
MongoDB Security Architecture
October 2018

A MongoDB White Paper

Table of Contents
1Introduction

1Requirements for Securing Modern Application Data

5MongoDB Security Features
5MongoDB Enterprise Advanced
5MongoDB Authentication
7MongoDB Authorization
8MongoDB Auditing
9MongoDB Encryption

10Environment & Processes

13MongoDB Atlas

13Conclusion

13We Can Help

14Resources

Introduction

The frequency and severity of data breaches continues to

escalate. Industry analysts predict cybercrime will cost the

global economy $6 trillion annually by 2021. Organizations

face an onslaught of new threat classes and threat actors

with phishing, ransomware and intellectual property theft

growing more than 50% year on year, and key

infrastructure subject to increased disruption. With

databases storing an organization’s most important

information assets, securing them is top of mind for

administrators.

Using the advanced security features available in

MongoDB Enterprise Advanced and the MongoDB Atlas

database service in the cloud, organizations have extensive

capabilities to defend, detect, and control access to

valuable data. These features, along with general security

requirements, are discussed in this whitepaper and are

then detailed in the MongoDB Security Checklist.

Requirements for Securing
Modern Application Data

In light of increasing threats over the past decade coupled

with heightened concern for individual privacy, industries

and governments around the world have embarked on a

series of initiatives designed to increase security, reduce

fraud and protect personally identifiable information (PII),

including:

• PCI DSS for managing cardholder information

• HIPAA standards for managing healthcare information

• GDPR for the protection of EU citizen data privacy

• FISMA to ensure the security of data in the federal

government

• FERPA to protect the privacy of student education

records

• The Asia Pacific Cross-border Privacy Enforcement

Arrangement (CPEA), creating a framework for regional

cooperation in the enforcement of privacy laws

1

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/cloud/atlas
https://docs.mongodb.com/manual/administration/security-checklist/

In addition to these initiatives, new regulations are being

developed every year to cope with emerging threats and

new demands for tighter controls governing data use.

Each set of regulations defines security and auditing

requirements which are unique to a specific industry or

application, and compliance is assessed on a per-project

basis. It is important to recognize that Compliance can be

achieved only by applying a combination of controls that

we can summarize as People, Processes, and Products:

• “People” defines specific roles, responsibilities, and

accountability.

• “Processes” defines operating principles and business

practices.

• “Products” defines technologies used for data storage

and processing.

Despite differences between different regulations, there

are common foundational requirements across all of the

directives, including:

• Restricting data access, enforced via predefined

privileges and roles

• Measures to protect against the accidental or malicious

disclosure, loss, destruction, or damage of personal data

• The separation of duties when accessing and

processing data

• Recording user, administrative staff, and application

activities with a database These requirements inform

the security architecture of MongoDB, with best

practices for the implementation of a secure, compliant

data management environment.

FigurFigure 1e 1: MongoDB End to End Security Architecture

A holistic security architecture must cover the following:

• User access management to restrict access to sensitive

data, implemented through authentication and

authorization controls

• Logging operations against the database in an audit

trail for forensic analysis

• Data protection via encryption of data in-motion over

the network and at-rest in persistent storage

• Environmental and process controls

The requirements for each of these elements are

discussed below.

User Access Management -
Authentication

Authentication is designed to confirm the identity of

entities accessing the database. In this context, entities are

defined as:

• Users who need access to the database as part of their

day-to-day business function

• Administrators (i.e. sysadmins, DBAs, QA staff) and

developers

• Software systems including application servers,

reporting tools, and management and backup suites

2

• Physical and logical nodes that the database runs on.

Databases can be distributed across multiple nodes

both for scaling operations and to ensure continuous

operation in the event of systems failure or

maintenance.

Best practices for authentication are as follows.

• CrCreate Security Create Security Credentials.edentials. Create login credentials

for each entity that will need access to the database,

and avoid creating a single “admin” login that every user

shares.

By creating credentials it becomes easier to define,

manage, and track system access for each user. Should

a user’s credentials become compromised, this

approach makes it easier to revoke the user without

disrupting other users who need access to the

database.

Developers, Administrators, and DBAs should all have

unique credentials to access the database. When logins

are shared it can be impossible to identify who

attempted different operations, and it eliminates the

ability to assign fine-grained permissions. With unique

logins, staff that move off of the project or leave the

organization can have their access revoked without

affecting other user accounts.

It is a best practice to create separate login credentials

for each application that will be accessing the database.

As new applications are introduced and old applications

are retired, this approach helps manage access. Some

MongoDB customers create multiple logins for different

services within a single application, which are then

recorded in audit trails and query logs.

Authentication should be enforced between nodes. This

prevents unauthorized instances from joining a

database cluster, preventing the illicit copying or

movement of data to insecure nodes.

• Supporting In-DatSupporting In-Database and Centralized Userabase and Centralized User

Access Management.Access Management. Databases should provide the

ability to manage user authentication either within the

database itself, typically via a Challenge/Response

mechanism, or through integration with

organization-wide identity management systems.

Integrating MongoDB within the existing information

security infrastructure enforces centralized and

standardized control over user access. If, for example, a

user’s access must be revoked, the update can be made

in a single repository and enforced instantly across all

systems, including MongoDB.

• EnforEnforce Passworce Password Pd Policies.olicies. Passwords should adhere

to minimum complexity requirements established by the

organization, and they should be reset periodically. Low

entropy passwords can be easy to break, even if they

are encrypted. High entropy passwords can be

compromised given sufficient time.

User Rights Management - Authorization

Once an entity has been authenticated, authorization

governs what that entity is entitled to do in the database.

Privileges are assigned to user roles that define a specific

set of actions that can be performed against the database.

Best practices include:

• Grant Minimal Access to Entities.Grant Minimal Access to Entities. Entities should be

provided with the minimal database access they need to

perform their function. If an application requires access

to a logical database, it should be restricted to

operations on that database alone, and prevented from

accessing other logical databases. This helps protect

against both malicious and accidental access or

unauthorized modification of data.

• GrGroup Common Access Privileges into Roles.oup Common Access Privileges into Roles.

Entities can often be grouped into “roles” such as

“DBA”, “Sysadmin”, and “App server.” Permissions for a

role can be centrally managed and users can be added

or removed from roles as needed. Using roles helps

simplify management of access control by defining a

single set of rules that apply to specific classes of

entities, rather than having to define them individually

for each user.

• ContrControl Wol Whichich Actions an Entity Can Ph Actions an Entity Can Perform.erform. When

granting access to a database, consideration should be

made for which specific actions or commands each

entity should have permission to run. For example, an

application may need read/write permissions to the

database, whereas a reporting tool may be restricted to

read-only permission. Some users may be granted

privileges that enable them to insert new data to the

database, but not to update or delete existing data.

3

Care should be taken to ensure that only the minimal

set of privileges is provided. Credentials of the most

privileged accounts could compromise the entire

database if they are hacked internally or by an external

intruder.

• ContrControl Access to Sensitive Datol Access to Sensitive Data.a. To prevent the

emergence of data silos, it should be possible to restrict

permissions to individual fields, based on security

privileges. For example, some fields of a record may be

accessible to all users of the database, while others

containing sensitive information, such as PII, should be

restricted to users with specific security clearance.

Auditing

By creating audit trails, changes to data and database

configuration can be captured for each entity accessing

the database, providing a log for compliance and forensic

analysis. Auditing can also detect attempts to access

unauthorized data.

• TTracrack Changes to Datk Changes to Database Configuration.abase Configuration. Any time

a database configuration is changed, the action should

be recorded in an audit log which should include the

change action, the identity of the user and a timestamp.

• TTracrack Changes to Datk Changes to Data.a. It should be possible to

configure the audit trail to capture every query or write

operation to the database. Care, however, should be

exercised when configuring this rule for applications.

For example, if the application is inserting tens of

thousands of records per second, writing each

operation to the audit log can impose a performance

overhead to the database. The project team should

determine any tradeoffs between performance and

auditing requirements. It should be possible to filter

events that are captured, for example only specific

users, IP addresses or operations.

Encryption

Encryption is the encoding of critical data whenever it is in

transit or at rest, enabling only authorized entities to read it.

Data will be protected in the event that eavesdroppers or

hackers gain access to the server, network, filesystem or

database.

• Encrypt Connections to the DatEncrypt Connections to the Database.abase. All user or

application access to the database should be via

encrypted channels including connections established

through the drivers, command line or shell, as well as

remote access sessions to the database servers

themselves. Internal communications between database

nodes should also be encrypted, i.e. traffic replicated

between nodes of a database cluster.

• Encrypt DatEncrypt Data at Rest.a at Rest. One of most common threats to

security comes from attacks that bypass the database

itself and target the underlying Operating System and

physical storage of production servers or backup

devices, in order to access raw data. On-disk encryption

of the database’s data files and backups mitigates this

threat.

• Sign and RotSign and Rotate Encryption Kate Encryption Keys.eys. Encryption keys

for network and disk encryption should be periodically

rotated. TLS encryption channels should use signed

certificates to ensure that clients can certify the

credentials they receive from server components.

• EnforEnforce Strce Strong Encryption.ong Encryption. The database should

support FIPS (Federal Information Processing

Standard) 140-2 to ensure the implementation of

secure encryption algorithms.

Environmental and Process Control

The environment in which the database and underlying

infrastructure is running should be protected with both

physical and logical controls. These are enforced in the

underlying deployment environment, rather than in the

database itself, and include:

• Installation of firewalls

• Network configurations

• Defining file system permissions

• Creation of physical access controls to the IT

environment

As configuration errors and unpatched systems are one of

the largest causes of attackers bypassing security

mechanisms, there are a series of operational processes

that should be adopted to further promote and enforce

secure operation, including:

4

FigurFigure 2e 2: Integrating MongoDB with Centralized User Access Controls

• DBA and developer training

• Database provisioning, monitoring and backup

• Database maintenance, i.e. applying the latest patches

MongoDB Security Features

With comprehensive controls for user rights management,

auditing and encryption, coupled with best practices in

environmental protection, MongoDB can meet the best

practice requirements described earlier.

The following section discusses MongoDB’s security

architecture. Also refer to the MongoDB Security Checklist

for a list of security measures that you should implement to

protect your MongoDB installation.

MongoDB Enterprise Advanced

MongoDB Enterprise Advanced is the certified and

supported production release of MongoDB for running on

your infrastructure, with advanced security features,

including LDAP authentication and authorization, Kerberos

support, encryption of data at-rest, FIPS-compliance, and

maintenance of audit logs. These capabilities extend

MongoDB’s already comprehensive security framework,

which includes Role-Based Access Control, PKI

certificates, Read-Only views for field-level security, and

TLS data transport encryption. You can get access to all of

the features of MongoDB Enterprise free of charge for

evaluation and development environments. MongoDB

Enterprise Advanced is the focus of this paper.

MongoDB Atlas is a database as a service available on all

of the major cloud platforms. The key capabilities of

MongoDB Atlas are summarized later in the paper.

Download the MongoDB Atlas Security Controls

whitepaper to learn more about the specific security

architecture of the Atlas service.

Enable Access Control and Enforce
Authentication

From the MongoDB 2.6 release onwards, the binaries from

the official MongoDB RPM and DEB packages bind to

localhost by default. With MongoDB 3.6, this default

behavior is extended to all MongoDB packages across all

platforms. As a result, all networked connections to the

database will be denied unless explicitly configured by an

administrator. Review the documentation to learn more

about localhost binding. Combined with IP whitelisting,

administrators can configure MongoDB to only accept

external connections from approved IP addresses or CIDR

ranges that have been explicitly added to the whitelist.

Before you bind to external IP addresses, you should

enable access control and evaluate other security

measures listed in Security Checklist to prevent

unauthorized access.

MongoDB Authentication

MongoDB provides multiple authentication methods,

allowing the approach best suited to meet the

requirements of different environments. Authentication can

be managed from the database itself, or through

integration with external authentication mechanisms.

In Database Authentication

MongoDB authenticates entities on a per-database level

using the SCRAM IETF RFC 5802 standard. Users are

authenticated via the authentication command, while

database nodes can be authenticated to the MongoDB

cluster via keyfiles.

5

https://docs.mongodb.com/manual/administration/security-checklist/
https://webassets.mongodb.com/_com_assets/collateral/Atlas_Security_Controls.pdf
https://webassets.mongodb.com/_com_assets/collateral/Atlas_Security_Controls.pdf
https://docs.mongodb.com/master/release-notes/3.6-compatibility/#bind-ip-compatibility
https://docs.mongodb.com/master/administration/security-checklist/#checklist-auth
https://docs.mongodb.com/master/administration/security-checklist/

Review the authentication documentation to learn more.

LDAP Authentication

LDAP is widely used by many organizations to standardize

and simplify the way large numbers of users are managed

across internal systems and applications. In many cases,

LDAP is also used as the centralized authority for user

access control to ensure that internal security policies are

compliant with corporate and regulatory guidelines. With

LDAP integration, MongoDB Enterprise Advanced can

both authenticate and authorize users directly against

existing LDAP infrastructure to leverage centralised access

control architectures.

Review the LDAP integration documentation to learn more

about LDAP and MongoDB Enterprise Advanced.

Kerberos Authentication

With MongoDB Enterprise Advanced, authentication using

a Kerberos service is supported. Kerberos is an industry

standard authentication protocol for large client/server

systems, allowing both the client and server to verify each

others' identity. With Kerberos support, MongoDB can take

advantage of existing authentication infrastructure and

processes, including Microsoft Windows Active Directory .

Before users can authenticate to MongoDB using

Kerberos, they must first be created and granted privileges

within MongoDB. The process for doing this, along with a

full configuration checklist is described in the MongoDB

and Kerberos tutorial.

x.509 Certificate Authentication

With support for x.509 certificates MongoDB can be

integrated with existing information security infrastructure

and certificate authorities, supporting both user and

inter-node authentication.

Users can be authenticated to MongoDB using client

certificates rather than self-maintained passwords.

Inter-cluster authentication and communication between

MongoDB nodes can be secured with x.509 member

certificates rather than keyfiles, ensuring stricter

membership controls with less administrative overhead, i.e.

by eliminating the shared password used by keyfiles. x.509

certificates can be used by nodes to verify their

membership of MongoDB replica sets and sharded

clusters. A single Certificate Authority (CA) should issue all

the x.509 certificates for the members of a sharded cluster

or a replica set.

Instructions for configuration are described in the

MongoDB and x.509 certificates tutorial.

MongoDB and Red Hat Identity Management

Red Hat Enterprise Linux (RHEL) is a popular environment

for MongoDB deployments. Providing ease of use to

administrators and security professionals working in these

environments, the MongoDB security features are

integrated with the Identity Management (IdM) features of

RHEL. This integration provides central management of

individual entities and their authentication, authorization

and privileges.

Review the Red Hat Linux Identity Management tutorial for

instruction on configuration with MongoDB.

Red Hat IdM integration is available with MongoDB

Enterprise Advanced and requires the database to be

configured for Kerberos authentication.

MongoDB and Microsoft Active Directory

MongoDB Enterprise Advanced provides support for

authentication using Microsoft Active Directory with both

Kerberos and LDAP. The Active Directory domain controller

authenticates the MongoDB users and servers running in a

Windows network, again to leverage centralised access

control.

MongoDB Authorization

MongoDB allows administrators to define the specific

permissions an application or user has, and what data they

can see when querying the database.

Role-Based Access Control

Over ten predefined roles supporting common user and

administrator database privileges provide MongoDB's Role

6

https://docs.mongodb.com/manual/core/security-scram/#authentication-scram
https://docs.mongodb.com/master/core/security-ldap/
http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-kerberos-authentication/
http://docs.mongodb.org/manual/tutorial/control-access-to-mongodb-with-kerberos-authentication/
http://docs.mongodb.org/master/tutorial/configure-x509/
http://docs.mongodb.org/ecosystem/tutorial/configure-red-hat-enterprise-linux-identity-management/

FigurFigure 3e 3: MongoDB User Defined Roles Permit Separations of Duty

Based Access Control (RBAC) capabilities. These can be

further customised through User Defined Roles, enabling

administrators to assign fine-grained privileges to clients,

based on their respective data access and processing

needs. To simplify account provisioning and maintenance,

roles can be delegated across teams, ensuring the

enforcement of consistent policies across specific data

processing functions within the organization. MongoDB

provides the ability to specify user privileges with both

database and collection-level granularity.

Privileges are assigned to roles, and roles are in turn

assigned to users. For example:

• Classes of users and applications can be assigned

privileges to insert data, but not to update or delete data

from the database

• DBAs may be assigned privileges that enable them to

create collections and indexes on the database, while

developers are restricted to CRUD operations

• Certain administrator roles may have cluster-wide

privileges to build replica sets and configure sharding,

while others are restricted to creating new users or

inspecting logs

• Processes for monitoring MongoDB clusters can be

restricted to run just those commands that retrieve

server status, without having full administrative access

to perform database operations

• Within a multi-tenant environment, “landlord” developers

and administrators can be assigned permissions across

physical databases, while “tenant” developers and

administrators can be granted a more limited set of

actions across logical databases or individual

collections. This functionality enables a clear separation

of duties and control, both between and within

organizations.

Review the Authorization section of the documentation to

learn more about roles in MongoDB.

When combined with the auditing capabilities available with

MongoDB Enterprise Advanced, customers can define

specific administrative actions per role, and then log all of

those actions. As a result, the organization is able to

enforce end-to-end operational control and maintain

insight of actions for compliance and reporting.

LDAP Authorization

In addition to authentication, MongoDB Enterprise

Advanced also support authorization via LDAP. This

enables existing user privileges stored in the LDAP server

to be mapped to MongoDB roles, without users having to

7

http://docs.mongodb.org/master/core/authorization/

be recreated in MongoDB itself. When configured with an

LDAP server for authorization, MongoDB will allow user

authentication via LDAP, Active Directory, Kerberos, or

X.509 without requiring local user documents in the

$external database. When a user successfully

authenticates, MongoDB will perform a query against the

LDAP server to retrieve all groups the LDAP user is a

member of, and will transform those groups into their

equivalent MongoDB roles. LDAP authentication and

authorization can be configured either via the command

line, or for additional administrative convenience, via the

Ops Manager GUI.

Field-Level Security with Read-Only Views

To enforce field-level security, DBAs can define

non-materialized views that expose only a subset of data

from an underlying MongoDB collection, i.e. a view that

filters out specific fields, such as Personally Identifiable

Information (PII) from sales data or health records. As a

result, risks of data exposure are dramatically reduced.

DBAs can define a view of a collection that's generated

from an aggregation over another collection(s) or view.

Permissions granted against the view are specified

separately from permissions granted to the underlying

collection(s). This capability allows organizations to more

easily meet compliance standards in regulated industries

by restricting access to sensitive data, without creating the

silos that emerge when data has to be broken apart to

reflect different access privileges.

Views can also contain computed fields – for example

summarizing total and average order value per region,

without exposing underlying customer data. All of this can

be done without impacting the structure or content of the

original source collections. Developers and DBAs can

modify the underlying collection’s schema without

impacting applications using the view.

As views are non-materialized, the view data is generated

dynamically by reading from the underlying collections

when a user queries the view. This reduces data duplication

in the database, and eliminates inconsistencies between

the base data and view.

Views are defined using the standard MongoDB Query

Language and aggregation pipeline. They allow the

inclusion or exclusion of fields, masking of field values,

filtering, schema transformation, grouping, sorting, limiting,

and joining of data using $lookup and $graphLookup to

another collection.

You can learn more about MongoDB read-only views from

the documentation.

Log Redaction

MongoDB Enterprise Advanced can also be configured

with log redaction to prevent potentially sensitive

information, such as personal identifiers, from being written

to the database’s diagnostic log. Developers and DBAs

who may need to access the logs for database

performance optimization or maintenance tasks still get

visibility to metadata, such as error or operation codes, line

numbers, and source file names, but are unable to see any

personal data associated with database events.

MongoDB Auditing

The MongoDB Enterprise Advanced auditing framework

logs all access and actions executed against the database.

The auditing framework captures administrative actions

(DDL) such as schema operations as well as

authentication and authorization activities, along with read

and write (DML) operations to the database.

Administrators can construct and filter audit trails for any

operation against MongoDB, whether DML, DCL or DDL

without having to rely on third party tools. For example, it is

possible to log and audit the identities of users who

accessed specific documents, and any changes they made

to the database during their session.

FigurFigure 4e 4: MongoDB Maintains an Audit Trail of
Administrative Actions Against the Database

Administrators can configure MongoDB to log all actions

or apply filters to capture only specific events, users or

roles. The audit log can be written to multiple destinations

8

https://www.mongodb.com/products/ops-manager
https://docs.mongodb.com/master/core/views/#reference-views
https://docs.mongodb.com/master/core/views/#reference-views
https://docs.mongodb.com/manual/reference/configuration-options/#security.redactClientLogData

in a variety of formats including to the console and syslog

(in JSON format), and to a file (JSON or BSON), which

can then be loaded to MongoDB and analyzed to identify

relevant events. Each MongoDB server writes events to its

attached storage. The DBA can then use their own tools to

merge these events into a single audit log, enabling a

cluster-wide view of operations that affected multiple

nodes.

MongoDB Enterprise Advanced also supports role-based

auditing. It is possible to log and report activities by specific

role, such as userAdmin or dbAdmin – coupled with any

inherited roles each user has – rather than having to

extract activity for each individual administrator.

Auditing adds performance overhead to a MongoDB

system. The amount is dependent on several factors

including which events are logged and where the audit log

is maintained, such as on an external storage device and

the audit log format. Users should consider the specific

needs of their application for auditing and their

performance goals in order to determine their optimal

configuration.

Learn more from the MongoDB auditing documentation.

MongoDB Encryption

Administrators can encrypt MongoDB data in transit over

the network and at rest in permanent storage and backups.

Network Encryption

Support for TLS allows clients to connect to MongoDB

over an encrypted channel. Clients are defined as any

entity capable of connecting to the MongoDB server,

including:

• Users and administrators

• Applications

• MongoDB tools (e.g., mongodump, mongorestore,

mongotop)

• Nodes that make up a MongoDB cluster, such as

replica set members, query routers and config servers.

It is possible to mix encrypted with non-encrypted

connections on the same port, which can be useful when

applying finer grained encryption controls for internal and

external traffic, as well as avoiding downtime when

upgrading a MongoDB cluster to support TLS/SSL.

The TLS protocol is also supported with x.509 certificates.

MongoDB Enterprise Advanced supports FIPS 140-2

encryption if run in FIPS Mode with a FIPS validated

Cryptographic module. The mongod and mongos

processes should be configured with the "sslFIPSMode"

setting. In addition, these processes should be deployed on

systems with an OpenSSL library configured with the FIPS

140-2 module.

The MongoDB documentation includes a tutorial for

configuring TLS connections.

Disk Encryption

There are multiple ways to encrypt data at rest with

MongoDB. Encryption can implemented at the application

level, or via external filesystem and disk encryption

solutions. By introducing additional technology into the

stack, both of these approaches can add cost, performance

overhead and operational complexity.

With the MongoDB Encrypted storage engine, protection

of data at-rest becomes an integral feature of the

database. By natively encrypting database files on disk,

administrators eliminate both the management and

performance overhead of external encryption mechanisms.

This new storage engine provides an additional level of

defense, allowing only those staff with the appropriate

database credentials access to encrypted data.

9

http://docs.mongodb.org/master/core/auditing/#auditing
http://docs.mongodb.org/manual/reference/configuration-options/#net.ssl.FIPSMode
http://docs.mongodb.org/manual/reference/configuration-options/#net.ssl.FIPSMode
http://docs.mongodb.org/manual/tutorial/configure-ssl/
http://docs.mongodb.org/manual/tutorial/configure-ssl/

FigurFigure 5:e 5: End to End Encryption – Data In-Motion and
Data At-Rest

Using the Encrypted storage engine, the raw database

content, referred to as plaintext, is encrypted using an

algorithm that takes a random encryption key as input and

generates ciphertext that can only be read if decrypted

with the decryption key. The process is entirely transparent

to the application. MongoDB supports a variety of

encryption schema, with AES-256 (256 bit encryption) in

CBC mode being the default. AES-256 in GCM mode is

also supported. The encryption schema can be configured

for FIPS 140-2 compliance.

The storage engine encrypts each database with a

separate key. The key-wrapping scheme in MongoDB

wraps all of the individual internal database keys with one

external master key for each server. The Encrypted storage

engine supports two key management options – in both

cases, the only key being managed outside of MongoDB is

the master key:

• Local key management via a keyfile.

• Integration with a third party key management appliance

via the KMIP protocol (recommended).

Most regulatory requirements mandate that the encryption

keys must be rotated and replaced with a new key at least

once annually. MongoDB can achieve key rotation without

incurring downtime by performing rolling restarts of the

replica set. When using a KMIP appliance, the database

files themselves do not need to be re-encrypted, thereby

avoiding the significant performance overhead imposed by

key rotation in other databases. Only the master key is

rotated, and the internal database keystore is re-encrypted.

The Encrypted storage engine is designed for operational

efficiency and performance:

• Compatible with WiredTiger’s document level

concurrency control and compression.

• Support for Intel’s AES-NI equipped CPUs for

acceleration of the encryption/decryption process.

• As documents are modified, only updated storage

blocks need to be encrypted, rather than the entire

database.

Based on user testing, the Encrypted storage engine

minimizes performance overhead to around 15% (this can

vary, based on data types being encrypted), which can be

much less than the observed overhead imposed by some

filesystem encryption solutions.

The Encrypted storage engine is based on WiredTiger and

available as part of MongoDB Enterprise Advanced. Refer

to the documentation to learn more, and see a tutorial on

how to configure the storage engine.

Environment & Processes

Building on the database security controls discussed

above, running MongoDB in a trusted environment,

implementing a secure development lifecycle, and

enforcing deployment best practices further reduces the

risk of security breaches.

A “Defense in Depth” approach is recommended to

complement secure MongoDB deployments, addressing a

number of different methods for managing risk and

reducing exposure.

The intention of a Defense in Depth approach is to layer

your environment to ensure there are no exploitable single

points of failure that could allow an intruder or untrusted

party to access the data stored in the MongoDB database.

Secure environments use the following strategies to

control access, with more detail available in the Network

Exposure and Security section of the documentation.

10

https://docs.mongodb.com/manual/core/security-encryption-at-rest/#encrypted-storage-engine
http://docs.mongodb.org/manual/core/security-network/
http://docs.mongodb.org/manual/core/security-network/

• Network FilterNetwork Filter.. By using filters such as firewalls and

router ACL rules, connections to MongoDB from

unknown systems can be blocked.

Firewalls should limit both incoming and outgoing traffic

to/from a specific port to trusted and untrusted

systems. For best results and to minimize overall

exposure, ensure that only traffic from trusted sources

can reach mongod and mongos instances and that the

mongod and mongos instances can only connect to

trusted outputs. In addition, unneeded system services

should be deactivated.

• Binding IBinding IP AddrP Addresses.esses. The bind_ip setting for mongod

and mongos instances limits the network interfaces on

which MongoDB programs will listen for incoming

connections.

• Running in VPRunning in VPNs.Ns. Limit MongoDB programs to

non-public local networks and virtual private networks.

Virtual Private Networks (VPNs) make it possible to link

two networks over an encrypted and limited-access

trusted network. Typically MongoDB users configure

SSL rather than IPSEC protocols for performance

advantages.

• DedicDedicated OS User Account.ated OS User Account. A user account

dedicated to MongoDB should be created and used to

run MongoDB executables. MongoDB should not run as

the “root” user.

• File System PFile System Permissions.ermissions. The servers running

MongoDB should employ filesystem permissions that

prevent users from accessing the data files created by

MongoDB. MongoDB configuration files and the cluster

keyfile should be protected to disallow access by

unauthorized users.

• Query Injection.Query Injection. As a client program assembles a

query in MongoDB, it builds a BSON object, not a string.

Thus traditional SQL injection attacks should not pose a

risk to the system for queries submitted as BSON

objects.

However, several MongoDB operations permit the

evaluation of arbitrary JavaScript expressions and care

should be taken to avoid malicious expressions.

Fortunately, most queries can be expressed in BSON

and for cases where Javascript is required, it is possible

to mix JavaScript and BSON so that user-specified

values are evaluated as values and not as code.

MongoDB also allows the administrator to configure the

MongoDB server to prevent the execution of Javascript

scripts. This will prevent MapReduce jobs from running,

but the aggregation pipeline can be used as an

alternative in many use cases.

• PhysicPhysical Access Contral Access Controls.ols. In addition to the logical

controls discussed above, controlling physical access to

servers, storage and backup media provides critical

environmental protection.

Database Monitoring & Upgrading

Proactive monitoring of all components within an IT

environment is always a best practice. System performance

and availability depend on the timely detection and

resolution of potential issues before they present problems

to users.

From the perspective of database security, monitoring is

critical to identifying potential exploits in real time, thereby

reducing the impact of any breach. For example, sudden

peaks in the CPU and memory loads of host systems and

high operations counters in the database can indicate a

Denial of Service attack. MongoDB ships with a variety of

tools including mongostat and mongotop that can be used

to monitor your database.

The most comprehensive monitoring solution is provided by

MongoDB Ops Manager, which is the simplest way to run

MongoDB on your own infrastructure. Ops Manager makes

it easy for operations teams to monitor, secure, back up,

and scale MongoDB. Ops Manager is available with

MongoDB Enterprise Advanced. MongoDB Cloud Manager

is a hosted management tool for MongoDB providing many

of the same capabilities as Ops Manager.

11

https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/products/cloud-manager

FigurFigure 6e 6: Ops Manager Offers Charts, Custom
Dashboards & Automated Alerting

Featuring charts, custom dashboards, and automated

alerting, Ops and Cloud Manager track 100+ key database

and systems health metrics including operations counters,

memory and CPU utilization, replication status, open

connections, queues and any node status. Cloud Manager

can also alert you if any host is internet-exposed.

The metrics are securely reported to Ops Manager where

they are processed, aggregated, alerted and visualized in a

browser, letting administrators easily determine the health

of MongoDB in real time. Views can be based on explicit

permissions, so project team visibility can be restricted to

their own applications, while systems administrators can

monitor all MongoDB deployments across the organization.

Ops Manager allows administrators to set custom alerts

when key metrics are out of range. Alerts can be sent via

SMS and email or integrated into existing incident

management systems such as PagerDuty, Slack, HipChat

and others to proactively warn of potential issues before

they escalate to costly outages.

Ops Manager also enables administrators to roll out

upgrades and patches to the database without application

downtime. By using either the GUI or API, updated

packages can be pushed and applied to each server

through a series of rolling restarts, all without operator

intervention.

Disaster Recovery: Backups & Point-in-Time
Recovery

Data can be compromised by a number of unforeseen

events: failure of the database or its underlying

infrastructure, user error, malicious activity, or application

bugs. With a backup and recovery strategy in place,

administrators can restore business operations by quickly

recovering their data, enabling the organization to meet

regulatory and compliance obligations.

Ops Manager backups are maintained continuously, just a

few seconds behind the operational system. If MongoDB

experiences a failure, the most recent backup is only

moments behind, minimizing exposure to data loss. Ops

Manager and Cloud Manager offers point-in-time recovery

of replica sets and cluster-wide snapshots of sharded

clusters. You can restore to precisely the moment you

need, quickly and safely, allowing users to quickly recover

from attacks that corrupt underlying data.

Training & Consulting Services

MongoDB provides extensive training and consulting

services to help customers apply best security practices:

• The MongoDB Security course is a no-cost, 3-week

online training program delivered by MongoDB

University.

• MongoDB University also offers a range of both public

and private training for developers and operations

teams, covering best practices in using and

administering MongoDB.

• MongoDB Global Consulting Services offer a range of

packages covering Health Checks, Production

Readiness Assessments, and access to Dedicated

Consulting Engineers. The MongoDB consulting

engineers work directly with your teams to guide

development and operations, ensuring skills transfer to

your staff.

Keep up to Date

Always ensure you are running the latest

production-certified release of both MongoDB and the

drivers, and have applied the latest set of patches. While

MongoDB Enterprise Advanced customers get access to

emergency patches, fixes for security vulnerabilities are

available to all MongoDB users as soon as they are

released.

12

https://university.mongodb.com/courses/M310/about
https://university.mongodb.com/
https://www.mongodb.com/products/consulting

MongoDB Atlas: Database as a Service
For MongoDB

MongoDB Atlas is a cloud database service that makes it

easy to deploy, operate, and scale MongoDB in the cloud

by automating time-consuming administration tasks such

as database setup, security implementation, scaling,

patching, and more.

MongoDB Atlas is available on-demand through a

pay-as-you-go model and billed on an hourly basis.

It’s easy to get started – use a simple GUI to select the

public cloud provider, region, instance size, and features

you need. MongoDB Atlas provides:

• Security features to protect your data, with fine-grained

access control and end-to-end encryption

• Built in replication for always-on availability.

Cross-region replication within a public cloud can be

enabled to help tolerate the failure of an entire cloud

region.

• Fully managed, continuous and consistent backups with

point in time recovery to protect against data corruption,

and the ability to query backups in-place without full

restores

• Fine-grained monitoring and customizable alerts for

comprehensive performance visibility

• One-click scale up, out, or down on demand. MongoDB

Atlas can provision additional storage capacity as

needed without manual intervention.

• Automated patching and single-click upgrades for new

major versions of the database, enabling you to take

advantage of the latest and greatest MongoDB features

• Live migration to move your self-managed MongoDB

clusters into the Atlas service with minimal downtime

MongoDB Atlas can be used for everything from a quick

Proof of Concept, to test/QA environments, to powering

production applications. The user experience across

MongoDB Atlas, Cloud Manager, and Ops Manager is

consistent, ensuring that disruption is minimal if you decide

to manage MongoDB yourself and migrate to your own

infrastructure.

Built and run by the same team that engineers the

database, MongoDB Atlas is the best way to run MongoDB

in the cloud. Learn more or deploy a free cluster now.

Download the MongoDB Atlas Security Controls

whitepaper to learn more about the specific security

architecture of the Atlas service.

Conclusion

With databases storing an organization’s most important

information assets, securing them is an essential first step

in countering new threat classes and actors.

As demonstrated in this white paper, with MongoDB

Enterprise Advanced organizations benefit from extensive

capabilities to defend, detect and control access to

valuable online big data. You can get started by reviewing

the MongoDB Security Documentation, and downloading

MongoDB Enterprise Advanced for evaluation today.

We Can Help

We are the MongoDB experts. Over 6,600 organizations

rely on our commercial products. We offer software and

services to make your life easier:

MongoDB Enterprise Advanced is the best way to run

MongoDB in your data center. It's a finely-tuned package

of advanced software, support, certifications, and other

services designed for the way you do business.

MongoDB Atlas is a database as a service for MongoDB,

letting you focus on apps instead of ops. With MongoDB

Atlas, you only pay for what you use with a convenient

hourly billing model. With the click of a button, you can

scale up and down when you need to, with no downtime,

full security, and high performance.

MongoDB Stitch is a serverless platform which accelerates

application development with simple, secure access to data

and services from the client – getting your apps to market

faster while reducing operational costs and effort.

MongoDB Mobile (Beta) MongoDB Mobile lets you store

data where you need it, from IoT, iOS, and Android mobile

13

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud
https://webassets.mongodb.com/_com_assets/collateral/Atlas_Security_Controls.pdf
https://webassets.mongodb.com/_com_assets/collateral/Atlas_Security_Controls.pdf
http://docs.mongodb.org/manual/security
https://www.mongodb.com/download-center#enterprise
https://www.mongodb.com/download-center#enterprise
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/atlas
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/products/mobile

devices to your backend – using a single database and

query language.

MongoDB Cloud Manager is a cloud-based tool that helps

you manage MongoDB on your own infrastructure. With

automated provisioning, fine-grained monitoring, and

continuous backups, you get a full management suite that

reduces operational overhead, while maintaining full control

over your databases.

MongoDB Consulting packages get you to production

faster, help you tune performance in production, help you

scale, and free you up to focus on your next release.

MongoDB Training helps you become a MongoDB expert,

from design to operating mission-critical systems at scale.

Whether you're a developer, DBA, or architect, we can

make you better at MongoDB.

Resources

For more information, please visit mongodb.com or contact

us at sales@mongodb.com.

Case Studies (mongodb.com/customers)

Presentations (mongodb.com/presentations)

Free Online Training (university.mongodb.com)

Webinars and Events (mongodb.com/events)

Documentation (docs.mongodb.com)

MongoDB Enterprise Download (mongodb.com/download)

MongoDB Atlas database as a service for MongoDB

(mongodb.com/cloud)

MongoDB Stitch backend as a service (mongodb.com/

cloud/stitch)

US 866-237-8815 • INTL +1-650-440-4474 • info@mongodb.com
© 2018 MongoDB, Inc. All rights reserved.

14

https://www.mongodb.com/products/cloud-manager
https://www.mongodb.com/products/consulting
https://university.mongodb.com/private_training
http://www.mongodb.com
mailto:sales@mongodb.com
http://mongodb.com/customers
http://mongodb.com/presentations
http://university.mongodb.com
http://mongodb.com/events
http://docs.mongodb.com
http://mongodb.com/download
https://www.mongodb.com/cloud
https://www.mongodb.com/cloud/stitch
https://www.mongodb.com/cloud/stitch

	Table of Contents
	Introduction1
	Requirements for Securing Modern Application Data1
	MongoDB Security Features5
	MongoDB Enterprise Advanced5
	MongoDB Authentication5
	MongoDB Authorization7
	MongoDB Auditing8
	MongoDB Encryption9
	Environment & Processes10

	MongoDB Atlas13
	Conclusion13
	We Can Help13
	Resources14
	Introduction
	Requirements for Securing Modern Application Data
	User Access Management - Authentication
	User Rights Management - Authorization
	Auditing
	Encryption
	Environmental and Process Control

	MongoDB Security Features
	MongoDB Enterprise Advanced
	Enable Access Control and Enforce Authentication
	MongoDB Authentication
	In Database Authentication
	LDAP Authentication
	Kerberos Authentication
	x.509 Certificate Authentication
	MongoDB and Red Hat Identity Management
	MongoDB and Microsoft Active Directory

	MongoDB Authorization
	Role-Based Access Control
	LDAP Authorization
	Field-Level Security with Read-Only Views
	Log Redaction

	MongoDB Auditing
	MongoDB Encryption
	Network Encryption
	Disk Encryption

	Environment & Processes
	Database Monitoring & Upgrading
	Disaster Recovery: Backups & Point-in-Time Recovery
	Training & Consulting Services
	Keep up to Date

	MongoDB Atlas: Database as a Service For MongoDB

	Conclusion
	We Can Help
	Resources

