them.

You can think of the Compose file as the complete deployment guide for
the distributed solution. If you explicitly specify the environment values,
it makes it clear what configuration options are available.

Storing configuration variables in plain text is fine for simple application settings, but using
a separate environment file is better for sensitive values, which is the approach I used in the
previous chapter. This is also supported in the Compose file format. For the database
service, I can use an environment file for the administrator password, specified with the
env-file attribute:

nerd-dinner-db:
 image: dockeronwindows/ch03-nerd-dinner-db
 env_file:
 - db-credentials.env
 volumes:
 - db-data:C:\data
 networks:
 - nd-net

When the database service starts, Docker will set up the environment variables from the file
called db-credentials.env. I've used a relative path, so that file needs to be in the same
location as the Compose file. Like earlier, the contents of that file are key-value pairs, with
one line per environment variable. In this file, I've included the connection strings for the
application as well as the password for the database, so the credentials are all in one place:

sa_password=4jsZedB32!iSm__
AUTH_DB_CONNECTION_STRING=Data Source=nerd-dinner-db,1433;Initial
Catalog=NerdDinner...
APP_DB_CONNECTION_STRING=Data Source=nerd-dinner-db,1433;Initial
Catalog=NerdDinner...

The sensitive data is still in plain text, but by isolating it in a separate file, I can do two
things. First, I can secure the file to restrict access. Second, I can take advantage of the
separation of the service configuration from the application definition and use the same
Docker Compose file for different environments, substituting different environment files.

Organizing Distributed Solutions with Docker Compose Chapter 6

[140]

Environment variables are not secure even if you secure access to the file.
You can view environment variable values when you inspect a container,
so anyone with access to the Docker API can read this data. For sensitive
data such as passwords and API keys, you should use Docker secrets with
Docker swarm, which I cover in the next chapter.

For the save-dinner message handler, I can make use of the same environment file. The
handler depends on the message queue and database services, but there are no new
attributes in this definition:

nerd-dinner-save-handler:
 image: dockeronwindows/ch05-nerd-dinner-save-handler
 depends_on:
 - nerd-dinner-db
 - message-queue
 env_file:
 - db-credentials.env
 networks:
 - nd-net

The last service is the website itself. Here, I will use a combination of environment variables
and environment files. Variable values that are typically consistent across environments can
be explicitly stated to make the configuration clear. Sensitive data can be read from separate
files—in this case, containing the database credentials and the API keys:

nerd-dinner-web:
 image: dockeronwindows/ch05-nerd-dinner-web
 ports:
 - "80:80"
 environment:
 - HOMEPAGE_URL=http://nerd-dinner-homepage
 - MESSAGE_QUEUE_URL=nats://message-queue:4222
 env_file:
 - api-keys.env
 - db-credentials.env
 depends_on:
 - nerd-dinner-homepage
 - nerd-dinner-db
 - message-queue
 networks:
 - nd-net

Organizing Distributed Solutions with Docker Compose Chapter 6

[141]

The website containers need to be publicly available, so I publish the port exposed in the
image. The application needs access to the other services, so it's connected to the same
network. The home page service is also defined in the Compose file, but there is no
configuration required, so that's a simple definition with just the image and network
attributes.

All the services are configured now, so I just need to specify the network and volume
resources to complete the Compose file.

Specifying application resources
Docker Compose separates network and volume definitions from service definitions, which
allows flexibility between environments. I'll cover this flexibility later in the chapter, but to
finish the NerdDinner Compose file, I'll start with the simplest approach using default
values.

The services in my Compose file all use a network called nd-net, which needs to be
specified in the Compose file. Docker networks are a good way to segregate applications.
You could have several solutions that all use Elasticsearch but that have different SLAs and
storage requirements. If you have a separate network for each application, you can run
separate Elasticsearch services, individually configured for each application, but all named
elasticsearch. This keeps to the expected conventions but segregates by the network so
services only see the Elasticsearch instance in their own network.

Docker Compose can create networks at runtime, or you can define the resource to use an
external network that already exists on the host. This specification for the NerdDinner
network uses the default nat network that Docker creates when it is installed, so this setup
will work for all standard Docker hosts:

networks:
 nd-net:
 external:
 name: nat

Organizing Distributed Solutions with Docker Compose Chapter 6

[142]

Volumes also need to be specified. Both of my stateful services, Elasticsearch and SQL
Server—use named volumes for data storage, es-data and nd-data, respectively. Like
networks, volumes can be specified as external so Docker Compose will use existing
volumes. There are no default volumes, though, so if I use an external volume, I would
need to create it on each host before running the application. Instead, I'll specify the
volumes without any options, so Docker Compose will create them for me:

volumes:
 es-data:
 db-data:

These volumes will store the data on the host rather than in the container's writeable layer.
They're not host-mounted volumes, so although the data is stored on the local disk, I'm not
specifying the location. Each volume will write its data in the Docker data directory,
C:\ProgramData\Docker. I'll look at managing these volumes later in the chapter.

My Compose file has services, networks, and volumes all specified, so it's ready to run.

Managing applications with Docker
Compose
Docker Compose presents a similar interface to the Docker CLI. The docker-compose
command uses some of the same command names and arguments for the functionality it
supports—which is a subset of the functionality of the full Docker CLI. When you run
commands through the compose CLI, it sends requests to the Docker engine to act on the
resources in the Compose file.

Compose treats all the resources in a Compose file as a single application, and to
disambiguate applications running on the same host, the runtime adds a project name to all
the resources it creates for the application. When you run an application through compose
and then look at the containers running on your host, you won't see a container with a
name that exactly matches the service name. Compose adds the project name and an index
to container names in order to support multiple containers in the service.

Organizing Distributed Solutions with Docker Compose Chapter 6

[143]

Running applications
I have the first Compose file for NerdDinner in the ch06-docker-compose directory,
which also contains the environment variable files. From that directory, I can start the
whole application with a single docker-compose command:

> docker-compose up -d
Creating volume "ch06dockercompose_db-data" with default driver
Creating volume "ch06dockercompose_es-data" with default driver
Creating ch06dockercompose_nerd-dinner-homepage_1 ...
Creating ch06dockercompose_elasticsearch_1 ...
Creating ch06dockercompose_nerd-dinner-db_1 ...
Creating ch06dockercompose_message-queue_1 ...
Creating ch06dockercompose_nerd-dinner-index-handler_1 ...
Creating ch06dockercompose_nerd-dinner-web_1 ...
Creating ch06dockercompose_nerd-dinner-save-handler_1 ...

The up command is used to start the application, creating networks, and volumes
and running containers
The -d option runs all the containers in the background; it's the same as the --
detach option in docker container run

You can see that Docker Compose creates all the services in a dependency order. Services
without any dependencies are created first, and when they're running, the application
services are started—the web and save-handler services are the last of all, as they have the
most dependencies.

The names in the output are individual container names, with the naming format
{project}_{service}_{index}. Each service has only one container running, which is
the default, so the indexes are all 1. The project name is a sanitized version of the directory
name where I ran the compose command.

When you run a docker-compose command and it completes, you can manage the
containers with Docker Compose or with the standard Docker CLI. The containers are just
normal Docker containers, with some extra metadata used by compose to manage them as
a whole unit. Listing containers shows me all the service containers created by compose:

> docker container ls
CONTAINER ID IMAGE COMMAND
CREATED
e264defce984 dockeronwindows/ch05-nerd-dinner-save-handler
"NerdDinner.Messag..." 6 minutes ago...
d4ad2405a76b dockeronwindows/ch05-nerd-dinner-web "powershell
C:\\boo..." 6 minutes ago...
7a858e0d8019 sixeyed/kibana:nanoserver "powershell -

Organizing Distributed Solutions with Docker Compose Chapter 6

[144]

Comma..." 6 minutes ago...
2c235ad3f2ab dockeronwindows/ch05-nerd-dinner-index-handler "dotnet
NerdDinner..." 6 minutes ago...
9de3ed801ccb sixeyed/elasticsearch:nanoserver "powershell -
Comma..." 7 minutes ago...
abb480eb4416 dockeronwindows/ch06-nerd-dinner-db "powershell -
Comma..." 7 minutes ago...
a3df821d147a nats:nanoserver "gnatsd -c
gnatsd...." 7 minutes ago...
9e30bcae2a67 dockeronwindows/ch03-nerd-dinner-homepage "dotnet
NerdDinner..." 7 minutes ago...

The container running the website is called ch06dockercompose_nerd-dinner-web_1,
and I can inspect that container to get the IP address and test the website. Both the
NerdDinner site and the Kibana analytics will behave as expected because the full
configuration is captured in the Compose file, and all the components are started by Docker
Compose.

This is one of the most powerful features of the Compose file format. The file contains the
complete specification to run your application, and anyone can use it to run your app. In
this case, all the NerdDinner components are images on public registries, so anyone can
start the app from this Compose file. You don't need any prerequisites other than Docker
and Docker Compose to run NerdDinner, which is now a distributed application
containing .NET Framework, .NET Core, Java, Go, and Node.js components.

Scaling application services
Docker Compose lets you scale services up and down easily, adding or removing
containers to a running service. When a service is running with multiple containers, it's still
accessible to other services in the network. Consumers use the service name for discovery
and the DNS server in Docker load balances requests across all the containers in the service.

Adding more containers doesn't automatically give scale and resilience to your service,
though; that depends on the application running the service. You won't get a SQL Server
failover cluster just by adding another container to a SQL database service because SQL
Server needs to be explicitly configured for failover. If you add another container, you'll
just have two distinct database instances with separate data stores.

Web applications typically scale well if they are designed to support scale-out. Stateless
applications can run in any number of containers because any container can handle any
request. But if your application maintains the session state locally, requests from the same
user need to be handled by the same service, which prevents you from load-balancing
across many containers.

Organizing Distributed Solutions with Docker Compose Chapter 6

[145]

Services that publish ports to the host can't be scaled if they're running on a single Docker
engine. Ports can have one only operating system process listening on them, and that's also
true for Docker—you can't have the same host port mapped to multiple container ports. On
a Docker swarm where you have multiple hosts, you can scale services with published
ports, and Docker will run the containers on different hosts.

In NerdDinner, the message handlers are truly stateless components. They receive a
message from the queue that contains all the information they need, and they process it.
The nats supports grouping of subscribers on the same message queue, which means I can
have several containers running the save-dinner handler, and nats will ensure only one
handler gets a copy of each message, so I don't have duplicate message processing. The
code in the message handlers already takes advantage of that.

Scaling up the message handler is something I can do at peak time in order to increase the
throughput for message processing. I can do that with the up command and the --scale
option, specifying the service name and the desired number of instances:

> docker-compose up -d --scale nerd-dinner-save-handler=3

ch06dockercompose_nerd-dinner-homepage_1 is up-to-date
ch06dockercompose_nerd-dinner-db_1 is up-to-date
ch06dockercompose_message-queue_1 is up-to-date
ch06dockercompose_elasticsearch_1 is up-to-date
ch06dockercompose_kibana_1 is up-to-date
ch06dockercompose_nerd-dinner-index-handler_1 is up-to-date
Starting ch06dockercompose_nerd-dinner-save-handler_1 ...
Creating ch06dockercompose_nerd-dinner-save-handler_2 ...
Creating ch06dockercompose_nerd-dinner-save-handler_3 ...

Docker Compose compares the state of the running application with the configuration in
the Compose file and the overrides specified in the command. In this case, all the services
are unchanged except for the save-dinner handler, so they are listed as up to date. The save-
handler has a new service level, so Docker Compose adds two more containers.

With three instances of the save-message handler running, they share the incoming
message load in a round-robin approach. That's a great way to increase the scale. The
handlers concurrently process messages and write to the SQL database, which increases the
throughput for saves and reduces the time taken for messages to be handled. But there is
still a strict limit to the number of processes writing to SQL Server, so the database is
unlikely to become a bottleneck.

Organizing Distributed Solutions with Docker Compose Chapter 6

[146]

I can create multiple dinners through the web application, and the message handlers will
share the load when the event messages are published. I can see in the logs that different
handlers process different messages, and there is no duplicate processing of events:

PS> docker container logs ch06dockercompose_nerd-dinner-save-handler_1
Received message, subject: events.dinner.created
Saving new dinner, created at: 6/25/2017 7:34:24 PM; event ID: 39b4c8d2-
a9ad-4bf0-9e58-f60edfc57a84
Dinner saved. Dinner ID: 1; event ID: 39b4c8d2-a9ad-4bf0-9e58-f60edfc57a84

PS> docker container logs ch06dockercompose_nerd-dinner-save-handler_2
Received message, subject: events.dinner.created
Saving new dinner, created at: 6/25/2017 7:47:37 PM; event ID:
ff636870-049b-4328-87a4-e32dfacb79db
Dinner saved. Dinner ID: 2; event ID: ff636870-049b-4328-87a4-e32dfacb79db

PS> docker container logs ch06dockercompose_nerd-dinner-save-handler_3
Received message, subject: events.dinner.created
Saving new dinner, created at: 6/25/2017 7:47:43 PM; event ID:
eedeb29d-9d4c-4411-abb5-ac65011aace6
Dinner saved. Dinner ID: 3; event ID: eedeb29d-9d4c-4411-abb5-ac65011aace6

Stopping and starting application services
There are several commands to manage container life cycle in Docker Compose. It's
important to understand the differences between the options so you don't remove resources
unexpectedly.

The up and down commands are blunt tools to start and stop the whole application. The up
command creates any resources in the Compose file that don't exist, and it creates and
starts containers for all the services. The down command does the reverse—it stops any
running containers and removes the application resources. Containers and networks are
removed if they were created by Docker Compose, but volumes are not removed—so any
application data you have is retained.

The stop command just stops all the running containers without removing them or other
resources. Stopping the container ends the running process with a graceful shutdown. The
kill command stops all the containers by forcibly ending the running process. Stopped
application containers can be started again with start, which runs the entry point program
in the existing container.

Organizing Distributed Solutions with Docker Compose Chapter 6

[147]

Stopped containers retain all their configuration and data but don't use any compute
resources. Starting and stopping containers is a very efficient way to switch context if you
work on multiple projects. If I'm developing on NerdDinner when another piece of work
comes in as a priority, I can stop the whole NerdDinner application to free up my
development environment:

PS> docker-compose stop
Stopping ch06dockercompose_nerd-dinner-save-handler_3 ... done
Stopping ch06dockercompose_nerd-dinner-save-handler_2 ... done
Stopping ch06dockercompose_nerd-dinner-save-handler_1 ... done
Stopping ch06dockercompose_nerd-dinner-web_1 ... done
Stopping ch06dockercompose_kibana_1 ... done
Stopping ch06dockercompose_nerd-dinner-index-handler_1 ... done
Stopping ch06dockercompose_elasticsearch_1 ... done
Stopping ch06dockercompose_message-queue_1 ... done
Stopping ch06dockercompose_nerd-dinner-db_1 ... done
Stopping ch06dockercompose_nerd-dinner-homepage_1 ... done

Now I have no containers running, and I can switch to the other project. When that work is
done, I can fire up NerdDinner again by running docker-compose start.

Stopping a container releases the IP address used by the container, and
starting it again allocates a new IP address. This is transparent to other
services and external consumers, but in your development environment,
you will need to inspect web containers to find the new IP address to
browse to.

You can also stop individual services by specifying a name, which is very useful if you
want to test how your application manages failures. I can check how the index-dinner
handlers behave if they can't access Elasticsearch by stopping the Elasticsearch service:

> docker-compose stop elasticsearch
Stopping ch06dockercompose_elasticsearch_1 ... done

All of these commands are processed by comparing the Compose file to the service running
in Docker. You need to have access to the Docker Compose file in order to run any compose
commands. This is one of the biggest drawbacks of using Docker Compose on a single host
to run your applications. The alternative is to use the same Compose file but to deploy it as
a stack to a Docker swarm, which I'll cover in the next chapter.

Organizing Distributed Solutions with Docker Compose Chapter 6

[148]

Upgrading application services
If you run docker compose up repeatedly from the same Compose file, no changes will
be made after the first run. Docker Compose compares the configuration in the Compose
file with the active containers at runtime and won't change resources unless the definition
has changed. This means you can use Docker Compose to manage application upgrades.

My Compose file is currently using the database service from the image I built in Chapter
3, Developing Dockerized .NET and .NET Core Applications, tagged dockeronwindows/ch03-
nerd-dinner-db. For this chapter, I've added audit fields to the tables in the database
schema and built a new version of the database image, tagged dockeronwindows/ch06-
nerd-dinner-db.

I have a second Compose file in the same ch06-docker-compose directory, called
docker-compose-db-upgrade.yml. In the second file, all the service definitions are the
same as the first file, except the database that uses the new image:

nerd-dinner-db:
 image: dockeronwindows/ch06-nerd-dinner-db
 env_file:
 - db-credentials.env
 volumes:
 - db-data:c:database
 networks:
 - nd-net

While the application is running, I can execute docker compose up -d again, specifying
the new Compose filename. Docker Compose sees that the database definition has changed
and recreates the service using the new database image:

> docker-compose -f docker-compose-db-upgrade.yml up -d

Recreating ch06dockercompose_nerd-dinner-db_1 ...
ch06dockercompose_elasticsearch_1 is up-to-date
ch06dockercompose_message-queue_1 is up-to-date
Recreating ch06dockercompose_nerd-dinner-db_1
ch06dockercompose_nerd-dinner-homepage_1 is up-to-date
ch06dockercompose_kibana_1 is up-to-date
Recreating ch06dockercompose_nerd-dinner-db_1 ... done
Recreating ch06dockercompose_nerd-dinner-web_1 ...
Recreating ch06dockercompose_nerd-dinner-web_1
Recreating ch06dockercompose_nerd-dinner-save-handler_1 ...
Recreating ch06dockercompose_nerd-dinner-save-handler_1 ... done

Organizing Distributed Solutions with Docker Compose Chapter 6

[149]

Docker Compose recreates the database service by removing the old container and starting
a new one. Services that don't depend on the database are left as they are, with the log entry
up-to-date, and any services which do depend on the database are also recreated once
the new container is running.

Compose uses the containing directory as the project name for services.
You can have multiple application versions defined in different Compose
files in the same directory. Docker Compose uses the same project name
for them all, so you can switch between different versions by specifying
the file name.

My database container uses a volume to store the data. In the Compose file, I use a default
definition for the volume, so Docker Compose creates it for me. Just like the containers
created by compose, volumes are a standard Docker resource and can be managed with the
Docker CLI. The docker volume ls lists all the volumes on the host:

> docker volume ls

DRIVER VOLUME NAME
local ch06dockercompose_db-data
local ch06dockercompose_es-data

I have two volumes for my NerdDinner deployment. They both use the local driver, which
means the data is stored on the local disk. I can inspect the SQL Server volume to see where
the data is physically stored on the host (in the Mountpoint attribute) and then check the
contents to see the database files:

PS> docker volume inspect -f '{{ .Mountpoint }} 'ch06dockercompose_db-data
C:\ProgramData\Docker\volumes\ch06dockercompose_db-data_data

PS> ls C:\ProgramData\Docker\volumes\ch06dockercompose_db-data_data

Directory: C:\ProgramData\Docker\volumes\ch06dockercompose_db-data_data
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 25/06/2017 21:41 8388608 NerdDinner_Primary.ldf
-a---- 25/06/2017 21:41 8388608 NerdDinner_Primary.mdf

The volume is stored outside of the container, so when Docker Compose removes the old
container database, all the data is preserved. The new database image bundles a Dacpac
and is configured to do schema upgrades for the existing data file in the same way as the
SQL Server database from Chapter 3, Developing Dockerized .NET and .NET Core
Applications.

Organizing Distributed Solutions with Docker Compose Chapter 6

[150]

When the new container has started, I can check the logs and see that the new container
attached the database files from the volume and then altered the Dinners table to add the
new audit column:

> docker container logs ch06dockercompose_nerd-dinner-db_1

VERBOSE: Data files exist - will attach and upgrade database
Generating publish script for database 'NerdDinner' on server
'.\SQLEXPRESS'.
Successfully generated script to file C:\init\deploy.sql.
VERBOSE: Changed database context to 'NerdDinner'.
VERBOSE: Altering [dbo].[Dinners]...
VERBOSE: Update complete.
VERBOSE: Deployed NerdDinner database, data files at: C:\data

Docker Compose looks for any differences between resources and their definitions, not just
the name of the Docker image. If you change environment variables, port mappings,
volume setup, or any other configuration, compose will remove or create resources to bring
the running application to the desired state.

You need to be careful with modifying Compose files to run applications.
If you remove the definition for a running service from the file, Docker
Compose won't recognize that the service containers are part of the
application, so they won't be included in the difference checks.

Monitoring application containers
Treating a distributed application as a single unit makes it easier to monitor and trace
problems. Docker Compose provides its own top and logs commands, which operate over
all the containers in the application services and display the collected results.

To check the memory and CPU usage of all the components, run docker-compose top:

> docker-compose top
ch06dockercompose_elasticsearch_1
Name PID CPU Private Working Set

smss.exe 11620 00:00:00.031 200.7 kB
csrss.exe 6676 00:00:00.015 352.3 kB
wininit.exe 10872 00:00:00.015 606.2 kB
java.exe 1652 00:01:11.765 735.8MB
...

Organizing Distributed Solutions with Docker Compose Chapter 6

[151]

Containers are listed in the alphabetical order by name, and processes in each container are
listed without a specific order. There's no way to change the ordering, so you can't show
that the most intensive processes in the hardest working container first, but the result is in
plain text, so you can manipulate it in PowerShell.

To see the log entries from all the containers, run docker-compose logs:

> docker-compose logs

nerd-dinner-save-handler_1 | Connecting to message queue url:
nats://message-queue:4222
nerd-dinner-save-handler_1 | Listening on subject: events.dinner.created,
queue: save-dinner-handler
nerd-dinner-web_1 | 2017-06-25 20:42:01 W3SVC1002144328 ::1 GET / - 80 -
::1 Mozilla/5.0+(Windows+NT;+Windows+NT+10.0;+en-
US)+WindowsPowerShell/5.1.14393.1198 - 200 0 0 13750
nerd-dinner-db_1 | VERBOSE: Starting SQL Server
nerd-dinner-db_1 | VERBOSE: Data files exist - will attach and upgrade
database
nerd-dinner-index-handler_1 | Connecting to message queue url:
nats://message-queue:4222
...

On screen, the container names are color-coded, so you can easily distinguish entries from
different components. One advantage of reading logs through Docker Compose is that it
shows output for all the containers even if the component has shown errors and the
container is stopped. These error message are useful to see in context—you may see that
one component throws a connection error before another component logs that it has
started, which may highlight a missing dependency in the Compose file.

Docker Compose shows all the log entries for all the service containers, so the output can be
extensive. You can limit this with the --tail option, restricting the output to a specified
number of the most recent log entries for each container.

These are useful commands when you are running in development or in a low-scale project
with a single server running a small number of containers. The approach doesn't work so
well for large projects running on multiple containers across multiple hosts. For that, you
need container-centric administration and monitoring, which I'll demonstrate in Chapter 8,
Administering and Monitoring Dockerized Solutions.

Organizing Distributed Solutions with Docker Compose Chapter 6

[152]

Managing application images
Docker Compose can manage Docker images as well as containers. In the Compose file,
you can include attributes that tell Docker Compose how to build your images. You can
specify the location of the build context to send to the Docker service, which is the root
folder for all your application content—and the location of the Dockerfile.

The context path is relative to the location of the Compose file, and the Dockerfile path is
relative to the context. This is very useful for complex source trees such as the demo source
for this book, where the context for each image is in a different folder. In the ch06-
docker-compose-build folder, I have a Compose file with all the build attributes
specified.

This is how the build details are specified for my images:

nerd-dinner-db:
 image: dockeronwindows/ch06-nerd-dinner-db
 build:
 context: ../ch06-nerd-dinner-db
 dockerfile: ./Dockerfile
...

nerd-dinner-save-handler:
 image: dockeronwindows/ch05-nerd-dinner-save-handler
 build:
 context: ../../ch05
 dockerfile: ./ch05-nerd-dinner-save-handler/Dockerfile

When you run docker-compose build, any services that have the build attribute
specified will be built and tagged with the name in the image attribute. The build process
uses the normal Docker API, so the image layer cache is still used, and only changed layers
are rebuilt. Adding build details to your Compose file is a very efficient way of building all
your application images, and it's also a central place to capture how the images are built.

One other useful feature of Docker Compose is the ability to manage whole groups of
images. The Compose file for this chapter uses images that are all publicly available on
Docker Hub, so you can run the full application with docker-compose up—but the first
time you run it, all the images will be downloaded, which is going to take a while. You can
preload images before you use them with docker-compose pull, which will pull all the
images:

> docker-compose pull
Pulling message-queue (nats:nanoserver)...
nanoserver: Pulling from library/nats
Digest:

Organizing Distributed Solutions with Docker Compose Chapter 6

[153]

sha256:f138484bac20175e858d72297bd7770ccf854ed1ce63c7b7712ff6f850ae58d4
Status: Image is up to date for nats:nanoserver
...

Similarly, you can use docker-compose push to upload images to remote repositories.
For both commands, Docker Compose uses the authenticated user from the most recent
docker login command. If your Compose file contains images, you don't have access to
push (such as the official nats image used in NerdDinner); those pushes will fail. For any
repositories you are authorized to write to, whether in Docker Hub or a private registry,
these images will be pushed.

Configuring application environments
When you define your full application configuration in Docker Compose, you have a single
artifact that describes all the components of the application and the integration points
between them. In the same way that the Dockerfile explicitly defines the steps to install and
configure one piece of software, the Docker Compose file explicitly defines the steps to
deploy the whole solution.

Docker Compose also lets you capture application definitions that can be deployed to
different environments, so your Compose files are usable throughout the deployment
pipeline. Usually, there are differences between environments, either in the infrastructure
setup or the application settings. Docker Compose gives you two options to manage these
environmental differences.

Infrastructure typically differs between production and non-production environments,
which affects volumes and networks in Docker applications. On a development laptop,
your database volume may be mapped to a known location on the local disk, which you
periodically clean up. In production, you could have a volume plugin for a shared storage
hardware device. Similarly, with networks, production environments may need to be
explicit about subnet ranges, which are not a concern in development.

Docker Compose lets you specify resources as being external to the Compose file, so the
application will use resources that already exist. These resources need to be created in
advance, but that means each environment can be configured differently and still use the
same Compose file.

Compose also supports an alternative approach, where you explicitly capture the
configuration of your resources for each environment in different Compose files and use
multiple Compose files when you run the application. I'll demonstrate both of these
options. Like other design decisions, Docker doesn't impose any practices, and you can use
whichever best suits your processes.

Organizing Distributed Solutions with Docker Compose Chapter 6

[154]

Specifying external resources
Volume and network definitions in the Compose file follow the same pattern as service
definitions—each resource is named and can be configured using the same options
available in the relevant docker ... create command. There's an extra option in
Compose files to point to an existing resource.

To use existing volumes for my SQL Server and Elasticsearch data, I need to specify the
external attribute and optionally, a name for the resource. In the ch06-docker-
compose-external directory, my Compose file has these volume definitions:

volumes:
 es-data:
 external:
 name: nerd-dinner-elasticsearch-data
 db-data:
 external:
 name: nerd-dinner-database-data

With external resources declared, I can't just run the application using docker-compose
up. Compose won't create volumes defined as external; they need to exist before the
application starts. And these volumes are required by services, so compose won't create any
containers either. Instead, you'll see an error message:

ERROR: Volume nerd-dinner-database-data declared as external, but could not
be found. Please create the volume manually using `docker volume create --
name=nerd-dinner-database-data` and try again.

The error message tells you the command you need to run in order to create the missing
resource. This will create basic volumes with default configurations, and that will allow
Docker Compose to start the application:

docker volume create --name nerd-dinner-elasticsearch-data
docker volume create --name nerd-dinner-database-data

Docker lets you create volumes with different configuration options, so
you can specify an explicit mount point—such as a RAID array or an NFS
share. Windows doesn't support options for the local driver currently, but
you can use other drivers—there are volume plug-ins to use Azure
storage and enterprise storage units such as HPE 3PAR.

Organizing Distributed Solutions with Docker Compose Chapter 6

[155]

The same approach can be used to specify networks as external resources. In my Compose
file, I initially used the default nat network, but in this Compose file, I specify a custom
external network for the application:

networks:
 nd-net:
 external:
 name: nerd-dinner-network

Docker on Windows has several networking options. The default is network address
translation, with the nat network, but you can also use other drivers for different network
configurations. I'll create my application network with the transparent driver—this will
give each container an IP address provided by my physical router, so containers are
accessible outside of the Docker network:

docker network create -d transparent nerd-dinner-network --
gateway=192.168.1.1 --subnet=192.168.1.0/24

There's no port mapping possible with transparent networks, so I need to remove the
ports attributes before I run docker-compose up -d. When the application starts, I can
access the website container from an IP address in the 192.168.1.0 range, as though it
were running in a server attached to my network.

Using multiple Compose files
Editing the Compose file to remove attributes means the configuration isn't portable. In this
case, the behavior of the external network resource has an impact on the service
specification, and that stops me from using a single Compose file for all environments. I
need to have one Compose files for developers, where port publishing is specified for the
nat network, and one for shared environments, where port publishing is removed for the
transparent network.

This means two Compose files with additional overhead to keep them in sync—and more
importantly, there's a risk of environments drifting if they aren't kept in sync. Using
multiple Compose files addresses this and means your requirements for each environment
are explicitly stated.

Organizing Distributed Solutions with Docker Compose Chapter 6

[156]

Docker Compose looks for files called docker-compose.yml and docker-
compose.override.yml by default, and if it finds both, it will use the override file to add
to or replace parts of the definitions in the main Compose file. When you run the Docker
Compose CLI, you can pass additional files to be combined for the whole application
specification. This lets you keep the core solution definition in one file and have explicit
environment-dependent overrides in other files.

In the ch06-docker-compose-multiple folder, I've taken this approach. The core
docker-compose.yml file has the service definitions that describe the structure of the
solution without any environment specifics. As an example, the database service is defined
with a volume and no ports published:

nerd-dinner-db:
 image: dockeronwindows/ch03-nerd-dinner-db
 env_file:
 - db-credentials.env
 volumes:
 - db-data:C:\data
 networks:
 - nd-net

Alongside the core Compose file, there is docker-compose-local.yml, an override file
that adds environmental attributes for local development. This publishes the SQL Server
port so developers can connect with SSMS and specifies the default nat network:

services:
 nerd-dinner-db:
 ports:
 - "1433"

networks:
 nd-net:
 external:
 name: nat

You don't have to specify all the attributes in the override file, only the
ones that change or add to the attributes in the base Compose file. The
values in the override file take precedence.

Organizing Distributed Solutions with Docker Compose Chapter 6

[157]

I combine both files by running this:

docker-compose -f docker-compose.yml -f docker-compose.local.yml up -d

This combines the two files, which returns the application to the original development
environment setup. I also have a production environment override file called docker-
compose.production.yml, which is an override file that specifies the production
attributes:

services:
 nerd-dinner-db:
 volumes:
 - E:\nerd-dinner-mssql:C:\data
networks:
 nd-net:
 external:
 name: nerd-dinner-network

There are three differences in production:

The ports attribute is not specified, so there's no port publishing to the host
from the container
The volumes section is not specified; instead, the service volumes are explicitly
mounted to a location on the host—in this case, the E drive, which is my RAID
array
An external network is used, which is a transparent network, and given
containers' IP addresses from the network.

To run the application in a production configuration, I just specify the production override
file:

docker-compose -f docker-compose.yml -f docker-compose.production.yml up -d

The combination of the base Compose file and the override file gives me the desired
configuration, and there's no editing of files between environments. In the override file, you
can add or change any attributes, including environment variables—so you could turn
down the logging level in production if your app uses an environment variable to set that.

Organizing Distributed Solutions with Docker Compose Chapter 6

[158]

You can even combine several Compose files. If you have multiple test environments that
share a lot of commonality, you can define the application setup in the base Compose file,
shared test configuration in one override file, and each specific test environment in an
additional override file.

As a final example, in the same folder, I have a docker-compose.build.yml file that
isolates all the build attributes. This configuration is used only by developers and the CI
process, so it doesn't need to be in the core Compose file:

services:
 nerd-dinner-db:
 build:
 context: ../ch06-nerd-dinner-db
 dockerfile: ./Dockerfile

This keeps my main Compose file clear and clean, while still allowing me to build the
whole solution with a single compose command:

docker-compose -f docker-compose.yml -f docker-compose.local.yml -f docker-
compose.build.yml build

Summary
In this chapter, I covered Docker Compose, the tool used to organize distributed Docker
solutions. With Compose, you explicitly define all the components of your solution, the
configuration of the components, and the relationship between them in a simple, clean
format.

The Compose file lets you manage all the application containers as a single unit. You
learned in this chapter how you can use the docker-compose command line to spin up
and tear down the application, creating all the resources and starting or stopping
containers. You also learned that you can use Docker Compose to scale components up or
down and release upgrades to your solution.

Docker Compose is a powerful tool to define complex solutions. The Compose file
effectively replaces lengthy deployment documents and fully describes every part of the
application. With external resources and multiple Compose files, you can even capture the
differences between environments and build a set of YAML files that you can use to drive
your whole deployment pipeline.

Organizing Distributed Solutions with Docker Compose Chapter 6

[159]

The limitation of Docker Compose is that it's a client-side tool. The docker-compose
command needs access to the Compose file to execute any commands. There is a logical
grouping of resources into a single application, but that happens only in the Compose file.
The Docker service sees only a set of resources, it does not recognize them as being part of
the same application. Docker Compose is also limited to single-node Docker deployments.

In the next chapter, I'll move on to clustered Docker deployments, with multiple nodes
running in a Docker swarm. In a production environment, this gives you high availability
and scale. Docker swarm is a powerful orchestrator for container solutions, which is very
easy to use. It also supports the Compose file format, so you can use your existing Compose
files to deploy applications. But Docker preserves the logical architecture within the swarm,
so you can manage your application without needing the Compose file.

7
Orchestrating Distributed

Solutions with Docker Swarm
You can run Docker on a single PC, which is what I've done so far in this book, and it's how
you would work with Docker in development and basic test environments. In more
advanced test environments and in production, a single server isn't suitable. For high
availability and to give you the flexibility to scale your solutions, you need multiple servers
running as a single cluster. Docker has cluster support built into the platform, and you can
join several Docker hosts together using the swarm mode.

All the concepts you've learned so far: images, containers, registries, networks, volumes,
and services--still apply in the swarm mode. The swarm mode is an orchestration layer. It
presents the same API as the standalone Docker engine, with additional functions to
manage aspects of distributed computing. When you run a service in the swarm mode,
Docker determines which hosts to run the containers on; it manages secure communication
between containers on different hosts, and it monitors the hosts. If a server in a swarm goes
down, Docker schedules the containers it was running to start on different hosts in order to
maintain the service level of the application.

Swarm mode was introduced in Docker 1.12, and it provides production-grade service
orchestration. All communication in a swarm is secured with TLS, so network traffic
between nodes is always encrypted. You can store application secrets securely in the
swarm, and Docker presents them only to those containers that need access. Swarms are
scaleable, so you can easily add nodes to increase capacity or remove nodes for
maintenance. Docker can also run automated rolling service updates in the swarm mode, so
you can upgrade your application with zero downtime.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[161]

In this chapter, I'll set up a swarm and run NerdDinner across multiple nodes. I'll start by
creating individual services and then move on to deploying the whole stack from a
Compose file. You'll learn how to do the following:

Create a swarm and join nodes
Run, manage, scale, and update services in the swarm
Manage sensitive data as secrets in the swarm
Deploy a distributed application stack using a Compose file
Isolate nodes in the swarm so you can run Windows updates

Creating a swarm and managing nodes
Docker swarm mode uses a manager-worker architecture with high availability for
managers and workers. Managers are administrator-facing, and you use the active manager
to manage the cluster and the resources running on the cluster. Workers are user-facing,
and they run the containers for your application services.

Swarm managers can also run containers for your applications, which is unusual in
manager-worker architectures. The overhead of managing a small swarm is relatively low,
so if you have 10 nodes and three are managers, the managers can also run a share of the
application workload.

Swarms can be practically any size. You can run a single-node swarm on your laptop to test
the functionality, and you can scale up to thousands of nodes. You start by initializing the
swarm with the docker swarm init command:

> docker swarm init --listen-addr 192.168.2.232 --advertise-addr
192.168.2.232
Swarm initialized: current node (60biyvlde1wche3oldbviac1v) is now a
manager.

To add a worker to this swarm, run the following command:
docker swarm join
 --token SWMTKN-1-1rmgginooh3f0t8zxhuauds7vxcqpf5g0244xtd7fnz9fn43p3-
az1n29jvzq4bdodd05zpu55vu 192.168.2.232:2377

To add a manager to this swarm, run 'docker swarm join-token manager' and
follow the instructions.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[162]

This creates the swarm with a single node,the Docker engine where you run the command
and that node becomes the swarm manager. My machine has multiple IP addresses, so I've
specified the listen-addr and advertise-addr options that tell Docker which network
interface to use for swarm communication. It's a good practice to always specify the IP
address and to use static addresses for the manager nodes.

You can keep your swarm secure using an internal private network for the
swarm traffic, so that communication is not on the public network. You
can even keep your managers off the public network completely. Only
worker nodes with public-facing workloads need connecting to the public
network in addition to the internal network.

The output from docker swarm init tells you how to expand the swarm by joining other
nodes. Nodes can only belong to one swarm, and to join, they need to use the joining token.
The token prevents rogue nodes joining your swarm if the network is compromised, so you
need to treat it as a secure secret. Nodes can join as workers or managers, and there are
different tokens for each. You can view and rotate the tokens with the docker swarm
join-token command.

On a second machine running the same version of Docker, I can run the swarm join
command to join the swarm:

> docker swarm join --token
SWMTKN-1-1rmgginooh3f0t8zxhuauds7vxcqpf5g0244xtd7fnz9fn43p3-
az1n29jvzq4bdodd05zpu55vu 192.168.2.232:2377
This node joined a swarm as a worker.

You can have a mixture of Windows and Linux nodes in the same swarm, which is a great
way to manage mixed workloads. It's recommended that you have all nodes running the
same version of Docker, but it can be Docker CE or EE--the swarm functionality is built into
the core Docker service.

Now my Docker host is running in the swarm mode, there are more commands available to
me. The docker node commands manage the nodes in the swarm, so I can list all the
nodes in the swarm and see their current status with docker node ls:

> docker node ls
ID HOSTNAME STATUS AVAILABILITY
MANAGER STATUS
huwd8nrhikrdcbd5yficgpnry WIN-V3VBGA0BBGR Ready Active
w77l9btn951amwt7hcs05zn0k * DESKTOP-74UL7AB Ready Active
Leader

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[163]

The STATUS value tells you whether the node is online in the swarm, and the
AVAILABILITY value tells you whether the node is able to run containers. The MANAGER
STATUS field has three options:

Leader: The active manager controlling the swarm
Reachable: A backup manager; it can become the leader if the current leader
goes down
No value: A worker node

Multiple managers support high availability. Docker swarm uses the Raft protocol to elect a
new leader if the current leader is lost, so with an odd number of managers, three or five is
common--your swarm can survive hardware failure. Worker nodes do not automatically
get promoted to managers, so if all your managers are lost, then you cannot administer the
swarm. In that situation, the containers on the worker nodes continue running, but there
are no managers to monitor the worker nodes.

You can make worker nodes managers with docker node promote and make manager
nodes workers with docker node demote, these are commands you run on a manager
node. To leave a swarm, you need to run the docker swarm leave command on the node
itself:

> docker swarm leave
Node left the swarm.

If you have a single-node swarm, you can exit swarm mode with the same command, but
you need the --force flag.

The docker swarm and docker node commands manage the swarm. When you're
running in swarm mode, you use swarm-specific commands to manage your container
workload.

Creating and managing services in swarm
mode
In the previous chapter, you saw how to use Docker Compose to organize a distributed
solution. In a Compose file, you define the parts of your application as services using
networks to connect them together. The same service concept is used in swarm mode--a
service runs an application image across one or more containers called replicas. With the
Docker command-line, you can create services on the swarm, and the swarm manager will
create the replicas as containers.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[164]

I'll deploy the NerdDinner stack by creating services. All the services will run in the same
Docker network, and in swarm mode, Docker has a special type of network called overlay
networking. Overlay networks are virtual networks that span multiple physical hosts, so
containers running on one swarm node can reach containers running on another node.
Service discovery works in the same way; containers access each other by the service name,
and Docker directs them to a container.

To create an overlay network, you need to specify the driver to be used and give the
network a name. The Docker CLI returns with the ID of the new network, as it does with
other resources:

> docker network create --driver overlay nd-swarm
j7z5fivvgpb1ou1e94oti6ral

You can list the networks, and you'll see that the new network uses the overlay driver and
is scoped to the swarm, which means any containers using this network can communicate
with each other, whichever node they're running on:

> docker network ls --filter name=nd-swarm

NETWORK ID NAME DRIVER SCOPE
j7z5fivvgpb1 nd-swarm overlay swarm

I'll use that network for the NerdDinner services. As with the Compose file, I'll start with
the infrastructure components that have no dependencies, but now I'll use the docker
service create command to run the services manually. I'll run a script that specifies all
the services and creates them in the correct order, starting with nats:

docker service create `
 --detach=true `
 --network nd-swarm --endpoint-mode dnsrr `
 --name message-queue
 nats:nanoserver

There are no required options for docker service create other than the image name,
but for a distributed application, you will want to specify the following:

network: The Docker network to connect to the service containers
endpoint-mode: The method of DNS name resolution that Docker uses
name: The service name used as the DNS entry for other components

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[165]

Docker supports two endpoint modes, vip and dnsrr. The default vip is
optimized for Linux but doesn't have full support in the Windows kernel,
so you need to specify dnsrr, DNS round-robin mode for Docker services
on Windows.

In the source code for this chapter, the ch07-create-services folder has a script that
starts all the services for NerdDinner in the correct order. The options for each service
create command are the equivalent of the service definition in the Compose file for
Chapter 6, Organizing Distributed Solutions with Docker Compose. The simplest service to
create is the nats message queue, and the most complex is the NerdDinner web application:

docker service create `
 --network nd-swarm --endpoint-mode dnsrr `
 --env-file db-credentials.env `
 --env-file api-keys.env `
 --env HOMEPAGE_URL=http://nerd-dinner-homepage `
 --env MESSAGE_QUEUE_URL=nats://message-queue:4222 `
 --publish mode=host,target=80,published=80 `
 --name nerd-dinner-web `
 dockeronwindows/ch05-nerd-dinner-web

This command creates a service using the same Docker network and the same endpoint
mode. The application is configured using environment variables and environment files,
and port 80 is published to the host. Any traffic coming into port 80 on the host node will
be directed into the container for this service.

Docker supports multiple service replicas running on a single mode but
not if the ports are published using the host mode. In this case, I can run
only one replica of my web application per node. The alternative is to use
the ingress mode for publishing ports but that uses networking features
that are not supported in Windows.

When I run the script on my swarm, I get a list of service IDs as the output:

> .\ch07-run-nerd-dinner.ps1
8bme2svun1222j08off2iyczo
rrgn4n3pecgf8m347vfis6mbj
lxwfb5s9erq65l6whhh8l9588
ywrz3ecxvkiigtkpt1inid2pk
w7d7svtq2k5kp18f98wy4s1cr
ol7u97cpwdcns1abv471heh1r
deevh117z4jgaomsbrtht775b
ydzb1z1af88gvoyuyiyn9q526

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[166]

Now I can see all the running services with docker service ls:

> docker service ls
ID NAME MODE REPLICAS IMAGE
8bme2svun122 message-queue replicated 1/1 nats:nanoserver
deevh117z4jg nerd-dinner-homepage replicated 1/1
dockeronwindows/ch03-nerd-dinner-homepage:latest
lxwfb5s9erq6 nerd-dinner-db replicated 1/1
dockeronwindows/ch06-nerd-dinner-db:latest
ol7u97cpwdcn nerd-dinner-index-handler replicated 1/1
dockeronwindows/ch05-nerd-dinner-index-handler:latest
rrgn4n3pecgf elasticsearch replicated 1/1
sixeyed/elasticsearch:nanoserver
w7d7svtq2k5k nerd-dinner-save-handler replicated 1/1
dockeronwindows/ch05-nerd-dinner-save-handler:latest
ydzb1z1af88g nerd-dinner-web replicated 1/1
dockeronwindows/ch05-nerd-dinner-web:latest
ywrz3ecxvkii kibana replicated 1/1
sixeyed/kibana:nanoserver

Each of the services is listed as having a replica status of 1/1, which means one replica is
running out of a requested service level of one replica. Replicas are the number of
containers used to run the service. Swarm mode supports two types of distributed service,
and the default is to have a distributed service with a single replica, which means one
container on the swarm. The service create commands in my script don't specify a replica
count, so they all use the default of one.

Running services across many containers
Replicated services are how you scale in swarm mode, and you can update running
services to add or remove containers. Unlike Docker Compose, you don't need a Compose
file that defines the desired state of each service; that detail is already stored in the swarm
from the docker service create command. To add more message handlers, I use
docker service scale, passing the name of one or more services and the desired service
level:

> docker service scale nerd-dinner-save-handler=3
nerd-dinner-save-handler scaled to 3

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[167]

The message handler services were created with the default single replica, so this adds two
more containers to share the work of the SQL Server handler service. In a multi-node
swarm, the manager can schedule the containers to run on any node with a capacity. I don't
need to know or care which server is actually running the containers, but I can drill down
into the service list with docker service ps to see where the containers are running:

> docker service ps nerd-dinner-save-handler
ID NAME IMAGE
 NODE DESIRED STATE CURRENT STATE
0m1mqtig4acm nerd-dinner-save-handler.1 dockeronwindows/ch05-nerd-dinner-
save-handler:latest
 WIN-V3VBGA0BBGR Running Running 44 minutes ago
uj8lotkz28r1 nerd-dinner-save-handler.2 dockeronwindows/ch05-nerd-dinner-
save-handler:latest
 WIN-V3VBGA0BBGR Running Running 35 seconds ago
e3bgxfvpegy6 nerd-dinner-save-handler.3 dockeronwindows/ch05-nerd-dinner-
save-handler:latest
 WIN-V3VBGA0BBGR Running Running 36 seconds ago

In this case, I'm running a single-node swarm so all the replicas are on the same machine.
Swarm mode refers to service processes as replicas, but they're actually just containers. You
can log onto the nodes of the swarm and administer service containers with the same
docker ps, docker logs and docker top commands, as usual.

Typically, you won't connect to swarm nodes directly to manage containers; you work with
them as services through the manager node. Just as Docker Compose presents a
consolidated view of logs for a service, you can get the same from the Docker CLI in swarm
mode:

> docker service logs nerd-dinner-save-handler
nerd-dinner-save-handler.2.uj8lotkz28r1@WIN-V3VBGA0BBGR
 | Connecting to message queue url: nats://message-queue:4222
nerd-dinner-save-handler.3.e3bgxfvpegy6@WIN-V3VBGA0BBGR
 | Connecting to message queue url: nats://message-queue:4222
nerd-dinner-save-handler.1.0m1mqtig4acm@WIN-V3VBGA0BBGR
 | Connecting to message queue url: nats://message-queue:4222

Replicas are how the swarm provides fault tolerance to services. When you specify the
replica level for a service with the docker service create , docker service update,
or docker service scale command, the value is recorded in the swarm. The manager
node monitors all the tasks for the service. If containers stop and the number of running
services falls below the desired replica level, new tasks are scheduled to replace the
stopped containers. Later in the chapter, I'll demonstrate that when I run the same solution
on a multi-node swarm, then I take a node out of the swarm without any loss of service.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[168]

Global services
An alternative to replicated services is global services. In some cases, you may want the
same service running on every node of the swarm as a single container on each server. To
do that, you can run a service in the global mode--Docker schedules one task on each node,
and any new nodes that join will also have a task scheduled.

Global services can be useful for high availability with components that are used by many
services, but again, you don't get a clustered application just by running many instances of
it. The nats message queue can run as a cluster across several servers, and it could be a
good candidate to run as a global service. To run nats as a cluster, though, each instance
needs to know the address of other instances--which doesn't work well with dynamic
virtual IP addresses allocated by the Docker engine.

Instead, I can run my Elasticsearch message handler as a global service, so every node will
have an instance of the message handler running. You can't change the mode of a running
service, so first, I need to remove the original service:

> docker service rm nerd-dinner-index-handler
nerd-dinner-index-handler

Then, I can create a new global service:

docker service create `
 --mode=global `
 --detach=true `
 --network nd-swarm --endpoint-mode dnsrr `
 --env ELASTICSEARCH_URL=http://elasticsearch:9200 `
 --env MESSAGE_QUEUE_URL=nats://message-queue:4222 `
 --name nerd-dinner-index-handler `
 dockeronwindows/ch05-nerd-dinner-index-handler

Now I have one task running on each node in the swarm, and the total number of tasks will
grow if nodes are added to the cluster or shrink if nodes are removed. This can be useful for
services that you want to distribute for fault tolerance, and you want the total capacity of
the service to be proportionate to the size of the cluster.

Global services are also useful in monitoring and auditing functions. If you have a
centralized monitoring system such as splunk, or you're using Elasticsearch for log capture,
you could run an agent on each node as a global service.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[169]

With global and replicated services, swarm mode provides the infrastructure to scale your
application and maintain specified service levels. This works well for on-premises
deployments if you have a fixed-size swarm but variable workloads. You can scale
application components up and down to meet the demand provided they don't all require
peak processing at the same time.

Deploying services manually or with scripts doesn't take full advantage of the Docker
swarm. In swarm mode, you can define your application using the Docker Compose file
format and deploy and manage it as a single unit called a stack.

Deploying stacks to Docker swarm
Stacks in Docker swarm address the limitations of using Docker Compose with a single
host. You create a stack from a Compose file, and Docker stores all the metadata for the
stack's services in the swarm. This means Docker is aware that the set of resources
represents one application, and you can manage services from any Docker client without
needing the Compose file.

You can also make use of Docker secrets to make sensitive data available to service
containers instead of using environment variables.

Docker secrets
Swarm mode is inherently secure--communication between all the nodes is encrypted, and
the swarm provides an encrypted data store that is distributed among the manager nodes.
You can use this store for application secrets, which are a first-class resource in the Docker
swarm.

Secrets are created with a name and the contents of the secret, which can be read from a file
or entered into the command-line. In the ch07-docker-stack folder, I have a folder called
secrets that contains all the sensitive data for the NerdDinner application. Each secret
holds one piece of data, so the database connection string is in the nerd-
dinner.connectionstring file:

Data Source=nerd-dinner-db,1433;Initial Catalog=NerdDinner;User
Id=sa;Password=N3rdD!Nne720^6; MultipleActiveResultSets=True;

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[170]

I can create a secret named nerd-dinner.connectionstring and populate it with the
contents of that file using docker secret create:

docker secret create nerd-dinner.connectionstring .\secrets\nerd-
dinner.connectionstring

Now the connection string is securely stored in the swarm. You can't view the plain text of
a secret and Docker will deliver secrets only to services that explicitly request them. The
secret is encrypted at rest in the managers and encrypted in transit, where it is only made
available to workers who are running a replica for the service that requested the secret.

Administrators can create secrets in the swarm and make them available to the application
without ever sharing the file that contained the original plain text of the secret.

The secret is decrypted only for the container, where it is presented as a text file in a known
location. You need to change your application to read secrets from files, but that's a small
change for such a big step forward in security. In the src folder for this chapter, I've added
Secret classes to projects that need to read sensitive data from secrets. This example
fetches the database connection string:

public class Secret
{
 private const string SECRET_ROOT_PATH = @"C:\ProgramData\Docker\secrets";
 public static string DbConnectionString { get { return Get("nerd-
dinner.connectionstring"); } }

 private static string Get(string name)
 {
 var path = Path.Combine(SECRET_ROOT_PATH, name);
 return File.ReadAllText(path);
 }
}

It's safe to hardcode the path strings, as Docker will always surface the secret file in the
C:\ProgramData\Docker\secrets folder in the container, using the secret name as the
filename.

The secret files surfaced to the container have restricted access, so only administrator
accounts can read them. This is fine for the console applications that will run under the
context of the container administrator, so they have access to the secret files. IIS application
pools run under restricted user accounts that don't have access to read the files.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[171]

In the Dockerfile for ch07-nerd-dinner-web, I explicitly create an app pool that runs
under the LocalSystem account in the container and create the NerdDinner website to use
that app pool:

RUN Import-Module WebAdministration; `
 Remove-Website -Name 'Default Web Site'; `
 New-WebAppPool -Name 'ap-nd'; `
 Set-ItemProperty IIS:\AppPools\ap-nd -Name managedRuntimeVersion -Value
v4.0; `
 Set-ItemProperty IIS:\AppPools\ap-nd -Name processModel.identityType -
Value LocalSystem; `
 New-Website -Name 'nerd-dinner' `
 -Port 80 -PhysicalPath 'C:\nerd-dinner' -ApplicationPool 'ap-nd'

Running your web application with elevated permissions is less of a
concern when you run in a container, as I explain in Chapter 9,
Understanding the Security Risks and Benefits of Docker. The Docker secrets
implementation for Windows is evolving, and in a later version, you will
be able to grant secret access to specific users and you won't need to run
your website as LocalSystem.

You can request one or more secrets for a service in the service create and service
update commands. If I wanted to run my save-dinner handler as a service, using the
connection string secret, I would add the --secret option to the create command instead
of using an environment file:

docker service create `
 --detach=true `
 --network nd-swarm --endpoint-mode dnsrr `
 --secret nerd-dinner.connectionstring `
 --name nerd-dinner-save-handler `
 dockeronwindows/ch05-nerd-dinner-save-handler

Instead of creating individual services, I'm going to use Compose files to define my
deployment and replace environment variable files with secrets in the service definitions.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[172]

Defining a stack using Compose files
The Docker Compose file schema has evolved from supporting client-side deployments on
single Docker hosts to stack deployments across Docker swarms. Different sets of attributes
are relevant in different scenarios, and the tools enforce that. Docker Compose will ignore
attributes that apply only to stack deployments, and Docker swarm will ignore attributes
that apply only to single-node deployments.

I can make use of multiple Compose files to exploit this, defining the basic setup of my
application in one file, adding local settings in one override file and swarm settings in
another override file. I've done that with the Compose files in the ch07-docker-compose
folder. The core service definitions are very simple now--they only include attributes that
apply to every deployment mode, such as this example for the web service:

nerd-dinner-web:
 image: dockeronwindows/ch07-nerd-dinner-web
 environment:
 - HOMEPAGE_URL=http://nerd-dinner-homepage
 - MESSAGE_QUEUE_URL=nats://message-queue:4222
 networks:
 - nd-net

In the local override file, I add the attributes that are relevant when I'm developing the
application on my laptop and deploying with Docker Compose:

nerd-dinner-web:
 ports:
 - "80"
 depends_on:
 - nerd-dinner-homepage
 - nerd-dinner-db
 - message-queue
 env_file:
 - api-keys.env
 - db-credentials.env

Swarm mode does not support the depends_on attribute, and when you deploy a stack,
there is no guarantee which order the services will start in. If your application components
are resilient and have retry logic for any dependencies, then the service startup order
doesn't matter. If your components are not resilient and crash when they can't access
dependencies, then Docker will restart failed containers and the application should be
ready after a few retries.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[173]

Resilience is often missing from legacy applications, which assume that
their dependencies are always available and respond immediately. This is
not the case if you move to cloud services, and it is true of containers.
Docker will keep replacing failed containers, but if you're changing code,
then it's a good idea to add resilience.

My other override file specifies the attributes that are needed for the service to run in
swarm mode:

nerd-dinner-web:
 ports:
 - mode: host
 published: 80
 target: 80
 deploy:
 endpoint_mode: dnsrr
 placement:
 constraints:
 - node.platform.os == windows
 secrets:
 - nerd-dinner.connectionstring
 - nerd-dinner-bing-maps.apikey
 - nerd-dinner-ip-info-db.apikey

I need to specify the ports to use host mode publishing for swarm mode, and I'm mapping
port 80 in the container to port 80 on the host.

The deploy section is used only in swarm mode, and there are two extra attributes here.
The first is endpoint_mode, which specifies the DNS round-robin mode needed for
Windows containers. The next is constraints, which you can use to restrict the service to
run only on certain nodes in the swarm. You can apply arbitrary labels to swarm nodes
(which I cover in Chapter 9, Understanding the Security Risks and Benefits of Docker) and add
constraints based on those labels. In this case, I'm using the node.platform.os label,
which is a system label applied by Docker to each node.

I'll be deploying this stack to a hybrid swarm with some Windows and some Linux nodes.
This constraint tells Docker to run only this service on Windows nodes, which saves time in
deployment as Docker won't consider any Linux nodes as candidates to host replicas of this
service. I've added these attributes to all the services in my swarm override file.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[174]

In the secrets section, I have named all the secrets that needs to be made available to the
web service, which are the database connection string and API keys that used to be read
from environment files. Secrets are top-level resources in the Compose file, so the names
refer to entries later in the file, where I identify all the secrets as external resources:

secrets:
 nerd-dinner-bing-maps.apikey:
 external: true
 nerd-dinner-ip-info-db.apikey:
 external: true
 nerd-dinner-sa.password:
 external: true
 nerd-dinner.connectionstring:
 external: true

I can deploy the application with Docker Compose by specifying multiple Compose files--
the core file and the local override--but the Docker command line doesn't support multiple
files for stack deployment. I can still ensure the override functionality by running docker-
compose config, which joins multiple Compose files into one output. This command
generates a single Compose file called docker-stack.yml from the two Compose files for
the stack deployment:

docker-compose -f docker-compose.yml -f docker-compose.swarm.yml config >
docker-stack.yml

Docker Compose joins the input files and checks whether the output configuration is valid.
Now I can deploy my stack on the swarm, using the stack file that contains the core service
descriptions plus the secrets and deployment configuration.

Deploying a stack from a Compose file
You deploy a stack from a Compose file with a single command, docker stack deploy.
You need to pass the location of the Compose file and a name for the stack, and then
Docker creates all the resources in the Compose file:

> docker stack deploy --compose-file docker-stack.yml nerd-dinner

Creating network nerd-dinner_nd-net
Creating service nerd-dinner_nerd-dinner-web
Creating service nerd-dinner_elasticsearch
Creating service nerd-dinner_kibana
Creating service nerd-dinner_message-queue
Creating service nerd-dinner_nerd-dinner-db
Creating service nerd-dinner_nerd-dinner-homepage

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[175]

Creating service nerd-dinner_nerd-dinner-index-handler
Creating service nerd-dinner_nerd-dinner-save-handler

The result is a set of services that are grouped together, but unlike Docker Compose, which
relies on naming conventions and labels to identify the grouping, the stack is a first-class
citizen in Docker. I can list all stacks, which gives me the basic details--the stack name and
the number of services in the stack:

> docker stack ls
NAME SERVICES
nerd-dinner 8

I can also drill down into the services with docker stack services, and list the
individual containers with docker stack ps:

> docker stack ps nerd-dinner
ID NAME IMAGE ...
d84oou5mxbr6 nerd-dinner_nerd-dinner-homepage.1
dockeronwindows/ch03-nerd-dinner-homepage:latest
unq0b6j59jcw nerd-dinner_nerd-dinner-db.1
dockeronwindows/ch07-nerd-dinner-db:latest
n4jvdpx5hqn9 nerd-dinner_message-queue.1 nats:nanoserver
apc0djz5v37n nerd-dinner_kibana.1
sixeyed/kibana:nanoserver
vecauuy3nhez nerd-dinner_elasticsearch.1
sixeyed/elasticsearch:nanoserver
ixtsljeuclzi nerd-dinner_nerd-dinner-web.1
dockeronwindows/ch07-nerd-dinner-web:latest
oalu3dpx0hsy nerd-dinner_nerd-dinner-save-handler.1
dockeronwindows/ch07-nerd-dinner-save-handler:latest
vtans6ekbub9 nerd-dinner_nerd-dinner-index-handler.1
dockeronwindows/ch05-nerd-dinner-index-handler:latest

Grouping services into stacks makes it much easier to manage your application, especially
when you have multiple apps running with multiple services in each. The stack is an
abstraction over a set of Docker resources, but you can still manage the individual
resources directly. If I run docker service rm, it will remove a service even if the service
is part of a stack. When I run docker stack deploy again, Docker will see that a service
is missing from the stack and will recreate it.

When it comes to updating your application with new image versions or changes to service
attributes, you can modify the services directly, or you can modify the stack file and deploy
it again. Docker doesn't force a process on you, but you need to be careful if you mix both
approaches.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[176]

I can scale up the message handlers in my solution either by adding replicas :2 in the
deploy section of the stack file and deploying it again or by running docker service
update --replicas=2 nerd-dinner_nerd-dinner-save-handler. If I update the
service and don't change the stack file as well, the next time I deploy the stack, my handler
will go down to one replica. The stack file is viewed as the desired final state, and if the
current state has deviated, it will be corrected when you deploy again.

Running a single node swarm is fine for development and test environments. I can run the
full NerdDinner suite as a stack, verifying that the stack file is correctly defined, and I can
scale up and down to check the behavior of the app. This doesn't give me high availability
because the services are all running on a single node, so if the node goes down, I will lose
all my services.

You can build a swarm with greater elasticity for HA and scale by running it in the cloud.
All the major cloud operators support Docker, and some provide a managed option to run
a cluster of Docker nodes. The cloud container services all support the Docker image format
and runtime, but some use custom orchestrators or custom deployment artifacts. Others
support Docker swarm as the orchestrator, which means you can use all the same artifacts
in every environment.

Running Docker swarm in the cloud
Docker has a minimal set of infrastructure requirements, so you can easily spin up a Docker
host or a clustered Docker swarm in any cloud. All you need is the capacity to run
Windows Server virtual machines and connect them on a network.

The cloud is a great place to run Docker, and Docker is a great way to move to the cloud.
Docker gives you the power of a modern application platform without the restrictions of a
Platform as a Service (PaaS) product. PaaS options typically have proprietary deployment
systems, may need proprietary integrations in your code, and the dev experience will not
use the same runtime.

Docker lets you package your applications and define your solution structure in a portable
way that will run the same way on any machine and on any cloud. You can use basic
Infrastructure as a Service (IaaS) services, which all cloud providers support, and have a
consistent deployment, management, and runtime experience in every environment. The
Docker Cloud editions let you choose your own cloud provider and deploy a standard
Docker swarm with a production-grade configuration.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[177]

The major clouds also provide their own managed container services. If you're already
using IaaS or PaaS services from Microsofr Azure, Amazon Web Services (AWS), or
Google Cloud Platform (GCP), the managed option may be a good fit. If you prefer to keep
your deployments portable, then the Docker Cloud editions are a better option.

Managed Docker services in the cloud
Azure, AWS, and GCP have managed container services that let you run Docker containers.
AWS and GCP don't support Docker swarm mode; they use their own orchestration layers.
Azure lets you choose between orchestrators, including Docker swarm, and you can add
supported Windows nodes to the cluster.

These are managed services to the extent that they are simple to deploy and come with
support and service-level agreements for the cloud resources that make up the service. The
compute resources are all virtual machines, though, so you're billed for the VMs in your
cluster, not for the containers running in the cluster.

Docker on Amazon Elastic Container Service
The Elastic Container Service (ECS) on Amazon supports Docker containers, with a
custom AWS orchestration and management layer. ECS does not use swarm mode to
power the cluster, so you can't use Docker secrets and you can't deploy stacks from a
Compose file. The ECS command-line lets you import a Compose file, but only a subset of
attributes are supported.

The ECS cluster is built from existing AWS components, using EC2 VMs for the nodes and
ELB or ALB load balancers for incoming traffic. If you already have an existing investment
in AWS, that may fit your current infrastructure, but you need to be aware of the
disconnect between environments. If you are running Docker in a single-node swarm for
development and a local multi-node swarm for testing, the production EC2 instance will
need different deployment artifacts and will run on a different orchestration platform.

You can't manage the cluster remotely with the Docker CLI, so you can't use a single set of
management processes for every environment. There may be technical restrictions as well.
At the time of writing this, EC2 runs an older version of Docker that does not support the
health check functionality. You can run Windows nodes as part of an EC2 cluster, but that's
currently flagged as a beta implementation.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[178]

Docker on Google Container Platform
Google Container Platform (GKE) supports Docker containers but not the Docker swarm
mode. GKE uses Kubernetes as the orchestration layer, which is an open source
orchestrator originally built by Google. Kubernetes has broadly the same feature set as
Docker swarm but uses its own file format to describe deployments and has its own
command-line tool.

GKE deploys a Kubernetes cluster across virtual machines in the Compute Engine service.
As with the other cloud options, you pay for the VMs in the cluster and not for the number
of containers you're running. Setting up Kubernetes is a difficult task that GKE abstracts
away, and Google adds higher-level management features, such as autoscaling for nodes
(currently in beta). You can't create a GKE cluster that contains Windows nodes, so you can
run only Linux workloads.

Kubernetes does have support for Windows nodes, but currently, it's in the alpha status so
it's only suitable for initial testing, and you would need to deploy a custom IaaS cluster to
use it in GKE. Networking in Kubernetes does not use the Docker overlay network built
into Windows; it uses its own networking stack with a proxy component and a dedicated
VM switch.

Docker on Azure Container Service
Microsoft has taken a different approach with the Azure Container Service (ACS). Rather
than building a custom management layer, they are supporting all major open source
orchestrators. You can create an ACS cluster running on Apache Mesos, on Kubernetes, or
using Docker swarm mode. The swarm mode option means you can use the same container
runtime in Azure as you have locally and deploy to production using the same artifacts you
use in dev and test.

ACS doesn't currently have an option to provision Windows nodes in the cluster. You can
create a swarm using Linux nodes as managers and then create Windows VMs in the same
resource group and join them to the swarm. This needs additional steps in your
deployment process, but the end result is a hybrid Linux/Windows swarm, where the
Windows nodes are using Docker EE in a supported configuration.

It's likely that new releases of ACS will allow you to provision Windows nodes in Docker
swarm. Other orchestrators don't have the same level of Windows support--Kubernetes is
in alpha, and Mesos doesn't yet have a public release for Windows.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[179]

Docker cloud editions
If you are keen on maintaining consistency between your local Docker environments and
the cloud, Docker for Azure, Docker for AWS, and Docker for GCP are the best options.
These are free Community Editions from Docker Store that create a Docker cluster running
in swarm mode, optimized for the infrastructure on the Microsoft, Amazon, or Google
clouds.

You can deploy a swarm from Docker Cloud by providing your subscription details. I've
connected Docker Cloud with my Microsoft Azure subscription, so I can deploy a swarm
using Docker Cloud, which will create all the resources in Azure:

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[180]

The Docker Cloud editions use a template to create IaaS components on the cloud--ARM
for Azure, CloudFormation for AWS, and Deployment Manager for GCP. They give you a
best-practice configuration for Docker swarm, and they're maintained by Docker, Inc. so
they're kept up to date with the latest releases.

Docker Cloud doesn't currently let you create Windows nodes in the
swarm. It's worth checking whether Windows Server is an option in the
latest release. If it is, this will be the easiest way to create a Windows-
based Docker swarm in the cloud.

Alternatively, you can create your own template deployment, which gives you the freedom
to arrange the cluster as you wish. Both AWS and Azure have VM images based on
Windows Server 2016, with Docker preinstalled, which you can spin up as your swarm
nodes. In Azure, you can create separate VNets and Network Security groups for managers
and workers, keeping the manager nodes isolated from the Internet--a suitable approach
for production clusters.

Outside of production, I use the DevTest Lab feature in Azure for my Docker swarms. The
lab functionality in Azure is perfect for experimental and test environments--you can
configure the whole lab to shut down and start up on daily schedules, so you only pay for
compute when the swarm is in use.

I won't get into details on DevTest labs, but I can tell you that they allow you to create
formulas to customize virtual machines. You can easily create a formula that uses the VM
image Windows Server 2016 Datacenter--with Containers and runs a startup script to pull
all the Windows images you need with PowerShell. A simple PowerShell script like this
will pull the images you want:

$tag ='10.0.14393.1198'
docker pull "microsoft/dotnet:1.1.2-sdk-nanoserver-$tag"
docker pull "microsoft/mssql-server-windows-developer:2016-sp1-
windowsservercore-$tag"
docker pull "microsoft/aspnet:windowsservercore-$tag"

Running a multi-node Docker swarm in the cloud gives you a good working environment
for load testing, failover testing, and to perfect deployment processes. I'll use my Azure
DevTest lab to deploy NerdDinner and demonstrate zero-downtime updates, both of the
application and of the Windows hosts.

Docker Cloud lets you adopt an existing swarm that you've created on a cloud provider.
This associates a swarm you've created manually with your Docker ID. Docker Cloud
integrates with Docker for Windows and Docker for Mac, so you can easily manage remote
swarms.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[181]

I've created a custom swarm in a DevTest lab and adopted it in Docker Cloud with the
name sixeyed/docker-on-windows. In the Docker for Windows client app, I can click on
the whale icon and see a list of remote swarms that are registered with Docker Cloud:

When you select a swarm, Docker opens a new command shell window, already
configured to securely connect to your remote swarm. The swarm could be Windows or
Linux nodes running in any cloud. In this case, I can manage the hybrid Linux/Windows
swarm in my Azure DevTest lab from my Windows laptop:

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[182]

The integration between Docker Cloud and the Docker desktop editions is a very powerful
feature. It's a great way to take advantage of your preferred cloud but still keep your
deployment options open. From this command shell, I can run docker stack deploy
using my local stack file. This starts the NerdDinner solution running across multiple nodes
in the cloud with exactly the same deployment and management experience that I have on
my laptop.

Running across multiple nodes gives me high availability so my application keeps running
in case of failure, and I can take advantage of that to deploy zero-downtime updates.

Deploying updates with zero downtime
In swarm mode, Docker has two features that enable updates of the whole stack without
application downtime--rolling updates and node draining. Rolling updates replace
application containers with new instances from a new image--updates are staggered, so
provided you have multiple replicas, there will always be tasks running to serve requests
while other tasks are being upgraded.

Application updates will occur frequently, but less frequently, you will also need to update
the host--either to upgrade Docker or to apply Windows patches. Docker supports draining
a node, which means all the containers running on the node are stopped and no more will
be scheduled. If the replica level drops for any services when the node is drained, tasks are
started on other nodes. When the node is drained, you can update the host and then join it
back into the swarm.

Load balancing across swarm nodes
I've connected to my Azure swarm using Docker for Windows and deployed my
NerdDinner stack. The stack definition creates only one web container, so I'll scale up the
web component by updating the service:

> docker service update --replicas=3 nerd-dinner_nerd-dinner-web
nerd-dinner_nerd-dinner-web

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[183]

Now I have a web container running on each of my Windows worker nodes (the manager
is a Linux node):

> docker service ps nerd-dinner_nerd-dinner-web
ID NAME IMAGE
NODE ...
i83a5xzf9sai nerd-dinner_nerd-dinner-web.1 dockeronwindows/ch07-nerd-
dinner-web:latest win-node01
3bkm4mh26234 nerd-dinner_nerd-dinner-web.2 dockeronwindows/ch07-nerd-
dinner-web:latest win-node00
exsb59ok6gx2 nerd-dinner_nerd-dinner-web.3 dockeronwindows/ch07-nerd-
dinner-web:latest win-node02

In Azure, I've created a traffic manager profile that acts as simple load balancer across the
Windows worker nodes. When I browse to http://dow.trafficmanager.net, Azure
will direct the traffic to any one of my worker nodes, which in turn forwards the traffic to
the container listening on port 80. I see a new deployment of NerdDinner:

The traffic manager in Azure has its own health check, so it won't direct traffic to a node
that doesn't respond on the HTTP port. This lets me perform a zero-downtime update.
Docker will update one task at a time, and the Azure load balancer will direct traffic to the
live tasks while the other task is being updated.

For my application update, I have an updated home page component with a restyled UI--a
nice easy change to validate.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[184]

Updating application services
There are two steps to this update. First, I need to update the home page service to deploy
the new UI. This is an internal component that is used only by the web application service:

> docker service update --image dockeronwindows/ch07-nerd-dinner-homepage
nerd-dinner_nerd-dinner-homepage
nerd-dinner_nerd-dinner-homepage

nerd-dinner-homepage is the name of the service to update
--image specifies the new image for the update

The update command doesn't have any restrictions on the image you're
upgrading to. It doesn't need to be a new tag from the same repository
name; it can be a completely different image. This is very flexible, but it
means you need to be careful that you don't accidentally update your
message handlers with a new version of the web application or vice versa.

Updating the home page component doesn't show the changed UI because the web
containers cache the home page content. The web app uses a static cache, so it will not
refresh the content until the app is restarted. I don't have a new image to deploy, but I can
force a service update, which will restart all the containers from the current image:

> docker service update --force nerd-dinner_nerd-dinner-web
nerd-dinner_nerd-dinner-web

Docker updates one container at a time, and you can configure the delay interval between
updates and the behavior to take if updates fail. While the update is in process, I can run
docker service ps and see that the original containers are in the Shutdown state and the
replacement containers are Running or Starting:

ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR PORTS
i83a5xzf9sai nerd-dinner_nerd-dinner-web.1 dockeronwindows/ch07-nerd-
dinner-web:latest win-node01
 Running Running about an hour ago *:80->80/tcp
2d3i60h2vbvl nerd-dinner_nerd-dinner-web.2 dockeronwindows/ch07-nerd-
dinner-web:latest win-node00
 Running Running about a minute ago *:80->80/tcp
3bkm4mh26234 _ nerd-dinner_nerd-dinner-web.2 dockeronwindows/ch07-nerd-
dinner-web:latest win-node00
 Shutdown Shutdown 3 minutes ago
r9j83ozezdn8 nerd-dinner_nerd-dinner-web.3 dockeronwindows/ch07-nerd-
dinner-web:latest win-node02
 Running Starting about a minute ago
exsb59ok6gx2 _ nerd-dinner_nerd-dinner-web.3 dockeronwindows/ch07-nerd-

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[185]

dinner-web:latest win-node02
 Shutdown Shutdown about a minute ago

The Dockerfile for the NerdDinner web application has a health check, and Docker waits
until the health check on the new container passes before it moves on to replacing the next
container. During the rolling update, some users will see the old home page, and some
users will see the new home page:

As long as the load balancer can detect status changes quickly enough, it will send traffic
only to hosts that have running containers--users will get a response from a container that
has been updated or one that is due to be updated. During the update, there is no container
listening on port 80 on that host, so the load balancer detects that the host is unavailable
and sends traffic elsewhere.

The whole update process is automated, and there will be no application downtime as tasks
are updated individually and the load balancer sends traffic only to nodes that have
running tasks. If it's a high-traffic application, you need to ensure there's spare capacity in
your service, so when one task is being updated, the remaining tasks can handle the load.

Rolling updates give you zero downtime, but that doesn't necessarily mean your app will
function correctly during the update. This process is only suitable for stateless applications-
-if tasks store the session state, then the user experience will be impacted. When the
container holding state is replaced, the state will be lost, so if you have stateful applications,
you will need to plan a more careful upgrade process.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[186]

Rolling back service updates
When you update a service in swarm mode, the swarm stores the configuration of the
previous deployment. If you find a problem with the release, you can roll back to the
previous state with a single command:

> docker service update --rollback nerd-dinner_nerd-dinner-homepage
nerd-dinner_nerd-dinner-homepage

The rollback is a specialized form of service update. Instead of passing an image name for
tasks to update to, the rollback flag does a rolling update to the previous image used by
the service. Again, the rollback happens one task at a time, so this is a zero-downtime
process.

Service updates retain only one prior service configuration for rollbacks. If you update from
version 1 to version 2 and then to version 3, the configuration of version 1 is lost. You can
roll back from version 3 to version 2--but if you roll back again from version 2, it will be to
the previous version, which will take you back to version 3.

Configuring update behavior
For large scale deployments, you may want to change the default update behavior, either to
complete the roll out more quickly or to run a more conservative roll out strategy. The
default behavior updates one task at a time, with no delay between task updates, and if a
task update fails, the roll out is paused. The configuration can be overridden with three
parameters:

update-parallelism: The number of tasks to update concurrently
update-delay: The period to wait between task updates; can be specified as
hours, minutes, and seconds
update-failure-action: The action to take if a task update fails; either
continue or stop the roll out

You can specify the default parameters in the Dockerfile, so they're baked into the image, or
the Compose file so they're set at deployment time or with the service commands. For a
production deployment of NerdDinner, I might have nine instances of the SQL message
handler, with update_config in the Compose file set to update in batches of three with a
10-second delay:

nerd-dinner-save-handler:
 deploy:
 endpoint_mode: dnsrr

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[187]

 replicas: 9
 update_config:
 parallelism: 3
 delay: 10s
...

Update configuration for a service can also be changed with the docker service update
command, so you can alter the update parameters and initiate a rolling upgrade with a
single command.

Health checks are especially important in service updates. If a health check fails for a new
task in a service update, that could mean there's a problem with the image. Completing the
roll out could result in 100% unhealthy tasks and a broken application. The default update
configuration prevents this, so if an updated task does not enter the running state, the roll
out is paused. The update will not go ahead, but that's a better outcome than having an
updated app that is broken.

Updating swarm nodes
Application updates are one part of the update routine and host updates are the other. Your
Windows Docker hosts should be running a minimal operating system, preferably
Windows Server 2016 Core. This version has no UI, so there's a much smaller surface area
for updates, but there will still be some Windows updates that require a reboot.

Rebooting the server is an invasive process--it stops the Docker service, killing all running
containers. Upgrading Docker is equally invasive for the same reason; it means a restart of
the Docker service. In swarm mode, you can manage this by taking nodes of service for the
update period without impacting service levels.

I'll show this with my Azure swarm. If I need to work on win-node02, I can gracefully
reschedule the tasks it is running with docker node update in order to put it into drain
mode:

> docker node update --availability drain win-node02
win-node02

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[188]

Putting a node into drain mode means all containers are stopped, and as these are service
task containers, they will be replaced with new containers on the other nodes. When the
drain completes, I have no running tasks on win-node02: they have all been shut down.
You can see that the tasks have been deliberately shut down, as Shutdown is listed as the
desired state:

> docker node ps win-node02
ID NAME IMAGE
NODE DESIRED STATE
rcrcwqao3c0m nerd-dinner_message-queue.1 nats:nanoserver
 win-node02 Shutdown
zetse09726t9 nerd-dinner_kibana.1
sixeyed/kibana:nanoserver
 win-node02 Shutdown
gdg3owrdjcur nerd-dinner_nerd-dinner-homepage.1 dockeronwindows/ch03-
nerd-dinner-homepage:latest
 win-node02 Shutdown
r9j83ozezdn8 nerd-dinner_nerd-dinner-web.3 dockeronwindows/ch07-
nerd-dinner-web:latest
 win-node02 Shutdown
exsb59ok6gx2 _ nerd-dinner_nerd-dinner-web.3 dockeronwindows/ch07-
nerd-dinner-web:latest
 win-node02 Shutdown

I can check the service list and see that every service is at the required replica level except
the web application service:

> docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
4q7kmlxclwo6 nerd-dinner_elasticsearch replicated 1/1
e2obujts50tp nerd-dinner_message-queue replicated 1/1
e660rl6zkk8s nerd-dinner_nerd-dinner-db replicated 1/1
goc2dh0rpaid nerd-dinner_nerd-dinner-index-handler replicated 1/1
hhfvwsuk12do nerd-dinner_nerd-dinner-save-handler replicated 1/1
o6mjy5jbj57x nerd-dinner_nerd-dinner-web replicated 2/3
qx1hhp8oo5r5 nerd-dinner_kibana replicated 1/1
w48ffc5ejx52 nerd-dinner_nerd-dinner-homepage replicated 1/1

The swarm has created new containers to replace the replicas that were running on win-
node02, but in the reduced swarm, there isn't any capacity to run another web container.
The web application service needs to run on a Windows node and publish port 80 to the
host. There are only two Windows nodes available to run containers, and both have port 80
already allocated. The web service will stay at a replica level of 2/3 until there is enough
capacity in the swarm to schedule another container.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[189]

Nodes in the drain mode are considered to be not available, so if the swarm needs to
schedule new tasks, none will be allocated to drained nodes. win-node02 is effectively out
of commission now, so I could log on and run a Windows update with the sconfig tool, or
update the Docker service.

Updating the node may mean restarting the Docker service or rebooting the server. When
that's done, I can bring the server back online in the swarm with another docker node
update command:

docker node update --availability active win-node02

This makes the node available again. When nodes join the swarm Docker doesn't
automatically rebalance the services, so the containers running on win-node00 and win-
node01 will stay there, even though win-node02 is available and has more capacity. The
extra capacity does mean there's a Windows Server with port 80 free now, so the swarm
will schedule the missing third web container onto win-node02:

> docker node ps --filter desired-state=running win-node02
ID NAME IMAGE
NODE
bguu1ese9lga nerd-dinner_nerd-dinner-web.3 dockeronwindows/ch07-nerd-
dinner-web:latest win-node02

In a high-throughput environment where services are regularly started, stopped, and
scaled, any nodes that join the swarm will soon be running their share of tasks. In a more
static environment, you may add an extra node as a temporary increase in compute power
in order to give you headroom while you update other nodes.

Swarm mode gives you the power to update any component of your application and the
nodes running the swarm without any downtime. You may need to commission additional
nodes in the swarm during the updates, but these can be removed afterward. You don't
need any additional tooling to get rolling updates, automated rollback, and host
management--it's all built into Docker.

Mixing hosts in hybrid swarms
There's one more feature of swarm mode that makes it hugely powerful. Nodes in the
swarm communicate using the Docker API, and the API is cross-platform--which means
you can have a single swarm running a mixture of Windows and Linux servers.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[190]

Linux isn't the focus of this book, but I will cover hybrid swarms briefly because they open
up a new range of possibilities. A hybrid swarm can have Linux and Windows nodes as
managers and workers. You administer the nodes and the services they're running in the
same way, using the exact same Docker CLI.

One use case for hybrid swarms is to run your manager nodes on Linux to reduce licensing
costs or running costs if you have your swarm in the cloud. A production swarm will need
at least three manager nodes. Even if all your workloads are Windows-based, it may be
more cost effective to run Linux nodes as managers and save the Windows nodes for user
workloads.

The other use case is for mixed workloads. My NerdDinner solution is configured with the
web service as the entry point, so HTTP requests are sent directly to the ASP.NET
containers. It would be more flexible to run a reverse proxy in a container as the entry point
and have requests forwarded from the proxy to the web containers.

A reverse proxy can do SSL termination, caching, load balancing, and more. You can
modify HTTP headers in the proxy and disguise the fact that the actual application runs on
ASP.NET. Caching is particularly important--the proxy can serve all static resources
(images, style sheets, and JavaScript), reducing the number of requests to the application.

There isn't a great software reverse proxy in Windows, but in Linux, there are two--Nginx
and HAProxy. Both of these are available as official images on Docker Hub, which you can
drop into your solution if you have a hybrid swarm. You could have Nginx running on the
Linux nodes in the swarm, forwarding traffic to the ASP.NET application on the Windows
nodes.

Similarly, you could migrate any cross-platform components to run in Linux containers.
That could be the .NET Core message handler from Chapter 5, Adopting Container-First
Solution Design, as well as the nats message queue, Elasticsearch, Kibana, and even SQL
Server. Linux images are typically much smaller and lighter than Windows images, so you
should be able to run with greater density, packing more containers onto each host.

The great benefit of the hybrid swarm is that you manage all these components in the same
way, from the same user interface. You can connect your local Docker CLI to the swarm
manager and administer the Nginx proxy on Linux and the ASP.NET application on
Windows with exactly the same commands.

Orchestrating Distributed Solutions with Docker Swarm Chapter 7

[191]

Summary
This chapter was all about the Docker swarm mode, the native clustering option built right
into Docker. You learned how to create a swarm and how to add and remove swarm nodes
and deploy services on the swarm connected with an overlay network. I showed that you
have to create services for high availability and also discussed how to use secrets to store
sensitive application data securely in the swarm.

You can deploy your application as a stack on the swarm using a Compose file, which
makes it very easy to group and manage your application components. I demonstrated
stack deployment on a single node swarm and on a multi-node swarm running in Azure
and managed with Docker Cloud.

High availability in the swarm means you can perform application updates and rollbacks
without downtime. You can even take nodes out of commission when you need to update
Windows or Docker and have your application still running with the same service level on
the remaining nodes.

In the next chapter, I'll look more closely at the administration options for dockerized
solutions. I'll start by looking at how to use your existing management tools with
applications running in Docker. Then, I'll move on to managing swarms in production with
Docker Enterprise Edition.

8
Administering and Monitoring

Dockerized Solutions
Applications built on Docker are inherently portable, and the process of deployment is the
same for every environment. As you promote your application through system tests and
user tests to production, you'll use the same artifacts every time. The Docker images you
use in production are the exact same versioned images that were signed off in the test
environments, and any environmental differences can be captured in compose files.

In a later chapter, I'll cover how continuous deployment works with Docker, so your whole
deployment process can be automated. But when you adopt Docker, you'll be moving to a
new application platform, and the path to production is about more than just the
deployment process. Containerized applications run in fundamentally different ways to
apps deployed on VMs or bare metal servers. In this chapter, I'll look at administering and
monitoring applications running in Docker.

Some of the tools you use to manage Windows applications today can still be used when
the apps are moved to Docker, and I'll start by looking at some examples. But there are
different management needs and opportunities for apps running in containers, and the
main focus of this chapter will be management products specific to Docker.

Administering and Monitoring Dockerized Solutions Chapter 8

[193]

In this chapter, I'll be using simple Dockerized applications to show how you can do the
following:

Connect Internet Information Services (IIS) Manager to IIS services running in
containers
Connect Server Manager to containers to see event logs and features
Use open source projects to view and administer Docker swarms
Use Universal Control Plane (UCP) with Docker Enterprise Edition (Docker
EE)

Managing containers with Windows tools
Many of the administration tools in Windows are able to manage services running on
remote machines. IIS Manager, Server Manager, and, of course, SQL Server Management
Studio (SSMS) can all be connected to a remote server on the network for inspection and
administration.

Docker containers are different from remote machines, but they can be set up to allow
remote access from these tools. Typically, you need to explicitly set up access for the tool by
exposing management ports, enabling Windows features, and running PowerShell cmdlets.
This can all be done in the Dockerfile for your application, and I'll cover the setup steps for
each of these tools.

Being able to use familiar tools can be helpful, but there are limits to what you should do
with them; remember, containers are meant to be disposable. If you connect to a web
application container with IIS Manager and tweak the app pool settings, that tweak will be
lost when you update the app with a new container image. You can use the graphical tools
to inspect a running container and diagnose problems, but you should make changes in the
Dockerfile and redeploy.

Administering and Monitoring Dockerized Solutions Chapter 8

[194]

IIS Manager
The IIS web management console is a perfect example. Remote access is not enabled by
default in the Windows base images, but you can configure it with a simple PowerShell
script. Firstly, the web management feature needs to be installed:

Import-Module servermanager
Add-WindowsFeature web-mgmt-service

Then, you need to enable remote access with a registry setting and start the web
management Windows service:

Set-ItemProperty -Path HKLM:\SOFTWARE\Microsoft\WebManagement\Server -Name
EnableRemoteManagement -Value 1
Start-Service wmsvc

You also need an EXPOSE instruction in the Dockerfile to allow traffic into the management
service on the expected port 8172. This will allow you to connect, but IIS management
console requires user credentials for the remote machine. To support this without having to
connect the container to Active Directory (AD), you can create a user and password in the
setup script:

net user iisadmin "!!Sadmin*" /add
net localgroup "Administrators" "iisadmin" /add

There are security issues here. You need to create an administrative
account in the image, expose a port, and run an additional service - all
increasing the attack surface of your application. Instead of running the
setup script in the Dockerfile, it would be better to attach to a container
and run the script interactively if you need remote access.

I've set up a simple web server in an image, packaged with a script to enable remote
management in the Dockerfile for dockeronwindows/ch08-iis-with-management. I'll
run a container from this image, publishing the HTTP and IIS management ports:

docker container run -d -p 80 -p 8172 --name iis dockeronwindows/ch08-iis-
with-management

Administering and Monitoring Dockerized Solutions Chapter 8

[195]

When the container is running, I'll execute the EnableIisRemoteManagement.ps1 script,
which sets up remote access with the IIS management service:

docker container exec iis powershell \EnableIisRemoteManagement.ps1

Now I can run IIS Manager on my Windows host, choose Start...Connect to a Server , and
enter the IP address of the container. When IIS challenges me to authenticate, I use the
credentials for the iisadmin user I created in the setup script:

Here, I can navigate around the application pools and the website hierarchy as if I were
connected to a remote server:

Administering and Monitoring Dockerized Solutions Chapter 8

[196]

This is a good way of checking the configuration of IIS or an ASP.NET application running
on IIS. You can check the virtual directory setup, application pools, and application
configuration, but this should be used for investigation only.

If I find that something in the application is not configured correctly, I need to go back to
the Dockerfile and fix it and not make a change to the running container. This technique
can be very useful when you're migrating an existing app to Docker. If you install an MSI
with the web app in the Dockerfile, you can't see what the MSI actually does - but you can
connect with IIS manager and see the results.

SQL Server Management Studio
SSMS is more straightforward because it uses the standard SQL client port 1433. You don't
need to expose any extra ports or start any extra services; the SQL Server images from
Microsoft already have everything set up. You can connect using SQL Server authentication
with the sa credentials you use when you run the container.

Administering and Monitoring Dockerized Solutions Chapter 8

[197]

This command runs a SQL Server Developer Edition container, publishing port 1433 to the
host and specifying sa credentials:

docker container run -d -p 1433 -e sa_password=DockerOnW!nd0ws -e
ACCEPT_EULA=Y `
 --name sql microsoft/mssql-server-windows-developer

You connect to the SQL Server instance in the container using the host's IP address from a
remote machine or using the container's IP address if you're connected to the host. In SSMS,
just specify the SQL credentials:

You can administer this SQL instance in the same way as any SQL Server—creating
databases, assigning user permissions, restoring Dacpacs, and running SQL scripts.
Remember that any changes you make won't impact the image, and you'll need to build
your own image if you want the changes to be available to new containers.

This approach lets you build a database through SSMS, if that's your preference, and get it
working in a container without installing and running SQL Server. You can perfect your
schema, add service accounts and seed data, and then export the database as a script.

Administering and Monitoring Dockerized Solutions Chapter 8

[198]

I've done this for a simple example database, exporting the schema and data to a single file
called init-db.sql. The Dockerfile for dockeronwindows/ch08-mssql-with-schema
takes the SQL script and packages it into a new image, with a bootstrap PowerShell script
that deploys the database when you create a container:

escape=`
FROM microsoft/mssql-server-windows-express
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

ENV sa_password DockerOnW!nd0ws
VOLUME C:\mssql

WORKDIR C:\init
COPY . .

CMD ./InitializeDatabase.ps1 -sa_password $env:sa_password -Verbose

HEALTHCHECK CMD powershell -command `
 try { `
 $result = invoke-sqlcmd -Query 'SELECT TOP 1 1 FROM Authors' -Database
DockerOnWindows; `
 if ($result[0] -eq 1) { return 0} `
 else {return 1}; `
 } catch { return 1 }

There's a HEALTHCHECK in the SQL Server image here, which is good
practice—it lets Docker check whether the database is running correctly.
In this case, the test will fail if the schema has not been created, so the
container won't report as healthy until the schema deployment has
completed successfully.

I can run a container from this image in the usual way:

docker container run -d -p 1433 --name db dockeronwindows/ch08-mssql-with-
schema

By publishing port 1433 , I connect to the database with SSMS and see the schema and data
from the script. This represents a fresh deployment of an application database, and in this
case, I've used SQL Server development edition to work out my schema but SQL Server
Express for the actual database - all running in Docker with no local SQL Server instances.

Administering and Monitoring Dockerized Solutions Chapter 8

[199]

If you think using SQL Server authentication is a retrograde step, you need to remember
that Docker enables a different runtime model. You won't have a single SQL Server
instance running multiple databases; that could all be targets if the credentials were
compromised. Each SQL workload will be in a dedicated container with its own set of
credentials, so you effectively have one SQL instance per database, and you could
potentially have one database per service.

Security can be increased by running in Docker. Unless you need to connect to SQL Server
remotely, you don't need to publish the port from the SQL container. Any applications that
need database access will run as containers in the same Docker network as the SQL
container and will be able to access port 1433 without publishing it to the host. This means
SQL is only accessible to other containers running in the same Docker network.

If you need to use Windows authentication with an AD account, you can
still do that in Docker. Containers can be domain-joined when they start,
so you can use service accounts for SQL Server instead of SQL Server
authentication.

Event logs
You can connect Event Viewer on your local machine to a remote server, but currently, the
remote event log services are not enabled on the Windows Server Core or Nano Server
images. This means you can't connect to a container and read event log entries with the
Event Viewer UI—but you can do that with the Server Manager UI, which I'll cover in the
next section.

If you just want to read event logs, you can execute PowerShell cmdlets against running
containers to get the log entries. This command reads the two latest event log entries for the
SQL Server application from my database container:

> docker exec db powershell `
 "Get-EventLog -LogName Application -Source MSSQL* -Newest 2 | Format-
Table TimeWritten,Message"

TimeWritten Message
----------- -------
6/27/2017 5:14:49 PM Setting database option READ_WRITE to ON for database
'...
6/27/2017 5:14:49 PM Setting database option query_store to off for
database...

Administering and Monitoring Dockerized Solutions Chapter 8

[200]

Reading event logs can be useful if you have an issue with a container that you can't
diagnose any other way. But it's an approach that doesn't scale when you have dozens or
hundreds of containers running. It's better to relay the event logs that are of interest to the
console, so they're collected by the Docker platform and you can read them with docker
container logs, or a management tool that can access the Docker API.

Relaying event logs is simple to do, taking a similar approach to relaying IIS logs in
Chapter 3, Developing Dockerized .NET and .NET Core Applications. For any apps that write to
the event log, you use a startup script as the entry point, which runs the app and then
enters a read loop—getting entries from the event log and writing them out to the console.

This is a useful approach for apps that run as Windows Services, and it's an approach
Microsoft has used in the SQL Server Windows images. The Dockerfile uses a PowerShell
script as CMD, and that script ends with a loop that calls the same Get-EventLog cmdlet to
relay logs to the console:

$lastCheck = (Get-Date).AddSeconds(-2)
while ($true) {
 Get-EventLog -LogName Application -Source "MSSQL*" -After $lastCheck | `
 Select-Object TimeGenerated, EntryType, Message
 $lastCheck = Get-Date
 Start-Sleep -Seconds 2
}

This script reads the event log every 2 seconds, gets any entries since the last read, and
writes them out to the console. The script runs in the process started by Docker, so the log
entries are captured and can be surfaced by the Docker API.

This is not a perfect approach - it uses a timed loop, only selects some of the data from the
log, and it means storing data in both the container's event log and in Docker. It is valid if
your application already writes to the event log and you want to Dockerize it without
rebuilding the app. In this case, you need to be sure you have a mechanism to keep your
application process running, such as a Windows Service, because Docker is monitoring
only the event log loop.

Server Manager
Server Manager is a great tool to remotely administer and monitor servers, and it works
well with containers based on Windows Server Core. You need to take a similar approach
to the IIS management console, configuring a user in the container with administrator
access and then connecting from the host.

Administering and Monitoring Dockerized Solutions Chapter 8

[201]

Just like with IIS, you can add a script to the image, which enables access, so you can run it
when you need it. This is safer than always enabling remote access in the image. The script
just needs to add a user, configure the server to allow remote access from administrator
accounts, and ensure the Windows Remote Management (WinRM) service is running:

net user serveradmin "s3rv3radmin*" /add
net localgroup "Administrators" "serveradmin" /add

New-ItemProperty -Path
HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System `
 -Name LocalAccountTokenFilterPolicy -Type DWord -Value 1
Start-Service winrm

I have a sample image, dockeronwindows/ch08-iis-with-server-manager, which is
based on IIS and packages a script to enable remote access with Server Manager. The
Dockerfile also exposes the ports used by WinRM, 5985 and 5986. I can start a container
running IIS in the background and then enable remote access:

> docker container run -d -P --name iis2 dockeronwindows/ch08-iis-with-
server-manager
b4d2c57d54e6c01e991dc4ed1b2a931386f9432b6f06235cc7dcac525c0bad25

> docker exec iis2 powershell .\EnableRemoteServerManagement.ps1
The command completed successfully.

You can connect to the container with Server Manager using the container's IP address, but
the container isn't domain-joined. Server Manager will try to authenticate over a secure
channel and fail, so you'll get a WinRM authentication error. To add a server that isn't
domain-joined, you need to add it as a trusted host. The trusted host list needs to use the
hostname of the container, not the IP address, so first, I'll get the hostname of the container:

> docker exec iis2 hostname
b4d2c57d54e6

And now, I can add the container to the trusted list. This command needs to run on the
host, not in the container. You're adding the container's hostname to the local machine's list
of trusted servers. I run this on my Windows Server 2016 host:

Set-Item wsman:\localhost\Client\TrustedHosts b4d2c57d54e6 -Concatenate -
Force

I'm running Windows Server 2016, but you can use Server Manager on
Windows 10 too. Install the Remote Server Administration Tools (RSAT)
and you can use Server Manager on Windows 10 in the same way.

Administering and Monitoring Dockerized Solutions Chapter 8

[202]

In Server Manager, navigate to All Servers | Add Servers and open the DNS tab. Here,
you can enter the IP address of the container, and Server Manager will resolve the
hostname:

Select the server details and click on OK—now Server Manager will try to connect to the
container. You'll see an updated status in the All Servers tab, which says the server is
online but access is denied:

Administering and Monitoring Dockerized Solutions Chapter 8

[203]

Now you can right-click on the container in the server list and click on Manage As to
provide the credentials for the local administrator account. You need to specify the
hostname as the domain part of the username. The local user created in the script is called
serveradmin , but I need to authenticate with b4d2c57d54e6\serveradmin.

Now the connection succeeds and you'll see the data from the container surfaced in Server
Manager, including the event log entries, Windows Services, and all the installed roles and
features:

You can even add features to the container from the remote Server Manager UI—but that
wouldn't be a good practice. Like the other UI management tools, it's better to use them for
exploration and investigation but not to make any changes in the Dockerfile.

Administering and Monitoring Dockerized Solutions Chapter 8

[204]

Managing containers with Docker tools
You've seen that you can use existing Windows tools to administer containers, but what
you can do with these tools doesn't always apply in the Docker world. A container will run
a single web application, so the hierarchy navigation of IIS Manager isn't really helpful.
Checking event logs in Server Manager can be useful, but it is much more useful to relay
entries to the console so they can be surfaced from the Docker API.

Images also need to be explicitly set up to enable access to remote management tools,
exposing ports, adding users, and running additional Windows services. All this adds to
the attack surface of your running container. You should look at these existing tools as
useful in debugging in development and test environments, but they're not really suitable
for production.

The Docker platform provides a consistent API for any type of application running in a
container, and that's an opportunity for a new type of admin interface. For the rest of the
chapter, I'll be looking at management tools that are Docker-aware and provide an
alternative management interface to the Docker command line. I'll start with some open
source tools and move on to the commercial Containers-as-a-Service (CaaS) platform in
Docker EE.

Docker visualizer
Visualizer is a very simple web UI that shows basic information about nodes and containers
in a Docker swarm. It's an open source project on GitHub in the dockersamples/docker-
swarm-visualizer repository. It's a Node.js application, and it comes packaged in Docker
images for Linux and Windows.

On my hybrid swarm in Azure, I can run the visualizer as a Linux container on the
manager node. I connect to the swarm with Docker for Windows and run the following:

docker service create `
 --name=viz `
 --publish=8080:8080/tcp `
 --constraint=node.role==manager `
 --mount=type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock `
 dockersamples/visualizer

Administering and Monitoring Dockerized Solutions Chapter 8

[205]

The constraint ensures the container runs only on a manager node, and as my manager
runs on Linux, I can use the mount option to let the container talk to the Docker API. In
Linux, you can treat sockets like filesystem mounts, so the container can use the API socket
without having to publicly expose it over Transmission Control Protocol (TCP).

You can also run the visualizer in an all-Windows swarm. Windows
doesn't currently support mounting named pipes as volumes, but there is
a workaround described in the documentation for the visualizer project.

The visualizer gives you a read-only view of the containers in the swarm. The UI shows the
status of hosts and containers and gives you a quick way to check the distribution of the
workload on your swarm. This is how my Azure swarm looks with the NerdDinner stack
deployed:

Administering and Monitoring Dockerized Solutions Chapter 8

[206]

I can see at a glance that all my nodes and containers are healthy and that Docker has
distributed containers across the swarm as evenly as it can. Visualizer uses the API in the
Docker service, which exposes all the Docker resources with a RESTful interface.

The Docker API also provides write access, so you can create and update resources. An
open source project called Portainer provides administration using these APIs.

Portainer
Portainer is a lightweight management UI for Docker. It runs as a container, and it can
manage single Docker hosts and clusters running in swarm mode. It's an open source
project hosted on GitHub in the portainer/portainer repository. Portainer is written in
Go, so it's cross-platform and you can run it as a Linux or a Windows container.

On my hybrid swarm, I can run Portainer on the manager node:

docker service create `
 --name portainer `
 --publish 9000:9000 `
 --constraint 'node.role == manager' `
 --mount type=bind,src=//var/run/docker.sock,dst=/var/run/docker.sock `
 portainer/portainer -H unix:///var/run/docker.sock

The portainer/portainer image on Docker Hub is a multi-arch image,
which means you can use the same image tag on Linux and Windows,
and Docker will use the matching image for the host OS. You can't mount
the Docker socket on Windows, but the Portainer documentation shows
you how to access the Docker API on Windows.

Administering and Monitoring Dockerized Solutions Chapter 8

[207]

When you first browse to Portainer, you need to specify an administrator password. Then,
the service connects to the Docker API and surfaces details about all the resources. In
swarm mode, I can see the nodes in the swarm, their compute capacity, Docker version,
and status:

The Services view shows me all the running services, and from here, I can drill down into
service details, and there's a quick link to update the scale of the service:

Administering and Monitoring Dockerized Solutions Chapter 8

[208]

You can create containers and services from Portainer, but as of the current version (1.13),
you can't deploy a stack from a compose file or manage stacks on the swarm.

Portainer is a great tool and an active open source project, but there are features where you
need to understand the source of the data—some views that show the status of the node
Portainer is connected to rather than the swarm as a whole. The Services view shows all
services, but the Volumes and Containers views show only those resources on the node
where Portainer is running.

You can create multiple users and teams in Portainer and apply access control to resources.
You can create services that have access limited to certain teams. Authentication is
managed by Portainer, so all users exist in the Portainer database and you can't connect to
external identity providers.

In a production environment, you may have a requirement to run software with support.
Portainer is open source, but there is a commercial support option available. For enterprise
deployments or environments with strict security processes, Docker EE offers a complete
feature set.

Administering and Monitoring Dockerized Solutions Chapter 8

[209]

CaaS with Docker EE
Docker EE is the commercial edition from Docker, Inc. and the standard and advanced
options come with the management suite called Docker Datacenter (DDC). DDC is
Docker's CaaS platform and makes full use of Docker to provide a single pane of glass to
manage any number of containers running on any number of hosts.

DDC is an enterprise-grade product that you run on a cluster of machines in your data
center or in the cloud. The clustering functionality uses Docker swarm mode, so in
production, you could have a 100-node cluster using the exact same application platform as
your development laptop running as a single-node swarm.

There are two parts to DDC. There's the Docker Trusted Registry (DTR), which is like
running your own private instance of Docker Hub, complete with image signing and
security scanning. I'll cover DTR in Chapter 9, Understanding the Security Risks and Benefits
of Docker, when I look at security in Docker. The administration component is called UCP,
and it's a new type of management interface.

Understanding UCP
UCP is a web-based interface used to manage swarm nodes, images, services, and
containers. UCP itself is a distributed application that runs in containers across connected
services in the swarm. UCP gives you a single place to administer all your Docker
applications in the same way. It provides role-based access control to resources so you can
set fine-grained controls over who can do what.

DDC runs in swarm mode. You can deploy your application as a stack with a compose file,
and UCP will create services on the cluster. UCP gives you the full range of administration
features - you can create, scale and remove services, inspect, and connect to the tasks
running the services and manage the nodes running the swarm. All the additional
resources you need, such as Docker networks and volumes, are surfaced in UCP for
management in the same way.

You can run a hybrid DDC cluster with Linux nodes for UCP and DTR and Windows
nodes for your user workloads. As a subscription service from Docker, you have support
from Docker's team for the setting up of your cluster and dealing with any issues, covering
all the Windows and Linux nodes.

Administering and Monitoring Dockerized Solutions Chapter 8

[210]

Navigating the UCP UI
You log in to UCP from the home page. You can either use the authentication built in to
DDC, managing users manually from UCP, or you can connect DDC to any Lightweight
Directory Access Protocol (LDAP) authentication store. This means you can set up DDC to
use your organization's AD and log in with your Windows account.

The UCP home page is a dashboard that shows the key performance indicators of your
cluster, the number of nodes, services, and containers running at that moment, together
with the overall compute utilization of the cluster:

From the dashboard, you can navigate to the resource views that give you access grouped
by the resource type: services, containers, images, nodes, networks, volumes, and secrets.
For most of the resource types, you can list the existing resources, inspect them, delete
them, and create new ones.

UCP provides Role Based Access Control (RBAC) for all the Docker resources. You can
apply a permission label to any resource and secure access based on that label. Teams can
be assigned permissions to labels—ranging from no access to full control—which secures
access to team members for all the resources that have these labels.

Administering and Monitoring Dockerized Solutions Chapter 8

[211]

Managing nodes
The node view shows you all the nodes in the cluster, listing the operating system and CPU
architecture, the node status, and the node manager status:

I have four nodes in my cluster, two Linux nodes used for DDC workloads—the UCP and
DTR services—and one Windows and one Linux node for user workloads. Like in swarm
mode, I can configure DDC to exempt manager nodes from running user workloads—but I
can also do this for the nodes running DTR. This is a good way to ring fence compute
power for the DDC services.

In node administration, you have a graphical way to view and manage the swarm servers
you have access to. You can put nodes into the drain mode, allowing you to run Windows
update or upgrade Docker on the node. You can promote workers to managers, demote
managers to workers, and see the tokens you need to join new nodes to the swarm.

Drilling into each node, you can see the total CPU, memory, and disk usage of the server,
with a graph showing the current and recent historical usage:

Administering and Monitoring Dockerized Solutions Chapter 8

[212]

Administering and Monitoring Dockerized Solutions Chapter 8

[213]

You can also list the tasks running on each node, which gives you a view of all the service
containers running on the node:

From each task, you can navigate to the container view, which I'll cover shortly.

Volumes
Volumes exist at the node level rather than the swarm level, but you can manage them in
UCP across all the swarm nodes. How you manage volumes in the swarm depends on the
type of volume you're using. Local volumes are fine for scenarios such as global services
that write logs and metrics to the disk and then forward them centrally.

Persistent data stores running as clustered services could also use local storage. You might
create a local volume on every node but add labels to servers with high-volume RAID
arrays. When you create the data service, you can use a constraint to limit it to RAID nodes,
so other nodes will never have a task scheduled on them, and where the tasks are running,
they will write data to the volume on the RAID array.

Administering and Monitoring Dockerized Solutions Chapter 8

[214]

For on-premises data centers and in the cloud, you can use shared storage with volume
plugins. With shared storage, services can continue to access data even if containers move
to different swarm nodes. Service tasks will read and write data to the volume that gets
persisted on the shared storage device. There are many volume plugins available on Docker
Store, including for cloud services such as AWS and Azure cloud, physical infrastructure
from HPE and Nimble, and virtualization platforms such as vSphere.

The Docker platform is likely to add native shared storage in the future without requiring a
specific provider plugin. Docker acquired a distributed storage company called Infinit,
which built a peer-to-peer transfer mechanism. In the announcement of this acquisition,
Docker shared plans to incorporate distributed storage into the Docker platform, which
could allow data volumes to be accessible from any cluster node using swarm-wide
storage.

Volumes have a limited number of options, so creating them is a case of specifying the
driver and applying any driver options:

A permissions label can be applied to volumes, like other resources, to control availability
with RBAC.

Administering and Monitoring Dockerized Solutions Chapter 8

[215]

Images
UCP is not an image registry - DTR is the enterprise private registry in DDC. In the images
view, UCP shows you which images have been pulled on the cluster nodes, and it also
allows you to pull new images.

One drawback of swarm mode in Docker Community Edition (CE) is that image pulling is
not done cluster-wide. On a CE swarm, you need to connect to each node and pull images if
you want to preload them before starting a service. UCP doesn't have this limitation - you
can use the Pull image function to download the image onto every node:

Docker images are compressed for distribution, and the Docker engine decompresses the
layers when you pull an image. There are OS-specific optimizations to start containers as
soon as the pull completes, which is why you can't pull Windows images on Linux hosts or
vice versa. UCP will try and pull the image on every host, but if some fail because of an OS
mismatch, it will continue with the remaining nodes.

In the image view, you can drill down and see the details of an image, including the history
of the layers, the health check, any environment variables, and the exposed ports. The basic
details also show you the OS platform of the image, the virtual size, and the date on which
it was created:

Administering and Monitoring Dockerized Solutions Chapter 8

[216]

In UCP, you can also remove images from the cluster. You may have a policy of retaining
just the current and previous image versions on the cluster in order to allow rollback. Other
images can be safely removed from the DDC nodes, leaving all previous image versions in
DTR so they can be pulled if needed.

Networks
Network management is straightforward, and UCP presents the same interface as other
resource types. The network list shows you the networks in the cluster, and these can be
labeled with RBAC applied, so you'll only see networks you're allowed to see.

Administering and Monitoring Dockerized Solutions Chapter 8

[217]

There are several options for networks, allowing you to specify IPv6 and custom MTU
packet sizes. Swarm mode supports encrypted networks, where the traffic between nodes is
transparently encrypted, and it can be enabled through UCP. In a DDC cluster, you'll
typically use the overlay driver to allow services to communicate in a virtual network
across the cluster nodes:

Administering and Monitoring Dockerized Solutions Chapter 8

[218]

Docker supports a special type of swarm network called an ingress network. Ingress
networks have load balancing and service discovery for external requests. This makes port
publishing very flexible. On a 10-node cluster, you could publish port 80 on a service with
three replicas. If a node receives an incoming request on port 80 but it isn't running one of
the service tasks, Docker will intelligently redirect it to a node that is running a task.

Ingress networks are a powerful feature, but at the time of writing this,
they are not supported in the Windows networking stack. Support is
planned, but it will be in a future Windows update rather than a Docker
release.

Networks can also be deleted through UCP but only if there are no containers attached. If
you have services defined that use the network, you'll get a warning if you try to delete it.

Deploying stacks
There are two ways to deploy your applications with UCP, which are analogous to
deploying individual services with docker service create, and deploying a full
compose file with docker stack deploy. Stacks are the easiest to deploy and will let you
use a compose file that you've verified in preproduction environments.

Administering and Monitoring Dockerized Solutions Chapter 8

[219]

From the stacks and applications view, click on Deploy and you can import a compose
YML file:

Administering and Monitoring Dockerized Solutions Chapter 8

[220]

UCP validates the contents and highlights any issues - in this case, it has flagged the env-
file option. Environment files can't be used in the same way as with the Docker Compose
tool. With Docker Compose, the environment file needs to exist on the client machine
where you run the docker-compose command. UCP deploys the compose file on the
cluster without using Docker Compose, so there is no client where the environment file can
be found. Similarly, options such as build are not supported and would show as an error.

Valid compose files are deployed as a stack, and you will see all the resources in UCP:
networks, volumes, and services. Stacks are the preferred deployment model, as they
continue to use the known compose file format, and they automate all the resources. But
stacks are not suitable for every solution. In a stack deployment, there's no guarantee about
the order in which the services will be created; the depends_on option used by Docker
Compose doesn't apply. This is a deliberate design decision based on the idea that services
should be resilient, but not all services are.

Modern applications should be built for failure. If a web component can't connect to the
database, it should use a policy-based retry mechanism to repeatedly reconnect rather than
failing to start. Traditional applications usually expect their dependencies to be available
and don't have graceful retries built in. NerdDinner is like that, so if I deploy a stack from
the compose file, the web app could start before the database service is created, and it will
fail.

In these cases, the application will be available when all the failing tasks have been
restarted and have found their dependencies available. If these restarts are likely to cause a
problem with your legacy application, you may prefer to manually create services rather
than deploying a stack. UCP supports this workflow too, and it lets you ensure that all the
dependencies are running before you start each service.

Creating services
There are dozens of options for the docker service create command. UCP supports
them all in a guided UI, which you start with Create a Service from the services view. First,
you specify the basic details—the name of the image to use for the service, the service name
(which is how other services will discover this one), the replication mode, and the number
of replicas:

Administering and Monitoring Dockerized Solutions Chapter 8

[221]

Here, you can specify credentials if the image repository is not public. You can also
override the working directory, the startup command, and arguments for containers
created in the service, giving you the flexibility to use the image in different ways. Next,
you can configure how the service is scheduled to run on the swarm nodes:

Administering and Monitoring Dockerized Solutions Chapter 8

[222]

The Restart Policy defaults to Always. This works in conjunction with the replica count, so
if any tasks fail or are stopped, they will be restarted to maintain the service level. You can
configure the update settings for automated rollouts, and you can also add scheduling
constraints. Constraints work with node labels to limit which nodes can be used to run
service tasks. You can use this to restrict tasks to high-capacity nodes or to nodes that have
strict access controls.

Swarm node doesn't currently evaluate the host platform when it schedules tasks, so it
could try to run a Windows image on a Linux node or a Linux image on a Windows node.
Adding a scheduling constraint prevents this. You can use the built-in labels that Docker
applies to nodes when they join the swarm, specifying node.platform.os==windows to
restrict to Windows nodes or node.platform.os==linux for Linux nodes.

Administering and Monitoring Dockerized Solutions Chapter 8

[223]

Next, you can configure how the service integrates with other resources in the cluster,
including networks and volumes:

Administering and Monitoring Dockerized Solutions Chapter 8

[224]

For a service that is one part of a distributed application, you would choose an existing
overlay network to attach, allowing the services to communicate. Within a network,
services do not need to have ports published, so the web application can reach the database
without publicly exposing the ports. For external-facing services, you can publish ports and
select the port mapping and publish mode. The resources section is where you can specify
compute reservations and limits. You can restrict services to a share of the CPU and
memory, or you can request a minimum share of CPU and memory.

The final section is to configure the service environment:

Administering and Monitoring Dockerized Solutions Chapter 8

[225]

Here, you can add environment variables to be set in the service's containers and labels to
apply to the service as a whole or to the containers themselves. The plug-in logging
framework is exposed here, and you can specify a custom log driver. You can also select
secrets to be made available to the service's containers.

When you deploy the service, UCP takes care of pulling the image onto any nodes that
need it and starting the required number of containers. That would be one container per
node for global services or the specified number of tasks for replicated services.

Monitoring services
UCP lets you deploy any type of application in the same way, either with a stack compose
file or by creating services. The application can use many services with any combination of
technologies—parts of the new NerdDinner stack can run on Linux, so I can make use of a
hybrid cluster. Then, I'd be deploying Java, Go, and Node.js components as Linux
containers and .NET Framework and .NET Core components as Windows containers on the
same cluster.

All these different technology platforms can be managed in the same way with UCP. The
service view shows all services with basic information, such as the overall status, the
number of tasks, and the last time an error was reported. For any service, you can drill
down into a detailed view that shows much the same information as the create service
screens:

Administering and Monitoring Dockerized Solutions Chapter 8

[226]

You'll use this view to check the overall status of the service and make changes—you can
add environment variables, change the networks or volumes, and change the scheduling
constraints. Any changes you make to the service definition will be implemented by
restarting the service, so you need to understand the application impact. Stateless apps and
apps that gracefully handle transient failures can be amended on the fly, but there may be
application downtime—depending on your solution architecture.

Administering and Monitoring Dockerized Solutions Chapter 8

[227]

You can adjust the scale of the service without restarting existing tasks. Just specify the new
level of scale in the Sheduling tab, and UCP will create or remove containers to meet the
service level:

When you increase scale, the existing containers are retained and new ones are added, so
that won't affect the availability of your application (unless the app keeps the state in
individual containers). However, many replicas are running, and you can see them in the
task list:

Administering and Monitoring Dockerized Solutions Chapter 8

[228]

From there, you can select a task to drill down into the container view, which is where the
consistent management experience makes administering Dockerized applications so
straightforward. Every detail about the running container is surfaced, and you can even
interact with the container. The DETAILS tab shows you key details, such as exposed
ports, environment variables, and active processes:

Administering and Monitoring Dockerized Solutions Chapter 8

[229]

On the LOGS tab, you can see all the output from the container—in this case, it's the
console output written by my .NET Core application, but it could by IIS logs or event logs
relayed to the console:

The STATS tab graphically shows how much CPU and memory the container is using, and
the CONSOLE tab lets you connect directly to a command shell running inside the
container:

Administering and Monitoring Dockerized Solutions Chapter 8

[230]

UCP gives you an interface that lets you drill down from the overall health of the cluster,
through the status of all the running services, to the individual containers running on
specific nodes. You can easily monitor the overall health of your applications, check
application logs, and connect to containers for debugging—all within the same
management UI. You can also download a client bundle, which you can use to manage the
cluster from a remote Docker Command-Line Interface (CLI) client.

The client bundle contains a script to point your local CLI to the remote Docker API
running on the cluster and also sets up client certificates for secure communication. The
certificates identify a specific user in UCP, whether they have been created in UCP or
whether they're an external LDAP user. So, users can log in to the UCP UI or use the
docker commands to manage resources, and for both options, they will have the same
access defined by the UCP RBAC policies.

RBAC
Authorization in UCP gives you fine-grained access control over all the Docker resources.
Individual users have a default access policy, ranging from No Access, which means they
can't view event resources in a list, to Full Control, which gives them read and write access
to everything except the UCP admin settings. RBAC is defined at the team level—teams can
have different levels of access to different permissions labels.

In my UCP instance, I have a team called Content Management System (CMS) Admins.
Let's say the NerdDinner home page has been replaced with a CMS running in Docker and
certain users need access to administer the CMS:

Administering and Monitoring Dockerized Solutions Chapter 8

[231]

Users in this team have Full Control over any resources with the cms permission label. This
means they can stop containers, scale services, and delete volumes if these resources are set
up with the cms permissions label. This team's users also have the View Only permission
over the nerd-dinner label, so they can see the NerdDinner resources and drill into the
details, but they can't modify any resources. They have no access to any resources with the
finance permission label - they won't even see these resources in the UI.

You create permissions labels by adding them here first, in the team section of User
Management. Then, you can apply them as the permission label when you create or update
a resource. Here, I've added the cms label to the cms service:

I have a second team configured to represent CMS users, who only have view access to the
cms label. They can log in to UCP and check the status of the service, but they can't make
any changes. A user with the default no-access permission who is in the CMS users team
can't see any services listed except those with the cms label:

Administering and Monitoring Dockerized Solutions Chapter 8

[232]

Also, note that the Images option isn't available. The images view is not available for users
with a default No Access permission. On the service view, the user can navigate to the
service and see the tasks and check the logs and resource usage, but they can't make any
changes. If they try to remove the service or connect to a container, they'll see an access
denied error.

Teams can have multiple permissions for different resource labels, and users can belong to
multiple teams. Resource labels themselves are arbitrary strings, so the authorization
system in UCP is flexible enough to suit many different security models. You could take a
DevOps approach and apply labels for specific projects, with all the team members getting
complete control over the project resources. Or, you could have a dedicated admin team
with complete control over everything and individual developer teams, where the
members have restricted control over the apps they work on.

RBAC is a major feature of UCP, and it complements the wider security story of Docker,
which will be covered in Chapter 9, Understanding the Security Risks and Benefits of Docker.

Summary
This chapter focused on the operations side of running Dockerized solutions. I showed you
how to use existing management tools with Docker containers and how that can be useful
for investigation and debugging. The main focus was on a new way of administering and
monitoring applications—using UCP to manage all kinds of workloads in the same way.

You learned how to use existing Windows management tools, such as IIS Manager and
Server Manager, to administer Docker containers, and you also learned about the
limitations of this approach. Sticking with the tools you know can be useful when you start
with Docker, but dedicated container management tools are a better option.

I covered two open source options to manage containers: the simple visualizer and the
more advanced Portainer. Both run as containers and connect to the Docker API, and they
are cross-platform apps packaged in Linux and Windows Docker images.

Lastly, I walked you through the products in Docker EE used to manage production
workloads. I demonstrated UCP as a single pane of glass to administer a diverse range of
containerized applications and showed how RBAC lets you secure access to all of your
Docker resources.

The next chapter is focused on security. Applications running in containers potentially offer
a new avenue of attack. You need to be aware of the risks, but security is at the center of the
Docker platform. Docker lets you easily set up an end-to-end security story, where policies

Administering and Monitoring Dockerized Solutions Chapter 8

[233]

are enforced by runtime—something that is very hard to do without Docker.

9
Understanding the Security

Risks and Benefits of Docker
Docker is a new type of application platform, and it has been built with a strong focus on
security. You can package an existing application as a Docker image, run it in a Docker
container, and get significant security benefits without changing any code.

A .NET 2.0 WebForms app currently running on Windows Server 2003 will happily run
under .NET 4.5 in a Windows container based on Windows Server Core 2016 with no code
changes, an immediate upgrade that applies 14 years of security patches!

Security in Docker encompasses a wide range of topics, which I will cover in this chapter.
I'll explain the security aspects of containers and images, the extended features in Docker
Trusted Registry (DTR), and the secure configuration of Docker in swarm mode.

In this chapter, I'll look at some of the internals of Docker to show how security is
implemented and cover the following:

Container processes run as an unknown user on the host, minimizing the scope
for attackers
Containers can be run with resource constraints so they can't starve the host's
resources
Images should be optimized in order to reduce the attack surface of your
application
Images can be scanned for vulnerabilities and digitally signed to record
provenance
Docker swarm encrypts communication between the nodes and encrypts stored
secrets

Understanding the Security Risks and Benefits of Docker Chapter 9

[235]

Understanding container security
Application processes running in Windows Server containers are actually running on the
host. If you run multiple ASP.NET applications in containers, you'll see multiple w3wp.exe
processes in the task list on the host machine. Sharing the operating system kernel between
containers is how Docker containers are so efficient, the container doesn't load its own
kernel, so the startup and shutdown times are very fast and the overhead on runtime
resources is minimal.

Software running inside a container may have security vulnerabilities, and the big question
security folks ask about Docker is, how secure is the isolation between containers? If an app
in a Docker container is compromised, that means a host process is compromised. Could
the attacker use that process to compromise other processes, potentially hijacking the host
machine or other containers running on the host.

Breaking out of a container and compromising other containers and the host could be
possible if there was a vulnerability in the operating system kernel that the attacker could
exploit. The Docker platform is built with the principle of security-in-depth, so even if that
were possible, the platform provides multiple ways to mitigate it.

The Docker platform has near feature parity between Linux and
Windows, with the few gaps on the Windows side being actively worked
on. But Docker has a longer history of production deployment on Linux
and much of the guidance and tooling such as Docker Bench and the CIS
Docker Benchmark is specific to Linux. It's useful to know the Linux side,
but many of the practical points do not apply to Windows containers.

Container processes
All Windows processes are started and owned by a user account. The permissions of the
user account determine whether the process can access files and other resources and
whether they are available to modify or just to view. In the Docker base image for Windows
Server Core, there is a default user account called container administrator. Any process
you start in a container will use that user account:

> docker container run microsoft/windowsservercore whoami
user manager\containeradministrator

Understanding the Security Risks and Benefits of Docker Chapter 9

[236]

You can run an interactive container starting a PowerShell and find the user ID (SID) of the
container administrator account:

> docker container run -it --rm microsoft/windowsservercore powershell

> $user = New-Object
System.Security.Principal.NTAccount("containeradministrator"); `
 $sid = $user.Translate([System.Security.Principal.SecurityIdentifier]); `
 $sid.Value
S-1-5-93-2-1

You'll find that the container user always has the same SID S-1-5-93-2-1, as the account
is part of the Windows image so it has the same attributes in every container. The container
process is really running on the host, but there is no container administrator user on the
host. In fact, if you look at the container process on the host, you'll see a blank entry for the
username. I'll start a long-running ping process and check the process ID (PID) inside the
container:

> docker container run -d --name ping microsoft/windowsservercore ping -t
localhost
f8060e0f95ba0f56224f1777973e9a66fc2ccb1b1ba5073ba1918b854491ee5b

> docker container exec ping powershell Get-Process ping -IncludeUserName
Handles WS(K) CPU(s) Id UserName ProcessName
------- ----- ------ -- -------- -----------
 69 3828 0.00 8264 User Manager\Contai... PING

This is a Windows Server container running in Docker on Windows Server 2016, so the
ping process is running directly on the host, and the PID inside the container will match
the PID on the host. On the server, I can check the details of that same PID, 8264 in this
case:

> Get-Process -Id 8264 -IncludeUserName
Handles WS(K) CPU(s) Id UserName ProcessName
------- ----- ------ -- -------- -----------
 69 3828 0.00 8264 PING

There is no username because the container user does not map any users on the host.
Effectively, the host process is running under an anonymous user, and it has no
permissions on the host, only within the sandboxed environment of one container. If a
Windows Server vulnerability was found that allowed attackers to break out of a container,
they would be running a host process with no access to host resources.

Understanding the Security Risks and Benefits of Docker Chapter 9

[237]

It's possible that a more extreme vulnerability could allow the anonymous user on the host
to assume wider privileges - but that would be a major security hole in the core Windows
permissions stack of the scale that typically gets a very fast response from Microsoft. The
anonymous host user approach is a good mitigation to limit the impact of any unknown
vulnerabilities.

Container user accounts and ACLs
In a Windows Server container, the default user account is the container administrator. This
account is in the administrator group on the container, so it has complete access to the
whole filesystem and all the resources on the container. The process specified in the CMD or
ENTRYPOINT instruction in a Dockerfile will run under the container administrator account.

This can be problematic if there is a vulnerability in the application. The app could be
compromised, and while the chances of an attacker breaking out of the container are small,
the attacker could still do a lot of damage inside the application container. Administrative
access means the attacker could download malicious software from the internet and run it
in the container or copy state from the container to an external location.

You can mitigate this by running container processes under a nonadministrative user
account. The Internet Information Services (IIS) and ASP.NET images from Microsoft do
this. The external-facing process is the IIS Windows service, which runs under a local
account in the IIS_IUSRS group. This group has read access to the IIS root path
C:\inetpub\wwwroot but no write access. An attacker could compromise the web
application, but they would not be able to write files, so the ability to download malicious
software is gone.

In some cases, the web application needs write access to save the state, but it can be granted
at a very fine level in the Dockerfile. As an example, the open source content management
system (CMS) Umbraco can be packaged as a Docker image, but the IIS user group needs
write permissions to the content folder. In the Dockerfile, you can set ACL permissions
with a RUN instruction:

RUN $acl = Get-Acl $env:UMBRACO_ROOT; `
 $newOwner = [System.Security.Principal.NTAccount]('BUILTIN\IIS_IUSRS');
`
 $acl.SetOwner($newOwner); `
 Set-Acl -Path $env:UMBRACO_ROOT -AclObject $acl; `
 Get-ChildItem -Path $env:UMBRACO_ROOT -Recurse | Set-Acl -AclObject
$acl

Understanding the Security Risks and Benefits of Docker Chapter 9

[238]

I won't go into detail on Umbraco here, but you can find sample
Dockerfiles in my GitHub repository at https:/ / github. com/ sixeyed/
dockerfiles- windows.

You should use a nonadministrative user account to run processes and set ACLs as
narrowly as possible. This limits the scope for any attackers who gain access to the process
inside the container, but there are still attack vectors from outside the container you need to
consider.

Running containers with resource constraints
You can run Docker containers with no constraints, and the container process will use as
much of the host's resources as it needs. That's the default, but it could be an easy attack
vector, a malicious user could generate excess load on the application in the container,
which could try and grab 100% CPU and memory, starving other containers on the host.
This is especially significant if you're running hundreds of containers serving multiple
application workloads.

Docker has mechanisms to prevent individual containers using excessive resources. You
can start containers with explicit constraints to limit the resources they can use, ensuring no
single container consumes the majority of the host's compute power. You can limit a
container to an explicit number of CPU cores and memory.

I have a simple .NET console app and a Dockerfile to package it in the ch09-resource-
check folder. The app hogs compute resources, and I can run it in a container to show how
Docker limits the impact of a rogue application. I can use the app to successfully allocate
600 MB of memory like this:

> docker container run dockeronwindows/ch09-resource-check /r Memory /p 600
I allocated 600MB of memory, and now I'm done.

The console application allocates 600 GB of memory in the container, which is actually 1 GB
of memory from the server in a Windows Server container. I ran the container without any
constraints, so the app is able to use as much memory as the server has. If I limit the
container to 500 MB of memory, then the application cannot allocate 600 MB:

> docker container run --memory 500M dockeronwindows/ch09-resource-check /r
Memory /p 600
Unhandled Exception: OutOfMemoryException.

https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows
https://github.com/sixeyed/dockerfiles-windows

Understanding the Security Risks and Benefits of Docker Chapter 9

[239]

The sample application can also hog the CPU. It computes Pi to a given number of decimal
places, which is a computationally expensive operation. In an unrestricted container,
computing Pi to 20,000 decimal places takes just over a second on my development laptop:

> docker container run dockeronwindows/ch09-resource-check /r Cpu /p 20000
I calculated Pi to 20000 decimal places in 1013ms. The last digit is 8.

I can use a CPU restriction, and Docker will limit the compute resources available to this
container, retaining more CPU for other tasks. The same computation takes twice as long:

> docker container run --cpus 1 dockeronwindows/ch09-resource-check /r Cpu
/p 20000
I calculated Pi to 20000 decimal places in 2043ms. The last digit is 8.

It can be challenging to verify that the resource constraints are in place. The underlying
Windows APIs to get the CPU count and memory capacity use the OS kernel, which is the
host's kernel. The kernel reports the full hardware spec, so the limits don't appear to be in
place inside the container, but they are enforced. You can use WMI to check the constraints,
but the output will not be as expected:

> docker container run --cpus 1 --memory 1G microsoft/windowsservercore
powershell `
 "Get-WmiObject Win32_ComputerSystem | select NumberOfLogicalProcessors,
TotalPhysicalMemory"

NumberOfLogicalProcessors TotalPhysicalMemory
------------------------- -------------------
 8 17078218752

Here, the container reports eight CPUs and 16 GB of RAM even though it has been
constrained to one CPU and 1 GB of RAM. The constraints are actually in place, but they
operate at a level above the WMI call. If a process running inside the container tried to
allocate more than 1 GB of RAM, then it would fail.

Remember that only Windows Server containers have access to all the
host's compute power, where the container process is actually running on
the host. On Windows Server 10, Docker uses Hyper-V containers so each
container has a lightweight VM where the process is running. That VM
has its own CPU and memory restrictions, so the container can use only
what's available to the VM.

Understanding the Security Risks and Benefits of Docker Chapter 9

[240]

Running containers with restricted capabilities
There are two useful features of the Docker platform to restrict what applications can do
inside containers. Currently, they work only for Linux containers, but they are worth
understanding if you need to deal with mixed workloads, and support for Windows may
be coming in future versions.

Linux containers can be run with the read-only flag, which creates the container with a
read-only filesystem. The option can be used with any image, and it will start a container
with the same entry process as usual. The difference is that the container does not have a
writeable filesystem layer, so no files can be added or changed, the container cannot modify
the contents of the image.

This is a useful security feature. A web application could have a vulnerability that allows
attackers to execute code on the server, but a read-only container severely limits what the
attacker can do. They cannot change app configuration files, alter access permissions,
download new malware, or replace application binaries.

Read-only containers can be combined with Docker volumes, so applications can write to
known locations for logging or caching data. If you have an application that writes to the
filesytem, that's how you can run it in a read-only container without changing
functionality. You need to be aware that if you write logs to a file in a volume and an
attacker gained access to the filesystem, they could read historical logs which they can't do
if logs are written to standard output and consumed by the Docker platform.

When you run Linux containers, you can also explicitly add or drop the system capabilities
that are available to the container. You can start a container without the chown capability,
so no process inside the container can change file access permissions. Similarly, you can
restrict binding to network ports or write access to kernel logs.

The read-only, cap-add, and cap-drop options have no effect on Windows containers,
but support may come in future versions of Docker on Windows.

One great thing about Docker is that the free CE feeds into the supported
EE. You can make feature requests and track bugs on GitHub in the
moby/moby repository, which is the source code for Docker CE. When
features are implemented in Docker CE, they become available in the
subsequent EE release.

Understanding the Security Risks and Benefits of Docker Chapter 9

[241]

Isolation in Hyper-V containers
Docker on Windows has one big security feature that Docker on Linux does not have,
extended isolation with Hyper-V containers. Containers running on Windows Server 2016
use the host's operating system kernel. You can see this when you run a container, and the
process inside the container is listed on Task Manager on the host.

On Windows 10, the behavior is different. Windows 10 does not have the exact same kernel
as Windows Server, so when you run Docker containers on Windows 10, each one is
created with its own Windows Server kernel.

Containers with their own kernel are called Hyper-V containers. They are implemented
with a lightweight virtual machine that provides the server kernel, but this is not a full VM
and doesn't have the typical overhead of a VM. Hyper-V containers use normal Docker
images and the normal Docker engine, they don't show in the Hyper-V management tool
because they are not full virtual machines.

Hyper-V containers can also be run on Windows Server using the isolation option. This
command runs the IIS image as a Hyper-V container, publishing port 80:

docker container run -d -p 80 --isolation=hyperv microsoft/iis:nanoserver

The container behaves in the same way. External users can browse to port 80 on the host
and the traffic is handled by the container. On the host, you can run docker container
inspect to see the IP address and go to the container directly. Features such as Docker
networking, volumes, and swarm mode work in the same way for Hyper-V containers.

The extended isolation of Hyper-V containers offers additional security. There is no shared
kernel, so even if a kernel vulnerability allowed the container application to access the host,
the host is just a thin VM layer running in its own kernel. There are no other processes or
containers running on that kernel, so there is no ability for attackers to compromise other
workloads.

Hyper-V containers have additional overheads because of the separate kernels. They
typically have a slower start up time, and by default, they impose memory limits,
restricting memory at the kernel level that the container can't exceed. In some scenarios, the
trade-off is worthwhile. In multi-tenant situations where you assume zero trust for every
workload, extended isolation can be a useful defense.

Understanding the Security Risks and Benefits of Docker Chapter 9

[242]

Licensing is different for Hyper-V containers. Normal Windows Server
containers are licensed at the host level, so you need licenses for your
servers, but then you can run as many containers as you like. Hyper-V
containers each have their own kernel, and there are licensing levels that
restrict the number of containers you can run on each host.

Securing applications with secure Docker
images
I've covered many aspects of securing containers at runtime, but the Docker platform
provides security in depth that starts before any containers are run. You start securing your
application by securing the image that packages your application.

Building minimal images
It's unlikely that an attacker can compromise your application and gain access to the
container, but you should build your image to mitigate the damage if that happened.
Building a minimal image is key. The ideal Docker image should contain nothing more
than the application and the dependencies it needs to run.

This is more difficult to achieve for Windows applications than Linux apps. A Docker
image for a Linux app can use a minimal distribution as the base, packaging just the
application binaries on top. The attack surface for that image is very small even if an
attacker gained access to the container, they would find themselves in an operating system
with very few features.

In contrast, Docker images using Windows Server Core have a fully featured operating
system at the base. The minimal alternative is Nano Server, which has a significantly
reduced API but still has PowerShell installed, which has a large feature set that could be
exploited. In theory, you can remove features, disable Windows Services, and even delete
Windows binaries in your Dockerfile in order to limit the capabilities of the final image.
That's not a well-explored option at the moment.

Understanding the Security Risks and Benefits of Docker Chapter 9

[243]

Docker's recognition for experts and community leaders is the Captain's
program. Docker Captains are like Microsoft MVPs, and Stefan Scherer is
both a Captain and an MVP. Stefan has done some promising work by
looking at reducing Windows image size by creating images with an
empty filesystem and adding a minimal set of Windows binaries.

You can't easily limit the features of the base Windows image, but you can limit what you
add on top. Wherever possible, you should add just your application content and the
minimal application runtime so an attacker can't modify the app. Some programming
languages have better support for this than others, for example, the following:

Go applications can be compiled to native binaries, so you only need to package
the executable in your Docker image, not the Go runtime.
.NET Core apps can be published as assemblies, so you only need to package the
.NET Core runtime to execute them, not the full .NET Core SDK.
.NET Framework apps need the matching .NET Framework installed in the
container image, but you can still minimize the app content that you package.
You should compile the app in release mode and ensure you don't package
debug files.
Node.js uses V8 as an interpreter and compiler, so to run apps in Docker, the
image needs to have the full Node.js runtime installed, and the full source code
for the app needs to be packaged.

You will be limited by what your application stack supports, but a minimal image is the
goal. If your application will run on Nano Server, it's definitely preferable to Windows
Server Core. Full .NET apps don't run on Nano Server, but .NET Standard is advancing
rapidly, so it could be a viable option to port your app to .NET Core, which can then run on
Nano Server.

When you run your application in Docker, the unit you work with is the container, and you
administer and monitor it using Docker. The underlying operating system doesn't affect
how you interact with the container, so having a minimal OS doesn't limit what you can do
with your application.

Docker Security Scanning
A minimal Docker image could still contain software with known vulnerabilities. Docker
images use a standard, open format, which means tools can be reliably built to navigate and
inspect image layers. One tool is Docker Security Scanning, which examines the software
inside Docker images for vulnerabilities.

Understanding the Security Risks and Benefits of Docker Chapter 9

[244]

Docker Security Scanning looks at all the binary files in the image, in your application
dependencies, the application framework, and even the operating system. Every binary is
checked against multiple Common Vulnerability and Exploit (CVE) databases, looking for
known vulnerabilities. If any issues are found, Docker reports the details.

Docker Security Scanning is available on Docker Hub for official repositories, on Docker
Cloud for your private repositories, and on DTR for your own private registry. The web
interface of those systems shows the output of each scan. Minimal images such as Alpine
Linux can be completely free of vulnerabilities:

The official nats image has a Nano Server variant, and you can see that there is a
vulnerability in that image:

Understanding the Security Risks and Benefits of Docker Chapter 9

[245]

Where there are vulnerabilities, you can drill down to see exactly which binaries are
flagged, and that links off to the CVE database, describing the vulnerability. In the case of
the nats:nanoserver image, the vulnerability is in the version of SQLite that is packaged
in the Nano Server base image:

If you find vulnerabilities in your images, you can see exactly where they are and decide
how to mitigate them. You could try removing the binaries altogether if you have an
automated test suite that you can confidently use to verify that your app still works without
them. Or, you may decide that there's no path to the vulnerable code from your application
and leave the image as it is.

However you manage it, knowing that there are vulnerabilities in your application stack is
extremely useful. Docker Security Scanning can work on each push, so you get immediate
feedback if a new version introduces a vulnerability. It can also work on a schedule, so if a
new vulnerability is discovered that affects an existing image, you get alerted to that too.
This could identify a problem in an old dependency, which you could address by updating
package versions in your Dockerfile.

Managing Windows updates
The process of managing updates to the application stack for your Docker image applies to
Windows updates too. You wouldn't connect to a running container to update the version
of Node.js it uses, and you wouldn't run Windows Update either.

Understanding the Security Risks and Benefits of Docker Chapter 9

[246]

Microsoft released a combined set of security patches and other hotfixes for Windows,
typically on a monthly basis as a Windows update. At the same time, they published new
versions of the Windows Server Core and Nano Server base images and any dependent
images on Docker Hub. The version number in the image tag matches the version number
of the Windows release.

It's a good practice to explicitly state the Windows version to use in the FROM instruction in
your Dockerfile and use specific versions of any dependencies you install. This makes your
Dockerfile deterministic any time you build it in future, you will get the same image as a
result.

Specifying the Windows version also makes it clear how you manage Windows updates for
your dockerized applications. The Dockerfile for an ASP.NET application may start like
this:

FROM microsoft/aspnet:windowsservercore-10.0.14393.1066

This pins the image to Windows Server 2016 release 1066. With the release of the new base
image, you update your application by changing the tag in the FROM instruction, in this
case, to release 1198 and rebuilding your image:

FROM microsoft/aspnet:windowsservercore-10.0.14393.1198

I'll cover automated build and deployment in this chapter. With a good CI/CD pipeline,
you can rebuild your images with a new Windows version and run all your tests to confirm
that the update doesn't impact any features. Then, you can roll out the update to all your
running applications, with no downtime, using docker stack deploy or docker
service update, specifying the new versions of your application images. The whole
process can be automated, so the IT Admin's pain on Patch Tuesday disappears with Docker.

Securing the software supply chain with
DTR
DTR is the second part of Docker's extended EE offering (I covered Universal Control
Plane (UCP) in Chapter 8, Administering and Monitoring Dockerized Solutions). DTR is a
private Docker registry, which adds an important piece to the overall security story of the
Docker platform: a secure software supply chain.

Understanding the Security Risks and Benefits of Docker Chapter 9

[247]

You can digitally sign Docker images with DTR, and DTR lets you configure who can push
and pull images, securely storing all the digital signatures users have applied to an image.
It also works in conjunction with UCP to enforce content trust. With Docker Content Trust,
you can set up your cluster so it will only run containers from images that have been signed
by specific users or teams.

This is a powerful feature that meets the audit requirements for a lot of regulated
industries. There may be requirements for a company to prove that the software running in
production is actually built from the code in the repository. This is very difficult to do
without a software supply chain; you have to rely on manual processes and a document
trail. With Docker, you can enforce it at the platform and meet the audit requirements with
automated processes.

Repositories and users
DTR uses the same authentication model as UCP, so you can use either your Active
Directory (AD) account to log in, or you can use an account created in UCP. But DTR has a
separate authorization model. Users can have completely different access rights to image
repositories in DTR and the services that are running from those images in UCP.

Some parts of the DTR authorization model are familiar to Docker Hub and Docker Cloud.
Users can own public or private repositories, which are prefixed with their username.
Administrators can create organizations, and organization repositories can set user access
with a fine level of control.

I covered image registries and repositories in Chapter 4, Pushing and Pulling Images from
Docker Registries. The full name for a repository contains the registry host, the owner, and
the repository name. I've set up Docker Datacenter in Azure using the Azure Marketplace.
In my DTR instance, I've created a user called elton. The user has one private repository
that they can push and pull from:

Understanding the Security Risks and Benefits of Docker Chapter 9

[248]

To push and pull the image in the repository called private-app for the user elton, I need to
tag it with the full DTR domain in the repository name. My DTR instance is running at ub-
dtr-01.westeurope.cloudapp.azure.com, so the full image name is ub-
dtr-01.westeurope.cloudapp.azure.com/elton/private-app:

docker image tag microsoft/iis:nanoserver `
 ub-dtr-01.westeurope.cloudapp.azure.com/elton/private-app

This is a private repository, so it can be accessed only by the elton user. DTR presents the
same API as any other Docker registry, so I log in with the docker login command,
specifying the DTR domain as the registry address:

> docker login ub-dtr-01.westeurope.cloudapp.azure.com/elton/private-app
Username: elton
Password:
Login Succeeded

> docker image push ub-dtr-01.westeurope.cloudapp.azure.com/elton/private-
app
The push refers to a repository [ub-
dtr-01.westeurope.cloudapp.azure.com/elton/private-app]
...

Understanding the Security Risks and Benefits of Docker Chapter 9

[249]

If I make the repository public, anyone with access to DTR can pull the image but this is a
user-owned repository, so only the elton account has permission to push.

This is the same as Docker Hub, where anyone can pull an image from my sixeyed user
repositories, but only I can push them. For shared projects where multiple users need
access to push images, you use organizations.

Organizations and teams
Organizations are for shared ownership of repositories. Organizations and the repositories
they own are separate from the users who have permissions to the repositories, specific
users may have admin access, others may have read-only access, and specific teams may
have read-write access.

The user and organization model of DTR is the same in Docker Cloud. If
you don't need the full enterprise suite of Docker EE but you need private
repositories with shared access, you can use Docker Cloud.

Here, I have an organization set up called nerd-dinner, which has repositories for all the
images I've been using in the sample application so far. The organization represents a
project with multiple components, and the members of the project team can have different
access levels for each component:

Understanding the Security Risks and Benefits of Docker Chapter 9

[250]

There are different types of images there. The nats message queue, Elasticsearch, and
Kibana are infrastructure components, they're stock images that aren't modified for the
NerdDinner project. They originally came from Docker Hub, but I have re-tagged them and
pushed to DTR, which gives me the benefits of image signing, scanning, and content trust.

Understanding the Security Risks and Benefits of Docker Chapter 9

[251]

Access to the stock components is different from the custom application images, as they are
managed by different groups of users. In the organization, I have two teams: infrastructure
and project. In this scenario, members of the infrastructure team have read-write access to
the nats, Elasticsearch, and Kibana images, so team members can pull and push image
versions:

Members of the project team have only read-access to infrastructure repositories such as
Elasticsearch:

Understanding the Security Risks and Benefits of Docker Chapter 9

[252]

This means shared components can be managed by a dedicated team, and an update to nats
or Elasticsearch has to be approved by an infrastructure team member. NerdDinner project
members have read access, so they can always pull the latest infrastructure images and run
the full application, but they can't push updates.

Conversely, the project team members have read-write access to the web application image,
where the infrastructure team has only read access. This means only members of the project
team can push app updates, but members of the infrastructure team can pull them, so they
could run the whole stack if they needed to test a new version of nats.

DTR has permission levels of none, read, read-write, and admin. They can be applied at the
repository level to teams or individual users. The consistent authentication but separate
authorization models of DTR and UCP mean a developer can have full access to pull and
push images in DTR but may have only read access to view running containers in UCP.

Image Signing and Content Trust
DTR also makes use of the client certificates managed by UCP to sign images with a digital
signature that can be tracked to a known user account. Users download a client bundle
from UCP, which contains a public and private key for their client certificate, which is used
by the Docker command-line.

You can switch Docker Content Trust on with an environment variable, and when you
push images to a registry, Docker will sign them using the key from your client bundle.
Content trust will work only for specific image tags and not the default latest tag, as the
signatures are stored against the tag.

I can add the vNext tag to my image, enable content trust in the PowerShell session, and
push the tagged image to DTR:

> docker image tag ub-dtr-01.westeurope.cloudapp.azure.com/nerd-
dinner/index-handler `
 ub-dtr-01.westeurope.cloudapp.azure.com/nerd-
dinner/index-handler:vNext

> $env:DOCKER_CONTENT_TRUST=1

> docker image push ub-dtr-01.westeurope.cloudapp.azure.com/nerd-
dinner/index-handler:vNext

Understanding the Security Risks and Benefits of Docker Chapter 9

[253]

The act of pushing the image adds the digital signature, in this case, using the certificate for
the elton account. DTR records the signatures for each image tag, and users can push
images to add their own signature. This enables an approval pipeline, where authorized
users pull an image, run whatever tests they need to, and then push it again to confirm
their approval.

DTR uses Notary to manage access keys and signatures. Like SwarmKit
and LinuxKit, Notary is an open source project that Docker integrates into
a commercial product, adding features and providing support. To see
image signing and content trust in action, check out my Pluralsight course
Getting Started with Docker Datacenter.

UCP integrates with DTR to verify image signatures. In the Admin Setting, you can
configure UCP so it will run containers from only those images that have been signed by a
known group of users:

I've configured Docker Content Trust so UCP will only run containers that have been
signed by members of the Sys Admins, UAT, and release managers teams. This explicitly
captures the release approval workflow, and the platform enforces it. Not even
administrators can run containers from images that have not been signed by users from the
required set of teams.

Golden images
One final security consideration for images and registries is the source of the base images
used for application images. Companies running Docker in production typically restrict the
base images developers can use to a set that has been approved by infrastructure or
security stakeholders. This set of Golden images available to use may just be captured in
documentation, but it is easier to enforce with a private registry.

Understanding the Security Risks and Benefits of Docker Chapter 9

[254]

Golden images in a Windows environment may be limited to two options: a version of
Windows Server Core and a version of Nano Server. Instead of allowing users to use the
public Microsoft images, the Ops team may build custom images from Microsoft's base
images. The custom images may add security or performance tweaks or set some defaults
that apply to all applications, such as packaging the company's Certificate Authority certs.

Using DTR, you can create an organization called base-images, where the Ops team has
read-write access to the repositories, while all other users have read access. Checking that
images are using a valid base just means checking that the Dockerfile is using an image
from the base-images organization, which is an easy test to automate in your CI/CD
process.

This feature may soon be available in Docker EE. Docker demonstrated a new policy engine
at DockerCon that works across UCP and DTR. A policy could state that images need to
have zero security vulnerabilities. The engine would then automatically promote images
from a testing repository to a production repository if they met the policy and then deploy
an update to a running service. As this functionality matures, policies may be configurable
to include checks on the source image.

DockerCon is the container conference organized by Docker. It runs in
America and Europe every year and is packed with workshops and
sessions ranging from black-belt Docker internals to production use cases
from global enterprises. The Docker ecosystem is out in force at
DockerCon too, and it's one of the most educational, fun, and inspiring
conferences you can go to.

Understanding security in swarm mode
Docker's security-in-depth approach covers the whole software life cycle, from image
signing and scanning at build time through to container isolation and management at
runtime. I'll end this chapter with an overview of the security features implemented in
swarm mode.

Distributed software offers a lot of attractive attack vectors. Communication between
components can be intercepted and modified. Rogue agents can join the network and gain
access to data or run workloads. Distributed data stores can be compromised. Docker
swarm mode, built on top of the open source SwarmKit project, addresses these vectors at a
platform level so your application is running on a secure base by default.

Understanding the Security Risks and Benefits of Docker Chapter 9

[255]

Nodes and join tokens
You switch to swarm mode by running docker swarm init. The output of this command
gives you a token to use for other nodes to join the swarm. There are separate tokens for
workers and managers. Nodes cannot join a swarm without the token, so you need to keep
the token protected like any other secret.

The join tokens are comprised of the prefix, the format version, the hash of
the root key, and a cryptographically strong random string.

Docker uses a fixed SWMTKN prefix for tokens, so you can run automated checks to see
whether a token has been accidentally shared in the source code or on another public
location. If the token is compromised, rogue nodes could join the swarm if they had access
to your network. Swarm mode can use a specific network for node traffic, so you should
use a network that is not publicly accessible.

Join tokens can be rotated with the join-token rotate command, which can target
either the worker token or the manager token:

> docker swarm join-token --rotate worker
Successfully rotated worker join token.

To add a worker to this swarm, run the following command:

 docker swarm join --token SWMTKN-1-0ngmvmnpz0twctlya5ifu3ajy3pv8420st...
10.211.55.7:2377

Token rotation is a fully managed operation by the swarm, existing nodes are all updated,
and any error conditions, such as nodes going offline or joining mid-rotation are gracefully
handled.

Encryption and secrets
Communication between swarm nodes is encrypted using Transport Layer Security (TLS).
The swarm manager configures itself as a certification authority when you create the
swarm, and the manager generates certificates for each node when they join.
Communication between nodes in the swarm is encrypted using mutual TLS.

Understanding the Security Risks and Benefits of Docker Chapter 9

[256]

Mutual TLS means that the nodes can securely communicate and trust each other, as every
node has a trusted certificate to identify itself. Nodes are assigned a random ID that is used
in the certificate, so the swarm doesn't rely on attributes such as the hostname, which could
potentially be faked.

Trusted communication between nodes is the foundation for Docker Secrets in swarm
mode. Secrets are stored and encrypted in the Raft log on the managers, and a secret is sent
to the worker only if that worker is going to run a container that uses the secret. The secret
is always encrypted in transit, using mutual TLS. On the worker node, the secret is made
available in plain text on a temporary RAM drive that is surfaced to the container as a
volume mount. The data is never persisted in plain text.

Windows doesn't have a native RAM drive, so the secrets implementation
currently stores the secret data on the disk on the worker nodes, with the
recommendation that BitLocker is used for the system drive. This
limitation will be addressed in a future release of Docker, which will store
secrets in a RAM drive on Windows too.

Inside the container, access to secret files is restricted to certain user accounts. The accounts
with access can be specified in Linux, but in Windows, there's currently a fixed list. I use
secrets in the ASP.NET web application in Chapter 7, Orchestrating Distributed Solutions
with Docker Swarm and you can see there that I configure the IIS application pool to use an
account with access.

When containers are stopped, paused, or removed, the secrets that were available to the
container are removed from the host. On Windows, where secrets are currently persisted to
disk, if the host is forcefully shut down, then secrets are removed when the host restarts.

Node labels and external access
Once a node has been added to a swarm, it is a candidate for container workloads to be
scheduled. Many production deployments will use constraints to ensure applications run
on the correct type of node, Docker will try to match the requested constraints to labels on
the nodes.

Understanding the Security Risks and Benefits of Docker Chapter 9

[257]

In a regulated environment, you may have requirements to ensure applications run only on
those servers that have met required audit levels, such as PCI compliance for credit card
processing. You can identify compliant nodes with labels and use constraints to ensure the
applications run only on those nodes. Swarm mode helps ensure that these constraints are
properly enforced.

There are two types of labels in swarm mode. Engine labels are set by the machine, in the
Docker service configuration, so if a worker was compromised, an attacker could add labels
and make a restricted machine appear to be compliant. Node labels are set by the swarm, so
they can only be created by a user with access to a swarm manager. Node labels mean you
don't have to rely on claims made by individual nodes, so if they are compromised, the
impact can be limited.

Node labels are also useful in segregating access to applications. You may have Docker
hosts that are accessible only on your internal network and others that have access to the
public internet. With labels, you can explicitly record that it is a distinction and run
containers with constraints based on the labels. You could have a content management
system in a container that is only available internally but a web proxy that is available
publicly.

Summary
This chapter looked at the security considerations of Docker and Windows containers. You
learned that the Docker platform is built for security in depth, and the runtime security of
containers is only one part of the story. Security scanning, image signing, content trust, and
secure distributed communication combine to give you a secure software supply chain.

You looked at the practical security aspects of running apps in Docker and learned how
processes in Windows container run in a context that makes it difficult for attackers to
escape from containers and invade other processes. Container processes will use all the
compute resources they need, but I also demonstrated how to limit CPU and memory
usage, which can prevent rogue containers starving the host's compute resources.

In a dockerized application, you have much more scope to enforce security in depth. I
explained why minimal images help keep applications safe and how you can use Docker
Security Scanning to be alerted if there are vulnerabilities in any of the dependencies your
application uses. You can enforce good practices by digitally signing images and
configuring Docker, so it will run containers only from images that have been signed by
approved users.

Understanding the Security Risks and Benefits of Docker Chapter 9

[258]

Lastly, I looked at the security implementation in the Docker swarm mode. Swarm mode
has the most in-depth security of all the orchestration layers, and it provides a solid
foundation for you to run your apps securely. Using secrets to store sensitive application
data and node labels to identify host compliance makes it very easy for you to run a secure
solution.

In the next chapter, we'll work with a distributed application and look at building a
pipeline for CI/CD. The Docker service can be configured to provide remote access to the
API, so it's easy to integrate Docker deployments with any build system. The CI server can
even run inside a Docker container and you can use Docker for the build agents, so you
don't need any complex configuration for CI/CD.

10
Powering a Continuous

Deployment Pipeline with
Docker

Docker supports building and running software in components that can be easily
distributed and managed. The platform also lends itself to development environments,
where source control, build servers, build agents, and test agents can all be run in Docker
containers from standard images.

Using Docker for development lets you consolidate many projects onto a single set of
hardware while maintaining isolation. You could have services for Git and the image
registry, running in highly available configurations in a Docker swarm, shared by many
projects. Each project could have a dedicated build server configured with their own
pipeline and their own build setup, running in a lightweight Docker container.

Setting up a new project in this environment is simply a case of creating a source control
repository and a registry account and running new containers for the build process. These
steps can all be automated, so project on-boarding becomes a simple process that takes
minutes and uses existing hardware.

In this chapter, I'll walk you through the setup of a continuous integration and continuous
delivery (CI/CD) pipeline using Docker, including the following:

Running shared services, such as a Git server and an automation server in
Docker containers
Using multi-stage builds to compile and package .NET applications without
MSBuild or Visual Studio

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[260]

End-to-end testing of distributed solutions, with the application and the test
agents running in containers
Publishing to local and external Docker Registries and deploying to a remote
Docker swarm

Designing CI/CD with Docker
The pipeline will support full continuous integration—when developers push code to the
shared source repository, which will trigger a build that produces a release candidate. The
release candidates will be tagged Docker images stored in a local registry. The CI workflow
deploys the solution from the built images as containers and runs an end-to-end test pack.

My sample pipeline has a manual quality gate. If the tests pass, the image versions are
made publicly available on Docker Hub, and the pipeline can start a rolling upgrade in the
public QA environment.

The stages of the pipeline will all be powered by software running in Docker containers:

Source control: Bonobo, a simple open source Git server written in ASP.NET
Build server: Jenkins, a Java-based automation tool using plugins to support
many workflows
Build agent: MSBuild packaged into a Docker image to compile code in a
container
Test agent: NUnit packaged into a Docker image to run integration or end-to-end
tests against deployed code

Bonobo and Jenkins can run in long-running containers on a Docker swarm or an
individual Docker host. The build and test agents are task containers that will be run by
Jenkins to perform the pipeline steps and then end. The release candidate will be deployed
as a set of containers that are removed when the tests are completed.

The only requirement to set this up is to have remote access to the Docker API—both in the
development and QA environments. I covered remote API access in Chapter 1, Getting
Started with Docker on Windows, using the stefanscherer/dockertls-windows image to
generate certificates so the API is secured. You need to have remote access configured so
the Jenkins container can create containers in development and start the rolling upgrade in
QA.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[261]

The workflow for this pipeline starts when a developer pushes code to the Git server,
which is running Bonobo in a Docker container. Jenkins is configured to poll the Bonobo
repository, and it will start a build if there are any changes. All the custom components in
the solution use multi-stage Dockerfiles, which are stored in the Git repository for the
project. Jenkins runs docker image build commands for each Dockerfile, building the
image on the Docker host where Jenkins itself is running as a container.

When the builds complete, Jenkins deploys the solution locally as containers on the same
Docker host. Then, it runs end-to-end tests, which are packaged in a Docker image and run
as a container in the same Docker network as the solution under test. If all the tests pass,
then the final pipeline step pushes these images as release candidates to the local registry,
also running in a Docker container.

When you run your development tools in Docker, you get the same benefits as when you
run production workloads in Docker. The whole tool chain becomes portable, and you can
run it wherever you like with minimal compute requirements.

Running shared development services in
Docker
Services such as source control and the image registry are good candidates to be shared
between many projects. They have similar requirements for high availability and reliable
storage, so they can be deployed across a cluster that has enough capacity for many
projects. The CI server can be run as a shared service or as a separate instance for each team
or project.

I covered running a private registry in a Docker container in Chapter 4, Pushing and Pulling
Images from Docker Registries. Here, I'll look at running a Git server and a CI server in
Docker.

Packaging a Git server into a Windows Docker
image
Bonobo is a popular open source Git server. It's written in ASP.NET using the full .NET
Framework, and you can easily package it as a Docker image based on Windows Server
Core. Bonobo is a simple Git server; it provides remote repository access over HTTP and
HTTPS, and it has a web UI. It supports integrated Windows authentication, but I won't
cover that here.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[262]

Windows containers are not domain-joined, but you can make use of
Windows authentication in Docker containers. You need to create a group
Managed Service Account (gMSA) in Active Directory and give the
Docker host access to the gMSA. Then, you run containers with an
additional security option, and any processes in the container running as
the Local System or Network Service account will actually use the gMSA.

Packaging Bonobo in a Docker image is straightforward. It's a full .NET Framework
application, so my Docker image is based on microsoft/aspnet:windowsservercore.
There are no additional dependencies to install. In the Dockerfile for
dockeronwindows/ch10-bonobo, I download the packaged ZIP file, expand it, and
remove the ZIP file using the normal pattern (with the set the Bonobo version as an
environment variable):

RUN Invoke-WebRequest
"https://bonobogitserver.com/resources/releases/$($env:BONOBO_VERSION).zip"
`
 -OutFile 'bonobo.zip' -UseBasicParsing; `
 Expand-Archive bonobo.zip; `
 Remove-Item bonobo.zip

Inside the ZIP file is the Web.config file for the app, which is set with the default
configuration values. The default values save the state to the local C drive, which I want to
change so I can store the repository database and the repository content in a Docker
volume. You can change the settings in the UI, but I want a fully configured Docker image
so that in my Dockerfile, I update the values in Web.config.

This is a useful approach when you want to change a subset of configuration values in a
packaged application, but you don't want to maintain a separate config file. Copying my
own config file over the packaged one would be easier initially, but I would need to keep
my copy up to date with every new version of the application. By overwriting specific
values, I can leave the rest of the defaults in place. I read the config file as XML in a
PowerShell using RUN instruction and update the element values:

RUN $file = $env:BONOBO_PATH + '\Web.config'; `
 [xml]$config = Get-Content $file; `
 $repo = $config.configuration.appSettings.add | where {$_.key -eq
'DefaultRepositoriesDirectory'}; `
 $repo.value = 'G:\repositories'; `
 $db = $config.configuration.connectionStrings.add | where {$_.name -eq
'BonoboGitServerContext'}; `
 $db.connectionString = 'Data
Source=G:\Bonobo.Git.Server.db;BinaryGUID=False;'; `
 $config.Save($file)

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[263]

I set the database file path and the repositories directory to use the G drive. There is no G
drive in the container, but this is a neat way of getting around any problems with symbolic
link (symlink).

Docker volumes are exposed in the container as a symlink directory, with a value like
\\?\ContainerMappedDirectories\01BA2580-95DA-48B9-94F2-B397D00CD0A1. If
applications try to resolve this path (which actually points to a location on the host), the
resolution can fail. The workaround is to create the Docker volume and then map the
volume location as a drive letter with a registry entry:

ENV DATA_PATH="C:\data"
VOLUME C:\data
RUN Set-ItemProperty -Path 'HKLM:\SYSTEM\CurrentControlSet\Control\Session
Manager\DOS Devices' `
 -Name 'G:' -Value "\??\$($env:DATA_PATH)" -Type String

The G drive mapping isn't a symlink, so the application writes to it without resolving the
path. The Windows filesystem uses C:\data instead of G, and the filesystem calls work
correctly with symlink directories. Bonobo will write data to directories on the G drive,
which is actually a Docker volume stored on the host.

One final piece of setup work is needed. Bonobo writes temporary files to the App_Data
folder, as many ASP.NET apps do. The Dockerfile commands execute as the container
administrator account, so that account will be the owner of the App_Data directory when it
is created from the ZIP file. Bonobo runs as a website in Internet Information Services
(IIS), so the IIS user account needs to be given permission to write to that folder. I do this
with a simple PowerShell script called Set-OwnerAcl.ps1 to set the access control list
(ACL):

$acl = Get-Acl $path; `
$newOwner = [System.Security.Principal.NTAccount]($owner); `
$acl.SetOwner($newOwner); `
Set-Acl -Path $path -AclObject $acl; `
Get-ChildItem -Path $path -Recurse | Set-Acl -AclObject $acl

In the Dockerfile, I call that script to set the IIS user group as the owner of App_Data:

RUN $path = $env:BONOBO_PATH + '\App_Data'; `
 .\Set-OwnerAcl.ps1 -Path $path -Owner 'BUILTIN\IIS_IUSRS'

Building this image gives me a Git server that I can run in a Windows container.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[264]

Running the Bonobo Git server in Docker
Run Bonobo just like any other detached container, mapping the HTTP port and using a
host mount to store the data outside of the container:

docker run -d -p 80:80 `
 -v C:\bonobo:C:\data `
 dockeronwindows/ch10-bonobo

Browse /Bonobo.Git.Server in the container's IP address (or the Docker host's IP
address if you're accessing externally), and you'll see the logon page. The default username
is admin and the password is admin, which will take you to the home page:

Your first step should be to create a new user account with a secure password, log in as that
user, and delete the default admin account. Then, you can customize Bonobo in the settings
page and create repositories. Bonobo stores all repositories at the root level, but you can
assign a group tag to a repository, which is used to arrange repositories in the home
display:

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[265]

Now you can use Bonobo running in your Docker container just like any other remote Git
server—such as GitHub or GitLab. The Windows server address on my home network is
192.168.2.160, so I can add Bonobo as a remote to my Git repository like this:

git remote add bonobo
http://192.168.2.160/Bonobo.Git.Server/docker-on-windows.git

And then, we can use git push bonobo and git pull bonobo to work with the remote
repository. Bonobo is stable and lightweight when running in a Docker container. My
instance typically uses 200 MB of memory and less than 1% CPU at idle.

Running a local Git server is a good idea even if you use a hosted service
such as GitHub or GitLab. Hosted services have outages, and although
rare, they can have a significant impact. Having a local secondary running
with very little cost can protect you from being impacted when the next
outage occurs.

The next step is to run a CI server in Docker.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[266]

Packaging a CI server into a Windows Docker
image
Jenkins is a popular automation server that is used for CI/CD and that supports custom
workflows with multiple trigger types. It's a Java application that's straightforward to
package in Docker—although it's not so simple to fully automate the Jenkins setup.

In the source code for this chapter, I have a Dockerfile for the image
dockersamples/ch10-jenkins-base. This Dockerfile packages a clean installation of
Jenkins, using the official OpenJDK image as the base and downloading the Jenkins web
archive (using environment variables for the Jenkins version and SHA hash):

WORKDIR C:\jenkins
RUN Invoke-WebRequest
"https://repo.jenkins-ci.org/.../$($env:JENKINS_VERSION)/jenkins-war-$($env
:JENKINS_VERSION).war" `
 -OutFile 'jenkins.war' -UseBasicParsing; `
 if ((Get-FileHash jenkins.war -Algorithm sha256).Hash.ToLower() -ne
$env:JENKINS_SHA256) {exit 1}

Like the Bonobo image, I create a Docker volume at C:\data and use the Windows registry
setting to map that path to the G drive. Jenkins is simple to configure when it comes to the
main storage location; you just set the value of the JENKINS_HOME environment variable in
the Dockerfile:

ENV JENKINS_HOME="G:\jenkins"

A clean Jenkins installation doesn't have many useful features; almost all functionality is
provided by plugins that you install after Jenkins is set up. Some of these plugins also
install the dependencies they need, but others don't. For my CI/CD pipeline, I need a Git
client in Jenkins, so it can connect to the Git server running in Bonobo, and I also want the
Docker CLI so I can use Docker commands in my builds.

I can install these dependencies in the Jenkins Dockerfile, but that would make it large and
difficult to manage. Instead, I can split these tools into their own Docker images and
combine them using multi-stage builds. The dockeronwindows/ch10-git packages the
Git client into a Windows Docker image, and dockeronwindows/ch10-docker packages
the Docker and Docker Compose clients into a second image.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[267]

I can use both of these, along with the Jenkins base image, to build my final Jenkins image.
The Dockerfile for dockeronwindows/ch10-jenkins starts with multiple FROM
instructions:

FROM dockeronwindows/ch10-git AS git
FROM dockeronwindows/ch10-docker AS docker
FROM dockeronwindows/ch10-jenkins-base

To add the Git client to the final Jenkins image, I set up a directory, add it to the path, and
then copy the content from the Git image:

RUN New-Item -Type Directory 'C:\git'; `
 $env:PATH = 'C:\git\cmd;C:\git\mingw64\bin;C:\git\usr\bin;' +
$env:PATH; `
 [Environment]::SetEnvironmentVariable('PATH', $env:PATH,
[EnvironmentVariableTarget]::Machine)

COPY --from=git C:\git C:\git

The process is the same for the Docker command-line tools, copied from the Docker image
into the Jenkins image:

RUN New-Item -Type Directory 'C:\docker'; `
 $env:PATH = 'C:\docker;' + $env:PATH; `
 [Environment]::SetEnvironmentVariable('PATH', $env:PATH,
[EnvironmentVariableTarget]::Machine)

COPY --from=docker C:\docker\docker.exe C:\docker
COPY --from=docker C:\docker\docker-compose.exe C:\docker

Using different Dockerfiles for the dependencies gives me a final Docker image with all the
components I need but with a manageable Dockerfile and a set of reusable source images.
Now I can run Jenkins in a container and finish the setup by installing plugins.

Running the Jenkins automation server in Docker
Jenkins uses port 8080 for the Web UI, so you can run it from the sample image using this
command—which maps the port and mounts a local folder for the Jenkins root directory:

docker run -d -p 8080:8080 -v C:\jenkins:C:\data --name jenkins
dockeronwindows/ch10-jenkins

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[268]

Before you browse to the web interface, check the logs of your Jenkins container to find the
administrator password that Jenkins generates for each new deployment:

> docker logs jenkins
...

Jenkins initial setup is required. An admin user has been created and a
password generated.
Please use the following password to proceed to installation:
969fe9f8b2894d75b5950e267564fcf2
This may also be found at: G:\jenkins\secrets\initialAdminPassword

Now you can browse to port 8080 on the container IP address or the Docker host's IP
address; enter the generated password and add the Jenkins plugins you need. As a bare
minimum example, I've chosen to customize the plugin installation and chosen only
Folders Plugin and Git plugin from the recommended options:

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[269]

I need one more plugin to run PowerShell scripts in build jobs. This isn't a recommended
plugin, so once Jenkins starts, I go to Manage Jenkins | Manage Plugins, and from the
Available list, I choose PowerShell plugin and click on Install without restart:

You can automate the plugin installation with Jenkins, but it requires an
additional download and some scripting of the Jenkins API. Plugin
dependencies are not always resolved when you install that way, so it can
be safer to manually set up the plugins and your user accounts and then
export the container to a custom image with docker container
commit.

When this is complete, I have all the infrastructure services I need to run my CI/CD
pipeline.

For my setup, I use a Docker Compose file to configure Jenkins, Bonobo, and the Docker
Registry on my server rather than running individual containers. This isn't a distributed
solution where the containers access each other directly, but these services all have the
same SLA, so defining them in a compose file lets me capture that and start all the services
together.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[270]

Configuring CI/CD using Jenkins in Docker
I'll configure my build to poll a Git repository and use Git pushes as the trigger for a new
build.

Jenkins will connect to Git through the repository URL for Bonobo, and all the actions to
build, test, and deploy the solution will run as Docker containers. The Bonobo server and
the Docker engine have different authentication models, but Jenkins supports many
credential types, and I can configure the build job to securely access the source repository
and Docker on the host.

Setting up Jenkins credentials
Bonobo provides basic username/password authentication, which I'm using in my setup. In
a business environment, I would use HTTPS for Bonobo, either by packaging a Secure
Sockets Layer (SSL) certificate in the image or using a proxy server in front of Bonobo. In
the Users section of the Bonobo interface, I've created a Jenkins CI user and given it read
access to the docker-on-windows Git repository, which I'll use for my sample CI/CD job:

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[271]

I've added the username and password to Jenkins as global credentials:

Jenkins doesn't display the password once entered, and it records an audit trail for all the
jobs that use the credential, so this is a secure way of authenticating.

To authenticate with Docker, I'll use the Transport Layer Security (TLS) certificates I
generated when securing the Docker engine. There are three certificates—the Certificate
Authority (CA), the server certificate, and the key. They need to be passed to the Docker
CLI as file paths, and Jenkins supports this with credentials that can be saved as secret files.
I've uploaded the PEM files containing the certificates as global credentials, so my Jenkins
instance has credentials for Git and Docker:

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[272]

Configuring the Jenkins CI job
In this chapter, the sample solution is in the ch10-newsletter folder. It's a simple
distributed application based on the Docker sample solution on
GitHub—dockersamples/newsletter-signup. I've created a freestyle job in Jenkins to
run the build and configured Git for source code management. It's simple to configure
Git—I'm using the same repository URL that I use for the Git repository on my laptop, and
I've selected the Bonobo credentials for Jenkins to access:

Jenkins is running in a Docker container, and Bonobo is running in a
container on the same Docker network. I could use the container name
instead of the host IP address and Docker would resolve the service. But
that would restrict me to running the containers in the same Docker
network, and it also means I'm using different repository URLs on the CI
server and the client, so it's preferable to use the full URL.

Jenkins supports multiple types of build triggers. In this case, I'm going to poll the Git
server on a set schedule. I'm using H/5 * * * * as the schedule frequency, which means
Jenkins will check the Bonobo repository every five minutes. If there are any new commits
since the last build, Jenkins will run the job.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[273]

I need to give the job explicit access to the secret files where the Docker TLS certificates are
stored in Jenkins. On the Build Environment page, I specify that secret files are to be made
available, and then for each certificate file, I create a binding, selecting the certificate file
and giving it a variable name:

The certificates are surfaced to the job steps as temporary files, and the variable name
contains the path to the temporary file. In this example, the DOCKER_CA environment
variable contains the path to the CA certificate for the Docker engine. That's all the job
configuration I need, and all the build steps will now run using Docker containers.

Building the solution using Docker Compose in
Jenkins
All the build steps will use PowerShell, running as simple scripts so there's no dependency
on more complex Jenkins plugins. There are plugins specific to Docker that wrap up several
tasks, such as building images and pushing them to a registry, but I can do everything I
need with basic PowerShell steps. The first step builds the solution using Docker Compose:

cd source\ch10\ch10-newsletter

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify', `
 '--tlscacert', $env:DOCKER_CA,'--tlscert', $env:DOCKER_CERT, '--tlskey',
$env:DOCKER_KEY

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[274]

& docker-compose $config `
 -f .\app\docker-compose.yml -f .\app\docker-compose.build.yml build

There are several configuration settings needed to connect securely to the remote Docker
engine. I capture them in a PowerShell array and pass it to the Docker Compose command,
so the variables don't pollute the significant command. The config options contain the
following:

host: The IP address of the Docker gateway
tlsverify: Ensures the TLS mode is used and the certificates are checked
tlscacert: The location of the CA certificate file
tlscert: The location of the server certificate file
tlscacert: The location of the server key file

The TLS certificate paths use the environment variables from the Jenkins build
configuration. Each certificate is stored in a different temporary file location, and the
environment variables contain the path. When the Docker CLI runs, it will read the
certificates from the temporary files, which Jenkins copies into the job from the global secret
files.

Docker builds the images using multi-stage Dockerfiles, and each step of the build will
execute in a Docker container. Jenkins itself is running in a container, and it has the Docker
and Docker Compose CLIs available in the image. To connect the CLI inside the container
to the Docker engine running on the host, I need to pass the host's address—but this is not
the external IP address of the host.

My server runs on 192.168.2.160, but inside the container, Docker can't access that
address. Instead, you need to use the gateway address, which is how the container resolves
access to the host. There are two ways to find the gateway address. On the host, you can get
the IP address of the vEthernet adapter using PowerShell:

> Get-NetIPAddress | `
 Where {$_.InterfaceAlias -Like 'vEthernet*' -and $_.AddressFamily -eq
'IPv4'} | `
 Select IPAddress

IPAddress

192.168.160.1

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[275]

Or, you can get the default gateway from the container using Get-NetRoute:

> docker exec -it jenkins powershell "Get-NetRoute -DestinationPrefix
'0.0.0.0/0' | Select NextHop"

NextHop

192.168.160.1

Both values should be the same, in my case, it's 192.168.160.1. This is the address that is
used for the Docker host.

I'm using Docker Compose for the build, so I can build every component with a single
command. I use overrides in Docker Compose (which I covered in Chapter 6, Organizing
Distributed Solutions with Docker Compose) to separate the concerns. The basic docker-
compose.yml file specifies the services and their configuration. This describes the solution
architecture that is applicable for every environment. I also have an override file called
docker-compose.build.yml, which adds the build configuration for my images:

version: '3.3'
services:

 signup-app:
 build:
 context: ../
 dockerfile: ./docker/web/Dockerfile

 signup-save-handler:
 build:
 context: ../
 dockerfile: ./docker/save-handler/Dockerfile

 signup-index-handler:
 build:
 context: ../
 dockerfile: ./docker/index-handler/Dockerfile

Each of these Dockerfiles contains a multi-stage build, where the first stage compiles the
application in a container using MSBuild, and the second stage copies the compiled
application into the final Docker image.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[276]

Multi-stage builds in CI pipelines
When I configured Jenkins, I didn't add any build agents; there's no MSBuild, NuGet, or
Visual Studio components in the Jenkins Docker container. Everything needed to build the
application is configured in Docker. This is how the Dockerfile starts for the
dockeronwindows/ch10-newsletter-save-handler image, which is a simple .NET
console app:

escape=`
FROM sixeyed/msbuild:netfx-4.5.2 AS builder

WORKDIR C:\src\SignUp.MessageHandlers.SaveProspect
COPY src\SignUp\SignUp.MessageHandlers.SaveProspect\packages.config .
RUN nuget restore packages.config -PackagesDirectory ..\packages

COPY src\SignUp C:\src
RUN msbuild SignUp.MessageHandlers.SaveProspect.csproj `
 /p:OutputPath=c:\out\save-prospect\SaveProspectHandler

This is the first stage of the build. It uses sixeyed/msbuild as the FROM image, and it gives
this stage the name builder. The base image is a public image on Docker Hub, which
packages MSBuild with the .NET Framework 4.5.2 Developer Pack and NuGet. This image
has all the requirements to build .NET Framework apps in a Docker container.

In the Dockerfile, I use NuGet first—copying in the package configuration and running
nuget restore (the base image sets up all the paths for the command-line tools). Then, I
copy in the rest of the source code and run msbuild to compile the project.

I split the NuGet part from the MSBuild part so I can take advantage of Docker's image
layer caching. Restoring packages from NuGet can be time consuming, so I don't want to
do that for every build. By copying just the packages.config file and running nuget
restore, I'm building image layers that will be cached until the packages.config file
changes. Unless I change the package configuration in the project, the layers containing the
restored NuGet packages will be used from the cache.

The MSBuild layers will also be cached unless any of the source code files change. You can
run the build repeatedly, and if there are no code changes, it will finish in seconds. Fast
builds are especially important in a CI process, where many developers can be pushing
changes. You want the build process to do as little work as possible in order to generate the
latest artifacts in the shortest time and the Docker image layer cache makes it easy to do
that.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[277]

The Dockerfile for the image continues, with another FROM instruction delineating a new
stage in the build. This is the final stage, so this will be my application image:

FROM microsoft/windowsservercore
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

RUN Set-ItemProperty -path
'HKLM:\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters' -Name
ServerPriorityTimeLimit -Value 0 -Type DWord

WORKDIR /save-prospect-handler
CMD .\SignUp.MessageHandlers.SaveProspect.exe

ENV MESSAGE_QUEUE_URL="nats://message-queue:4222" `
 DB_MAX_RETRY_COUNT="5" `
 DB_MAX_DELAY_SECONDS="10"

COPY --from=builder C:\out\save-prospect\SaveProspectHandler .

This component is a message handler running as a .NET Framework console application.
It's packaged into a Windows Server Core image, with the usual Dockerfile instructions to
switch to PowerShell and turn off the Windows DNS cache. The CMD instruction runs the
console app, and the ENV instructions specify default environment variables used for the
message queue and the SQL Server connection.

This is the final line in the Dockerfile that connects the two stages. COPY --from=builder
... instructs Docker to copy content into the image, from the previous part of the build,
the stage called builder. The compiled application is copied from the known location in
the builder stage into the desired location in the final application image.

In the sample solution, the other custom images—dockeronwindows/ch10-newsletter-

index-handler and dockeronwindows/ch10-newsletter-web, follow exactly the same
pattern. They use the relevant MSBuild image as the base in the builder stage and package
the full application in the final stage. This gives me a set of nice, efficient, repeatable builds.
The application images don't have any unnecessary components because the build tools are
all isolated in the builder stage. Anyone can build this app if they have Docker on
Windows; there are no other dependencies.

The sixeyed/msbuild images have multiple variants, supporting
different project types. The basic image supports the .NET Framework
app, and there are variants to build Visual Studio web projects and SQL
Server database projects.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[278]

It takes only a single docker-compose command to build the entire solution, and it's
straightforward to deploy and verify the solution as the next step in the Jenkins build.

Running and verifying the solution
The next build step in Jenkins will deploy the solution locally on the build server, running
in Docker containers, and verify that the build is working correctly. This step is another
PowerShell script, which starts by deploying the application with Docker Compose:

cd source\ch10\ch10-newsletter

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify', `
 '--tlscacert', $env:DOCKER_CA,'--tlscert', $env:DOCKER_CERT, '--tlskey',
$env:DOCKER_KEY

& docker-compose $config `
 -f .\app\docker-compose.yml -f .\app\docker-compose.local.yml up -d

As before, I pass the remote connection details for the Docker host, including the gateway
IP address and the TLS certificate paths as a configuration array. Each step in the Jenkins
job executes in a separate PowerShell session, so I need to set the values each time. In
addition to the base compose file, I use the docker-compose.local.yml override file that
publishes the ports and specifies the network configuration to run locally:

version: '3.3'
services:

 signup-app:
 ports:
 - 80

 kibana:
 ports:
 - 5601

...

networks:
 app-net:
 external:
 name: nat

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[279]

I'm not specifying host ports to publish, so Docker will use random ports
(port 80 on the application container may be published to port 33504).
This is important because ports are scarce resources. If you publish to
known ports, then you limit the scalability of your build server with my
app server publishing to port 80, I couldn't run any other projects that
also tried to use port 80. Random ports mean I can run as many
containers as the host can manage.

The docker-compose command starts the whole solution in detached containers. The web
application uses Entity Framework Code-First to deploy the database schema, so when the
containers are started, there is still setup work to be done. In the web application
Dockerfile, there is a HEALTHCHECK instruction, so the container will start the setup work
but I don't want to run automated tests until that is complete; otherwise, the build could
fail on a timing issue.

In the deployment step, I continue with a short sleep to give the setup time to finish, and
then I get the IP address of the web container and make a verification call to check whether
the website is available:

Start-Sleep -Seconds 20

$ip = & docker $config inspect --format '{{
.NetworkSettings.Networks.nat.IPAddress }}' app_signup-app_1

Invoke-WebRequest -UseBasicParsing "http://$ip/SignUp"

At this point, the application is up and running and I've verified that the home page is
accessible. The build steps are all console commands, so the output will be written to the
job log in Jenkins. For a fresh build, you will see the all the output, including the following:

Docker pulling the sixeyed/msbuild images
NuGet and MSBuild steps compiling the application
Docker building the application images
Docker Compose starting the application containers
PowerShell making the web request to the application

The Invoke-WebRequest cmdlet is a simple build verification test. If it gives an error, the
build will fail, but if it succeeds, that does not mean the application is working correctly.
For greater confidence in the build, I run end-to-end integration tests in the next build step.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[280]

Running end-to-end tests in Docker
There's one more component to my sample solution, it's a test project that uses a simulated
browser to interact with the web application and which then checks for the expected output
in SQL Server.

The SignUp.EndToEndTests project uses SpecFlow to define feature tests, stating the
expected behavior of the solution. The SpecFlow tests are executed using selenium, which
automates browser testing, and SimpleBrowser, which presents a headless browser. These
are web tests that can be run from the console, so no UI components are needed and the
tests can be executed in a Docker container.

I have a Dockerfile to build the dockeronwindows/ch10-newsletter-e2e-tests image,
which uses a multi-stage build to compile the test project and then package the test
assembly. The final stage of the build configures NUnit with the compiled test assembly,
copying the output from the builder stage:

FROM sixeyed/nunit:3.6.1
SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';"]

RUN Set-ItemProperty -path
'HKLM:\SYSTEM\CurrentControlSet\Services\Dnscache\Parameters' -Name
ServerPriorityTimeLimit -Value 0 -Type DWord

WORKDIR /e2e-tests
CMD nunit3-console SignUp.EndToEndTests.dll

COPY --from=builder C:\out\tests\EndToEndTests .

The next step of the Jenkins build runs these end-to-end tests. It's a simple PowerShell
script again, building the Docker image and then running a container. The test container
will execute in the same Docker network as the application, so the test browser can reach
the web application using the container name in the URL.

cd source\ch10\ch10-newsletter

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify', `
 '--tlscacert', $env:DOCKER_CA,'--tlscert', $env:DOCKER_CERT, '--tlskey',
$env:DOCKER_KEY

& docker $config build -t dockeronwindows/ch10-newsletter-e2e-tests -f
docker\e2e-tests\Dockerfile .

& docker $config run --env-file app\db-credentials.env
dockeronwindows/ch10-newsletter-e2e-tests

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[281]

Each build step runs in a separate PowerShell session, which is why the
steps start by switching to the source directory and setting up the config
array. Every docker and docker-compose command needs the TLS and
host settings from the array, which is expanded with the PowerShell &
syntax.

When this step runs, it will execute a suite of 26 tests against the application. Each test uses
a simulated browser to enter details into a web form and then queries SQL Server to verify
that the data has been saved. In the Jenkins build output, you will see the results of the test
run like this:

Run Settings
 DisposeRunners: True
 WorkDirectory: C:\e2e-tests
 ImageRuntimeVersion: 4.0.30319
 ImageTargetFrameworkName: .NETFramework,Version=v4.5.2
 ImageRequiresX86: False
 ImageRequiresDefaultAppDomainAssemblyResolver: False
 NumberOfTestWorkers: 2

Test Run Summary
 Overall result: Passed
 Test Count: 26, Passed: 26, Failed: 0, Warnings: 0, Inconclusive: 0,
Skipped: 0
 Start time: 2017-05-30 22:41:37Z
 End time: 2017-05-30 22:41:58Z
 Duration: 20.622 seconds

Results (nunit3) saved as TestResult.xml

The test suite uses a fixed set of data. Ordinarily, this is one of the problems of integration
tests, the database needs to be in a known state before running the tests to be sure that
you're verifying the output of this test run and not some previous test run. With Docker,
this is not an issue because each test run uses a new SQL Server database running in a
container. When the tests complete, the database container and all the other application
containers are removed in the last part of the test step:

& docker-compose $config -f .\app\docker-compose.yml -f .\app\docker-
compose.local.yml down

Now I have a set of application images that are tested and known to be good. The images
exist only on the build server, so the next step is to push them to the local registry.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[282]

Tagging and pushing Docker images in Jenkins
How you push images to your registry during the build process is your choice. You might
start by tagging every image with the build number and pushing every image version to
the registry as part of the CI build. Projects using efficient Dockerfiles will have minimal
differences between builds, so you benefit from cached layers, and the amount of storage
you use in your registry shouldn't be excessive.

If you have larger projects with a lot of development churn and a shorter release cadence,
the storage requirements could grow so you might move to a scheduled push, tagging
images daily, and pushing the latest build to the registry. Or, if you have a pipeline with a
manual quality gate, the final release stage could push to the registry, so the only images
you store are valid release candidates.

For my sample CI job, I'll push to the local registry with every successful build once the
tests have passed using the Jenkins build number as the image tag. The build step to tag
and push images is another PowerShell script that uses the built-in environment variables
from Jenkins for tagging:

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify', `
 '--tlscacert', $env:DOCKER_CA,'--tlscert', $env:DOCKER_CERT, '--tlskey',
$env:DOCKER_KEY

& docker $config `
 tag dockeronwindows/ch10-newsletter-web
"registry.sixeyed:5000/dockeronwindows/ch10-newsletter-
web:$($env:BUILD_TAG)"

& docker $config `
 push "registry.sixeyed:5000/dockeronwindows/ch10-newsletter-
web:$($env:BUILD_TAG)"

This snippet shows the web application image being pushed, and the same process is used
for the message handler images.

I use an alias in the host's file for my registry, using registry.sixeyed
as the hostname. On the Docker server that runs the registry container, the
registry.sixeyed name is set to resolve to the container's IP address.
On remote machines, the registry.sixeyed name resolves to the
Docker server. This way, I can use consistent image tags on every
machine.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[283]

After a few builds have completed, I can make a REST call to the registry API from my
development laptop to query the tags for the dockeronwindows/ch10-newsletter-web
repository. The API will give me a list of all the tags for my web application image, so I can
verify that they've been pushed by Jenkins:

> Invoke-RestMethod
http://registry.sixeyed:5000/v2/dockeronwindows/ch10-newsletter-web/tags/li
st |
Select tags

tags

{jenkins-docker-on-windows-ch10-ch10-newsletter-20,
 jenkins-docker-on-windows-ch10-ch10-newsletter-21,
 jenkins-docker-on-windows-ch10-ch10-newsletter-22}

The Jenkins build tag gives me the complete path to the job that created the images. I can
use the GIT_COMMIT environment that Jenkins provides variable instead to tag images with
the commit ID. This makes for a much shorter tag, but the Jenkins build tags include the
incrementing build number, so I can always find the latest version by ordering the tags. The
Jenkins web UI shows the Git commit ID for each build, so it's easy to track back from the
job number to the exact source revision.

The CI part of the build is done now. For every new push to the Git server, Jenkins will
compile, deploy, and test the application and then push good images to the local registry.
The next part is deploying the solution to the QA environment.

Deploying to a remote Docker swarm using
Jenkins
The workflow for my sample application uses a manual quality gate and separates the
concerns for local and external artifacts. On every source code push, the solution is
deployed locally and tests are run. If they pass, images are saved to the local registry. The
final deployment stage is to push these images to an external registry and deploy the
application to the public QA environment. This simulates a project approach where builds
happen internally, and approved releases are then pushed externally.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[284]

In this example, I'll use public repositories on Docker Hub and deploy to a Windows VM in
Microsoft Azure running as a single-node Docker swarm. I'll continue to use PowerShell
scripts and run basic docker and docker-compose commands. The principles are exactly
the same to push images to other registries and deploy to larger Docker swarms or to
Universal Control Plane (UCP) running on Docker Enterprise Edition (Docker EE).

I've created a new Jenkins job for the deployment step, which is parameterized to take the
version number to deploy. The version number is the job number from the CI build, so I
can deploy a known version at any time. In the new job, I need some additional credentials.
I've added secret files for the swarm manager's TLS certificates, which will allow me to
connect to the manager node of the Docker swarm running in Azure.

I'm also going to push images to Docker Hub as part of the release step, so I've added a
username and password credential in Jenkins in order to authenticate to Docker Hub. To
authenticate in the job step, I've added a binding for the credentials in the deployment job,
which exposes the username and password as environment variables:

Then, I set up the command configuration and use docker login in the PowerShell build
step, specifying the credentials from the environment variables:

$config = '--host', 'tcp://192.168.160.1:2376', '--tlsverify', `
 '--tlscacert', $env:DOCKER_CA,'--tlscert', $env:DOCKER_CERT, '--tlskey',
$env:DOCKER_KEY

& docker $config `
 login --username $env:DOCKER_HUB_USER --password
"$env:DOCKER_HUB_PASSWORD"

I'm still using my local Docker server here, connecting to the gateway IP
address. That's my internal environment, which is the source for pushing
to the external repositories on Docker Hub.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[285]

Now for each of the custom images, I pull them from the local registry, tag them for Docker
Hub, and then push them to Hub. The initial pull is there in case I want to deploy a
previous build, and the local server cache has been cleaned since the build, it ensures the
correct image is present from the local registry. For Docker Hub, I use a simpler tagging
format, just applying the version number.

This example is for the web image, and the pattern is repeated for the message handlers:

& docker $config `
 pull "registry.sixeyed:5000/dockeronwindows/ch10-newsletter-web:jenkins-
docker-on-windows-ch10-ch10-newsletter-$($env:VERSION_NUMBER)"

& docker $config `
 tag "registry.sixeyed:5000/dockeronwindows/ch10-newsletter-web:jenkins-
docker-on-windows-ch10-ch10-newsletter-$($env:VERSION_NUMBER)" `
 "dockeronwindows/ch10-newsletter-web:$($env:VERSION_NUMBER)"

& docker $config `
 push "dockeronwindows/ch10-newsletter-web:$($env:VERSION_NUMBER)"

When this step completes, the images are publicly available on Docker Hub. Now the last
step in the deployment job deploys the latest application version on the remote Docker
swarm using these public images. I use Docker Compose to pull the latest images and to
compile the stack deploy file for the QA environment. Then, I deploy to the swarm using
docker stack deploy:

cd source\ch10\ch10-newsletter

$config = '--host', 'tcp://dockerwin-
test.westeurope.cloudapp.azure.com:2376', '--tlsverify', `
 '--tlscacert', $env:DOCKER_QA_CA,'--tlscert', $env:DOCKER_QA_CERT, '--
tlskey', $env:DOCKER_QA_KEY

& docker-compose $config `
 -f .\app\docker-compose.yml -f .\app\docker-compose.qa.yml pull

& docker-compose $config `
 -f .\app\docker-compose.yml -f .\app\docker-compose.qa.yml config >
docker-compose.stack.yml

& docker $config `
 stack deploy -c docker-compose.stack.yml newsletter

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[286]

In this step, the configuration is set up to use the remote Docker server, the hostname is the
Azure VM, and the credential files are the certificates for that QA server. Pulling the images
means the latest versions are available when the application is upgraded, as this is just a
single-node swarm. The override file specifies the extra settings needed for the QA
environment.

Remember that Docker stacks use the Docker Compose file format, but
multiple file overrides are not supported in docker stack deploy. I use
docker-compose config to compile the basic compose file and the QA
override file into a single output file. This consolidated file is used to
deploy the stack.

The QA override file specifies the DNS round-robin endpoint mode for all services, which
is required for Windows containers to communicate in an overlay network:

version: '3.2'
services:

 signup-db:
 deploy:
 endpoint_mode: dnsrr

 message-queue:
 deploy:
 endpoint_mode: dnsrr

...

The public-facing services need to be configured in the override file with host port
publishing. As an example, the Kibana override publishes port 5601:

 kibana:
 ports:
 - mode: host
 target: 5601
 published: 5601
 deploy:
 endpoint_mode: dnsrr

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[287]

The services from my custom images need to use the same network configuration and
specify the version number in the image tag. Docker Compose supports environment
variable expansion, so I use the VERSION_NUMBER environment variable as the image tag.
This is the version number that was generated in the build job and passed into Jenkins as a
parameter for the deploy job:

 signup-app:
 image: dockeronwindows/ch10-newsletter-web:${VERSION_NUMBER}
 ports:
 - mode: host
 target: 80
 published: 80
 deploy:
 endpoint_mode: dnsrr

 signup-save-handler:
 image: dockeronwindows/ch10-newsletter-save-handler:${VERSION_NUMBER}
 deploy:
 endpoint_mode: dnsrr

 signup-index-handler:
 image: dockeronwindows/ch10-newsletter-index-handler:${VERSION_NUMBER}
 deploy:
 endpoint_mode: dnsrr

Lastly, the QA override contains a basic entry for the application network. This means
Docker will create the network using the default driver and scope. As the target is a Docker
swarm, it will create an overlay network:

networks:
 app-net:

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[288]

When this job completes, the updated services are deployed. Docker compares stack
definitions against running services in the same way that Docker Compose does for
containers, so services are updated only if the definition has changed. After the deployment
job is complete, I can go to the Azure VM and see the application:

My workflow uses two jobs so I can manually control the release to the QA environment.
This can be automated instead for a full CD setup, and you can easily build on your Jenkins
jobs to add more functionalities, such as displaying the test output and coverage, joining
the builds into a pipeline, and breaking jobs up into reusable parts.

Powering a Continuous Deployment Pipeline with Docker Chapter 10

[289]

Summary
This chapter covered CI/CD in Docker, with a sample deployment workflow configured in
Jenkins. Every part of the process I demonstrated ran in Docker containers, the Git server,
Jenkins, the build agents, the test agents, and the local registry.

You saw that it is straightforward to run your own development infrastructure with
Docker, giving you an alternative to hosted services. It's also straightforward to use these
services for your own deployment workflow, whether it's full CI/CD or separate workflows
with a gated manual step.

You saw how to configure and run the Bonobo Git server and the Jenkins automation
server in Docker to power the workflow. I used multi-stage builds for all the images in my
application, which means I can have a very simple Jenkins setup with no need to deploy
any toolchains or SDKs.

My CI pipeline was triggered from a developer pushing changes to Git, and the build job
pulled the source, compiled the application components, built them into Docker images,
and ran a local deployment of the app in Docker. I run end-to-end tests in another
container, and if they pass, I tag and push all the images to the local registry.

I demonstrated a manual deployment step, with a job that the user initiates, specifying the
built version to be deployed. This job pushes the built images to the public Docker Hub and
deploys an update to the QA environment by deploying the stack on a Docker swarm
running in Azure.

There are no hard dependencies on any of the technologies I used in this chapter. The
process I implemented with Bonobo, Jenkins, and the open source registry can just as easily
be implemented with hosted services such as GitHub, AppVeyor, and Docker Cloud. All
the steps of the process use simple PowerShell scripts and can be run on any stack that
supports Docker.

In the next chapter, I'll step back to the developer experience and look at the practicalities of
running, debugging, and troubleshooting applications in containers.

11
Debugging and Instrumenting

Application Containers
Docker can remove a lot of the friction in the typical developer workflow process and
significantly reduce the time spent on overhead tasks, such as dependency management
and environment configuration. When developers run the changes they're working on
using the exact same application platform where the final product will run, there are far
fewer opportunities for deployment mistakes, and the upgrade path is straightforward and
well understood.

Running your application in a container during development adds another layer to your
development environment. You'll be working with different types of assets such as
Dockerfiles and Compose files and that experience is much improved if your IDE supports
these file types. Also there's a new runtime between the IDE and your app, so the
debugging experience will be different. You may need to change your workflow to make
the most of the platform benefits.

In this chapter, I'll look at the development process with Docker, covering IDE integration
and debugging and how to add instrumentation to your Dockerized applications. You'll
learn:

How Visual Studio 2017, 2015, and Visual Studio Code provide Docker support
How to debug your application when it's running in a container
How to instrument your code in a Docker-friendly way
How to add runtime metrics to existing projects without changing code
What the bug fixing workflow looks like with Docker

Debugging and Instrumenting Application Containers Chapter 11

[291]

Working with Docker in integrated
development environments
In the previous chapter, I demonstrated a containerized outer loop, the compilation and
packaging CI process that is triggered from central source control, when developers push
changes. The integrated development environments (IDEs) are beginning to support
containerized workflows for the inner loop, the developer process of writing, running, and
debugging applications before pushing changes to central source control.

Visual Studio 2017 has native support for Docker artifacts, including IntelliSense and code
completion for Dockerfiles. There is also runtime support for ASP.NET projects running in
containers, both .NET Framework and .NET Core. In Visual Studio 2017, you can hit the F5
key and your web app launches inside a container, running in Docker for Windows. The
application uses the same base image and Docker runtime that you will use in all other
environments.

Visual Studio 2015 has a plugin that provides support for Docker artifacts, and Visual
Studio Code has a very useful Docker extension. Visual Studio 2015 and Visual Studio
Code don't provide an integrated F5 debugging experience for .NET apps running in
Windows containers, but you can configure this manually, and I will demonstrate that in
this chapter.

There's a compromise when you debug inside a container, it means creating a disconnect
between the inner loop and the outer loop. Your development process uses a different set of
Docker artifacts from your continuous integration (CI) process in order to make the
debugger available to the container and to map the application assemblies to the source
code. The benefit is that you can run in a container in development but with the same
developer build and debug experience that you're used to. The downside is that your
development Docker image is not the exact same image you'll be promoting to test.

A good way to mitigate that is to use the local Docker artifacts for development when
you're iterating rapidly over a feature. And then, use the CI Docker artifacts, still running
locally for the final build and end-to-end tests before pushing your changes.

Debugging and Instrumenting Application Containers Chapter 11

[292]

Docker in Visual Studio 2017
Visual Studio 2017 has the most complete Docker support of all the .NET IDEs. You can
open an ASP.NET Web project in Visual Studio 2017 which is full ASP.NET, right-click on
the project and select Add | Docker Support:

Debugging and Instrumenting Application Containers Chapter 11

[293]

Visual Studio then generates a set of Docker artifacts. In the Web project, it creates a
Dockerfile that looks like this:

FROM microsoft/aspnet
ARG source
WORKDIR /inetpub/wwwroot
COPY ${source:-obj/Docker/publish} .

There's full IntelliSense support for the Dockerfile syntax, so you can hover over
instructions and see information about them and use Ctrl + spacebar to open a prompt for
all Dockerfile instructions.

The generated Dockerfile uses the microsoft/aspnet base image, which comes with
ASP.NET 4.6 installed and configured. It uses a build argument to specify the location of
the source folder, and then it copies the content of that folder to the web root directory
C:\inetpub\wwwroot.

In the solution root, Visual Studio creates a set of Docker Compose files. There are multiple
files, and Visual Studio uses them with the Docker Compose build and up commands to
package and run the application. This works behind the scenes when you run the app with
the F5 key , but it's worth looking at how Visual Studio uses them; it shows you how you
can add this level of support to different IDEs.

Debugging with Docker Compose in Visual Studio 2017
You'll need to select Show all files at the solution level to see all the Docker Compose files
generated by Visual Studio 2017. There's a basic docker-compose.yml with the web
application defined as a service, complete with build details for the Dockerfile:

services:
 webapi.netfx:
 image: webapi.netfx
 build:
 context: .\WebApi.NetFx
 dockerfile: Dockerfile

Debugging and Instrumenting Application Containers Chapter 11

[294]

There's also a docker-compose.vs.debug.yml, which makes use of Docker volumes to
provide the Visual Studio debugger experience:

services:
 webapi.netfx:
 image: webapi.netfx:dev
 build:
 args:
 source: ${DOCKER_BUILD_SOURCE}
 volumes:
 - .\WebApi.NetFx:C:\inetpub\wwwroot
 - ~\msvsmon:C:\msvsmon:ro
 labels:
 - "com.microsoft.visualstudio.targetoperatingsystem=windows"

There are a few things to note here:

The Docker image uses the dev tag to distinguish it from the release build
The build argument for the source location uses the environment variable
DOCKER_BUILD_SOURCE

A volume is used to map the web root in the container to the project folder on the
host
A second volume is used to map the Visual Studio remote debugger (called
msvsmon) to the container from the host

In debug mode, the argument for the source code environment variable is an empty
directory. Visual Studio builds a Docker image with an empty web directory and then
mounts the source code folder from the host into the web root in the container in order to
populate that folder at runtime.

You can hit F5 now, and Visual Studio will build the app, run it in a Windows Docker
container, and attach the debugger.

At the time of writing, the generated Docker artifacts in Visual Studio
2017 do not include the port mappings you need for the debugger. In the
source code for this chapter, in the folder ch11-webapi-vs2017, you will
see that I've exposed ports 3072 and 4022 in the Dockerfile and published
them in the Docker Compose file.

Debugging and Instrumenting Application Containers Chapter 11

[295]

With the remote debugging ports published, you can add a breakpoint and debug directly
in the container with the F5 experience:

Visual Studio 2017 keeps the container running in the background when you stop
debugging. If you make a change to the program and rebuild, the same container is used,
so there's no startup lag. By mounting the project location into the container, any changes in
content or binaries are reflected when you rebuild. By mounting the remote debugger from
the host, your image doesn't have any development tools baked into it; they stay on the
host.

Debugging and Instrumenting Application Containers Chapter 11

[296]

This is the inner loop process, where you get fast feedback. Whenever you change and
rebuild your app, you see these changes in the container. However the Docker image from
the debug mode is not usable for the outer loop CI process; the app is not copied into the
image; it works only if you mount the app from your local source into a container.

To support the outer loop, there's also a Docker compose override file for release mode in
docker-compose.vs.release.yml:

services:
 webapi.netfx:
 build:
 args:
 source: ${DOCKER_BUILD_SOURCE}
 volumes:
 - ~\msvsmon:C:\msvsmon:ro
 labels:
 - "com.microsoft.visualstudio.targetoperatingsystem=windows"

The only difference here is that there's no volume mapping the local source location to the
web root in the container. When you compile in release mode, the value of the
DOCKER_BUILD_SOURCE environment variable is a published location that contains the web
app. Visual Studio builds the release image by packaging the published application into the
container.

There's a Docker output window in Visual Studio 2017, where you can see
all the commands Visual Studio executes. The F5 workflow uses docker-
compose build and docker-compose run to start the app and executes
msvsmon inside the container to start the remote debugger. Then, it grabs
the container IP address and launches the browser.

In Release mode, you can still run the application in a Docker container and you can still
debug the application. But you lose the fast feedback loop because in order to change the
app, Visual Studio needs to rebuild the Docker image and start a new container.

This is a good compromise, and the Docker tooling in Visual Studio 2017 gives you a
seamless development experience, along with the basis for your CI build. One thing Visual
Studio 2017 doesn't do right now is use multi-stage builds, so the project compilation still
happens on the host rather than inside a container. This makes the generated Docker
artifacts less portable, you need more than just Docker to build this app on a build agent.

Debugging and Instrumenting Application Containers Chapter 11

[297]

Docker in Visual Studio 2015
Visual Studio 2015 has a plugin available from the Marketplace, called Visual Studio Tools
for Docker. This gives you syntax highlighting for Dockerfiles, but it doesn't integrate
Visual Studio with Docker for .NET Framework apps. With Visual Studio 2015, you can
add Docker support to a .NET Core project, but you need to manually write your own
Dockerfile and Docker Compose files for full .NET.

Also, there's also no integrated debugging for applications running in Windows containers.
You can still debug code running in a container, but you need to manually configure the
setup. I'll demonstrate how to do that now, using the same approach as Visual Studio 2017
and with some of the same compromises.

In Visual Studio 2017, you can mount the folder containing the remote debugger from the
host into your container. When you run the project, Visual Studio starts a container and
executes the msvsmon.exe from the host which is the remote debugger agent. You don't
need to install anything in your image to provide the debugging experience.

The remote debugger in Visual Studio 2015 is not so portable. You can mount the debugger
from the host in the container, but when you try to start the agent, you'll see errors about
missing files. Instead, you need to install the remote debugger into your image.

I have this set up in the image dockeronwindows/ch11-webapi-vs2015. In the
Dockerfile for this image, I use a build-time argument to conditionally install the debugger
if the value configuration is set to debug. This means I can build locally with the
debugger installed, but when I build for deployment, the image doesn't have the debugger:

ARG configuration

RUN if ($env:configuration -eq 'debug') `
 { Invoke-WebRequest -OutFile c:\rtools_setup_x64.exe -UseBasicParsing -Uri
http://download.microsoft.com/download/1/2/2/1225c23d-3599-48c9-a314-f7d631
f43241/rtools_setup_x64.exe; `
 Start-Process c:\rtools_setup_x64.exe -ArgumentList '/install', '/quiet' -
NoNewWindow -Wait }

I use the same approach as Visual Studio 2017 to mount the source directory on the host
into the container when running in the debug mode, but I create a custom website rather
than using the default one:

ARG source
WORKDIR C:\web-app
RUN Remove-Website -Name 'Default Web Site';`
 New-Website -Name 'web-app' -Port 80 -PhysicalPath 'C:\web-app'
COPY ${source:-.\Docker\publish} .

Debugging and Instrumenting Application Containers Chapter 11

[298]

The :- syntax in the COPY instruction specifies a default value if the source argument is
not provided. The default is to copy from the published web application unless it is
specified in the build command. I have a core docker-compose.yml file with the basic
service definition and a docker-compose.debug.yml file that mounts the host source
location, maps the debugger ports, and specifies the configuration variable:

services:
 ch11-webapi-vs2015:
 build:
 context: ..\
 dockerfile: .\Docker\Dockerfile
 args:
 - source=.\Docker\empty
 - configuration=debug
 ports:
 - "3702/udp"
 - "4020"
 - "4021"
 environment:
 - configuration=debug
 labels:
 - "com.microsoft.visualstudio.targetoperatingsystem=windows"
 volumes:
 - ..\WebApi.NetFx:C:\web-app

The label specified in the compose file attaches a key-value pair to the
container. The value isn't visible inside the container, unlike an
environment variable but it is visible to external processes on the host. In
this case, it is used by Visual Studio to identify the operating system of the
container.

To start the app in debug mode, I use both Compose files to start the application:

docker-compose -f docker-compose.yml -f docker-compose.debug.yml up -d

Debugging and Instrumenting Application Containers Chapter 11

[299]

Now the container is running my web app using Internet Information Services (IIS) inside
the container, and the Visual Studio remote debugger agent is running as well. I can
connect to a remote process in Visual Studio 2017 and use the IP address of the container:

The debugger in Visual Studio attaches to the agent running in the container, and I can add
breakpoints and view variables, just like debugging to a local process. In this approach, the
container is using the host mount for the content of the web app. I can stop the debugger,
make changes, rebuild the app and see the changes in the same container without having to
start a new container.

This approach has the same benefits and drawbacks as the integrated Docker support in
Visual Studio 2017. I'm running my app in a container for local debugging, so I get all the
features of the Visual Studio debugger, and my app is running in the same platform I'll use
in other environments. But I won't be using the same image, as the Dockerfile has
conditional branches, so it produces different outputs for the debug and release modes.

Debugging and Instrumenting Application Containers Chapter 11

[300]

There is an advantage to manually building debugger support in your Docker artifacts. You
can construct your Dockerfile with conditioning so that the default docker image build
command produces the production-ready image without requiring any additional artifacts.
This example still does not use a multi-stage build, though, so the Dockerfile is not portable
and the application needs to be compiled before it can be packaged.

In development, you build the image once in debug mode, run the container, and then
attach the debugger whenever you need to. Your integration tests build and run the
production image, so only the inner loop has the additional debugger components.

Docker in Visual Studio Code
Visual Studio Code is intended as a cross-platform IDE for cross-platform languages. The
C# extension installs a debugger that can attach to .NET Core applications, but there's no
support for debugging full .NET Framework apps.

The Docker extension adds some very useful features, including the ability to add
Dockerfiles and Docker Compose files to existing projects, but the generated files do not
currently provide debugging support for Windows containers. There is syntax highlighting
for Dockerfiles and Docker Compose files and IntelliSense for Dockerfiles.

There are also integrations with the UI , you can right-click on a Dockerfile and have the
option to build an image. You can hit F1 key, type Docker, and see a list of useful options
to run containers and manage services with compose files:

Debugging and Instrumenting Application Containers Chapter 11

[301]

Visual Studio Code has a very flexible system for running and debugging your projects, so
you can add your own configuration to provide debugging support for apps running in
Windows containers. You can edit the launch.json file to add a new configuration for
debugging in Docker.

In the ch11-webapi-vscode folder, I have a sample .NET Core project set up to run the
application in Docker and attach a debugger. It uses the same approach as Visual Studio
2017. The debugger for .NET Core is called vsdbg and is installed with the C# extension in
Visual Studio Code, so I mount the vsdbg folder from the host into the container, along
with the source location, using a docker-compose.debug.yml file:

 volumes:
 - .\bin\Debug\netcoreapp1.1\publish:C:\app
 - ~\.vscode\extensions\ms-vscode.csharp-1.10.0\.debugger:C:\vsdbg:ro

This setup uses a specific version of the C# extension. That's 1.10 in my
case, but you may have a later version, check for the location of
vsdbg.exe in the .vscode folder in your user directory.

When you run the app through Docker Compose using the debug override file, it starts the
.NET Core application and makes the debugger from the host available to run in the
container. This is configured for a debugging experience in Visual Studio Code in the
launch.json file. The Debug Docker container configuration specifies what type of
application to debug and the name of the process to attach:

 "name": "Debug Docker container",
 "type": "coreclr",
 "request": "attach",
 "sourceFileMap": {
 "C:\\app": "${workspaceRoot}"
 },
 "processName": "dotnet"

This configuration also maps the application root in the container to the source code
location on the host, so the debugger can associate the correct source files with the debug
files. In addition, the debugger configuration specifies how to launch the debugger by
running a docker container exec command on the named container:

"pipeTransport": {
 "pipeCwd": "${workspaceRoot}",
 "pipeProgram": "docker",
 "pipeArgs": [
 "exec", "-i", "webapinetcore_webapi_1"
],

Debugging and Instrumenting Application Containers Chapter 11

[302]

 "debuggerPath": "C:\\vsdbg\\vsdbg.exe",
 "quoteArgs": false
}

To debug my app, first, I start the container with the debug configuration using Docker
Compose:

docker-compose -f .\docker-compose.yml -f .\docker-compose.debug.yml up

Then, I can activate the debugger using the Debug action and selecting Debug Docker
container:

Visual Studio Code starts the .NET Core debugger vsdbg inside the container and attaches
to the running dotnet process. You'll see the output from the .NET Core application
redirected into the DEBUG CONSOLE window in Visual Studio Code:

Debugging and Instrumenting Application Containers Chapter 11

[303]

At the time of writing, Visual Studio Code doesn't fully integrate with the
debugger running inside a Windows Docker container. You can place
breakpoints in the code and the debugger will pause the process, but
control does not pass to Visual Studio Code. Development is happening
quickly in Visual Studio Code, so expect this to be fixed soon, check out
my blog at https:/ /blog. sixeyed. com for updates.

Running your application in a container and being able to debug from your normal IDE is a
huge benefit. It means your app is running on the same platform and with the same
deployment configuration it will use in all other environments, but you can step into code
just as if it were running locally.

Docker support in IDEs is improving rapidly, so I expect all the manual steps I've detailed
in this chapter to be built into products and extensions soon.

Instrumentation in Dockerized applications
Debugging your app is what you do when the logic doesn't work as expected and you're
trying to track down what's going wrong. You don't debug in production, so you need your
app to record its behavior in order to help you trace any problems that occur.

Instrumentation is often neglected, but it should be a crucial component of your
development, as it's the best way to understand the health and activity of your app in
production. Running your app in Docker provides new opportunities for centralized
logging and instrumentation, so you can get a consistent view across the different parts of
your application even if they use different languages and platforms.

Instrumentation with Prometheus
The ecosystem around Docker is very large and active, taking advantage of the open
standards and extensibility of the platform. As the ecosystem has matured, a few
technologies have emerged as strong candidates for inclusion in most Dockerized
applications.

Prometheus is an open source instrumentation framework. It's a flexible component that
you can use in different ways, but the typical implementation is to run a Prometheus server
in a Docker container, configured to read instrumentation endpoints in your other Docker
containers.

https://blog.sixeyed.com
https://blog.sixeyed.com
https://blog.sixeyed.com
https://blog.sixeyed.com
https://blog.sixeyed.com
https://blog.sixeyed.com
https://blog.sixeyed.com
https://blog.sixeyed.com
https://blog.sixeyed.com

Debugging and Instrumenting Application Containers Chapter 11

[304]

You configure Prometheus to poll all the container endpoints, and it stores the results in a
time-series database. You can add a Prometheus endpoint to your application by simply
adding a REST endpoint, which responds to GET requests from the Prometheus server with
a list of the metrics you're interested in collecting.

For .NET projects, there is a NuGet package that does this for you, adding a Prometheus
endpoint to your application. It exposes a useful set of metrics by default, including the
values of key .NET statistics and Windows performance counters. You can add Prometheus
support directly to your application, or you can run a Prometheus exporter alongside your
app.

Adding a Prometheus endpoint to .NET projects
The prometheus-net NuGet package provides a set of default metric collectors and a
MetricServer class that provides the instrumentation endpoint that Prometheus hooks
into. This package is great for adding Prometheus support to any app, the metrics are
provided by a self-hosted HTTP endpoint, and you can record provide custom metrics for
your application.

In the dockeronwindows/ch11-api-with-metrics image, I've added Prometheus
support into a Web API project. The code to configure and start the metrics endpoint is in
the PrometheusServer class:

public static void Start()
{
 _Server = new MetricServer(50505, new IOnDemandCollector[] {
 new DotNetStatsCollector(), new PerfCounterCollector()
 });
 _Server.Start();
}

This starts a new MetricServer instance, listening on port 50505, and running the .NET
statistics and performance counter collectors that the NuGet package provides. These are
on-demand collectors, which means they provide metrics when the Prometheus server calls
into the endpoint.

Debugging and Instrumenting Application Containers Chapter 11

[305]

The MetricServer class will also return any custom metrics you set up in your
application. In the ValuesController class, I have set up some simple counters to record
requests and responses to the API:

private Counter _requestCounter =
 Metrics.CreateCounter("ValuesController_Requests", "Request count",
"method",
 "url");

private Counter _responseCounter =
 Metrics.CreateCounter("ValuesController_Responses", "Response count",
"code",
 "url");

When requests come into the controller, the controller action method increments the
request count for the URL and increments the status count for the response code by calling
the Inc() method on the counter objects:

public IHttpActionResult Get()
{
 _requestCounter.Labels("GET", "/").Inc();
 _responseCounter.Labels("200", "/").Inc();
 return Ok(new string[] { "value1", "value2" });
}

Prometheus has various types of metrics that you can use to record key information about
your app. It also allows grouping by arbitrary labels, in this case, I add the URL and the
HTTP method to the request count and the URL and status code to the response count.

The counters I set up in the Web API controller give me a set of custom metrics showing
which endpoints are being used and the status of the responses. These are exposed by the
server component in the NuGet package, along with the default metrics to record the
system performance.

In the Dockerfile for this app, there are two additional lines needed for the Prometheus
endpoint:

EXPOSE 50505
RUN netsh http add urlacl url=http://+:50505/metrics
user=BUILTIN\IIS_IUSRS; `
 net localgroup 'Performance Monitor Users' 'IIS APPPOOL\DefaultAppPool'
/add

Debugging and Instrumenting Application Containers Chapter 11

[306]

The first line just exposes the custom port I'm using for the metrics endpoint. The second
line sets up the permissions needed for that endpoint. In this case, the metrics endpoint is
hosted inside the ASP.NET app, so the IIS user account needs permissions to listen on the
custom port and to access the system performance counters.

You can build the Dockerfile and run a container from the image in the usual way,
publishing all the ports with -P:

docker container run -d -P --name api dockeronwindows/ch11-api-with-metrics

To check whether the metrics are being recorded and exposed, I can run some PowerShell
commands to grab the IP address of the container, make some calls to the API endpoint,
and check the metrics:

$ip = docker inspect -f '{{.NetworkSettings.Networks.nat.IPAddress}}' api

for ($i=0; $i -lt 10; $i++) {
 iwr -useb "http://$($ip)/api/values"
}

(iwr -useb "http://$($ip):50505/metrics").Content

You'll see a plain text list of metrics, grouped by name and label. Each metric also contains
the metadata for Prometheus, including the metric name, the type, and a friendly
description:

HELP process_windows_num_threads Total number of threads
TYPE process_windows_num_threads GAUGE
process_windows_num_threads 32
HELP dotnet_totalmemory Total known allocated memory
TYPE dotnet_totalmemory GAUGE
dotnet_totalmemory 15225400
...
HELP ValuesController_Requests Request count
TYPE ValuesController_Requests COUNTER
ValuesController_Requests{method="GET",url="/"} 10
...
HELP ValuesController_Responses Response count
TYPE ValuesController_Responses COUNTER
ValuesController_Responses{code="200",url="/"} 10

The complete output is much larger. In this snippet, I've shown the total number of threads
and the total allocated memory which comes from performance counters inside the
container. I've also shown the custom HTTP request and response counters.

Debugging and Instrumenting Application Containers Chapter 11

[307]

My custom counters in this application show the URL and the response code. In this case, I
can see ten requests to the root URL of the value controller, and ten responses with status
code 200. Later in the chapter, I'll show how to graph these statistics using Prometheus.

Adding the NuGet package to the project and running the MetricServer is a simple
extension to the source code. It lets me record any kind of metric that is useful but it does
mean changing the app.

In some cases, you may want to add monitoring without altering the application you want
to instrument. In that case, you can run an exporter alongside your app. The exporter pulls
metrics from your application process and exposes them to Prometheus.

Adding a Prometheus exporter alongside existing
apps
In a Dockerized solution, Prometheus will make scheduled calls to the metrics endpoint
exposed from a container and store the results. For an existing app, you don't need to add a
metrics endpoint; you can run a console app alongside the current application and host the
metrics in that console app.

I've added a Prometheus endpoint to the Bononbo Git server I set up in the previous
chapter without changing any of the Bonobo code. In the dockeronwindows/ch11-
bonobo-with-metrics image, I have a console app that provides the metrics endpoint,
using the same NuGet package and MetricsServer class as the previous example. The
console app is watching the w3wp process that hosts Bonobo, so it exposes Bonobo's metrics
without altering the Bonobo app.

The DotNetExporter console application implements a custom counter collector, which
reads the performance counter values for a named process running on the system. It uses
the same set of counters as the default collector in the NuGet package, but by targeting a
different process, I can monitor other processes running in the same container.

In the Program class, I use environment variables to configure the app and start counter
collectors for each configured process:

var collectors = new List<IOnDemandCollector>();
foreach (var process in Config.MetricsTargets)
{
 WriteLine($"Adding collectors for process: {process}");
 collectors.Add(new ProcessPerfCounterCollector(process));
}

Debugging and Instrumenting Application Containers Chapter 11

[308]

Then I create and start a MetricServer object, using the configured collectors and
listening on the configured metrics endpoint:

var server = new MetricServer(Config.MetricsPort, collectors);
server.Start();
WriteLine($"Metrics server listening on port: {Config.MetricsPort}");

The console app is a lightweight component. It runs indefinitely and only uses compute
resources when the metrics endpoint is called, so it has minimal impact when running on a
Prometheus schedule. To provide metrics for Bonobo, I need to create a Dockerfile that
packages the exporter app alongside Bonobo. I start with the Bonobo image from Chapter
10, Powering a Continuous Deployment Pipeline with Docker and set up the environment for
the metrics exporter:

FROM dockeronwindows/ch10-bonobo
EXPOSE 50505
ENV METRICS_TARGETS="w3wp"

This exposes my default metrics port, 50505 and sets the exporter to monitor the w3wp
process. Then, I copy the exporter console app, compiled in the builder stage in this
Dockerfile, and set up the entry point to use a bootstrap PowerShell script:

WORKDIR C:\prometheus-exporter
COPY --from=builder C:\out\dotnet-exporter .

COPY bootstrap.ps1 /
ENTRYPOINT ["powershell", "C:\\bootstrap.ps1"]

In the bootstrap script, I start the IIS Windows service and make an HTTP call. This will
launch the w3wp worker process to handle the request:

Start-Service W3SVC
Invoke-WebRequest http://localhost/Bonobo.Git.Server -UseBasicParsing |
Out-Null

Now that there's a process running, I start the exporter console app that will provide
metrics from the w3wp process:

& C:\prometheus-exporter\DotNetExporter.Console.exe

When I build this image and run a container, I can use Bonobo in the normal way, with my
additional exporter process running and providing access to metrics. I'll start the container
and open the browser using PowerShell:

docker container run -d -P --name bonobo `
 dockeronwindows/ch11-bonobo-with-metrics

Debugging and Instrumenting Application Containers Chapter 11

[309]

$ip = docker inspect -f '{{.NetworkSettings.Networks.nat.IPAddress}}'
bonobo

start "http://$($ip)/Bonobo.Git.Server"

I can use Bonobo in the browser, and the exporter will expose the metrics for the Bonobo
worker process. I am using the same metrics endpoint as earlier, so I can see the statistics
on port 50505:

> (iwr -useb "http://$($ip):50505/metrics").Content

HELP process_pct_processor_time % Processor Time Perf Counter
TYPE process_pct_processor_time GAUGE
process_pct_processor_time{process="w3wp"} 6.06265497207642
HELP process_working_set Working Set Perf Counter
TYPE process_working_set GAUGE
process_working_set{process="w3wp"} 329969664
...

In this case, there are no custom counters from the application, and all the metrics come
from standard Windows and .NET performance counters. The exporter application can
read these performance counter values for the running w3wp process, so the application
doesn't need to change in order to provide basic information to Prometheus. To record
custom metrics, you do need to instrument your code and explicitly record the data points
you're interested in.

Adding instrumentation to your Dockerized application means providing the metrics
endpoint that Prometheus can query. The Prometheus server itself runs in a Docker
container, configured with the names of containers you want to monitor.

Running a Prometheus server in a Windows
Docker container
Prometheus is a cross-platform application, written in Go, which can run on Nano Server.
The installer for Prometheus comes as a GZipped Tar file, which you can't natively extract
in Windows. To package Prometheus in Docker, I use a multi-stage build, where I
download and extract the package in the first stage.

Debugging and Instrumenting Application Containers Chapter 11

[310]

The best tool to extract a GZipped TAR file in Windows is 7-Zip, and I have a Docker image
that installs 7-Zip called dockeronwindows/ch11-7zip. The Dockerfile for the
Prometheus image dockeronwindows/ch11-prometheus starts using this image and then
runs PowerShell cmdlets to download the package and extract it:

RUN Invoke-WebRequest
"https://github.com/prometheus/prometheus/releases/download/v$($env:PROMETH
EUS_VERSION)/prometheus-$($env:PROMETHEUS_VERSION).windows-amd64.tar.gz" `
 -OutFile 'prometheus.tar.gz' -UseBasicParsing; `
 & 'C:\Program Files\7-Zip\7z.exe' x prometheus.tar.gz; `
 & 'C:\Program Files\7-Zip\7z.exe' x prometheus.tar; `
 Rename-Item -Path "C:\prometheus-$($env:PROMETHEUS_VERSION).windows-amd64"
-NewName 'C:\prometheus'

The second (and final) stage of the Dockerfile starts from Nano Server and copies the
extracted files from the installer stage. They are copied to specific locations, so the user of
the container can override the contents with volume mounts to run Prometheus with a
different configuration:

FROM microsoft/nanoserver:10.0.14393.1198

COPY --from=installer /prometheus/prometheus.exe /bin/prometheus.exe
COPY --from=installer /prometheus/promtool.exe /bin/promtool.exe
COPY --from=installer /prometheus/prometheus.yml
/etc/prometheus/prometheus.yml
COPY --from=installer /prometheus/console_libraries/ /etc/prometheus/
COPY --from=installer /prometheus/consoles/ /etc/prometheus/

There is much you can configure in Prometheus, but typically, you can get started just by
specifying the JSON configuration file. My Dockerfile has an ENTRYPOINT with default
values for all the settings and a CMD that lets the user override the config file location:

ENTRYPOINT ["C:\\bin\\prometheus.exe", `
 "-storage.local.path=/prometheus", `
 "-web.console.libraries=/etc/prometheus/console_libraries", `
 "-web.console.templates=/etc/prometheus/consoles"]

CMD ["-config.file=/etc/prometheus/prometheus.yml"]

Debugging and Instrumenting Application Containers Chapter 11

[311]

Docker Captain and Microsoft MVP Stefan Scherer have an alternative
Dockerfile to package Prometheus, which has more flexibility in the
startup command. It's on GitHub in the stefanscherer/dockerfiles-
windows repository.

I have containers running from my instrumented API and Bonobo Git server images, which
expose metrics endpoints for Prometheus to consume. To monitor them in Prometheus, I
need to specify the metric locations in the configuration file. Prometheus will poll these
endpoints on a configurable schedule, it calls this scraping, and I can add my container
names and ports in the scrape configuration:

scrape_configs:
 - job_name: 'Api'
 static_configs:
 - targets: ['api:50505']
 - job_name: 'Bonobo'
 static_configs:
 - targets: ['bonobo:50505']

Each application to monitor is specified as a job, and each endpoint is listed as a target.
Prometheus will be running in a container on the same Docker network, so I can refer to the
targets by the container name. Now I can start the Prometheus server in a container,
mounting local folders for the configuration file and the data volume and specifying the
config file location in the command:

docker container run -d -P `
 --name prometheus `
 -v "C:\prometheus\data:C:\prometheus" `
 -v "C:\prometheus:C:\config" `
 dockeronwindows/ch11-prometheus '-config.file=/config/prometheus.yml'

Prometheus polls the all the configured metrics endpoints and stores the data. You can use
Prometheus as the back-end for a rich UI component such as Grafana, building all your
runtime KPIs into a single dashboard. For basic monitoring, the Prometheus server also
provides a simple Web UI.

Debugging and Instrumenting Application Containers Chapter 11

[312]

I can go to the IP address of the Prometheus server on port 9090, and set up a graph view
showing me the responses for my Web API, which gives me a different line for each request
URL and response status code:

These are counters that increase for the life of the container, so the graphs will always go
up. Prometheus has a rich set of functions so you can also graph the rate of change over
time, aggregate metrics, and select projections over the data.

Other counters from the Prometheus NuGet package are snapshots such as the performance
counter statistics. I can compare the memory usage of the Bonobo instance and the API by
looking at the working set.

Debugging and Instrumenting Application Containers Chapter 11

[313]

Using a stacked graph here shows that Bonobo is using more memory, but there's a sharp
fall, which is probably after a .NET garbage collector run:

In Chapter 8, Administering and Monitoring Dockerized Solutions, I demonstrated Universal
Control Plane (UCP), the Containers-as-a-Service (CaaS) platform in Docker Enterprise
Edition (Docker EE). The standard APIs to start and manage Docker containers lets this
tool present a consolidated management and administration experience. The openness of
the Docker platform lets open source tools take the same approach to rich, consolidated
monitoring.

Prometheus is a good example of that. It runs as a lightweight server, which is well suited
to running in a container. You add support for Prometheus to your application either by
adding a metrics endpoint to your app, or by running a metrics exporter alongside your
existing app.

Debugging and Instrumenting Application Containers Chapter 11

[314]

You can add instrumentation to all your applications with very little effort and gain a
detailed insight into what's happening in your solution. What's more, you can have the
exact same monitoring facility in every environment, so in development and test, you can
see the same metrics you use in production. This is very useful in tracking down issues
when you're replicating bugs from other environments.

The bug fixing workflow in Docker
One of the biggest difficulties in fixing production defects is replicating them in your
development environment. This is the first step in confirming that you have a bug and the
starting point for drilling down to find the problem. It can also be the most time-consuming
part of the problem.

Large .NET projects tend to have infrequent releases because the release process is complex,
and a lot of manual testing is needed to verify the new features and check for any
regressions. It's not unusual to have just three or four releases a year and for developers to
find themselves having to support multiple versions of an application in different parts of
the release process.

In this scenario, you may have version 1.0 in production, version 1.1 in user acceptance
testing (UAT), and version 1.2 in system testing. Bugs could be raised in any of these
versions, which the development team needs to track down and fix while they're currently
working on version 1.3 or even a major upgrade for 2.0.

Bug fixing before Docker
I've been in this position lots of times, having to context switch from the refactored 2.0 code
base I'm working on back to the 1.1 code base that is due to be released. The context switch
is expensive, but the process of setting up my development environment to recreate the 1.1
UAT environment is even more costly.

The release process may create a versioned MSI, but typically, you can't just run that in
your development environment. The installer may be packaged with the configuration for a
specific environment. It may have been compiled in release mode and packaged without
PDB files, so there's no option to attach a debugger. And it may have prerequisites that I
don't have available in development such as certificates or encryption keys or additional
software components.

Debugging and Instrumenting Application Containers Chapter 11

[315]

Instead, I need to recompile the 1.1 version from source. Hopefully, the release process has
enough information for me to find the exact source code used to build the release, take a
branch, and clone it locally (maybe the Git commit ID or the TFS change set is recorded in
the built assemblies). Then the real problems start when I try to recreate another
environment on my local development box.

The workflow looks a little like this, where there are lots of differences between my setup
and the 1.1 environment:

Compile the source locally. I'll build the app in Visual Studio, but the released
version uses MSBuild scripts, which do a lot of extra things.
Run the app locally. I'll be using IIS Express on Windows 10, but the release uses
an MSI that deploys to IIS 8 on Windows Server 2012.
My local SQL Server database is set up for the 2.0 schema I'm working on. The
release has upgrade scripts from 1.0 to 1.1, but there are no downgrade scripts
from 2.0 to 1.1, so I need to manually fix the local schema.
I have stubs for any dependencies I can't run locally, such as third-party APIs.
The release uses real application components.

Even if I can get the exact source code for version 1.1, my development environment is
hugely divergent from the UAT environment. This is the best I can do, and it may take
several hours of effort. To reduce this time, I could take shortcuts, like using my knowledge
of the app to run version 1.1 against the 2.0 database schema, but taking shortcuts means
my local environment is less like the target environment.

I can run the app in debug at this point and try to replicate the issue. If the bug is caused by
a data problem or an environmental problem, then I won't be able to replicate it and it
could have taken a whole day of effort to find that out. If I suspect the issue is to do with
the setup of UAT, I can't verify that in my environment; I need to work with the Ops team
to look at the UAT configuration.

But hopefully, I can reproduce the issue following the steps in the bug report. When I have
the manual steps worked out, I can write a failing test that replicates the issue and be
confident that I've fixed the problem when I change the code and the test runs green. There
are differences between my environment and UAT, so it could be that my analysis is not
correct and the fix won't fix UAT but I won't find that out until the next release.

How that fix does get released into the UAT environment is another problem. Ideally, the
full CI and packaging process is already set up for the 1.1 branch, so I just push my changes
and a new MSI comes out that is ready to be deployed. In the worst case, the CI runs only
from the master branch, so I need to set up a new job on the fix branch and try to configure
that job to be the same as it was for the last 1.1 release.

Debugging and Instrumenting Application Containers Chapter 11

[316]

If any part of the toolchain has moved on between 1.1 and 2.0, then it makes every step of
the process more difficult, from configuring the local environment, running the app,
analyzing the problem, and pushing the fix.

Bug fixing with Docker
The process is much simpler with Docker. To replicate the UAT environment locally, I just
need to run containers from the same images that are running in UAT. There will be a
Docker compose or stack file describing the whole solution, which is versioned, so by
deploying version 1.1, I get the exact same environment as UAT without having to build
from the source.

I should be able to replicate the issue at this point and confirm whether it's a coding issue or
something to do with data or the environment. If it's a configuration issue, then I should see
the same problem as UAT, and I could test the fix with an updated compose file. If it's a
coding issue, then I need to dig into the code.

At this point, I can clone the source from the version 1.1 tag and build the Docker images in
the debug mode, but I don't spend time doing that until I'm pretty sure this is a problem in
the app. If I'm using multi-stage builds with all versions pinned in the Dockerfile, the local
build will produce an identical image to the one running in UAT but with the extra artifacts
for debugging.

Now I can find the problem, write a test, and fix the bug. When the new integration test
passes, it's executing against the same Dockerized solution I'll be deploying in UAT, so I
can be very confident that the bug is fixed.

If there's no CI configured for the 1.1 branch, then setting it up should be straightforward
because the build task will just need to run the docker image build or docker-compose
build commands. If I want fast feedback, I can even push the locally built image to the
registry and update the UAT environment to verify the fix while the CI setup is being
configured.

The workflow with Docker is much cleaner and faster, but more importantly, there is far
less risk. When you replicate the issue locally, you are using the exact same application
components running on the exact same platform as the UAT environment. When you test
your fix, you know it will work in UAT because you'll be deploying the same new artifacts.

The time you invest in dockerizing your application will be repaid by the time saved in
supporting multiple versions of the app.

Debugging and Instrumenting Application Containers Chapter 11

[317]

Summary
This chapter looked at troubleshooting applications running in containers, along with
debugging and instrumentation. Docker is a new application platform, but applications in
containers run as processes on the host, so they're still suitable targets for remote
debugging and centralized monitoring.

Support for Docker is available in all the current versions of Visual Studio. Visual Studio
2017 has complete support, covering Linux and Windows containers. Visual Studio 2015
and Visual Studio Code currently have extensions that provide debugging for Linux
containers, but you can easily add your own support for Windows containers.

In this chapter, I also introduced Prometheus, a lightweight instrumentation and
monitoring component that you can run in a Windows Docker container. Prometheus
stores the metrics it extracts from applications running on other containers. The
standardized nature of containers makes monitoring solutions such as these very simple to
configure.

The next chapter is the final chapter of the book. I'll end by sharing some approaches to get
started with Docker in your own domain, including case studies where I have used Docker
on Windows for existing projects.

12
Containerize What You Know -

Guidance for Implementing
Docker

In this book, I have used older .NET technologies for the sample applications to show you
that Docker works just as well with them as it does with modern .NET Core apps. You can
Dockerize a ten year old WebForms application and get many of the same benefits you get
from running a greenfield ASP.NET Core Model-View-Controller (MVC) application in a
container.

You've seen lots of examples of containerized applications and learned how to build, ship,
and run production-grade apps with Docker. Now you're ready to start working with
Docker on your own projects, and this chapter gives you advice on how to get started.

I'll cover some techniques and tools that will help you run a proof-of-concept project to
move an application to Docker. I'll also walk you through some case studies to show how
I've introduced Docker to existing projects:

A small-scale .NET 2.0 WebForms app
A database integration service in a Windows Communication Foundation
(WCF) app
A distributed IoT API app running in Azure

You'll see how to approach typical problems and how the move to Docker can help solve
them.

Dockerizing what you know
When you move to a new application platform, you have to work with a new set of artifacts

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[319]

and new operational processes. If you currently use the Windows installer for deployment,
your artifacts are Wix files and MSIs. Your deployment process is to copy the MSI to the
target server, log on, and run the installer.

After the move to Docker, you will have Dockerfiles and images as the deployment
artifacts. You push the image to a registry and run a container or update a service to deploy
the app. The resources and activities are simpler in Docker, and they'll be consistent
between projects, but there's still a learning curve when you start.

Containerizing an app that you know well is a great way to provide a solid basis to that
learning experience. When you first run your app in a container, you may see errors or
incorrect behavior but that will be in the domain of your own application. When you're
tracking down the issue, you'll be dealing with an area you understand well, so although
the platform is new, the problem should be easy to identify.

Selecting a simple Proof-of-Concept app
Docker is ideally suited to distributed applications, where each component runs in a
lightweight container, making efficient use of a minimal set of hardware. You can choose a
distributed application for your first Docker deployment, but a simpler application will be
faster to migrate and will give you a higher chance of success.

A monolithic app is a good choice. It doesn't have to be a small code base, but the fewer
integrations with other components it has, the more quickly you will have it running in
Docker. An ASP.NET application that stores state in SQL Server is a straightforward option.
You can expect to have a Proof-of-Concept (PoC) running in a day or two with a simple
application.

Starting with a compiled application rather than the source code is a good way to prove
that the app can be Dockerized without having to be changed. There are a few factors to
consider when you're selecting your PoC application:

Statefulness: If your target app stores the state in memory, you won't be able to
scale the PoC by running multiple containers. Each container will have its own
state, and you'll get inconsistent behavior as requests are handled by different
containers. Consider stateless apps or apps that can use a shared state, such as
using SQL Server as a session state provider for ASP.NET.

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[320]

Configuration: .NET apps typically use XML configuration files in Web.config
or app.config. You can set up your PoC to use an existing config file as the base
and then swap out any values that don't apply to the containerized environment.
It is preferable to read config settings through Docker with environment
variables and secrets, but staying with config files is easier for the PoC.
Resilience: Older applications typically make the assumption of availability - the
web app expects the database to be always available and doesn't handle failure
conditions gracefully. If your app has no retry logic for external connections,
your PoC will face an error if there are transient connection failures when
containers are starting up.
Windows Authentication: Containers aren't domain-joined. You can access
Active Directory (AD) objects in containers if you create a Group Managed
Service Account in AD, but that adds complexity. For the PoC , stick to simpler
authentication schemes such as basic authentication.

None of these are major restrictions. You should be able to work on the basis of
containerizing an existing app without changing code, but you need to be aware that the
functionality may not be perfect at the PoC stage.

Generating an initial Dockerfile with
Image2Docker
Image2Docker is an open source tool you can use to generate a Dockerfile for an existing
application. It's a PowerShell module that you can run on the local machine, against a
remote machine, or a Virtual Machine disk file (in Hyper-V VHD or VHDX format).

It's a very simple way to get started with Docker, you don't even need Docker installed on
your machine to try it out and see what the Dockerfile would look like for your app.
Image2Docker can work with different types of application (called artifacts), but the
functionality is most mature for ASP.NET apps running on IIS.

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[321]

On my development machine, I have an ASP.NET application deployed to Internet
Information Services (IIS). I can migrate that application to Docker by installing
Image2Docker from the PowerShell gallery and importing the module to use it locally:

Install-Module Image2Docker
Import-Module Image2Docker

PowerShell 5.0 is the minimum required version for Image2Docker, but
the tool has no other dependencies.

I can run the ConvertTo-Dockerfile cmdlet, specifying the IIS artifact to build a
Dockerfile that contains all the IIS websites on my machine:

ConvertTo-Dockerfile -Local -Artifact IIS -OutputPath C:\i2d\iis

This creates a directory at C:\i2d\iis, and inside the folder I'll have a Dockerfile and sub
directories for each of the websites. Image2Docker copies the website content from the
source to the output location. The Dockerfile uses the most relevant base image for the
applications it finds microsoft/iis, microsoft/aspnet or microsoft/aspnet:3.5.

If there are multiple websites or web applications on the source, Image2Docker extracts
them all and builds a single Dockerfile that duplicates the original IIS setup, so there will be
multiple apps in the Docker image. That's not what I'm aiming for which I want a single
app in my Docker image, so I can run with a parameter instead to extract a single website:

ConvertTo-Dockerfile -Local -Artifact IIS -ArtifactParam SampleApi -
OutputPath C:\i2d\api

The process is the same, but this time, Image2Docker extracts only a single application
from the source, the one named in the ArtifactParam parameter. The Dockerfile contains
the steps to deploy the application, and you can run docker image build to create the
image and run the app.

This could be your first step in Dockerizing your application, and then you would run a
container and check the functionality of the app. There may be additional setup needed,
which Image2Docker doesn't do for you, so you'll likely be iterating on that generated
Dockerfile, but the tool is a good way to get started.

Image2Docker is an open source project. The source is on GitHub - use
the short link https:/ / github. com/ docker/ communitytools-
image2docker- win. The repository has additional documentation, and you
can see the roadmap of the tool in the issues list.

https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win
https://github.com/docker/communitytools-image2docker-win

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[322]

Engaging other stakeholders
A successful PoC should be possible in just a few days. The output of that will be a sample
application that runs in Docker and a set of extra steps you need to productionize that PoC.
If you're working in a DevOps environment where your team owns the delivery of your
project, you can agree to make the investment to move to Docker for production.

For larger projects or larger teams, you'll need to engage with other stakeholders to take
your PoC further. The type of conversations you have will depend on the structure of your
organization, but there are some themes that focus on the improvements you get with
Docker:

The operations team often has friction in the handover from development when
it's time to deploy the application. The Docker artifacts, Dockerfiles and Docker
Compose files, are a central point where dev and ops can work together. There's
no risk that the ops team will be given an upgrade they can't deploy because the
upgrade will be a Docker image that's already been tried and tested.
The security team in large companies often has to demonstrate provenance. They
need to prove that the software running in production hasn't been tampered with
and is actually running the code that's in SCM. This may be process-driven right
now, but with image signing and Docker content trust, it can be explicitly
proven. In some cases, security also need to demonstrate that a system will run
only on certified hardware, and that's easy to do with secure labels and
constraints in a Docker swarm.
Product owners are often trying to balance large backlogs against long release
schedules. Enterprise .NET projects are typically difficult to deploy - the upgrade
process is slow, manual, and risky. There's a deployment phase and then a user
testing phase, during which the application is offline to normal users. In contrast,
deployments with Docker are fast, automated, and safe, which means you can
deploy more frequently, adding features when they're ready instead of waiting
months for the next scheduled release.
The management team will have a focus on the product and the cost of running
the product. Docker helps reduce infrastructure costs through more efficient use
of compute resources. It helps reduce project costs by letting the team work more
efficiently, removing the gaps between environments so deployments are
consistent. It also helps increase product quality, as automated packaging and
rolling updates mean you can deploy more often, adding features and fixing
defects more quickly.

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[323]

You can get started with Docker by running the Community Edition (CE) for your PoC,
which you get with Docker for Windows on Windows 10 . Other stakeholders in your
organization will want to understand the support available for applications running in
containers. With Docker Enterprise Edition (EE) Basic, included in the Windows Server
2016 license cost, you have support from Microsoft and Docker, Inc. Operations and
security teams may see a lot of benefit in Docker EE Advanced, which also gives you
Universal Control Plane (UCP) and Docker Trusted Registry (DTR).

The Dockerfiles and Docker images from your PoC will work in the same way on all these
versions. Docker CE, Docker EE, and Docker EE Advanced all share the same underlying
platform.

Case studies for implementing Docker
I'm going to finish by looking at three real-life case studies, where I have brought Docker
into existing solutions or prepared a roadmap to bring Docker into a project. These are
production scenarios, ranging from a small company project with tens of users to a large
enterprise project with over a million users.

Case study 1 - an in-house WebForms app
Some years ago, I took on the support of a WebForms app for a vehicle hire company. The
app was used by a team of about 30, and it was a small-scale deployment, they had one
server hosting the database and one server running the web app. Although small, it was the
core application for the business, and everything they did ran from this app.

The app had a very simple architecture: just one web application and a SQL Server
database. Initially, I did a lot of work to improve the performance and quality of the
application. After that, it became a caretaker role, where I would manage two or three
releases a year, adding new features or fixing old bugs.

These releases were always more difficult and time consuming than they needed to be. The
release usually consisted of:

A Web Deploy package with the updated application
A set of SQL scripts with schema and data changes
A manual testing guide to verify the new features and check for regressions

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[324]

The deployment was done outside office hours in order to give us a window of time to fix
any problems we found. I would Remote Desktop (RDP) into their servers, copy the
artifacts, and manually run the WebDeploy package and the SQL scripts. It was usually
months between releases, so I'd rely on the documentation that I'd written to remind me of
the steps. Then, I'd walk through the testing guide and check the main features. Sometimes,
there were problems because I was missing a SQL script or a dependency for the web
application, and I'd need to try and track down an issue I hadn't seen earlier.

Until recently, the application was running on Windows Server 2003. When the company
wanted to upgrade Windows, I recommended the move to Windows Server 2016 Core and
Docker. My suggestion was to use Docker to run the web application and leave SQL Server
running natively on its own server, but use Docker as a distribution mechanism to deploy
database upgrades.

The move to Docker was very simple. I used Image2Docker against the production server
to produce an initial Dockerfile, and then I iterated on that by adding a health check and
environment variables for configuration. I already had a SQL Server project in Visual
Studio for the schema, so I added another Dockerfile to package the Dacpac with a
deployment script for the database. It took only two days to finalize the Docker artifacts
and have the new version running in a test environment. This was the architecture with
Docker:

1: The web application runs in a Windows Docker container. In production, it
connects to a separate SQL Server instance. In non-production environments, it
connects to a local SQL Server instance running in a container.
2: The database is packaged into a Docker image based on SQL Server Express
and deployed with the database schema in a Dacpac. In production, a task
container is run from the image to deploy the schema to the existing database. In
non-production environments, a background container is run to host the

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[325]

database.

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[326]

Since then, deployments have been straightforward, and they always follow the same steps.
We have a set of private repositories on Docker Cloud, where the versioned application and
database images are stored. I configure my local Docker CLI to work against their Docker
engine, and then I do the following:

Stop the web application container
Run a container from the new database image to upgrade SQL Server
Use Docker Compose to update the web application to the new image

The biggest benefits from moving to Docker have been fast and reliable releases and
reduced infrastructure requirements. The company is currently looking at replacing their
current web server with two smaller servers, so they can run Docker in swarm mode and
have zero downtime upgrades.

An additional benefit is the simplicity of the release process. Because the deployment is
already tried and tested, using the same Docker images that are going to be used in
production, there's no need to have someone who understands the app available to track
down issues. The company's IT support folks do the releases now, and they can do that
without my help.

Case study 2 - a database integration service
I worked on a big, complex web application for a financial company. It was an internal-
facing app that managed very large volumes of trades. The frontend was in ASP.NET MVC,
but most of the logic was in the service tier, written in WCF. The service tier was also a
facade over many third-party apps, isolating the integration logic in the WCF layer.

Most of the third-party apps had XML web services or JSON REST APIs we could consume,
but one of the older apps had no integration options. We used it only for reference data, so
the facade was implemented as a database-level integration. The WCF service exposed
nicely encapsulated endpoints, but the implementation connected directly to the external
application database to provide the data.

Database integration is brittle because you have to rely on a private database schema
instead of a public service contract, but sometimes there are no other options. In this case,
the schema changed infrequently, and we could manage the disruption. Unfortunately, the
release process was back-to-front. The Ops team would release new versions of database in
production first because the app had support from the vendor in production only. When it
was all working, they would replicate the release in the dev and test environments.

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[327]

One release had a database schema change that broke our integration. Any features that
used the reference data from the third-party app stopped working, and we had to get a fix
out as quickly as possible. The fix was straightforward, but the WCF app was a large
monolith and it needed a lot of regression testing before we could be confident this change
didn't impact other areas. I was tasked with looking at Docker as a better way of managing
the database dependency.

The proposal was straightforward. I didn't recommend moving the whole app to Docker -
that was already on a longer-term roadmap - but just moving one service into Docker. The
WCF endpoint for that the database app facade would run in Docker, isolated from the rest
of the application. The web application was the only consumer of the service, so it would
just be a case of changing the URL for the service in the consumer. The proposed
architecture looked like this:

1: The web application runs in IIS. The code is unchanged, but the configuration
is updated to use the URL for the new integration component, running in a
container
2: The original WCF services continue to run in IIS but with the previous
database integration component removed
3: The new integration component uses the same WCF contract as earlier, but
now it is hosted in a container, isolating access to the third-party application
database

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[328]

This approach has a lot of benefits:

If the database schema changes, we only need to change the Dockerized service
Service changes can be released without a full application release just by
updating the Docker image
It is a sandboxed introduction to Docker, so the dev and Ops teams can use it for
evaluation

In this case, the most important benefit was the reduced amount of testing effort. For the
full monolithic app, a release needs several weeks of testing. By breaking out the services
into Docker containers, only the services that have changed need testing for the release.
This drastically reduces the amount of time and effort, which allows more frequent
releases, getting new features out to the business more quickly.

Case study 3 - an Azure IoT app
I was the API architect on a project delivering backend services consumed by a mobile
application. There were two main APIs. The configuration API was read-only, the devices
called it to check for updates to settings and software. The events API was write-only, the
devices posted anonymous events about user behavior, which the product team used to
design the next generation of devices.

The APIs supported over 1.5 million devices. The configuration APIs needed high
availability; they had to respond quickly to device calls and scale to thousands of
concurrent requests per second. The events APIs consumed data from the devices and
pushed events to a message queue. Listening on the queue were two sets of handlers, one
that stored all event data in Hadoop, for long-term analysis, and one that stored a subset of
events to provide real-time dashboards.

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[329]

All the components ran in Azure, and at the peak of the project, we were using cloud
services, Event Hubs, SQL Azure, and HDInsight. The architecture looked like this:

1: The events API, hosted in a cloud service with multiple instances. Devices post
events to the API, which does some preprocessing and posts them in batches to
an Azure Event Hub.
2: The Configuration API, also hosted in a Cloud Service with multiple instances.
Devices connect to the API to check software updates and configuration settings.
3: Real-time analytics data, used for a subset of key performance indicators.
Stored in SQL Azure for fast access, as these are modest quantities of data.
4: Batch analytics data, storing all the events posted by all devices. Stored in
HDInsight, the managed Hadoop service on Azure for long-running Big Data
queries.

This system was expensive to run, but it gave the product team a lot of information on how
the devices were used, which they fed into the design process for the next generation.
Everyone was happy, but then the product roadmap was canceled and there weren't going
to be any more devices, so we had to cut running costs.

I had the job of reducing the Azure bill from $50K per month to under $1K per month. I
could lose some of the reporting features, but the events API and configuration API had to
stay highly available.

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[330]

This happened before Docker was available on Windows, so my first revision of the
architecture used Linux containers running on a Docker swarm in Azure. I replaced the
analytics side of the system with Elasticsearch and Kibana and replaced the configuration
API with static content served from Nginx. I left the custom .NET components running in
cloud services for the events API feeding Azure Event Hubs with device data and the
message handler pushing data to Elasticsearch:

1: The Configuration API, now running as a static website in Nginx.
Configuration data is served as JSON payloads, maintaining the original API
contract.
2: Kibana used for real-time and historical analytics. By reducing the amount of
data stored, we reduced the data storage requirements significantly, at the cost of
losing detailed metrics
3: Elasticsearch used to store incoming event data. A .NET Cloud service is still
used to read from Event Hubs, but this version saves data in Elasticsearch

This first revision gave us the cost savings we needed, mainly by reducing the number of
nodes needed for the APIs and the amount of data we stored from the devices. Instead of
storing everything in Hadoop and real-time data in SQL Azure, I centralized on
Elasticsearch and stored just a small subset of the data. Using Nginx to serve the
configuration APIs, we lost the user-friendly feature the product team had in order to
publish configuration updates, but we could run with far smaller compute resources.

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[331]

I oversaw a second revision, when Windows Server 2016 launched and Docker on
Windows was supported. I added Windows nodes to the existing Linux nodes in the
Docker swarm and migrated the events API and message handlers over to Windows
Docker containers. At this time, I also moved the messaging system over to NATS, running
in a Linux container:

1: The Events API is now hosted in a Docker container, the code hasn't changed;
this is still an ASP.NET web API project, running in a Windows container.
2: The messaging component is using NATS instead of Event Hubs. We lose the
ability to store and reprocess messages, but the message queue now has the same
availability as the Events API.
3: The message handler reads from nats and saves data in Elasticsearch. The
majority of the code is unchanged, but it now runs as a .NET console app in a
Windows container.

This second revision further reduced costs and complexity:

Every component is now running in Docker, so I can replicate the whole system
in development
All components are built with Dockerfiles and packaged as Docker images, so
everything uses the same artifacts
The whole solution has the same level of service, running efficiently on a single
Docker swarm

Containerize What You Know - Guidance for Implementing Docker Chapter 12

[332]

In this case, the project is destined to wind down, and it will be easy to accommodate that
with the new solution. Device usage is still recorded and shown with a Kibana dashboard.
As fewer devices are used over time, the services need less compute, and we can remove
nodes from the swarm. Ultimately, the project will run on minimal infrastructure, possibly
just a two-node swarm, running on small VMs in Azure or it could move back into the
company's data center.

Summary
Large and small companies all over the world are moving to Docker on Windows and
Linux. Some of the main drivers are efficiency, security, and portability. Many new projects
are designed from the ground up using containers, but there are many more existing
projects that would benefit from the move to Docker.

In this chapter I've looked at migrating existing apps to Docker on Windows,
recommending that you start with an application you know well. A short, time-boxed PoC
for Dockerizing that app will quickly show you how your app looks in Docker. The
outcome of that PoC will help you understand what you need to do next and who you need
to involve to get that PoC moved into production.

I finished with some very different cases studies, showing you how you can introduce
Docker in existing projects. In one case, I used Docker primarily for the packaging benefits
in order to run a monolithic app without changing it, but to power clean upgrades for
future releases. In another case, I took one component from a monolithic app and extracted
it to run in a container, in order to reduce the testing burden for releases. And in the last
case, I completely migrated an existing solution to Docker, making it cheaper to run, easier
to maintain, and giving me the option to run it anywhere.

I hope this chapter has helped you think about how you can introduce Docker into your
own projects, and I hope the rest of the book has shown you what you can do with Docker
and why it's such an exciting technology. Thanks for reading, make sure to follow me on
Twitter, and good luck in your journey with Docker on Windows.

Index

.

.NET Core solutions
 .NET Core console apps, packaging 125
 building 121

A
access control list (ACL) 263
Active Directory (AD) 194, 247, 320
Advanced RISC Machines (ARM) 88
Amazon Web Services (AWS) 104, 177
application environments
 configuring 153
 external resources, specifying 154, 155
 multiple Compose file, using 155, 158
artifacts 320
ASP.NET Core application
 UI component, hosting 79
Azure Container Service (ACS) 178
Azure VM
 Docker, executing 18

B
base-images 254
Bonobo Git server
 executing 264, 265
bug fixing workflow
 about 314
 before Docker 314
 with Docker 316
builder 113

C
Canonical Name (CNAME) 96
case studies, for implementing Docker
 Azure IoT app 328, 332
 database integration service 326

 in-house WebForms app 323
Certificate Authority (CA) 271
citizens app
 building 56
 environment variables, promoting 60
 images, building that monitor applications 63
 Internet Information Services (IIS) applications,

hosting 57
client bundle 230
Command Line Interface (CLI) 133, 230
commercial registry
 Docker Cloud 102
 Docker Hub 101
 Docker Store 103
 Docker Trusted Registry 103, 104
 other registries 104
 using 101
Common Vulnerability and Exploit (CVE) 244
Community Edition (CE) 215, 323
container administrator 235
container security
 about 235
 ACLs 237
 container processes 235
 containers, executing with resource constraints

238

 containers, executing with restricted capabilities
240

 isolation, in Hyper-V containers 241
 user accounts 237
Containers-as-a-Service (CaaS) 103, 204
 with Docker EE 209
containers
 .NET Core solutions, building 121
 about 7
 analytics, providing with Kibana 126
 data, sharing with volumes 42

[334]

 data, working with 38
 Elasticsearch, using with Docker and .NET 119
 executing, from image 22
 Hybrid .NET Framework, building 121
 Hybrid NerdDinner solution, compiling 123
 interactive container, connecting to 23
 managing, with Docker tools 204
 managing, with Windows tools 193
 new features, adding 118
 process, executing in background 24
 task container, using 22
content management system (CMS) 230, 237
content trust 104, 252
Continuous Integration (CI) 102, 291
continuous integration and continuous delivery

(CI/CD)
 about 10, 259
 configuring, with Jenkins 270
 designing, with Docker 260
 multi-stage builds 276, 278
custom application
 compiling, at build 29
 compiling, before build 31
 image state 37
 main Dockerfile instructions, using 34
 multi-stage builds, compiling with 33
 packaging 29
 temporary containers 37

D
daemon 98
data
 in layers 38
 sharing, between container and host with

volumes 44
 sharing, between containers with volumes 42
 virtual C drive 38
 volumes, using for configuration 46
 volumes, using for state 46
 working, in containers 38
 working, in Docker images 38
database containers
 application containers, connecting 74, 77
dependencies
 database containers, connecting from application

containers 74, 77
 database files, managing for SQL Server

containers 69
 Docker images, creating for SQL server

database 67
 separating 66
detached container 24
Docker Cloud
 URL, for registration 90
Docker command-line 10
Docker Community Edition (Docker CE) 8
Docker Compose
 application containers, monitoring 150
 application images, managing 152
 application resources, specifying 141, 142
 application services, configuring 138, 141
 application services, scaling 144, 146
 application services, starting 146, 147
 application services, stopping 146, 147
 application services, upgrading 148, 150
 applications containers, managing 151
 applications, defining 134, 135
 applications, executing 143
 applications, managing 142
 infrastructure services, defining 136, 137
 service definitions, capturing 135, 138
 used, for building solution in Jenkins 273, 275
Docker containers
 about 8, 12
 build agent 260
 build server 260
 source control 260
 test agent 260
Docker Datacenter (DDC) 209
Docker Enterprise Edition (Docker EE)
 about 8, 103, 193, 284
 CaaS 209
 UCP 209
Docker for Windows
 about 14
 reference link 14
Docker Hub 26
Docker images
 about 11
 applications, securing 242

[335]

 building 25
 building, from Dockerfile 27
 creation, examining 28
 data, working with 38
 Docker Security Scanning 243
 Dockerfile 26
 legacy ASP.NET web app, packaging as 49
 minimal images, building 242
 pushing, in Jenkins 282
 tagging, in Jenkins 282
 Windows updates, managing 245
Docker service 10
Docker swarm 13
Docker tools
 containers, managing 204
 Docker visualizer 204
 Docker vizualizer 206
 Portainer 206, 208
Docker Trusted Registry (DTR)
 about 103, 209, 234, 323
 Content Trust 252
 golden images 253
 image signing 252
 organizations 249, 252
 repositories 247
 software supply, securing 246
 teams 249, 252
 users 247
Docker
 executing, on Windows 13
 in Azure VM 18
 key concepts 10
 learning 19
 stakeholders, engaging 322
 used, as Windows Service 16
Dockerfile
 about 11, 26
 generating, with Image2Docker 320
 image, building 27
 writing, for Nerd Dinner 50
dockerization
 about 319
 initial Dockerfile, generating with Image2Docker

320

 other stakeholders, engaging 322

 simple Proof-of-Concept app, selecting 319
dockerized applications
 instrumentation 303
dockeronwindows 87
dockeronwindows/ch11-7zip 309
Domain Name System (DNS) 96
DotNetExporter 307

E
EC2 Container Registry (ECR) 104
Elastic Container Service (ECS) 177
Elasticsearch
 using, with Docker and .NET 119
elton 247
Enterprise Edition (EE) 323
Entity Framework (EF) 107
es-data 137

G
global services 168
Google Cloud Platform (GCP) 177
Google Container Platform (GKE) 178
group Managed Service Account (gMSA) 261

H
Hybrid NerdDinner solution
 compiling 123
Hyper-V containers 9, 241

I
image registries 11
image signing 252
image state 38
Image2Docker
 Dockerfile, generating 320
 URL 321
images
 about 215
 container, executing 22
Infinit 214
Infrastructure as a Service (IaaS) 102, 176
ingress network 218
instrumentation
 in dockerized applications 303

[336]

 with Prometheus 303
integrated development environments (IDEs)
 about 291
 Docker, working with 291
 Visual Studio 2015 297
 Visual Studio 2017 292
 Visual Studio Code 300, 303
interactive container
 about 23
 connecting to 23
Internet Information Services (IIS)
 about 11, 35, 193, 237, 263, 299, 321
 applications, hosting 57
 configuring, for Docker-friendly logging 58

J
Jenkins automation server
 executing 267, 269
Jenkins
 CI job, configuring 272
 credentials, setting up 270
 Docker Compose, used for building solution 273,

275

 Docker images, pushing 282
 Docker images, tagging 282
 end to end tests, executing 280
 solution, executing 278, 279
 solution, verifying 278, 279
 used, for configuring CI/CD 270
 used, for deploying solutions to remote Docker

swarm 283, 288

K
key concepts, Docker
 Docker command-line 10
 Docker containers 12
 Docker service 10
 Docker swarm 13
 image registries 11
Kibana
 analytics, providing 126

L
layers 38
legacy ASP.NET web app

 Dockerfile, writing for Nerd Dinner 50
 packaging, as Docker image 49
Lightweight Directory Access Protocol (LDAP)

103, 210
Local Image registry
 executing 91
 registry container, executing 95
 registry image, building 92
Local Registry
 Docker, configuring to allow insecure registries

97

 images, pulling 96
 images, pushing 96
 Windows image layers, storing 99

M
main Dockerfile instructions
 using 34
message queue
 executing, in Docker 114
Microsoft Message Queue (MSMQ) 114
microsoft/nanoserver 26
Model-View-Controller (MVC) 318
monolithic applications
 application containers, connecting 81
 breaking up 77
 high-components, extracting 78, 79
 UI component, hosting in ASP.NET Core

application 79
multi-container solution
 beginning 115, 118
multi-stage builds
 compiling with 33

N
nerd-dinner 249
NerdDinner
 .NET Console Apps, packaging 113
 build dependencies, managing 131, 132
 configuration, dockerizing 109
 create dinner feature, splitting out 110
 deployment dependencies, managing 131, 132
 deployment guide 51
 Dockerfile, writing 50
 goals, designing 107

[337]

 monolith, evolving to distributed solution 129,
131

NEST 120
networks 216
nodes
 managing 161, 211

O
overlay networking 164

P
Platform as a Service (PaaS) 176
Portainer 206, 208
private-app 248
process
 executing, in background container 24
Prometheus
 endpoint, adding to .NET projects 304, 307
 exporter, adding with existing apps 307
 instrumentation 304
 server, executing in Windows Docker container

309, 314
Proof-of-Concept (PoC) app
 configuration 320
 resilience 320
 selecting 319
 statefulness 319
 Windows Authentication 320

R
registries
 about 11, 85, 86, 91
 images, pushing 90
Remote Desktop Protocol (RTP) 324
remote Docker swarm
 solution, deploying with Jenkins 283, 288
Remote Server Administration Tools (RSAT) 201
replicas 163
repositories
 about 86
 image repository names, examining 86
 images, building 88
 images, tagging 88
 images, versioning 88
Role Based Access Control (RBAC) 210, 230,

232

S
scraping 311
secrets 169
Secure Sockets Layer (SSL) 270
security, implementing in swarm
 about 254
 encryption 255
 external access 256
 node labels 256
 nodes, using 255
 secrets 255
 tokens, used for joining 255
serveradmin 203
services
 creating 220
 monitoring 225
shared development services
 Bonobo Git server, executing 264, 265
 CI server, packaging into Windows Docker

image 266
 executing 261
 Git server, packaging into Window Docker image

261

 Jenkins automation server, executing 267, 269
SQL Server containers
 database files, managing 69
 database, executing 71
SQL Server databases
 images, creating 67
SQL Server Management Studio (SSMS) 72, 193,

196, 199
stacks
 about 169
 defining, Compose files used 172
 deploying 218
 deploying, from Compose file 174
 deploying, to swarm 169
swarm
 about 13
 application services, updating 184
 Azure Container Service (ACS) 178, 182
 cloud editions 179
 creating 161

 Elastic Container Service 177
 executing, in cloud 176
 global services 168
 Google Container Platform 178
 hosts, mixing in hybrid swarms 189
 load balancing, across nodes 182
 Managed Docker services 177
 nodes, updating 187, 189
 secrets 169
 service updates, rolling back 186
 services, creating 163, 166
 services, executing across containers 166
 services, managing 163, 166
 stack, defining with Compose files 172, 174
 stack, deploying from Compose file 174
 stacks, deploying 169
 update behavior, configuring 186
 updates, deploying with zero downtime 182
symbolic link (symlink) 94, 263

T
task container
 about 23
 using 22
temporary containers 38
Transmission Control Protocol (TCP) 205
Transport Layer Security (TLS) 255, 271

U
Umbraco
 URL 237
Universal Control Plane (UCP)
 about 10, 103, 193, 209, 246, 284, 323
 images 215
 networks 216
 nodes, managing 211
 RBAC 230
 services, creating 220
 services, monitoring 225
 stacks, deploying 218
 UI, navigating 210
 volumes 213
updates
 deploying, with zero downtime 182

user acceptance testing (UAT) 314

V
virtual C drive 38
virtual machine (VM) 7
Visual Studio 2015 297
Visual Studio 2017
 about 292
 Docker Compose, debugging with 293
Visual Studio Code
 about 300
 reference link 303
Visual Studio Tools for Docker 297
volume issues, on Windows Server 2016
 URL 94
volumes
 about 213
 mounting, from host directories 45
 used, for data share between container and host

44

 used, for sharing data between containers 42
 using, for configuration 47
 using, for state 47

W
Windows Communication Foundation (WCF) 55,

318

Windows containers
 about 8
 licensing 9
Windows Docker container
 Prometheus server, executing 309, 314
Windows Docker image
 CI server, packaging 266
 Git server, packaging 261
Windows Remote Management (WinRM) 201
Windows tools
 containers, managing 193
 event logs 199, 200
 IIS Manager 194, 196
 Server Manager 200, 203
 SQL Server Management Studio 196, 199
Windows
 Docker, executing 13
 Docker, using 16

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Docker on Windows
	Docker and Windows containers
	Windows licensing

	Understanding the key Docker concepts
	The Docker service and Docker command-line
	Docker images
	Image registries
	Docker containers
	Docker swarm

	Running Docker on Windows
	Docker for Windows
	Docker as a Windows Service
	Docker in an Azure VM

	Learning Docker with this book
	Summary

	Chapter 2: Packaging and Running Applications as Docker Containers
	Running a container from an image
	Doing one thing with a task container
	Connecting to an interactive container
	Keeping a process running in a background container

	Building a Docker image
	Understanding the Dockerfile
	Building an image from a Dockerfile
	Examining how Docker builds an image

	Packaging your own applications
	Compiling the application during the build
	Compiling the application before the build
	Compiling with multi-stage builds
	Using the main Dockerfile instructions
	Understanding temporary containers and image state

	Working with data in Docker images and containers
	Data in layers and the virtual C drive
	Sharing data between containers with volumes
	Sharing data between container and host with volumes
	Mounting volumes from host directories

	Using volumes for configuration and state

	Packaging a traditional ASP.NET web app as a Docker image
	Writing a Dockerfile for NerdDinner

	Summary

	Chapter 3: Developing Dockerized .NET and .NET Core Applications
	Building good citizens for Docker
	Hosting Internet Information Services (IIS) applications in Docker
	Configuring IIS for Docker-friendly logging

	Promoting environment variables
	Building Docker images that monitor applications

	Separating dependencies
	Creating Docker images for SQL Server databases
	Managing database files for SQL Server containers
	Running databases in containers

	Connecting to database containers from application containers

	Breaking up monolithic applications
	Extracting high-value components from monoliths
	Hosting a UI component in an ASP.NET Core application
	Connecting to application containers from other application containers

	Summary

	Chapter 4: Pushing and Pulling Images from Docker Registries
	Understanding registries and repositories
	Examining image repository names
	Building, tagging, and versioning images
	Pushing images to a registry

	Running a local image registry
	Building the registry image
	Running a registry container

	Pushing and pulling images with a local registry
	Configuring Docker to allow insecure registries
	Storing Windows image layers in a local registry

	Using a commercial registry
	Docker Hub
	Docker Cloud
	Docker Store
	Docker Trusted Registry
	Other registries

	Summary

	Chapter 5: Adopting Container-First Solution Design
	Design goals for NerdDinner
	Dockerizing NerdDinner's configuration
	Splitting out the create dinner feature
	Packaging .NET console apps in Docker

	Running a message queue in Docker
	Starting a multi-container solution
	Adding new features in containers
	Using Elasticsearch with Docker and .NET
	Building hybrid .NET Framework and .NET Core solutions in Docker
	Compiling the hybrid NerdDinner solution
	Packaging .NET Core console apps in Docker

	Providing analytics with Kibana

	From monolith to distributed solution
	Managing build and deployment dependencies

	Summary

	Chapter 6: Organizing Distributed Solutions with Docker Compose
	Defining applications with Docker Compose
	Capturing service definitions
	Defining infrastructure services
	Configuring application services
	Specifying application resources

	Managing applications with Docker Compose
	Running applications
	Scaling application services
	Stopping and starting application services
	Upgrading application services
	Monitoring application containers
	Managing application images

	Configuring application environments
	Specifying external resources
	Using multiple Compose files

	Summary

	Chapter 7: Orchestrating Distributed Solutions with Docker Swarm
	Creating a swarm and managing nodes
	Creating and managing services in swarm mode
	Running services across many containers
	Global services

	Deploying stacks to Docker swarm
	Docker secrets
	Defining a stack using Compose files
	Deploying a stack from a Compose file

	Running Docker swarm in the cloud
	Managed Docker services in the cloud
	Docker on Amazon Elastic Container Service
	Docker on Google Container Platform
	Docker on Azure Container Service

	Docker cloud editions

	Deploying updates with zero downtime
	Load balancing across swarm nodes
	Updating application services
	Rolling back service updates
	Configuring update behavior
	Updating swarm nodes
	Mixing hosts in hybrid swarms

	Summary

	Chapter 8: Administering and Monitoring Dockerized Solutions
	Managing containers with Windows tools
	IIS Manager
	SQL Server Management Studio
	Event logs
	Server Manager

	Managing containers with Docker tools
	Docker visualizer
	Portainer

	CaaS with Docker EE
	Understanding UCP
	Navigating the UCP UI
	Managing nodes
	Volumes
	Images
	Networks
	Deploying stacks
	Creating services
	Monitoring services
	RBAC

	Summary

	Chapter 9: Understanding the Security Risks and Benefits of Docker
	Understanding container security
	Container processes
	Container user accounts and ACLs
	Running containers with resource constraints
	Running containers with restricted capabilities
	Isolation in Hyper-V containers

	Securing applications with secure Docker images
	Building minimal images
	Docker Security Scanning
	Managing Windows updates

	Securing the software supply chain with DTR
	Repositories and users
	Organizations and teams
	Image Signing and Content Trust
	Golden images

	Understanding security in swarm mode
	Nodes and join tokens
	Encryption and secrets
	Node labels and external access

	Summary

	Chapter 10: Powering a Continuous Deployment Pipeline with Docker
	Designing CI/CD with Docker
	Running shared development services in Docker
	Packaging a Git server into a Windows Docker image
	Running the Bonobo Git server in Docker
	Packaging a CI server into a Windows Docker image
	Running the Jenkins automation server in Docker

	Configuring CI/CD using Jenkins in Docker
	Setting up Jenkins credentials
	Configuring the Jenkins CI job
	Building the solution using Docker Compose in Jenkins
	Multi-stage builds in CI pipelines
	Running and verifying the solution
	Running end-to-end tests in Docker
	Tagging and pushing Docker images in Jenkins

	Deploying to a remote Docker swarm using Jenkins
	Summary

	Chapter 11: Debugging and Instrumenting Application Containers
	Working with Docker in integrated development environments
	Docker in Visual Studio 2017
	Debugging with Docker Compose in Visual Studio 2017

	Docker in Visual Studio 2015
	Docker in Visual Studio Code

	Instrumentation in Dockerized applications
	Instrumentation with Prometheus
	Adding a Prometheus endpoint to .NET projects

	Adding a Prometheus exporter alongside existing apps
	Running a Prometheus server in a Windows Docker container

	The bug fixing workflow in Docker
	Bug fixing before Docker
	Bug fixing with Docker

	Summary

	Chapter 12: Containerize What You Know - Guidance for Implementing Docker
	Dockerizing what you know
	Selecting a simple Proof-of-Concept app
	Generating an initial Dockerfile with Image2Docker
	Engaging other stakeholders

	Case studies for implementing Docker
	Case study 1 - an in-house WebForms app
	Case study 2 - a database integration service
	Case study 3 - an Azure IoT app

	Summary

	Index

